JP2006234239A - Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system - Google Patents

Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system Download PDF

Info

Publication number
JP2006234239A
JP2006234239A JP2005047939A JP2005047939A JP2006234239A JP 2006234239 A JP2006234239 A JP 2006234239A JP 2005047939 A JP2005047939 A JP 2005047939A JP 2005047939 A JP2005047939 A JP 2005047939A JP 2006234239 A JP2006234239 A JP 2006234239A
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
expansion valve
heat exchanger
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005047939A
Other languages
Japanese (ja)
Inventor
Shigeki Ozeki
茂樹 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005047939A priority Critical patent/JP2006234239A/en
Publication of JP2006234239A publication Critical patent/JP2006234239A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accumulator liquid refrigerant detecting method for an air conditioning system, a receiver liquid refrigerant detecting method, a refrigerant amount adjusting method, and the air conditioning system. <P>SOLUTION: In a refrigerant circuit having a compressor 3, an outdoor heat exchanger 4, a receiver 11, a cooling expansion valve 5a, and an indoor heat exchanger 6, there are provided a bypass flow path 12 which takes refrigerant out of the bottom of the receiver 11 and supplies it to the upstream side of the compressor 3, a supercooling expansion valve 13 which expands the refrigerant supplied to the bypass flow path 12, and a suprecooling heat exchanger 14 which supercools the refrigerant to be fed from the receiver 11 to the cooling expansion valve 5a while heat-exchanging it with the refrigerant expanded by the supercooling expansion valve 13. Additional refrigerant is supplied to the refrigerant circuit while controlling the opening of the supercooling expansion valve 13 so that the degree of overheating the refrigerant passing through the indoor heat exchanger 6 gets to a preset value, and the existence of the liquid refrigerant in the receiver 11 is determined at the time when there is no change in the opening of the supercooling expansion valve 13. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和装置のアキュームレータ内液冷媒検出方法、レシーバ内液冷媒検出方法、冷媒量調整方法、及び空気調和装置に関するものである。   The present invention relates to an accumulator liquid refrigerant detection method, a receiver liquid refrigerant detection method, a refrigerant amount adjustment method, and an air conditioner for an air conditioner.

空気調和装置は、冷媒を圧縮する圧縮機と、圧縮機が送出する冷媒を冷却して液化させる凝縮器と、凝縮器を通過した冷媒を膨張させる膨張弁と、膨張弁を通過した冷媒を加熱して気化させる蒸発器とを有する冷媒回路によって構成されている。
空気調和装置では、冷媒回路内で冷媒を循環させることで、凝縮器の周辺雰囲気と冷媒との間、及び蒸発器の周辺雰囲気と冷媒との間で熱交換を行って、これら周辺雰囲気のうちのいずれか一方の温度を調整するものである。
The air conditioner heats the refrigerant that has passed through the expansion valve, the compressor that compresses the refrigerant, the condenser that cools and liquefies the refrigerant that is sent out by the compressor, the expansion valve that expands the refrigerant that has passed through the condenser, and And an evaporator to be vaporized.
In the air conditioner, by circulating the refrigerant in the refrigerant circuit, heat exchange is performed between the ambient atmosphere of the condenser and the refrigerant and between the ambient atmosphere of the evaporator and the refrigerant. The temperature of either one is adjusted.

空気調和装置では、蒸発器によって気化される冷媒の量は、運転条件や周辺雰囲気温度等の環境条件によって異なるので、冷媒回路内の冷媒量が少ないと、運転条件や環境条件によっては冷媒回路内で冷媒不足が生じて効率が低下する。このため、一般的な空気調和装置では、運転条件や環境条件が変動しても冷媒回路内で冷媒不足が生じないように、冷媒回路に余剰冷媒を一時貯留しておくための構成が設けられる。
余剰冷媒を一時貯留しておくための構成としては、例えば、蒸発器を通過した冷媒を一時的に貯留するアキュームレータや、凝縮器を通過した冷媒または蒸発器を通過した冷媒を一時的に貯留するレシーバ等がある。
In an air conditioner, the amount of refrigerant that is vaporized by the evaporator varies depending on operating conditions and environmental conditions such as ambient temperature, so if the amount of refrigerant in the refrigerant circuit is small, depending on the operating conditions and environmental conditions, As a result, a shortage of refrigerant occurs and efficiency decreases. For this reason, in a general air conditioning apparatus, a configuration for temporarily storing excess refrigerant in the refrigerant circuit is provided so that refrigerant shortage does not occur in the refrigerant circuit even when operating conditions and environmental conditions fluctuate. .
As a configuration for temporarily storing surplus refrigerant, for example, an accumulator that temporarily stores the refrigerant that has passed through the evaporator, a refrigerant that has passed through the condenser, or a refrigerant that has passed through the evaporator is temporarily stored. There are receivers.

一方、冷媒回路内の冷媒量が多すぎると、冷媒の凝縮圧力が上昇して、圧縮機の負担が多くなるので、冷媒回路内の冷媒は適正範囲内、例えば高効率運転を実現するために、想定される運転条件下で最小限必要な量とすることが望まれる。
冷媒回路内の冷媒量を検出する方法としては、例えば、後記の特許文献1に記載の方法がある。
特許文献1に記載の方法では、冷凍サイクル(冷媒回路)内の余剰冷媒を貯留する受液器に、容器内部と連通する受液器液面検知用配管を設け、この受液器液面検知用配管を、減圧手段を介して冷凍サイクルの低圧側配管に接続し、減圧手段によって減圧された冷媒の温度と冷凍サイクルの低圧側配管の冷媒温度とを検出して、この情報に基づいて冷媒量の過不足状況を求めている。
On the other hand, if the amount of refrigerant in the refrigerant circuit is too large, the condensation pressure of the refrigerant increases and the burden on the compressor increases, so the refrigerant in the refrigerant circuit is within an appropriate range, for example, to achieve high-efficiency operation. Therefore, it is desirable to make the minimum required amount under the assumed operating conditions.
As a method for detecting the amount of refrigerant in the refrigerant circuit, for example, there is a method described in Patent Document 1 described later.
In the method described in Patent Document 1, a liquid receiver for storing surplus refrigerant in a refrigeration cycle (refrigerant circuit) is provided with a liquid receiver liquid level detection pipe that communicates with the inside of the container. Connecting the piping for low pressure to the low pressure side piping of the refrigeration cycle via the pressure reducing means, detecting the temperature of the refrigerant decompressed by the pressure reducing means and the refrigerant temperature of the low pressure side piping of the refrigeration cycle, and based on this information We are looking for the situation of excess or deficiency.

特開平6−101941号公報(段落[0009]〜[0010]、及び図1)JP-A-6-101941 (paragraphs [0009] to [0010] and FIG. 1)

しかし、減圧手段に気体冷媒のみが供給されていたとしても、空気調和装置の冷媒回路の構成や運転条件、環境条件等によっては、減圧手段によって減圧された冷媒の温度と冷凍サイクルの低圧側配管の冷媒温度とが一致しない場合がある。また、減圧手段によって減圧された冷媒の圧力が冷凍サイクルの低圧側配管の冷媒圧力と異なる場合がある。このため、減圧手段によって減圧された冷媒の温度と冷凍サイクルの低圧側配管の冷媒温度とを単純に比較しただけでは、冷媒量の過不足状況を正確に求めることはできない。
さらに、この方法を適用する空気調和装置は、冷媒回路に受液器液面検知用配管が設けられているので、配管構造が複雑で、製造コストが高い。また、この方法を既存の空気調和装置に適用する場合にも、冷媒回路に受液器液面検知用配管を設けるために配管増設工事が必要となり、コストがかかる。
However, even if only the gaseous refrigerant is supplied to the decompression means, depending on the configuration of the refrigerant circuit of the air conditioner, operating conditions, environmental conditions, etc., the temperature of the refrigerant decompressed by the decompression means and the low-pressure side piping of the refrigeration cycle The refrigerant temperature may not match. Moreover, the pressure of the refrigerant decompressed by the decompression means may be different from the refrigerant pressure in the low-pressure side piping of the refrigeration cycle. For this reason, it is not possible to accurately determine the excess or deficiency state of the refrigerant amount by simply comparing the refrigerant pressure reduced by the decompression means and the refrigerant temperature of the low-pressure side pipe of the refrigeration cycle.
Furthermore, since the air conditioner to which this method is applied is provided with the receiver liquid level detection pipe in the refrigerant circuit, the pipe structure is complicated and the manufacturing cost is high. In addition, when this method is applied to an existing air conditioner, it is necessary to add a pipe to the refrigerant circuit so that a pipe for detecting the liquid level of the liquid receiver is provided in the refrigerant circuit.

本発明は、このような事情に鑑みてなされたものであって、低コストでアキュームレータ内の液冷媒量を正確に検出することができる空気調和装置のアキュームレータ内冷媒検出方法、低コストでレシーバ内の液冷媒量を正確に検出することができる空気調和装置のレシーバ内液冷媒検出方法、低コストで冷媒量を適正量とすることが可能な冷媒量調整方法、及び冷媒量を自動調節可能な空気調和装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to accurately detect the amount of liquid refrigerant in an accumulator at a low cost, and in the receiver at a low cost in an accumulator. Method for detecting the amount of refrigerant in the receiver of an air conditioner capable of accurately detecting the amount of refrigerant in the air, a method for adjusting the amount of refrigerant capable of setting the amount of refrigerant to an appropriate amount at low cost, and automatically adjusting the amount of refrigerant An object is to provide an air conditioner.

