JP2010127482A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010127482A
JP2010127482A JP2008299872A JP2008299872A JP2010127482A JP 2010127482 A JP2010127482 A JP 2010127482A JP 2008299872 A JP2008299872 A JP 2008299872A JP 2008299872 A JP2008299872 A JP 2008299872A JP 2010127482 A JP2010127482 A JP 2010127482A
Authority
JP
Japan
Prior art keywords
return
compressor
air conditioner
refrigerant
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299872A
Other languages
Japanese (ja)
Inventor
Makoto Araki
誠 荒木
Hideji Taki
英司 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2008299872A priority Critical patent/JP2010127482A/en
Publication of JP2010127482A publication Critical patent/JP2010127482A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide satisfactory reliability of a compressor by storing part of a refrigerant charged in anticipation of an operation of all of indoor units, in part of a refrigerant circuit, and returning the refrigerant to the compressor according to changing situations. <P>SOLUTION: In the air conditioner including the compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a pressure reducer 24, and an indoor heat exchanger 47, an accumulator 25 for storing a gas-liquid mixture of the refrigerant including oil after heat exchange, is disposed between the four-way valve 22 and the compressor 21, a plurality of return adjustment pipes 36a, 36b, ... respectively set in different heights of returned liquid, are disposed in the accumulator 25, the return adjustment pipes 36a, 36b, ... are connected with the return pipe 35 through solenoid valves 37a, 37b, ... respectively selectively opened and closed according to driving situation, and the return pipe 35 is connected between the accumulator 25 and the compressor 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、接続されているすべての室内機の運転を見越して充填した油を含む冷媒の一部を、冷媒回路の一部分に貯留し、運転状況の変化に応じて任意に圧縮機に戻すことを可能にした空気調和機に関するものである。   According to the present invention, a part of refrigerant including oil filled in anticipation of operation of all connected indoor units is stored in a part of the refrigerant circuit, and arbitrarily returned to the compressor in accordance with a change in the operation state. The present invention relates to an air conditioner that makes it possible.

VRF(ビル用マルチエアコン)システムでは、1又は複数の室外機に、多数の室内機を接続して運転される。例えば、室内機を18台接続し、その配管長を150mとしたときを最大とした場合に、この最大接続時の運転状態において最適な運転ができるように、予め室外機の圧縮機用潤滑油を含む冷媒が冷媒回路中に充填される。ところが、実際に稼働する台数が最大台数に達していないにもかかわらず、すべての冷媒を冷媒回路中で循環させることは、運転効率を低下させるだけでなく、圧縮機の性能に悪影響を与える。そのため、運転状況に応じて冷媒の一部をアキュムレータに貯留しておくようになっている。そして、このアキュムレータに貯留されている冷媒は、室内機の台数が増えたときに圧縮機に戻される。   A VRF (Building Multi-Air Conditioner) system is operated by connecting a large number of indoor units to one or a plurality of outdoor units. For example, when 18 indoor units are connected and the maximum pipe length is 150 m, the lubricating oil for the compressor of the outdoor unit is previously set so that the optimum operation can be performed in the operating state at the maximum connection. The refrigerant circuit is filled in the refrigerant circuit. However, in spite of the fact that the actual number of operating units has not reached the maximum number, circulating all the refrigerant in the refrigerant circuit not only lowers the operation efficiency but also adversely affects the performance of the compressor. Therefore, a part of the refrigerant is stored in the accumulator according to the operation status. The refrigerant stored in the accumulator is returned to the compressor when the number of indoor units increases.

従来、軽負荷運転、通常負荷運転、過負荷運転等の種々の運転状態にかかわらず、常にアキュムレータより、圧縮機に潤滑油を含む冷媒を戻す方法が知られている(特許文献1)。
この特許文献1によれば、図4に示すように、アキュムレータ本体10に、ガス吐出口12を有するガス吐出管11を貫通して設け、また、アキュムレータ本体10の内部にガス吸込み口14を有するガス吸込み管13を貫通して設け、このガス吸込み管13の圧縮機に接続される側にオリフィス15を設け、前記アキュムレータ本体10の底部には、高さを順次異ならせた第1油戻し管16a、第2油戻し管16b、第3油戻し管16cを設け、これらの油戻し管16a、16b、16cの他端部をガス吸込み管13におけるオリフィス15より後方に接続したものである。
Conventionally, there has been known a method of always returning a refrigerant containing lubricating oil to a compressor from an accumulator regardless of various operating states such as light load operation, normal load operation, and overload operation (Patent Document 1).
According to this Patent Document 1, as shown in FIG. 4, the accumulator body 10 is provided through the gas discharge pipe 11 having the gas discharge port 12, and the accumulator body 10 has the gas suction port 14. A first oil return pipe provided through the gas suction pipe 13, an orifice 15 provided on the side of the gas suction pipe 13 connected to the compressor, and the bottom of the accumulator body 10 having different heights sequentially. 16a, a second oil return pipe 16b, and a third oil return pipe 16c are provided, and the other ends of these oil return pipes 16a, 16b, and 16c are connected to the rear side of the orifice 15 in the gas suction pipe 13.

以上のような構成における動作について、特許文献1には次のように記載されている。なお、従来例を示す図4は、特許文献1では第5図として表し、動作説明は第4図の場合について述べているので、以下の説明では、第5図の場合に対応するように一部を書き換えている。
「負荷が減少して、容量制御運転を行っている場合等には、アキュムレータ内の液面は、上昇し、油戻し管16a、16b、16cの各上端部は、液中にあるが、油戻し管16aの上端部は、潤滑油の密度の濃い冷媒液中、あるいは、低温の場合で、冷媒液と潤滑油が二相分離している場合には、潤滑油層部にあり、潤滑油は、差圧PL2−Pにより、冷媒ガスと共に圧縮機吸入口に続くガス吸込み管13より、冷媒ガスと共に圧縮機に戻される。
また、通常の運転状態の場合で、液面が上述の場合ほど高くない場合にも、同様に、油戻し管16bの上端部が潤滑油の密度の濃い冷媒液中あるいは、二相分離している場合には、潤滑油層部にあり、潤滑油を圧縮機に戻す。
また、過負荷運転で液面が低下した場合にも同様に、油戻し管16cの上端部は、潤滑油密度の濃い冷媒液中、あるいは、二相分離している場合は、潤滑油層部にあり、潤滑油を圧縮機に戻す。
以上のように、軽負荷運転、通常運転、過負荷運転等の種々の運転状態の如何にかかわらず、常にアキュムレータより、圧縮機に潤滑油をもどすことができる。」
実開昭52−70319号公報。
The operation in the configuration as described above is described in Patent Document 1 as follows. Note that FIG. 4 showing the conventional example is shown as FIG. 5 in Patent Document 1 and the operation explanation is described for the case of FIG. 4. Therefore, in the following explanation, one example is given to correspond to the case of FIG. The part has been rewritten.
“When the load is reduced and the capacity control operation is performed, the liquid level in the accumulator rises and the upper ends of the oil return pipes 16a, 16b, and 16c are in the liquid. The upper end of the return pipe 16a is in the lubricating oil layer when the refrigerant liquid and the lubricating oil are two-phase separated in a refrigerant liquid with a high density of lubricating oil or in the case of a low temperature. Then, due to the differential pressure PL2-P, the refrigerant gas is returned to the compressor together with the refrigerant gas from the gas suction pipe 13 following the compressor suction port.
Also, in the case of a normal operation state, when the liquid level is not as high as in the above case, similarly, the upper end of the oil return pipe 16b is in a refrigerant liquid with a high density of lubricating oil or separated into two phases. If it is, it is in the lubricating oil layer and returns the lubricating oil to the compressor.
Similarly, when the liquid level decreases due to overload operation, the upper end portion of the oil return pipe 16c is in the lubricating liquid layer portion when the lubricating oil density is high or in the case of two-phase separation. Yes, return the lubricant to the compressor.
As described above, the lubricating oil can always be returned to the compressor from the accumulator regardless of various operating states such as light load operation, normal operation, and overload operation. "
Japanese Utility Model Publication No. 52-70319.

