WO2021084743A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021084743A1
WO2021084743A1 PCT/JP2019/043094 JP2019043094W WO2021084743A1 WO 2021084743 A1 WO2021084743 A1 WO 2021084743A1 JP 2019043094 W JP2019043094 W JP 2019043094W WO 2021084743 A1 WO2021084743 A1 WO 2021084743A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
expansion valve
heat exchanger
refrigeration cycle
flow path
Prior art date
Application number
PCT/JP2019/043094
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
悠介 有井
素 早坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202311470009.4A priority Critical patent/CN117329723A/en
Priority to PCT/JP2019/043094 priority patent/WO2021084743A1/en
Priority to EP19950515.7A priority patent/EP4053470A4/en
Priority to JP2021554030A priority patent/JPWO2021084743A1/ja
Priority to CN201980101418.2A priority patent/CN114585866A/en
Publication of WO2021084743A1 publication Critical patent/WO2021084743A1/en
Priority to JP2023201534A priority patent/JP2024023437A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration cycle device including a receiver for storing a refrigerant.
  • Patent Document 1 discloses a heat pump type hot water supply outdoor unit including a medium pressure receiver into which a refrigerant decompressed by an expansion valve flows in.
  • a refrigerant having a pressure (intermediate pressure) smaller than the pressure of the refrigerant discharged from the compressor and larger than the pressure of the refrigerant sucked into the compressor flows into the medium pressure receiver disclosed in Patent Document 1.
  • the pressure and temperature of the refrigerant discharged from the compressor sharply decrease. In some cases. A sharp drop in pressure and temperature of the refrigerant reduces the reliability of the refrigeration cycle device.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to improve the reliability of the refrigeration cycle apparatus.
  • the refrigerant circulates in the order of the compressor, the first heat exchanger, the second heat exchanger, the first expansion valve, and the third heat exchanger.
  • the refrigeration cycle device includes a receiver, a second expansion valve, a first flow path, a second flow path, a ventilation pipe, and a third expansion valve.
  • the receiver has a first port, a second port, and a third port.
  • the third port is located higher than the second port.
  • the second expansion valve is connected to the second port.
  • the first flow path connects the second expansion valve to the compressor via the second heat exchanger.
  • the second flow path connects the first heat exchanger to the second heat exchanger.
  • the vent pipe connects the third port to the portion of the first flow path between the second expansion valve and the second heat exchanger.
  • the third expansion valve is connected between the second flow path and the first port.
  • the reliability of the refrigeration cycle apparatus can be improved by connecting the third expansion valve between the second flow path and the first port.
  • FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle device 100 according to the embodiment.
  • Examples of the refrigerating cycle device 100 include a refrigerator, an air conditioner, and a showcase.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 (first heat exchanger), a HIC (Heat Inter Changer) 3 (second heat exchanger), and an evaporator 4. (Third heat exchanger), expansion valve 5 (first expansion valve), expansion valve 6 (second expansion valve), expansion valve 7 (third expansion valve), receiver 8, vent pipe 9 and the like.
  • the control device 10 the temperature sensors Sa1 to Sa3, and the pressure sensors Sb1 and Sb2 are provided.
  • Each of the expansion valves 5 to 7 includes, for example, an electronic LEV (Linear Expansion Valve).
  • the vent tube 9 includes, for example, a capillary tube.
  • the compressor 1 includes a discharge port P11, a suction port P12, and an injection port P13.
  • the compressor 1 is, for example, a high-pressure shell type compressor, and stores the lubricating oil of the compression mechanism inside the compressor 1.
  • the refrigerant circulates in the order of the discharge port P11, the condenser 2, the HIC 3, the expansion valve 5, the evaporator 4, and the suction port P12.
  • the receiver 8 has a port P71 (first port), a port P72 (second port), and a port P73 (third port). Ports P71 and P73 are formed on the upper surface of the receiver.
  • the port P72 is formed on the bottom surface of the receiver 8 facing the upper surface.
  • the port P73 is located higher than the port P72. Ports P71 to P73 may be formed on the side surface of the receiver 8.
  • the expansion valve 6 is connected to the port P72.
  • the expansion valve 6 is connected to the injection port P13 via the HIC 3 by the injection flow path FP1 (first flow path).
  • the ventilation pipe 9 connects the port P73 to the portion of the injection flow path FP1 between the expansion valve 6 and the HIC3.
  • the condenser 2 and the HIC 3 are connected by a flow path FP2 (second flow path).
  • the expansion valve 7 is connected between the flow path FP2 and the port P71.
  • a part of the refrigerant flowing out of the condenser 2 is guided from the flow path FP2 to the expansion valve 7 before flowing into the HI C3, is depressurized by the expansion valve 7, and then flows into the receiver 8 from the port P71.
  • the amount of refrigerant per unit time flowing into the receiver 8 from the port P71 is controlled by the opening degree of the expansion valve 7.
  • the refrigerant flowing out of the receiver 8 is decompressed and then sucked into the compressor 1 from the injection port P13. Since the pressure of the refrigerant flowing into the receiver 8 is an intermediate pressure, a supercritical refrigerant such as carbon dioxide can also be stored as a liquid in the receiver 8. Since the supercritical refrigerant flowing out from the receiver 8 has a degree of supercooling, the performance of the refrigeration cycle device 100 can be improved by using the supercritical refrigerant.