上記課題を解決するために、本発明の空気調和装置のアキュームレータ内液冷媒検出方法、レシーバ内液冷媒検出方法、冷媒量調整方法、及び空気調和装置は、以下の手段を採用する。
すなわち、本発明に係る空気調和装置のアキュームレータ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を冷却して液化させる凝縮器と、該凝縮器を通過した冷媒を膨張させる膨張弁と、該膨張弁を通過した冷媒を加熱して気化させる蒸発器と、該蒸発器から前記圧縮機に供給される冷媒を一時的に貯留するアキュームレータとを有する冷媒回路に、前記アキュームレータの底部と前記圧縮機の上流部とを接続して前記アキュームレータ内の液体を前記圧縮機に供給する液戻し流路を設けた構成の空気調和装置に対して、前記液戻し流路を通過する液体の温度を測定する戻り液温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記戻り液温度測定装置の測定値及び前記低圧側圧力測定装置の測定値に基づいて前記液戻し流路を流通する液体の過熱度を検出し、該液体に過熱度が生じていることをもって前記アキュームレータ内から全ての液冷媒が排出されたと判定することを特徴とする。
In order to solve the above-described problems, an accumulator liquid refrigerant detection method, a receiver liquid refrigerant detection method, a refrigerant amount adjustment method, and an air conditioner of the present invention employ the following means.
That is, an accumulator liquid refrigerant detection method for an air conditioner according to the present invention includes a compressor that compresses a refrigerant, a condenser that cools and liquefies the refrigerant that is sent out by the compressor, and a refrigerant that has passed through the condenser A refrigerant circuit having an expansion valve that expands the refrigerant, an evaporator that heats and vaporizes the refrigerant that has passed through the expansion valve, and an accumulator that temporarily stores the refrigerant that is supplied from the evaporator to the compressor. For the air conditioner configured to connect the bottom of the accumulator and the upstream portion of the compressor and supply the liquid in the accumulator to the compressor, the liquid return channel A return liquid temperature measuring device for measuring the temperature of the liquid passing therethrough, and a low pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor; Based on the measured value of the low-pressure side pressure measuring device, the degree of superheat of the liquid flowing through the liquid return channel is detected, and all the liquid refrigerant is discharged from the accumulator when the degree of superheat is generated in the liquid. It is characterized by determining that it was.

空気調和装置では、運転停止時には、運転中に冷媒回路内で蒸発器により気化させられた冷媒の一部が液化して、アキュームレータ内に貯留される。このアキュームレータ内の液冷媒は、空気調和装置の運転を再開して蒸発器の過熱度運転を再開することによって徐々に蒸発して減っていく。
アキュームレータ内の液冷媒は、過熱度がほとんどないので、アキュームレータ内に液冷媒が存在している場合には、液戻し流路内の液体も過熱度がほとんどない。
一方、アキュームレータ内の液冷媒が全て排出された場合には、アキュームレータ内の気体冷媒が過熱度を持つことになり、これによって液戻し流路内の液体も過熱度を持つようになる。
In the air conditioner, when the operation is stopped, a part of the refrigerant evaporated by the evaporator in the refrigerant circuit during the operation is liquefied and stored in the accumulator. The liquid refrigerant in the accumulator gradually evaporates and decreases by restarting the operation of the air conditioner and restarting the superheat degree operation of the evaporator.
Since the liquid refrigerant in the accumulator has almost no degree of superheat, the liquid in the liquid return flow path has little degree of superheat when the liquid refrigerant exists in the accumulator.
On the other hand, when all of the liquid refrigerant in the accumulator is discharged, the gas refrigerant in the accumulator has a degree of superheat, so that the liquid in the liquid return channel also has a degree of superheat.

本発明に係る空気調和装置のアキュームレータ内液冷媒検出方法は、このことを利用して、アキュームレータ内の液冷媒の有無を検出する。
具体的には、戻り液温度測定装置によって得られた液戻し流路内の液体の温度と、低圧側冷媒圧力測定装置によって得られた、圧縮機に供給される冷媒の圧力とに基づいて、液戻し流路内の液体の過熱度を求め、液戻し流路内の液体に過熱度が生じていない場合にはアキュームレータ内に液冷媒が貯留されていると判定し、液戻し流路内の液体が過熱度を持っている場合にはアキュームレータ内から全ての液冷媒が排出されたと判定する。
この空気調和装置のアキュームレータ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、アキュームレータ内の液冷媒の排出を正確に確認することができる。特に、動作制御のために戻り液温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
The method for detecting liquid refrigerant in the accumulator of the air conditioner according to the present invention uses this fact to detect the presence or absence of liquid refrigerant in the accumulator.
Specifically, based on the temperature of the liquid in the liquid return channel obtained by the return liquid temperature measurement device and the pressure of the refrigerant supplied to the compressor obtained by the low pressure side refrigerant pressure measurement device, The degree of superheat of the liquid in the liquid return channel is obtained, and when the degree of superheat does not occur in the liquid in the liquid return channel, it is determined that the liquid refrigerant is stored in the accumulator, When the liquid has a superheat degree, it is determined that all the liquid refrigerant has been discharged from the accumulator.
In this method for detecting liquid refrigerant in the accumulator of the air conditioner, the discharge of the liquid refrigerant in the accumulator can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner provided with the return liquid temperature measuring device and the low pressure side refrigerant pressure measuring device for operation control.

また、本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を外気との熱交換によって冷却して液化させる室外熱交換器と、該室外熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバを通過した冷媒を膨張させる冷房用膨張弁と、該冷房用膨張弁を通過した冷媒を室内雰囲気との熱交換によって加熱して気化させる室内熱交換器とを有する冷媒回路に、前記レシーバの底部から該レシーバ内の冷媒の一部を取り出して前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記レシーバから前記冷房用膨張弁に送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、前記室内熱交換器を通過した冷媒の温度を測定する室内側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記空気調和装置の冷房運転中に、前記室内側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室内熱交換器を通過した冷媒の過熱度を検出し、該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路への冷媒の追加を行い、前記過冷却用膨張弁の開度の変化が生じなくなった時点で前記レシーバ内に液冷媒が存在していると判定することを特徴とする。   In addition, the method for detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a compressor that compresses the refrigerant, and an outdoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with the outside air. A receiver that temporarily stores the refrigerant that has passed through the outdoor heat exchanger, a cooling expansion valve that expands the refrigerant that has passed through the receiver, and heat exchange between the refrigerant that has passed through the cooling expansion valve and the indoor atmosphere. A bypass circuit for extracting a part of the refrigerant in the receiver from the bottom of the receiver and supplying it to the upstream side of the compressor in a refrigerant circuit having an indoor heat exchanger heated and vaporized by A supercooling expansion valve that expands the refrigerant supplied to the passage and a refrigerant sent from the receiver to the cooling expansion valve are supercooled by heat exchange with the refrigerant expanded by the supercooling expansion valve. An air conditioner configured to include a cooling heat exchanger, an indoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the indoor heat exchanger, and a pressure of the refrigerant that is supplied to the compressor A low pressure side refrigerant pressure measuring device, and during the cooling operation of the air conditioner, the indoor heat exchanger is controlled based on the measured value of the indoor side refrigerant temperature measuring device and the measured value of the low pressure side refrigerant pressure measuring device. The degree of superheat of the refrigerant that has passed is detected, and the refrigerant is added to the refrigerant circuit while controlling the opening degree of the supercooling expansion valve so that the degree of superheat becomes a predetermined value. It is determined that liquid refrigerant is present in the receiver at the time when the change in the opening of the valve stops occurring.

空気調和装置では、室外熱交換器によって液化された冷媒が冷房用膨張弁によって膨張させられることで低温低圧の冷媒となり、室内熱交換器によってこの低温低圧の冷媒と室内雰囲気との熱交換が行われることによって室内雰囲気の冷却が行われる。
ここで、室外熱交換器によって液化された冷媒は、レシーバに一時的に貯留され、一部がバイパス流路に取り出される。ここで、バイパス流路は、レシーバの底部から冷媒を取り出すので、レシーバ内に液冷媒がある状態ではバイパス流路には常に液冷媒が流通される。
バイパス流路に取り出された冷媒は、過冷却用膨張弁によって膨張させられて低温低圧の冷媒となり、過冷却用熱交換器によって、レシーバから冷房用膨張弁に供給される高圧の液冷媒と熱交換させられて、この高圧の液冷媒の過冷却に寄与する。
In the air conditioner, the refrigerant liquefied by the outdoor heat exchanger is expanded by the cooling expansion valve to become a low-temperature and low-pressure refrigerant, and the indoor heat exchanger performs heat exchange between the low-temperature and low-pressure refrigerant and the indoor atmosphere. As a result, the indoor atmosphere is cooled.
Here, the refrigerant liquefied by the outdoor heat exchanger is temporarily stored in the receiver, and a part thereof is taken out to the bypass channel. Here, since the bypass channel takes out the refrigerant from the bottom of the receiver, the liquid refrigerant always circulates in the bypass channel when there is a liquid refrigerant in the receiver.
The refrigerant taken out to the bypass channel is expanded by the supercooling expansion valve to become a low-temperature and low-pressure refrigerant, and the supercooling heat exchanger and the high-pressure liquid refrigerant and heat supplied from the receiver to the cooling expansion valve. It is exchanged and contributes to the supercooling of this high-pressure liquid refrigerant.

この空気調和装置の冷房運転時において、レシーバ内に液冷媒がある状態では、バイパス流路に液冷媒が十分に供給されるので、過冷却用膨張弁の開度をそれほど大きくない一定の開度とすることで、過冷却熱交換器による過冷却が十分に行われて、室内熱交換器を通過した冷媒に所定の過熱度を持たせることができる。   During the cooling operation of this air conditioner, when there is liquid refrigerant in the receiver, liquid refrigerant is sufficiently supplied to the bypass flow path, so that the opening degree of the supercooling expansion valve is not so large Thus, the supercooling by the supercooling heat exchanger is sufficiently performed, and the refrigerant that has passed through the indoor heat exchanger can have a predetermined degree of superheating.

一方、レシーバ内に液冷媒がない状態では、バイパス流路には液冷媒が十分に供給されずにフラッシュが生じて冷媒流量が不足するので、過冷却熱交換器による過冷却を十分に行って室内熱交換器を通過した冷媒に所定の過熱度を持たせるためには、過冷却用膨張弁の開度を大きくしなくてはならない。
つまり、室内熱交換器を通過した冷媒に所定の過熱度を持たせるように過冷却用膨張弁の開度を制御した場合、レシーバ内に液冷媒がある状態と液冷媒がない状態とでは、過冷却用膨張弁の開度に明確な差が生じる。
On the other hand, in the state where there is no liquid refrigerant in the receiver, liquid refrigerant is not sufficiently supplied to the bypass channel, and flashing occurs and the refrigerant flow rate is insufficient. In order to give the refrigerant having passed through the indoor heat exchanger a predetermined degree of superheat, the degree of opening of the supercooling expansion valve must be increased.
In other words, when the opening degree of the supercooling expansion valve is controlled so that the refrigerant that has passed through the indoor heat exchanger has a predetermined degree of superheat, in the state where there is liquid refrigerant in the receiver and in the state where there is no liquid refrigerant, There is a clear difference in the opening of the supercooling expansion valve.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、このことを利用して、レシーバ内の液冷媒の有無を検出する。
具体的には、空気調和装置の冷房運転中に、上記のように過冷却用膨張弁の開度の制御を行いながら、冷媒回路に冷媒を追加する。
このように冷媒を追加することで過冷却用膨張弁の開度が少なくなる場合にはレシーバ内に液冷媒がないと判定し、冷媒を追加しても過冷却用膨張弁の開度に明確な変化が生じない場合には、レシーバ内に液冷媒があると判定する。
The method for detecting the liquid refrigerant in the receiver of the air conditioner according to the present invention detects the presence or absence of the liquid refrigerant in the receiver using this fact.
Specifically, during the cooling operation of the air conditioner, the refrigerant is added to the refrigerant circuit while controlling the opening degree of the supercooling expansion valve as described above.
When the opening degree of the supercooling expansion valve decreases by adding the refrigerant in this way, it is determined that there is no liquid refrigerant in the receiver, and the opening degree of the supercooling expansion valve is clear even if the refrigerant is added. If no change occurs, it is determined that there is liquid refrigerant in the receiver.