しかしながら、特許文献1に記載の方法には、次のような問題がある。
すなわち、3本の油戻し管16a、16b、16cがすべてアキュムレータ本体10の内部で開口しているので、液面46が第1油戻し管16aのh1よりも高いときは、最も低い第3油戻し管16cのh3になるまで3本の油戻し管16a,16b,16cのすべてで油を含む冷媒が戻される。
液面46が油戻し管16bのh2よりもやや高いときも、油戻し管16cのh3になるまで2本の油戻し管16b,16cで油を含む冷媒が戻される。
液面46が油戻し管16cのh3よりもやや高いときは、油戻し管16cのh3になるまで1本の油戻し管16cで油を含む冷媒が戻される。
したがって、この特許文献1に記載の方法では、過負荷、通常負荷、軽負荷にかかわらず、油戻し管16cのh3になるまで油を含む冷媒が戻される。このことは、過負荷、通常負荷、軽負荷に応じた油戻しの制御ができない、という問題がある。
However, the method described in Patent Document 1 has the following problems.
That is, since all three oil return pipes 16a, 16b, and 16c are opened inside the accumulator body 10, when the liquid level 46 is higher than h1 of the first oil return pipe 16a, the lowest third oil The refrigerant containing oil is returned in all of the three oil return pipes 16a, 16b and 16c until the return pipe 16c reaches h3.
Even when the liquid level 46 is slightly higher than h2 of the oil return pipe 16b, the refrigerant containing oil is returned by the two oil return pipes 16b and 16c until it reaches h3 of the oil return pipe 16c.
When the liquid level 46 is slightly higher than h3 of the oil return pipe 16c, the refrigerant containing oil is returned through one oil return pipe 16c until the liquid level 46 reaches h3 of the oil return pipe 16c.
Therefore, in the method described in Patent Document 1, regardless of overload, normal load, and light load, the refrigerant containing oil is returned until the oil return pipe 16c reaches h3. This has the problem that the oil return cannot be controlled according to overload, normal load, or light load.

本発明は、接続されているすべての室内機の運転を見越して充填した油を含む冷媒の一部を、冷媒回路の一部分に貯留し、運転状況の変化に応じて任意に圧縮機に戻すことにより、圧縮機における電力の無駄な消費を省き、信頼性を十分満足できる空気調和機を提供することを目的とするものである。   According to the present invention, a part of refrigerant including oil filled in anticipation of operation of all connected indoor units is stored in a part of the refrigerant circuit, and arbitrarily returned to the compressor in accordance with a change in the operation state. Accordingly, an object of the present invention is to provide an air conditioner that can sufficiently reduce the consumption of electric power in the compressor and sufficiently satisfy the reliability.

本発明の空気調和機は、圧縮機と、四方弁と、室外熱交換器と、減圧器と、室内熱交換器とを具備した空気調和機において、前記四方弁と圧縮機の間に熱交換後の油を含む冷媒の気液混合体を貯留するアキュムレータを配置し、このアキュムレータ内に、異なる戻し液高を設定した複数の戻し調整管を設け、これらの戻し調整管にそれぞれ運転状況に応じて選択的に開閉される電磁弁を介して戻し管に接続し、この戻し管を前記アキュムレータと圧縮機の間に接続したことを特徴とする。 An air conditioner according to the present invention is an air conditioner including a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger, and heat exchange is performed between the four-way valve and the compressor. An accumulator that stores the gas-liquid mixture of the refrigerant that contains the later oil is arranged, and a plurality of return adjustment pipes with different return liquid heights are provided in the accumulator, and each of these return adjustment pipes is adapted to the operating situation. The return pipe is connected via a solenoid valve that is selectively opened and closed, and the return pipe is connected between the accumulator and the compressor.

空気調和機における最大負荷時の運転のために充填した油を含む冷媒量のうち、運転状況に応じた最適運転に必要な量を冷媒回路中で循環し、残りをアキュムレータに貯留するように電磁弁を開閉制御するようにしたことを特徴とする。 The amount of refrigerant including oil charged for operation at the maximum load in the air conditioner is circulated in the refrigerant circuit for the amount necessary for optimal operation according to the operating condition, and the rest is stored in the accumulator. The valve is controlled to open and close.

室外機に複数台の室内機を接続した場合において、油を含む冷媒の戻し液高を設定する複数の戻し調整管は、高い方から順次、室内機1台による冷房運転、室内機1台による暖房運転、接続されているすべての室内機による冷房運転、接続されているすべての室内機による暖房運転に対応せしめたことを特徴とする。 When a plurality of indoor units are connected to the outdoor unit, the plurality of return adjustment pipes for setting the return liquid height of the refrigerant containing oil are, in order from the highest, cooling operation by one indoor unit, by one indoor unit It is characterized by being adapted to heating operation, cooling operation by all connected indoor units, and heating operation by all connected indoor units.

室内機1台による暖房運転と接続されているすべての室内機による冷房運転のための戻し調整管とを兼用するようにしたことを特徴とする。 It is characterized in that it is also used as a return adjustment pipe for cooling operation by all indoor units connected to heating operation by one indoor unit.

室外機に複数台の室内機を接続した場合において、複数の電磁弁は、スキャニングされた室内機の実働運転台数に基づき選択的に開閉制御するようにしたことを特徴とする。 In the case where a plurality of indoor units are connected to the outdoor unit, the plurality of solenoid valves are selectively controlled to open and close based on the number of actually operating indoor units scanned.

複数の電磁弁は、圧縮機の油を含む冷媒の吐出温度の変化に基づき選択的に開閉制御するようにしたことを特徴とする。 The plurality of solenoid valves are selectively opened and closed based on changes in the discharge temperature of the refrigerant containing the oil of the compressor.

複数の電磁弁は、選択された戻し調整管の高さの電磁弁より高い戻し調整管の電磁弁を同時に開放するように制御することもできる。   The plurality of solenoid valves can also be controlled to open simultaneously the solenoid valve of the return adjustment pipe that is higher than the solenoid valve at the height of the selected return adjustment pipe.

請求項1記載の発明によれば、圧縮機と、四方弁と、室外熱交換器と、減圧器と、室内熱交換器とを具備した空気調和機において、前記四方弁と圧縮機の間に熱交換後の油を含む冷媒の気液混合体を貯留するアキュムレータを配置し、このアキュムレータ内に、異なる戻し液高を設定した複数の戻し調整管を設け、これらの戻し調整管にそれぞれ運転状況に応じて選択的に開閉される電磁弁を介して戻し管に接続し、この戻し管を前記アキュムレータと圧縮機の間に接続したので、空気調和機の最大負荷時を想定して充填した油を含む冷媒のうち、通常運転時、軽負荷時などに不必要な油を含む冷媒をアキュムレータ内に貯留して、運転状況に応じて、戻し液高が異なる複数の戻し調整管のいずれかを電磁弁で選択的に開放することにより、油を圧縮機に送ることができ、圧縮機の信頼性を十分満足することができる。 According to the first aspect of the present invention, in an air conditioner including a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger, the air conditioner is provided between the four-way valve and the compressor. An accumulator that stores the gas-liquid mixture of the refrigerant that contains the heat-exchanged oil is arranged, and a plurality of return adjustment pipes with different return liquid heights are provided in the accumulator, and each of these return adjustment pipes has an operating status. Since the return pipe is connected between the accumulator and the compressor through an electromagnetic valve that is selectively opened and closed according to the pressure, the oil that has been filled in assuming the maximum load of the air conditioner. The refrigerant containing unnecessary oil during normal operation, light load, etc. is stored in the accumulator, and one of multiple return adjustment pipes with different return liquid heights is used depending on the operating conditions. By selectively opening with a solenoid valve, The can be sent to the compressor, the reliability of the compressor can be sufficiently satisfied.