  • the liquid refrigerant (liquid refrigerant) is stored from the bottom of the receiver 8, and the gaseous refrigerant (gas refrigerant) is inside the receiver 8 above the liquid level of the liquid refrigerant. get together.
  • a saturated liquid of the refrigerant flows out from the port P72.
  • the saturated liquid is depressurized by the expansion valve 6.
  • the gas refrigerant flowing out of the port P73 is guided to the injection flow path FP1 by the ventilation pipe 9.
  • the amount of refrigerant flowing out from the port P72 per unit time is controlled by the opening degree of the expansion valve 6. That is, the ratio of the amount of gas refrigerant to the amount of liquid refrigerant in the refrigerant flowing into HIC 3 is adjusted by the opening degree of the expansion valve 6.
  • the larger the ratio of the gas refrigerant amount the more the decrease in the temperature Td can be suppressed
  • the larger the ratio of the liquid refrigerant amount the more the decrease in the pressure Pd can be suppressed. it can. Therefore, by adjusting the ratio, it is possible to adjust the distribution of the effect of suppressing the decrease in pressure Pd and the effect of suppressing the decrease in temperature Td.
  • the refrigerant from the receiver 8 is guided to the injection port P13 via the HIC 3 by the injection flow path FP1.
  • the refrigerant from the condenser 2 is cooled by the refrigerant from the receiver 8.
  • the ratio (dryness) of the gas refrigerant to the refrigerant flowing into the receiver 8 can be increased to about 0.5 by guiding the refrigerant before being cooled by the HIC 3 to the receiver 8. As a result, it becomes easy to adjust the ratio of the amount of gas refrigerant to the amount of liquid refrigerant in the refrigerant flowing from the receiver 8 to the HI C3.
  • the control device 10 acquires the temperature Td and the pressure Pd of the refrigerant discharged from the compressor 1 from the temperature sensor Sa1 and the pressure sensor Sb1, respectively.
  • the control device 10 acquires the temperature Ts and the pressure Ps of the refrigerant sucked into the compressor 1 from the temperature sensor Sa2 and the pressure sensor Sb2, respectively.
  • the control device 10 acquires the temperature T1 of the refrigerant flowing out of the condenser 2 from the temperature sensor Sa3.
  • the control device 10 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time.
  • the control device 10 controls the opening degree of each of the expansion valves 5 to 7.
  • the control device 10 controls the compressor 1 and the expansion valves 5 to 7 so that, for example, the temperature Td and the degree of supercooling of the refrigerant flowing out of the condenser 2 each become target values. ..
  • the target value of the temperature Td is 100 ° C.
  • the target value of the supercooling degree is 5K.
  • FIG. 2 is a functional block diagram showing the configuration of the control device 10 of FIG.
  • the control device 10 includes a processing circuit 11, a memory 12, and an input / output unit 13.
  • the processing circuit 11 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 12.
  • the processing circuit 11 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA ( Field Programmable Gate Array) or a combination of these is applicable.
  • the processing circuit 11 is a CPU, the function of the control device 10 is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 12.
  • the processing circuit 11 reads and executes the program stored in the memory 12.
  • the memory 12 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory). )), And includes magnetic discs, flexible discs, optical discs, compact discs, mini discs, or DVDs (Digital Versatile Discs).
  • the CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
  • FIG. 3 is a flowchart showing a flow of processing performed by the control device 10 of FIG.
  • the process shown in FIG. 3 is called at regular time intervals by the main routine that performs the integrated process of the refrigeration cycle apparatus 100.
  • the step is simply referred to as S.
  • the control device 10 determines in S101 whether or not the pressure Pd is smaller than the reference pressure Pref.
  • the reference pressure Pref is a lower limit value of the pressure Pd that can secure a desired compression ratio (Pd / Ps), and can be appropriately calculated by an actual machine experiment or a simulation.
  • the control device 10 controls the normal operation in S102 and returns the process to the main routine.
  • the control device 10 reduces the opening degree of the expansion valve 6 in S103 and advances the process to S104.
  • the control device 10 determines whether or not the superheat degree SH of the refrigerant discharged from the compressor 1 in S104 is larger than the reference value ⁇ .
  • the reference value ⁇ is a value for determining whether or not the degree of superheat of the refrigerant is small enough to be regarded as 0K, and can be appropriately calculated by an actual machine experiment or a simulation.
  • the control device 10 When the superheat degree SH is larger than the reference value ⁇ (YES in S104), the control device 10 increases the opening degree of the expansion valve 6 in S105 and returns the process to the main routine. When the superheat degree SH is equal to or less than the reference value ⁇ (NO in S104), the control device 10 reduces the opening degree of the expansion valve 6 in S106 and returns the process to the main routine.
  • the refrigeration cycle apparatus 100 it is possible to realize both suppression of a decrease in pressure Pd and suppression of a decrease in temperature Td. By suppressing the decrease in the pressure Pd, it is possible to prevent the pressure Pd from deviating from the allowable range of the compressor 1. By securing a desired compression ratio, the performance of the refrigeration cycle apparatus 100 can be stabilized. Further, by suppressing the decrease in temperature Td, the superheat degree SH of the refrigerant discharged from the compressor 1 can be maintained within a desired range. Since the liquid refrigerant is prevented from being sucked into the compressor 1 and the lubricating oil being diluted by the liquid refrigerant, wear of the compression mechanism of the compressor 1 can be prevented.