この空気調和装置のレシーバ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、レシーバ内の液冷媒の有無を正確に確認することができる。特に、動作制御のために室内側冷媒温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
なお、この空気調和装置のレシーバ内液冷媒検出方法は、冷媒回路内の冷媒が適正量よりも不足している場合に適用されるものである。
With this method for detecting the liquid refrigerant in the receiver of the air conditioner, the presence or absence of the liquid refrigerant in the receiver can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner that includes the indoor-side refrigerant temperature measuring device and the low-pressure side refrigerant pressure measuring device for operation control.
In addition, the receiver internal liquid refrigerant detection method of this air conditioning apparatus is applied when the refrigerant in the refrigerant circuit is deficient in an appropriate amount.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路からなる空気調和装置に、前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、該過熱度が所定の値となるように前記暖房用膨張弁の開度を制御しながら前記冷媒回路への冷媒の追加を行い、前記暖房用膨張弁の開度の変化が生じなくなった時点で前記レシーバ内に液冷媒が存在していると判定することを特徴とする。   A method for detecting liquid refrigerant in a receiver of an air conditioner according to the present invention includes a compressor that compresses a refrigerant, an indoor heat exchanger that cools and liquefies the refrigerant that is sent out by the compressor by heat exchange with an indoor atmosphere, A receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger, a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and the refrigerant that has passed through the heating expansion valve is heated by outside air. An outdoor air conditioner that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger is supplied to an air conditioner that includes a refrigerant circuit having an outdoor heat exchanger that is heated and vaporized by exchange, and is supplied to the compressor A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant to be measured, and during the heating operation of the air conditioner, the measured value of the outdoor refrigerant temperature measuring device and the measured value of the low-pressure side refrigerant pressure measuring device Base Detecting the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger, and adding the refrigerant to the refrigerant circuit while controlling the opening of the heating expansion valve so that the degree of superheat becomes a predetermined value. It is determined that liquid refrigerant is present in the receiver when the opening of the heating expansion valve no longer changes.

空気調和装置では、室外熱交換器によって気化させられた冷媒が圧縮機による圧縮を受けることで昇温されて高温高圧の気体冷媒となり、室内熱交換器によってこの高温高圧の気体冷媒と室内雰囲気との熱交換が行われることによって室内雰囲気の加熱が行われる。
室内熱交換器によって液化された冷媒は、レシーバに一時的に貯留されたのち、暖房用膨張弁によって膨張させられることによって低温低圧の冷媒となり、さらに室外熱交換器によって外気と熱交換されることによって気化させられて、再び圧縮機に送り込まれる。
In the air conditioner, the refrigerant vaporized by the outdoor heat exchanger is heated by being compressed by the compressor and becomes a high-temperature and high-pressure gas refrigerant. The indoor heat exchanger uses the high-temperature and high-pressure gas refrigerant and the indoor atmosphere. The indoor atmosphere is heated by performing the heat exchange.
The refrigerant liquefied by the indoor heat exchanger is temporarily stored in the receiver, then expanded by the heating expansion valve to become a low-temperature and low-pressure refrigerant, and is further heat-exchanged with the outside air by the outdoor heat exchanger. Is vaporized and sent back to the compressor.

ここで、暖房用膨張弁には、レシーバの底部から取り出した冷媒が送り込まれるので、この空気調和装置の暖房運転時において、レシーバ内に液冷媒がある状態では、暖房用膨張弁に液冷媒が十分に供給される。このため、暖房用膨張弁の開度をそれほど大きくない一定の開度とすることで、室外熱交換器の過熱度運転が十分に行われて、室外熱交換器を通過した冷媒に所定の過熱度を持たせることができる。   Here, since the refrigerant taken out from the bottom of the receiver is sent to the heating expansion valve, when the air conditioner is in the heating operation, when the liquid refrigerant is present in the receiver, the liquid refrigerant is present in the heating expansion valve. Fully supplied. For this reason, by setting the opening degree of the heating expansion valve to a constant opening degree that is not so large, the superheat degree operation of the outdoor heat exchanger is sufficiently performed, and the refrigerant that has passed through the outdoor heat exchanger has a predetermined superheat. Can have a degree.

一方、レシーバ内に液冷媒がない状態では、暖房用膨張弁には液冷媒が十分に供給されずにフラッシュが生じて冷媒流量が不足するので、室外熱交換器による過熱度運転を十分に行わせて、室外熱交換器を通過した冷媒に所定の過熱度を持たせるためには、暖房用膨張弁の開度を大きくしなくてはならない。
つまり、室外熱交換器を通過した冷媒に所定の過熱度を持たせるように暖房用膨張弁の開度を制御した場合、レシーバ内に液冷媒がある状態と液冷媒がない状態とでは、暖房用膨張弁の開度に明確な差が生じる。
On the other hand, when there is no liquid refrigerant in the receiver, the heating expansion valve is not sufficiently supplied with liquid refrigerant, and flashing occurs, resulting in insufficient refrigerant flow. Therefore, in order to give the refrigerant having passed through the outdoor heat exchanger a predetermined degree of superheat, the opening of the heating expansion valve must be increased.
In other words, when the opening of the heating expansion valve is controlled so that the refrigerant that has passed through the outdoor heat exchanger has a predetermined degree of superheat, heating is performed in a state where there is liquid refrigerant in the receiver and in a state where there is no liquid refrigerant. There is a clear difference in the opening of the expansion valve.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、このことを利用して、レシーバ内の液冷媒の有無を検出する。
具体的には、空気調和装置の暖房運転中に、上記のように暖房用膨張弁の開度の制御を行いながら、冷媒回路に冷媒を追加する。
このように冷媒を追加することで暖房用膨張弁の開度が少なくなる場合にはレシーバ内に液冷媒がないと判定し、冷媒を追加しても暖房用膨張弁の開度に明確な変化が生じない場合には、レシーバ内に液冷媒があると判定する。
The method for detecting the liquid refrigerant in the receiver of the air conditioner according to the present invention detects the presence or absence of the liquid refrigerant in the receiver using this fact.
Specifically, during the heating operation of the air conditioner, the refrigerant is added to the refrigerant circuit while controlling the opening degree of the heating expansion valve as described above.
When the opening of the heating expansion valve is reduced by adding the refrigerant in this way, it is determined that there is no liquid refrigerant in the receiver, and even if the refrigerant is added, the opening of the heating expansion valve is clearly changed. If no occurs, it is determined that there is liquid refrigerant in the receiver.

この空気調和装置のレシーバ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、レシーバ内の液冷媒の有無を正確に確認することができる。特に、動作制御のために室外側冷媒温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
なお、この空気調和装置のレシーバ内液冷媒検出方法は、冷媒回路内の冷媒が適正量よりも不足している場合に適用されるものである。ここで、暖房用膨張弁の開度が通常使用される範囲よりも大きい場合、または実際に冷媒回路に冷媒を追加した際に暖房用膨張弁の開度が小さくなった場合には、冷媒回路内の冷媒が不足しているとみなすことができ、この空気調和装置のレシーバ内液冷媒検出方法を適用することができる。
With this method for detecting the liquid refrigerant in the receiver of the air conditioner, the presence or absence of the liquid refrigerant in the receiver can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner that includes the outdoor refrigerant temperature measuring device and the low-pressure refrigerant pressure measuring device for operation control.
In addition, the receiver internal liquid refrigerant detection method of this air conditioning apparatus is applied when the refrigerant in the refrigerant circuit is deficient in an appropriate amount. Here, when the opening degree of the heating expansion valve is larger than the normally used range, or when the opening degree of the heating expansion valve becomes small when the refrigerant is actually added to the refrigerant circuit, the refrigerant circuit The refrigerant in the receiver can be regarded as insufficient, and the liquid refrigerant detection method in the receiver of the air conditioner can be applied.

また、本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路に、前記室内熱交換器を通過した冷媒の一部を前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記室内熱交換器から前記レシーバに送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路への冷媒の追加を行い、前記過冷却用膨張弁の開度の変化が生じなくなった時点で前記レシーバ内に液冷媒が存在していると判定することを特徴とする。   Moreover, the method of detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a compressor that compresses the refrigerant, and an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with the indoor atmosphere. A receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger, a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and a refrigerant that has passed through the heating expansion valve A bypass circuit for supplying a part of the refrigerant that has passed through the indoor heat exchanger to the upstream side of the compressor, and a bypass flow path in a refrigerant circuit having an outdoor heat exchanger that is heated and vaporized by heat exchange of A supercooling expansion valve for expanding the refrigerant supplied to the passage, and a supercooling for cooling the refrigerant sent from the indoor heat exchanger to the receiver by heat exchange with the refrigerant expanded by the subcooling expansion valve heat A low-temperature side that measures the pressure of refrigerant supplied to the compressor, and an outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger. A refrigerant pressure measuring device, and during the heating operation of the air conditioner, the outdoor heat exchanger passed through the measured value of the outdoor refrigerant temperature measuring device and the measured value of the low pressure refrigerant pressure measuring device The refrigerant is added to the refrigerant circuit while detecting the degree of superheat of the refrigerant and controlling the opening degree of the supercooling expansion valve so that the degree of superheat becomes a predetermined value. It is determined that liquid refrigerant is present in the receiver at the time when the change in the opening degree stops occurring.

