WO2018221652A1 - Air conditioning apparatus - Google Patents

Air conditioning apparatus Download PDF

Info

Publication number
WO2018221652A1
WO2018221652A1 PCT/JP2018/020954 JP2018020954W WO2018221652A1 WO 2018221652 A1 WO2018221652 A1 WO 2018221652A1 JP 2018020954 W JP2018020954 W JP 2018020954W WO 2018221652 A1 WO2018221652 A1 WO 2018221652A1
Authority
WO
WIPO (PCT)
Prior art keywords
reheat
expansion valve
refrigerant
evaporator
cooling
Prior art date
Application number
PCT/JP2018/020954
Other languages
French (fr)
Japanese (ja)
Inventor
明敏 上野
駒野 宏
隆司 武内
祥吾 馬渕
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017208330A external-priority patent/JP2018204935A/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201880036102.5A priority Critical patent/CN110691950B/en
Priority to EP18809576.4A priority patent/EP3633290B1/en
Publication of WO2018221652A1 publication Critical patent/WO2018221652A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • the present invention relates to an air conditioner capable of reheat dehumidification operation.
  • an air conditioner capable of performing a reheat dehumidification operation in which dehumidification is performed while suppressing a decrease in indoor temperature
  • a compressor, an outdoor condenser, a cooling expansion valve, and an evaporator (cooler) are connected in this order by refrigerant piping.
  • the refrigerant discharged from the compressor is condensed by the outdoor condenser, depressurized by the cooling expansion valve, and then evaporated by exchanging heat with the room air in the evaporator, thereby cooling and dehumidifying the room air.
  • the air conditioner includes a reheat path that bypasses the outdoor condenser and the cooling expansion valve, and an indoor condenser (reheater) and a reheat expansion valve are provided in the reheat path. .
  • the refrigerant discharged from the compressor flows not only to the outdoor condenser but also to the indoor condenser, and is condensed by exchanging heat with indoor air that has passed through the evaporator in the indoor condenser.
  • the pressure is reduced by the reheat expansion valve, merges with the refrigerant from the cooling expansion valve, and flows into the evaporator.
  • the indoor condenser maintains indoors at a predetermined temperature by heating indoor air cooled and dehumidified in the evaporator.
  • a predetermined degree of superheat is given to the refrigerant that has passed through the evaporator, and the compressor is configured not to suck the liquid refrigerant.
  • the degree of superheat is adjusted to a predetermined value by adjusting the flow rate of the refrigerant flowing through the evaporator by controlling the opening of the cooling expansion valve.
  • the indoor temperature is adjusted to the target temperature by adjusting the flow rate of the refrigerant flowing through the indoor condenser by controlling the opening degree of the reheat expansion valve.
  • This invention is made in view of such a situation, and provides the air conditioning apparatus which can control suitably the superheat degree of the refrigerant
  • the air conditioner of the present invention A compressor, An outdoor condenser for condensing the refrigerant compressed by the compressor; A cooling expansion valve for decompressing the refrigerant condensed in the outdoor condenser; An evaporator for evaporating the refrigerant decompressed by the cooling expansion valve by heat exchange with room air to cool and dehumidify the room air; A cooling circuit connecting the compressor, the outdoor condenser, the cooling expansion valve, and the evaporator in this order; A reheat path branched from a path connecting the compressor and the outdoor condenser in the cooling circuit, and connected to a path connecting the cooling expansion valve and the evaporator; An indoor condenser that heats the indoor air by condensing the refrigerant compressed by the compressor by heat exchange with indoor air cooled and dehumidified by the evaporator in the reheat path; A reheat expansion valve for decompressing the refrigerant condensed in the indoor condenser in the reheat path; A
  • the upper limit of the opening does not include the opening in the fully opened state, but means the opening between the fully closed state and the fully opened state of the rethermal expansion valve.
  • the air-conditioning apparatus having the above-described configuration enables the adjustment of the degree of superheat by the cooling expansion valve, based on the ratio of the cooling capacity in the evaporator and the reheating capacity in the indoor condenser. Since the upper limit is set, the refrigerant circulation rate of the indoor condenser can be limited so that the ratio of the refrigerant circulation rate of the indoor condenser to the refrigerant circulation rate of the evaporator does not become excessively large, and the cooling expansion valve is opened. It is possible to appropriately adjust the superheat degree of the evaporator by the degree control.
  • the said control apparatus is further provided with the upper limit adjustment part which adjusts the upper limit of the opening degree of the said reheat expansion valve according to the fluctuation
  • the upper limit of the reheat expansion valve opening is adjusted to be low, Since the reheat capacity in the evaporator can also be reduced, even if fluctuations occur in the cooling capacity of the evaporator, the ratio of the refrigerant circulation rate in the indoor condenser to the refrigerant circulation rate in the evaporator does not become excessively large, It is possible to appropriately adjust the degree of superheat by controlling the opening degree of the cooling expansion valve.
  • the upper limit of the opening degree of the reheat expansion valve is adjusted based on a ratio between a refrigerant circulation amount flowing through the cooling expansion valve and a refrigerant circulation amount flowing through the reheat expansion valve.
  • the refrigerant circulation amount that flows through the cooling expansion valve is correlated with the cooling capacity of the evaporator
  • the refrigerant circulation amount that flows through the reheat expansion valve is correlated with the reheat capacity of the indoor condenser.
  • the upper limit of the opening degree of the rethermal expansion valve can be adjusted based on the ratio between the refrigerant circulation amount flowing through the cooling expansion valve and the refrigerant circulation amount flowing through the reheat expansion valve.
  • the upper limit of the opening degree of the reheat expansion valve is based on a ratio between a temperature difference between air before and after passing through the evaporator and a temperature difference between air before and after passing through the indoor condenser. Adjusted.
  • the temperature difference between the air before and after passing through the evaporator correlates with the cooling capacity in the evaporator, and the temperature difference between the air before and after passing through the indoor condenser is reheated in the indoor condenser. Correlates with ability. Therefore, the upper limit of the opening degree of the rethermal expansion valve can be adjusted based on the ratio of these temperature differences.
  • each temperature difference can be easily measured using an air temperature sensor, an operation for adjusting the upper limit of the opening degree of the reheat expansion valve can be easily performed.
  • the said reheat control part correct
  • the reheat control unit corrects the control amount of the opening degree of the reheat expansion valve according to the degree of supercooling of the refrigerant at the outlet of the indoor condenser, Since the degree of supercooling is adjusted to a predetermined value, the degree of supercooling can be suitably secured.
  • the control device performs operation control in a reheat dehumidification mode in which the air cooled and dehumidified by the evaporator is heated by the indoor condenser, and the air cooled and dehumidified by the evaporator is condensed by the indoor condenser.
  • the reheat dehumidification is performed when the intake air temperature of the evaporator is within a target temperature range and the relative humidity of the intake air is equal to or higher than the target humidity.
  • the suction air temperature of the evaporator is higher than the target temperature, or when the suction air temperature is within the target temperature range and the relative humidity of the suction air is lower than the target humidity, It is configured to drive.
  • the humidity is relatively high with respect to the temperature of the indoor space.
  • the operation in the reheat dehumidification mode is performed so as to lower the humidity without lowering the temperature.
  • the temperature is prioritized over the humidity.
  • the operation in the cooling mode is performed so as to lower.
  • a reheat first on-off valve is connected to the refrigerant reflow refrigerant pipe on the refrigerant inflow side of the indoor condenser during operation in the reheat dehumidification mode, and the refrigerant outlet side of the indoor condenser is connected to the refrigerant outflow side.
  • the reheat expansion valve is connected;
  • the reheating refrigerant pipe is connected to a reheating bypass pipe that bypasses the first reheating opening / closing valve, and the reheating bypass pipe has a smaller diameter than the first reheating opening / closing valve.
  • a second heat on-off valve is connected.
  • the control device when the control device starts operation in the reheat dehumidification mode, the control device opens the reheat expansion valve in a state where the first reheat opening / closing valve is closed.
  • the second on-off valve for reheating is opened after a time, and the liquid refrigerant removing operation is performed to open the first on-off valve for reheating after a predetermined time.
  • the reheat second on-off valve having a smaller diameter than the first reheat first on-off valve is opened first, thereby reheating during the cooling operation. Since the liquid refrigerant accumulated in the refrigerant piping does not pass through the reheating expansion valve at once, vibration and noise of the piping can be prevented.
  • the reheat is started after a predetermined time from closing the first reheat on-off valve and the second reheat on-off valve.
  • the thermal expansion valve is configured to be closed. According to this configuration, when the operation of the reheat dehumidification mode is finished, the reheat expansion valve is closed after a predetermined time after the first reheat valve and the second reheat valve are closed. In the meantime, the liquid refrigerant in the indoor condenser can be discharged from the indoor condenser. The liquid refrigerant flowing out of the indoor condenser can be recovered by the compressor after being evaporated by the evaporator of the cooling circuit.
  • the degree of superheat of the refrigerant that has passed through the evaporator can be suitably controlled by controlling the opening of the cooling expansion valve.
  • FIG. 1 is a schematic configuration diagram showing an air conditioner according to an embodiment of the present invention.
  • the air conditioner 1 according to the present embodiment is used in an environment in which a cooling target such as meat containing a lot of moisture frequently enters and exits a room, such as a meat factory, and dehumidifies while keeping the room temperature constant.
  • a cooling target such as meat containing a lot of moisture frequently enters and exits a room, such as a meat factory
  • the air conditioning apparatus 1 which can perform the reheat dehumidification operation which also performs.
  • the air conditioner 1 is a refrigeration apparatus that is used to cool a space to be cooled, such as a meat shed in a meat processing factory.
  • the air conditioner 1 includes an outdoor unit (heat source unit) 2 and an indoor unit (use unit) 3, and the outdoor unit 2 and the indoor unit 3 are connected by a refrigerant communication pipe.
  • the air conditioner 1 includes a control device 30 that controls the operations of the outdoor unit 2 and the indoor unit 3.
  • the outdoor unit 2 is installed outdoors, for example, and includes a compressor 12, an outdoor condenser 13, an outdoor fan 16, a refrigerant pressure sensor Sc2, and the like.
  • the indoor unit 3 is disposed indoors in a factory, for example, and includes a first expansion valve 14, an evaporator (cooler) 15, an indoor condenser (reheater) 22, a second expansion valve 23, and an indoor fan. 17, air temperature sensors Sa1, Sa2, Sa3, refrigerant temperature sensors Sb1, Sb2, Sb3, Sb4, Sb5, a refrigerant pressure sensor Sc1, and the like.
  • the compressor 12, the outdoor condenser 13, the first expansion valve 14, and the evaporator 15 form a cooling circuit 11 by being connected by a refrigerant pipe in this order.
  • the cooling circuit 11 functions exclusively to reduce the temperature and humidity of room air.
  • the air conditioning apparatus 1 of this embodiment branches from the path
  • the reheat path 21 bypasses the outdoor condenser 13 and the first expansion valve 14 in the cooling circuit 11.
  • the reheat path 21 is provided with an indoor condenser 22 and a second expansion valve 23. Therefore, the indoor condenser 22 and the second expansion valve 23 are provided in parallel with the outdoor condenser 13 and the first expansion valve 14.
  • the reheat path 21 functions to increase the temperature of the indoor air cooled by the cooling circuit 11.
  • the compressor 12 is, for example, a variable capacity type driven by a motor whose operating frequency (operation speed) can be adjusted by inverter control or the like.
  • the compressor 12 compresses the low-temperature / low-pressure gaseous refrigerant sent from the evaporator 15 into a high-temperature / high-pressure gaseous refrigerant.
  • the compressor 12 may be of a fixed capacity type.
  • the outdoor condenser 13 for example, a cross fin type fin-and-tube heat exchanger, a microchannel heat exchanger, or the like is used.
  • the outdoor condenser 13 condenses the gaseous refrigerant discharged from the compressor 12 by exchanging heat with outdoor air to form a liquid refrigerant.
  • the outdoor air is supplied to the outdoor condenser 13 by driving the outdoor fan 16.
  • the first expansion valve 14 is, for example, a pulse motor drive type electronic expansion valve, and the opening degree can be freely adjusted.
  • the opening degree of the first expansion valve 14 is controlled by the control device 30.
  • the first expansion valve 14 depressurizes the liquid refrigerant condensed by the outdoor condenser 13 to form a low-temperature / low-pressure gas-liquid two-phase refrigerant. Further, the first expansion valve 14 adjusts the flow rate of the refrigerant flowing through the evaporator 15 by controlling the opening degree, and adjusts the degree of superheat of the refrigerant after passing through the evaporator 15.
  • the first expansion valve 14 is also referred to as a “cooling expansion valve”.
  • the evaporator 15 for example, a cross fin type fin-and-tube heat exchanger, a microchannel heat exchanger, or the like is used similarly to the outdoor condenser 13.
  • the evaporator 15 evaporates the low-temperature and low-pressure gas-liquid two-phase refrigerant that has passed through the cooling expansion valve 14 by exchanging heat with the room air to form a gaseous refrigerant.
  • the evaporator 15 functions as a cooler that cools and dehumidifies indoor air by heat exchange with the refrigerant.
  • the indoor air is supplied to the evaporator 15 by driving the indoor fan 17.
  • the indoor condenser 22 for example, a cross fin type fin-and-tube heat exchanger, a microchannel heat exchanger, or the like is adopted as the indoor condenser 22.
  • the indoor condenser 22 is supplied with indoor air cooled and dehumidified by the evaporator 15 by driving the indoor fan 17.
  • the indoor condenser 22 branches inflow from the path
  • the second expansion valve 23 is a pulse motor drive type electronic expansion valve, for example, similar to the cooling expansion valve 14, and the opening degree can be freely adjusted.
  • the opening degree of the second expansion valve 23 is controlled by the control device 30.
  • the second expansion valve 23 depressurizes the liquid refrigerant condensed by the indoor condenser 22 to form a low-temperature / low-pressure gas-liquid two-phase refrigerant. Further, the second expansion valve 23 adjusts the flow rate of the refrigerant flowing through the indoor condenser 22 by controlling the opening degree, thereby adjusting the heating amount (reheat amount) of the indoor air.
  • the second expansion valve 23 is also referred to as a “reheat expansion valve”.
  • the air temperature sensors Sa1, Sa2, and Sa3 include a first air temperature sensor Sa1 that detects the temperature of air sucked into the indoor unit 3, and a second air temperature sensor Sa2 that detects the temperature of air blown from the indoor unit 3. And a third air temperature sensor Sa3 that detects the temperature of the air before passing through the evaporator 15 and being supplied to the indoor condenser 22.
  • the refrigerant temperature sensors Sb1, Sb2, Sb3, Sb4, and Sb5 are a first refrigerant temperature sensor Sb1 that detects the temperature of the refrigerant at the outlet of the evaporator 15, and a second refrigerant that detects the temperature of the refrigerant flowing through the evaporator 15.
  • coolant temperature sensor Sb5 which detects the temperature of the refrigerant
  • the refrigerant pressure sensors Sc1 and Sc2 are a first pressure sensor Sc1 that detects the refrigerant pressure at the outlet of the indoor condenser 22 (before the reheat expansion valve 23), and a second pressure sensor Sc2 that detects the discharge pressure of the compressor 12. Including.
  • the detection signals of the above sensors are input to the control device 30 and used for controlling various devices by the control device 30.
  • the air conditioning apparatus 1 does not need to be provided with all the sensors demonstrated above, and should just be provided with the sensor used in the control example mentioned later at least.
  • the control device 30 is configured by an indoor control unit provided in the indoor unit 3, an outdoor control unit provided in the outdoor unit 2, and the like (both not shown).
  • the control device 30 includes a microcomputer, a memory, a communication interface, and the like, and receives signals from various sensors provided in the indoor unit 3 and the outdoor unit 2.
  • the control device 30 controls operations of the compressor 12, the expansion valves 14 and 23, the fans 16 and 17, and the like.
  • the control device 30 can accept input of a target value (set temperature) of the suction temperature or the blowing temperature in the indoor unit 3 via a remote controller or the like connected to the indoor unit 3.
  • FIG. 2 is a configuration diagram illustrating functions of the control device 30.
  • the control device 30 has functions as a cooling control unit 31, a reheat control unit 32, and an upper limit adjustment unit 33.
  • the cooling control unit 31 adjusts the refrigerant circulation amount in the evaporator 15 by controlling the opening degree of the cooling expansion valve 14, and cools and dehumidifies the indoor air as desired by the cooling capacity in the evaporator 15, and the evaporator 15 It is a function part for adjusting the superheat degree of the refrigerant
  • the reheat control unit 32 adjusts the refrigerant circulation amount in the indoor condenser 22 by controlling the opening degree of the reheat expansion valve 23, and adjusts the indoor temperature as desired by the reheat capability in the indoor condenser 22. Part. Moreover, the reheat control part 32 adjusts the opening degree of the reheat expansion valve 23 by making predetermined opening degree into an upper limit.
  • the upper limit of the opening degree is an opening degree that is larger than the opening degree at which the rethermal expansion valve 23 is fully closed and smaller than the opening degree at which the reheating expansion valve 23 is fully opened.
  • the upper limit adjustment unit 33 is a functional unit that adjusts the upper limit of the opening degree of the reheat expansion valve 23 by the reheat control unit 32.
  • the upper limit adjustment unit 33 is a functional unit used exclusively in the application control 1 in the control examples described below.
  • cooling capacity ⁇ C can be expressed by the following formula (1)
  • reheating capacity ⁇ R can be expressed by the following formula (2).
  • CV C and CV R is the flow rate coefficient for the opening of the cooling expansion valve 14 and the reheat expansion valve 23
  • Delta] Pc is height differential pressure in the outdoor condenser 13 and evaporator 15, the [Delta] P R, the indoor condenser 22 and the difference in pressure in the evaporator 15
  • h C is the low-pressure enthalpy difference at the inlet / outlet of the evaporator 15 (see FIG. 8)
  • h R is the high-pressure enthalpy difference at the inlet / outlet of the indoor condenser 22 (see FIG. 8).
  • G C, the G R is the specific gravity ratio of the high-pressure side refrigerant (water basis).
  • the cooling system circulation amount indicates the circulation amount of the refrigerant that passes through the cooling expansion valve 14, and the reheat system circulation amount indicates the circulation amount of the refrigerant that passes through the reheat expansion valve 23. Therefore, the cooling capacity ⁇ C is obtained from the refrigerant circulation amount that passes through both the cooling expansion valve 14 and the reheat expansion valve 23 and flows into the evaporator 15. On the other hand, the reheat capability phi R is determined from the circulation amount of refrigerant passing through the reheat expansion valve 23 through the indoor condenser 22.
  • the air conditioner 1 adjusts the refrigerant circulation amount in the evaporator 15 by controlling the opening degree of the cooling expansion valve 14, and adjusts the degree of superheat after passing through the evaporator 15 to a predetermined value. Thereby, a liquid refrigerant does not flow into the compressor 12, and the compressor 12 is protected.
  • the refrigerant that has passed through the cooling expansion valve 14 but also the refrigerant from the reheat path 21 flows into the evaporator 15. Since the circulation amount of the refrigerant flowing in from the reheat path 21 cannot be controlled by the cooling expansion valve 14, the superheat degree is adjusted by the cooling expansion valve 14 when the refrigerant circulation amount from the reheat path 21 is relatively increased. It becomes difficult.
  • the air conditioning apparatus 1 of the present embodiment by setting an “upper limit” to the opening degree of the reheat expansion valve 23, the amount of refrigerant flowing into the evaporator 15 from the reheat path 21 is limited, and the cooling expansion valve 14, the degree of superheat can be adjusted.
  • the upper limit of the opening degree of the reheat expansion valve 23 is set to a predetermined value within a range in which the degree of superheat by the cooling expansion valve 14 can be adjusted.
  • FIG. 3 is a flowchart showing a basic control procedure of the air conditioner.
  • This basic control is a control example when the upper limit of the opening degree of the reheat expansion valve 23 is fixed.
  • step S1 the refrigerant temperature Tco at the outlet of the evaporator 15 is detected by the first refrigerant temperature sensor Sb1.
  • step S2 the temperature Tcm of the refrigerant flowing through the evaporator 15 is detected by the second refrigerant temperature sensor Sb2.
  • the refrigerant temperature Tcm corresponds to the evaporation temperature in the evaporator 15.
  • step S ⁇ b> 3 the control device 30 calculates the superheat degree SH of the refrigerant after passing through the evaporator 15. Specifically, the superheat degree SH is calculated by the following equation (3).
  • SH Tco-Tcm (3)
  • the control device 30 obtains the operation amount ⁇ C Pls of the opening degree of the cooling expansion valve 14 using the difference ⁇ SH in superheat degree.
  • the manipulated variable ⁇ C Pls of the opening degree of the cooling expansion valve is calculated from the difference ⁇ SH in superheat degree by feedback control such as PID control.
  • ⁇ C Pls PID ( ⁇ SH) (5)
  • step S5 the control device 30 operates the cooling expansion valve 14 so that the opening degree CPls calculated by the equation (6) is obtained.
  • step S6 the indoor air suction temperature Ta to the indoor unit 3 is detected by the first air temperature sensor Sa1.
  • step S7 the control apparatus 30 calculates
  • requires opening degree R Pls of the rethermal expansion valve 23 for adjusting the suction temperature Ta to a predetermined target value. Specifically, first, the control device 30 calculates a difference ⁇ Ta between the current suction temperature Ta and the target suction temperature Tam by the following equation (7). ⁇ Ta Ta ⁇ Tam (7)
  • the operation amount (DELTA) R Pls of the opening degree of the rethermal expansion valve 23 is acquired using the difference (DELTA) Ta of suction temperature.
  • the manipulated variable ⁇ R Pls of the opening degree of the rethermal expansion valve 23 is calculated from the suction temperature difference ⁇ Ta by feedback control such as PID control.
  • ⁇ R Pls PID ( ⁇ Ta) (8)
  • step S8 the control device 30 compares the opening degree R Pls of the rethermal expansion valve 23 calculated in step S7 with a predetermined upper limit value R Max and reheat expansion that actually uses the smaller value. Processing to determine the opening degree R Pls of the valve 23 is performed.
  • This ratio ⁇ is determined as appropriate based on the environment in which the air conditioner 1 is installed, operating conditions, and the like, and is a fixed value set in advance for the air conditioner 1. For example, a range of 0 ⁇ ⁇ 1 Set within.
  • the control device 30 controls the opening degree of the rethermal expansion valve 23 by the determined opening degree R Pls .
  • the ratio of the refrigerant circulation amount in the indoor condenser 22 to the refrigerant circulation amount in the evaporator 15 does not become excessively large.
  • the degree of superheat of the refrigerant after passing through the evaporator 15 can be controlled by the cooling expansion valve 14.
  • step S7 the operation amount ⁇ R Pls of the opening degree of the rethermal expansion valve 23 is obtained based on the difference ⁇ Ta between the suction temperature Ta and the target value Tam, but instead, the third refrigerant The difference between the refrigerant temperature at the outlet of the indoor condenser 22 detected by the temperature sensor Sb3 and the set temperature, the refrigerant temperature at the outlet of the indoor condenser 22 detected by the third refrigerant temperature sensor Sb3, and the fifth refrigerant temperature sensor.
  • the difference between the refrigerant temperature flowing through the indoor condenser 22 detected by Sb5, the refrigerant temperature at the inlet of the indoor condenser 22 detected by the fourth refrigerant temperature sensor Sb4, and the indoor condenser detected by the third refrigerant temperature sensor Sb3 It can also be determined by PID control or the like based on the difference from the refrigerant temperature at the outlet 22 or the like.
  • the upper limit value R Max of the opening degree of the rethermal expansion valve 23 is a fixed value.