請求項2記載の発明によれば、空気調和機における最大負荷時の運転のために充填した油を含む冷媒量のうち、運転状況に応じた最適運転に必要な量を冷媒回路中で循環し、残りをアキュムレータに貯留するように複数の電磁弁を選択的に開閉制御するようにしたので、無駄な電力を使用せず、消費電力の少ない最適な運転が可能である。 According to the second aspect of the present invention, among the refrigerant amount including oil filled for the operation at the maximum load in the air conditioner, an amount necessary for the optimum operation according to the operation state is circulated in the refrigerant circuit. Since the plurality of solenoid valves are selectively opened and closed so as to store the remainder in the accumulator, it is possible to perform an optimal operation with less power consumption without using wasted power.

請求項3記載の発明によれば、室外機に複数台の室内機を接続した場合において、油を含む冷媒の戻し液高を設定する複数の戻し調整管は、高い方から順次、室内機1台による冷房運転、室内機1台による暖房運転、接続されているすべての室内機による冷房運転、接続されているすべての室内機による暖房運転に対応せしめたので、過負荷時、通常負荷時、軽負荷時などあらゆる状況の変化に対処できる。 According to the third aspect of the present invention, when a plurality of indoor units are connected to the outdoor unit, the plurality of return adjustment pipes for setting the return liquid height of the refrigerant containing the oil are sequentially set from the higher one to the indoor unit 1. The cooling operation by the stand, the heating operation by one indoor unit, the cooling operation by all the connected indoor units, and the heating operation by all the connected indoor units are supported. It can cope with changes in all situations such as light loads.

請求項4記載の発明によれば、室内機1台による暖房運転と接続されているすべての室内機による冷房運転のための戻し調整管とを兼用するようにしたので、戻し調整管の数を少なくして運転の制御を単純化できる。 According to the invention of claim 4, since the heating operation by one indoor unit and the return adjustment pipes for the cooling operation by all the connected indoor units are also used, the number of return adjustment pipes is reduced. Operation control can be simplified with less.

請求項5記載の発明によれば、室外機に複数台の室内機を接続した場合において、複数の電磁弁は、スキャニングされた室内機の実働運転台数に基づき選択的に開閉制御するようにしたので、実際に駆動している負荷に対応した空気調和機としての効率を向上できる。   According to the fifth aspect of the present invention, when a plurality of indoor units are connected to the outdoor unit, the plurality of solenoid valves are selectively controlled to open and close based on the number of actually operated indoor units. Therefore, the efficiency as an air conditioner corresponding to a load that is actually driven can be improved.

請求項6記載の発明によれば、複数の電磁弁は、圧縮機の油を含む冷媒の吐出温度の変化に基づき選択的に開閉制御するようにしたので、圧縮機を常に正常に駆動して無駄な運転をなくすることが出来る。   According to the invention described in claim 6, since the plurality of solenoid valves are selectively controlled to open and close based on the change in the discharge temperature of the refrigerant including the compressor oil, the compressor is always driven normally. Useless driving can be eliminated.

請求項7記載の発明によれば、複数の電磁弁は、選択された戻し調整管の高さの電磁弁より高い戻し液高の戻し調整管の電磁弁を同時に開放するように制御するようにしたので、速やかに油を圧縮機に戻し、圧縮機を含む可動部の損傷を防止し、かつ、速やかに所期の目的に応じた空気調和が出来る。したがって、VRF(ビル用マルチエアコン)システムにおけるあらゆる状況の変化に対応して圧縮機の信頼性を十分満足できる空気調和機を提供することができる。   According to the seventh aspect of the present invention, the plurality of solenoid valves are controlled so as to simultaneously open the solenoid valves of the return adjustment pipe having a higher return liquid height than the solenoid valves having the height of the selected return adjustment pipe. As a result, the oil can be quickly returned to the compressor, the movable part including the compressor can be prevented from being damaged, and air conditioning can be promptly performed according to the intended purpose. Therefore, it is possible to provide an air conditioner that can sufficiently satisfy the reliability of the compressor in response to changes in various situations in the VRF (multi air conditioner for buildings) system.

本発明は、圧縮機と、四方弁と、室外熱交換器と、減圧器と、室内熱交換器とを具備した空気調和機において、前記四方弁と圧縮機の間に熱交換後の油を含む冷媒の気液混合体を貯留するアキュムレータを配置し、このアキュムレータ内に、異なる戻し液高を設定した複数の戻し調整管を設け、これらの戻し調整管にそれぞれ運転状況に応じて選択的に開閉される電磁弁を介して戻し管に接続し、この戻し管を前記アキュムレータと圧縮機の間に接続する。 The present invention relates to an air conditioner including a compressor, a four-way valve, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger, and the oil after heat exchange is provided between the four-way valve and the compressor. An accumulator for storing the gas-liquid mixture of the refrigerant is disposed, and a plurality of return adjustment pipes set with different return liquid heights are provided in the accumulator, and each of these return adjustment pipes is selectively selected according to the operating situation. The return pipe is connected via an electromagnetic valve that is opened and closed, and this return pipe is connected between the accumulator and the compressor.

空気調和機における最大負荷時の運転のために充填した油を含む冷媒量のうち、運転状況に応じた最適運転に必要な量を冷媒回路中で循環し、残りをアキュムレータに貯留するように複数の電磁弁を選択的に開閉制御する。具体的には、室外機に複数台の室内機を接続した場合であって、油を含む冷媒の戻し液高を設定する複数の戻し調整管は、高い方から順次、室内機1台による冷房運転、室内機1台による暖房運転、接続されているすべての室内機による冷房運転、接続されているすべての室内機による暖房運転に対応せしめる。
室内機1台による暖房運転と接続されているすべての室内機による冷房運転のための戻し調整管を兼用するようにしてもよい。
複数の電磁弁は、スキャニングされた室内機の実働運転台数又は圧縮機の冷媒混じりの吐油温度の変化の単独の情報に基づき選択的に開閉制御するようにしてもよい。
A plurality of refrigerant quantities including oil filled for operation at the maximum load in the air conditioner are circulated in the refrigerant circuit, and the rest is stored in the accumulator. The solenoid valve is selectively opened and closed. Specifically, in the case where a plurality of indoor units are connected to the outdoor unit, the plurality of return adjustment pipes for setting the return liquid height of the refrigerant containing oil are cooled by one indoor unit in order from the highest. Operation, heating operation with one indoor unit, cooling operation with all connected indoor units, and heating operation with all connected indoor units are made to correspond.
You may make it also serve as the return adjustment pipe for the cooling operation by all the indoor units connected with the heating operation by one indoor unit.
The plurality of solenoid valves may be selectively controlled to open and close based on the number of actually operated indoor units that have been scanned or the single information on the change in the oil discharge temperature due to the refrigerant in the compressor.

複数の電磁弁は、圧縮機の吐出温度の変化に基づき選択的に開閉制御するようにしてもよい。
また、複数の電磁弁は、選択された戻し調整管の高さの電磁弁より高い戻し液高の戻し調整管の電磁弁を同時に開放するように制御することもできる。
The plurality of solenoid valves may be selectively controlled to open and close based on changes in the discharge temperature of the compressor.
Further, the plurality of solenoid valves can be controlled so as to simultaneously open the solenoid valves of the return adjustment pipe having a higher return liquid height than the solenoid valve having the height of the selected return adjustment pipe.