  • the reliability of the refrigeration cycle device can be improved.
  • 1 Compressor 1 Compressor, 2 Condenser, 3 HIC, 4 Evaporator, 5-7 Expansion valve, 8 Receiver, 9 Vent pipe, 10 Control device, 11 Processing circuit, 12 Memory, 13 Input / output section, 100 Refrigeration cycle device, FP1 , FP2 flow path, P11 discharge port, P12 suction port, P13 injection port, P71 to P73 ports, Sa1 to Sa3 temperature sensor, Sb1, Sb2 pressure sensor.

Abstract

In a refrigeration cycle device (100), a refrigerant circulates in the following order: a compressor (1), a first heat exchanger (2), a second heat exchanger (3), a first expansion valve (5), and a third heat exchanger (4). The refrigeration cycle device (100) comprises a receiver (8), a second expansion valve (6), a first flow path (FP1), a second flow path (FP2), a vent pipe (9), and a third expansion valve (7). The second expansion valve (6) is connected to a second port (P72). The first flow path (FP1) connects the second expansion valve (6) to the compressor (1) via the second heat exchanger (3). The second flow path (FP2) connects the first heat exchanger (2) to the second heat exchanger (3). The vent pipe (9) connects a third port (P73) to the portion of the first flow path (FP1) between the second expansion valve (6) and the second heat exchanger (3). The third expansion valve (7) is connected between the second flow path (FP2) and a first port (P71).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷媒を貯留するレシーバを備える冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device including a receiver for storing a refrigerant.
 従来、冷媒を貯留するレシーバを備える冷凍サイクル装置が知られている。たとえば、特開2009-243793号公報(特許文献1)には、膨張弁で減圧された冷媒が流入する中圧レシーバを備えるヒートポンプ式給湯用室外機が開示されている。 Conventionally, a refrigeration cycle device including a receiver for storing a refrigerant is known. For example, Japanese Patent Application Laid-Open No. 2009-243793 (Patent Document 1) discloses a heat pump type hot water supply outdoor unit including a medium pressure receiver into which a refrigerant decompressed by an expansion valve flows in.
特開2009-243793号公報Japanese Unexamined Patent Publication No. 2009-243793
 特許文献1に開示されている中圧レシーバには、圧縮機から吐出される冷媒の圧力よりも小さく、圧縮機に吸入される冷媒の圧力よりも大きい圧力(中間圧力)の冷媒が流入する。このように中間圧力の冷媒が貯留されるレシーバを備える冷凍サイクル装置において、冷凍サイクル装置に要求される運転負荷に変動が生じると、圧縮機から吐出される冷媒の圧力および温度が急激に低下する場合がある。当該冷媒の圧力および温度の急激な低下は、冷凍サイクル装置の信頼性を低下させる。 A refrigerant having a pressure (intermediate pressure) smaller than the pressure of the refrigerant discharged from the compressor and larger than the pressure of the refrigerant sucked into the compressor flows into the medium pressure receiver disclosed in Patent Document 1. In a refrigeration cycle device provided with a receiver in which an intermediate pressure refrigerant is stored in this way, when the operating load required for the refrigeration cycle device fluctuates, the pressure and temperature of the refrigerant discharged from the compressor sharply decrease. In some cases. A sharp drop in pressure and temperature of the refrigerant reduces the reliability of the refrigeration cycle device.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、冷凍サイクル装置の信頼性を向上させることである。 The present invention has been made to solve the above-mentioned problems, and an object thereof is to improve the reliability of the refrigeration cycle apparatus.
 本発明に係る冷凍サイクル装置において冷媒は、圧縮機、第1熱交換器、第2熱交換器、第1膨張弁、および第3熱交換器の順に循環する。冷凍サイクル装置は、レシーバと、第2膨張弁と、第1流路と、第2流路と、通気管と、第3膨張弁とを備える。レシーバは、第1ポート、第2ポート、および第3ポートを有する。第3ポートは、第2ポートよりも高い位置にある。第2膨張弁は、第2ポートに接続されている。第1流路は、第2膨張弁を、第2熱交換器を介して圧縮機に接続する。第2流路は、第1熱交換器を第2熱交換器に接続する。通気管は、第2膨張弁および第2熱交換器の間の第1流路の部分に第3ポートを接続する。第3膨張弁は、第2流路および第1ポートの間に接続されている。 In the refrigeration cycle apparatus according to the present invention, the refrigerant circulates in the order of the compressor, the first heat exchanger, the second heat exchanger, the first expansion valve, and the third heat exchanger. The refrigeration cycle device includes a receiver, a second expansion valve, a first flow path, a second flow path, a ventilation pipe, and a third expansion valve. The receiver has a first port, a second port, and a third port. The third port is located higher than the second port. The second expansion valve is connected to the second port. The first flow path connects the second expansion valve to the compressor via the second heat exchanger. The second flow path connects the first heat exchanger to the second heat exchanger. The vent pipe connects the third port to the portion of the first flow path between the second expansion valve and the second heat exchanger. The third expansion valve is connected between the second flow path and the first port.
 本発明に係る冷凍サイクル装置によれば、第3膨張弁が第2流路および第1ポートの間に接続されていることにより、冷凍サイクル装置の信頼性を向上させることができる。 According to the refrigeration cycle apparatus according to the present invention, the reliability of the refrigeration cycle apparatus can be improved by connecting the third expansion valve between the second flow path and the first port.