空気調和装置では、室外熱交換器によって気化させられた冷媒が圧縮機による圧縮を受けることで昇温されて高温高圧の気体冷媒となり、室内熱交換器によってこの高温高圧の気体冷媒と室内雰囲気との熱交換が行われることによって室内雰囲気の加熱が行われる。
室内熱交換器によって液化された冷媒は、レシーバに一時的に貯留されたのち、暖房用膨張弁によって膨張させられることによって低温低圧の冷媒となり、さらに室外熱交換器によって外気と熱交換されることによって気化させられて、再び圧縮機に送り込まれる。
In the air conditioner, the refrigerant vaporized by the outdoor heat exchanger is heated by being compressed by the compressor and becomes a high-temperature and high-pressure gas refrigerant. The indoor heat exchanger uses the high-temperature and high-pressure gas refrigerant and the indoor atmosphere. The indoor atmosphere is heated by performing the heat exchange.
The refrigerant liquefied by the indoor heat exchanger is temporarily stored in the receiver, then expanded by the heating expansion valve to become a low-temperature and low-pressure refrigerant, and is further heat-exchanged with the outside air by the outdoor heat exchanger. Is vaporized and sent back to the compressor.

ここで、暖房用膨張弁には、レシーバの底部から取り出した冷媒が送り込まれるので、レシーバ内に液冷媒がある状態では暖房用膨張弁には常に液冷媒が流通される。
また、バイパス流路に取り出された冷媒は、過冷却用膨張弁によって膨張させられて低温低圧の冷媒となり、過冷却用熱交換器によって、室内熱交換器からレシーバに供給される高圧の液冷媒と熱交換させられて、この高圧の液冷媒の過冷却に寄与する。
Here, since the refrigerant taken out from the bottom of the receiver is fed into the heating expansion valve, the liquid refrigerant is always circulated through the heating expansion valve in a state where there is liquid refrigerant in the receiver.
The refrigerant taken out to the bypass flow path is expanded by a supercooling expansion valve to become a low-temperature and low-pressure refrigerant, and is supplied from the indoor heat exchanger to the receiver by the supercooling heat exchanger. Heat exchange, and contributes to the supercooling of the high-pressure liquid refrigerant.

この空気調和装置の暖房運転時において、レシーバ内に液冷媒がある状態では、暖房用膨張弁に液冷媒が十分に供給されるので、室外熱交換器の過熱度運転が十分に行われて、室外熱交換器を通過した冷媒に所定の過熱度を持たせることができる。すなわち、レシーバ内に液冷媒がある状態では、冷媒の過冷却がそれほど必要でないので、過冷却用膨張弁の開度をそれほど大きくない一定の開度とすることで、室外熱交換器を通過した冷媒に所定の過熱度を持たせることができる。   During heating operation of this air conditioner, in the state where there is liquid refrigerant in the receiver, liquid refrigerant is sufficiently supplied to the heating expansion valve, so that the superheat operation of the outdoor heat exchanger is sufficiently performed, The refrigerant having passed through the outdoor heat exchanger can have a predetermined degree of superheat. That is, in the state where there is a liquid refrigerant in the receiver, it is not necessary to supercool the refrigerant so much, so that the degree of opening of the supercooling expansion valve is set to a certain degree of opening so that it passes through the outdoor heat exchanger. The refrigerant can have a predetermined degree of superheat.

一方、レシーバ内に液冷媒がない状態では、暖房用膨張弁には液冷媒が十分に供給されずにフラッシュが生じて冷媒流量が不足するので、室外熱交換器による過熱度運転を十分に行わせて、室外熱交換器を通過した冷媒に所定の過熱度を持たせるためには、過冷却用膨張弁の開度を大きくして、レシーバに送り込まれる冷媒により大きな過冷却度を持たせる必要がある。
つまり、室外熱交換器を通過した冷媒に所定の過熱度を持たせるように過冷却用膨張弁の開度を制御した場合、レシーバ内に液冷媒がある状態と液冷媒がない状態とでは、過冷却用膨張弁の開度に明確な差が生じる。
On the other hand, when there is no liquid refrigerant in the receiver, the heating expansion valve is not sufficiently supplied with liquid refrigerant, and flashing occurs, resulting in insufficient refrigerant flow. Therefore, in order to give the refrigerant having passed the outdoor heat exchanger a predetermined degree of superheat, it is necessary to increase the degree of opening of the supercooling expansion valve so that the refrigerant sent to the receiver has a higher degree of supercooling. There is.
That is, when the opening degree of the supercooling expansion valve is controlled so that the refrigerant that has passed through the outdoor heat exchanger has a predetermined degree of superheat, in the state where there is liquid refrigerant in the receiver and in the state where there is no liquid refrigerant, There is a clear difference in the opening of the supercooling expansion valve.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、このことを利用して、レシーバ内の液冷媒の有無を検出する。
具体的には、空気調和装置の暖房運転中に、上記のように過冷却用膨張弁の開度の制御を行いながら、冷媒回路に冷媒を追加する。
このように冷媒を追加することで過冷却用膨張弁の開度が少なくなる場合にはレシーバ内に液冷媒がないと判定し、冷媒を追加しても過冷却用膨張弁の開度に明確な変化が生じない場合には、レシーバ内に液冷媒があると判定する。
The method for detecting the liquid refrigerant in the receiver of the air conditioner according to the present invention detects the presence or absence of the liquid refrigerant in the receiver using this fact.
Specifically, during the heating operation of the air conditioner, the refrigerant is added to the refrigerant circuit while controlling the opening degree of the supercooling expansion valve as described above.
When the opening degree of the supercooling expansion valve decreases by adding the refrigerant in this way, it is determined that there is no liquid refrigerant in the receiver, and the opening degree of the supercooling expansion valve is clear even if the refrigerant is added. If no change occurs, it is determined that there is liquid refrigerant in the receiver.

この空気調和装置のレシーバ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、レシーバ内の液冷媒の有無を正確に確認することができる。特に、動作制御のために室外側冷媒温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
なお、この空気調和装置のレシーバ内液冷媒検出方法は、冷媒回路内の冷媒が適正量よりも不足している場合に適用されるものである。ここで、過冷却用膨張弁の開度が通常使用される範囲よりも大きい場合、または実際に冷媒回路に冷媒を追加した際に過冷却用膨張弁の開度が小さくなった場合には、冷媒回路内の冷媒が不足しているとみなすことができ、この空気調和装置のレシーバ内液冷媒検出方法を適用することができる。
With this method for detecting the liquid refrigerant in the receiver of the air conditioner, the presence or absence of the liquid refrigerant in the receiver can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner that includes the outdoor refrigerant temperature measuring device and the low-pressure refrigerant pressure measuring device for operation control.
In addition, the receiver internal liquid refrigerant detection method of this air conditioning apparatus is applied when the refrigerant in the refrigerant circuit is deficient in an appropriate amount. Here, when the opening degree of the expansion valve for supercooling is larger than the range normally used, or when the opening degree of the expansion valve for supercooling becomes small when the refrigerant is actually added to the refrigerant circuit, It can be considered that the refrigerant in the refrigerant circuit is insufficient, and the receiver liquid refrigerant detection method of the air conditioner can be applied.

また、本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を外気との熱交換によって冷却して液化させる室外熱交換器と、該室外熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバを通過した冷媒を膨張させる冷房用膨張弁と、該冷房用膨張弁を通過した冷媒を室内雰囲気との熱交換によって加熱して気化させる室内熱交換器とを有する冷媒回路に、前記レシーバの底部から該レシーバ内の冷媒の一部を取り出して前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記レシーバから前記冷房用膨張弁に送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、前記室内熱交換器を通過した冷媒の温度を測定する室内側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記空気調和装置の冷房運転中に、前記室内側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室内熱交換器を通過した冷媒の過熱度を検出し、該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路からの冷媒の取り出しを行い、前記過冷却用膨張弁の開度の変化が生じた時点で前記レシーバ内の液冷媒がなくなったと判定することを特徴とする。   In addition, the method for detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a compressor that compresses the refrigerant, and an outdoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with the outside air. A receiver that temporarily stores the refrigerant that has passed through the outdoor heat exchanger, a cooling expansion valve that expands the refrigerant that has passed through the receiver, and heat exchange between the refrigerant that has passed through the cooling expansion valve and the indoor atmosphere. A bypass circuit for extracting a part of the refrigerant in the receiver from the bottom of the receiver and supplying it to the upstream side of the compressor in a refrigerant circuit having an indoor heat exchanger heated and vaporized by A supercooling expansion valve that expands the refrigerant supplied to the passage and a refrigerant sent from the receiver to the cooling expansion valve are supercooled by heat exchange with the refrigerant expanded by the supercooling expansion valve. An air conditioner configured to include a cooling heat exchanger, an indoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the indoor heat exchanger, and a pressure of the refrigerant that is supplied to the compressor A low pressure side refrigerant pressure measuring device, and during the cooling operation of the air conditioner, the indoor heat exchanger is controlled based on the measured value of the indoor side refrigerant temperature measuring device and the measured value of the low pressure side refrigerant pressure measuring device. The degree of superheat of the refrigerant that has passed is detected, the refrigerant is taken out from the refrigerant circuit while controlling the opening degree of the supercooling expansion valve so that the degree of superheat becomes a predetermined value, and the expansion for supercooling is performed. It is characterized in that it is determined that the liquid refrigerant in the receiver is exhausted when the change in the valve opening occurs.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、室内熱交換器を通過した冷媒に所定の過熱度を持たせるように過冷却用膨張弁の開度を制御した場合、レシーバ内に液冷媒がある状態と液冷媒がない状態とでは、過冷却用膨張弁の開度に明確な差が生じることを利用して、レシーバ内の液冷媒の有無を検出する。
具体的には、空気調和装置の冷房運転中に、上記のように過冷却用膨張弁の開度の制御を行いながら、冷媒回路より一部の冷媒を取り出す。
そして、このように冷媒を取り出しても過冷却用膨張弁の開度に明確な変化が生じない場合にはレシーバ内に液冷媒があると判定し、冷媒を取り出すことで過冷却用膨張弁の開度が増加する場合には、レシーバ内に液冷媒がないと判定する。
The method for detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a method in which the opening of the expansion valve for supercooling is controlled so that the refrigerant that has passed through the indoor heat exchanger has a predetermined degree of superheat. The presence or absence of liquid refrigerant in the receiver is detected by utilizing a clear difference between the opening degree of the supercooling expansion valve between the state with liquid refrigerant and the state without liquid refrigerant.
Specifically, during the cooling operation of the air conditioner, a part of the refrigerant is taken out from the refrigerant circuit while controlling the opening degree of the supercooling expansion valve as described above.
If no clear change occurs in the opening degree of the supercooling expansion valve even if the refrigerant is taken out in this way, it is determined that there is liquid refrigerant in the receiver, and the supercooling expansion valve is removed by taking out the refrigerant. When the opening degree increases, it is determined that there is no liquid refrigerant in the receiver.

