JP2010127531A - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP2010127531A
JP2010127531A JP2008302918A JP2008302918A JP2010127531A JP 2010127531 A JP2010127531 A JP 2010127531A JP 2008302918 A JP2008302918 A JP 2008302918A JP 2008302918 A JP2008302918 A JP 2008302918A JP 2010127531 A JP2010127531 A JP 2010127531A
Authority
JP
Japan
Prior art keywords
bypass
refrigerant
refrigerating
air
conditioning apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008302918A
Other languages
Japanese (ja)
Inventor
Tomotaka Ishikawa
智隆 石川
Takashi Okazaki
多佳志 岡崎
Kazuhiko Shiraishi
和彦 白石
Takeshi Inoue
武志 井上
Munehisa Korishima
宗久 郡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008302918A priority Critical patent/JP2010127531A/en
Publication of JP2010127531A publication Critical patent/JP2010127531A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration air conditioner preventing the excessive rise of high pressure and the lowering of low pressure during overload operation, and preventing the shortage of a refrigerant during normal operation. <P>SOLUTION: The refrigeration air conditioner 100 has a compressor 1, a condenser 2, a plurality of capillary tubes 3, an evaporator 4 equipped with heat transfer tubes of the same number as that of the capillary tubes 3, and a main circuit 101 forming a refrigerating cycle connecting them to circulate the refrigerant. The air conditioner also has a bypass circuit 6 making branch points 12 communicate with each other provided between the condenser 2 and the capillary tubes 3 with a junction 13 provided between the evaporator 4 and the compressor 1. A bypass electromagnetically operated valve 7, a bypass receiver 8, a bypass decompressing means 9 are sequentially installed in the bypass circuit 6. In a controller 10, when the pressure of a delivered refrigerant of the compressor 1 measured by a pressure sensor 11 reaches control upper limit pressure P1, the bypass electromagnetically operated valve 7 is opened, the refrigerants are sent into the capillary tubes 3 and the bypass circuit 6, and the high pressure is lowered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は冷凍空調装置、特に、減圧と分配とを兼用した複数の毛細管を備えた冷凍空調装置に関する。   The present invention relates to a refrigeration air conditioner, and more particularly, to a refrigeration air conditioner provided with a plurality of capillaries used both for decompression and distribution.

従来、冷凍空調装置として、圧縮機と、室外熱交換器と、減圧と分配とを兼用した複数の毛細管と、該毛細管のそれぞれに連通した伝熱管を具備する室内熱交換器と、アキュムレータとが順に接続された冷媒回路を備え、電磁弁の開閉によって使用する毛細管の本数を減らして絞りをきつくし、低圧を調節することで圧縮機への液戻りを回避する発明が開示されている(例えば、特許文献1参照)。   Conventionally, as a refrigeration air conditioner, there are a compressor, an outdoor heat exchanger, a plurality of capillaries that combine decompression and distribution, an indoor heat exchanger that includes a heat transfer tube that communicates with each of the capillaries, and an accumulator. An invention is disclosed that includes a refrigerant circuit connected in order, reduces the number of capillaries used by opening and closing the solenoid valve, tightens the throttle, and adjusts the low pressure to avoid liquid return to the compressor (for example, , See Patent Document 1).

また、冷凍サイクルを構成するメイン回路と、冷媒調節器を具備するサブ回路を備え、メイン回路の冷媒量が過剰になると、電磁弁の開閉によって余剰冷媒をサブ回路に流入させ、冷媒調節器に貯溜することで熱損失の低減を図る発明が開示されている(例えば、特許文献2参照)。   In addition, a main circuit constituting the refrigeration cycle and a sub circuit including a refrigerant regulator are provided. When the refrigerant amount in the main circuit becomes excessive, surplus refrigerant is caused to flow into the sub circuit by opening and closing the solenoid valve, and the refrigerant regulator is An invention for reducing heat loss by storing is disclosed (for example, see Patent Document 2).

特開平4−372421号公報(第2頁、第1図)JP-A-4-372421 (page 2, FIG. 1) 特開2008−185295号公報(第6−7頁、第1図)JP 2008-185295 A (page 6-7, FIG. 1)

しかしながら、特許文献1に開示された発明には、以下のような問題があった。
(あ)減圧手段に毛細管を使用するため、絞り量を調節することができない。すなわち、低負荷運転時において圧縮機に液戻りが生じない絞り量に設定することで信頼性を確保している。低負荷運転時とは、例えば外気温度20℃、室内の乾球温度20℃、湿球温度14℃で冷房運転する状態であり、圧縮機に液戻りしやすい環境条件である。それゆえ、反対に、過負荷運転時においては絞りがきつくなり、高圧が過上昇する。
However, the invention disclosed in Patent Document 1 has the following problems.
(A) Since a capillary tube is used for the pressure reducing means, the amount of restriction cannot be adjusted. That is, reliability is ensured by setting the throttle amount so that the liquid does not return to the compressor during low-load operation. The low load operation is a state in which the cooling operation is performed, for example, at an outside air temperature of 20 ° C., an indoor dry bulb temperature of 20 ° C., and a wet bulb temperature of 14 ° C., and is an environmental condition in which liquid is easily returned to the compressor. Therefore, on the contrary, during overload operation, the throttle becomes tight and the high pressure rises excessively.

(い)一方、過負荷運転時の高圧過上昇回避のため、初期冷媒封入量を少量とした場合、通常運転時では冷媒不足となり、これも性能(運転効率)の悪化が生じる。   (Ii) On the other hand, in order to avoid an excessive increase in high pressure during overload operation, if the initial refrigerant charging amount is made small, the refrigerant becomes insufficient during normal operation, which also deteriorates performance (operation efficiency).

(う)また、通常運転時は高効率運転を実施するため、毛細管全本数を使用し、蒸発器全体を機能させている。外気温度が上昇するなどの過負荷運転時には絞りを緩くし、高圧上昇を回避する必要があるが、使用する毛細管本数を増加させることはできない。ゆえに、従来からある複数の毛細管の上流側に、更に毛細管を追加した状態で通常運転を実施し、過負荷運転時には電磁弁で追加の毛細管をバイパスさせるという方法が考えられる。しかしながら、通常運転時には気液二相状態での分配となり、分配不良による性能悪化が生じる。   (U) In addition, in order to carry out highly efficient operation during normal operation, all the capillaries are used to make the entire evaporator function. During overload operation such as when the outside air temperature rises, it is necessary to loosen the throttle to avoid a high pressure rise, but the number of capillaries used cannot be increased. Therefore, it is conceivable to perform a normal operation with additional capillaries on the upstream side of a plurality of conventional capillaries, and to bypass the additional capillaries with an electromagnetic valve during overload operation. However, during normal operation, distribution is performed in a gas-liquid two-phase state, resulting in performance deterioration due to poor distribution.

さらに、特許文献2に開示された発明には、以下のような問題があった。
(え)減圧と分配とを兼用した複数の毛細管を備えた冷凍空調装置に適用し、高圧が過上昇したときにサブ回路に冷媒を貯留して高圧抑制しようとする場合、サブ回路に冷媒を貯留した際、低圧もまた低下し、吸入過熱度も増加するため、吐出温度が過上昇する。
Furthermore, the invention disclosed in Patent Document 2 has the following problems.
(E) When applied to a refrigeration air conditioner equipped with a plurality of capillaries that combine decompression and distribution, and when the high pressure is excessive, the refrigerant is stored in the sub-circuit to suppress the high pressure. When stored, the low pressure also decreases and the suction superheat increases, so the discharge temperature rises excessively.

(お)高圧を抑制できるまで冷媒をサブ回路に貯留していった場合、凝縮器出口で過冷却度が確保できなくなる場合がある。このとき、減圧と分配とを兼用した複数の毛細管に気液二相状態で流入することとなり、分配不良による性能悪化が生じる。   (O) When the refrigerant is stored in the sub-circuit until the high pressure can be suppressed, the degree of supercooling may not be ensured at the condenser outlet. At this time, it flows into a plurality of capillaries that use both decompression and distribution in a gas-liquid two-phase state, resulting in performance deterioration due to poor distribution.

本発明は、上記のような問題を解決するためになされたものであって、過負荷運転時における高圧の過上昇および低圧の低下を防止すると共に、通常運転時における冷媒不足を防止し、減圧と分配とを兼用した複数の毛細管に冷媒が気液二相状態で流入しないようにする冷凍空調装置を提供するものである。   The present invention has been made to solve the above-described problems, and prevents an excessive increase in high pressure and a decrease in low pressure during overload operation, and also prevents a refrigerant shortage during normal operation, And a refrigerating and air-conditioning apparatus that prevents a refrigerant from flowing into a plurality of capillaries that also serve as distribution in a gas-liquid two-phase state.