  • the cooling capacity in the evaporator 15 is reduced in accordance with a decrease in the external load such as heat entering from the outside during the operation of the air conditioner 1, the reheating capacity becomes relatively high, and the cooling expansion valve 14 It may be difficult to adjust the degree of superheat due to. This will be described in detail below.
  • FIG. 4A and 4B are explanatory diagrams showing the relationship between the cooling capacity and the reheat capacity associated with the change in the external load.
  • FIG. 4A shows a comparative example
  • FIG. 4B shows the application control 1.
  • FIG. 4A shows the relationship among the external load, the cooling capacity in the air conditioner, and the reheat capacity when the opening degree of the reheat expansion valve 23 is fixed at a predetermined upper limit value. As it goes from (I) to the lower stage (III), the external load decreases.
  • the cooling capacity phi C and reheat capability phi R represented by the above Expression (1) and (2), the differential pressure [Delta] P C, [Delta] P R and the enthalpy difference h C, when the change of the h R is small, the expansion greatly depends on the flow coefficient CV C and CV R valves 14 and 23. Therefore, for example, to reduce the cooling capacity phi C is the flow coefficient CV C of the expansion valves 14, 23, squeezing the respective expansion valves 14 and 23 reduces the CV R, if caused to decrease the circulation amount of refrigerant It will be good. However, (when the flow coefficient CV R is constant) when the opening of the reheat expansion valve 23 is fixed, to reduce the cooling capacity phi C reduces only the flow coefficient CV C of the cooling expansion valve 14 There is a need.
  • the reheating capacity ⁇ R of the cooling capacity ⁇ C is about double.
  • the ratio of the refrigerant circulation amount of the indoor condenser 22 to the refrigerant circulation amount of the evaporator 15 is about twice from the state (I). For this reason, it is very difficult to adjust the degree of superheat by the cooling expansion valve 14.
  • the upper limit of the opening degree of the reheat expansion valve 23 is adjusted according to the fluctuation of the cooling capacity. Specifically, as shown in FIG. 4 (b), when the outer load toward (I) ⁇ (III) decreases gradually at a constant ratio to the size of the cooling capacity phi C again reduce heat capacity phi R. More specifically, the refrigerant circulation amount flowing through the indoor condenser 22 is decreased at a constant ratio with respect to the refrigerant circulation amount flowing through the evaporator 15. Therefore, the upper limit of the opening degree of the rethermal expansion valve 23 is decreased at a predetermined ratio in accordance with the change in the opening degree of the cooling expansion valve 14.
  • FIG. 5 is a flowchart showing the procedure of the application control 1 of the air conditioner. Steps S11 to S17, S19, and S20 in FIG. 5 are substantially the same as steps S1 to S9 in FIG.
  • the upper limit of the opening degree of the rethermal expansion valve 23 is changed according to the opening degree of the cooling expansion valve 14 in step S18 in FIG.
  • the opening CPLs of the cooling expansion valve 14 calculated in step S14 is added to the predetermined coefficient ⁇ and the maximum flow rates of the cooling expansion valve 14 and the rethermal expansion valve 23.
  • the upper limit value R Max ′ of the reheat expansion valve 23 is calculated by multiplying the ratios of the coefficients CVc and CVr.
  • R Max ' ⁇ ⁇ CVc / CVr ⁇ C Pls (11)
  • the predetermined coefficient ⁇ is obtained from the above equations (1), (2), and (10), the ratio ⁇ between the cooling capacity ⁇ C and the reheating capacity ⁇ R , and the differential pressure ⁇ P C between the high pressure and the low pressure of the refrigerant.
  • the ratio of [Delta] P R, enthalpy difference h C between the cooling side and the reheating side, the ratio of h R, the high pressure side density ratio G C are set in consideration of the ratio and the like of the G R, superheat by cooling expansion valve 14 This is a value for converting the opening degree of the cooling expansion valve 14 into the opening degree of the rethermal expansion valve 23 within a range that allows adjustment of the above.
  • step S19 the control device 30 compares the opening degree R Pls of the rethermal expansion valve 23 calculated in step S17 with the upper limit value R Max ′ of the opening degree calculated in step S18, and the smaller. Is determined as the opening degree R Pls of the reheat expansion valve 23 actually used.
  • the opening degree of the reheat expansion valve 23 By controlling the opening degree of the reheat expansion valve 23 with the opening degree R Pls determined in this way, the ratio of the refrigerant circulation amount of the indoor condenser 22 to the refrigerant circulation amount of the evaporator 15 becomes excessively large. Therefore, the degree of superheat by the cooling expansion valve 14 can be adjusted suitably.
  • the cooling capacity in the evaporator 15 and the reheat capacity in the indoor condenser are expressed by the above formulas (1) and (2), but can be replaced by other methods.
  • the cooling capacity of the evaporator 15 is determined by a difference T1 (evaporator) between the temperature t1 detected by the first air temperature sensor Sa1 and the temperature t3 detected by the third air temperature sensor Sa3.
  • the temperature T2 of the indoor condenser 22 is replaced with a difference T2 between the temperature t2 detected by the second air temperature sensor Sa2 and the temperature t3 detected by the third air temperature sensor Sa3. It can be replaced by the temperature raised by the condenser 22).
  • the reheat expansion valve 23 can be opened according to the change in cooling capacity.
  • the upper limit of the reheat expansion valve 23 can be easily adjusted by using the detection signal of the air temperature sensor.
  • ⁇ Application control 2> In the basic control and the application control 1 described above, the upper limit of the opening degree of the reheat expansion valve 23 is set, and the circulation amount of the refrigerant flowing through the indoor condenser 22 is considered. In addition to these, the application control 2 controls the opening degree of the reheat expansion valve 23 so that the degree of supercooling at the outlet of the indoor condenser 22 is appropriately secured.
  • FIG.6 and FIG.7 is a flowchart which shows the procedure of the application control 2 of an air conditioning apparatus.
  • Steps S21 to S26 in FIG. 6 are substantially the same as steps S1 to S6 in FIG. 3, and the control device 30 obtains the superheat degree SH from the evaporator outlet temperature Tco and the evaporator intermediate temperature Tcm, and this superheat degree SH.
  • the cooling expansion valve 14 is operated by obtaining the opening C Pls of the cooling expansion valve 14 with the target value as the target value.
  • the first air temperature sensor Sa1 detects the indoor air suction temperature Ta to the indoor unit 3.
  • step S27 the control device 30 acquires the operation amount ⁇ R Pls of the opening degree of the rethermal expansion valve 23 so that the suction temperature Ta is set to a predetermined target value. Specifically, first, the difference ⁇ Ta between the current suction temperature Ta and the target suction temperature Tam is calculated by the above equation (7).
  • the control device 30 calculates the manipulated variable ⁇ R Pls of the opening degree of the rethermal expansion valve 23 from the suction temperature difference ⁇ Ta by feedback control such as PID control.
  • step S28 of FIG. 7 the refrigerant temperature Trev is detected by the third refrigerant temperature sensor Sb3, and the refrigerant pressure Prev is detected by the first pressure sensor Sc1.
  • step S30 the control device 30 determines whether or not the supercooling degree SC is greater than a predetermined threshold, here “3 degrees”. If the degree of supercooling SC is greater than 3 degrees, it is considered that the degree of supercooling is sufficiently secured. Therefore, in step S31, the adjustment amount dSC Pls of the rethermal expansion valve 23 based on the degree of supercooling SC is set to zero. Then, the process proceeds to step S34.
  • a predetermined threshold here “3 degrees”. If the degree of supercooling SC is greater than 3 degrees, it is considered that the degree of supercooling is sufficiently secured. Therefore, in step S31, the adjustment amount dSC Pls of the rethermal expansion valve 23 based on the degree of supercooling SC is set to zero. Then, the process proceeds to step S34.
  • step S32 the adjustment amount dSC Pls of the reheat expansion valve 23 is expressed by the following equation (14).
  • Ask. dSC Pls ⁇ ⁇ ⁇ 3-max (SC, 0) ⁇ (14)
  • the adjustment amount dSC Pls is obtained by subtracting the degree of supercooling SC from the threshold “3 degrees” and multiplying by a predetermined correction coefficient ⁇ .
  • the adjustment amount dSC Pls is obtained by multiplying the threshold “3 degrees” by a predetermined correction coefficient ⁇ .
  • the correction coefficient ⁇ is set to ensure an appropriate supercooling degree SC according to the state of the apparatus, the installation environment, and the like.
  • the correction coefficient ⁇ sets the necessary supercooling degree SC to the rethermal expansion valve 23.
  • the pulse conversion coefficient is used to convert the number of pulses of the motor.
  • This pulse conversion coefficient ⁇ can be obtained as follows. As shown in FIG. 8, when the enthalpy at the measurement point of the supercooling degree SC is h SC , the saturated liquid enthalpy at the measurement point of the supercooling degree SC is h sl , and the enthalpy at the inlet of the indoor condenser 22 is h ri.
  • the refrigerant circulation rate ratio at this time is h / (h ri -h SC ), and the pulse conversion coefficient ⁇ necessary for changing the degree of supercooling SC once is given by the following equation (16).
  • Cv ′ ⁇ h / (h ri ⁇ h SC ) / Cv ⁇ MaxPls (16)
  • Cv ′ is a flow coefficient with respect to the current opening degree of the rethermal expansion valve 23
  • Cv is a flow coefficient when the reheat expansion valve 23 is fully opened (so-called CV value)
  • MaxPls is a fully open state of the reheat expansion valve 23.
  • the number of pulses at the time is h / (h ri -h SC )
  • step S33 the control device 30 compares the operation amount ⁇ R Pls of the opening degree of the reheat expansion valve 23 calculated in step S27 with 0, and determines a larger value as the operation amount ⁇ R Pls that is actually used. To do.
  • the manipulated variable ⁇ R Pls of the opening degree of the rethermal expansion valve 23 calculated in step S27 takes a positive value ( ⁇ R Pls > 0) when the suction temperature Ta is higher than the target suction temperature Tam (Ta> Tam). Conversely, when the suction temperature Ta is lower than the target suction temperature Tam (Ta ⁇ Tam), it takes a negative value ( ⁇ R Pls ⁇ 0). Therefore, when ⁇ R Pls is a positive value, the reheat expansion valve 23 is closed in order to reduce the reheat capability. When ⁇ R Pls is a negative value, more reheat capability is required. Therefore, it becomes operation of the direction which opens the reheat expansion valve 23.
  • step S33 since priority is given to securing the degree of supercooling SC in the application control 2, in the process of step S33, it is excluded to operate the reheat expansion valve 23 in the opening direction, and the reheat expansion valve 23 is excluded. Only the operation in the closing direction is adopted.
  • step S34 the adjustment amount dSC Pls obtained in step S31 or S32 is added to the operation amount ⁇ R Pls of the opening degree of the rethermal expansion valve 23 obtained in step S33, and the operation amount ⁇ R Pls actually used is obtained. Then, as the opening degree R Pls of the reheat expansion valve 23, a value obtained by subtracting the operation amount ⁇ R Pls from the current opening degree R Pls is compared with a predetermined upper limit value R Max. The opening degree R Pls of the thermal expansion valve 23 is determined. In step S35, the control device 30 operates the reheat expansion valve 23.
  • the degree of supercooling SC at the outlet of the indoor condenser 22 is obtained by detecting the temperature intermediate between the outlet of the indoor condenser 22 by the refrigerant temperature sensors Sb3 and Sb5 and subtracting the intermediate temperature from the temperature on the outlet side. be able to. Or it can also obtain
  • FIG. 9 is a schematic configuration diagram showing an air-conditioning apparatus according to the second embodiment of the present invention.
  • the air conditioner (refrigeration apparatus) 1 includes an outdoor unit (heat source side unit) 2 and an indoor unit (use side unit) 3.
  • a receiver 18 and a cooling electromagnetic valve 25 are provided between the outdoor condenser (heat source side heat exchanger) 13 of the outdoor unit 2 and the cooling expansion valve 14 of the indoor unit 3.
  • the receiver 18 is provided in the outdoor unit 2, and the cooling electromagnetic valve 25 is provided in the indoor unit 3.
  • the pressure adjusting passage 19 is provided with a pressure adjusting electromagnetic valve 27.
  • the pressure adjusting electromagnetic valve 27 By opening and closing the pressure adjusting electromagnetic valve 27 at a predetermined timing (repeats opening and closing operations), the amount of discharge gas (high pressure gas) of the compressor 12 introduced into the receiver 18 is changed, The pressure in the receiver 18 can be adjusted.
  • the lower end of the receiver 18 is connected to the cooling electromagnetic valve 25 of the indoor unit 3 through a refrigerant pipe.
  • the reheat refrigerant pipe 45 on the refrigerant inflow side of the indoor condenser (reheat heat exchanger) 22 is provided with a reheat electromagnetic valve (first reheat valve) 26. Yes.
  • the reheating refrigerant pipe 45 is connected to a reheating bypass pipe 46 that bypasses the reheating first on-off valve 26.
  • the reheating bypass pipe 46 is connected to a reheating second opening / closing valve 28 having a smaller diameter than the reheating first opening / closing valve 26.
  • the indoor unit 3 is provided with a suction air humidity sensor Sd1 for measuring the humidity of the suction air of the evaporator 15.
  • the controller 30 controls the operation of the reheat dehumidification mode in which the air cooled and dehumidified by the evaporator 15 as described in the first embodiment is heated by the indoor condenser 22, and in addition to this, the evaporator 15 Operation control in the cooling mode in which the cooled and dehumidified air only passes through the indoor condenser 22 can be performed.
  • the control device 30 operates in the reheat dehumidification mode in which the air cooled by the use-side heat exchanger 15 that is an evaporator is heated by the indoor condenser (reheat heat exchanger) 22 during the operation in the cooling mode. Is also configured to control.
  • the control device 30 determines that the intake air temperature of the evaporator 15 is within a target temperature range (eg, within a range of 13 ° C. to 17 ° C.) and the relative humidity of the intake air is equal to or higher than the target humidity (eg, 45%).
  • a target temperature range eg, within a range of 13 ° C. to 17 ° C.
  • the relative humidity of the intake air is equal to or higher than the target humidity (eg, 45%).
  • the control device 30 performs switching control between the cooling mode and the reheat dehumidification mode during operation.
  • the air conditioner 1 when the air conditioner 1 is activated, it is necessary to cool the inside of the warehouse as meat is brought into the inside of the suspension cabinet or the like, so the area indicated as the cooling / reheating mode in FIG. Is operated in the cooling mode (cooling pull-down for rapidly cooling the interior).
  • the inside temperature is between 13 ° C and 17 ° C, the operation is performed while switching between the cooling mode and the reheat dehumidification mode.
  • the intake air temperature (inside air temperature) of the evaporator 15 is within the range of 13 ° C. to 17 ° C., which is the target temperature, and the relative humidity of the intake air is equal to or higher than the target humidity (45% RH).
  • the intake air temperature of the evaporator 15 is higher than the target temperature (17 ° C.), or the intake air temperature is within the target temperature range of 13 ° C. to 17 ° C. and the intake air
  • the relative humidity is less than the target humidity (45% RH)
  • the operation control is performed by the control device 30 so that the operation in the cooling mode is performed.
  • the air conditioner of the present embodiment is configured to be capable of operating in a refrigeration mode or a refrigeration mode, and has a set temperature of 0 ° C. (the internal temperature is approximately 10 ° C. to ⁇ 5 ° C.). ) In the refrigeration mode, the operation in the refrigeration mode is performed at a set temperature of ⁇ 20 ° C. (a state where the internal temperature is lower than ⁇ 5 ° C.).
  • step S41 it is determined whether or not the air conditioner 1 is in operation. If the determination result is “YES” and the vehicle is operating, the process proceeds to step S42 to determine whether the intake air temperature of the evaporator 15 is 17 ° C. or higher, and the determination result of step S41 is “NO”. If there is no operation, the process proceeds to step S43 to stop the process and then returns to step S41.
  • step S42 When the determination result in step S42 is “YES” and the intake air temperature is 17 ° C. or higher, the process proceeds to step S44, the apparatus is thermo-ON, and the operation in the cooling mode is performed. During the operation in the cooling mode, the determination in step S41 is always performed.
  • step S42 determines whether or not the intake air temperature is 13 ° C. or less. If the determination result is “NO”, the intake air temperature is lower than 17 ° C. and higher than 13 ° C. In this case, it is determined in step S46 whether the relative humidity RH is 45% or more. When the determination result is “NO”, the relative humidity RH is less than 45%, and the humidity is not high. Therefore, the process proceeds to step S44 to perform the cooling mode operation, and the process returns to the determination of step S41.
  • step S45 If the result of determining in step S45 whether or not the intake air temperature is 13 ° C. or less is “YES”, the inside of the refrigerator is sufficiently cooled. In this case, the process proceeds to step S47 and the thermo is turned off.
  • the inside is a mode in which only blowing is performed. In the air blowing operation mode, the determination in step S41 is always performed as in the cooling mode.
  • step S45 If the result of determining in step S45 whether or not the relative humidity RH is 45% or more is “YES”, the humidity in the cabinet is lower than 17 ° C. and higher than 13 ° C. (within the predetermined range of the present invention). However, since the humidity is high, the process proceeds to step S48 to switch to the reheat dehumidification mode, where the dehumidification is performed while maintaining the temperature. Even in the reheat dehumidifying mode, the determination in step S41 is always performed as in the cooling mode.
  • the pressure adjusting electromagnetic valve 27 is controlled to open and close. Specifically, when the low pressure of the refrigerant circuit is lower than the treatment value, the pressure adjusting electromagnetic valve 27 is opened to introduce the high pressure refrigerant into the receiver 18, and the high pressure flowing through the liquid side communication pipe connected from the receiver 18 to the indoor unit 3. Adjust the pressure of the liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the cooling electromagnetic valve 25 in the indoor unit 3, is depressurized by the cooling expansion valve 14, and is evaporated by absorbing heat from the internal air in the evaporator 15. At this time, the internal air is cooled in the evaporator 15. The evaporated refrigerant returns to the outdoor unit 2 and is sucked into the compressor 12.
  • the operation in the cooling mode is performed by circulating the refrigerant through the refrigerant circuit as described above.
  • the indoor fan 17 rotates with a large air volume, while the various valves and the compressor 12 are stopped, and only air is blown in the warehouse.
  • reheat dehumidification mode part of the control of various valves is different from the cooling mode. Specifically, the reheat electromagnetic valve 26 is controlled to be “open”, the reheat expansion valve 23 is controlled based on the intake air temperature, and the indoor fan 17 has a low air volume (L air volume).
  • the refrigerant discharged from the compressor 12 circulates in the refrigerant circuit using the heat source side heat exchanger 13 and the reheat heat exchanger 22 as a radiator (condenser) and the use side heat exchanger 15 as an evaporator.
  • the indoor unit 3 the internal (indoor) air is cooled and dehumidified by the evaporator 15 and then heated by the indoor condenser 22, so that the humidity is reduced while suppressing a decrease in the internal temperature.
  • the control device 30 opens the reheat expansion valve 23 in a state in which the reheat electromagnetic valve (first reheat valve) 26 is closed, and then performs a predetermined operation.
  • the reheat second on-off valve 28 is opened after a time (for example, 5 seconds), and the reheat first on-off valve 26 is opened after a predetermined time (for example, 5 minutes) to perform the liquid refrigerant removal operation. ing.
  • the reheat is performed after a predetermined time (for example, 4 minutes) after the reheat first on-off valve 26 and the reheat second on-off valve 28 are closed.
  • the expansion valve 23 is closed.
  • the opening / closing valves 26 and 28 having different (large and small) diameters are provided in parallel on the refrigerant inflow side of the indoor condenser (reheat heat exchanger) 22, and the diameter is reduced when the reheat dehumidifying mode is operated. After opening the small opening / closing valve 28 first, the opening / closing valve 26 having a large diameter is opened after a predetermined time.
  • the on-off valve 26 is closed during the cooling operation, so that when the refrigerant flowing into the reheating refrigerant pipe 45 accumulates and liquefies, the on-off valve 26 is immediately opened when the reheat dehumidifying mode is started. And the liquid refrigerant flows into the reheat expansion valve 23 at once, and the reheat expansion valve 23 whose opening degree is controlled so as to give priority to the degree of supercooling may cause the pipe to vibrate without being able to process the refrigerant. It is.
  • the opening degree of the reheat expansion valve 23 is adjusted so that priority is given to the degree of supercooling of the refrigerant on the outlet side of the indoor condenser 22, and the opening degree is set to be small.
  • the diameter of the reheat second on-off valve 28 is small, and the flow rate of the refrigerant flowing to the reheat expansion valve 23 is limited. Therefore, the liquid refrigerant does not pass through the reheat expansion valve 23 at a stretch, so that the vibration of the pipe is suppressed.
  • the reheat first on-off valve 26 and the reheat second on-off valve 28 are closed, and the subsequent t4 seconds (for example, 240 seconds (4 minutes)) are restarted.
  • the thermal expansion valve 23 is opened, and the liquid refrigerant in the indoor condenser 22 is evaporated by the evaporator 15 and recovered to the compressor 12.
  • ⁇ Effects of Second Embodiment> when the intake air temperature of the evaporator 15 is within the target temperature range (13 ° C. to 17 ° C.) and the relative humidity of the intake air is equal to or higher than the target humidity (45% RH), the internal space Since the humidity is relatively high with respect to the temperature, the reheat dehumidification mode operation is performed so as to reduce the humidity without lowering the temperature.
  • the intake air temperature of the evaporator 15 is higher than the target temperature, or the intake air temperature of the evaporator 15 is within the target temperature range (13 ° C. to 17 ° C.) and the relative humidity of the intake air is less than the target humidity.
  • the operation in the cooling mode is performed so as to lower the temperature in preference to the humidity.
  • the reheat dehumidification mode and the cooling mode are performed according to the state of the intake air, the humidity and temperature of the internal space can be controlled to appropriate values.
  • the vibration noise of the pipe can be suppressed.
  • the time exemplified as t1 to t4 may be appropriately changed according to the reheat refrigerant pipe 45 and the pipe length of the reheat path 21.
  • the reheat second opening / closing valve 28 has a smaller diameter than the reheating first opening / closing valve 26 according to the amount of liquid refrigerant expected to be accumulated in the reheating refrigerant pipe 45 during the cooling operation. Can be set as appropriate.
  • the air conditioning apparatus of the present invention is not limited to a meat factory and can be used in any environment.
  • the reheat dehumidification is performed when the intake air temperature of the evaporator 15 is within the target temperature (13 ° C. to 17 ° C.) and the relative humidity of the intake air is equal to or higher than the target humidity (45% RH).
  • the intake air temperature of the evaporator (17) is higher than the target temperature, or the intake air temperature is within the target temperature (13 ° C to 17 ° C) and the relative humidity of the intake air is the target humidity
  • the present invention is not limited to this configuration, and even when control is performed with this configuration, the above-described target temperature and target humidity are configured. Can be appropriately changed.
  • Air conditioner 11 Cooling circuit 11a: Path 11b: Path 12: Compressor 13: Outdoor condenser 14: Cooling expansion valve 15: Evaporator 21: Reheat path 22: Indoor condenser 23: Rethermal expansion valve 30 : Control device 31: Cooling control unit 32: Reheat control unit 33: Upper limit adjustment unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning apparatus capable of appropriately controlling the superheating degree of a refrigerant passing through an evaporator by controlling the opening degree of a cooling expansion valve. The air conditioning apparatus is provided with a compressor (12), an outdoor condenser (13), a cooling expansion valve (14), an evaporator (15), a cooling circuit (11) that connects the foregoing components in that order, a reheating path (21), an indoor condenser (22), a reheating expansion valve (23), and a control device (30). The control device (30) is provided with: a cooling control unit (31) for regulating the amount of a refrigerant circulating in the evaporator (15) by controlling the opening degree of the cooling expansion valve (14), thereby regulating the superheating degree of the refrigerant that passes through the evaporator (15); and a reheating control unit (32) for regulating the amount of a refrigerant circulating in the indoor condenser (22) by controlling the opening degree of the reheating expansion valve (23), thereby regulating the room temperature. In the reheating expansion valve (23), the upper limit of the opening degree controlled by the reheating control unit (32) is set on the basis of the ratio of the cooling capability in the evaporator (15), which enables the regulation of the superheating degree by the cooling expansion valve (14), to the reheating capability in the indoor condenser (22).