この空気調和装置のレシーバ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、レシーバ内の液冷媒の有無を正確に確認することができる。特に、動作制御のために室外側冷媒温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
なお、この空気調和装置のレシーバ内液冷媒検出方法は、冷媒回路内の冷媒が適正量以上ある場合に適用されるものである。ここで、過冷却用膨張弁の開度が通常使用される範囲内かそれ以下である場合、または実際に冷媒回路に冷媒を取り出した際に過冷却用膨張弁の開度が変化しない場合には、冷媒回路内の冷媒が適正量以上あるとみなすことができ、この空気調和装置のレシーバ内液冷媒検出方法を適用することができる。
With this method for detecting the liquid refrigerant in the receiver of the air conditioner, the presence or absence of the liquid refrigerant in the receiver can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner that includes the outdoor refrigerant temperature measuring device and the low-pressure refrigerant pressure measuring device for operation control.
Note that the receiver liquid refrigerant detection method of the air conditioner is applied when the refrigerant in the refrigerant circuit is more than an appropriate amount. Here, when the opening degree of the expansion valve for supercooling is within the normal use range or below, or when the opening degree of the expansion valve for supercooling does not change when the refrigerant is actually taken out to the refrigerant circuit It can be considered that the refrigerant in the refrigerant circuit is more than an appropriate amount, and the liquid refrigerant detection method in the receiver of the air conditioner can be applied.

また、本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路からなる空気調和装置に、前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、該過熱度が所定の値となるように前記暖房用膨張弁の開度を制御しながら前記冷媒回路からの冷媒の取り出しを行い、前記暖房用膨張弁の開度の変化が生じた時点で前記レシーバ内の液冷媒がなくなったと判定することを特徴とする。   Moreover, the method of detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a compressor that compresses the refrigerant, and an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with the indoor atmosphere. A receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger, a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and a refrigerant that has passed through the heating expansion valve An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger, an air conditioner that includes an outdoor heat exchanger that is heated and vaporized by heat exchange of the outdoor heat exchanger, and the compressor A low-pressure-side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the air-conditioner, and during the heating operation of the air-conditioning apparatus, the measured value of the outdoor-side refrigerant temperature measuring device and the measurement of the low-pressure-side refrigerant pressure measuring device value Based on this, the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger is detected, and the refrigerant is taken out from the refrigerant circuit while controlling the opening of the heating expansion valve so that the degree of superheat becomes a predetermined value. And determining that the liquid refrigerant in the receiver is exhausted when a change in the opening degree of the heating expansion valve occurs.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、室外熱交換器を通過した冷媒に所定の過熱度を持たせるように暖房用膨張弁の開度を制御した場合、レシーバ内に液冷媒がある状態と液冷媒がない状態とでは、暖房用膨張弁の開度に明確な差が生じることを利用して、レシーバ内の液冷媒の有無を検出する。
具体的には、空気調和装置の暖房運転中に、上記のように暖房用膨張弁の開度の制御を行いながら、冷媒回路より一部の冷媒を取り出す。
このように冷媒を取り出しても暖房用膨張弁の開度に明確な変化が生じない場合にはレシーバ内に液冷媒があると判定し、冷媒を取り出すことで暖房用膨張弁の開度が増加する場合には、レシーバ内に液冷媒がないと判定する。
In the method for detecting liquid refrigerant in the receiver of the air conditioner according to the present invention, when the opening degree of the expansion valve for heating is controlled so that the refrigerant having passed through the outdoor heat exchanger has a predetermined degree of superheat, The presence or absence of liquid refrigerant in the receiver is detected by utilizing the fact that there is a clear difference in the opening of the heating expansion valve between the state where there is a refrigerant and the state where there is no liquid refrigerant.
Specifically, during the heating operation of the air conditioner, a part of the refrigerant is taken out from the refrigerant circuit while controlling the opening degree of the heating expansion valve as described above.
If the opening of the heating expansion valve does not clearly change even after the refrigerant is taken out in this way, it is determined that there is liquid refrigerant in the receiver, and the opening of the heating expansion valve increases by removing the refrigerant. If so, it is determined that there is no liquid refrigerant in the receiver.

この空気調和装置のレシーバ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、レシーバ内の液冷媒の有無を正確に確認することができる。特に、動作制御のために室外側冷媒温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
なお、この空気調和装置のレシーバ内液冷媒検出方法は、冷媒回路内の冷媒が適正量以上ある場合に適用されるものである。
With this method for detecting the liquid refrigerant in the receiver of the air conditioner, the presence or absence of the liquid refrigerant in the receiver can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner that includes the outdoor refrigerant temperature measuring device and the low-pressure refrigerant pressure measuring device for operation control.
Note that the receiver liquid refrigerant detection method of the air conditioner is applied when the refrigerant in the refrigerant circuit is more than an appropriate amount.

また、本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路に、前記室内熱交換器を通過した冷媒の一部を前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記室内熱交換器から前記レシーバに送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路からの冷媒の取り出しを行い、前記過冷却用膨張弁の開度の変化が生じた時点で前記レシーバ内の液冷媒がなくなったと判定することを特徴とする。   Moreover, the method of detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a compressor that compresses the refrigerant, and an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with the indoor atmosphere. A receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger, a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and a refrigerant that has passed through the heating expansion valve A bypass circuit for supplying a part of the refrigerant that has passed through the indoor heat exchanger to the upstream side of the compressor, and a bypass flow path in a refrigerant circuit having an outdoor heat exchanger that is heated and vaporized by heat exchange of A supercooling expansion valve for expanding the refrigerant supplied to the passage, and a supercooling for cooling the refrigerant sent from the indoor heat exchanger to the receiver by heat exchange with the refrigerant expanded by the subcooling expansion valve heat A low-temperature side that measures the pressure of refrigerant supplied to the compressor, and an outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger. A refrigerant pressure measuring device, and during the heating operation of the air conditioner, the outdoor heat exchanger passed through the measured value of the outdoor refrigerant temperature measuring device and the measured value of the low pressure refrigerant pressure measuring device The degree of superheat of the refrigerant is detected, and the refrigerant is taken out from the refrigerant circuit while controlling the opening degree of the supercooling expansion valve so that the degree of superheat becomes a predetermined value. It is characterized in that it is determined that the liquid refrigerant in the receiver is exhausted when the change in the opening degree occurs.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法は、室外熱交換器を通過した冷媒に所定の過熱度を持たせるように過冷却用膨張弁の開度を制御した場合、レシーバ内に液冷媒がある状態と液冷媒がない状態とでは、過冷却用膨張弁の開度に明確な差が生じることを利用して、レシーバ内の液冷媒の有無を検出する。
具体的には、空気調和装置の暖房運転中に、上記のように過冷却用膨張弁の開度の制御を行いながら、冷媒回路より一部の冷媒を取り出す。
このように冷媒を取り出しても過冷却用膨張弁の開度に明確な変化が生じない場合にはレシーバ内に液冷媒があると判定し、冷媒を取り出すことで過冷却用膨張弁の開度が増加する場合には、レシーバ内に液冷媒がないと判定する。
The method for detecting the refrigerant in the receiver of the air conditioner according to the present invention includes a method in which the opening of the expansion valve for supercooling is controlled so that the refrigerant that has passed through the outdoor heat exchanger has a predetermined degree of superheat. The presence or absence of liquid refrigerant in the receiver is detected by utilizing a clear difference between the opening degree of the supercooling expansion valve between the state with liquid refrigerant and the state without liquid refrigerant.
Specifically, during the heating operation of the air conditioner, a part of the refrigerant is taken out from the refrigerant circuit while controlling the opening degree of the supercooling expansion valve as described above.
In this way, when there is no clear change in the opening degree of the supercooling expansion valve even if the refrigerant is taken out, it is determined that there is liquid refrigerant in the receiver, and the opening degree of the supercooling expansion valve is taken out by taking out the refrigerant. Is increased, it is determined that there is no liquid refrigerant in the receiver.

この空気調和装置のレシーバ内液冷媒検出方法では、従来の空気調和装置にほとんど手を加えることなく、レシーバ内の液冷媒の有無を正確に確認することができる。特に、動作制御のために室外側冷媒温度測定装置及び低圧側冷媒圧力測定装置を備えている空気調和装置に対しては、一切手を加える必要がない。
なお、この空気調和装置のレシーバ内液冷媒検出方法は、冷媒回路内の冷媒が適正量以上ある場合に適用されるものである。
With this method for detecting the liquid refrigerant in the receiver of the air conditioner, the presence or absence of the liquid refrigerant in the receiver can be accurately confirmed with almost no modification to the conventional air conditioner. In particular, it is not necessary to modify the air conditioner that includes the outdoor refrigerant temperature measuring device and the low-pressure refrigerant pressure measuring device for operation control.
Note that the receiver liquid refrigerant detection method of the air conditioner is applied when the refrigerant in the refrigerant circuit is more than an appropriate amount.

本発明に係る空気調和装置の冷媒量調整方法は、上記の冷媒を追加しながら実施される空気調和装置のレシーバ内液冷媒検出方法を用いて前記レシーバ内の液冷媒の有無を判定しながら前記冷媒回路内に冷媒を段階的に追加してゆき、前記レシーバ内の液冷媒が検出された時点で前記冷媒の追加を停止することを特徴とする。   The method for adjusting the amount of refrigerant in an air conditioner according to the present invention uses the method for detecting liquid refrigerant in a receiver of an air conditioner that is performed while adding the above-described refrigerant while determining the presence or absence of liquid refrigerant in the receiver. The refrigerant is gradually added to the refrigerant circuit, and the addition of the refrigerant is stopped when the liquid refrigerant in the receiver is detected.

この空気調和装置の冷媒量調整方法では、上記の冷媒を追加しながら実施される空気調和装置のレシーバ内液冷媒検出方法によって、レシーバ内の液冷媒の有無を正確に確認しながら、レシーバ内に液冷媒が検出された時点で冷媒回路への冷媒の追加を停止するので、冷媒回路内の冷媒量を必要最小限にして、運転効率を向上させることができる。   In this method of adjusting the amount of refrigerant in the air conditioner, the receiver's liquid refrigerant detection method for the air conditioner that is performed while adding the above-mentioned refrigerant accurately confirms the presence or absence of the liquid refrigerant in the receiver. Since the addition of the refrigerant to the refrigerant circuit is stopped when the liquid refrigerant is detected, the amount of refrigerant in the refrigerant circuit can be minimized and the operation efficiency can be improved.