本発明に係る冷凍空調装置は、冷媒を圧縮して吐出する圧縮機と、該圧縮機から吐出される冷媒を凝縮する凝縮器と、該凝縮器から流出される冷媒を減圧する減圧手段と、該減圧手段で減圧された冷媒を蒸発させる蒸発器と、を具備し、これらを順次連結して冷媒を循環させる主回路と、
該主回路の前記凝縮器と前記減圧手段との間に設けられた分岐点と、該主回路の前記蒸発器と前記圧縮機との間に設けられた合流点と、を連通するバイパス回路と、を有し、
前記減圧手段は、複数の毛細管から成り、
前記蒸発器は、前記毛細管のそれぞれに連通する伝熱管を具備し、
前記バイパス回路には、前記分岐点から前記合流点に向かって順次、バイパス電磁弁と、冷媒を減圧するバイパス減圧手段と、が設置され、
前記主回路には、前記圧縮機から吐出される冷媒の圧力を測定する圧力センサが設置され、
該圧力センサで測定された圧力値が入力され、該圧力値に応じて前記バイパス電磁弁の開閉を制御する制御装置とを備えることを特徴とする。
A refrigerating and air-conditioning apparatus according to the present invention includes a compressor that compresses and discharges a refrigerant, a condenser that condenses the refrigerant discharged from the compressor, and a decompression unit that depressurizes the refrigerant flowing out of the condenser, An evaporator for evaporating the refrigerant depressurized by the depressurizing means, and a main circuit for sequentially circulating the refrigerant by connecting them,
A bypass circuit that communicates a branch point provided between the condenser of the main circuit and the decompression means and a junction point provided between the evaporator and the compressor of the main circuit; Have
The decompression means comprises a plurality of capillaries,
The evaporator includes a heat transfer tube communicating with each of the capillaries,
In the bypass circuit, a bypass solenoid valve and a bypass pressure reducing means for decompressing the refrigerant are sequentially installed from the branch point toward the junction.
The main circuit is provided with a pressure sensor for measuring the pressure of the refrigerant discharged from the compressor,
And a control device that inputs a pressure value measured by the pressure sensor and controls opening and closing of the bypass solenoid valve according to the pressure value.

本発明の冷凍空調装置は、バイパス回路を有するから、通常運転時の運転効率が最大となる冷媒量まで封入した場合であっても、外気温度が上昇するなどでの過負荷運転時にバイパス回路へ冷媒を貯留し、高圧の過上昇を回避することが可能になる。これにより、通常運転時に高効率運転が可能となり、過負荷運転時の信頼性もまた確保できる。   Since the refrigerating and air-conditioning apparatus of the present invention has a bypass circuit, even when the refrigerant amount is filled up so that the operation efficiency during normal operation is maximized, the refrigerant circuit enters the bypass circuit during overload operation such as when the outside air temperature rises. It becomes possible to store the refrigerant and avoid an excessive increase in high pressure. As a result, high-efficiency operation is possible during normal operation, and reliability during overload operation can also be ensured.

[実施の形態1]
図1〜図3は本発明の実施の形態1に係る冷凍空調装置を説明するものであって、図1は構成を示す冷媒回路図、図2は冷媒流れを示す冷媒回路図、図3は制御装置の作用を示す図である。なお、以下の説明および図において、同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
[Embodiment 1]
1 to 3 illustrate a refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 1 is a refrigerant circuit diagram showing a configuration, FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow, and FIG. It is a figure which shows the effect | action of a control apparatus. In the following description and drawings, the same or corresponding parts are denoted by the same reference numerals, and a part of the description is omitted.

(主回路)
図1において、冷凍空調装置100は、室外機18と室内機19とを有している。室外機18には、冷媒を圧縮して吐出する圧縮機1と、圧縮機1から吐出される冷媒を凝縮する凝縮器2と、が配置され、一方、室内機19には、凝縮器2から流出される冷媒を減圧する減圧手段3(複数の毛細管によって形成されている。以下「毛細管3」と称す)と、毛細管3で減圧された冷媒を蒸発させる蒸発器4と、が配置されている。そして、これらが順次連結され、冷媒が循環する冷凍サイクルを実行する主回路101が形成されている。
毛細管3は、冷媒の減圧作用と蒸発器の各伝熱管へ分配作用とを兼用している。このため、毛細管3で確実な減圧及び分配を実施するには、冷媒を液状態で流入させる必要がある。気液二相状態での流入は、毛細管3の流量が低下、または分配不良を起こすため、運転効率が低下する。また、毛細管3の本数は、蒸発器4を形成する伝熱管の本数と同じである。
(Main circuit)
In FIG. 1, the refrigerating and air-conditioning apparatus 100 includes an outdoor unit 18 and an indoor unit 19. The outdoor unit 18 includes a compressor 1 that compresses and discharges the refrigerant, and a condenser 2 that condenses the refrigerant discharged from the compressor 1, while the indoor unit 19 includes a condenser 2 from the condenser 2. There are disposed decompression means 3 (formed by a plurality of capillaries, hereinafter referred to as “capillaries 3”) and an evaporator 4 for evaporating the refrigerant decompressed by the capillaries 3 for decompressing the refrigerant flowing out. . And these are connected sequentially and the main circuit 101 which performs the refrigerating cycle which a refrigerant | coolant circulates is formed.
The capillary tube 3 serves both as a pressure reducing action of the refrigerant and a distributing action to each heat transfer pipe of the evaporator. For this reason, in order to perform reliable pressure reduction and distribution in the capillary 3, it is necessary to allow the refrigerant to flow in a liquid state. The inflow in the gas-liquid two-phase state decreases the flow rate of the capillary 3 or causes a distribution failure, so that the operation efficiency decreases. The number of capillaries 3 is the same as the number of heat transfer tubes forming the evaporator 4.

(バイパス回路)
また、主回路101の凝縮器2の下流に設けられた分岐点12と、主回路101の蒸発器4の下流に設けられた合流点13と、を連通するバイパス回路6(正確には、バイパス回路6と主回路101の一部とによって、循環回路が形成される)が設けられている。
バイパス回路6には、分岐点12から合流点13に向かって順次、冷媒の通流と遮断を切り替えるバイパス電磁弁7と、冷媒を貯溜するバイパスレシーバ8と、冷媒の流量を調節するバイパス減圧手段9と、が設置されている。
さらに、主回路101の圧縮機1の出側には、圧縮機1から吐出される冷媒の圧力を測定する圧力センサ11が設置され、圧力センサ11で測定された圧力値が入力され、該圧力値に応じてバイパス電磁弁7の開閉を制御する制御装置10が設置されている。
(Bypass circuit)
In addition, a bypass circuit 6 (more precisely, a bypass) that connects a branch point 12 provided downstream of the condenser 2 of the main circuit 101 and a junction 13 provided downstream of the evaporator 4 of the main circuit 101. A circuit 6 is formed by the circuit 6 and a part of the main circuit 101).
The bypass circuit 6 includes a bypass solenoid valve 7 that switches between passage and shutoff of the refrigerant sequentially from the branch point 12 to the junction point 13, a bypass receiver 8 that stores the refrigerant, and a bypass pressure reducing unit that adjusts the flow rate of the refrigerant. 9 are installed.
Further, a pressure sensor 11 for measuring the pressure of the refrigerant discharged from the compressor 1 is installed on the outlet side of the compressor 1 of the main circuit 101, and the pressure value measured by the pressure sensor 11 is input. A control device 10 that controls opening and closing of the bypass electromagnetic valve 7 according to the value is installed.

(通常運転時の冷媒流れ)
次に、冷凍空調装置100の通常運転時における冷媒の流れについて説明する。通常運転時とは、例えば外気温度33℃、室内の乾球温度28℃、湿球温度23℃で冷房運転する状態であり、最もよくある環境条件である。
図2の(a)において、通常運転時はバイパス電磁弁7を遮断し、バイパス回路6に冷媒を通流させない。圧縮機1から吐出された高温高圧のガス冷媒は凝縮器2で凝縮液化された後、毛細管3で分配され、更に減圧され二相冷媒となる。そして、蒸発器4で蒸発ガス化された後、圧縮機1に吸入されて循環する冷凍サイクルを形成し、冷媒が循環する。
このとき、バイパス回路6の内部は合流点13(圧縮機1の吸入側に同じ)において主回路101に接続されているため、低圧に維持されている。
(Refrigerant flow during normal operation)
Next, the flow of the refrigerant during normal operation of the refrigeration air conditioner 100 will be described. The normal operation is, for example, a state in which the cooling operation is performed at an outside air temperature of 33 ° C., an indoor dry bulb temperature of 28 ° C., and a wet bulb temperature of 23 ° C., and is the most common environmental condition.
In FIG. 2A, the bypass solenoid valve 7 is shut off during normal operation, and the refrigerant is not passed through the bypass circuit 6. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed and liquefied by the condenser 2, then distributed by the capillary 3, and further reduced in pressure to become a two-phase refrigerant. Then, after being evaporated and gasified by the evaporator 4, a refrigeration cycle is formed which is sucked into the compressor 1 and circulated, and the refrigerant circulates.
At this time, since the inside of the bypass circuit 6 is connected to the main circuit 101 at the junction 13 (same as the suction side of the compressor 1), it is maintained at a low pressure.