Description

空気調和装置Air conditioner
 本発明は、再熱除湿運転が可能な空気調和装置に関する。 The present invention relates to an air conditioner capable of reheat dehumidification operation.
 従来、室内の温度低下を抑制しつつ除湿を行う再熱除湿運転が可能な空気調和装置が知られている(例えば、特許文献1及び2参照)。この空気調和装置は、圧縮機と、室外凝縮器と、冷却膨張弁と、蒸発器(冷却器)とがこの順で冷媒配管により接続されている。圧縮機から吐出された冷媒は、室外凝縮器で凝縮され、冷却膨張弁で減圧された後に、蒸発器において室内空気との間で熱交換することによって蒸発し、室内空気を冷却・除湿する。 Conventionally, an air conditioner capable of performing a reheat dehumidification operation in which dehumidification is performed while suppressing a decrease in indoor temperature is known (for example, see Patent Documents 1 and 2). In this air conditioner, a compressor, an outdoor condenser, a cooling expansion valve, and an evaporator (cooler) are connected in this order by refrigerant piping. The refrigerant discharged from the compressor is condensed by the outdoor condenser, depressurized by the cooling expansion valve, and then evaporated by exchanging heat with the room air in the evaporator, thereby cooling and dehumidifying the room air.
 また、この空気調和装置は、室外凝縮器と冷却膨張弁とをバイパスする再熱経路を備え、この再熱経路に、室内凝縮器(再熱器)と再熱膨張弁とが設けられている。圧縮機から吐出された冷媒は、室外凝縮器だけでなく室内凝縮器へも分岐して流れ、室内凝縮器において蒸発器を通過した室内空気との間で熱交換することによって凝縮された後、再熱膨張弁によって減圧され、冷却膨張弁からの冷媒と合流して蒸発器に流入する。室内凝縮器は、蒸発器において冷却・除湿された室内空気を加熱することによって、室内を所定の温度に維持している。 The air conditioner includes a reheat path that bypasses the outdoor condenser and the cooling expansion valve, and an indoor condenser (reheater) and a reheat expansion valve are provided in the reheat path. . The refrigerant discharged from the compressor flows not only to the outdoor condenser but also to the indoor condenser, and is condensed by exchanging heat with indoor air that has passed through the evaporator in the indoor condenser. The pressure is reduced by the reheat expansion valve, merges with the refrigerant from the cooling expansion valve, and flows into the evaporator. The indoor condenser maintains indoors at a predetermined temperature by heating indoor air cooled and dehumidified in the evaporator.
特開2011-133171号公報JP 2011-133171 A 特開平1-222137号公報JP-A-1-222137
 上記のような空気調和装置においては、通常、蒸発器を通過した冷媒に所定の過熱度が付与され、圧縮機が液状冷媒を吸引しないように構成されている。この過熱度は、冷却膨張弁の開度制御により蒸発器を流れる冷媒の流量を調整することによって所定値に調整される。一方、室内の温度は、再熱膨張弁の開度制御により室内凝縮器を流れる冷媒の流量を調整することによって目標温度に調整される。 In the air conditioner as described above, normally, a predetermined degree of superheat is given to the refrigerant that has passed through the evaporator, and the compressor is configured not to suck the liquid refrigerant. The degree of superheat is adjusted to a predetermined value by adjusting the flow rate of the refrigerant flowing through the evaporator by controlling the opening of the cooling expansion valve. On the other hand, the indoor temperature is adjusted to the target temperature by adjusting the flow rate of the refrigerant flowing through the indoor condenser by controlling the opening degree of the reheat expansion valve.
 しかしながら、再熱能力を高めるために再熱膨張弁の開度を大きくすると、室外凝縮器を経て蒸発器に流入する冷媒の流量に対して、室内凝縮器を経て蒸発器に流入する冷媒の流量が相対的に増大するため、冷却膨張弁の開度制御による過熱度の調整が困難になる。 However, if the opening of the reheat expansion valve is increased in order to increase the reheat capacity, the flow rate of the refrigerant flowing into the evaporator through the indoor condenser with respect to the flow rate of the refrigerant flowing into the evaporator through the outdoor condenser Therefore, it becomes difficult to adjust the degree of superheat by controlling the opening degree of the cooling expansion valve.
 本発明は、このような実情に鑑みてなされたものであり、冷却膨張弁の開度制御によって蒸発器を通過した冷媒の過熱度を好適に制御することができる空気調和装置を提供することを目的とする。 This invention is made in view of such a situation, and provides the air conditioning apparatus which can control suitably the superheat degree of the refrigerant | coolant which passed the evaporator by the opening degree control of a cooling expansion valve. Objective.
 (1)本発明の空気調和装置は、
 圧縮機と、
 前記圧縮機で圧縮された冷媒を凝縮する室外凝縮器と、
 前記室外凝縮器で凝縮された冷媒を減圧する冷却膨張弁と、
 前記冷却膨張弁で減圧された冷媒を室内空気との熱交換により蒸発させ当該室内空気を冷却・除湿する蒸発器と、
 前記圧縮機、前記室外凝縮器、前記冷却膨張弁、及び前記蒸発器をこの順で接続している冷却回路と、
 前記冷却回路における前記圧縮機と前記室外凝縮器とを接続する経路から分岐し、前記冷却膨張弁と前記蒸発器とを接続する経路に接続されている再熱経路と、
 前記再熱経路において、前記圧縮機で圧縮された冷媒を、前記蒸発器で冷却・除湿された室内空気との熱交換により凝縮させ当該室内空気を加熱する室内凝縮器と、
 前記再熱経路において、前記室内凝縮器で凝縮された冷媒を減圧する再熱膨張弁と、
 前記冷却膨張弁及び前記再熱膨張弁の開度を制御する制御装置と、を備えており、
 前記制御装置は、
  前記冷却膨張弁の開度制御により、前記蒸発器における冷媒循環量を調整して前記蒸発器通過後の冷媒の過熱度を調整する冷却制御部と、
  前記再熱膨張弁の開度制御により、前記室内凝縮器における冷媒循環量を調整して室温を調整する再熱制御部と、を備え、
 前記再熱膨張弁は、前記冷却膨張弁による過熱度の調整を可能とする前記蒸発器における冷却能力と前記室内凝縮器における再熱能力との比率に基づいて、前記再熱制御部によって制御される開度の上限が設定されている。
(1) The air conditioner of the present invention
A compressor,
An outdoor condenser for condensing the refrigerant compressed by the compressor;
A cooling expansion valve for decompressing the refrigerant condensed in the outdoor condenser;
An evaporator for evaporating the refrigerant decompressed by the cooling expansion valve by heat exchange with room air to cool and dehumidify the room air;
A cooling circuit connecting the compressor, the outdoor condenser, the cooling expansion valve, and the evaporator in this order;
A reheat path branched from a path connecting the compressor and the outdoor condenser in the cooling circuit, and connected to a path connecting the cooling expansion valve and the evaporator;
An indoor condenser that heats the indoor air by condensing the refrigerant compressed by the compressor by heat exchange with indoor air cooled and dehumidified by the evaporator in the reheat path;
A reheat expansion valve for decompressing the refrigerant condensed in the indoor condenser in the reheat path;
A control device that controls the opening degree of the cooling expansion valve and the reheat expansion valve, and
The control device includes:
A cooling control unit that adjusts a refrigerant circulation amount in the evaporator and adjusts a degree of superheat of the refrigerant after passing through the evaporator by opening control of the cooling expansion valve;
A reheat control unit for adjusting a room temperature by adjusting a refrigerant circulation amount in the indoor condenser by controlling an opening degree of the reheat expansion valve;
The reheat expansion valve is controlled by the reheat control unit based on the ratio of the cooling capacity in the evaporator and the reheat capacity in the indoor condenser that enables adjustment of the degree of superheat by the cooling expansion valve. The upper limit of the opening is set.
 なお、開度の上限とは、全開状態の開度を含まず、再熱膨張弁の全閉状態と全開状態との間の開度を意味する。
 上記構成を有する空気調和装置は、冷却膨張弁による過熱度の調整を可能とする、蒸発器における冷却能力と室内凝縮器における再熱能力との比率に基づいて、再熱膨張弁の開度の上限が設定されているので、蒸発器の冷媒循環量に対する室内凝縮器の冷媒循環量の割合が過度に大きくならないように室内凝縮器の冷媒循環量を制限することができ、冷却膨張弁の開度制御による蒸発器の過熱度の調整を適切に行うことが可能となる。
The upper limit of the opening does not include the opening in the fully opened state, but means the opening between the fully closed state and the fully opened state of the rethermal expansion valve.
The air-conditioning apparatus having the above-described configuration enables the adjustment of the degree of superheat by the cooling expansion valve, based on the ratio of the cooling capacity in the evaporator and the reheating capacity in the indoor condenser. Since the upper limit is set, the refrigerant circulation rate of the indoor condenser can be limited so that the ratio of the refrigerant circulation rate of the indoor condenser to the refrigerant circulation rate of the evaporator does not become excessively large, and the cooling expansion valve is opened. It is possible to appropriately adjust the superheat degree of the evaporator by the degree control.
 (2)好ましくは、前記制御装置が、運転中の前記蒸発器における冷却能力の変動に応じて、前記再熱膨張弁の開度の上限を調整する上限調整部をさらに備えている。
 この構成によれば、例えば、運転中に、外部からの熱負荷の減少に応じて蒸発器における冷却能力を低下させた場合に、再熱膨張弁の開度の上限を低く調整し、室内凝縮器における再熱能力をも低下させることができるので、蒸発器の冷却能力に変動が生じたとしても、蒸発器の冷媒循環量に対する室内凝縮器における冷媒循環量の割合が過度に大きくならず、冷却膨張弁の開度制御による過熱度の調整を適切に行うことができる。
(2) Preferably, the said control apparatus is further provided with the upper limit adjustment part which adjusts the upper limit of the opening degree of the said reheat expansion valve according to the fluctuation | variation of the cooling capacity in the said evaporator in operation.
According to this configuration, for example, when the cooling capacity of the evaporator is reduced in accordance with a decrease in the external heat load during operation, the upper limit of the reheat expansion valve opening is adjusted to be low, Since the reheat capacity in the evaporator can also be reduced, even if fluctuations occur in the cooling capacity of the evaporator, the ratio of the refrigerant circulation rate in the indoor condenser to the refrigerant circulation rate in the evaporator does not become excessively large, It is possible to appropriately adjust the degree of superheat by controlling the opening degree of the cooling expansion valve.
 (3)好ましくは、前記再熱膨張弁の開度の上限が、前記冷却膨張弁を流れる冷媒循環量と前記再熱膨張弁を流れる冷媒循環量との比率に基づいて調整される。
 この構成によれば、冷却膨張弁を流れる冷媒循環量は、蒸発器の冷却能力と相関があり、再熱膨張弁を流れる冷媒循環量は、室内凝縮器の再熱能力と相関があるので、前記冷却膨張弁を流れる冷媒循環量と前記再熱膨張弁を流れる冷媒循環量との比率に基づいて再熱膨張弁の開度の上限を調整することができる。
(3) Preferably, the upper limit of the opening degree of the reheat expansion valve is adjusted based on a ratio between a refrigerant circulation amount flowing through the cooling expansion valve and a refrigerant circulation amount flowing through the reheat expansion valve.
According to this configuration, the refrigerant circulation amount that flows through the cooling expansion valve is correlated with the cooling capacity of the evaporator, and the refrigerant circulation amount that flows through the reheat expansion valve is correlated with the reheat capacity of the indoor condenser. The upper limit of the opening degree of the rethermal expansion valve can be adjusted based on the ratio between the refrigerant circulation amount flowing through the cooling expansion valve and the refrigerant circulation amount flowing through the reheat expansion valve.
 (4)好ましくは、前記再熱膨張弁の開度の上限が、前記蒸発器を通過する前後の空気の温度差と、前記室内凝縮器を通過する前後の空気の温度差との比率に基づいて調整される。
 この構成によれば、蒸発器を通過する前後の空気の温度差は、蒸発器における冷却能力と相関があり、前記室内凝縮器を通過する前後の空気の温度差は、室内凝縮器における再熱能力と相関がある。したがって、これらの温度差の比率に基づいて再熱膨張弁の開度の上限を調整することができる。また、各温度差は空気温度センサを用いて容易に計測することができるので、再熱膨張弁の開度の上限を調整する操作を簡便に行うことができる。
(4) Preferably, the upper limit of the opening degree of the reheat expansion valve is based on a ratio between a temperature difference between air before and after passing through the evaporator and a temperature difference between air before and after passing through the indoor condenser. Adjusted.
According to this configuration, the temperature difference between the air before and after passing through the evaporator correlates with the cooling capacity in the evaporator, and the temperature difference between the air before and after passing through the indoor condenser is reheated in the indoor condenser. Correlates with ability. Therefore, the upper limit of the opening degree of the rethermal expansion valve can be adjusted based on the ratio of these temperature differences. Moreover, since each temperature difference can be easily measured using an air temperature sensor, an operation for adjusting the upper limit of the opening degree of the reheat expansion valve can be easily performed.
 (5)好ましくは、前記再熱制御部が、前記室内凝縮器の出口の冷媒の過冷却度に応じて前記再熱膨張弁の開度の制御量を補正し、当該過冷却度を調整する。
 室内凝縮器の出口における過冷却度が十分に確保できない場合、再熱膨張弁に気液二相冷媒が流入し、室内凝縮器への冷媒循環量が急減少して過熱度の制御が乱れる等の不都合が生じる。
 このような不都合に鑑み、上記構成を有する空気調和装置は、再熱制御部が、室内凝縮器の出口の冷媒の過冷却度に応じて再熱膨張弁の開度の制御量を補正し、当該過冷却度を所定値に調整するので、過冷却度を好適に確保することができる。
(5) Preferably, the said reheat control part correct | amends the control amount of the opening degree of the said reheat expansion valve according to the supercooling degree of the refrigerant | coolant of the exit of the said indoor condenser, and adjusts the said supercooling degree .
If the degree of supercooling at the outlet of the indoor condenser cannot be ensured sufficiently, the gas-liquid two-phase refrigerant will flow into the reheat expansion valve, the amount of refrigerant circulating to the indoor condenser will rapidly decrease, and the superheat degree control will be disturbed. Inconvenience arises.
In view of such inconvenience, in the air conditioner having the above configuration, the reheat control unit corrects the control amount of the opening degree of the reheat expansion valve according to the degree of supercooling of the refrigerant at the outlet of the indoor condenser, Since the degree of supercooling is adjusted to a predetermined value, the degree of supercooling can be suitably secured.
 (6)好ましくは、前記制御装置が、前記蒸発器で冷却・除湿した空気を前記室内凝縮器で加熱する再熱除湿モードの運転制御と、前記蒸発器で冷却・除湿した空気が前記室内凝縮器を通過するだけの冷却モードの運転制御とを行うものであり、前記蒸発器の吸込空気温度が目標温度の範囲内で且つ吸込空気の相対湿度が目標湿度以上であるときに前記再熱除湿モードの運転を行い、前記蒸発器の吸込空気温度が目標温度より高いか、または、当該吸込空気温度が目標温度の範囲内で且つ吸込空気の相対湿度が目標湿度未満であるときに冷却モードの運転を行うように構成されている。 (6) Preferably, the control device performs operation control in a reheat dehumidification mode in which the air cooled and dehumidified by the evaporator is heated by the indoor condenser, and the air cooled and dehumidified by the evaporator is condensed by the indoor condenser. The reheat dehumidification is performed when the intake air temperature of the evaporator is within a target temperature range and the relative humidity of the intake air is equal to or higher than the target humidity. When the mode is operated, the suction air temperature of the evaporator is higher than the target temperature, or when the suction air temperature is within the target temperature range and the relative humidity of the suction air is lower than the target humidity, It is configured to drive.
 この構成によれば、蒸発器の吸込空気温度が目標温度の範囲内で且つ吸込空気の相対湿度が目標湿度以上であるときには、室内空間の温度に対して湿度が比較的高い状態であるため、温度を下げずに湿度を下げるように再熱除湿モードの運転が行われる。また、蒸発器の吸込空気温度が目標温度より高いか、または、吸込空気温度が目標温度の範囲内で且つ吸込空気の相対湿度が目標湿度未満であるときに、湿度よりも温度を優先して下げるように冷却モードの運転が行われる。このように、吸込空気の状態に応じて再熱除湿モードと冷却モードが行われ、室内空間の湿度や温度が適正値に制御される。 According to this configuration, when the intake air temperature of the evaporator is within the target temperature range and the relative humidity of the intake air is equal to or higher than the target humidity, the humidity is relatively high with respect to the temperature of the indoor space. The operation in the reheat dehumidification mode is performed so as to lower the humidity without lowering the temperature. Also, when the intake air temperature of the evaporator is higher than the target temperature, or when the intake air temperature is within the target temperature range and the relative humidity of the intake air is less than the target humidity, the temperature is prioritized over the humidity. The operation in the cooling mode is performed so as to lower. Thus, the reheat dehumidification mode and the cooling mode are performed according to the state of the intake air, and the humidity and temperature of the indoor space are controlled to appropriate values.
 (7)好ましくは、前記再熱除湿モードの運転時における前記室内凝縮器の冷媒流入側の再熱用冷媒配管に再熱用第1開閉弁が接続され、前記室内凝縮器の冷媒流出側に前記再熱膨張弁が接続され、
 前記再熱用冷媒配管には、前記再熱用第1開閉弁をバイパスする再熱用バイパス管が接続され、該再熱用バイパス管には前記再熱用第1開閉弁より口径の小さい再熱用第2開閉弁が接続されている。
(7) Preferably, a reheat first on-off valve is connected to the refrigerant reflow refrigerant pipe on the refrigerant inflow side of the indoor condenser during operation in the reheat dehumidification mode, and the refrigerant outlet side of the indoor condenser is connected to the refrigerant outflow side. The reheat expansion valve is connected;
The reheating refrigerant pipe is connected to a reheating bypass pipe that bypasses the first reheating opening / closing valve, and the reheating bypass pipe has a smaller diameter than the first reheating opening / closing valve. A second heat on-off valve is connected.
 (8)また、好ましくは、前記制御装置が、前記再熱除湿モードの運転を開始するときに、前記再熱用第1開閉弁を閉鎖した状態で、前記再熱膨張弁を開いてから所定時間後に前記再熱用第2開閉弁を開き、その所定時間後に前記再熱用第1開閉弁を開放する液冷媒除去運転を行うように構成されている。
 この構成によれば、再熱除湿モードの運転を開始するときに、再熱用第1開閉弁よりも口径が小さな再熱用第2開閉弁を先に開くことにより、冷却運転中に再熱用冷媒配管に溜まり込んだ液冷媒が再熱用膨張弁を一気に通過しないので、配管の振動や騒音を防止できる。
(8) Preferably, when the control device starts operation in the reheat dehumidification mode, the control device opens the reheat expansion valve in a state where the first reheat opening / closing valve is closed. The second on-off valve for reheating is opened after a time, and the liquid refrigerant removing operation is performed to open the first on-off valve for reheating after a predetermined time.
According to this configuration, when the operation in the reheat dehumidification mode is started, the reheat second on-off valve having a smaller diameter than the first reheat first on-off valve is opened first, thereby reheating during the cooling operation. Since the liquid refrigerant accumulated in the refrigerant piping does not pass through the reheating expansion valve at once, vibration and noise of the piping can be prevented.
 (9)好ましくは、前記制御装置が、前記再熱除湿モードの運転を終了するときに、前記再熱用第1開閉弁及び前記再熱用第2開閉弁を閉じてから所定時間後に前記再熱用膨張弁を閉鎖するように構成されている。
 この構成によれば、再熱除湿モードの運転が終了したときに、再熱用第1開閉弁及び再熱用第2開閉弁を閉じてから所定時間後に上記再熱膨張弁を閉鎖することにより、その間に室内凝縮器内の液冷媒を室内凝縮器から流出させることができる。室内凝縮器から流出した液冷媒は冷却回路の蒸発器で蒸発した後に圧縮機に回収することができる。
(9) Preferably, when the control device ends the operation in the reheat dehumidification mode, the reheat is started after a predetermined time from closing the first reheat on-off valve and the second reheat on-off valve. The thermal expansion valve is configured to be closed.
According to this configuration, when the operation of the reheat dehumidification mode is finished, the reheat expansion valve is closed after a predetermined time after the first reheat valve and the second reheat valve are closed. In the meantime, the liquid refrigerant in the indoor condenser can be discharged from the indoor condenser. The liquid refrigerant flowing out of the indoor condenser can be recovered by the compressor after being evaporated by the evaporator of the cooling circuit.
 本発明によれば、冷却膨張弁の開度制御によって蒸発器を通過した冷媒の過熱度を好適に制御することができる。 According to the present invention, the degree of superheat of the refrigerant that has passed through the evaporator can be suitably controlled by controlling the opening of the cooling expansion valve.
本発明の第1の実施の形態に係る空気調和装置を示す概略構成図である。It is a schematic structure figure showing the air harmony device concerning a 1st embodiment of the present invention. 制御装置の機能を示す構成図である。It is a block diagram which shows the function of a control apparatus. 空気調和装置の基本制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of the basic control of an air conditioning apparatus. 外負荷の変化に伴う冷却能力と再熱能力との関係を示す説明図である。It is explanatory drawing which shows the relationship between the cooling capacity and the reheat capacity accompanying the change of an external load. 空気調和装置の応用制御1の手順を示すフローチャートである。It is a flowchart which shows the procedure of the application control 1 of an air conditioning apparatus. 空気調和装置の応用制御2の手順を示すフローチャートである。It is a flowchart which shows the procedure of the application control 2 of an air conditioning apparatus. 空気調和装置の応用制御2の手順を示すフローチャートである。It is a flowchart which shows the procedure of the application control 2 of an air conditioning apparatus. モリエル線図上に冷凍サイクルを表した図である。It is the figure which represented the refrigerating cycle on the Mollier diagram. 本発明の第2の実施の形態に係る空気調和装置を示す概略構成図である。It is a schematic block diagram which shows the air conditioning apparatus which concerns on the 2nd Embodiment of this invention. 庫内(室内)温度に応じて運転モードを切り換える状態を示す説明図である。It is explanatory drawing which shows the state which switches an operation mode according to a chamber (indoor) temperature. 運転モードの切り換え制御を示すフローチャートである。It is a flowchart which shows operation mode switching control. 各運転モードでの冷媒回路の構成機器の設定状態を示す表である。It is a table | surface which shows the setting state of the component apparatus of the refrigerant circuit in each operation mode. 再熱用第1開閉弁と再熱用第2開閉弁の開閉タイミングを示すタイムチャートである。It is a time chart which shows the opening / closing timing of the 1st on-off valve for reheating, and the 2nd on-off valve for reheating.
 以下、図面を参照して本発明の実施形態を説明する。
[第1の実施の形態]
<空気調和装置の全体構成>
 図1は、本発明の一実施の形態に係る空気調和装置を示す概略構成図である。
 本実施形態の空気調和装置1は、例えば、食肉工場のように水分を多く含む食肉等の冷却対象が室内に頻繁に出入りするような環境で使用され、室内の温度を一定に維持しつつ除湿をも行う再熱除湿運転が可能な空気調和装置1である。例えば、空気調和装置は1、食肉加工工場の懸肉庫等の冷却対象空間を冷やすために用いられる冷凍装置とされている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
<Overall configuration of air conditioner>
FIG. 1 is a schematic configuration diagram showing an air conditioner according to an embodiment of the present invention.
The air conditioner 1 according to the present embodiment is used in an environment in which a cooling target such as meat containing a lot of moisture frequently enters and exits a room, such as a meat factory, and dehumidifies while keeping the room temperature constant. It is the air conditioning apparatus 1 which can perform the reheat dehumidification operation which also performs. For example, the air conditioner 1 is a refrigeration apparatus that is used to cool a space to be cooled, such as a meat shed in a meat processing factory.
 空気調和装置1は、室外機(熱源ユニット)2と、室内機(利用ユニット)3とを備え、これら室外機2と室内機3とは冷媒連絡配管によって接続されている。また、空気調和装置1は、室外機2及び室内機3の動作を制御する制御装置30を備えている。 The air conditioner 1 includes an outdoor unit (heat source unit) 2 and an indoor unit (use unit) 3, and the outdoor unit 2 and the indoor unit 3 are connected by a refrigerant communication pipe. The air conditioner 1 includes a control device 30 that controls the operations of the outdoor unit 2 and the indoor unit 3.
 室外機2は、例えば屋外に設置され、圧縮機12と、室外凝縮器13と、室外ファン16と、冷媒圧力センサSc2等を備えている。
 室内機3は、例えば工場等の屋内に配置され、第1膨張弁14と、蒸発器(冷却器)15と、室内凝縮器(再熱器)22と、第2膨張弁23と、室内ファン17と、空気温度センサSa1,Sa2,Sa3と、冷媒温度センサSb1,Sb2,Sb3,Sb4,Sb5と、冷媒圧力センサSc1等を備えている。
The outdoor unit 2 is installed outdoors, for example, and includes a compressor 12, an outdoor condenser 13, an outdoor fan 16, a refrigerant pressure sensor Sc2, and the like.
The indoor unit 3 is disposed indoors in a factory, for example, and includes a first expansion valve 14, an evaporator (cooler) 15, an indoor condenser (reheater) 22, a second expansion valve 23, and an indoor fan. 17, air temperature sensors Sa1, Sa2, Sa3, refrigerant temperature sensors Sb1, Sb2, Sb3, Sb4, Sb5, a refrigerant pressure sensor Sc1, and the like.
 圧縮機12、室外凝縮器13、第1膨張弁14、蒸発器15は、この順で冷媒配管により接続されることで冷却回路11を形成している。冷却回路11は、専ら室内空気の温度及び湿度を低下させるために機能する。
 また、本実施形態の空気調和装置1は、冷却回路11における、圧縮機12と室外凝縮器13とを接続する経路11aから分岐し、第1膨張弁14と蒸発器15とを接続する経路11bに接続される再熱経路21を備えている。この再熱経路21は、冷却回路11における室外凝縮器13と第1膨張弁14とをバイパスしている。再熱経路21には、室内凝縮器22と第2膨張弁23とが設けられている。したがって、室内凝縮器22及び第2膨張弁23は、室外凝縮器13及び第1膨張弁14と並列に設けられている。再熱経路21は、冷却回路11により冷却された室内空気の温度を上昇させるために機能する。
The compressor 12, the outdoor condenser 13, the first expansion valve 14, and the evaporator 15 form a cooling circuit 11 by being connected by a refrigerant pipe in this order. The cooling circuit 11 functions exclusively to reduce the temperature and humidity of room air.
Moreover, the air conditioning apparatus 1 of this embodiment branches from the path | route 11a which connects the compressor 12 and the outdoor condenser 13 in the cooling circuit 11, and the path | route 11b which connects the 1st expansion valve 14 and the evaporator 15 in it. Is provided with a reheat path 21 connected to the. The reheat path 21 bypasses the outdoor condenser 13 and the first expansion valve 14 in the cooling circuit 11. The reheat path 21 is provided with an indoor condenser 22 and a second expansion valve 23. Therefore, the indoor condenser 22 and the second expansion valve 23 are provided in parallel with the outdoor condenser 13 and the first expansion valve 14. The reheat path 21 functions to increase the temperature of the indoor air cooled by the cooling circuit 11.