実施の形態に係る冷凍サイクル装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the refrigeration cycle apparatus which concerns on embodiment. 図1の制御装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control device of FIG. 図1の制御装置によって行われる処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process performed by the control device of FIG.
 以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, the embodiment will be described in detail with reference to the drawings. In principle, the same or corresponding parts in the drawings are designated by the same reference numerals and the description is not repeated.
 図1は、実施の形態に係る冷凍サイクル装置100の構成を示す機能ブロック図である。冷凍サイクル装置100としては、たとえば冷凍機、空気調和機、およびショーケースを挙げることができる。 FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle device 100 according to the embodiment. Examples of the refrigerating cycle device 100 include a refrigerator, an air conditioner, and a showcase.
 図1に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2(第1熱交換器)と、HIC(Heat Inter Changer)3(第2熱交換器)と、蒸発器4(第3熱交換器)と、膨張弁5(第1膨張弁)と、膨張弁6(第2膨張弁)と、膨張弁7(第3膨張弁)と、レシーバ8と、通気管9と、制御装置10と、温度センサSa1~Sa3と、圧力センサSb1,Sb2とを備える。膨張弁5~7の各々は、たとえば電子式のLEV(Linear Expansion Valve)を含む。通気管9は、たとえばキャピラリチューブを含む。 As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2 (first heat exchanger), a HIC (Heat Inter Changer) 3 (second heat exchanger), and an evaporator 4. (Third heat exchanger), expansion valve 5 (first expansion valve), expansion valve 6 (second expansion valve), expansion valve 7 (third expansion valve), receiver 8, vent pipe 9 and the like. , The control device 10, the temperature sensors Sa1 to Sa3, and the pressure sensors Sb1 and Sb2 are provided. Each of the expansion valves 5 to 7 includes, for example, an electronic LEV (Linear Expansion Valve). The vent tube 9 includes, for example, a capillary tube.
 圧縮機1は、吐出ポートP11、吸入ポートP12、およびインジェクションポートP13を含む。圧縮機1は、たとえば高圧シェルタイプの圧縮機であり、圧縮機構の潤滑油を圧縮機1の内部に貯留する。冷凍サイクル装置100において冷媒は、吐出ポートP11、凝縮器2、HIC3、膨張弁5、蒸発器4、および吸入ポートP12の順に循環する。 The compressor 1 includes a discharge port P11, a suction port P12, and an injection port P13. The compressor 1 is, for example, a high-pressure shell type compressor, and stores the lubricating oil of the compression mechanism inside the compressor 1. In the refrigeration cycle device 100, the refrigerant circulates in the order of the discharge port P11, the condenser 2, the HIC 3, the expansion valve 5, the evaporator 4, and the suction port P12.
 レシーバ8は、ポートP71(第1ポート)、ポートP72(第2ポート)、およびポートP73(第3ポート)を有する。ポートP71およびP73は、レシーバの上面に形成されている。ポートP72は、当該上面に対向するレシーバ8の底面に形成されている。ポートP73は、ポートP72よりも高い位置にある。ポートP71~P73は、レシーバ8の側面に形成されていてもよい。 The receiver 8 has a port P71 (first port), a port P72 (second port), and a port P73 (third port). Ports P71 and P73 are formed on the upper surface of the receiver. The port P72 is formed on the bottom surface of the receiver 8 facing the upper surface. The port P73 is located higher than the port P72. Ports P71 to P73 may be formed on the side surface of the receiver 8.
 膨張弁6は、ポートP72に接続されている。膨張弁6は、インジェクション流路FP1(第1流路)によってHIC3を介してインジェクションポートP13に接続される。通気管9は、膨張弁6およびHIC3の間のインジェクション流路FP1の部分にポートP73を接続する。凝縮器2およびHIC3は、流路FP2(第2流路)によって接続されている。膨張弁7は、流路FP2およびポートP71の間に接続されている。 The expansion valve 6 is connected to the port P72. The expansion valve 6 is connected to the injection port P13 via the HIC 3 by the injection flow path FP1 (first flow path). The ventilation pipe 9 connects the port P73 to the portion of the injection flow path FP1 between the expansion valve 6 and the HIC3. The condenser 2 and the HIC 3 are connected by a flow path FP2 (second flow path). The expansion valve 7 is connected between the flow path FP2 and the port P71.
 凝縮器2から流出する冷媒の一部は、HIC3に流入する前に、流路FP2から膨張弁7に導かれ、膨張弁7によって減圧された後、ポートP71からレシーバ8に流入する。ポートP71からレシーバ8に流入する単位時間当たりの冷媒量は、膨張弁7の開度によって制御される。レシーバ8から流出する冷媒は減圧された後、インジェクションポートP13から圧縮機1に吸入される。レシーバ8に流入する冷媒の圧力は中間圧力であるため、レシーバ8には二酸化炭素のような超臨界冷媒も液体として貯留可能である。レシーバ8から流出する超臨界冷媒には過冷却度が生じるため、超臨界冷媒を使用することにより冷凍サイクル装置100の性能を向上させることができる。 A part of the refrigerant flowing out of the condenser 2 is guided from the flow path FP2 to the expansion valve 7 before flowing into the HI C3, is depressurized by the expansion valve 7, and then flows into the receiver 8 from the port P71. The amount of refrigerant per unit time flowing into the receiver 8 from the port P71 is controlled by the opening degree of the expansion valve 7. The refrigerant flowing out of the receiver 8 is decompressed and then sucked into the compressor 1 from the injection port P13. Since the pressure of the refrigerant flowing into the receiver 8 is an intermediate pressure, a supercritical refrigerant such as carbon dioxide can also be stored as a liquid in the receiver 8. Since the supercritical refrigerant flowing out from the receiver 8 has a degree of supercooling, the performance of the refrigeration cycle device 100 can be improved by using the supercritical refrigerant.