(過負荷運転時の冷媒流れ)
次に、冷凍空調装置100の過負荷運転時における冷媒の流れについて説明する。通常運転時とは、例えば外気温度45℃、室内の乾球温度35℃、湿球温度28℃で冷房運転する状態であり、外気温度が高く高圧が上昇しやすい環境条件である。
図2の(b)において、過負荷運転時は、バイパス電磁弁7を開放し、バイパス回路6に冷媒を通流させる。圧縮機1から吐出された高温高圧のガス冷媒は凝縮器2で凝縮液化された後、分岐点12でバイパス回路6に流れる冷媒と、毛細管3へ流れる冷媒とに分岐される。
(Refrigerant flow during overload operation)
Next, the refrigerant flow during overload operation of the refrigeration air conditioner 100 will be described. The normal operation is a state in which the cooling operation is performed, for example, at an outdoor air temperature of 45 ° C., an indoor dry bulb temperature of 35 ° C., and a wet bulb temperature of 28 ° C., and is an environmental condition in which the outdoor air temperature is high and high pressure is likely to increase.
In (b) of FIG. 2, during overload operation, the bypass solenoid valve 7 is opened, and the refrigerant flows through the bypass circuit 6. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is condensed and liquefied by the condenser 2, and then branched into a refrigerant flowing to the bypass circuit 6 and a refrigerant flowing to the capillary 3 at the branch point 12.

毛細管3へ流れる冷媒は、通常運転と同様に、毛細管3で分配され、更に減圧され二相冷媒となり、蒸発器4で蒸発ガス化される。
一方、バイパス回路6は低圧に維持されているため、分岐点12において冷媒のバイパスを速やかに実施することができる。バイパス回路6へ流れ込んだ冷媒は、バイパス減圧手段9で流量が制限されるため、バイパス回路6(主に、バイパスレシーバ8)内に冷媒を貯留することができる。
The refrigerant flowing into the capillary tube 3 is distributed by the capillary tube 3 as in the normal operation, further reduced in pressure to become a two-phase refrigerant, and evaporated by the evaporator 4.
On the other hand, since the bypass circuit 6 is maintained at a low pressure, the refrigerant can be bypassed promptly at the branch point 12. Since the flow rate of the refrigerant flowing into the bypass circuit 6 is limited by the bypass pressure reducing means 9, the refrigerant can be stored in the bypass circuit 6 (mainly, the bypass receiver 8).

冷媒をバイパス回路6のような別個の回路に貯留した場合、高圧側回路の冷媒量が少なくなり、圧力が低下する。この効果によって、過負荷運転時の高圧の過上昇を回避することができ、信頼性を確保することが可能とする。
また、同時に低圧側の冷媒量も少なくなり、低圧も低下する。
更に、蒸発器4内の冷媒量も少なくなるため、蒸発器4ではガス冷媒状態における熱交換が大部分を占め、圧縮機1の吸入過熱度が上昇する。このため、圧縮機1の吐出温度が過上昇し、信頼性が失われるが、冷凍空調装置100において、バイパス回路6へ分岐され、バイパス減圧手段9を通流した冷媒は、蒸発器4で蒸発ガス化された冷媒と合流する。バイパス減圧手段9を通流した冷媒は乾き度の低い二相冷媒のため、蒸発器4で蒸発ガス化された冷媒と合流した場合、圧縮機1の吸入過熱度が低下し、吐出温度の過上昇を防止することができる。
When the refrigerant is stored in a separate circuit such as the bypass circuit 6, the amount of refrigerant in the high-pressure side circuit decreases and the pressure decreases. With this effect, it is possible to avoid an excessive increase in high pressure during overload operation, and to ensure reliability.
At the same time, the amount of refrigerant on the low pressure side decreases, and the low pressure decreases.
Furthermore, since the amount of refrigerant in the evaporator 4 is also reduced, heat exchange in the gas refrigerant state occupies most of the evaporator 4 and the suction superheat degree of the compressor 1 increases. For this reason, although the discharge temperature of the compressor 1 is excessively increased and reliability is lost, in the refrigeration air conditioner 100, the refrigerant branched to the bypass circuit 6 and flowing through the bypass pressure reducing means 9 is evaporated in the evaporator 4. Merges with gasified refrigerant. Since the refrigerant flowing through the bypass decompression means 9 is a two-phase refrigerant having a low dryness, when it is combined with the refrigerant gasified by the evaporator 4, the suction superheat degree of the compressor 1 is lowered and the discharge temperature is excessively increased. The rise can be prevented.

バイパス減圧手段9は、過負荷運転時においてバイパス回路6に冷媒を貯留し高圧を抑制する際、圧縮機1の吸入部に流入する冷媒流量を調節するものである。バイパス減圧手段9の通流抵抗は、過負荷運転時でバイパス回路6に冷媒を貯留して高圧を抑制する際、圧縮機1の吸入冷媒がガス状態を保持できる程度、具体的には圧縮機1の吸入過熱度を5℃以上、または吐出過熱度を20℃以上とする冷媒流量に調節できるように設定する。   The bypass pressure reducing means 9 adjusts the flow rate of the refrigerant flowing into the suction portion of the compressor 1 when the refrigerant is stored in the bypass circuit 6 and the high pressure is suppressed during the overload operation. The flow resistance of the bypass pressure reducing means 9 is such that the refrigerant sucked into the compressor 1 can maintain a gas state when the refrigerant is stored in the bypass circuit 6 and the high pressure is suppressed during overload operation. The refrigerant flow rate is set so that the suction superheat degree of 1 is 5 ° C. or higher or the discharge superheat degree is 20 ° C. or higher.

以上のように、冷凍空調装置100は、低負荷運転時において圧縮機1への液戻りを回避することができる毛細管3を設置し、通常運転時に運転効率が最大となる冷媒量を封入し、過負荷運転時に高圧の過上昇を防止するバイパス回路6を設置し、信頼性を確保しつつ高効率運転を実施可能としている。   As described above, the refrigerating and air-conditioning apparatus 100 is provided with the capillary 3 that can avoid liquid return to the compressor 1 during low-load operation, and encloses the amount of refrigerant that maximizes operating efficiency during normal operation. A bypass circuit 6 that prevents an excessive increase in high pressure during overload operation is installed to enable high-efficiency operation while ensuring reliability.

(バイパス電磁弁の制御)
冷凍空調装置100において、圧縮機1の吐出冷媒の圧力を測定する圧力センサ11を設置し、圧力センサ11で測定した圧力によってバイパス電磁弁7の開閉を制御する。
図3において、縦軸は圧力、横軸は時間である。圧力センサ11の測定した圧力が、高圧上限値Pmaxより低い制御上限圧力P1に達した時、制御装置10によりバイパス電磁弁7を開放し、バイパス回路6を機能させ(バイパス回路6にも冷媒を流入させ)、高圧を低下させる。
また、バイパス電磁弁7が開放しているときに、圧力センサ11の測定した圧力が、所定の制御上限圧力P1より低い制御下限圧力P2に達したとき、制御装置10によりバイパス電磁弁7を遮断して、バイパス回路6への冷媒の流入を停止する。
(Control of bypass solenoid valve)
In the refrigerating and air-conditioning apparatus 100, a pressure sensor 11 that measures the pressure of refrigerant discharged from the compressor 1 is installed, and the opening and closing of the bypass electromagnetic valve 7 is controlled by the pressure measured by the pressure sensor 11.
In FIG. 3, the vertical axis represents pressure, and the horizontal axis represents time. When the pressure measured by the pressure sensor 11 reaches a control upper limit pressure P1 lower than the high pressure upper limit Pmax, the control device 10 opens the bypass solenoid valve 7 to cause the bypass circuit 6 to function (refrigerant is also supplied to the bypass circuit 6). Inflow) to reduce high pressure.
Further, when the bypass solenoid valve 7 is open, when the pressure measured by the pressure sensor 11 reaches the control lower limit pressure P2 lower than the predetermined control upper limit pressure P1, the control device 10 shuts off the bypass solenoid valve 7. Then, the refrigerant flow into the bypass circuit 6 is stopped.