 圧縮機12は、例えば、インバータ制御等によって運転周波数(運転回転数)を調整可能なモータによって駆動される可変容量形のものが用いられる。圧縮機12は、蒸発器15から送られてきた低温・低圧のガス状冷媒を圧縮し、高温・高圧のガス状冷媒とする。なお、圧縮機12は、固定容量形のものであってもよい。 The compressor 12 is, for example, a variable capacity type driven by a motor whose operating frequency (operation speed) can be adjusted by inverter control or the like. The compressor 12 compresses the low-temperature / low-pressure gaseous refrigerant sent from the evaporator 15 into a high-temperature / high-pressure gaseous refrigerant. The compressor 12 may be of a fixed capacity type.
 室外凝縮器13は、例えばクロスフィン式のフィンアンドチューブ型熱交換器やマイクロチャネル型熱交換器等が用いられる。室外凝縮器13は、圧縮機12から吐出されたガス状冷媒を室外空気と熱交換することによって凝縮させ、液状冷媒にする。室外空気は、室外ファン16の駆動によって室外凝縮器13に供給される。 As the outdoor condenser 13, for example, a cross fin type fin-and-tube heat exchanger, a microchannel heat exchanger, or the like is used. The outdoor condenser 13 condenses the gaseous refrigerant discharged from the compressor 12 by exchanging heat with outdoor air to form a liquid refrigerant. The outdoor air is supplied to the outdoor condenser 13 by driving the outdoor fan 16.
 第1膨張弁14は、例えばパルスモータ駆動方式の電子膨張弁であり、開度を自在に調整可能である。第1膨張弁14の開度は、制御装置30によって制御される。第1膨張弁14は、室外凝縮器13によって凝縮された液状冷媒を減圧し、低温・低圧の気液二相冷媒にする。また、第1膨張弁14は、開度が制御されることによって蒸発器15を流れる冷媒の流量を調整し、蒸発器15を通過した後の冷媒の過熱度を調整する。以下の説明においては、第1膨張弁14を「冷却膨張弁」ともいう。 The first expansion valve 14 is, for example, a pulse motor drive type electronic expansion valve, and the opening degree can be freely adjusted. The opening degree of the first expansion valve 14 is controlled by the control device 30. The first expansion valve 14 depressurizes the liquid refrigerant condensed by the outdoor condenser 13 to form a low-temperature / low-pressure gas-liquid two-phase refrigerant. Further, the first expansion valve 14 adjusts the flow rate of the refrigerant flowing through the evaporator 15 by controlling the opening degree, and adjusts the degree of superheat of the refrigerant after passing through the evaporator 15. In the following description, the first expansion valve 14 is also referred to as a “cooling expansion valve”.
 蒸発器15は、室外凝縮器13と同様に、例えばクロスフィン式のフィンアンドチューブ型熱交換器やマイクロチャネル型熱交換器等が用いられる。蒸発器15は、冷却膨張弁14を通過した低温低圧の気液二相冷媒を室内空気と熱交換することによって蒸発させ、ガス状冷媒にする。また、蒸発器15は、冷媒との熱交換によって室内空気を冷却・除湿する冷却器として機能する。室内空気は、室内ファン17の駆動によって蒸発器15に供給される。 As the evaporator 15, for example, a cross fin type fin-and-tube heat exchanger, a microchannel heat exchanger, or the like is used similarly to the outdoor condenser 13. The evaporator 15 evaporates the low-temperature and low-pressure gas-liquid two-phase refrigerant that has passed through the cooling expansion valve 14 by exchanging heat with the room air to form a gaseous refrigerant. Further, the evaporator 15 functions as a cooler that cools and dehumidifies indoor air by heat exchange with the refrigerant. The indoor air is supplied to the evaporator 15 by driving the indoor fan 17.
 室内凝縮器22は、室外凝縮器13と同様に、例えばクロスフィン式のフィンアンドチューブ型熱交換器やマイクロチャネル型熱交換器等が採用される。室内凝縮器22には、室内ファン17の駆動によって蒸発器15によって冷却・除湿された室内空気が供給される。また、室内凝縮器22は、圧縮機12から吐出されたガス状冷媒が、室外凝縮器13へ流れる経路11aから分岐して流入し、このガス状冷媒を室内空気との間で熱交換することによって凝縮させる。これにより、蒸発器15によって冷却・除湿された室内空気が湿度を低下させたまま加熱され、室内に吹き出される。したがって、室内凝縮器22は、蒸発器15によって冷却された室内空気を再び加熱する再熱器として機能する。 As the outdoor condenser 13, for example, a cross fin type fin-and-tube heat exchanger, a microchannel heat exchanger, or the like is adopted as the indoor condenser 22. The indoor condenser 22 is supplied with indoor air cooled and dehumidified by the evaporator 15 by driving the indoor fan 17. Moreover, the indoor condenser 22 branches inflow from the path | route 11a which the gaseous refrigerant discharged from the compressor 12 flows into the outdoor condenser 13, and heat-exchanges this gaseous refrigerant with indoor air. To condense. Thereby, the indoor air cooled and dehumidified by the evaporator 15 is heated with the humidity lowered, and blown out into the room. Therefore, the indoor condenser 22 functions as a reheater that reheats the indoor air cooled by the evaporator 15.
 第2膨張弁23は、冷却膨張弁14と同様に、例えばパルスモータ駆動方式の電子膨張弁であり、開度を自在に調整可能である。第2膨張弁23の開度は、制御装置30によって制御される。第2膨張弁23は、室内凝縮器22によって凝縮された液状冷媒を減圧し、低温・低圧の気液二相冷媒にする。また、第2膨張弁23は、開度が制御されることによって室内凝縮器22を流れる冷媒の流量を調整し、室内空気の加熱量(再熱量)を調整する。以下、第2膨張弁23を「再熱膨張弁」ともいう。 The second expansion valve 23 is a pulse motor drive type electronic expansion valve, for example, similar to the cooling expansion valve 14, and the opening degree can be freely adjusted. The opening degree of the second expansion valve 23 is controlled by the control device 30. The second expansion valve 23 depressurizes the liquid refrigerant condensed by the indoor condenser 22 to form a low-temperature / low-pressure gas-liquid two-phase refrigerant. Further, the second expansion valve 23 adjusts the flow rate of the refrigerant flowing through the indoor condenser 22 by controlling the opening degree, thereby adjusting the heating amount (reheat amount) of the indoor air. Hereinafter, the second expansion valve 23 is also referred to as a “reheat expansion valve”.
 空気温度センサSa1,Sa2,Sa3は、室内機3に吸い込まれる空気の温度を検出する第1空気温度センサSa1と、室内機3から吹き出される空気の温度を検出する第2空気温度センサSa2と、蒸発器15を通過し室内凝縮器22に供給される前の空気の温度を検出する第3空気温度センサSa3とを含む。 The air temperature sensors Sa1, Sa2, and Sa3 include a first air temperature sensor Sa1 that detects the temperature of air sucked into the indoor unit 3, and a second air temperature sensor Sa2 that detects the temperature of air blown from the indoor unit 3. And a third air temperature sensor Sa3 that detects the temperature of the air before passing through the evaporator 15 and being supplied to the indoor condenser 22.
 冷媒温度センサSb1,Sb2,Sb3,Sb4,Sb5は、蒸発器15の出口における冷媒の温度を検出する第1冷媒温度センサSb1と、蒸発器15を流れている冷媒の温度を検出する第2冷媒温度センサSb2と、室内凝縮器22の出口(再熱膨張弁23前)における冷媒の温度を検出する第3冷媒温度センサSb3と、室内凝縮器22の入口における冷媒の温度を検出する第4冷媒温度センサSb4と、室内凝縮器22を流れている冷媒の温度を検出する第5冷媒温度センサSb5とを含む。 The refrigerant temperature sensors Sb1, Sb2, Sb3, Sb4, and Sb5 are a first refrigerant temperature sensor Sb1 that detects the temperature of the refrigerant at the outlet of the evaporator 15, and a second refrigerant that detects the temperature of the refrigerant flowing through the evaporator 15. A temperature sensor Sb2, a third refrigerant temperature sensor Sb3 that detects the temperature of the refrigerant at the outlet of the indoor condenser 22 (before the reheat expansion valve 23), and a fourth refrigerant that detects the temperature of the refrigerant at the inlet of the indoor condenser 22. Temperature sensor Sb4 and 5th refrigerant | coolant temperature sensor Sb5 which detects the temperature of the refrigerant | coolant which is flowing through the indoor condenser 22 are included.
 冷媒圧力センサSc1,Sc2は、室内凝縮器22の出口(再熱膨張弁23前)における冷媒の圧力を検出する第1圧力センサSc1と、圧縮機12の吐出圧力を検出する第2圧力センサSc2とを含む。
 以上の各センサの検出信号は制御装置30に入力され、制御装置30による各種機器の制御に利用される。なお、空気調和装置1は、以上に説明した全てのセンサを備えている必要はなく、少なくとも後述する制御例において用いられるセンサを備えていればよい。
The refrigerant pressure sensors Sc1 and Sc2 are a first pressure sensor Sc1 that detects the refrigerant pressure at the outlet of the indoor condenser 22 (before the reheat expansion valve 23), and a second pressure sensor Sc2 that detects the discharge pressure of the compressor 12. Including.
The detection signals of the above sensors are input to the control device 30 and used for controlling various devices by the control device 30. In addition, the air conditioning apparatus 1 does not need to be provided with all the sensors demonstrated above, and should just be provided with the sensor used in the control example mentioned later at least.
 制御装置30は、室内機3に設けられた室内制御部や室外機2に設けられた室外制御部等により構成されている(いずれも図示せず)。制御装置30は、マイクロコンピュータ、メモリ、通信インタフェース等により構成されており、室内機3及び室外機2に設けられた各種センサの信号が入力される。また、制御装置30は、圧縮機12、膨張弁14,23、ファン16,17等の動作を制御する。制御装置30は、室内機3に接続されたリモートコントローラ等を介して、室内機3における吸込温度又は吹出温度の目標値(設定温度)の入力を受付可能である。 The control device 30 is configured by an indoor control unit provided in the indoor unit 3, an outdoor control unit provided in the outdoor unit 2, and the like (both not shown). The control device 30 includes a microcomputer, a memory, a communication interface, and the like, and receives signals from various sensors provided in the indoor unit 3 and the outdoor unit 2. The control device 30 controls operations of the compressor 12, the expansion valves 14 and 23, the fans 16 and 17, and the like. The control device 30 can accept input of a target value (set temperature) of the suction temperature or the blowing temperature in the indoor unit 3 via a remote controller or the like connected to the indoor unit 3.
 図2は、制御装置30の機能を示す構成図である。
 制御装置30は、冷却制御部31と、再熱制御部32と、上限調整部33としての機能を有している。
 冷却制御部31は、冷却膨張弁14の開度を制御することによって蒸発器15における冷媒循環量を調整し、蒸発器15における冷却能力によって室内空気を所望に冷却・除湿するとともに、蒸発器15を通過した冷媒の過熱度を調整するための機能部である。
FIG. 2 is a configuration diagram illustrating functions of the control device 30.
The control device 30 has functions as a cooling control unit 31, a reheat control unit 32, and an upper limit adjustment unit 33.
The cooling control unit 31 adjusts the refrigerant circulation amount in the evaporator 15 by controlling the opening degree of the cooling expansion valve 14, and cools and dehumidifies the indoor air as desired by the cooling capacity in the evaporator 15, and the evaporator 15 It is a function part for adjusting the superheat degree of the refrigerant | coolant which passed through.
 再熱制御部32は、再熱膨張弁23の開度を制御することによって室内凝縮器22における冷媒循環量を調整し、室内凝縮器22における再熱能力によって室内の温度を所望に調整する機能部である。また、再熱制御部32は、所定の開度を上限として再熱膨張弁23の開度を調整する。この開度の上限は、再熱膨張弁23の全閉となる開度よりも大きく、全開となる開度よりも小さい開度である。 The reheat control unit 32 adjusts the refrigerant circulation amount in the indoor condenser 22 by controlling the opening degree of the reheat expansion valve 23, and adjusts the indoor temperature as desired by the reheat capability in the indoor condenser 22. Part. Moreover, the reheat control part 32 adjusts the opening degree of the reheat expansion valve 23 by making predetermined opening degree into an upper limit. The upper limit of the opening degree is an opening degree that is larger than the opening degree at which the rethermal expansion valve 23 is fully closed and smaller than the opening degree at which the reheating expansion valve 23 is fully opened.
 また、上限調整部33は、再熱制御部32による再熱膨張弁23の開度の上限を調整する機能部である。この上限調整部33は、以下に説明する制御例のうち、専ら応用制御1において用いられる機能部である。 Further, the upper limit adjustment unit 33 is a functional unit that adjusts the upper limit of the opening degree of the reheat expansion valve 23 by the reheat control unit 32. The upper limit adjustment unit 33 is a functional unit used exclusively in the application control 1 in the control examples described below.
 なお、一般に、冷却能力φは、次の式(1)で表すことができ、再熱能力φは、次式(2)で表すことができる。 In general, the cooling capacity φ C can be expressed by the following formula (1), and the reheating capacity φ R can be expressed by the following formula (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、CV及びCVは、冷却膨張弁14及び再熱膨張弁23の開度に対する流量係数、ΔPcは、室外凝縮器13及び蒸発器15における高低差圧、ΔPは、室内凝縮器22及び蒸発器15における高低差圧、hは、蒸発器15の出入口における低圧側のエンタルピー差(図8参照)、hは、室内凝縮器22の出入口における高圧側エンタルピー差(図8参照)、G,Gは高圧側の冷媒の比重比(水基準)である。冷却系循環量は、冷却膨張弁14を通過する冷媒の循環量を示し、再熱系循環量は、再熱膨張弁23を通過する冷媒の循環量を示す。したがって、冷却能力φは、冷却膨張弁14と再熱膨張弁23との双方を通過して蒸発器15に流入する冷媒循環量から求められる。一方、再熱能力φは、室内凝縮器22を経て再熱膨張弁23を通過する冷媒循環量から求められる。 Here, CV C and CV R is the flow rate coefficient for the opening of the cooling expansion valve 14 and the reheat expansion valve 23, Delta] Pc is height differential pressure in the outdoor condenser 13 and evaporator 15, the [Delta] P R, the indoor condenser 22 and the difference in pressure in the evaporator 15, h C is the low-pressure enthalpy difference at the inlet / outlet of the evaporator 15 (see FIG. 8), and h R is the high-pressure enthalpy difference at the inlet / outlet of the indoor condenser 22 (see FIG. 8). ), G C, the G R is the specific gravity ratio of the high-pressure side refrigerant (water basis). The cooling system circulation amount indicates the circulation amount of the refrigerant that passes through the cooling expansion valve 14, and the reheat system circulation amount indicates the circulation amount of the refrigerant that passes through the reheat expansion valve 23. Therefore, the cooling capacity φ C is obtained from the refrigerant circulation amount that passes through both the cooling expansion valve 14 and the reheat expansion valve 23 and flows into the evaporator 15. On the other hand, the reheat capability phi R is determined from the circulation amount of refrigerant passing through the reheat expansion valve 23 through the indoor condenser 22.
[空気調和装置の制御例]
 上述したように、空気調和装置1は、冷却膨張弁14の開度制御によって蒸発器15における冷媒循環量を調整し、蒸発器15を通過した後の過熱度を所定値に調整する。これにより、圧縮機12には液状冷媒が流入せず、圧縮機12が保護される。
 一方、蒸発器15には、冷却膨張弁14を通過した冷媒だけでなく、再熱経路21からの冷媒も流入する。再熱経路21から流入する冷媒の循環量は、冷却膨張弁14によって制御することはできないため、再熱経路21からの冷媒循環量が相対的に多くなると冷却膨張弁14による過熱度の調整が困難になる。
[Control example of air conditioner]
As described above, the air conditioner 1 adjusts the refrigerant circulation amount in the evaporator 15 by controlling the opening degree of the cooling expansion valve 14, and adjusts the degree of superheat after passing through the evaporator 15 to a predetermined value. Thereby, a liquid refrigerant does not flow into the compressor 12, and the compressor 12 is protected.
On the other hand, not only the refrigerant that has passed through the cooling expansion valve 14 but also the refrigerant from the reheat path 21 flows into the evaporator 15. Since the circulation amount of the refrigerant flowing in from the reheat path 21 cannot be controlled by the cooling expansion valve 14, the superheat degree is adjusted by the cooling expansion valve 14 when the refrigerant circulation amount from the reheat path 21 is relatively increased. It becomes difficult.
 そこで、本実施形態の空気調和装置1では、再熱膨張弁23の開度に「上限」を設定することによって、再熱経路21から蒸発器15に流入する冷媒量を制限し、冷却膨張弁14による過熱度の調整を可能としている。言い換えると、再熱膨張弁23の開度の上限は、冷却膨張弁14による過熱度の調整を可能とする範囲で所定に設定されている。 Therefore, in the air conditioning apparatus 1 of the present embodiment, by setting an “upper limit” to the opening degree of the reheat expansion valve 23, the amount of refrigerant flowing into the evaporator 15 from the reheat path 21 is limited, and the cooling expansion valve 14, the degree of superheat can be adjusted. In other words, the upper limit of the opening degree of the reheat expansion valve 23 is set to a predetermined value within a range in which the degree of superheat by the cooling expansion valve 14 can be adjusted.
 以下、制御装置30による冷却膨張弁14及び再熱膨張弁23の制御例について説明する。具体的には、最も基本となる制御(基本制御)と、その応用となる制御(応用制御1,2)とを順番に説明する。
 <基本制御>
 図3は、空気調和装置の基本制御の手順を示すフローチャートである。この基本制御は、再熱膨張弁23の開度の上限を固定とした場合の制御例である。
 まず、ステップS1において、蒸発器15の出口における冷媒の温度Tcoが第1冷媒温度センサSb1により検出される。また、ステップS2において、蒸発器15を流れている冷媒の温度Tcmが第2冷媒温度センサSb2により検出される。この冷媒の温度Tcmは、蒸発器15における蒸発温度に相当する。
Hereinafter, a control example of the cooling expansion valve 14 and the reheat expansion valve 23 by the control device 30 will be described. Specifically, the most basic control (basic control) and its application (application control 1, 2) will be described in order.
<Basic control>
FIG. 3 is a flowchart showing a basic control procedure of the air conditioner. This basic control is a control example when the upper limit of the opening degree of the reheat expansion valve 23 is fixed.
First, in step S1, the refrigerant temperature Tco at the outlet of the evaporator 15 is detected by the first refrigerant temperature sensor Sb1. In step S2, the temperature Tcm of the refrigerant flowing through the evaporator 15 is detected by the second refrigerant temperature sensor Sb2. The refrigerant temperature Tcm corresponds to the evaporation temperature in the evaporator 15.
 次いで、ステップS3において、制御装置30は、蒸発器15を通過した後の冷媒の過熱度SHを算出する。具体的には、次式(3)により過熱度SHを算出する。
  SH=Tco-Tcm ・・・ (3)
Next, in step S <b> 3, the control device 30 calculates the superheat degree SH of the refrigerant after passing through the evaporator 15. Specifically, the superheat degree SH is calculated by the following equation (3).
SH = Tco-Tcm (3)
 次いで、ステップS4において、制御装置30は、過熱度SHを所定の目標値に調整するための冷却膨張弁14の開度CPlsを求める。具体的には、まず、制御装置30は、次式(4)により、現在の過熱度SHと、目標過熱度SHmのとの差分ΔSHを演算する。
  ΔSH=SH-SHm ・・・ (4)
Next, in step S4, the control device 30 obtains the opening degree C Pls of the cooling expansion valve 14 for adjusting the superheat degree SH to a predetermined target value. Specifically, first, the control device 30 calculates a difference ΔSH between the current superheat degree SH and the target superheat degree SHm by the following equation (4).
ΔSH = SH-SHm (4)
 次いで、制御装置30は、過熱度の差分ΔSHを用いて冷却膨張弁14の開度の操作量ΔCPlsを求める。本実施形態では、次式(5)に示すように、PID制御等のフィードバック制御により過熱度の差分ΔSHから冷却膨張弁の開度の操作量ΔCPlsを算出する。
  ΔCPls=PID(ΔSH) ・・・ (5)
Next, the control device 30 obtains the operation amount ΔC Pls of the opening degree of the cooling expansion valve 14 using the difference ΔSH in superheat degree. In the present embodiment, as shown in the following equation (5), the manipulated variable ΔC Pls of the opening degree of the cooling expansion valve is calculated from the difference ΔSH in superheat degree by feedback control such as PID control.
ΔC Pls = PID (ΔSH) (5)
 そして、冷却膨張弁14の開度CPlsを次式(6)により求める。
  CPls=CPls(現在値)+ΔCPls ・・・ (6)
Then, the opening degree C Pls of the cooling expansion valve 14 is obtained by the following equation (6).
C Pls = C Pls (current value) + ΔC Pls (6)
 ステップS5において、制御装置30は、式(6)により算出した開度CPlsとなるように冷却膨張弁14を操作する。 In step S5, the control device 30 operates the cooling expansion valve 14 so that the opening degree CPls calculated by the equation (6) is obtained.
 次に、ステップS6において、第1空気温度センサSa1により室内機3への室内空気の吸込温度Taが検知される。
 そして、ステップS7において、制御装置30は、吸込温度Taを所定の目標値に調整するための再熱膨張弁23の開度RPlsを求める。具体的に、まず、制御装置30は、次式(7)により、現在の吸込温度Taと、目標吸込温度Tamとの差分ΔTaを演算する。
  ΔTa=Ta-Tam ・・・ (7)
Next, in step S6, the indoor air suction temperature Ta to the indoor unit 3 is detected by the first air temperature sensor Sa1.
And in step S7, the control apparatus 30 calculates | requires opening degree R Pls of the rethermal expansion valve 23 for adjusting the suction temperature Ta to a predetermined target value. Specifically, first, the control device 30 calculates a difference ΔTa between the current suction temperature Ta and the target suction temperature Tam by the following equation (7).
ΔTa = Ta−Tam (7)
 そして、吸込温度の差分ΔTaを用いて再熱膨張弁23の開度の操作量ΔRPlsを取得する。本実施形態では、次式(8)に示すように、PID制御等のフィードバック制御により、吸込温度の差分ΔTaから再熱膨張弁23の開度の操作量ΔRPlsを算出する。
  ΔRPls=PID(ΔTa) ・・・ (8)
And the operation amount (DELTA) R Pls of the opening degree of the rethermal expansion valve 23 is acquired using the difference (DELTA) Ta of suction temperature. In this embodiment, as shown in the following equation (8), the manipulated variable ΔR Pls of the opening degree of the rethermal expansion valve 23 is calculated from the suction temperature difference ΔTa by feedback control such as PID control.
ΔR Pls = PID (ΔTa) (8)
 次いで、再熱膨張弁23の開度RPlsを、次式(9)により求める。
  RPls=RPls(現在値)-ΔRPls ・・・ (9)
Next, the opening degree RPls of the reheat expansion valve 23 is obtained by the following equation (9).
R Pls = R Pls (current value) −ΔR Pls (9)
 そして、ステップS8において、制御装置30は、ステップS7で算出した再熱膨張弁23の開度RPlsと所定の上限値RMaxとを比較し、小さい方の値を実際に使用する再熱膨張弁23の開度RPlsに決定する処理を行う。
 この所定の上限値RMaxは、冷却膨張弁14による過熱度の調整を可能とするような、蒸発器15における冷却能力φ(上記式(1)参照)と、室内凝縮器22による再熱能力φ(上記式(2)参照)との比率に基づいて設定される。つまり、当該比率をξとすると、次の式(10)が満たされるように上限値RMaxが設定される。
  ξ・φ=φ ・・・ (10)
In step S8, the control device 30 compares the opening degree R Pls of the rethermal expansion valve 23 calculated in step S7 with a predetermined upper limit value R Max and reheat expansion that actually uses the smaller value. Processing to determine the opening degree R Pls of the valve 23 is performed.
The predetermined upper limit value R Max is a cooling capacity φ C (see the above formula (1)) in the evaporator 15 and reheating by the indoor condenser 22 so that the degree of superheat by the cooling expansion valve 14 can be adjusted. It is set based on the ratio with the capacity φ R (see the above formula (2)). That is, when the ratio is ξ, the upper limit value R Max is set so that the following expression (10) is satisfied.
ξ · φ C = φ R (10)
 この比率ξは、空気調和装置1が設置される環境や運転条件等に基づいて適宜決定され、空気調和装置1に対して予め設定される固定値であり、例えば、0<ξ≦1の範囲内で設定される。
 そして、ステップS9において制御装置30は、決定された開度RPlsにより再熱膨張弁23の開度を制御する。
This ratio ξ is determined as appropriate based on the environment in which the air conditioner 1 is installed, operating conditions, and the like, and is a fixed value set in advance for the air conditioner 1. For example, a range of 0 <ξ ≦ 1 Set within.
In step S9, the control device 30 controls the opening degree of the rethermal expansion valve 23 by the determined opening degree R Pls .
 以上のような冷却膨張弁14及び再熱膨張弁23の制御を行うことによって、蒸発器15における冷媒循環量に対して室内凝縮器22における冷媒循環量の割合が過度に大きくなることが無く、蒸発器15を通過した後の冷媒の過熱度を冷却膨張弁14により制御することが可能となる。 By controlling the cooling expansion valve 14 and the reheat expansion valve 23 as described above, the ratio of the refrigerant circulation amount in the indoor condenser 22 to the refrigerant circulation amount in the evaporator 15 does not become excessively large. The degree of superheat of the refrigerant after passing through the evaporator 15 can be controlled by the cooling expansion valve 14.
 なお、ステップS7においては、再熱膨張弁23の開度の操作量ΔRPlsを、吸込温度Taとその目標値Tamとの差分ΔTaに基づいて求めているが、これに代えて、第3冷媒温度センサSb3により検出される室内凝縮器22の出口の冷媒温度とその設定温度との差分や、第3冷媒温度センサSb3により検出される室内凝縮器22の出口の冷媒温度と第5冷媒温度センサSb5により検出される室内凝縮器22を流れる冷媒温度との差分、第4冷媒温度センサSb4により検出される室内凝縮器22の入口の冷媒温度と第3冷媒温度センサSb3により検出される室内凝縮器22の出口の冷媒温度との差分等に基づいて、PID制御等により求めることもできる。 In step S7, the operation amount ΔR Pls of the opening degree of the rethermal expansion valve 23 is obtained based on the difference ΔTa between the suction temperature Ta and the target value Tam, but instead, the third refrigerant The difference between the refrigerant temperature at the outlet of the indoor condenser 22 detected by the temperature sensor Sb3 and the set temperature, the refrigerant temperature at the outlet of the indoor condenser 22 detected by the third refrigerant temperature sensor Sb3, and the fifth refrigerant temperature sensor. The difference between the refrigerant temperature flowing through the indoor condenser 22 detected by Sb5, the refrigerant temperature at the inlet of the indoor condenser 22 detected by the fourth refrigerant temperature sensor Sb4, and the indoor condenser detected by the third refrigerant temperature sensor Sb3 It can also be determined by PID control or the like based on the difference from the refrigerant temperature at the outlet 22 or the like.
 <応用制御1>
 上述した基本制御では、再熱膨張弁23の開度の上限値RMaxが固定値とされている。しかし、空気調和装置1の運転中に、室外から侵入する熱等の外負荷の減少に応じて蒸発器15における冷却能力が低下すると、再熱能力が相対的に高くなりすぎ、冷却膨張弁14による過熱度の調整が困難となる場合がある。以下、詳しく説明する。
<Application control 1>
In the basic control described above, the upper limit value R Max of the opening degree of the rethermal expansion valve 23 is a fixed value. However, if the cooling capacity in the evaporator 15 is reduced in accordance with a decrease in the external load such as heat entering from the outside during the operation of the air conditioner 1, the reheating capacity becomes relatively high, and the cooling expansion valve 14 It may be difficult to adjust the degree of superheat due to. This will be described in detail below.
 図4は、外負荷の変化に伴う冷却能力と再熱能力との関係を示す説明図であり、(a)は比較例、(b)は応用制御1をそれぞれ示している。
 図4(a)は、再熱膨張弁23の開度を所定の上限値で固定した場合における、外負荷と、空気調和装置における冷却能力と、再熱能力との関係を示しており、上段(I)から下段(III)に向かうに従い、外負荷が減少している。
4A and 4B are explanatory diagrams showing the relationship between the cooling capacity and the reheat capacity associated with the change in the external load. FIG. 4A shows a comparative example, and FIG. 4B shows the application control 1.