 ポートP71からレシーバ8に流入する冷媒のうち、液体の冷媒(液冷媒)はレシーバ8の底部から貯留され、気体の冷媒(ガス冷媒)はレシーバ8の内部において当該液冷媒の液面より上側に集まる。ポートP72からは冷媒の飽和液が流出する。当該飽和液は、膨張弁6によって減圧される。ポートP73から流出するガス冷媒は通気管9によってインジェクション流路FP1に導かれる。 Of the refrigerants flowing into the receiver 8 from the port P71, the liquid refrigerant (liquid refrigerant) is stored from the bottom of the receiver 8, and the gaseous refrigerant (gas refrigerant) is inside the receiver 8 above the liquid level of the liquid refrigerant. get together. A saturated liquid of the refrigerant flows out from the port P72. The saturated liquid is depressurized by the expansion valve 6. The gas refrigerant flowing out of the port P73 is guided to the injection flow path FP1 by the ventilation pipe 9.
 ポートP72から流出する単位時間当たりの冷媒量は、膨張弁6の開度によって制御される。すなわち、膨張弁6の開度によって、HIC3に流入する冷媒における液冷媒量に対するガス冷媒量の比率が調節される。インジェクションポートP13から圧縮機1に吸入される冷媒において、ガス冷媒量の割合が大きいほど温度Tdの低下を抑制することができ、液冷媒量の割合が大きいほど圧力Pdの低下を抑制することができる。そのため、当該比率を調節することにより、圧力Pdの低下の抑制の効果および温度Tdの低下の抑制の効果をどのような配分で生じさせるかを調節することができる。 The amount of refrigerant flowing out from the port P72 per unit time is controlled by the opening degree of the expansion valve 6. That is, the ratio of the amount of gas refrigerant to the amount of liquid refrigerant in the refrigerant flowing into HIC 3 is adjusted by the opening degree of the expansion valve 6. In the refrigerant sucked into the compressor 1 from the injection port P13, the larger the ratio of the gas refrigerant amount, the more the decrease in the temperature Td can be suppressed, and the larger the ratio of the liquid refrigerant amount, the more the decrease in the pressure Pd can be suppressed. it can. Therefore, by adjusting the ratio, it is possible to adjust the distribution of the effect of suppressing the decrease in pressure Pd and the effect of suppressing the decrease in temperature Td.
 レシーバ8からの冷媒は、インジェクション流路FP1によって、HIC3を介してインジェクションポートP13に導かれる。HIC3においては、レシーバ8からの冷媒によって凝縮器2からの冷媒が冷却される。冷凍サイクル装置100においては、HIC3によって冷却される前の冷媒がレシーバ8に導かれることにより、レシーバ8に流入する冷媒におけるガス冷媒の割合(乾き度)を0.5程度まで高めることができる。その結果、レシーバ8からHIC3に流入する冷媒における液冷媒量に対するガス冷媒量の比率の調節が容易になる。 The refrigerant from the receiver 8 is guided to the injection port P13 via the HIC 3 by the injection flow path FP1. In the HIC 3, the refrigerant from the condenser 2 is cooled by the refrigerant from the receiver 8. In the refrigeration cycle device 100, the ratio (dryness) of the gas refrigerant to the refrigerant flowing into the receiver 8 can be increased to about 0.5 by guiding the refrigerant before being cooled by the HIC 3 to the receiver 8. As a result, it becomes easy to adjust the ratio of the amount of gas refrigerant to the amount of liquid refrigerant in the refrigerant flowing from the receiver 8 to the HI C3.
 制御装置10は、温度センサSa1および圧力センサSb1から圧縮機1から吐出される冷媒の温度Tdおよび圧力Pdをそれぞれ取得する。制御装置10は、温度センサSa2および圧力センサSb2から圧縮機1に吸入される冷媒の温度Tsおよび圧力Psをそれぞれ取得する。制御装置10は、温度センサSa3から凝縮器2から流出する冷媒の温度T1を取得する。制御装置10は、圧縮機1の駆動周波数を制御して、圧縮機1が単位時間当たりに吐出する冷媒量を制御する。制御装置10は、膨張弁5~7の各々の開度を制御する。冷凍サイクル装置100の通常運転において制御装置10は、たとえば温度Tdおよび凝縮器2から流出する冷媒の過冷却度の各々が目標値となるように圧縮機1、および膨張弁5~7を制御する。たとえば、温度Tdの目標値は100℃であり、当該過冷却度の目標値は5Kである。 The control device 10 acquires the temperature Td and the pressure Pd of the refrigerant discharged from the compressor 1 from the temperature sensor Sa1 and the pressure sensor Sb1, respectively. The control device 10 acquires the temperature Ts and the pressure Ps of the refrigerant sucked into the compressor 1 from the temperature sensor Sa2 and the pressure sensor Sb2, respectively. The control device 10 acquires the temperature T1 of the refrigerant flowing out of the condenser 2 from the temperature sensor Sa3. The control device 10 controls the drive frequency of the compressor 1 to control the amount of refrigerant discharged by the compressor 1 per unit time. The control device 10 controls the opening degree of each of the expansion valves 5 to 7. In the normal operation of the refrigeration cycle device 100, the control device 10 controls the compressor 1 and the expansion valves 5 to 7 so that, for example, the temperature Td and the degree of supercooling of the refrigerant flowing out of the condenser 2 each become target values. .. For example, the target value of the temperature Td is 100 ° C., and the target value of the supercooling degree is 5K.