高圧を圧力センサ11で測定し、その圧力値によりバイパス電磁弁7の開閉を制御することで、過負荷運転時に確実に高圧の過上昇を回避することができる。また、余計にバイパス電磁弁7を開放することがないので、最適な封入冷媒量を長く維持することができ、長時間の高効率運転が可能となる。
なお、以上は、バイパス電磁弁7が、冷媒の通流と遮断を切り替えるものについて説明しているが、本発明はこれに限定するものではなく、冷媒の通流量を加減する(通流量をゼロにすることもできる)流量調整弁であってもよい。
By measuring the high pressure with the pressure sensor 11 and controlling the opening and closing of the bypass solenoid valve 7 according to the pressure value, it is possible to reliably avoid an excessive increase in the high pressure during overload operation. In addition, since the bypass solenoid valve 7 is not opened excessively, the optimum amount of enclosed refrigerant can be maintained for a long time, and high-efficiency operation can be performed for a long time.
In the above description, the bypass solenoid valve 7 is described as switching between refrigerant flow and blockage. However, the present invention is not limited to this, and the refrigerant flow rate is adjusted (the flow rate is zero). It may be a flow control valve.

(バイパスレシーバ)
冷凍空調装置100において、バイパス回路6に分岐点12から分岐した冷媒を貯留するためのバイパスレシーバ8が設置されているため、多量の冷媒を貯留することが可能となり、過負荷運転時に高圧を抑制する効果をより高め、確実に高圧の過上昇を回避することができる。なお、バイパスレシーバ8を撤去してもバイパス回路6(正確にはバイパス回路を形成する配管内)に冷媒が貯溜されるから、バイパスレシーバ8を撤去してもよい。
(Bypass receiver)
In the refrigerating and air-conditioning apparatus 100, since the bypass receiver 8 for storing the refrigerant branched from the branch point 12 is installed in the bypass circuit 6, it becomes possible to store a large amount of refrigerant and suppress high pressure during overload operation. It is possible to further increase the effect of avoiding the excessive increase in high pressure. Even if the bypass receiver 8 is removed, the refrigerant is stored in the bypass circuit 6 (precisely, in the piping forming the bypass circuit), so the bypass receiver 8 may be removed.

更に、バイパスレシーバ8に冷媒を流入させる冷媒流入管6aや、バイパスレシーバ8から冷媒を排出する冷媒排出管6bの、バイパスレシーバ8への接続位置は限定するものではないが、たとえば、冷媒排出管6bをバイパスレシーバ8を形成する容器の底面または底面の近く(下部に相当する)に接続してもよい。このとき、バイパスレシーバ8に貯留した冷媒を主回路101に戻す際、バイパスレシーバ8内に流入した冷凍機油を、冷媒と共に排出することができる。このため、常に適量の冷凍機油を圧縮機1に供給することができ、油枯渇による圧縮機1の機破損を回避することができる。圧縮機1内の油量を適量に保つことで、より信頼性の高い冷凍空調装置100を得ることができる。   Furthermore, although the connection position to the bypass receiver 8 of the refrigerant | coolant inflow pipe 6a which flows in a refrigerant | coolant into the bypass receiver 8, and the refrigerant | coolant discharge pipe 6b which discharges | emits a refrigerant | coolant from the bypass receiver 8 is not limited, For example, a refrigerant | coolant discharge pipe 6b may be connected to the bottom surface of the container forming the bypass receiver 8 or near the bottom surface (corresponding to the lower portion). At this time, when the refrigerant stored in the bypass receiver 8 is returned to the main circuit 101, the refrigerating machine oil flowing into the bypass receiver 8 can be discharged together with the refrigerant. For this reason, an appropriate amount of refrigerating machine oil can always be supplied to the compressor 1, and machine damage of the compressor 1 due to oil depletion can be avoided. By keeping the amount of oil in the compressor 1 at an appropriate amount, a more reliable refrigeration air conditioner 100 can be obtained.

[実施の形態2]
図4は本発明の実施の形態2に係る冷凍空調装置を説明する構成を示す冷媒回路図である。図4において、冷凍空調装置200には、冷媒排出管6bとは別に、ガス抜き管14が設置されている。ガス抜き管14の一端は、バイパスレシーバ8を形成する容器の天井面に接続され、他端が主回路101の蒸発器4と圧縮機1との間に接続されている(図4では、冷媒排出管6bのバイパス減圧手段9と合流点13との間に接続されている)。
すなわち、ガス抜き管14を設置することで、過負荷運転時にバイパス電磁弁7を開放した際、単にバイパスレシーバ8が低圧に保たれていた場合よりもバイパスレシーバ8への冷媒貯留を促進する効果が得られる。これにより、過負荷運転時に素早く高圧を抑制し、信頼性が向上する。
[Embodiment 2]
FIG. 4 is a refrigerant circuit diagram showing a configuration for explaining a refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. In FIG. 4, the refrigeration air conditioner 200 is provided with a gas vent pipe 14 in addition to the refrigerant discharge pipe 6b. One end of the gas vent pipe 14 is connected to the ceiling surface of the container forming the bypass receiver 8, and the other end is connected between the evaporator 4 of the main circuit 101 and the compressor 1 (in FIG. (It is connected between the bypass pressure reducing means 9 of the discharge pipe 6b and the junction 13).
That is, by installing the gas vent pipe 14, when the bypass solenoid valve 7 is opened during an overload operation, the refrigerant storage in the bypass receiver 8 is more effectively promoted than when the bypass receiver 8 is simply kept at a low pressure. Is obtained. This quickly suppresses high pressure during overload operation and improves reliability.

更に、図4に示すように、ガス抜き管14にガス抜き減圧手段15が設置されている。このため、仮に、バイパスレシーバ8が液冷媒で満液状態になり、ガス抜き管14から液冷媒が排出されても、ガス抜き減圧手段15により流量が調節され、圧縮機1の吸入部に液戻りを生じることはない。
また、バイパスレシーバ8が満液状態になれば、主回路101に設置されている毛細管3に流入する冷媒に過冷却度を確保することができるため、毛細管3において気液二相状態での流入による通過流量の低下、分配不良による運転効率の低下を回避することができる。
Further, as shown in FIG. 4, a degassing decompression means 15 is installed in the degassing pipe 14. For this reason, even if the bypass receiver 8 becomes full of liquid refrigerant and the liquid refrigerant is discharged from the degassing pipe 14, the flow rate is adjusted by the degassing decompression means 15, and the liquid is supplied to the suction portion of the compressor 1. There will be no return.
In addition, if the bypass receiver 8 is in a full liquid state, it is possible to secure a degree of supercooling in the refrigerant flowing into the capillary tube 3 installed in the main circuit 101, so that the capillary tube 3 flows in a gas-liquid two-phase state. It is possible to avoid a decrease in the flow rate due to the operation and a decrease in operation efficiency due to poor distribution.

そして、バイパスレシーバ8を満液にすることができ、運転効率の低下を防止することが可能になる。
なお、バイパスレシーバ8の容量は、過負荷運転時に満液となっても、確実に高圧が抑制できるように設定する。これにより、バイパスレシーバ8を満液にする運転によって高圧を抑制することができ、かつ運転効率の低下を防止することが可能になる。
And the bypass receiver 8 can be filled up and it becomes possible to prevent the fall of operating efficiency.
In addition, the capacity | capacitance of the bypass receiver 8 is set so that a high voltage | pressure can be suppressed reliably even if it fills up at the time of an overload driving | operation. As a result, high pressure can be suppressed by the operation that fills the bypass receiver 8 and it is possible to prevent a decrease in operating efficiency.

更に、ガス抜き減圧手段15の通流抵抗をバイパス減圧手段9の通流抵抗より小さくする。つまり、ガス抜き減圧手段15をバイパス減圧手段9より管長さを短くしたり、あるいは管径を太くしたりする。
ガス抜き減圧手段15の通流抵抗が小さいとガス抜き管14を通流するガス流量が増大し、バイパス減圧手段9の通流抵抗が大きいとバイパス回路6を通流する液流量が減少する。ゆえに、バイパスレシーバ8内に冷媒を貯留する際、ガスを素早く抜き取り、液を貯留することが可能となる。これにより、過負荷運転時に素早く高圧を抑制し、信頼性が向上する。
なお、以上は、ガス抜き管14がバイパスレシーバ8を形成する容器の天井面に接続されているが、天井面の近く(バイパスレシーバ8の上部に相当する)に接続しても、同様の作用効果が得られるものである。
Further, the flow resistance of the degassing decompression means 15 is made smaller than that of the bypass decompression means 9. That is, the degassing decompression means 15 is made shorter than the bypass decompression means 9, or the pipe diameter is increased.
When the flow resistance of the degassing decompression means 15 is small, the gas flow rate flowing through the gas vent pipe 14 increases. When the flow resistance of the bypass decompression means 9 is large, the liquid flow rate flowing through the bypass circuit 6 decreases. Therefore, when the refrigerant is stored in the bypass receiver 8, the gas can be quickly extracted and the liquid can be stored. This quickly suppresses high pressure during overload operation and improves reliability.
In the above, the degassing pipe 14 is connected to the ceiling surface of the container forming the bypass receiver 8, but the same effect can be obtained even if it is connected near the ceiling surface (corresponding to the upper part of the bypass receiver 8). An effect is obtained.