本発明による空気調和機の実施例1を図1ないし図3に基づき説明する。
図1において、18は、室外機で、冷房運転時に凝縮器として機能させ、暖房運転時に蒸発器として機能させる室外熱交換器23と、圧縮機21と、四方弁22の他に、本発明特有のアキュムレータ25を主たる構成要素とする。この室外機18は、1台の例が図示されているが、複数台を並列接続したものであってもよい。
この室外機18には、配管20によって室内機19が接続されている。
この室内機19は、冷房運転時に蒸発器として機能させ、暖房運転時に凝縮器として機能させる室内熱交換器47と減圧器24とを直列に接続したそれぞれの室内機を複数台並列に接続して使用される。VRF(ビル用マルチエアコン)システムでは、最大運転台数は、例えば、室内機の接続台数が18台、配管長が150mとする。
A first embodiment of an air conditioner according to the present invention will be described with reference to FIGS.
In FIG. 1, reference numeral 18 denotes an outdoor unit, which functions as a condenser during a cooling operation and functions as an evaporator during a heating operation, in addition to the outdoor heat exchanger 23, the compressor 21, and the four-way valve 22. The accumulator 25 is a main component. One example of the outdoor unit 18 is illustrated, but a plurality of the outdoor units 18 may be connected in parallel.
An indoor unit 19 is connected to the outdoor unit 18 by a pipe 20.
This indoor unit 19 is configured by connecting in parallel a plurality of each indoor unit in which an indoor heat exchanger 47 and a decompressor 24 that function as an evaporator during cooling operation and function as a condenser during heating operation are connected in series. used. In a VRF (building air conditioner) system, the maximum number of operating units is, for example, 18 indoor units connected and a pipe length of 150 m.

前記圧縮機21は、ロータリー型の可変速の第1圧縮機21aと、スクロール型の一定速の第2圧縮機21bとを並列に接続したものである。第1圧縮機21aには、入口側にこの第1圧縮機21aのためのアキュムレータ27が接続され、出口側に油分離器30aが接続され、第2圧縮機21bには、出口側に油分離器30bが接続されている。前記油分離器30aと油分離器30bは、それぞれ逆止弁32を介して四方弁22のポートAに結合されているとともに、電子膨張弁28と毛細管29を有するバイパス管38に結合されている。また、前記第1圧縮機21aの循環路31と油分離器30aの循環路31には、それぞれ電子膨張弁28と毛細管29を介して第2圧縮機21bの入口側に結合され、前記油分離器30bの循環路31が毛細管29を介して前記アキュムレータ27に結合されている。43は、第1圧縮機21aと第2圧縮機21bの本体側面と吐出端における油を含む冷媒の温度を検出する温度センサである。   The compressor 21 is a rotary type variable speed first compressor 21a and a scroll type constant speed second compressor 21b connected in parallel. An accumulator 27 for the first compressor 21a is connected to the inlet side of the first compressor 21a, an oil separator 30a is connected to the outlet side, and an oil separator is connected to the outlet side of the second compressor 21b. A device 30b is connected. The oil separator 30a and the oil separator 30b are respectively connected to the port A of the four-way valve 22 via a check valve 32, and are connected to a bypass pipe 38 having an electronic expansion valve 28 and a capillary tube 29. . In addition, the circulation path 31 of the first compressor 21a and the circulation path 31 of the oil separator 30a are coupled to the inlet side of the second compressor 21b via an electronic expansion valve 28 and a capillary tube 29, respectively. A circulation path 31 of the vessel 30b is coupled to the accumulator 27 through a capillary tube 29. 43 is a temperature sensor which detects the temperature of the refrigerant | coolant containing the oil in the main body side surface and discharge end of the 1st compressor 21a and the 2nd compressor 21b.

前記四方弁22のポートBには、前記室外熱交換器23の入口側が結合されている。この室外熱交換器23には、冷房運転時の放熱と暖房運転時の吸熱を促進させるためのファン39が設けられている。また、この室外熱交換器23の本体側面と吐出端の2個所に温度センサ43が取り付けられている。   An inlet side of the outdoor heat exchanger 23 is coupled to the port B of the four-way valve 22. The outdoor heat exchanger 23 is provided with a fan 39 for promoting heat radiation during cooling operation and heat absorption during heating operation. In addition, temperature sensors 43 are attached to the outdoor heat exchanger 23 at two locations on the side of the main body and at the discharge end.

前記室外熱交換器23の出口側には、互いに並列に結合された逆止弁32と開閉弁40と電子膨張弁28と圧力弁41を介してサブクール熱交換器42に結合されている。このサブクール熱交換器42では、流れる冷媒の一部を熱交換して後述するガス吐出管33に戻される。このサブクール熱交換器42には、3個所に温度センサ43が取り付けられている。   The outlet side of the outdoor heat exchanger 23 is connected to a subcool heat exchanger 42 via a check valve 32, an on-off valve 40, an electronic expansion valve 28, and a pressure valve 41 that are connected in parallel to each other. In the subcool heat exchanger 42, a part of the flowing refrigerant is heat-exchanged and returned to the gas discharge pipe 33 described later. The subcool heat exchanger 42 is provided with temperature sensors 43 at three locations.

前記アキュムレータ25は、一般的に油を含む冷媒を一時的に貯留するものであるが、本発明では、接続されているすべての室内機の運転を見越して充填した油を含む冷媒の一部を、このアキュムレータ25に貯留し、状況の変化に応じて最適な運転状態となるように、貯留した油を含む冷媒を任意に圧縮機21に戻して、圧縮機21における電力の無駄な消費を省く役目を担っている。   In general, the accumulator 25 temporarily stores a refrigerant containing oil. However, in the present invention, a part of the refrigerant containing oil filled in anticipation of operation of all connected indoor units is used. Then, the refrigerant containing the stored oil is arbitrarily returned to the compressor 21 so as to be stored in the accumulator 25 and in an optimum operation state according to the change of the situation, and wasteful consumption of electric power in the compressor 21 is omitted. It plays a role.

このアキュムレータ25には、前記四方弁22のポートCに結合されたガス吐出管33が貫通し、先端の吐出口44を気液分離のためにアキュムレータ25の内壁に向けて設け、また、アキュムレータ25の内部に吸込み口45を有するガス吸込み管34を貫通して設ける。このアキュムレータ25の底部には、上端の開口部分の高さを順次異ならせた油を含む冷媒を戻すための4本の第1戻し調整管36a,第2戻し調整管36b,第3戻し調整管36c,第4戻し調整管36dを設け、これらの他端部に、それぞれ電磁弁37a,電磁弁37b,電磁弁37c,電磁弁37dを介在して戻し管35に接続し、さらに必要に応じてガス化のための毛細管29を経てこの戻し管35を前記ガス吸込み管34に接続したものである。 A gas discharge pipe 33 connected to the port C of the four-way valve 22 passes through the accumulator 25, and a discharge port 44 at the tip is provided toward the inner wall of the accumulator 25 for gas-liquid separation. A gas suction pipe 34 having a suction port 45 is provided therethrough. At the bottom of the accumulator 25, four first return adjustment pipes 36a, second return adjustment pipes 36b, and third return adjustment pipes for returning the refrigerant containing oil whose opening portions at the upper end are successively different in height. 36c and a fourth return adjustment pipe 36d are provided, and connected to the return pipe 35 via the electromagnetic valve 37a, the electromagnetic valve 37b, the electromagnetic valve 37c, and the electromagnetic valve 37d, respectively, at the other end thereof, and further as required. The return pipe 35 is connected to the gas suction pipe 34 through a capillary tube 29 for gasification.