FIG. 4A shows the relationship among the external load, the cooling capacity in the air conditioner, and the reheat capacity when the opening degree of the reheat expansion valve 23 is fixed at a predetermined upper limit value. As it goes from (I) to the lower stage (III), the external load decreases.
 上述した式(1)及び式(2)で示される冷却能力φや再熱能力φは、差圧ΔP,ΔPやエンタルピー差h,hの変化が小さい場合に、各膨張弁14,23の流量係数CV及びCVに大きく依存する。そのため、例えば、冷却能力φを減少させるには、各膨張弁14,23の流量係数CV,CVを減少させて各膨張弁14,23を絞り、冷媒の循環量を減少させればよいことになる。しかしながら、再熱膨張弁23の開度が固定されている場合(流量係数CVが一定の場合)、冷却能力φを減少させるには、冷却膨張弁14の流量係数CVのみを減少させる必要がある。 The cooling capacity phi C and reheat capability phi R represented by the above Expression (1) and (2), the differential pressure [Delta] P C, [Delta] P R and the enthalpy difference h C, when the change of the h R is small, the expansion greatly depends on the flow coefficient CV C and CV R valves 14 and 23. Therefore, for example, to reduce the cooling capacity phi C is the flow coefficient CV C of the expansion valves 14, 23, squeezing the respective expansion valves 14 and 23 reduces the CV R, if caused to decrease the circulation amount of refrigerant It will be good. However, (when the flow coefficient CV R is constant) when the opening of the reheat expansion valve 23 is fixed, to reduce the cooling capacity phi C reduces only the flow coefficient CV C of the cooling expansion valve 14 There is a need.
 図4(a)の(I)に示すように、外負荷が大きい場合は、蒸発器15を流れる冷媒の循環量が多く冷却能力φが高くなるため、これらに対して室内凝縮器22を流れる冷媒の循環量及び再熱能力φが相対的に小さくなる。つまり、蒸発器15による冷却能力φに対する、室内凝縮器22による再熱能力φの比率が小さくなり、冷却膨張弁14による過熱度の調整は比較的容易となる。 4 as shown in (I) of (a), when the outside load is large, the circulation amount of the refrigerant flowing in the evaporator 15 is large and the cooling capacity phi C higher, the indoor condenser 22 for these circulation rate and reheat capability phi R of the refrigerant flowing becomes relatively small. That is, for the cooling capacity phi C by the evaporator 15, the ratio of the reheating capacity phi R by the indoor condenser 22 is reduced, adjustment of the degree of superheat by cooling expansion valve 14 becomes relatively easy.
 再熱膨張弁23の開度が固定されていると、(II)に示すように、外負荷が減少したとしても室内凝縮器22の冷媒循環量はほとんど変わらず、これに相対して蒸発器15の冷媒循環量が減少する(流量係数CVが減少する)ため、冷却能力φに対する再熱能力φの比率が徐々に高くなる。 When the opening degree of the reheat expansion valve 23 is fixed, as shown in (II), even if the external load is reduced, the refrigerant circulation amount of the indoor condenser 22 is hardly changed, and the evaporator is opposed to this. refrigerant circulation amount of 15 is reduced (flow coefficient CV C decreases) Therefore, the ratio of the reheating capacity phi R gradually increases with respect to cooling capacity phi C.
 そして、(III)に示すように、外負荷の減少によって、冷却能力がさらに減少した場合、例えば(I)よりも冷却能力φが半減した場合、冷却能力φに対する再熱能力φの比率は約2倍となる。言い換えると、蒸発器15の冷媒循環量に対する室内凝縮器22の冷媒循環量の比率が(I)の状態から約2倍となる。そのため、冷却膨張弁14による過熱度の調整が非常に困難となる。 As shown in (III), when the cooling capacity is further reduced due to a decrease in the external load, for example, when the cooling capacity φ C is halved compared to (I), the reheating capacity φ R of the cooling capacity φ C The ratio is about double. In other words, the ratio of the refrigerant circulation amount of the indoor condenser 22 to the refrigerant circulation amount of the evaporator 15 is about twice from the state (I). For this reason, it is very difficult to adjust the degree of superheat by the cooling expansion valve 14.
 応用制御1では、このような不都合を解消するために、再熱膨張弁23の開度の上限を、冷却能力の変動に応じて調整する。具体的には、図4(b)に示すように、(I)~(III)にかけて外負荷が徐々に減少していく場合に、冷却能力φの大きさに対して一定の比率で再熱能力φを減少させる。より具体的には、蒸発器15を流れる冷媒循環量に対して一定の比率で室内凝縮器22を流れる冷媒循環量を減少させる。そのために、冷却膨張弁14の開度の変動に応じて、再熱膨張弁23の開度の上限を所定の比率で減少させる。これにより、蒸発器15の冷媒循環量に対する室内凝縮器22の冷媒循環量の割合が過度に大きくならず、冷却膨張弁14による過熱度の調整が可能となる。なお、この制御は、図2に示すように、制御装置30における上限調整部33の機能により実行される。 In the application control 1, in order to eliminate such inconvenience, the upper limit of the opening degree of the reheat expansion valve 23 is adjusted according to the fluctuation of the cooling capacity. Specifically, as shown in FIG. 4 (b), when the outer load toward (I) ~ (III) decreases gradually at a constant ratio to the size of the cooling capacity phi C again reduce heat capacity phi R. More specifically, the refrigerant circulation amount flowing through the indoor condenser 22 is decreased at a constant ratio with respect to the refrigerant circulation amount flowing through the evaporator 15. Therefore, the upper limit of the opening degree of the rethermal expansion valve 23 is decreased at a predetermined ratio in accordance with the change in the opening degree of the cooling expansion valve 14. Thereby, the ratio of the refrigerant circulation amount of the indoor condenser 22 to the refrigerant circulation amount of the evaporator 15 is not excessively increased, and the degree of superheat by the cooling expansion valve 14 can be adjusted. This control is executed by the function of the upper limit adjustment unit 33 in the control device 30 as shown in FIG.
 以下、応用制御1の詳細について説明する。
 図5は、空気調和装置の応用制御1の手順を示すフローチャートである。
 図5におけるステップS11~S17、S19、S20は、それぞれ図3におけるステップS1~S9と略同じである。そして、応用制御例1では、図5におけるステップS18において、再熱膨張弁23の開度の上限を冷却膨張弁14の開度に応じて変更している。
Details of the application control 1 will be described below.
FIG. 5 is a flowchart showing the procedure of the application control 1 of the air conditioner.
Steps S11 to S17, S19, and S20 in FIG. 5 are substantially the same as steps S1 to S9 in FIG. In the application control example 1, the upper limit of the opening degree of the rethermal expansion valve 23 is changed according to the opening degree of the cooling expansion valve 14 in step S18 in FIG.
 具体的には、次式(11)に示すように、ステップS14で算出した冷却膨張弁14の開度CPlsに、所定の係数ζと、冷却膨張弁14及び再熱膨張弁23の最大流量係数CVc、CVrの比を乗算することによって再熱膨張弁23の開度の上限値RMax’を算出する。
  RMax’=ζ・CVc/CVr・CPls ・・・ (11)
Specifically, as shown in the following equation (11), the opening CPLs of the cooling expansion valve 14 calculated in step S14 is added to the predetermined coefficient ζ and the maximum flow rates of the cooling expansion valve 14 and the rethermal expansion valve 23. The upper limit value R Max ′ of the reheat expansion valve 23 is calculated by multiplying the ratios of the coefficients CVc and CVr.
R Max '= ζ · CVc / CVr · C Pls (11)
 所定の係数ζは、上記式(1)、式(2)、及び式(10)から、冷却能力φと再熱能力φとの比ξ、冷媒の高圧と低圧との差圧ΔP,ΔPの比、冷却側と再熱側とのエンタルピー差h,hの比、高圧側比重比G,Gの比等を考慮して設定され、冷却膨張弁14による過熱度の調整を可能とする範囲で、冷却膨張弁14の開度を再熱膨張弁23の開度に換算するための値である。 The predetermined coefficient ζ is obtained from the above equations (1), (2), and (10), the ratio ξ between the cooling capacity φ C and the reheating capacity φ R , and the differential pressure ΔP C between the high pressure and the low pressure of the refrigerant. , the ratio of [Delta] P R, enthalpy difference h C between the cooling side and the reheating side, the ratio of h R, the high pressure side density ratio G C, are set in consideration of the ratio and the like of the G R, superheat by cooling expansion valve 14 This is a value for converting the opening degree of the cooling expansion valve 14 into the opening degree of the rethermal expansion valve 23 within a range that allows adjustment of the above.
 次に、ステップS19において、制御装置30は、ステップS17で算出された再熱膨張弁23の開度RPlsと、ステップS18で算出された開度の上限値RMax’とを比較し、小さい方を実際に使用する再熱膨張弁23の開度RPlsに決定する。このように決定された開度RPlsで再熱膨張弁23の開度を制御することによって、蒸発器15の冷媒循環量に対して室内凝縮器22の冷媒循環量の割合が過度に大きくならず、冷却膨張弁14による過熱度の調整を好適に行うことができる。 Next, in step S19, the control device 30 compares the opening degree R Pls of the rethermal expansion valve 23 calculated in step S17 with the upper limit value R Max ′ of the opening degree calculated in step S18, and the smaller. Is determined as the opening degree R Pls of the reheat expansion valve 23 actually used. By controlling the opening degree of the reheat expansion valve 23 with the opening degree R Pls determined in this way, the ratio of the refrigerant circulation amount of the indoor condenser 22 to the refrigerant circulation amount of the evaporator 15 becomes excessively large. Therefore, the degree of superheat by the cooling expansion valve 14 can be adjusted suitably.
 <応用制御1の変形例>
 蒸発器15における冷却能力及び室内凝縮器における再熱能力は、上記式(1)及び式(2)により表現されるが、他の方法により代替することができる。例えば、次式(12)のように、蒸発器15における冷却能力を、第1空気温度センサSa1で検出した温度t1と、第3空気温度センサSa3で検出した温度t3との差T1(蒸発器15により低下した温度)で代替し、室内凝縮器22における再熱能力を、第2空気温度センサSa2で検出した温度t2と、第3空気温度センサSa3で検出した温度t3との差T2(室内凝縮器22によって上昇した温度)で代替することができる。そして、各温度差T1、T2の比率が所定値α以下となるように、再熱膨張弁23の開度の上限を調整することで、冷却能力の変動に応じて再熱膨張弁23の開度の上限を調整することができる。
  T2/T1≦α ・・・ (12)
 (ただし、T1=t1-t3、T2=t2-t3)
<Modification of Application Control 1>
The cooling capacity in the evaporator 15 and the reheat capacity in the indoor condenser are expressed by the above formulas (1) and (2), but can be replaced by other methods. For example, as shown in the following equation (12), the cooling capacity of the evaporator 15 is determined by a difference T1 (evaporator) between the temperature t1 detected by the first air temperature sensor Sa1 and the temperature t3 detected by the third air temperature sensor Sa3. The temperature T2 of the indoor condenser 22 is replaced with a difference T2 between the temperature t2 detected by the second air temperature sensor Sa2 and the temperature t3 detected by the third air temperature sensor Sa3. It can be replaced by the temperature raised by the condenser 22). Then, by adjusting the upper limit of the opening degree of the rethermal expansion valve 23 so that the ratio between the temperature differences T1 and T2 is equal to or less than the predetermined value α, the reheat expansion valve 23 can be opened according to the change in cooling capacity. The upper limit of degree can be adjusted.
T2 / T1 ≦ α (12)
(However, T1 = t1-t3, T2 = t2-t3)
 各温度差T1,T2の比率αは、例えば0<α≦1の範囲内で設定することができ、一例として、α=0.3とすることができる。また、この変形例では、空気温度センサの検出信号を用いることで、再熱膨張弁23の開度の上限を簡便に調整することが可能となる。 The ratio α of the temperature differences T1 and T2 can be set, for example, within a range of 0 <α ≦ 1, and as an example, α = 0.3. In this modification, the upper limit of the reheat expansion valve 23 can be easily adjusted by using the detection signal of the air temperature sensor.
 <応用制御2>
 上述した基本制御や応用制御1においては、再熱膨張弁23の開度の上限を設定し、室内凝縮器22を流れる冷媒の循環量について考慮したものとなっていた。応用制御2では、これらに加えて、室内凝縮器22の出口における過冷却度が適切に確保されるように、再熱膨張弁23の開度を制御するものとなっている。
<Application control 2>
In the basic control and the application control 1 described above, the upper limit of the opening degree of the reheat expansion valve 23 is set, and the circulation amount of the refrigerant flowing through the indoor condenser 22 is considered. In addition to these, the application control 2 controls the opening degree of the reheat expansion valve 23 so that the degree of supercooling at the outlet of the indoor condenser 22 is appropriately secured.
 図6及び図7は、空気調和装置の応用制御2の手順を示すフローチャートである。
 図6におけるステップS21~S26は、図3におけるステップS1~S6と略同様であり、制御装置30は、蒸発器出口温度Tcoと蒸発器中間温度Tcmとから過熱度SHを求め、この過熱度SHを目標値とする冷却膨張弁14の開度CPlsを求めて冷却膨張弁14を操作する。また、ステップS26において、第1空気温度センサSa1により室内機3への室内空気の吸込温度Taが検知される。
FIG.6 and FIG.7 is a flowchart which shows the procedure of the application control 2 of an air conditioning apparatus.
Steps S21 to S26 in FIG. 6 are substantially the same as steps S1 to S6 in FIG. 3, and the control device 30 obtains the superheat degree SH from the evaporator outlet temperature Tco and the evaporator intermediate temperature Tcm, and this superheat degree SH. The cooling expansion valve 14 is operated by obtaining the opening C Pls of the cooling expansion valve 14 with the target value as the target value. In step S26, the first air temperature sensor Sa1 detects the indoor air suction temperature Ta to the indoor unit 3.
 そして、ステップS27において、制御装置30は、吸込温度Taを所定の目標値とするように、再熱膨張弁23の開度の操作量ΔRPlsを取得する。具体的には、まず、上記式(7)により、現在の吸込温度Taと、目標吸込温度Tamとの差分ΔTaを演算する。 In step S27, the control device 30 acquires the operation amount ΔR Pls of the opening degree of the rethermal expansion valve 23 so that the suction temperature Ta is set to a predetermined target value. Specifically, first, the difference ΔTa between the current suction temperature Ta and the target suction temperature Tam is calculated by the above equation (7).
 そして、制御装置30は、上記式(8)に示すように、PID制御等のフィードバック制御により、吸込温度の差分ΔTaから再熱膨張弁23の開度の操作量ΔRPlsを算出する。 Then, as shown in the above equation (8), the control device 30 calculates the manipulated variable ΔR Pls of the opening degree of the rethermal expansion valve 23 from the suction temperature difference ΔTa by feedback control such as PID control.
 次に、図7のステップS28において、第3冷媒温度センサSb3により冷媒温度Trevが検出され、第1圧力センサSc1により冷媒圧力Prevが検出される。そして、ステップS29において、これらの値Trev,Prevを用いて室内凝縮器22の出口の過冷却度SCが算出される。具体的には、まず、室内凝縮器22の出口(再熱膨張弁23前)の冷媒圧力Prevから飽和液温度Tslが求められ、この飽和液温度Tslと、室内凝縮器22の出口(再熱膨張弁23前)の冷媒温度Trevとから、次式(13)により過冷却度SCが算出される。
  SC=Tsl-Trev ・・・ (13)
Next, in step S28 of FIG. 7, the refrigerant temperature Trev is detected by the third refrigerant temperature sensor Sb3, and the refrigerant pressure Prev is detected by the first pressure sensor Sc1. In step S29, the degree of supercooling SC at the outlet of the indoor condenser 22 is calculated using these values Trev and Prev. Specifically, first, the saturated liquid temperature Tsl is obtained from the refrigerant pressure Prev at the outlet of the indoor condenser 22 (before the reheat expansion valve 23), and this saturated liquid temperature Tsl and the outlet of the indoor condenser 22 (reheated) The supercooling degree SC is calculated from the refrigerant temperature Trev before the expansion valve 23 by the following equation (13).
SC = Tsl−Trev (13)
 次いで、ステップS30において、制御装置30は、過冷却度SCが所定の閾値、ここでは「3度」よりも大きいか否かを判断する。
 過冷却度SCが3度よりも大きい場合、過冷却度は十分に確保されていると考えられるので、ステップS31において、過冷却度SCに基づく再熱膨張弁23の調整量dSCPlsを0とし、ステップS34に処理を進める。
Next, in step S30, the control device 30 determines whether or not the supercooling degree SC is greater than a predetermined threshold, here “3 degrees”.
If the degree of supercooling SC is greater than 3 degrees, it is considered that the degree of supercooling is sufficiently secured. Therefore, in step S31, the adjustment amount dSC Pls of the rethermal expansion valve 23 based on the degree of supercooling SC is set to zero. Then, the process proceeds to step S34.
 一方、過冷却度SCが3度以下である場合、過冷却度が十分に確保されていないと考えられるので、ステップS32において、再熱膨張弁23の調整量dSCPlsを次式(14)により求める。
  dSCPls=γ・{3-max(SC,0)} ・・・ (14)
 ここでは、過冷却度SCが0度を超える場合には、閾値「3度」から過冷却度SCを減じ、所定の補正係数γを乗算することによって調整量dSCPlsを求める。過冷却度SCが0度以下の場合には、閾値「3度」に所定の補正係数γを乗算することによって調整量dSCPlsを求める。
On the other hand, when the degree of supercooling SC is 3 degrees or less, it is considered that the degree of supercooling is not sufficiently ensured. Therefore, in step S32, the adjustment amount dSC Pls of the reheat expansion valve 23 is expressed by the following equation (14). Ask.
dSC Pls = γ · {3-max (SC, 0)} (14)
Here, when the degree of supercooling SC exceeds 0 degree, the adjustment amount dSC Pls is obtained by subtracting the degree of supercooling SC from the threshold “3 degrees” and multiplying by a predetermined correction coefficient γ. When the degree of supercooling SC is 0 degrees or less, the adjustment amount dSC Pls is obtained by multiplying the threshold “3 degrees” by a predetermined correction coefficient γ.
 補正係数γは、装置の状態や設置環境等に応じて適切な過冷却度SCを確保するために設定される、例えば、補正係数γは、必要な過冷却度SCを再熱膨張弁23のモータのパルス数に換算するためのパルス換算係数とされる。このパルス換算係数γは、次のように求めることができる。
 図8に示すように、過冷却度SCの計測点でのエンタルピーをhSC、過冷却度SCの計測点での飽和液エンタルピーをhsl、室内凝縮器22の入口のエンタルピーをhriとすると、過冷却度1度相当のエンタルピーhは、次式(15)となる。
  h=(hsl-hSC)/SC ・・・ (15)
The correction coefficient γ is set to ensure an appropriate supercooling degree SC according to the state of the apparatus, the installation environment, and the like. For example, the correction coefficient γ sets the necessary supercooling degree SC to the rethermal expansion valve 23. The pulse conversion coefficient is used to convert the number of pulses of the motor. This pulse conversion coefficient γ can be obtained as follows.
As shown in FIG. 8, when the enthalpy at the measurement point of the supercooling degree SC is h SC , the saturated liquid enthalpy at the measurement point of the supercooling degree SC is h sl , and the enthalpy at the inlet of the indoor condenser 22 is h ri. The enthalpy h corresponding to the degree of supercooling of 1 degree is expressed by the following equation (15).
h = (h sl -h SC ) / SC (15)
 また、このときの冷媒の循環量比は、h/(hri-hSC)となり、過冷却度SCを1度変化させるために必要なパルス換算係数γは、次式(16)となる。
  γ=Cv’×h/(hri-hSC)/Cv×MaxPls ・・・ (16)
 ここで、Cv’は現在の再熱膨張弁23の開度に対する流量係数、Cvは、再熱膨張弁23の全開時の流量係数(いわゆるCV値)、MaxPlsは、再熱膨張弁23の全開時のパルス数である。
The refrigerant circulation rate ratio at this time is h / (h ri -h SC ), and the pulse conversion coefficient γ necessary for changing the degree of supercooling SC once is given by the following equation (16).
γ = Cv ′ × h / (h ri −h SC ) / Cv × MaxPls (16)
Here, Cv ′ is a flow coefficient with respect to the current opening degree of the rethermal expansion valve 23, Cv is a flow coefficient when the reheat expansion valve 23 is fully opened (so-called CV value), and MaxPls is a fully open state of the reheat expansion valve 23. The number of pulses at the time.
 次に、ステップS33において、制御装置30は、ステップS27において算出した再熱膨張弁23の開度の操作量ΔRPlsを0と比較し、より大きい値を実際に使用する操作量ΔRPlsに決定する。 Next, in step S33, the control device 30 compares the operation amount ΔR Pls of the opening degree of the reheat expansion valve 23 calculated in step S27 with 0, and determines a larger value as the operation amount ΔR Pls that is actually used. To do.
 ステップS27で算出した再熱膨張弁23の開度の操作量ΔRPlsは、吸込温度Taが目標吸込温度Tamよりも高い場合(Ta>Tam)に正の値をとり(ΔRPls>0)、逆に、吸込温度Taが目標吸込温度Tamよりも低い場合(Ta<Tam)に負の値をとる(ΔRPls<0)。そのため、ΔRPlsが正の値のときは、再熱能力を減少させるために再熱膨張弁23を閉じる方向の操作となり、ΔRPlsが負の値のときは、より再熱能力が必要であるため再熱膨張弁23を開く方向の操作となる。しかしながら、応用制御2においては、過冷却度SCを確保することを優先しているため、ステップS33の処理では、再熱膨張弁23を開く方向に操作することを除外し、再熱膨張弁23を操作しないか又は閉じる方向への操作のみを採用している。 The manipulated variable ΔR Pls of the opening degree of the rethermal expansion valve 23 calculated in step S27 takes a positive value (ΔR Pls > 0) when the suction temperature Ta is higher than the target suction temperature Tam (Ta> Tam). Conversely, when the suction temperature Ta is lower than the target suction temperature Tam (Ta <Tam), it takes a negative value (ΔR Pls <0). Therefore, when ΔR Pls is a positive value, the reheat expansion valve 23 is closed in order to reduce the reheat capability. When ΔR Pls is a negative value, more reheat capability is required. Therefore, it becomes operation of the direction which opens the reheat expansion valve 23. FIG. However, since priority is given to securing the degree of supercooling SC in the application control 2, in the process of step S33, it is excluded to operate the reheat expansion valve 23 in the opening direction, and the reheat expansion valve 23 is excluded. Only the operation in the closing direction is adopted.
 次いで、ステップS34では、ステップS33で求めた再熱膨張弁23の開度の操作量ΔRPlsにステップS31又はS32で求めた調整量dSCPlsを加え、実際に使用する操作量ΔRPlsを求める。そして、再熱膨張弁23の開度RPlsとして、現在の開度RPlsに操作量ΔRPlsを減じた値と、所定の上限値RMaxとを比較し、より小さい方を、実際の再熱膨張弁23の開度RPlsに決定する。そして、ステップS35において、制御装置30は、再熱膨張弁23を操作する。 Next, in step S34, the adjustment amount dSC Pls obtained in step S31 or S32 is added to the operation amount ΔR Pls of the opening degree of the rethermal expansion valve 23 obtained in step S33, and the operation amount ΔR Pls actually used is obtained. Then, as the opening degree R Pls of the reheat expansion valve 23, a value obtained by subtracting the operation amount ΔR Pls from the current opening degree R Pls is compared with a predetermined upper limit value R Max. The opening degree R Pls of the thermal expansion valve 23 is determined. In step S35, the control device 30 operates the reheat expansion valve 23.
 この応用制御2では、過冷却度SCが所定の閾値(例えば「3度」)よりも小さい場合に、過冷却度SCを十分に確保する方向に再熱膨張弁23を操作する。したがって、過冷却度SCが不足することによる不都合を解消することができる。この不都合としては、気液二相冷媒が再熱膨張弁23に流入することによって室内凝縮器22への冷媒循環量が急減少し、過熱度制御に乱れが生じ、室外機2がサーモオフして除湿能力が低下したり、逆に、気液二相状態が解消されるときに冷媒循環量が急回復し、蒸発器15出口の冷媒の乾き度が急減して圧縮機保護が困難になったりすること等が考えられる。 In this application control 2, when the degree of supercooling SC is smaller than a predetermined threshold (for example, “3 degrees”), the rethermal expansion valve 23 is operated in a direction to sufficiently secure the degree of supercooling SC. Therefore, inconvenience due to the insufficient degree of supercooling SC can be solved. The inconvenience is that the gas-liquid two-phase refrigerant flows into the reheat expansion valve 23 to rapidly reduce the refrigerant circulation amount to the indoor condenser 22 and disturb the superheat degree control, and the outdoor unit 2 is thermo-off and dehumidified. The capacity decreases, or conversely, when the gas-liquid two-phase state is canceled, the refrigerant circulation amount is rapidly recovered, and the dryness of the refrigerant at the outlet of the evaporator 15 is drastically reduced, making it difficult to protect the compressor. It is conceivable.
 なお、室内凝縮器22の出口における過冷却度SCは、室内凝縮器22の出口と中間の温度を冷媒温度センサSb3,Sb5により検出し、出口側の温度から中間の温度を減算することによって求めることができる。又は、圧縮機12の吐出圧力を配管圧損で補正することによって求めることもできる。 The degree of supercooling SC at the outlet of the indoor condenser 22 is obtained by detecting the temperature intermediate between the outlet of the indoor condenser 22 by the refrigerant temperature sensors Sb3 and Sb5 and subtracting the intermediate temperature from the temperature on the outlet side. be able to. Or it can also obtain | require by correct | amending the discharge pressure of the compressor 12 by piping pressure loss.
[第2の実施の形態]
 図9は、本発明の第2の実施の形態に係る空気調和装置を示す概略構成図である。
 この空気調和装置(冷凍装置)1は、図9に示すように、室外機(熱源側ユニット)2と室内機(利用側ユニット)3とを備えている。冷却回路10において、室外機2の室外凝縮器(熱源側熱交換器)13と室内機3の冷却膨張弁14との間には、レシーバ18と冷却用電磁弁25とが設けられている。レシーバ18は、室外機2に設けられ、冷却用電磁弁25は室内機3に設けられている。
[Second Embodiment]
FIG. 9 is a schematic configuration diagram showing an air-conditioning apparatus according to the second embodiment of the present invention.
As shown in FIG. 9, the air conditioner (refrigeration apparatus) 1 includes an outdoor unit (heat source side unit) 2 and an indoor unit (use side unit) 3. In the cooling circuit 10, a receiver 18 and a cooling electromagnetic valve 25 are provided between the outdoor condenser (heat source side heat exchanger) 13 of the outdoor unit 2 and the cooling expansion valve 14 of the indoor unit 3. The receiver 18 is provided in the outdoor unit 2, and the cooling electromagnetic valve 25 is provided in the indoor unit 3.
 圧縮機12の吐出側と室外凝縮器(熱源側熱交換器)13のガス側端との間に接続された熱源側ガス管である経路11aには、レシーバ18の内部の圧力を調整するための圧力調整通路19の一端が接続され、この圧力調整通路19の他端はレシーバ18の容器の上方寄りの位置に接続されている。この圧力調整通路19には、圧力調整用電磁弁27が設けられている。この圧力調整用電磁弁27を所定のタイミングで開閉する(開いたり閉じたりする動作を繰り返す)ことにより、レシーバ18へ導入される圧縮機12の吐出ガス(高圧ガス)の量を変化させて、レシーバ18内の圧力を調整できる。レシーバ18の下端は冷媒配管を介して室内機3の冷却用電磁弁25に接続されている。 In order to adjust the pressure inside the receiver 18 in the path 11a which is a heat source side gas pipe connected between the discharge side of the compressor 12 and the gas side end of the outdoor condenser (heat source side heat exchanger) 13. One end of the pressure adjusting passage 19 is connected, and the other end of the pressure adjusting passage 19 is connected to a position closer to the upper side of the container of the receiver 18. The pressure adjusting passage 19 is provided with a pressure adjusting electromagnetic valve 27. By opening and closing the pressure adjusting electromagnetic valve 27 at a predetermined timing (repeats opening and closing operations), the amount of discharge gas (high pressure gas) of the compressor 12 introduced into the receiver 18 is changed, The pressure in the receiver 18 can be adjusted. The lower end of the receiver 18 is connected to the cooling electromagnetic valve 25 of the indoor unit 3 through a refrigerant pipe.