[実施の形態3]
図5は本発明の実施の形態3に係る冷凍空調装置を説明する構成を示す冷媒回路図である。図5において、冷凍空調装置300には、バイパス回路6に設置されたバイパスレシーバ8を形成する容器の天井面に冷媒排出管6bが接続されている。したがって、バイパスレシーバ8が満液状態になれば、主回路101の毛細管3に流入する冷媒に過冷却度を確保することができる。このため、毛細管3において気液二相状態での流入による通過流量の低下、分配不良による運転効率の低下を回避することができる。
このため、バイパスレシーバ8を形成する容器の底面に冷媒排出管6bを接続するより、接続が容易になるから、コスト削減を図ることができる。
[Embodiment 3]
FIG. 5 is a refrigerant circuit diagram showing a configuration for explaining a refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention. In FIG. 5, the refrigerant | coolant exhaust pipe 6b is connected to the refrigeration air conditioner 300 at the ceiling surface of the container which forms the bypass receiver 8 installed in the bypass circuit 6. In FIG. Therefore, if the bypass receiver 8 becomes full, the degree of supercooling can be ensured for the refrigerant flowing into the capillary tube 3 of the main circuit 101. For this reason, in the capillary 3, it is possible to avoid a decrease in passage flow rate due to inflow in a gas-liquid two-phase state and a decrease in operation efficiency due to poor distribution.
For this reason, since the connection becomes easier than connecting the refrigerant discharge pipe 6b to the bottom surface of the container forming the bypass receiver 8, the cost can be reduced.

[実施の形態4]
図6および図7は本発明の実施の形態4に係る冷凍空調装置を説明するものであって、図6は構成を示す冷媒回路図、図7は一部を拡大して模式的に示す断面図である。
図6および図7において、冷凍空調装置400には、バイパス回路6に設置されたバイパスレシーバ8を形成する容器の天井面に冷媒排出口8bが形成され、冷媒排出口8bを貫通して冷媒排出管6bがバイパスレシーバ8に侵入している。
冷媒排出管6bはバイパスレシーバ8に侵入した範囲6cが、略J字状に形成され、先端(最も上部に位置している)がガス排出口6dになっている。また、湾曲した最も下部に位置する部分に、バイパスレシーバ8に滞留する冷凍機油を排出するための油戻し穴6eが設けられている。
これにより、バイパスレシーバ8に貯留した冷媒を主回路101に戻す(合流点13を経由して圧縮機1の吸入部に戻す)際、バイパスレシーバ8内に滞留した冷凍機油が、油戻し穴6eを経由して冷媒と一緒に排出することができる。すなわち、常に適量の冷凍機油を圧縮機1に供給することができるから、油枯渇による圧縮機1の破損を回避することができる。よって、圧縮機1内の油量を適量に保つことでより信頼性の高い冷凍空調装置400を得ることができる。
[Embodiment 4]
6 and 7 illustrate a refrigerating and air-conditioning apparatus according to Embodiment 4 of the present invention. FIG. 6 is a refrigerant circuit diagram showing the configuration, and FIG. 7 is a cross-sectional view schematically showing an enlarged part. FIG.
6 and 7, in the refrigerating and air-conditioning apparatus 400, the refrigerant discharge port 8b is formed on the ceiling surface of the container that forms the bypass receiver 8 installed in the bypass circuit 6, and the refrigerant discharge port 8b passes through the refrigerant discharge port 8b. The pipe 6b has entered the bypass receiver 8.
In the refrigerant discharge pipe 6b, a range 6c that has entered the bypass receiver 8 is formed in a substantially J-shape, and the tip (located at the top) is the gas discharge port 6d. Further, an oil return hole 6e for discharging the refrigerating machine oil staying in the bypass receiver 8 is provided in a curved lowermost portion.
Thereby, when the refrigerant stored in the bypass receiver 8 is returned to the main circuit 101 (returned to the suction portion of the compressor 1 via the junction 13), the refrigerating machine oil staying in the bypass receiver 8 becomes the oil return hole 6e. And can be discharged together with the refrigerant. That is, since an appropriate amount of refrigeration oil can always be supplied to the compressor 1, damage to the compressor 1 due to oil depletion can be avoided. Therefore, a more reliable refrigeration air conditioner 400 can be obtained by maintaining an appropriate amount of oil in the compressor 1.

[実施の形態5]
図8は本発明の実施の形態5に係る冷凍空調装置を説明する構成を示す冷媒回路図である。図8において、冷凍空調装置500には、バイパスレシーバ8から液冷媒を直接戻した場合、圧縮機1への液戻りの発生を回避する目的で、バイパス回路6のバイパス減圧手段9およびガス抜き管14の下流における冷媒に、温熱を供給する熱交換器17が設置されている。すなわち、凝縮器2から流出した冷媒(高圧中温)が保有する温熱がバイパス減圧手段9を通過した後の冷媒に受け渡されている。
[Embodiment 5]
FIG. 8 is a refrigerant circuit diagram showing a configuration for explaining a refrigerating and air-conditioning apparatus according to Embodiment 5 of the present invention. In FIG. 8, when the liquid refrigerant is directly returned from the bypass receiver 8, the refrigerating and air-conditioning apparatus 500 has a bypass decompression unit 9 and a vent pipe in the bypass circuit 6 for the purpose of avoiding the occurrence of liquid return to the compressor 1. A heat exchanger 17 that supplies warm heat to the refrigerant downstream of 14 is installed. That is, the heat held by the refrigerant (high pressure / intermediate temperature) flowing out of the condenser 2 is transferred to the refrigerant after passing through the bypass pressure reducing means 9.

なお、合流点13を蒸発器4の上流にできれば、液冷媒が合流しても蒸発器4で蒸発を促すことができるが、減圧と分配を兼ねた毛細管3の構成において、蒸発器4の上流側に合流点13を設置することはできない。   Note that if the junction 13 can be upstream of the evaporator 4, evaporation can be promoted by the evaporator 4 even if the liquid refrigerant merges. However, in the configuration of the capillary 3 that serves both for decompression and distribution, upstream of the evaporator 4. The junction 13 cannot be installed on the side.

(熱交換器)
熱交換器17は、主回路101の凝縮器2と分岐点12との間を連通する高圧配管部分と、バイパス回路6のバイパス減圧手段9およびガス抜き管14と合流点13との間を連通する冷媒排出管6bの一部と、から形成され、両者が熱的に連結している。なお、熱交換器17の構成は限定するものではなく、たとえば、熱交換器17が二重管構造の銅管から形成され、その内管が高圧配管部分であって、内管を収納する外管が冷媒排出管6bの一部であるようにしてもよい。このとき、それぞれの内部を流れる冷媒の方向を対向流にしておけば、熱交換が促進される。
(Heat exchanger)
The heat exchanger 17 communicates between the high pressure piping part communicating between the condenser 2 of the main circuit 101 and the branch point 12, and between the bypass pressure reducing means 9 and the gas vent pipe 14 of the bypass circuit 6 and the junction 13. And a part of the refrigerant discharge pipe 6b to be thermally connected to each other. The configuration of the heat exchanger 17 is not limited. For example, the heat exchanger 17 is formed from a copper tube having a double-pipe structure, and the inner tube is a high-pressure pipe portion, and is an outer portion that houses the inner tube. The pipe may be a part of the refrigerant discharge pipe 6b. At this time, heat exchange is promoted if the direction of the refrigerant flowing inside each is made to be a counter flow.

したがって、前者を流れる冷媒(高圧中温)は冷却されて液化が促進され、後者を流れる冷媒(低圧低温)は加熱されてガス化が促進される。
これにより、高圧抑制効果が増加するとともに、バイパスレシーバ8へ液冷媒を効率よく貯留することができる。液冷媒をバイパスレシーバ8に貯留し、確実に満液とすることができるため、毛細管3に流入する冷媒に過冷却度を確保することができる。よって、主回路101では毛細管3において気液二相状態での流入による通過流量の低下、分配不良による運転効率の低下を回避することができる。
また、バイパス回路6では、バイパスレシーバ8から流出した冷媒が蒸発するから、圧縮機1への液戻りを回避することができる。
Therefore, the refrigerant flowing through the former (high pressure and intermediate temperature) is cooled to promote liquefaction, and the refrigerant flowing through the latter (low pressure and low temperature) is heated to promote gasification.
As a result, the high pressure suppression effect is increased, and the liquid refrigerant can be efficiently stored in the bypass receiver 8. Since the liquid refrigerant is stored in the bypass receiver 8 and can be surely filled with liquid, the degree of supercooling of the refrigerant flowing into the capillary 3 can be ensured. Therefore, in the main circuit 101, it is possible to avoid a decrease in passage flow rate due to the inflow in the gas-liquid two-phase state in the capillary 3 and a decrease in operation efficiency due to poor distribution.
Further, in the bypass circuit 6, the refrigerant flowing out of the bypass receiver 8 evaporates, so that liquid return to the compressor 1 can be avoided.