前記4本の第1戻し調整管36a,第2戻し調整管36b,第3戻し調整管36c,第4戻し調整管36dのそれぞれの上端の開口部分の高さは、室内機が実際に運転している台数に合わせてアキュムレータ25に貯留する冷媒量を最適に設定するもので、例えば、1番目に高い第1戻し調整管36aは、室内機1台による冷房運転、2番目に高い第2戻し調整管36bは、室内機1台による暖房運転、3番目に高い第3戻し調整管36cは、接続されているすべての室内機による冷房運転、4番目に高い第4戻し調整管36dは、接続されているすべての室内機による暖房運転におけるアキュムレータ25に貯留するそれぞれの冷媒量に対応して設定される。
貯留する冷媒量の設定は、室内機が実際に運転している台数だけに限られるものではなく、その他配管の設置長さ、圧縮機での油を含む冷媒の吐出温度の変化、冷房か暖房かの運転モードの違い等、いずれか1又は2以上の状況変化の組合せにより複数段階に設定する。
また、第1、第2、第3、第4戻し調整管36a,36b,36c,36dのそれぞれに設けられた電磁弁37a,37b,37c,37dの開閉制御条件は、図示しないマイコンに記憶され、運転状況に応じた前記4段階に対応して選択的に切り替えられる。
The height of the opening at the upper end of each of the four first return adjustment pipes 36a, second return adjustment pipes 36b, third return adjustment pipes 36c, and fourth return adjustment pipes 36d is determined by the actual operation of the indoor unit. The amount of refrigerant stored in the accumulator 25 is optimally set in accordance with the number of units, for example, the first highest first return adjustment pipe 36a is provided with a cooling operation by one indoor unit, and the second highest second return. The adjustment pipe 36b is a heating operation by one indoor unit, the third highest third return adjustment pipe 36c is a cooling operation by all the connected indoor units, and the fourth highest fourth return adjustment pipe 36d is connected. It is set corresponding to the amount of each refrigerant stored in the accumulator 25 in the heating operation by all indoor units.
The setting of the amount of refrigerant to be stored is not limited to the number of indoor units that are actually operating, but the installation length of other pipes, changes in the discharge temperature of refrigerant containing oil in the compressor, cooling or heating It is set in a plurality of stages depending on the combination of any one or two or more situation changes such as the difference in the operation mode.
The open / close control conditions of the electromagnetic valves 37a, 37b, 37c, and 37d provided in the first, second, third, and fourth return adjustment pipes 36a, 36b, 36c, and 36d are stored in a microcomputer (not shown). , And can be selectively switched corresponding to the four stages according to the driving situation.

戻し管35を接続したガス吸込み管34の他端部は、分流器26で2つに分流されて前記第1圧縮機21aと第2圧縮機21b側に接続される。   The other end of the gas suction pipe 34 connected to the return pipe 35 is divided into two by the flow divider 26 and connected to the first compressor 21a and the second compressor 21b side.

次に空気調和機の動作を説明する。
冷房運転時には、四方弁22のポートAとBが連通し、ポートCとDが連通するように切り替える(図1の実線矢印状態)。すると、油を含む冷媒は、第1、第2圧縮機21a,21bにより高圧過熱蒸気となり室外熱交換器23に送られ、この室外熱交換器23で蒸気が凝縮して放熱され、高圧飽和液となって逆止弁32、電子膨張弁28、サブクール熱交換器42等を介在し、さらに配管20により室内機19の減圧器24に送られる。この減圧器24で低温の湿り蒸気となって室内熱交換器47に供給され、この室内熱交換器47で湿り蒸気が蒸発し、吸熱(冷房効果)をして低圧の飽和蒸気となって四方弁22とアキュムレータ25を経て第1、第2圧縮機21a,21bに戻される。
Next, the operation of the air conditioner will be described.
During the cooling operation, switching is performed so that the ports A and B of the four-way valve 22 communicate with each other and the ports C and D communicate with each other (solid arrow state in FIG. 1). Then, the refrigerant containing oil becomes high-pressure superheated steam by the first and second compressors 21a and 21b and is sent to the outdoor heat exchanger 23. The steam is condensed and radiated by the outdoor heat exchanger 23, and the high-pressure saturated liquid The check valve 32, the electronic expansion valve 28, the subcool heat exchanger 42, and the like are interposed, and further sent to the decompressor 24 of the indoor unit 19 through the pipe 20. The decompressor 24 forms a low-temperature wet steam and supplies it to the indoor heat exchanger 47. The indoor heat exchanger 47 evaporates the wet steam and absorbs heat (cooling effect) to form a low-pressure saturated steam. It returns to the 1st, 2nd compressor 21a, 21b through the valve 22 and the accumulator 25. FIG.

暖房運転時には、四方弁22のポートAとDが連通し、ポートBとCが連通するように切り替える(図1の点線矢印状態)。すると、油を含む冷媒は、第1、第2圧縮機21a,21bにより高圧過熱蒸気となり室内機19の室内熱交換器47に送られ、この室内熱交換器47で高圧過熱蒸気が凝縮し放熱(暖房効果)され、高圧飽和液となって減圧器24で減圧され、サブクール熱交換器42と電子膨張弁28等を介在し、室外機18の室外熱交換器23に送られる。この室外熱交換器23で湿り蒸気が蒸発し、吸熱をして低圧の飽和蒸気となって四方弁22とアキュムレータ25を経て第1、第2圧縮機21a,21bに戻される。
なお、第1、第2圧縮機21a,21bの運転時において、第1圧縮機21aよりも第2圧縮機21bの吐出する油を含む冷媒の量が多いので、第1圧縮機21a側から循環路31を介して第2圧縮機21b側に油を供給し、油分離器30bから第1圧縮機21aに油が循環している。
During the heating operation, switching is performed so that the ports A and D of the four-way valve 22 communicate with each other and the ports B and C communicate with each other (in the state of the dotted arrow in FIG. 1). Then, the oil-containing refrigerant becomes high-pressure superheated steam by the first and second compressors 21a and 21b and is sent to the indoor heat exchanger 47 of the indoor unit 19, where the high-pressure superheated steam condenses and dissipates heat. (Heating effect), becomes a high-pressure saturated liquid, is depressurized by the decompressor 24, and is sent to the outdoor heat exchanger 23 of the outdoor unit 18 through the subcool heat exchanger 42 and the electronic expansion valve 28. The wet steam evaporates in the outdoor heat exchanger 23, absorbs heat, becomes low-pressure saturated steam, and returns to the first and second compressors 21a and 21b via the four-way valve 22 and the accumulator 25.
During the operation of the first and second compressors 21a and 21b, the amount of refrigerant containing oil discharged from the second compressor 21b is larger than that of the first compressor 21a, so that the refrigerant circulates from the first compressor 21a side. Oil is supplied to the second compressor 21b side via the path 31, and the oil circulates from the oil separator 30b to the first compressor 21a.

このような冷房又は暖房運転時における具体的開閉制御を説明する。
(1)最小負荷の冷房運転時、例えば室内機1台による冷房運転時に、図3に示すように、液面46をH1に設定したものとすると、マイコンからの指令により1番目に高い第1戻し調整管36aの電磁弁37aを開放する。
この状態で運転すると、圧縮機21の負圧により液面46からH1までの油を含む冷媒が第1戻し調整管36aの上端開口部から吸引され、毛細管29でガス化されてガス吸込み管34からのガス冷媒とともに第1、第2圧縮機21a,21bへ送られる。従って、H1以下の油を含む冷媒はアキュムレータ25内に貯留される。
Specific opening / closing control during such cooling or heating operation will be described.
(1) At the time of cooling operation at the minimum load, for example, at the time of cooling operation by one indoor unit, if the liquid level 46 is set to H1, as shown in FIG. The electromagnetic valve 37a of the return adjustment pipe 36a is opened.
When operating in this state, the refrigerant containing oil from the liquid level 46 to H1 is sucked from the upper end opening of the first return adjustment pipe 36a due to the negative pressure of the compressor 21, gasified by the capillary tube 29, and gas suction pipe 34 Together with the gas refrigerant from the first and second compressors 21a and 21b. Therefore, the refrigerant containing oil of H1 or less is stored in the accumulator 25.