 再熱経路21において、室内凝縮器(再熱熱交換器)22の冷媒流入側の再熱用冷媒配管45には、再熱用電磁弁(再熱用第1開閉弁)26が設けられている。また、再熱用冷媒配管45には、再熱用第1開閉弁26をバイパスする再熱用バイパス管46が接続されている。そして、この再熱用バイパス管46には、再熱用第1開閉弁26よりも口径の小さい再熱用第2開閉弁28が接続されている。 In the reheat path 21, the reheat refrigerant pipe 45 on the refrigerant inflow side of the indoor condenser (reheat heat exchanger) 22 is provided with a reheat electromagnetic valve (first reheat valve) 26. Yes. The reheating refrigerant pipe 45 is connected to a reheating bypass pipe 46 that bypasses the reheating first on-off valve 26. The reheating bypass pipe 46 is connected to a reheating second opening / closing valve 28 having a smaller diameter than the reheating first opening / closing valve 26.
 さらに室内機3には、蒸発器15の吸込空気の湿度を測定する吸込空気湿度センサSd1が設けられている。 Further, the indoor unit 3 is provided with a suction air humidity sensor Sd1 for measuring the humidity of the suction air of the evaporator 15.
 制御装置30は、第1の実施の形態で説明したような蒸発器15で冷却・除湿した空気を室内凝縮器22で加熱する再熱除湿モードの運転制御と、これに加えて蒸発器15で冷却・除湿した空気が室内凝縮器22を通過するだけの冷却モードの運転制御とを行うことができる。例えば、制御装置30は、冷却モードの運転時に、蒸発器である利用側熱交換器15で冷却された空気を室内凝縮器(再熱熱交換器)22で加熱する再熱除湿モードの運転動作も制御するように構成されている。 The controller 30 controls the operation of the reheat dehumidification mode in which the air cooled and dehumidified by the evaporator 15 as described in the first embodiment is heated by the indoor condenser 22, and in addition to this, the evaporator 15 Operation control in the cooling mode in which the cooled and dehumidified air only passes through the indoor condenser 22 can be performed. For example, the control device 30 operates in the reheat dehumidification mode in which the air cooled by the use-side heat exchanger 15 that is an evaporator is heated by the indoor condenser (reheat heat exchanger) 22 during the operation in the cooling mode. Is also configured to control.
 具体的に、制御装置30は、蒸発器15の吸込空気温度が目標温度の範囲内(例えば13℃から17℃の範囲内)で且つ吸込空気の相対湿度が目標湿度(例えば45%)以上であるときに再熱除湿モードの運転を行い、蒸発器の吸込空気温度が上記目標温度より大きいか、または、吸込空気温度が目標温度の範囲内(例えば13℃から17℃の範囲内)で且つ吸込空気の相対湿度が目標湿度未満であると冷却モードの運転を行うように構成されている。 Specifically, the control device 30 determines that the intake air temperature of the evaporator 15 is within a target temperature range (eg, within a range of 13 ° C. to 17 ° C.) and the relative humidity of the intake air is equal to or higher than the target humidity (eg, 45%). When the reheat dehumidification mode is operated at a certain time, the suction air temperature of the evaporator is higher than the target temperature, or the suction air temperature is within the target temperature range (for example, within a range of 13 ° C to 17 ° C) When the relative humidity of the intake air is lower than the target humidity, the cooling mode operation is performed.
 <運転動作>
 本実施形態の空気調和装置(冷凍装置)1では、制御装置30により運転中に冷却モードと再熱除湿モードの切り換え制御が行われる。
 例えば、空気調和装置1の起動時は、懸肉庫等の庫内への食肉の搬入に伴って庫内を冷却する必要があるため、図10の冷却・再熱モードと表示している領域のうちの冷却モード(庫内を急速に冷却する冷却プルダウン)の運転が行われる。庫内温度が13℃~17℃の間は、冷却モードと再熱除湿モードを切り換えながら運転が行われる。
<Driving action>
In the air conditioning apparatus (refrigeration apparatus) 1 of the present embodiment, the control device 30 performs switching control between the cooling mode and the reheat dehumidification mode during operation.
For example, when the air conditioner 1 is activated, it is necessary to cool the inside of the warehouse as meat is brought into the inside of the suspension cabinet or the like, so the area indicated as the cooling / reheating mode in FIG. Is operated in the cooling mode (cooling pull-down for rapidly cooling the interior). When the inside temperature is between 13 ° C and 17 ° C, the operation is performed while switching between the cooling mode and the reheat dehumidification mode.
 具体的には、蒸発器15の吸込空気温度(庫内空気温度)が目標温度である13℃~17℃の範囲内で且つ吸込空気の相対湿度が目標湿度(45%RH)以上であるときに再熱除湿モードの運転を行い、蒸発器15の吸込空気温度が目標温度(17℃)より大きいか、または、吸込空気温度が目標温度である13℃~17℃の範囲内で且つ吸込空気の相対湿度が目標湿度(45%RH)未満であると冷却モードの運転を行うように、制御装置30によって運転制御が行われる。 Specifically, when the intake air temperature (inside air temperature) of the evaporator 15 is within the range of 13 ° C. to 17 ° C., which is the target temperature, and the relative humidity of the intake air is equal to or higher than the target humidity (45% RH). In the reheat dehumidification mode, the intake air temperature of the evaporator 15 is higher than the target temperature (17 ° C.), or the intake air temperature is within the target temperature range of 13 ° C. to 17 ° C. and the intake air When the relative humidity is less than the target humidity (45% RH), the operation control is performed by the control device 30 so that the operation in the cooling mode is performed.
 なお、本実施形態の空気調和装置は、図10に示すように、冷蔵モードや冷凍モードの運転も可能に構成されており、設定温度が0℃(庫内温度がほぼ10℃~-5℃の範囲)で冷蔵モードの運転が、設定温度が-20℃(庫内温度が-5℃より低い状態)で冷凍モードの運転が行われる。 As shown in FIG. 10, the air conditioner of the present embodiment is configured to be capable of operating in a refrigeration mode or a refrigeration mode, and has a set temperature of 0 ° C. (the internal temperature is approximately 10 ° C. to −5 ° C.). ) In the refrigeration mode, the operation in the refrigeration mode is performed at a set temperature of −20 ° C. (a state where the internal temperature is lower than −5 ° C.).
 (運転モードの切り換え)
 次に、図11のフローチャートに基づいて、上述の運転モードの切り換え動作について、より具体的に説明する。
 ステップS41では、空気調和装置1の運転が行われているかどうかの判別が行われる。判別結果が「YES」であって運転している場合は、ステップS42へ進んで蒸発器15の吸込空気温度が17℃以上であるかどうかが判別され、ステップS41の判別結果が「NO」であって運転していない場合は、ステップS43へ進んで停止の処理をしてからステップS41へ戻る。
(Operation mode switching)
Next, the operation mode switching operation described above will be described more specifically based on the flowchart of FIG.
In step S41, it is determined whether or not the air conditioner 1 is in operation. If the determination result is “YES” and the vehicle is operating, the process proceeds to step S42 to determine whether the intake air temperature of the evaporator 15 is 17 ° C. or higher, and the determination result of step S41 is “NO”. If there is no operation, the process proceeds to step S43 to stop the process and then returns to step S41.
 ステップS42の判別結果が「YES」であって吸込空気温度が17℃以上である場合は、ステップS44へ進んで装置がサーモオンになり、冷却モードの運転が行われる。冷却モードの運転中は、常にステップS41の判別が行われる。 When the determination result in step S42 is “YES” and the intake air temperature is 17 ° C. or higher, the process proceeds to step S44, the apparatus is thermo-ON, and the operation in the cooling mode is performed. During the operation in the cooling mode, the determination in step S41 is always performed.
 ステップS42の判別結果が「NO」であって吸込空気温度が17℃未満である場合は、ステップS45へ進み、吸込空気温度が13℃以下であるかどうかが判別される。その判別結果が「NO」であると吸込空気温度が17℃より低くて13℃より高い場合であり、その場合はステップS46で相対湿度RHが45%以上であるかどうかが判別される。判別結果が「NO」の場合は相対湿度RHが45%未満であり、湿度が高くないため、ステップS44へ進んで冷却モードの運転を行い、ステップS41の判別へ戻る。 When the determination result of step S42 is “NO” and the intake air temperature is less than 17 ° C., the process proceeds to step S45, and it is determined whether or not the intake air temperature is 13 ° C. or less. If the determination result is “NO”, the intake air temperature is lower than 17 ° C. and higher than 13 ° C. In this case, it is determined in step S46 whether the relative humidity RH is 45% or more. When the determination result is “NO”, the relative humidity RH is less than 45%, and the humidity is not high. Therefore, the process proceeds to step S44 to perform the cooling mode operation, and the process returns to the determination of step S41.
 吸込空気温度が13℃以下であるかどうかをステップS45で判別した結果が「YES」の場合は庫内が十分に冷えている場合であり、この場合はステップS47へ進んでサーモオフになり、庫内は送風だけが行われるモードになる。送風運転のモードにおいても、冷却モードと同様に、常にステップS41の判別が行われる。 If the result of determining in step S45 whether or not the intake air temperature is 13 ° C. or less is “YES”, the inside of the refrigerator is sufficiently cooled. In this case, the process proceeds to step S47 and the thermo is turned off. The inside is a mode in which only blowing is performed. In the air blowing operation mode, the determination in step S41 is always performed as in the cooling mode.
 相対湿度RHが45%以上であるかどうかをステップS45で判別した結果が「YES」である場合は、庫内の湿度は17℃より低くて13℃より高い(本発明の所定範囲内である)が湿度は高いので、ステップS48へ進んで再熱除湿モードに切り換わり、温度を維持しながら除湿を行うモードとなる。この再熱除湿モードにおいても、冷却モードと同様に、常にステップS41の判別は行われる。 If the result of determining in step S45 whether or not the relative humidity RH is 45% or more is “YES”, the humidity in the cabinet is lower than 17 ° C. and higher than 13 ° C. (within the predetermined range of the present invention). However, since the humidity is high, the process proceeds to step S48 to switch to the reheat dehumidification mode, where the dehumidification is performed while maintaining the temperature. Even in the reheat dehumidifying mode, the determination in step S41 is always performed as in the cooling mode.
 <各運転モードにおける冷媒回路構成機器の状態>
 次に、各モードの運転動作について説明する。各モードにおいて、各種の弁やファンや圧縮機は図12に示す状態に制御される。図12において、「ユニットクーラ」は室内機(利用側ユニット)3を表し、冷凍機は室外機(熱源側ユニット)2を表している。「SV1」は冷却用電磁弁25を、「SV2」は再熱用電磁弁26を、「EV1」は冷却膨張弁14を、「EV2」は再熱膨張弁23を、「MF1」は室内ファン(利用側ファン)17を示している。また、「MF2」は室外ファン(熱源側ファン)16を、「MC」は圧縮機12を、「SV4」は圧力調整用電磁弁27を示している。
<States of refrigerant circuit components in each operation mode>
Next, the driving operation in each mode will be described. In each mode, various valves, fans, and compressors are controlled to the states shown in FIG. In FIG. 12, “unit cooler” represents the indoor unit (use side unit) 3, and the refrigerator represents the outdoor unit (heat source side unit) 2. “SV1” is a cooling solenoid valve 25, “SV2” is a reheating solenoid valve 26, “EV1” is a cooling expansion valve 14, “EV2” is a rethermal expansion valve 23, and “MF1” is an indoor fan. A (use side fan) 17 is shown. “MF2” indicates the outdoor fan (heat source side fan) 16, “MC” indicates the compressor 12, and “SV4” indicates the pressure adjusting electromagnetic valve 27.
 (冷却モード)
 冷却モード(サーモオン)の運転では、冷却用電磁弁25は「開」、再熱用電磁弁26は「閉」、冷却膨張弁14は過熱度制御(蒸発器15の出口冷媒の過熱度が目標値になるように開度制御される状態)、再熱膨張弁23は「閉(全閉)」、室内ファン17は大風量(H風量)、室外ファン16と圧力調整用電磁弁27は目標高圧圧力に基づいた制御(高圧制御)、圧縮機12はインバータ制御で目標の運転容量になるように周波数制御される。
(Cooling mode)
In the operation in the cooling mode (thermo-on), the cooling solenoid valve 25 is “open”, the reheating solenoid valve 26 is “closed”, and the cooling expansion valve 14 is superheat controlled (the superheat degree of the outlet refrigerant of the evaporator 15 is the target). The reheat expansion valve 23 is “closed (fully closed)”, the indoor fan 17 has a large air volume (H air volume), and the outdoor fan 16 and the pressure adjusting solenoid valve 27 are targets. Control based on the high pressure (high pressure control), the frequency of the compressor 12 is controlled by the inverter control so as to reach the target operating capacity.
 この状態で、圧縮機12から吐出された冷媒は、室外凝縮器13に流入して放熱する。このとき、室外凝縮器13から流出する冷媒の圧力を目標圧力に制御できない場合に、圧力調整用電磁弁27を開閉する制御を行う。具体的には、冷媒回路の低圧圧力が処置値よりも低いと圧力調整用電磁弁27を開いてレシーバ18に高圧冷媒を導入し、レシーバ18から室内機3に繋がる液側連絡配管を流れる高圧液冷媒の圧力を調整する。 In this state, the refrigerant discharged from the compressor 12 flows into the outdoor condenser 13 and dissipates heat. At this time, when the pressure of the refrigerant flowing out of the outdoor condenser 13 cannot be controlled to the target pressure, the pressure adjusting electromagnetic valve 27 is controlled to open and close. Specifically, when the low pressure of the refrigerant circuit is lower than the treatment value, the pressure adjusting electromagnetic valve 27 is opened to introduce the high pressure refrigerant into the receiver 18, and the high pressure flowing through the liquid side communication pipe connected from the receiver 18 to the indoor unit 3. Adjust the pressure of the liquid refrigerant.
 この高圧液冷媒は、室内機3において、冷却用電磁弁25を通過し、冷却膨張弁14で減圧され、蒸発器15で庫内空気から吸熱して蒸発する。このとき、蒸発器15において庫内空気が冷却される。蒸発した冷媒は室外機2へ戻り、圧縮機12に吸入される。 The high-pressure liquid refrigerant passes through the cooling electromagnetic valve 25 in the indoor unit 3, is depressurized by the cooling expansion valve 14, and is evaporated by absorbing heat from the internal air in the evaporator 15. At this time, the internal air is cooled in the evaporator 15. The evaporated refrigerant returns to the outdoor unit 2 and is sucked into the compressor 12.
 冷却モード(サーモオン)の運転は、冷媒が冷媒回路を以上のようにして循環することにより行われる。 The operation in the cooling mode (thermo-on) is performed by circulating the refrigerant through the refrigerant circuit as described above.
 また、冷却モード(サーモオフ)の運転では、室内ファン17は大風量で回る一方、各種の弁や圧縮機12は停止して行われ、庫内で送風のみが行われる。 In the operation in the cooling mode (thermo-off), the indoor fan 17 rotates with a large air volume, while the various valves and the compressor 12 are stopped, and only air is blown in the warehouse.
 (再熱除湿モード)
 再熱除湿モードでは、各種の弁などの制御の一部が冷却モードとは異なる。具体的には、再熱用電磁弁26が「開」に制御され、再熱膨張弁23が吸込空気温度に基づいて制御され、室内ファン17が低風量(L風量)となる。
(Reheat dehumidification mode)
In the reheat dehumidification mode, part of the control of various valves is different from the cooling mode. Specifically, the reheat electromagnetic valve 26 is controlled to be “open”, the reheat expansion valve 23 is controlled based on the intake air temperature, and the indoor fan 17 has a low air volume (L air volume).
 この状態で、圧縮機12から吐出された冷媒は、熱源側熱交換器13と再熱熱交換器22を放熱器(凝縮器)とし、利用側熱交換器15を蒸発器として冷媒回路を循環する。室内機3では、庫内(室内)空気が蒸発器15で冷却・除湿してから室内凝縮器22で加熱されるので、庫内の温度低下を抑えながら湿度が低下する。 In this state, the refrigerant discharged from the compressor 12 circulates in the refrigerant circuit using the heat source side heat exchanger 13 and the reheat heat exchanger 22 as a radiator (condenser) and the use side heat exchanger 15 as an evaporator. To do. In the indoor unit 3, the internal (indoor) air is cooled and dehumidified by the evaporator 15 and then heated by the indoor condenser 22, so that the humidity is reduced while suppressing a decrease in the internal temperature.
 また、制御装置30は、再熱除湿モードの運転を開始するときに、再熱用電磁弁(再熱用第1開閉弁)26を閉鎖した状態で、再熱膨張弁23を開いてから所定時間(例えば5秒)後に再熱用第2開閉弁28を開き、さらにその所定時間(例えば5分)後に再熱用第1開閉弁26を開放して液冷媒除去運転を行うように構成されている。 In addition, when starting the operation in the reheat dehumidification mode, the control device 30 opens the reheat expansion valve 23 in a state in which the reheat electromagnetic valve (first reheat valve) 26 is closed, and then performs a predetermined operation. The reheat second on-off valve 28 is opened after a time (for example, 5 seconds), and the reheat first on-off valve 26 is opened after a predetermined time (for example, 5 minutes) to perform the liquid refrigerant removal operation. ing.
 また、制御装置30は、再熱除湿モードの運転を終了するときには、再熱用第1開閉弁26及び再熱用第2開閉弁28を閉じてから所定時間(例えば4分)後に、再熱膨張弁23を閉鎖する。このように、室内凝縮器(再熱熱交換器)22の冷媒流入側に口径が異なる(大小の)開閉弁26,28を並列に設け、再熱除湿モードの運転をするときに、口径が小さい開閉弁28を先に開いてから、その所定時間後に口径の大きい開閉弁26を開くようにしている。これは、冷却運転時には開閉弁26が閉じられているため、再熱用冷媒配管45に流れ込んだ冷媒が溜まり込んで液化した場合に、再熱除湿モードを開始するときに直ぐに開閉弁26を開くと液冷媒が再熱膨張弁23に一気に流れ込むことになり、過冷却度を優先するように開度が制御される再熱膨張弁23で冷媒を処理しきれずに配管が振動するおそれがあるためである。 Further, when the control device 30 ends the operation in the reheat dehumidification mode, the reheat is performed after a predetermined time (for example, 4 minutes) after the reheat first on-off valve 26 and the reheat second on-off valve 28 are closed. The expansion valve 23 is closed. As described above, the opening / closing valves 26 and 28 having different (large and small) diameters are provided in parallel on the refrigerant inflow side of the indoor condenser (reheat heat exchanger) 22, and the diameter is reduced when the reheat dehumidifying mode is operated. After opening the small opening / closing valve 28 first, the opening / closing valve 26 having a large diameter is opened after a predetermined time. This is because the on-off valve 26 is closed during the cooling operation, so that when the refrigerant flowing into the reheating refrigerant pipe 45 accumulates and liquefies, the on-off valve 26 is immediately opened when the reheat dehumidifying mode is started. And the liquid refrigerant flows into the reheat expansion valve 23 at once, and the reheat expansion valve 23 whose opening degree is controlled so as to give priority to the degree of supercooling may cause the pipe to vibrate without being able to process the refrigerant. It is.
 この再熱除湿モードの運転について、図13のタイムチャートを用いて具体的に説明する。
 時間T1において再熱除湿モードの運転を開始すると、そのときに再熱膨張弁23(図13ではEV2と表示)を開く操作を行う。このとき、再熱用第1開閉弁26(図13ではSV2と表示)と再熱用第2開閉弁28(図13ではSV5と表示)は閉じられたままである。
The operation in the reheat dehumidification mode will be specifically described with reference to the time chart of FIG.
When operation in the reheat dehumidification mode is started at time T1, an operation of opening the reheat expansion valve 23 (shown as EV2 in FIG. 13) is performed at that time. At this time, the reheating first on-off valve 26 (shown as SV2 in FIG. 13) and the reheating second on-off valve 28 (shown as SV5 in FIG. 13) remain closed.
 時間T1からt1秒(例えば5秒)が経過して時間T2になると、再熱用第1開閉弁26を閉じたままで再熱用第2開閉弁28を開く操作を行う。再熱用第2開閉弁28は再熱用第1開閉弁26よりも口径が小さいので、冷却運転を行っている間に再熱用冷媒配管45に溜まり込んだ液冷媒は、少量ずつ室内凝縮器22を流れて再熱膨張弁23を通過する。再熱除湿モードの運転時は、室内凝縮器22の出口側の冷媒の過冷却度を優先するように再熱膨張弁23の開度が調整されており、開度は小さめに設定されることがある。しかしながら、本実施形態では、再熱用第2開閉弁28の口径が小さく、再熱膨張弁23に流れて行く冷媒の流量が制限される。したがって、再熱膨張弁23を一気に液冷媒が通過しないので、配管の振動は抑制される。 When t1 seconds (for example, 5 seconds) elapse from time T1 and time T2 is reached, an operation of opening the reheating second on-off valve 28 is performed while the reheating first on-off valve 26 is closed. Since the reheating second on-off valve 28 has a smaller diameter than the reheating first on-off valve 26, the liquid refrigerant accumulated in the reheating refrigerant pipe 45 during the cooling operation is condensed in small amounts in the room. It flows through the vessel 22 and passes through the rethermal expansion valve 23. During operation in the reheat dehumidification mode, the opening degree of the reheat expansion valve 23 is adjusted so that priority is given to the degree of supercooling of the refrigerant on the outlet side of the indoor condenser 22, and the opening degree is set to be small. There is. However, in this embodiment, the diameter of the reheat second on-off valve 28 is small, and the flow rate of the refrigerant flowing to the reheat expansion valve 23 is limited. Therefore, the liquid refrigerant does not pass through the reheat expansion valve 23 at a stretch, so that the vibration of the pipe is suppressed.
 この状態の運転をt2秒(例えば300秒(5分))行って時間T3になると、再熱用冷媒配管45に溜まり込んだ液冷媒が再熱膨張弁23を通過し終えたと判断され、再熱用第2開閉弁28がON(開)に切り換えられる。その後、時間T4までのt3秒間は、再熱膨張弁23の開度を制御しながら、蒸発器15で冷却除湿された庫内空気が室内凝縮器22で加熱され、庫内の温度低下を抑えながら湿度を下げる運転が行われる。 When the operation in this state is performed for t2 seconds (for example, 300 seconds (5 minutes)) and time T3 is reached, it is determined that the liquid refrigerant accumulated in the reheating refrigerant pipe 45 has passed through the reheat expansion valve 23, and The second heat on-off valve 28 is switched to ON (open). Thereafter, for t3 seconds until time T4, while the opening degree of the reheat expansion valve 23 is controlled, the indoor air cooled and dehumidified by the evaporator 15 is heated by the indoor condenser 22, and the temperature drop in the internal combustion chamber is suppressed. The operation to lower the humidity is performed.
 時間T4において再熱除湿モードの運転が終了すると、再熱用第1開閉弁26と再熱用第2開閉弁28を閉じてから、その後のt4秒(例えば240秒(4分))は再熱膨張弁23を開けておき、室内凝縮器22内の液冷媒を蒸発器15で蒸発させて圧縮機12へ回収する操作を行う。 When the operation in the reheat dehumidification mode is completed at time T4, the reheat first on-off valve 26 and the reheat second on-off valve 28 are closed, and the subsequent t4 seconds (for example, 240 seconds (4 minutes)) are restarted. The thermal expansion valve 23 is opened, and the liquid refrigerant in the indoor condenser 22 is evaporated by the evaporator 15 and recovered to the compressor 12.
 <第2の実施の形態の効果>
 本実施形態によれば、蒸発器15の吸込空気温度が目標温度の範囲内(13℃~17℃)で且つ吸込空気の相対湿度が目標湿度(45%RH)以上であるときには、庫内空間の温度に対して湿度が比較的高い状態であるため、温度を下げずに湿度を下げるように再熱除湿モードの運転が行われる。一方、蒸発器15の吸込空気温度が目標温度より高いか、または、蒸発器15の吸込空気温度が目標温度の範囲内(13℃~17℃)で且つ吸込空気の相対湿度が目標湿度未満であると、湿度よりも温度を優先して下げるように冷却モードの運転が行われる。このように、吸込空気の状態に応じて再熱除湿モードと冷却モードが行われるので、庫内空間の湿度や温度を適正値に制御することが可能になる。
<Effects of Second Embodiment>
According to this embodiment, when the intake air temperature of the evaporator 15 is within the target temperature range (13 ° C. to 17 ° C.) and the relative humidity of the intake air is equal to or higher than the target humidity (45% RH), the internal space Since the humidity is relatively high with respect to the temperature, the reheat dehumidification mode operation is performed so as to reduce the humidity without lowering the temperature. On the other hand, the intake air temperature of the evaporator 15 is higher than the target temperature, or the intake air temperature of the evaporator 15 is within the target temperature range (13 ° C. to 17 ° C.) and the relative humidity of the intake air is less than the target humidity. If there is, the operation in the cooling mode is performed so as to lower the temperature in preference to the humidity. Thus, since the reheat dehumidification mode and the cooling mode are performed according to the state of the intake air, the humidity and temperature of the internal space can be controlled to appropriate values.
 本実施形態によれば、再熱除湿モードの運転を開始するときに再熱膨張弁23へ液冷媒が一気に流れ込むのを抑制できるから、配管の振動騒音を抑えられる。なお、本実施形態の図13において、t1~t4などに例示した時間は、及び再熱用冷媒配管45や再熱経路21の配管の配管長に応じて適宜変更してもよい。また、上記再熱用第2開閉弁28の口径も、冷却運転中に再熱用冷媒配管45に溜まり込むと見込まれる液冷媒量に応じて、再熱用第1開閉弁26よりも小さな口径で適宜定めればよい。 According to the present embodiment, since the liquid refrigerant can be prevented from flowing into the reheat expansion valve 23 at the same time when the operation in the reheat dehumidification mode is started, the vibration noise of the pipe can be suppressed. In FIG. 13 of the present embodiment, the time exemplified as t1 to t4 may be appropriately changed according to the reheat refrigerant pipe 45 and the pipe length of the reheat path 21. The reheat second opening / closing valve 28 has a smaller diameter than the reheating first opening / closing valve 26 according to the amount of liquid refrigerant expected to be accumulated in the reheating refrigerant pipe 45 during the cooling operation. Can be set as appropriate.
 本発明は、上記実施形態及び変形例に限定されるものではなく、特許請求の範囲に記載された範囲内において種々変更することが可能である。
 例えば、本発明の空気調和装置は、食肉工場に限らず、あらゆる環境下で用いることができる。
The present invention is not limited to the above-described embodiments and modifications, and various modifications can be made within the scope described in the claims.
For example, the air conditioning apparatus of the present invention is not limited to a meat factory and can be used in any environment.
 また、上記実施形態では、蒸発器15の吸込空気温度が目標温度(13℃~17℃)の範囲内で且つ吸込空気の相対湿度が目標湿度(45%RH)以上であるときに再熱除湿モードの運転を行い、蒸発器(17)の吸込空気温度が目標温度より大きいか、または、吸込空気温度が目標温度(13℃~17℃)の範囲内で且つ吸込空気の相対湿度が目標湿度未満であると冷却モードの運転を行うように制御装置30を構成しているが、本発明はこの構成に限定されるものではないし、この構成で制御を行う場合でも上記の目標温度や目標湿度は適宜変更可能である。 In the above embodiment, the reheat dehumidification is performed when the intake air temperature of the evaporator 15 is within the target temperature (13 ° C. to 17 ° C.) and the relative humidity of the intake air is equal to or higher than the target humidity (45% RH). Mode, the intake air temperature of the evaporator (17) is higher than the target temperature, or the intake air temperature is within the target temperature (13 ° C to 17 ° C) and the relative humidity of the intake air is the target humidity However, the present invention is not limited to this configuration, and even when control is performed with this configuration, the above-described target temperature and target humidity are configured. Can be appropriately changed.
1    :空気調和装置
11   :冷却回路
11a  :経路
11b  :経路
12   :圧縮機
13   :室外凝縮器
14   :冷却膨張弁
15   :蒸発器
21   :再熱経路
22   :室内凝縮器
23   :再熱膨張弁
30   :制御装置
31   :冷却制御部
32   :再熱制御部
33   :上限調整部
1: Air conditioner 11: Cooling circuit 11a: Path 11b: Path 12: Compressor 13: Outdoor condenser 14: Cooling expansion valve 15: Evaporator 21: Reheat path 22: Indoor condenser 23: Rethermal expansion valve 30 : Control device 31: Cooling control unit 32: Reheat control unit 33: Upper limit adjustment unit