[実施の形態6]
図9は本発明の実施の形態6に係る冷凍空調装置を説明する構成を示す冷媒回路図である。図9において、冷凍空調装置600は、冷凍空調装置500における熱交換器17を、分岐点12の上流から、分岐点12の下流に移設したものである。
このとき、熱交換器17が分岐点12より下流にあるから、バイパスレシーバ8を満液にしなくても熱交換器17の下流で過冷却度を確保することができる。これにより、毛細管3において気液二相状態での流入による通過流量の低下、分配不良による運転効率の低下を回避することができる。
[Embodiment 6]
FIG. 9 is a refrigerant circuit diagram showing a configuration for explaining a refrigerating and air-conditioning apparatus according to Embodiment 6 of the present invention. In FIG. 9, the refrigeration air conditioner 600 is obtained by moving the heat exchanger 17 in the refrigeration air conditioner 500 from the upstream of the branch point 12 to the downstream of the branch point 12.
At this time, since the heat exchanger 17 is downstream from the branch point 12, the degree of supercooling can be ensured downstream of the heat exchanger 17 even if the bypass receiver 8 is not full. Thereby, in the capillary 3, it is possible to avoid a decrease in the passage flow rate due to the inflow in the gas-liquid two-phase state and a decrease in the operation efficiency due to poor distribution.

[実施の形態7]
図10は本発明の実施の形態7に係る冷凍空調装置を説明する構成を示す冷媒回路図である。図10において、冷凍空調装置700は、バイパス回路6のバイパス減圧手段9の下流にバイパス蒸発器20を設置したものである。バイパス蒸発器20は室内空気または室外空気が保有する温熱を受け取るものである。したがって、バイパス回路6では、バイパスレシーバ8から流出した冷媒が加熱されて蒸発するから、圧縮機1への液戻りを回避することができる。
なお、バイパス蒸発器20を、蒸発器4に室内空気を送る蒸発器ファン(図示しない)または凝縮器2に室外空気を送る凝縮器ファン(図示しない)が形成する風流れに晒される位置に配置しておけば、強制対流による熱交換が行える。これにより、より大きな熱量の熱交換を可能とする。
[Embodiment 7]
FIG. 10 is a refrigerant circuit diagram showing a configuration for explaining a refrigerating and air-conditioning apparatus according to Embodiment 7 of the present invention. In FIG. 10, the refrigerating and air-conditioning apparatus 700 has a bypass evaporator 20 installed downstream of the bypass decompression means 9 of the bypass circuit 6. The bypass evaporator 20 receives the heat held by indoor air or outdoor air. Therefore, in the bypass circuit 6, the refrigerant flowing out of the bypass receiver 8 is heated and evaporates, so that liquid return to the compressor 1 can be avoided.
The bypass evaporator 20 is disposed at a position exposed to an air flow formed by an evaporator fan (not shown) that sends room air to the evaporator 4 or a condenser fan (not shown) that sends outdoor air to the condenser 2. Then, heat exchange by forced convection can be performed. Thereby, heat exchange with a larger amount of heat is possible.

[その他]
以上、実施の形態1〜7において、バイパス減圧手段9やガス抜き減圧手段15の型式を限定するものではなく、1本または複数の毛細管(キャピラリーチューブ)や、可変式膨張弁(たとえば、温度式膨張弁や電子式膨張弁)であってもよい。また、熱交換器17やバイパス蒸発器20は、実施の形態1〜4に設置することができるものであって、その型式を限定するものではない。
[Others]
As described above, in the first to seventh embodiments, the types of the bypass pressure reducing means 9 and the degassing pressure reducing means 15 are not limited, but one or a plurality of capillaries (capillary tubes) or variable expansion valves (for example, temperature type) Expansion valve or electronic expansion valve). Moreover, the heat exchanger 17 and the bypass evaporator 20 can be installed in Embodiments 1-4, and do not limit the model.

本発明によれば、過負荷運転時における高圧の過上昇が回避され、過負荷運転時の信頼性を確保することができるから、家庭用および業務用の各種冷凍空調装置として広く利用することができる。   According to the present invention, an excessive increase in high pressure during overload operation can be avoided, and reliability during overload operation can be ensured. Therefore, it can be widely used as various refrigeration and air conditioners for home use and business use. it can.

本発明の実施の形態1に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioner which concerns on Embodiment 1 of this invention. 図1に示す冷媒回路図における冷媒流れを示す冷媒回路図。The refrigerant circuit diagram which shows the refrigerant | coolant flow in the refrigerant circuit diagram shown in FIG. 図1に示す冷媒回路図における制御装置の作用を示す図。The figure which shows the effect | action of the control apparatus in the refrigerant circuit diagram shown in FIG. 本発明の実施の形態2に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioning apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る冷凍空調装置の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of refrigeration air conditioning apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioning apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioning apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る冷凍空調装置の構成を示す冷媒回路図。The refrigerant circuit figure which shows the structure of the refrigerating air conditioning apparatus which concerns on Embodiment 7 of this invention.

符号の説明Explanation of symbols

1:圧縮機、2:凝縮器、3:毛細管(減圧手段)、4:蒸発器、6:バイパス回路、6a:冷媒流入管、6b:冷媒排出管、6c:略J字状の範囲、6d:ガス排出口、6e:油戻し穴、7:バイパス電磁弁、8:バイパスレシーバ、8b:冷媒排出口、9:バイパス減圧手段、10:制御装置、11:圧力センサ、12:分岐点、13:合流点、14:ガス抜き管、15:ガス抜き減圧手段、17:熱交換器、18:室外機、19:室内機、100:冷凍空調装置(実施の形態1)、101:主回路、200:冷凍空調装置(実施の形態2)、300:冷凍空調装置(実施の形態3)、400:冷凍空調装置(実施の形態4)、500:冷凍空調装置(実施の形態5)、600:冷凍空調装置(実施の形態6)、700:冷凍空調装置(実施の形態7)。   1: compressor, 2: condenser, 3: capillary tube (pressure reduction means), 4: evaporator, 6: bypass circuit, 6a: refrigerant inlet pipe, 6b: refrigerant outlet pipe, 6c: substantially J-shaped range, 6d : Gas discharge port, 6e: Oil return hole, 7: Bypass solenoid valve, 8: Bypass receiver, 8b: Refrigerant discharge port, 9: Bypass pressure reducing means, 10: Control device, 11: Pressure sensor, 12: Branch point, 13 : Confluence, 14: Degassing pipe, 15: Degassing decompression means, 17: Heat exchanger, 18: Outdoor unit, 19: Indoor unit, 100: Refrigerating air conditioner (Embodiment 1), 101: Main circuit, 200: Refrigeration air conditioner (Embodiment 2), 300: Refrigeration air conditioner (Embodiment 3), 400: Refrigeration air conditioner (Embodiment 4), 500: Refrigeration air conditioner (Embodiment 5), 600: Refrigeration air conditioner (Embodiment 6), 700: Refrigeration air conditioner ( Form of facilities 7).

Claims (17)