(2)最小負荷の暖房運転時、例えば室内機1台による暖房運転時に、液面46をH2に設定したものとすると、マイコンからの指令により2番目に高い第2戻し調整管36bの電磁弁37bを開放する。
この状態で運転すると、圧縮機21の負圧により液面46からH2までの油を含む冷媒が第1戻し調整管36bの上端開口部から吸引され、毛細管29でガス化されてガス吸込み管34からのガス冷媒とともに第1、第2圧縮機21a,21bへ送られる。従って、H2以下の油を含む冷媒はアキュムレータ25内に貯留される。
(2) If the liquid level 46 is set to H2 at the time of heating operation at the minimum load, for example, at the time of heating operation by one indoor unit, the solenoid valve of the second return adjustment pipe 36b that is the second highest by a command from the microcomputer 37b is opened.
When operating in this state, the refrigerant containing oil from the liquid level 46 to H2 is sucked from the upper end opening of the first return adjustment pipe 36b by the negative pressure of the compressor 21, and is gasified by the capillary tube 29 to be gas suction pipe 34. Together with the gas refrigerant from the first and second compressors 21a and 21b. Therefore, the refrigerant containing oil of H2 or less is stored in the accumulator 25.

(3)最大負荷の冷房運転時、例えば接続されているすべての室内機による冷房運転時に、液面46をH3に設定したものとすると、マイコンからの指令により3番目に高い第3戻し調整管36cの電磁弁37cを開放する。
この状態で運転すると、圧縮機21の負圧により液面46からH3までの油を含む冷媒が第1戻し調整管36cの上端開口部から吸引され、毛細管29でガス化されてガス吸込み管34からのガス冷媒とともに第1、第2圧縮機21a,21bへ送られる。従って、H3以下の油を含む冷媒はアキュムレータ25内に貯留される。
(3) If the liquid level 46 is set to H3 during the cooling operation at the maximum load, for example, during the cooling operation by all the connected indoor units, the third return adjustment pipe that is the third highest in response to a command from the microcomputer The solenoid valve 37c of 36c is opened.
When operating in this state, the refrigerant containing oil from the liquid level 46 to H3 is sucked from the upper end opening of the first return adjustment pipe 36c by the negative pressure of the compressor 21, and is gasified by the capillary tube 29 to be gas suction pipe 34. Together with the gas refrigerant from the first and second compressors 21a and 21b. Therefore, the refrigerant containing H3 or less oil is stored in the accumulator 25.

(4)最大負荷の暖房運転時、例えば接続されているすべての室内機による暖房運転時に、液面46をH4に設定したものとすると、マイコンからの指令により4番目に高い第4戻し調整管36dの電磁弁37dを開放する。
この状態で運転すると、圧縮機21の負圧により液面46からH4までの油を含む冷媒が第1戻し調整管36dの上端開口部から吸引され、毛細管29でガス化されてガス吸込み管34からのガス冷媒とともに第1、第2圧縮機21a,21bへ送られる。従って、H4以下の油を含む冷媒はアキュムレータ25内に貯留される。
(4) If the liquid level 46 is set to H4 at the time of heating operation at the maximum load, for example, at the time of heating operation by all the connected indoor units, the fourth return adjustment pipe that is the fourth highest in response to a command from the microcomputer The 36d solenoid valve 37d is opened.
When operating in this state, the refrigerant containing the oil from the liquid level 46 to H4 is sucked from the upper end opening of the first return adjustment pipe 36d by the negative pressure of the compressor 21, and is gasified by the capillary tube 29 to be gasified. Together with the gas refrigerant from the first and second compressors 21a and 21b. Therefore, the refrigerant containing H4 or lower oil is stored in the accumulator 25.

前記実施例1において、アキュムレータ25内に高さの異なる4本の第1、第2、第3、第4戻し調整管36を取り付けたが、本数は、これに限られるものではなく、複数本であれば5本以上でもよい。
また、2番目に高い第2戻し調整管36bと3番目に高い第3戻し調整管36cとを同一高さの1本にして全体で3本とし、室内機1台による暖房運転と接続されているすべての室内機による冷房運転のための戻し調整管を兼用するようにしてもよい。
前記実施例1では、圧縮機21をロータリー型の第1圧縮機21aとスクロール型の第2圧縮機21bの並列運転としたが、これに限られるものではなく、1台又は3台以上であってもよいし、圧縮機の型式にこだわるものでもない。
In the first embodiment, four first, second, third, and fourth return adjustment pipes 36 having different heights are attached in the accumulator 25, but the number is not limited to this, and a plurality If so, it may be 5 or more.
In addition, the second highest second return adjustment pipe 36b and the third highest third return adjustment pipe 36c have one of the same height to be three in total, and are connected to the heating operation by one indoor unit. You may make it also use the return adjustment pipe for the cooling operation by all the indoor units which are present.
In the first embodiment, the compressor 21 is a parallel operation of the rotary first compressor 21a and the scroll second compressor 21b. However, the present invention is not limited to this, and one or three or more compressors are used. It doesn't matter what type of compressor it is.

前記実施例1では、冷房運転と暖房運転の両機能を四方弁22で切り替えて使用する空気調和機において、状況の変化に応じて第1戻し調整管36a,第2戻し調整管36b,第3戻し調整管36c,第4戻し調整管36dの高さの位置H1,H2,H3,H4を電磁弁37の開閉で選択的に設定する例について説明した。
しかし、これに限られるものではなく、暖房運転専用の空気調和機であっても、余剰の油を含む冷媒をアキュムレータに貯留しておくことが望まれる場合がある。
冷房運転専用の空気調和機であっても同様である。
例えば、暖房運転専用の場合には、冷媒回路内を循環する油を含む冷媒量が多くなり、アキュムレータ25内に貯留する冷媒の量が少なくなるが、そのため、第1戻し調整管36a,第2戻し調整管36b,第3戻し調整管36c,第4戻し調整管36dの高さの位置H1,H2,H3,H4を低い位置で細かく設定することでより細かな制御ができる。
同様に、冷房運転専用の場合には、冷媒回路内を循環する油を含む冷媒量が少なくなり、アキュムレータ25内に貯留する冷媒の量が多くなるが、そのため、第1戻し調整管36a,第2戻し調整管36b,第3戻し調整管36c,第4戻し調整管36dの高さの位置H1,H2,H3,H4を高い位置で細かく設定することでより細かな制御ができる。
この結果、状況の変化に応じて任意に油を含む冷媒の戻し量を変更し、圧縮機での無駄な電力消費を可能な限り少なくし、かつ、信頼性の十分満足できる空気調和機を提供することができる。
In the first embodiment, in the air conditioner that uses both the cooling operation and the heating operation by switching the four-way valve 22, the first return adjustment pipe 36a, the second return adjustment pipe 36b, and the third return according to the change of the situation. The example in which the height positions H1, H2, H3, H4 of the return adjustment pipe 36c and the fourth return adjustment pipe 36d are selectively set by opening / closing the electromagnetic valve 37 has been described.
However, the present invention is not limited to this, and even in an air conditioner dedicated to heating operation, it may be desired to store a refrigerant containing excess oil in an accumulator.
The same applies to an air conditioner dedicated to cooling operation.
For example, in the case of exclusive use for heating operation, the amount of refrigerant including oil circulating in the refrigerant circuit increases and the amount of refrigerant stored in the accumulator 25 decreases. Therefore, the first return adjustment pipe 36a, the second Finer control can be performed by finely setting the height positions H1, H2, H3, and H4 of the return adjustment pipe 36b, the third return adjustment pipe 36c, and the fourth return adjustment pipe 36d at low positions.
Similarly, in the case of cooling operation only, the amount of refrigerant including oil circulating in the refrigerant circuit decreases and the amount of refrigerant stored in the accumulator 25 increases. Therefore, the first return adjustment pipe 36a, Finer control can be performed by finely setting the height positions H1, H2, H3, and H4 of the second return adjustment pipe 36b, the third return adjustment pipe 36c, and the fourth return adjustment pipe 36d at high positions.
As a result, the return amount of the refrigerant containing oil is arbitrarily changed according to the change of the situation, the wasteful power consumption in the compressor is reduced as much as possible, and an air conditioner that can sufficiently satisfy the reliability is provided. can do.