本発明に係る空気調和装置の冷媒量調整方法は、上記の冷媒を取り出しながら実施される空気調和装置のレシーバ内液冷媒検出方法を用いて前記レシーバ内の液冷媒の有無を判定しながら前記冷媒回路内の冷媒を一定量ずつ段階的に取り出してゆき、前記レシーバ内の液冷媒がなくなったと判定された時点で前記冷媒の取り出しを停止し、前記冷媒の一回の取り出し量未満の所定量の冷媒を冷媒回路に追加して調整を完了することを特徴とする。   The refrigerant amount adjusting method for an air conditioner according to the present invention is a method for determining the presence or absence of liquid refrigerant in the receiver by using the receiver liquid refrigerant detection method of the air conditioner that is performed while taking out the refrigerant. The refrigerant in the circuit is taken out step by step by a certain amount, and when it is determined that the liquid refrigerant in the receiver has run out, the refrigerant is stopped from being taken out, and a predetermined amount less than the single take-out amount of the refrigerant is obtained. The adjustment is completed by adding the refrigerant to the refrigerant circuit.

上記の冷媒を取り出しながら実施される空気調和装置のレシーバ内冷媒検出方法では、冷媒回路内の冷媒を一定量ずつ段階的に取り出してゆき、レシーバ内の液冷媒がなくなった時点でこれを検出する。
すなわち、冷媒回路から冷媒を取り出してゆき、レシーバ内の液冷媒がなくなったことが検出された時点では、冷媒回路内の冷媒は、必要最小限の量よりもわずかに少なくなっている(この不足量は一回の取り出し量未満である)。そこで、この時点で冷媒の取り出しを停止して、さらに一回の取り出し量未満の所定量の冷媒を冷媒回路内に追加することで、冷媒回路内の冷媒量をほぼ必要最小限の量とすることができる。
In the method of detecting refrigerant in the receiver of the air conditioner that is performed while taking out the refrigerant, the refrigerant in the refrigerant circuit is taken out step by step in a certain amount, and this is detected when the liquid refrigerant in the receiver runs out. .
That is, when the refrigerant is taken out from the refrigerant circuit and it is detected that the liquid refrigerant in the receiver is exhausted, the refrigerant in the refrigerant circuit is slightly less than the minimum necessary amount (this shortage). The amount is less than a single removal amount). Therefore, at this point in time, the removal of the refrigerant is stopped, and a predetermined amount of refrigerant that is less than a single removal amount is added to the refrigerant circuit, so that the amount of refrigerant in the refrigerant circuit is almost the minimum necessary amount. be able to.

本発明に係る空気調和装置の冷媒量調整方法は、冷媒回路にアキュームレータ及びレシーバが設けられた空気調和装置を、上記本発明に係る空気調和装置のアキュームレータ内冷媒量検出方法を用いて前記アキュームレータ内の液冷媒量を検出しながら、該アキュームレータ内の液冷媒がなくなるまで運転したのち、上記本発明に係る空気調和装置の冷媒量調整方法を用いて前記冷媒回路内の冷媒量を調整することを特徴とする。   The refrigerant amount adjustment method for an air conditioner according to the present invention includes an air conditioner in which an accumulator and a receiver are provided in a refrigerant circuit, and a method for detecting the amount of refrigerant in the accumulator of the air conditioner according to the present invention. The refrigerant amount in the refrigerant circuit is adjusted using the refrigerant amount adjustment method of the air conditioner according to the present invention. Features.

この空気調和装置の冷媒量調整方法では、アキュームレータ内の余剰冷媒をなくした状態でレシーバ内の液冷媒を最小限にするので、アキュームレータを有している空気調和装置についても、冷媒回路内の冷媒量を最小限にすることができる。   In this method of adjusting the amount of refrigerant in the air conditioner, the amount of liquid refrigerant in the receiver is minimized with the excess refrigerant in the accumulator being eliminated, so that the air conditioner having an accumulator also has refrigerant in the refrigerant circuit. The amount can be minimized.

本発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を外気との熱交換によって冷却して液化させる室外熱交換器と、該室外熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバを通過した冷媒を膨張させる冷房用膨張弁と、該冷房用膨張弁を通過した冷媒を室内雰囲気との熱交換によって加熱して気化させる室内熱交換器と、前記レシーバの底部から該レシーバ内の冷媒の一部を取り出して前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記レシーバから前記冷房用膨張弁に送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを有する冷媒回路に、前記室内熱交換器を通過した冷媒の温度を測定する室内側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置と、前記冷媒回路の前記圧縮機の上流側から前記冷媒を回収する冷媒回収装置と、前記冷媒回路の前記冷房用膨張弁の上流側から前記冷媒回路に前記冷媒を供給する冷媒供給装置と、前記冷房用膨張弁、前記過冷却用膨張弁、前記冷媒回収装置、及び前記冷媒供給装置の動作を、上記本発明に係る空気調和装置の冷媒量調整方法に基づいて制御して冷房運転時における前記冷媒回路内の冷媒量を調整する制御装置とを設けたことを特徴とする。   An air conditioner according to the present invention has passed through a compressor that compresses refrigerant, an outdoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with outside air, and the outdoor heat exchanger. A receiver that temporarily stores the refrigerant, a cooling expansion valve that expands the refrigerant that has passed through the receiver, and an indoor heat exchange that heats and vaporizes the refrigerant that has passed through the cooling expansion valve by heat exchange with the indoor atmosphere. A bypass passage that takes out a part of the refrigerant in the receiver from the bottom of the receiver and supplies it to the upstream side of the compressor, and an expansion valve for supercooling that expands the refrigerant supplied to the bypass passage And a supercooling heat exchanger that supercools the refrigerant sent from the receiver to the cooling expansion valve by heat exchange with the refrigerant expanded by the supercooling expansion valve, and the indoor heat exchange An indoor-side refrigerant temperature measurement device that measures the temperature of the refrigerant that has passed through, a low-pressure-side refrigerant pressure measurement device that measures the pressure of the refrigerant supplied to the compressor, and the upstream side of the compressor in the refrigerant circuit from the upstream side A refrigerant recovery device that recovers the refrigerant; a refrigerant supply device that supplies the refrigerant to the refrigerant circuit from an upstream side of the cooling expansion valve of the refrigerant circuit; the cooling expansion valve; the supercooling expansion valve; A control device for controlling the operation of the refrigerant recovery device and the refrigerant supply device based on the refrigerant amount adjustment method of the air conditioner according to the present invention to adjust the refrigerant amount in the refrigerant circuit during the cooling operation; It is provided.

このように構成される空気調和装置では、上記本発明に係る空気調和装置の冷媒量調整方法を用いて、冷房運転時における冷媒回路内の冷媒量を適正量に調整することができる。   In the air conditioner configured as described above, the refrigerant amount in the refrigerant circuit during the cooling operation can be adjusted to an appropriate amount by using the refrigerant amount adjusting method of the air conditioner according to the present invention.

ここで、冷媒回収装置は、例えば冷媒回収ボンベと、冷媒回収ボンベを冷媒回路に接続する回収側接続配管と、回収側接続配管を開閉するとともに制御装置によって開閉が制御される回収側自動弁とによって構成することができる。なお、回収側接続配管には、冷媒の流量を調整する流量調節装置(例えばキャピラリ)を設けてもよい。また、回収側自動弁の代わりに、回収側接続配管の冷媒流量を調整する回収側電子膨張弁を用いてもよい。
同様に、冷媒供給装置は、例えば冷媒供給ボンベと、冷媒供給ボンベを冷媒回路に接続する供給側接続配管と、供給側接続配管を開閉するとともに制御装置によって開閉が制御される供給側自動弁とによって構成することができる。なお、供給側接続配管には、冷媒の流量を調整する流量調節装置を設けてもよい。また、供給側自動弁の代わりに、供給側接続配管の冷媒流量を調整する供給側電子膨張弁を用いてもよい。
Here, the refrigerant recovery device includes, for example, a refrigerant recovery cylinder, a recovery-side connection pipe that connects the refrigerant recovery cylinder to the refrigerant circuit, a recovery-side automatic valve that opens and closes the recovery-side connection pipe and whose opening and closing is controlled by the control device. Can be configured. Note that the recovery side connection pipe may be provided with a flow rate adjusting device (for example, a capillary) for adjusting the flow rate of the refrigerant. Moreover, you may use the collection | recovery side electronic expansion valve which adjusts the refrigerant | coolant flow rate of collection | recovery side connection piping instead of a collection | recovery side automatic valve.
Similarly, the refrigerant supply device includes, for example, a refrigerant supply cylinder, a supply-side connection pipe that connects the refrigerant supply cylinder to the refrigerant circuit, a supply-side automatic valve that opens and closes the supply-side connection pipe and whose opening and closing is controlled by the control device. Can be configured. In addition, you may provide the flow control apparatus which adjusts the flow volume of a refrigerant | coolant in supply side connection piping. Moreover, you may use the supply side electronic expansion valve which adjusts the refrigerant | coolant flow rate of supply side connection piping instead of a supply side automatic valve.

本発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器と、前記室内熱交換器を通過した冷媒の一部を前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記室内熱交換器から前記レシーバに送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを有する冷媒回路に、前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置と、前記冷媒回路の前記圧縮機の上流側から前記冷媒を回収する冷媒回収装置と、前記冷媒回路の前記暖房用膨張弁の上流側から前記冷媒回路に前記冷媒を供給する冷媒供給装置と、前記暖房用膨張弁、前記過冷却用膨張弁、前記冷媒回収装置、及び前記冷媒供給装置の動作を上記本発明に係る空気調和装置の冷媒量調整方法に基づいて制御して暖房運転時における前記冷媒回路内の冷媒量を調整する制御装置とを設けたことを特徴とする。   An air conditioner according to the present invention includes a compressor that compresses a refrigerant, an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with an indoor atmosphere, and passes through the indoor heat exchanger. A receiver that temporarily stores the refrigerant, a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and the refrigerant that has passed through the heating expansion valve is heated and vaporized by heat exchange with outside air An outdoor heat exchanger, a bypass passage for supplying a part of the refrigerant that has passed through the indoor heat exchanger to the upstream side of the compressor, and an expansion valve for supercooling that expands the refrigerant supplied to the bypass passage And a supercooling heat exchanger that supercools the refrigerant sent from the indoor heat exchanger to the receiver by heat exchange with the refrigerant expanded by the supercooling expansion valve, and the outdoor heat exchange Pass through the vessel An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant, a low-pressure refrigerant pressure measuring device that measures the pressure of the refrigerant supplied to the compressor, and the refrigerant from the upstream side of the compressor in the refrigerant circuit. A refrigerant recovery device for recovery, a refrigerant supply device for supplying the refrigerant to the refrigerant circuit from an upstream side of the heating expansion valve of the refrigerant circuit, the heating expansion valve, the supercooling expansion valve, and the refrigerant recovery And a control device for adjusting the refrigerant amount in the refrigerant circuit during heating operation by controlling the operation of the refrigerant supply device based on the refrigerant amount adjustment method of the air conditioner according to the present invention. It is characterized by.