冷媒を圧縮して吐出する圧縮機と、該圧縮機から吐出される冷媒を凝縮する凝縮器と、該凝縮器から流出される冷媒を減圧する減圧手段と、該減圧手段で減圧された冷媒を蒸発させる蒸発器と、を具備し、これらを順次連結して冷媒を循環させる主回路と、
該主回路の前記凝縮器と前記減圧手段との間に設けられた分岐点と、該主回路の前記蒸発器と前記圧縮機との間に設けられた合流点と、を連通するバイパス回路と、を有し、
前記減圧手段は、複数の毛細管から成り、
前記蒸発器は、前記毛細管のそれぞれに連通する伝熱管を具備し、
前記バイパス回路には、前記分岐点から前記合流点に向かって順に、バイパス電磁弁と、冷媒を減圧するバイパス減圧手段と、が設置され、
前記主回路には、前記圧縮機から吐出される冷媒の圧力を測定する圧力センサが設置され、
該圧力センサで測定された圧力値が入力され、該圧力値に応じて前記バイパス電磁弁の開閉を制御する制御装置とを備えることを特徴とする冷凍空調装置。
A compressor that compresses and discharges the refrigerant; a condenser that condenses the refrigerant discharged from the compressor; a decompression unit that decompresses the refrigerant that flows out of the condenser; and a refrigerant that is decompressed by the decompression unit. An evaporator for evaporating, and a main circuit for sequentially circulating the refrigerant by connecting them,
A bypass circuit that communicates a branch point provided between the condenser of the main circuit and the decompression means and a junction point provided between the evaporator and the compressor of the main circuit; Have
The decompression means comprises a plurality of capillaries,
The evaporator includes a heat transfer tube communicating with each of the capillaries,
In the bypass circuit, in order from the branch point toward the junction, a bypass solenoid valve and a bypass pressure reducing means for decompressing the refrigerant are installed,
The main circuit is provided with a pressure sensor for measuring the pressure of the refrigerant discharged from the compressor,
A refrigerating and air-conditioning apparatus comprising: a control device that inputs a pressure value measured by the pressure sensor and controls opening and closing of the bypass electromagnetic valve according to the pressure value.
前記圧縮機と前記凝縮器と前記バイパス回路と前記制御装置とを備えた室外機と、
前記減圧手段と蒸発器とを備えた室内機と、
を有することを特徴とする請求項1記載の冷凍空調装置。
An outdoor unit comprising the compressor, the condenser, the bypass circuit, and the control device;
An indoor unit comprising the decompression means and the evaporator;
The refrigerating and air-conditioning apparatus according to claim 1, further comprising:
前記バイパス回路には、前記バイパス電磁弁と前記バイパス減圧手段との間に、冷媒を貯溜するバイパスレシーバが設置されることを特徴とする請求項1または2記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1 or 2, wherein a bypass receiver for storing refrigerant is installed between the bypass solenoid valve and the bypass pressure reducing means in the bypass circuit. 前記バイパス回路を構成する冷媒排出管の一端が、前記バイパスレシーバの下部に接続されることを特徴とする請求項3記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 3, wherein one end of a refrigerant discharge pipe constituting the bypass circuit is connected to a lower portion of the bypass receiver. 一端が前記バイパスレシーバの上部に接続され、他端が前記主回路に接続されたガス抜き管を備えることを特徴とする請求項3または4記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 3 or 4, further comprising a gas vent pipe having one end connected to an upper portion of the bypass receiver and the other end connected to the main circuit. 前記ガス抜き管に、冷媒を減圧するガス抜き減圧手段が設置されることを特徴とする請求項5に記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 5, wherein a degassing / reducing unit that depressurizes the refrigerant is installed in the degassing pipe. 前記ガス抜き減圧手段の通流抵抗が、前記バイパス減圧手段の通流抵抗より小さいことを特徴とする請求項6に記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 6, wherein a flow resistance of the degassing decompression unit is smaller than a flow resistance of the bypass decompression unit. 前記バイパス回路を構成する冷媒排出管の一端が、前記バイパスレシーバの上部に接続されることを特徴とする請求項3記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 3, wherein one end of a refrigerant discharge pipe constituting the bypass circuit is connected to an upper portion of the bypass receiver. 前記バイパス回路を構成する冷媒排出管の一端部が前記バイパスレシーバの上部から内部に侵入すると共に、該侵入した範囲が略J字状に曲げられ、
該J字状部分の前記バイパスレシーバの下部に近い位置に油流出口が形成されることを特徴とする請求項3記載の冷凍空調装置。
One end of the refrigerant discharge pipe constituting the bypass circuit penetrates into the inside from the upper part of the bypass receiver, and the entered area is bent into a substantially J shape,
The refrigerating and air-conditioning apparatus according to claim 3, wherein an oil outlet is formed at a position near the lower portion of the bypass receiver in the J-shaped portion.
前記バイパス回路の前記バイパス減圧手段と前記合流点との間を流れる冷媒が、前記主回路の前記凝縮器と前記分岐点との間を流れる冷媒から、温熱を受け取る熱交換器が設けられることを特徴とする請求項1乃至9の何れかに記載の冷凍空調装置。   There is provided a heat exchanger in which the refrigerant flowing between the bypass depressurization means of the bypass circuit and the junction receives heat from the refrigerant flowing between the condenser and the branch point of the main circuit. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 9. 前記バイパス回路の前記バイパス減圧手段と前記合流点との間を流れる冷媒が、前記主回路の前記分岐点と前記減圧手段との間を流れる冷媒から、温熱を受け取る熱交換器が設けられることを特徴とする請求項1乃至9の何れかに記載の冷凍空調装置。   There is provided a heat exchanger in which the refrigerant flowing between the bypass pressure reducing means and the junction of the bypass circuit receives warm heat from the refrigerant flowing between the branch point of the main circuit and the pressure reducing means. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 9. 前記バイパス回路の前記バイパス減圧手段から流出した冷媒が、大気の保有する温熱を受け取る熱交換器を有することを特徴とする請求項1乃至9の何れかに記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to any one of claims 1 to 9, wherein the refrigerant that has flowed out of the bypass pressure-reducing means of the bypass circuit includes a heat exchanger that receives warm heat held by the atmosphere. 前記ガス抜き管の前記ガス抜き減圧手段と前記主回路との間を流れる冷媒が、前記主回路の前記凝縮器と前記分岐点との間を流れる冷媒から、温熱を受け取る熱交換器が設けられることを特徴とする請求項6乃至9の何れかに記載の冷凍空調装置。   A heat exchanger is provided in which the refrigerant flowing between the degassing decompression unit of the degassing pipe and the main circuit receives warm heat from the refrigerant flowing between the condenser and the branch point of the main circuit. The refrigeration air conditioner according to any one of claims 6 to 9. 前記ガス抜き管の前記ガス抜き減圧手段と前記主回路との間を流れる冷媒が、前記主回路の前記分岐点と前記減圧手段との間を流れる冷媒から、温熱を受け取る熱交換器が設けられることを特徴とする請求項6乃至9の何れかに記載の冷凍空調装置。   A heat exchanger is provided in which the refrigerant flowing between the degassing decompression unit of the degassing pipe and the main circuit receives warm heat from the refrigerant flowing between the branch point of the main circuit and the decompression unit. The refrigeration air conditioner according to any one of claims 6 to 9. 前記ガス抜き管の前記ガス抜き減圧手段から流出した冷媒が、大気の保有する温熱を受け取る熱交換器を有することを特徴とする請求項6乃至9の何れかに記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to any one of claims 6 to 9, further comprising a heat exchanger in which the refrigerant that has flowed out of the degassing decompression unit of the degassing pipe receives warm heat held by the atmosphere. 前記バイパス減圧手段が、毛細管または可変式膨張弁であることを特徴とする請求項1乃至3の何れかに記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3, wherein the bypass pressure reducing means is a capillary tube or a variable expansion valve. 前記ガス抜き減圧手段が、毛細管または可変式膨張弁であることを特徴とする請求項6記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 6, wherein the degassing decompression means is a capillary tube or a variable expansion valve.
JP2008302918A 2008-11-27 2008-11-27 Refrigeration air conditioner Pending JP2010127531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008302918A JP2010127531A (en) 2008-11-27 2008-11-27 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302918A JP2010127531A (en) 2008-11-27 2008-11-27 Refrigeration air conditioner

Publications (1)

Publication Number Publication Date
JP2010127531A true JP2010127531A (en) 2010-06-10

Family

ID=42328062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302918A Pending JP2010127531A (en) 2008-11-27 2008-11-27 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP2010127531A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032587A1 (en) * 2010-09-10 2012-03-15 三菱電機株式会社 Updating method for vehicle air conditioning device and vehicle air conditioning device
CN102691652A (en) * 2012-06-04 2012-09-26 大连交通大学 Endurance test device of piston type refrigerant compressor
KR101201567B1 (en) * 2010-09-27 2012-11-14 엘지전자 주식회사 An air conditioner
KR101233050B1 (en) * 2011-02-28 2013-02-15 오텍캐리어 주식회사 control method for pump-down of air-conditioner installed
KR20140010704A (en) * 2012-07-16 2014-01-27 엘지전자 주식회사 An air conditioner
KR101369568B1 (en) * 2011-09-09 2014-03-04 엘지전자 주식회사 An air conditioner and a control method for the same
KR101437790B1 (en) 2013-10-15 2014-09-11 엘지전자 주식회사 An air conditioner and a control method for the same
WO2017010007A1 (en) * 2015-07-16 2017-01-19 三菱電機株式会社 Air conditioner
WO2017037788A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Refrigeration cycle device
KR20170111346A (en) * 2016-03-28 2017-10-12 엘지전자 주식회사 Air Conditioner
KR101921538B1 (en) 2012-02-23 2018-11-23 엘지전자 주식회사 Air conditioner and Control method of the same
WO2019186647A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Refrigerating apparatus
CN111238072A (en) * 2020-01-14 2020-06-05 西安交通大学 Energy-saving refrigeration system capable of realizing refrigerant switching and working method thereof
JPWO2020208752A1 (en) * 2019-04-10 2020-10-15
JPWO2021048899A1 (en) * 2019-09-09 2021-03-18
WO2021084743A1 (en) * 2019-11-01 2021-05-06 三菱電機株式会社 Refrigeration cycle device
WO2021192292A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021229647A1 (en) * 2020-05-11 2021-11-18 三菱電機株式会社 Refrigeration cycle device
CN114364929A (en) * 2019-09-09 2022-04-15 三菱电机株式会社 Outdoor unit and refrigeration cycle device
WO2022123736A1 (en) * 2020-12-10 2022-06-16 三菱電機株式会社 Refrigeration cycle device
WO2022162775A1 (en) * 2021-01-27 2022-08-04 三菱電機株式会社 Refrigeration cycle device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141841A (en) * 1977-05-16 1978-12-11 Yukio Kajino Structure of plug for engine
JPS59175961A (en) * 1983-03-22 1984-10-05 ヒルテイ・アクチエンゲゼルシヤフト Hand tool
JPS6337969A (en) * 1986-08-01 1988-02-18 Nec Corp Light emitting control circuit
JPH10297270A (en) * 1997-02-28 1998-11-10 Denso Corp Air conditioner for vehicle
JP2002031387A (en) * 2000-07-18 2002-01-31 Daikin Ind Ltd Air conditioner
JP2004003825A (en) * 2002-03-28 2004-01-08 Mitsubishi Electric Corp Heat pump system, and heat pump type hot water supplying machine
JP2005164103A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP2008185295A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat source unit and refrigerating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141841A (en) * 1977-05-16 1978-12-11 Yukio Kajino Structure of plug for engine
JPS59175961A (en) * 1983-03-22 1984-10-05 ヒルテイ・アクチエンゲゼルシヤフト Hand tool
JPS6337969A (en) * 1986-08-01 1988-02-18 Nec Corp Light emitting control circuit
JPH10297270A (en) * 1997-02-28 1998-11-10 Denso Corp Air conditioner for vehicle
JP2002031387A (en) * 2000-07-18 2002-01-31 Daikin Ind Ltd Air conditioner
JP2004003825A (en) * 2002-03-28 2004-01-08 Mitsubishi Electric Corp Heat pump system, and heat pump type hot water supplying machine
JP2005164103A (en) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP2008185295A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat source unit and refrigerating device