前記実施例では、第1戻し調整管36a,第2戻し調整管36b,第3戻し調整管36c,第4戻し調整管36dをアキュムレータ25の底部から立ち上がらせて設けたが、天井側から垂下しても、側方から水平又は斜めに設けてもよい。   In the above-described embodiment, the first return adjustment pipe 36a, the second return adjustment pipe 36b, the third return adjustment pipe 36c, and the fourth return adjustment pipe 36d are provided to rise from the bottom of the accumulator 25, but are suspended from the ceiling side. Or you may provide horizontally or diagonally from the side.

室外機に複数台の室内機を接続した場合において、複数の電磁弁は、スキャニングされた室内機の実働運転台数に基づき選択的に開閉制御することができる。そのためには、複数台の室内機を並列に接続して構成された全体の室内機19のうちどの室内機が現在稼働しているかどうかをそれぞれの駆動スイッチのオン・オフを一定時間毎にスキャニングするなどして駆動している室内機の台数を計数し、そのデータに基づき第1、第2、第3、第4戻し調整管36a,36b,36c,36dに接続された電磁弁37a,37b,37c,37dを選択的に開放してアキュムレータ25の内部の冷媒の貯留量を設定する。 When a plurality of indoor units are connected to the outdoor unit, the plurality of solenoid valves can be selectively opened and closed based on the number of actually operated indoor units. For that purpose, it is scanned whether each drive switch is turned on or off at regular intervals to determine which indoor unit is currently operating among the entire indoor units 19 configured by connecting a plurality of indoor units in parallel. The number of indoor units driven is counted, and electromagnetic valves 37a, 37b connected to the first, second, third, and fourth return adjustment pipes 36a, 36b, 36c, 36d based on the data. , 37c, 37d are selectively opened to set the amount of refrigerant stored in the accumulator 25.

複数の電磁弁は、圧縮機の油を含む冷媒の吐出温度の変化に基づき選択的に開閉制御することができる。例えば、暖房運転時において、冷媒回路中の冷媒量が多くなると、第1、第2圧縮機21a,21bの吐出温度が次第に高くなり、いずれかの温度センサ43の各検出値と基準値とを比較回路で比較する。より具体的には、第1圧縮機21aの本体側壁と吐出端の2個の温度センサ43aの吐出温度がともに設定値を超えると、測定値と基準値が比較回路で比較され、そのデータに基づきアキュムレータ25の内部の冷媒の貯留量を少なくし、圧縮機への冷媒の戻し量を多くなるように、第1、第2、第3、第4戻し調整管36a,36b,36c,36dに接続された電磁弁37a,37b,37c,37dを選択的に開放する。第2圧縮機21bについても同様である。また、第1、第2圧縮機21a,21bの4つの温度センサ43の吐出温度がすべて設定値を超えたときも同様である。   The plurality of solenoid valves can be selectively opened and closed based on a change in the discharge temperature of the refrigerant containing the compressor oil. For example, when the amount of refrigerant in the refrigerant circuit increases during heating operation, the discharge temperatures of the first and second compressors 21a and 21b gradually increase, and the detected value and the reference value of any one of the temperature sensors 43 are calculated. The comparison circuit compares. More specifically, when the discharge temperatures of the two temperature sensors 43a at the main body side wall and the discharge end of the first compressor 21a both exceed the set values, the measured value and the reference value are compared by the comparison circuit, and the data is Accordingly, the first, second, third, and fourth return adjustment pipes 36a, 36b, 36c, and 36d are provided so as to reduce the amount of refrigerant stored in the accumulator 25 and increase the amount of refrigerant returned to the compressor. The connected solenoid valves 37a, 37b, 37c, and 37d are selectively opened. The same applies to the second compressor 21b. The same applies when the discharge temperatures of the four temperature sensors 43 of the first and second compressors 21a and 21b all exceed the set value.

複数の電磁弁は、選択された戻し調整管の高さの電磁弁より高い戻し液高の戻し調整管の電磁弁を同時に開放するように制御することができる。すなわち、第1、第2、第3、第4戻し調整管36a,36b,36c,36dに接続された各電磁弁37a,37b,37c,37dのうちのいずれか1つのみ選択的に開放するのではなく、選択された戻し調整管の高さの電磁弁より高い戻し液高の複数の戻し調整管の電磁弁を同時に開放することもできる。   The plurality of solenoid valves can be controlled to simultaneously open the solenoid valve of the return adjustment pipe having a higher return liquid height than the solenoid valve of the height of the selected return adjustment pipe. That is, only one of the electromagnetic valves 37a, 37b, 37c, and 37d connected to the first, second, third, and fourth return adjustment pipes 36a, 36b, 36c, and 36d is selectively opened. Instead, the solenoid valves of a plurality of return adjustment pipes having a higher return liquid height than the solenoid valve of the selected return adjustment pipe height can be simultaneously opened.

本発明による空気調和機の一実施例を示す冷媒回路図である。It is a refrigerant circuit figure which shows one Example of the air conditioner by this invention. 本発明による空気調和機に設けたアキュムレータ25の液面46をH3に設定した運転時の説明図である。It is explanatory drawing at the time of the driving | operation which set the liquid level 46 of the accumulator 25 provided in the air conditioner by this invention to H3. 本発明による空気調和機に設けたアキュムレータ25の液面46をH1に設定した運転時の説明図である。It is explanatory drawing at the time of the driving | operation which set the liquid level 46 of the accumulator 25 provided in the air conditioner by this invention to H1. 従来のアキュムレータ本体10の説明図である。It is explanatory drawing of the conventional accumulator main body 10. FIG.

符号の説明Explanation of symbols

10…アキュムレータ本体、11…ガス吐出管、12…ガス吐出口、13…ガス吸込み管、14…ガス吸込み口、15…オリフィス、16…油戻し管、16a…第1油戻し管、16b…第2油戻し管、16c…第3油戻し管、17a…冷媒(油密度大)、17b…冷媒(油密度小)、18…室外機、19…室内機、20…配管、21…圧縮機、21a…第1圧縮機、21b…第2圧縮機、22…四方弁、23…室外熱交換器、24…減圧器、25…アキュムレータ、26…分流器、27…アキュムレータ、28…電子膨張弁、29…毛細管、30a…油分離器、30b…油分離器、31…循環路、32…逆止弁、33…ガス吐出管、34…ガス吸込み管、35…戻し管、36…戻し調整管、36a…第1戻し調整管、36b…第2戻し調整管、36c…第3戻し調整管、36d…第4戻し調整管、37…電磁弁、37a…電磁弁、37b…電磁弁、37c…電磁弁、37d…電磁弁、38…バイパス管、39…ファン、40…開閉弁、41…圧力弁、42…サブクール熱交換器、43…温度センサ、44…吐出口、45…吸込み口、46…液面、47…室内熱交換器。   DESCRIPTION OF SYMBOLS 10 ... Accumulator main body, 11 ... Gas discharge pipe, 12 ... Gas discharge port, 13 ... Gas suction pipe, 14 ... Gas suction port, 15 ... Orifice, 16 ... Oil return pipe, 16a ... First oil return pipe, 16b ... First 2 oil return pipe, 16c ... 3rd oil return pipe, 17a ... refrigerant (high oil density), 17b ... refrigerant (low oil density), 18 ... outdoor unit, 19 ... indoor unit, 20 ... piping, 21 ... compressor, 21a ... 1st compressor, 21b ... 2nd compressor, 22 ... Four way valve, 23 ... Outdoor heat exchanger, 24 ... Decompressor, 25 ... Accumulator, 26 ... Shunt, 27 ... Accumulator, 28 ... Electronic expansion valve, DESCRIPTION OF SYMBOLS 29 ... Capillary tube, 30a ... Oil separator, 30b ... Oil separator, 31 ... Circulation path, 32 ... Check valve, 33 ... Gas discharge pipe, 34 ... Gas suction pipe, 35 ... Return pipe, 36 ... Return adjustment pipe, 36a ... 1st return adjustment pipe, 36b ... 2nd return adjustment pipe 36c ... 3rd return adjustment pipe, 36d ... 4th return adjustment pipe, 37 ... Solenoid valve, 37a ... Solenoid valve, 37b ... Solenoid valve, 37c ... Solenoid valve, 37d ... Solenoid valve, 38 ... Bypass pipe, 39 ... Fan, DESCRIPTION OF SYMBOLS 40 ... Open / close valve, 41 ... Pressure valve, 42 ... Subcool heat exchanger, 43 ... Temperature sensor, 44 ... Discharge port, 45 ... Suction port, 46 ... Liquid level, 47 ... Indoor heat exchanger