このように構成される空気調和装置では、上記本発明に係る空気調和装置の冷媒量調整方法を用いて、暖房運転時における冷媒回路内の冷媒量を適正量に調整することができる。   In the air conditioner configured as described above, the refrigerant amount in the refrigerant circuit during the heating operation can be adjusted to an appropriate amount by using the refrigerant amount adjusting method of the air conditioner according to the present invention.

ここで、上記本発明に係る各空気調和装置において、前記冷媒回路が、前記圧縮機に供給される冷媒を一時的に貯留するアキュームレータと、前記アキュームレータの底部と前記圧縮機の上流部とを接続して前記アキュームレータ内の液体を前記圧縮機に供給する液戻し流路と、前記液戻し流路を通過する液体の温度を測定する戻り液温度測定装置とを有し、前記制御装置が、前記戻り液温度測定装置の測定値及び前記低圧側圧力測定装置の測定値に基づいて前記液戻し流路を流通する液体の過熱度を検出し、該液体に過熱度が生じたことをもって前記冷媒回路内の冷媒量の調整を開始する構成とされていてもよい。   Here, in each air conditioner according to the present invention, the refrigerant circuit connects an accumulator that temporarily stores the refrigerant supplied to the compressor, a bottom portion of the accumulator, and an upstream portion of the compressor A liquid return passage for supplying the liquid in the accumulator to the compressor, and a return liquid temperature measuring device for measuring the temperature of the liquid passing through the liquid return passage. Based on the measured value of the return liquid temperature measuring device and the measured value of the low pressure side pressure measuring device, the degree of superheat of the liquid flowing through the liquid return channel is detected, and when the degree of superheat has occurred in the liquid, the refrigerant circuit It may be configured to start adjustment of the amount of the refrigerant inside.

この場合には、アキュームレータ内の余剰冷媒をなくした状態でレシーバ内の液冷媒を最小限にするので、冷媒回路内の冷媒量を最小限にすることができる。   In this case, since the liquid refrigerant in the receiver is minimized with the excess refrigerant in the accumulator being eliminated, the amount of refrigerant in the refrigerant circuit can be minimized.

また、上記本発明に係る各空気調和装置では、前記冷媒回路に対して、前記冷媒回収装置と前記冷媒供給装置とのうちの少なくともいずれか一方が着脱可能とされていてもよい。   In each air conditioner according to the present invention, at least one of the refrigerant recovery device and the refrigerant supply device may be detachable from the refrigerant circuit.

このように構成される空気調和装置では、冷媒回収装置と冷媒供給装置とのうちの少なくともいずれか一方について、必要なとき以外は冷媒回路から取り外すことができるので、空気調和装置の設置スペースを低減することができる。
また、複数の空気調和装置間で、冷媒回収装置と冷媒供給装置とのうちの少なくともいずれか一方について共有することができるので、装置コストを低減することができる。
In the air conditioner configured as described above, since at least one of the refrigerant recovery device and the refrigerant supply device can be removed from the refrigerant circuit except when necessary, the installation space of the air conditioner is reduced. can do.
Moreover, since at least any one of a refrigerant | coolant collection | recovery apparatus and a refrigerant | coolant supply apparatus can be shared between several air conditioning apparatuses, apparatus cost can be reduced.

本発明に係る空気調和装置のアキュームレータ内液冷媒検出方法によれば、アキュームレータ内の液冷媒の排出を正確に確認することができ、また、従来の空気調和装置にほとんど手を加えることなく実施することができるので、コストがかからない。 According to the method for detecting liquid refrigerant in the accumulator of the air conditioner according to the present invention, the discharge of the liquid refrigerant in the accumulator can be confirmed accurately, and the conventional air conditioner is implemented with little modification. It can be done at no cost.

本発明に係る空気調和装置のレシーバ内液冷媒検出方法によれば、レシーバ内の液冷媒の有無を正確に確認することができ、また、従来の空気調和装置にほとんど手を加えることなく実施することができるので、コストがかからない。   According to the method for detecting liquid refrigerant in the receiver of the air conditioner according to the present invention, the presence or absence of liquid refrigerant in the receiver can be accurately confirmed, and the conventional air conditioner is implemented with little modification. It can be done at no cost.

本発明に係る空気調和装置の冷媒量調整方法によれば、低コストで冷媒回路内の冷媒量を必要最小限に調整して、運転効率を向上させることができる。   According to the refrigerant quantity adjustment method for an air conditioner according to the present invention, the refrigerant quantity in the refrigerant circuit can be adjusted to the minimum necessary at low cost, and the operation efficiency can be improved.

本発明に係る空気調和装置によれば、低コストでありながら冷媒量を正確かつ自動的に適正範囲内に調節することができる。   According to the air conditioner of the present invention, the amount of refrigerant can be accurately and automatically adjusted within an appropriate range at a low cost.

以下に、本発明に係る空気調和装置の実施形態について、図面を参照して説明する。
[第一実施形態]
以下、本発明の第一実施形態について、図1から図5を用いて説明する。
本実施形態に係る空気調和装置1は、図1に示す構成の冷媒回路2を有している。
冷媒回路2は、冷媒が循環される冷媒流路上に、冷媒を圧縮して送出する圧縮機3と、冷媒と外気との間で熱交換を行う室外熱交換器4と、冷媒を膨張させる電子膨張弁5と、冷媒と室内雰囲気との間で熱交換を行う室内熱交換器6とがこの順番で設けられた構成とされており、冷媒の流通方向を切替えることで、暖房サイクルと冷房サイクルとのうちのいずれか一方を選択的に形成可能とされている。
Embodiments of an air conditioner according to the present invention will be described below with reference to the drawings.
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
The air conditioning apparatus 1 according to the present embodiment has a refrigerant circuit 2 having the configuration shown in FIG.
The refrigerant circuit 2 includes a compressor 3 that compresses and delivers a refrigerant on a refrigerant flow path through which the refrigerant is circulated, an outdoor heat exchanger 4 that exchanges heat between the refrigerant and outside air, and an electron that expands the refrigerant. The expansion valve 5 and the indoor heat exchanger 6 that performs heat exchange between the refrigerant and the room atmosphere are provided in this order, and the heating cycle and the cooling cycle are switched by switching the flow direction of the refrigerant. Or any one of them can be selectively formed.

冷媒回路2において圧縮機3が設けられる部分は、冷媒回路2の他の部分に対して四方弁7を介して接続されている。
四方弁7は、冷媒回路2における圧縮機3からの冷媒吐出方向及び圧縮機3への冷媒供給方向を制御することによって冷媒回路2内での冷媒の流れを制御して、暖房サイクルと冷房サイクルとのうちのいずれか一方を選択的に形成するものである。
そして、後述するように、圧縮機3から室外熱交換器4に向けて冷媒を送出させることで冷房サイクルが形成され、圧縮機3から室内熱交換器6に向けて冷媒を送出させることで暖房サイクルが形成される。
A portion of the refrigerant circuit 2 where the compressor 3 is provided is connected to the other portion of the refrigerant circuit 2 via a four-way valve 7.
The four-way valve 7 controls the flow of refrigerant in the refrigerant circuit 2 by controlling the refrigerant discharge direction from the compressor 3 and the refrigerant supply direction to the compressor 3 in the refrigerant circuit 2, so that the heating cycle and the cooling cycle are performed. Are selectively formed.
Then, as will be described later, a cooling cycle is formed by sending the refrigerant from the compressor 3 toward the outdoor heat exchanger 4, and heating is performed by sending the refrigerant from the compressor 3 toward the indoor heat exchanger 6. A cycle is formed.

冷媒回路2には、電子膨張弁5として、冷房用膨張弁5aと暖房用膨張弁5bとが設けられており、空気調和装置1は、運転モードに応じてこれら電子膨張弁5を使い分ける構成とされている。
具体的には、冷媒回路2には、暖房用膨張弁5bを迂回する冷房時流路2bと、冷房用膨張弁5aを迂回する暖房時流路2cとが設けられており、冷房時流路2bには、室内熱交換器6に向う流れを許容し室外熱交換器4に向う流れを規制する逆止弁8が設けられ、暖房時流路2cには、室外熱交換器4に向う流れを許容し室内熱交換器6に向う流れを規制する逆止弁9が設けられている。これにより、冷房サイクル形成時には電子膨張弁5のうち冷房用膨張弁5aのみが使用され、暖房サイクル形成時には電子膨張弁5のうち暖房用膨張弁5bのみが使用される。
The refrigerant circuit 2 is provided with a cooling expansion valve 5a and a heating expansion valve 5b as the electronic expansion valve 5, and the air conditioner 1 has a configuration in which these electronic expansion valves 5 are selectively used according to the operation mode. Has been.
Specifically, the refrigerant circuit 2 is provided with a cooling passage 2b that bypasses the heating expansion valve 5b and a heating passage 2c that bypasses the cooling expansion valve 5a. The cooling passage 2b includes A check valve 8 is provided that allows a flow toward the indoor heat exchanger 6 and restricts a flow toward the outdoor heat exchanger 4, and the heating flow path 2c allows a flow toward the outdoor heat exchanger 4 to be indoors. A check valve 9 for restricting the flow toward the heat exchanger 6 is provided. Thus, only the cooling expansion valve 5a of the electronic expansion valve 5 is used when the cooling cycle is formed, and only the heating expansion valve 5b of the electronic expansion valve 5 is used when the heating cycle is formed.

冷媒回路2において、冷房用膨張弁5aは室内熱交換器6側に設けられており、暖房用膨張弁5bは室外熱交換器4側に設けられている。冷媒回路2においてこれら冷房用膨張弁5aと暖房用膨張弁5bとの間には、冷媒を一時的に貯留するレシーバ11が設けられている。冷媒回路2を構成する冷媒流路は、レシーバ11の底部に開口されており、冷媒回路2においてレシーバ11の下流側には、レシーバの底部から冷媒が送り込まれるようになっている。すなわち、レシーバ11内に液冷媒がある場合には、レシーバ11の下流側には液冷媒が供給される。   In the refrigerant circuit 2, the cooling expansion valve 5a is provided on the indoor heat exchanger 6 side, and the heating expansion valve 5b is provided on the outdoor heat exchanger 4 side. In the refrigerant circuit 2, a receiver 11 for temporarily storing refrigerant is provided between the cooling expansion valve 5a and the heating expansion valve 5b. The refrigerant flow path constituting the refrigerant circuit 2 is opened at the bottom of the receiver 11, and the refrigerant is sent to the downstream side of the receiver 11 in the refrigerant circuit 2 from the bottom of the receiver. That is, when there is a liquid refrigerant in the receiver 11, the liquid refrigerant is supplied to the downstream side of the receiver 11.