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079854A (en) * 2010-09-10 2013-05-01 三菱电机株式会社 Updating method for vehicle air conditioning device and vehicle air conditioning device
WO2012032587A1 (en) * 2010-09-10 2012-03-15 三菱電機株式会社 Updating method for vehicle air conditioning device and vehicle air conditioning device
US9890978B2 (en) 2010-09-10 2018-02-13 Mitsubishi Electric Corporation Renewal method of air-conditioning unit for vehicle and air-conditioning unit for vehicle
JP5595504B2 (en) * 2010-09-10 2014-09-24 三菱電機株式会社 Method of updating vehicle air conditioner, vehicle air conditioner
US8769968B2 (en) 2010-09-27 2014-07-08 Lg Electronics Inc. Refrigerant system and method for controlling the same
KR101201567B1 (en) * 2010-09-27 2012-11-14 엘지전자 주식회사 An air conditioner
KR101233050B1 (en) * 2011-02-28 2013-02-15 오텍캐리어 주식회사 control method for pump-down of air-conditioner installed
KR101369568B1 (en) * 2011-09-09 2014-03-04 엘지전자 주식회사 An air conditioner and a control method for the same
US9587865B2 (en) 2011-09-09 2017-03-07 Lg Electronics Inc. Air conditioner and method for controlling the same
KR101921538B1 (en) 2012-02-23 2018-11-23 엘지전자 주식회사 Air conditioner and Control method of the same
CN102691652A (en) * 2012-06-04 2012-09-26 大连交通大学 Endurance test device of piston type refrigerant compressor
KR20140010704A (en) * 2012-07-16 2014-01-27 엘지전자 주식회사 An air conditioner
KR101974212B1 (en) * 2012-07-16 2019-08-23 엘지전자 주식회사 An air conditioner
KR101437790B1 (en) 2013-10-15 2014-09-11 엘지전자 주식회사 An air conditioner and a control method for the same
WO2017010007A1 (en) * 2015-07-16 2017-01-19 三菱電機株式会社 Air conditioner
WO2017037788A1 (en) * 2015-08-28 2017-03-09 三菱電機株式会社 Refrigeration cycle device
KR101970248B1 (en) * 2016-03-28 2019-04-18 엘지전자 주식회사 Air Conditioner
KR20170111346A (en) * 2016-03-28 2017-10-12 엘지전자 주식회사 Air Conditioner
JPWO2019186647A1 (en) * 2018-03-26 2021-01-07 三菱電機株式会社 Refrigeration equipment
WO2019186647A1 (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Refrigerating apparatus
GB2585594B (en) * 2018-03-26 2021-11-24 Mitsubishi Electric Corp Refrigeration device
GB2585594A (en) * 2018-03-26 2021-01-13 Mitsubishi Electric Corp Refrigerating apparatus
WO2020208752A1 (en) * 2019-04-10 2020-10-15 三菱電機株式会社 Outdoor unit, refrigeration cycle device, and refrigerating machine
JPWO2020208752A1 (en) * 2019-04-10 2020-10-15
CN113692517A (en) * 2019-04-10 2021-11-23 三菱电机株式会社 Outdoor unit, refrigeration cycle device, and refrigerator
JP7150148B2 (en) 2019-04-10 2022-10-07 三菱電機株式会社 Outdoor unit, refrigeration cycle device and refrigerator
EP3954947A4 (en) * 2019-04-10 2022-03-23 Mitsubishi Electric Corporation Outdoor unit, refrigeration cycle device, and refrigerating machine
CN113692517B (en) * 2019-04-10 2022-12-23 三菱电机株式会社 Outdoor unit, refrigeration cycle device, and refrigerator
JPWO2021048899A1 (en) * 2019-09-09 2021-03-18
JP7154426B2 (en) 2019-09-09 2022-10-17 三菱電機株式会社 Outdoor unit and refrigeration cycle device
CN114364929B (en) * 2019-09-09 2024-01-02 三菱电机株式会社 Outdoor unit and refrigeration cycle device
CN114341568B (en) * 2019-09-09 2023-07-18 三菱电机株式会社 Outdoor unit and refrigeration cycle device
WO2021048899A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
CN114341568A (en) * 2019-09-09 2022-04-12 三菱电机株式会社 Outdoor unit and refrigeration cycle device
CN114364929A (en) * 2019-09-09 2022-04-15 三菱电机株式会社 Outdoor unit and refrigeration cycle device
WO2021084743A1 (en) * 2019-11-01 2021-05-06 三菱電機株式会社 Refrigeration cycle device
CN114585866A (en) * 2019-11-01 2022-06-03 三菱电机株式会社 Refrigeration cycle device
EP4053470A4 (en) * 2019-11-01 2022-11-16 Mitsubishi Electric Corporation Refrigeration cycle device
CN111238072A (en) * 2020-01-14 2020-06-05 西安交通大学 Energy-saving refrigeration system capable of realizing refrigerant switching and working method thereof
EP4130615A4 (en) * 2020-03-27 2023-04-26 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle device
JP7282258B2 (en) 2020-03-27 2023-05-26 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment
WO2021192292A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Outdoor unit and refrigeration cycle device
JPWO2021192292A1 (en) * 2020-03-27 2021-09-30
WO2021229647A1 (en) * 2020-05-11 2021-11-18 三菱電機株式会社 Refrigeration cycle device
EP4151926A4 (en) * 2020-05-11 2023-06-14 Mitsubishi Electric Corporation Refrigeration cycle device
JP7407920B2 (en) 2020-05-11 2024-01-04 三菱電機株式会社 Refrigeration cycle equipment
WO2022123736A1 (en) * 2020-12-10 2022-06-16 三菱電機株式会社 Refrigeration cycle device
JP7433476B2 (en) 2020-12-10 2024-02-19 三菱電機株式会社 Refrigeration cycle equipment
WO2022162775A1 (en) * 2021-01-27 2022-08-04 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2010127531A (en) Refrigeration air conditioner
US9746212B2 (en) Refrigerating and air-conditioning apparatus
JP5357418B2 (en) Heat pump air conditioner
EP3059521B1 (en) Air conditioning device
US9163864B2 (en) Air-conditioning apparatus with oil return in a transcritical cycle
US9151522B2 (en) Air conditioner and control method thereof
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
CN107110570A (en) Heat storage type air conditioner
JP2006071268A (en) Refrigerating plant
EP3115715B1 (en) Refrigeration cycle system
EP3657096B1 (en) Freezer
US11060771B2 (en) Air conditioner with a refrigerant ratio adjustor
JP2006284035A (en) Air conditioner and its control method
JP2012122670A (en) Air conditioner
US7380411B2 (en) Heat source unit with switching means between heating and cooling
EP3657097B1 (en) Freezer
JP2015148431A (en) Refrigeration device
JP2009204235A (en) Heat pump type water heater
JP2012145251A (en) Heat pump device
JP2009236397A (en) Air conditioner
JP2009186033A (en) Two-stage compression type refrigerating device
JP2007127353A (en) Air-conditioner
JP2010127482A (en) Air conditioner
JP2010127481A (en) Air conditioner
JP2005214444A (en) Refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129