 図2は、図1の制御装置10の構成を示す機能ブロック図である。図2に示されるように、制御装置10は、処理回路11と、メモリ12と、入出力部13とを含む。処理回路11は、専用のハードウェアであってもよいし、メモリ12に格納されるプログラムを実行するCPU(Central Processing Unit)であってもよい。処理回路11が専用のハードウェアである場合、処理回路11には、たとえば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、あるいはこれらを組み合わせたものが該当する。処理回路11がCPUの場合、制御装置10の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアあるいはファームウェアはプログラムとして記述され、メモリ12に格納される。処理回路11は、メモリ12に記憶されたプログラムを読み出して実行する。メモリ12には、不揮発性または揮発性の半導体メモリ(たとえばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、あるいはEEPROM(Electrically Erasable Programmable Read Only Memory))、および磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいはDVD(Digital Versatile Disc)が含まれる。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいはDSP(Digital Signal Processor)とも呼ばれる。 FIG. 2 is a functional block diagram showing the configuration of the control device 10 of FIG. As shown in FIG. 2, the control device 10 includes a processing circuit 11, a memory 12, and an input / output unit 13. The processing circuit 11 may be dedicated hardware or a CPU (Central Processing Unit) that executes a program stored in the memory 12. When the processing circuit 11 is dedicated hardware, the processing circuit 11 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA ( Field Programmable Gate Array) or a combination of these is applicable. When the processing circuit 11 is a CPU, the function of the control device 10 is realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 12. The processing circuit 11 reads and executes the program stored in the memory 12. The memory 12 includes a non-volatile or volatile semiconductor memory (for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory). )), And includes magnetic discs, flexible discs, optical discs, compact discs, mini discs, or DVDs (Digital Versatile Discs). The CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor).
 図3は、図1の制御装置10によって行われる処理の流れを示すフローチャートである。図3に示される処理は、冷凍サイクル装置100の統合的な処理を行うメインルーチンによって一定時間間隔で呼び出される。以下ではステップを単にSと記載する。 FIG. 3 is a flowchart showing a flow of processing performed by the control device 10 of FIG. The process shown in FIG. 3 is called at regular time intervals by the main routine that performs the integrated process of the refrigeration cycle apparatus 100. In the following, the step is simply referred to as S.
 図3に示されるように、制御装置10は、S101において圧力Pdが基準圧力Prefより小さいか否かを判定する。基準圧力Prefは、所望の圧縮比(Pd/Ps)を確保可能な圧力Pdの下限値であり、実機実験あるいはシミュレーションによって適宜算出することができる。 As shown in FIG. 3, the control device 10 determines in S101 whether or not the pressure Pd is smaller than the reference pressure Pref. The reference pressure Pref is a lower limit value of the pressure Pd that can secure a desired compression ratio (Pd / Ps), and can be appropriately calculated by an actual machine experiment or a simulation.
 圧力Pdが基準圧力Pref以上である場合(S101においてNO)、制御装置10は、S102において通常運転の制御を行って処理をメインルーチンに返す。圧力Pdが基準圧力Prefより小さい場合(S101においてYES)、制御装置10は、S103において膨張弁6の開度を減少させて処理をS104に進める。 When the pressure Pd is equal to or higher than the reference pressure Pref (NO in S101), the control device 10 controls the normal operation in S102 and returns the process to the main routine. When the pressure Pd is smaller than the reference pressure Pref (YES in S101), the control device 10 reduces the opening degree of the expansion valve 6 in S103 and advances the process to S104.
 制御装置10は、S104において圧縮機1から吐出される冷媒の過熱度SHが基準値δより大きいか否かを判定する。基準値δは、当該冷媒の過熱度が0Kとみなせる程度に小さいか否かを判定するための値であり、実機実験あるいはシミュレーションによって適宜算出することができる。 The control device 10 determines whether or not the superheat degree SH of the refrigerant discharged from the compressor 1 in S104 is larger than the reference value δ. The reference value δ is a value for determining whether or not the degree of superheat of the refrigerant is small enough to be regarded as 0K, and can be appropriately calculated by an actual machine experiment or a simulation.
 過熱度SHが基準値δより大きい場合(S104においてYES)、制御装置10は、S105において膨張弁6の開度を増加させて処理をメインルーチンに返す。過熱度SHが基準値δ以下である場合(S104においてNO)、制御装置10は、S106において膨張弁6の開度を減少させて処理をメインルーチンに返す。 When the superheat degree SH is larger than the reference value δ (YES in S104), the control device 10 increases the opening degree of the expansion valve 6 in S105 and returns the process to the main routine. When the superheat degree SH is equal to or less than the reference value δ (NO in S104), the control device 10 reduces the opening degree of the expansion valve 6 in S106 and returns the process to the main routine.