Claims (7)

圧縮機と、四方弁と、室外熱交換器と、減圧器と、室内熱交換器とを具備した空気調和機において、前記四方弁と圧縮機の間に熱交換後の油を含む冷媒の気液混合体を貯留するアキュムレータを配置し、このアキュムレータ内に、異なる戻し液高を設定した複数の戻し調整管を設け、これらの戻し調整管にそれぞれ運転状況に応じて選択的に開閉される電磁弁を介して戻し管に接続し、この戻し管を前記アキュムレータと圧縮機の間に接続したことを特徴とする空気調和機。   In an air conditioner including a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger, a refrigerant gas containing oil after heat exchange between the four-way valve and the compressor. An accumulator for storing the liquid mixture is arranged, and a plurality of return adjustment pipes having different return liquid heights are provided in the accumulator, and the return adjustment pipes are electromagnetically selectively opened and closed according to operating conditions. An air conditioner characterized in that it is connected to a return pipe via a valve, and this return pipe is connected between the accumulator and the compressor. 空気調和機における最大負荷時の運転のために充填した油を含む冷媒量のうち、運転状況に応じた最適運転に必要な量を冷媒回路中で循環し、残りをアキュムレータに貯留するように複数の電磁弁を選択的に開閉制御するようにしたことを特徴とする請求項1記載の空気調和機。 A plurality of refrigerant quantities including oil filled for operation at the maximum load in the air conditioner are circulated in the refrigerant circuit, and the rest is stored in the accumulator. The air conditioner according to claim 1, wherein the electromagnetic valve is selectively controlled to open and close. 室外機に複数台の室内機を接続した場合において、油を含む冷媒の戻し液高を設定する複数の戻し調整管は、高い方から順次、室内機1台による冷房運転、室内機1台による暖房運転、接続されているすべての室内機による冷房運転、接続されているすべての室内機による暖房運転に対応せしめたことを特徴とする請求項1記載の空気調和機。 When a plurality of indoor units are connected to the outdoor unit, the plurality of return adjustment pipes for setting the return liquid height of the refrigerant containing oil are, in order from the highest, cooling operation by one indoor unit, by one indoor unit 2. The air conditioner according to claim 1, wherein the air conditioner is adapted for heating operation, cooling operation by all connected indoor units, and heating operation by all connected indoor units. 室内機1台による暖房運転と接続されているすべての室内機による冷房運転のための戻し調整管とを兼用するようにしたことを特徴とする請求項3記載の空気調和機。 The air conditioner according to claim 3, wherein the air conditioner is also used as a return adjustment pipe for cooling operation by all indoor units connected to heating operation by one indoor unit. 室外機に複数台の室内機を接続した場合において、複数の電磁弁は、スキャニングされた室内機の実働運転台数に基づき選択的に開閉制御するようにしたことを特徴とする請求項1記載の空気調和機。 The open / close control is selectively performed based on the number of actually operated indoor units when the plurality of indoor units are connected to the outdoor unit. Air conditioner. 複数の電磁弁は、圧縮機の油を含む冷媒の吐出温度の変化に基づき選択的に開閉制御するようにしたことを特徴とする請求項1記載の空気調和機。   The air conditioner according to claim 1, wherein the plurality of solenoid valves are selectively opened and closed based on a change in discharge temperature of refrigerant including oil of the compressor. 複数の電磁弁は、選択された戻し調整管の高さの電磁弁より高い戻し液高の戻し調整管の電磁弁を同時に開放するように制御するようにしたことを特徴とする請求項1記載の空気調和機。   2. The solenoid valve according to claim 1, wherein the plurality of solenoid valves are controlled so as to simultaneously open the solenoid valves of the return adjustment pipe having a higher return liquid height than the solenoid valve having the height of the selected return adjustment pipe. Air conditioner.
JP2008299872A 2008-11-25 2008-11-25 Air conditioner Pending JP2010127482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299872A JP2010127482A (en) 2008-11-25 2008-11-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299872A JP2010127482A (en) 2008-11-25 2008-11-25 Air conditioner

Publications (1)

Publication Number Publication Date
JP2010127482A true JP2010127482A (en) 2010-06-10

Family

ID=42328015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299872A Pending JP2010127482A (en) 2008-11-25 2008-11-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP2010127482A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122361A (en) * 2011-12-12 2013-06-20 Daikin Industries Ltd Air conditioning device
JP2014119242A (en) * 2012-12-19 2014-06-30 Mitsubishi Electric Corp Oil returning structure of air conditioning device, and air conditioning device
WO2017085813A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Air conditioner
WO2017221300A1 (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Air conditioner
CN109210837A (en) * 2018-10-09 2019-01-15 河南城建学院 injection oil return gas-liquid separator
CN113465231A (en) * 2021-06-28 2021-10-01 青岛海尔空调电子有限公司 Oil separator, oil return system and refrigerating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122361A (en) * 2011-12-12 2013-06-20 Daikin Industries Ltd Air conditioning device
JP2014119242A (en) * 2012-12-19 2014-06-30 Mitsubishi Electric Corp Oil returning structure of air conditioning device, and air conditioning device
WO2017085813A1 (en) * 2015-11-18 2017-05-26 三菱電機株式会社 Air conditioner
WO2017221300A1 (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Air conditioner
CN109210837A (en) * 2018-10-09 2019-01-15 河南城建学院 injection oil return gas-liquid separator
CN113465231A (en) * 2021-06-28 2021-10-01 青岛海尔空调电子有限公司 Oil separator, oil return system and refrigerating system

Similar Documents

Publication Publication Date Title
KR101152472B1 (en) Air Conditioner using of the subterranean heat
JP5855129B2 (en) Outdoor unit and air conditioner
JP4123829B2 (en) Refrigeration cycle equipment
KR101175385B1 (en) Air conditioner using of the subterranean heat
JP4497234B2 (en) Air conditioner
EP2587193B1 (en) Air conditioner
JP5709844B2 (en) Air conditioner
JP4229188B2 (en) Air conditioner
JP2010127531A (en) Refrigeration air conditioner
US8413456B2 (en) Refrigeration apparatus
JP2006071268A (en) Refrigerating plant
KR101201635B1 (en) An air conditioner
JP2006250479A (en) Air conditioner
JP2010127482A (en) Air conditioner
JP2009236397A (en) Air conditioner
AU2003220985A1 (en) Heat source unit of air conditioner and air conditioner
CN109312961B (en) Heat source unit of refrigerating device
JP2007101127A (en) Air conditioner
KR20100046694A (en) A water heat exchanging type air conditioner associated with heat pump
JP2010127481A (en) Air conditioner
KR101175374B1 (en) Air conditioner using of the subterranean heat
KR101205679B1 (en) Quick water heating apparatus in air conditioner using of the subterranean heat
JP6010294B2 (en) Air conditioner
JP5602556B2 (en) Air conditioner indoor unit blowout temperature control method
KR101418155B1 (en) An air conditioner