Claims (9)

  1.  圧縮機(12)と、
     前記圧縮機(12)で圧縮された冷媒を凝縮する室外凝縮器(13)と、
     前記室外凝縮器(13)で凝縮された冷媒を減圧する冷却膨張弁(14)と、
     前記冷却膨張弁(14)で減圧された冷媒を室内空気との熱交換により蒸発させ当該室内空気を冷却・除湿する蒸発器(15)と、
     前記圧縮機(12)、前記室外凝縮器(13)、前記冷却膨張弁(14)、及び前記蒸発器(15)をこの順で接続している冷却回路(11)と、
     前記冷却回路(11)における前記圧縮機(12)と前記室外凝縮器(13)とを接続する経路(11a)から分岐し、前記冷却膨張弁(14)と前記蒸発器(15)とを接続する経路(11b)に接続されている再熱経路(21)と、
     前記再熱経路(21)において、前記圧縮機(12)で圧縮された冷媒を、前記蒸発器(15)で冷却・除湿された室内空気との熱交換により凝縮させ当該室内空気を加熱する室内凝縮器(22)と、
     前記再熱経路(21)において、前記室内凝縮器(22)で凝縮された冷媒を減圧する再熱膨張弁(23)と、
     前記冷却膨張弁(14)及び前記再熱膨張弁の開度を制御する制御装置(30)と、を備えており、
     前記制御装置(30)は、
      前記冷却膨張弁(14)の開度制御により、前記蒸発器(15)の冷媒循環量を調整して前記蒸発器(15)通過後の冷媒の過熱度を調整する冷却制御部(31)と、
      前記再熱膨張弁(23)の開度制御により、前記室内凝縮器(22)の冷媒循環量を調整して室温を調整する再熱制御部(32)と、を備え、
     前記再熱膨張弁(23)は、前記冷却膨張弁(14)による過熱度の調整を可能とする前記蒸発器(15)における冷却能力と前記室内凝縮器(22)における再熱能力との比率に基づいて、前記再熱制御部(32)によって制御される開度の上限が設定されている、空気調和装置。
    A compressor (12);
    An outdoor condenser (13) for condensing the refrigerant compressed by the compressor (12);
    A cooling expansion valve (14) for depressurizing the refrigerant condensed in the outdoor condenser (13);
    An evaporator (15) for evaporating the refrigerant decompressed by the cooling expansion valve (14) by heat exchange with room air to cool and dehumidify the room air;
    A cooling circuit (11) connecting the compressor (12), the outdoor condenser (13), the cooling expansion valve (14), and the evaporator (15) in this order;
    The cooling circuit (11) branches from a path (11a) connecting the compressor (12) and the outdoor condenser (13), and connects the cooling expansion valve (14) and the evaporator (15). A reheat path (21) connected to the path (11b)
    In the reheat path (21), the refrigerant compressed by the compressor (12) is condensed by heat exchange with the indoor air cooled and dehumidified by the evaporator (15) to heat the indoor air. A condenser (22);
    A reheat expansion valve (23) for depressurizing the refrigerant condensed in the indoor condenser (22) in the reheat path (21);
    A control device (30) for controlling the opening degree of the cooling expansion valve (14) and the reheat expansion valve,
    The control device (30)
    A cooling control unit (31) for adjusting the refrigerant circulation amount of the evaporator (15) and adjusting the degree of superheat of the refrigerant after passing through the evaporator (15) by controlling the opening degree of the cooling expansion valve (14); ,
    A reheat control unit (32) for adjusting a room temperature by adjusting a refrigerant circulation amount of the indoor condenser (22) by opening degree control of the reheat expansion valve (23),
    The reheat expansion valve (23) is a ratio of the cooling capacity in the evaporator (15) and the reheat capacity in the indoor condenser (22) that allow adjustment of the degree of superheat by the cooling expansion valve (14). The air conditioner in which the upper limit of the opening degree controlled by the said reheat control part (32) is set based on this.
  2.  前記制御装置(30)は、運転中の前記蒸発器(15)における冷却能力の変動に応じて、前記再熱膨張弁(23)の開度の上限を調整する上限調整部(33)をさらに備えている、請求項1に記載の空気調和装置。 The control device (30) further includes an upper limit adjustment unit (33) that adjusts an upper limit of the opening degree of the reheat expansion valve (23) according to a change in cooling capacity of the evaporator (15) during operation. The air conditioner according to claim 1, comprising:
  3.  前記再熱膨張弁(23)の開度の上限が、前記冷却膨張弁(14)を流れる冷媒循環量と前記再熱膨張弁(23)を流れる冷媒循環量との比率に基づいて調整される、請求項2に記載の空気調和装置。 The upper limit of the opening degree of the reheat expansion valve (23) is adjusted based on the ratio between the refrigerant circulation amount flowing through the cooling expansion valve (14) and the refrigerant circulation amount flowing through the reheat expansion valve (23). The air conditioning apparatus according to claim 2.
  4.  前記再熱膨張弁(23)の開度の上限が、前記蒸発器(15)を通過する前後の空気の温度差と、前記室内凝縮器(22)を通過する前後の空気の温度差との比率に基づいて調整される、請求項2に記載の空気調和装置。 The upper limit of the opening degree of the reheat expansion valve (23) is an air temperature difference before and after passing through the evaporator (15) and an air temperature difference before and after passing through the indoor condenser (22). The air conditioning apparatus according to claim 2, wherein the air conditioning apparatus is adjusted based on a ratio.
  5.  前記再熱制御部(32)は、前記室内凝縮器(22)の出口の冷媒の過冷却度に応じて前記再熱膨張弁(23)の開度の制御量を補正し、当該過冷却度を調整する、請求項1~4のいずれか1項に記載の空気調和装置。 The reheat control unit (32) corrects the control amount of the opening degree of the reheat expansion valve (23) according to the degree of supercooling of the refrigerant at the outlet of the indoor condenser (22), and the degree of supercooling. The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is adjusted.
  6.  前記制御装置(30)は、前記蒸発器(15)で冷却・除湿した空気を前記室内凝縮器(22)で加熱する再熱除湿モードの運転制御と、前記蒸発器(15)で冷却・除湿した空気が前記室内凝縮器(22)を通過するだけの冷却モードの運転制御とをさらに行うものであり、前記蒸発器(15)の吸込空気温度が目標温度の範囲内で且つ吸込空気の相対湿度が目標湿度以上であるときに前記再熱除湿モードの運転を行い、前記蒸発器(15)の吸込空気温度が目標温度より高いか、または、当該吸込空気温度が目標温度の範囲内で且つ吸込空気の相対湿度が目標湿度未満であるときに冷却モードの運転を行うように構成されている、請求項1~5のいずれか1項に記載の空気調和装置。 The control device (30) controls the operation in a reheat dehumidification mode in which the air cooled and dehumidified by the evaporator (15) is heated by the indoor condenser (22), and cooled and dehumidified by the evaporator (15). In the cooling mode in which only the passed air passes through the indoor condenser (22), and the intake air temperature of the evaporator (15) is within the target temperature range and the relative intake air When the humidity is equal to or higher than the target humidity, the reheat dehumidification mode is operated, and the intake air temperature of the evaporator (15) is higher than the target temperature, or the intake air temperature is within the target temperature range and The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is configured to perform a cooling mode operation when a relative humidity of the intake air is lower than a target humidity.
  7.  前記再熱除湿モードの運転時における前記室内凝縮器(22)の冷媒流入側の再熱用冷媒配管(45)に再熱用第1開閉弁(26)が接続され、前記室内凝縮器(22)の冷媒流出側に前記再熱膨張弁(23)が接続され、
     前記再熱用冷媒配管(45)には、前記再熱用第1開閉弁(26)をバイパスする再熱用バイパス管(46)が接続され、該再熱用バイパス管(46)には前記再熱用第1開閉弁(26)より口径の小さい再熱用第2開閉弁(28)が接続されている、請求項6に記載の空気調和装置。
    The reheat first on-off valve (26) is connected to the reheat refrigerant pipe (45) on the refrigerant inflow side of the indoor condenser (22) during operation in the reheat dehumidification mode, and the indoor condenser (22 ) Is connected to the refrigerant outflow side of the reheat expansion valve (23),
    The reheat refrigerant pipe (45) is connected to a reheat bypass pipe (46) that bypasses the first reheat valve (26), and the reheat bypass pipe (46) is connected to the reheat bypass pipe (46). The air conditioning apparatus according to claim 6, wherein a second reheating on-off valve (28) having a smaller diameter than the first reheating on-off valve (26) is connected.
  8.  前記制御装置(30)は、前記再熱除湿モードの運転を開始するときに、前記再熱用第1開閉弁(26)を閉鎖した状態で、前記再熱膨張弁(23)を開いてから所定時間後に前記再熱用第2開閉弁(28)を開き、その所定時間後に前記再熱用第1開閉弁(26)を開放する液冷媒除去運転を行うように構成されている、請求項7に記載の空気調和装置。 The controller (30) opens the reheat expansion valve (23) with the reheat first on-off valve (26) closed when starting the operation in the reheat dehumidification mode. The liquid refrigerant removing operation for opening the second reheating on-off valve (28) after a predetermined time and opening the first reheating on-off valve (26) after the predetermined time is performed. The air conditioning apparatus according to 7.
  9.  前記制御装置(30)は、前記再熱除湿モードの運転を終了するときに、前記再熱用第1開閉弁(26)及び前記再熱用第2開閉弁(28)を閉じてから所定時間後に前記再熱用膨張弁(23)を閉鎖するように構成されている、請求項8に記載の空気調和装置。 The control device (30) closes the reheat first on-off valve (26) and the reheat second on-off valve (28) for a predetermined time when the operation of the reheat dehumidification mode is finished. The air conditioner according to claim 8, wherein the air conditioner is configured to close the reheating expansion valve (23) later.
PCT/JP2018/020954 2017-05-31 2018-05-31 Air conditioning apparatus WO2018221652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880036102.5A CN110691950B (en) 2017-05-31 2018-05-31 Air conditioner
EP18809576.4A EP3633290B1 (en) 2017-05-31 2018-05-31 Air conditioning apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017107916 2017-05-31
JP2017-107916 2017-05-31
JP2017-154405 2017-08-09
JP2017154405 2017-08-09
JP2017208330A JP2018204935A (en) 2017-05-31 2017-10-27 Freezer
JP2017-208330 2017-10-27