 冷凍サイクル装置100においては、圧力Pdの低下の抑制および温度Tdの低下の抑制の双方を実現することができる。圧力Pdの低下の抑制により、圧力Pdが圧縮機1の許容範囲を逸脱することを防止することができる。所望の圧縮比を確保することにより冷凍サイクル装置100の性能を安定させることができる。また、温度Tdの低下の抑制により、圧縮機1から吐出される冷媒の過熱度SHを所望の範囲に維持することができる。液冷媒が圧縮機1に吸入されて潤滑油が液冷媒によって希釈されることが防止されるため、圧縮機1の圧縮機構の摩耗を防止することができる。 In the refrigeration cycle apparatus 100, it is possible to realize both suppression of a decrease in pressure Pd and suppression of a decrease in temperature Td. By suppressing the decrease in the pressure Pd, it is possible to prevent the pressure Pd from deviating from the allowable range of the compressor 1. By securing a desired compression ratio, the performance of the refrigeration cycle apparatus 100 can be stabilized. Further, by suppressing the decrease in temperature Td, the superheat degree SH of the refrigerant discharged from the compressor 1 can be maintained within a desired range. Since the liquid refrigerant is prevented from being sucked into the compressor 1 and the lubricating oil being diluted by the liquid refrigerant, wear of the compression mechanism of the compressor 1 can be prevented.
 以上、実施の形態に係る冷凍サイクル装置によれば、冷凍サイクル装置の信頼性を向上させることができる。 As described above, according to the refrigeration cycle device according to the embodiment, the reliability of the refrigeration cycle device can be improved.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 圧縮機、2 凝縮器、3 HIC、4 蒸発器、5~7 膨張弁、8 レシーバ、9 通気管、10 制御装置、11 処理回路、12 メモリ、13 入出力部、100 冷凍サイクル装置、FP1,FP2 流路、P11 吐出ポート、P12 吸入ポート、P13 インジェクションポート、P71~P73 ポート、Sa1~Sa3 温度センサ、Sb1,Sb2 圧力センサ。 1 Compressor, 2 Condenser, 3 HIC, 4 Evaporator, 5-7 Expansion valve, 8 Receiver, 9 Vent pipe, 10 Control device, 11 Processing circuit, 12 Memory, 13 Input / output section, 100 Refrigeration cycle device, FP1 , FP2 flow path, P11 discharge port, P12 suction port, P13 injection port, P71 to P73 ports, Sa1 to Sa3 temperature sensor, Sb1, Sb2 pressure sensor.

Claims (5)

  1.  冷媒が圧縮機、第1熱交換器、第2熱交換器、第1膨張弁、および第3熱交換器の順に循環する冷凍サイクル装置であって、
     第1ポート、第2ポート、および前記第2ポートよりも高い位置にある第3ポートを有するレシーバと、
     前記第2ポートに接続された第2膨張弁と、
     前記第2膨張弁を、前記第2熱交換器を介して前記圧縮機に接続する第1流路と、
     前記第1熱交換器を前記第2熱交換器に接続する第2流路と、
     前記第2膨張弁および前記第2熱交換器の間の前記第1流路の部分に前記第3ポートを接続する通気管と、
     前記第2流路および前記第1ポートの間に接続された第3膨張弁とを備える、冷凍サイクル装置。
    A refrigeration cycle device in which the refrigerant circulates in the order of a compressor, a first heat exchanger, a second heat exchanger, a first expansion valve, and a third heat exchanger.
    A receiver having a first port, a second port, and a third port located higher than the second port, and
    The second expansion valve connected to the second port and
    A first flow path that connects the second expansion valve to the compressor via the second heat exchanger, and
    A second flow path that connects the first heat exchanger to the second heat exchanger,
    A vent pipe connecting the third port to the portion of the first flow path between the second expansion valve and the second heat exchanger.
    A refrigeration cycle apparatus including a third expansion valve connected between the second flow path and the first port.
  2.  前記圧縮機から吐出される前記冷媒の圧力が基準圧力より小さい場合の前記第3膨張弁の開度は、前記圧力が前記基準圧力よりも大きい場合の前記第3膨張弁の開度よりも小さい、請求項1に記載の冷凍サイクル装置。 The opening degree of the third expansion valve when the pressure of the refrigerant discharged from the compressor is smaller than the reference pressure is smaller than the opening degree of the third expansion valve when the pressure is larger than the reference pressure. , The refrigeration cycle apparatus according to claim 1.
  3.  前記圧力が前記基準圧力より小さい場合、前記圧縮機から吐出される前記冷媒の過熱度が基準値よりも大きいときの前記第2膨張弁の開度は、前記過熱度が前記基準値よりも小さいときの前記第2膨張弁の開度よりも大きい、請求項2に記載の冷凍サイクル装置。 When the pressure is smaller than the reference pressure, the opening degree of the second expansion valve when the degree of superheat of the refrigerant discharged from the compressor is larger than the reference value is such that the degree of superheat is smaller than the reference value. The refrigeration cycle apparatus according to claim 2, which is larger than the opening degree of the second expansion valve at the time.
  4.  前記第1ポートおよび前記第3ポートは、前記レシーバの上面に形成され、
     前記第2ポートは、前記上面に対向する前記レシーバの底面に形成されている、請求項1~3のいずれか1項に記載の冷凍サイクル装置。
    The first port and the third port are formed on the upper surface of the receiver.
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the second port is formed on the bottom surface of the receiver facing the upper surface.
  5.  前記圧縮機は、吐出ポート、吸入ポート、およびインジェクションポートを含み、
     前記冷媒は、前記吐出ポート、前記第1熱交換器、前記第2熱交換器、前記第1膨張弁、前記第3熱交換器、および前記吸入ポートの順に循環し、
     前記第1流路は、前記第2膨張弁を、前記第2熱交換器を介して前記インジェクションポートに接続する、請求項1~4のいずれか1項に記載の冷凍サイクル装置。
    The compressor includes a discharge port, a suction port, and an injection port.
    The refrigerant circulates in the order of the discharge port, the first heat exchanger, the second heat exchanger, the first expansion valve, the third heat exchanger, and the suction port.
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the first flow path connects the second expansion valve to the injection port via the second heat exchanger.
PCT/JP2019/043094 2019-11-01 2019-11-01 Refrigeration cycle device WO2021084743A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202311470009.4A CN117329723A (en) 2019-11-01 2019-11-01 Refrigeration cycle device
PCT/JP2019/043094 WO2021084743A1 (en) 2019-11-01 2019-11-01 Refrigeration cycle device
EP19950515.7A EP4053470A4 (en) 2019-11-01 2019-11-01 Refrigeration cycle device
JP2021554030A JPWO2021084743A1 (en) 2019-11-01 2019-11-01
CN201980101418.2A CN114585866A (en) 2019-11-01 2019-11-01 Refrigeration cycle device
JP2023201534A JP2024023437A (en) 2019-11-01 2023-11-29 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/043094 WO2021084743A1 (en) 2019-11-01 2019-11-01 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021084743A1 true WO2021084743A1 (en) 2021-05-06

Family

ID=75716103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043094 WO2021084743A1 (en) 2019-11-01 2019-11-01 Refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP4053470A4 (en)
JP (2) JPWO2021084743A1 (en)
CN (2) CN117329723A (en)
WO (1) WO2021084743A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220348054A1 (en) * 2021-04-28 2022-11-03 Nio Technology (Anhui) Co., Ltd. Electric vehicle cabin heating system and control method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294750A (en) * 1990-04-11 1991-12-25 Mitsubishi Electric Corp Freezing apparatus
JP2009156531A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Refrigeration system
JP2009243793A (en) 2008-03-31 2009-10-22 Mitsubishi Electric Corp Heat pump type hot water supply outdoor unit
JP2010127531A (en) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2010185406A (en) * 2009-02-13 2010-08-26 Mitsubishi Heavy Ind Ltd Injection pipe
WO2017068642A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433158B2 (en) * 2008-03-24 2014-03-05 日立アプライアンス株式会社 Refrigeration cycle equipment
JP6467682B2 (en) * 2015-01-09 2019-02-13 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP6680600B2 (en) * 2016-04-14 2020-04-15 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294750A (en) * 1990-04-11 1991-12-25 Mitsubishi Electric Corp Freezing apparatus
JP2009156531A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Refrigeration system
JP2009243793A (en) 2008-03-31 2009-10-22 Mitsubishi Electric Corp Heat pump type hot water supply outdoor unit
JP2010127531A (en) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2010185406A (en) * 2009-02-13 2010-08-26 Mitsubishi Heavy Ind Ltd Injection pipe
WO2017068642A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053470A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220348054A1 (en) * 2021-04-28 2022-11-03 Nio Technology (Anhui) Co., Ltd. Electric vehicle cabin heating system and control method therefor

Also Published As

Publication number Publication date
CN117329723A (en) 2024-01-02
JP2024023437A (en) 2024-02-21
JPWO2021084743A1 (en) 2021-05-06
EP4053470A4 (en) 2022-11-16
EP4053470A1 (en) 2022-09-07
CN114585866A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
US7918098B2 (en) Air conditioning system
US20150338135A1 (en) Refrigeration device for container
JP5795025B2 (en) Refrigeration cycle equipment
CN110691950B (en) Air conditioner
JP6590026B2 (en) Air conditioner
JP2024023437A (en) Refrigeration cycle equipment
KR102170528B1 (en) Air conditioner
JP4328892B2 (en) Temperature and humidity control device and environmental test device
KR101296064B1 (en) Air conditioner and control method thereof
WO2018221652A1 (en) Air conditioning apparatus
KR100802623B1 (en) Apparatus and method for controlling electronic expansion apparatus of air conditioning system
JP6964776B2 (en) Refrigeration cycle equipment
WO2021111605A1 (en) Refrigeration cycle device
JP2008096072A (en) Refrigerating cycle device
WO2020202553A1 (en) Refrigeration cycle apparatus
JP7150193B2 (en) refrigeration cycle equipment
JP6825736B2 (en) Refrigeration cycle equipment
WO2021054463A1 (en) Refrigeration device
US20220390161A1 (en) Refrigeration cycle apparatus
JP6786965B2 (en) Refrigeration equipment
WO2020240845A1 (en) Air conditioner
JP7224486B2 (en) refrigeration cycle equipment
KR101321543B1 (en) Air conditioning system
WO2022249247A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554030

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950515

Country of ref document: EP

Effective date: 20220601