Publications (1)

Publication Number Publication Date
WO2018221652A1 true WO2018221652A1 (en) 2018-12-06

Family

ID=64456556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020954 WO2018221652A1 (en) 2017-05-31 2018-05-31 Air conditioning apparatus

Country Status (1)

Country Link
WO (1) WO2018221652A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294720A (en) * 2021-12-28 2022-04-08 中山市爱美泰电器有限公司 Water source dehumidifier
JPWO2022162937A1 (en) * 2021-02-01 2022-08-04
US20230071382A1 (en) * 2020-11-10 2023-03-09 Rheem Manufacturing Company Air conditioning reheat systems and methods thereto
US12135156B2 (en) * 2022-11-11 2024-11-05 Rheem Manufacturing Company Air conditioning reheat systems and methods thereto

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486861U (en) * 1971-06-07 1973-01-25
JPS6060661U (en) * 1983-10-03 1985-04-26 ダイキン工業株式会社 Freezer with defrost device
JPH01222137A (en) 1988-02-29 1989-09-05 Daikin Ind Ltd Air conditioning device
JPH04131645A (en) * 1990-09-20 1992-05-06 Daikin Ind Ltd Defrosting operation control device for air conditioner
JPH05340594A (en) * 1992-06-12 1993-12-21 Kubota Corp Heat pump type air conditioner
JP2005016858A (en) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp Heat pump type air conditioning system and its operating method
JP2011133171A (en) 2009-12-24 2011-07-07 Daikin Industries Ltd Air conditioner
JP2012137241A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Air Conditioning & Refrigeration Plant Co Ltd Air-conditioning apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486861U (en) * 1971-06-07 1973-01-25
JPS6060661U (en) * 1983-10-03 1985-04-26 ダイキン工業株式会社 Freezer with defrost device
JPH01222137A (en) 1988-02-29 1989-09-05 Daikin Ind Ltd Air conditioning device
JPH04131645A (en) * 1990-09-20 1992-05-06 Daikin Ind Ltd Defrosting operation control device for air conditioner
JPH05340594A (en) * 1992-06-12 1993-12-21 Kubota Corp Heat pump type air conditioner
JP2005016858A (en) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp Heat pump type air conditioning system and its operating method
JP2011133171A (en) 2009-12-24 2011-07-07 Daikin Industries Ltd Air conditioner
JP2012137241A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Air Conditioning & Refrigeration Plant Co Ltd Air-conditioning apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633290A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230071382A1 (en) * 2020-11-10 2023-03-09 Rheem Manufacturing Company Air conditioning reheat systems and methods thereto
JPWO2022162937A1 (en) * 2021-02-01 2022-08-04
WO2022162937A1 (en) * 2021-02-01 2022-08-04 三菱電機株式会社 Air conditioning device
JP7341360B2 (en) 2021-02-01 2023-09-08 三菱電機株式会社 air conditioner
CN114294720A (en) * 2021-12-28 2022-04-08 中山市爱美泰电器有限公司 Water source dehumidifier
US12135156B2 (en) * 2022-11-11 2024-11-05 Rheem Manufacturing Company Air conditioning reheat systems and methods thereto

Similar Documents

Publication Publication Date Title
JP6590026B2 (en) Air conditioner
CN110691950B (en) Air conditioner
JP3864980B2 (en) Air conditioner
US8572995B2 (en) Refrigeration system
EP1801520B1 (en) Air conditioning system
US8020395B2 (en) Air conditioning apparatus
JP6320639B2 (en) Air conditioner
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
US20120260679A1 (en) Control of an Expansion Valve Regulating Refrigerant to an Evaporator of a Climate Control System
WO2017038161A1 (en) Refrigeration cycle device and refrigeration cycle device control method
AU2002332260B2 (en) Air conditioner
JP6401015B2 (en) Air conditioner
JP2018141599A (en) Air conditioning device
JP2018146208A (en) Air conditioner
WO2006112322A1 (en) Air conditioner
JP2005076933A (en) Refrigeration cycle system
JP2010216761A (en) Multiple type air conditioner
WO2018221652A1 (en) Air conditioning apparatus
JP2006300373A (en) Air conditioner
JP4328892B2 (en) Temperature and humidity control device and environmental test device
JP2019052817A (en) Air conditioner
JP2019066097A (en) Air conditioning device
JP5868552B1 (en) External air conditioner
JP2007101177A (en) Air conditioner or refrigerating cycle device
JP3835478B1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018809576

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809576

Country of ref document: EP

Effective date: 20200102