また、冷媒回路2には、レシーバ11の底部からレシーバ11内の冷媒の一部を取り出して圧縮機3の上流側に供給するバイパス流路12と、バイパス流路12に供給された冷媒を膨張させる過冷却用膨張弁13と、レシーバ11から冷房用膨張弁5aに送り込まれる冷媒を過冷却用膨張弁13によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器14とが設けられている。   Further, in the refrigerant circuit 2, a part of the refrigerant in the receiver 11 is extracted from the bottom of the receiver 11 and supplied to the upstream side of the compressor 3, and the refrigerant supplied to the bypass flow path 12 is expanded. And a supercooling heat exchanger 14 that supercools the refrigerant sent from the receiver 11 to the cooling expansion valve 5a by heat exchange with the refrigerant expanded by the supercooling expansion valve 13. It has been.

さらに、冷媒回路2には、圧縮機3に供給される冷媒を一時的に貯留するアキュームレータ16と、アキュームレータ16の底部と圧縮機3の上流部とを接続してアキュームレータ16内の液体(主に圧縮機3から排出された潤滑油)を圧縮機3に供給する液戻し流路17とが設けられている。液戻し流路17には、キャピラリ等の減圧装置17aが設けられており、アキュームレータ16内からの液戻し速度が適切に調整されている。
また、冷媒回路2には、圧縮機3が吐出した冷媒から潤滑油を分離するオイルセパレータ18と、オイルセパレータ18によって分離された潤滑油を圧縮機3に戻す潤滑油戻し配管19とが設けられている。
Further, the refrigerant circuit 2 is connected to an accumulator 16 for temporarily storing refrigerant supplied to the compressor 3, and a bottom portion of the accumulator 16 and an upstream portion of the compressor 3, so that liquid (mainly A liquid return passage 17 for supplying the lubricating oil discharged from the compressor 3) to the compressor 3 is provided. The liquid return channel 17 is provided with a decompression device 17a such as a capillary, and the liquid return speed from the accumulator 16 is appropriately adjusted.
The refrigerant circuit 2 is provided with an oil separator 18 that separates the lubricating oil from the refrigerant discharged from the compressor 3, and a lubricating oil return pipe 19 that returns the lubricating oil separated by the oil separator 18 to the compressor 3. ing.

また、冷媒回路2には、圧縮機3の上流側(本実施形態では四方弁7とアキュームレータ16との間)に、冷媒回路2内の冷媒を回収する冷媒回収装置21が接続されており、冷房用膨張弁5aと暖房用膨張弁5bとの間に、冷媒回路2内に冷媒を供給する冷媒供給装置22が接続されている。   In addition, a refrigerant recovery device 21 that recovers the refrigerant in the refrigerant circuit 2 is connected to the refrigerant circuit 2 upstream of the compressor 3 (between the four-way valve 7 and the accumulator 16 in the present embodiment). A refrigerant supply device 22 for supplying a refrigerant into the refrigerant circuit 2 is connected between the cooling expansion valve 5a and the heating expansion valve 5b.

冷媒回収装置21は、冷媒回収ボンベ21aと、冷媒回収ボンベ21aを冷媒回路2に接続する回収側接続配管21bと、回収側接続配管21bを開閉する回収側自動弁21cと、回収側接続配管21b内を流通する冷媒の流量を調整するキャピラリ等の流量調整装置21dとを有している。なお、回収側自動弁21及び流量調整装置21dの代わりに、回収側接続配管21bの冷媒流量を調整する回収側電子膨張弁を設けてもよい。
冷媒供給装置22は、冷媒供給ボンベ22aと、冷媒供給ボンベ22aを冷媒回路2に接続する供給側接続配管22bと、供給側接続配管22bを開閉する供給側自動弁22cと、供給側接続配管22b内を流通する冷媒の流量を調整するキャピラリ等の流量調節装置22dとを有している。なお、供給側自動弁22及び流量調整装置22dの代わりに、供給側接続配管22bの冷媒流量を調整する供給側電子膨張弁を設けてもよい。
The refrigerant recovery device 21 includes a refrigerant recovery cylinder 21a, a recovery side connection pipe 21b that connects the refrigerant recovery cylinder 21a to the refrigerant circuit 2, a recovery side automatic valve 21c that opens and closes the recovery side connection pipe 21b, and a recovery side connection pipe 21b. And a flow rate adjusting device 21d such as a capillary for adjusting the flow rate of the refrigerant flowing through the inside. Instead of the recovery-side automatic valve 21 and the flow rate adjusting device 21d, a recovery-side electronic expansion valve that adjusts the refrigerant flow rate of the recovery-side connection pipe 21b may be provided.
The refrigerant supply device 22 includes a refrigerant supply cylinder 22a, a supply side connection pipe 22b that connects the refrigerant supply cylinder 22a to the refrigerant circuit 2, a supply side automatic valve 22c that opens and closes the supply side connection pipe 22b, and a supply side connection pipe 22b. And a flow rate adjusting device 22d such as a capillary for adjusting the flow rate of the refrigerant flowing through the inside. Instead of the supply-side automatic valve 22 and the flow rate adjusting device 22d, a supply-side electronic expansion valve that adjusts the refrigerant flow rate of the supply-side connection pipe 22b may be provided.

また、冷媒回路2には、室内熱交換器4の圧縮機3側の出口における冷媒の温度を測定する室内側冷媒温度測定装置23と、室外熱交換器4の圧縮機3側の出口における冷媒の温度を測定する室外側冷媒温度測定装置24と、冷媒回路2のうち圧縮機3に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置26と、液戻し流路17を通過する液体の温度を測定する戻り液温度測定装置27とが設けられている。空気調和装置1は、この他にも、室内雰囲気温度測定装置(図示せず)等、動作情報を得るための各種センサーを有している。
さらに、空気調和装置1には、これらの各測定装置の測定結果に基づいて、空気調和装置1の各構成装置の動作を制御する制御装置28が設けられている。
The refrigerant circuit 2 includes an indoor-side refrigerant temperature measuring device 23 that measures the temperature of the refrigerant at the outlet of the indoor heat exchanger 4 on the compressor 3 side, and a refrigerant at the outlet of the outdoor heat exchanger 4 on the compressor 3 side. The outdoor refrigerant temperature measuring device 24 that measures the temperature of the refrigerant, the low-pressure side refrigerant pressure measuring device 26 that measures the pressure of the refrigerant supplied to the compressor 3 in the refrigerant circuit 2, and the liquid that passes through the liquid return passage 17. And a return liquid temperature measuring device 27 for measuring the temperature of the liquid. In addition to this, the air conditioner 1 has various sensors for obtaining operation information, such as an indoor ambient temperature measuring device (not shown).
Furthermore, the air conditioner 1 is provided with a control device 28 that controls the operation of each component device of the air conditioner 1 based on the measurement results of these measurement devices.

この空気調和装置1は、冷房運転時には、制御装置28によって四方弁7が操作されて、圧縮機3によって圧縮された気体冷媒が室外熱交換器4に送り込まれる。室外熱交換器4に送り込まれた気体冷媒は、室外熱交換器4によって外気と熱交換されることによって液化されたのち、レシーバ11に一時的に貯留される。レシーバ11内の液冷媒は、過冷却熱交換器14によって過冷却されたのちに冷房用膨張弁5aに送りこまれて膨張させられて、低温低圧の冷媒となる。この低温低圧の冷媒は、室内熱交換器6によって室内雰囲気と熱交換されて室内雰囲気の冷却に寄与したのち、アキュームレータ16に送り込まれて一時的に貯留される。アキュームレータ16に貯留された冷媒は、再び圧縮機3に送り込まれて、冷房運転に使用される。   In the air conditioner 1, during the cooling operation, the four-way valve 7 is operated by the control device 28, and the gaseous refrigerant compressed by the compressor 3 is sent to the outdoor heat exchanger 4. The gaseous refrigerant sent to the outdoor heat exchanger 4 is liquefied by heat exchange with the outside air by the outdoor heat exchanger 4 and then temporarily stored in the receiver 11. The liquid refrigerant in the receiver 11 is supercooled by the supercooling heat exchanger 14 and then sent to the cooling expansion valve 5a to be expanded to become a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant exchanges heat with the indoor atmosphere by the indoor heat exchanger 6 and contributes to cooling of the indoor atmosphere, and then is sent to the accumulator 16 to be temporarily stored. The refrigerant stored in the accumulator 16 is sent again to the compressor 3 and used for the cooling operation.

ここで、レシーバ11内の冷媒の一部は、バイパス流路12に取り出される。バイパス流路12に取り出された冷媒は、過冷却用膨張弁13によって膨張させられて低温低圧の冷媒となり、過冷却用熱交換器14によって、レシーバ11から冷房用膨張弁5aに供給される高圧の液冷媒と熱交換させられて、この高圧の液冷媒の過冷却に寄与する。   Here, a part of the refrigerant in the receiver 11 is taken out to the bypass channel 12. The refrigerant taken out to the bypass passage 12 is expanded by the supercooling expansion valve 13 to become a low-temperature and low-pressure refrigerant, and is supplied from the receiver 11 to the cooling expansion valve 5 a by the supercooling heat exchanger 14. Heat exchange with this liquid refrigerant contributes to the supercooling of this high-pressure liquid refrigerant.

また、この空気調和装置1は、暖房運転時には、制御装置28によって四方弁7が操作されて、圧縮機3によって圧縮された高温高圧の気体冷媒が室内熱交換器6に送り込まれる。室内熱交換器6に送り込まれた高温高圧の気体冷媒は、室内熱交換器6によって室内雰囲気と熱交換されて室内雰囲気の加熱に寄与して液化する。この液冷媒は、過冷却熱交換器14によって過冷却されたのちにレシーバ11に一時的に貯留される。レシーバ11内の液冷媒は、暖房用膨張弁5bによって膨張させられて低温の冷媒となる。この低温の冷媒は、室外熱交換器4によって外気と熱交換されることによって気化させられたのち、アキュームレータ16に一時的に貯留される。アキュームレータ16に貯留された冷媒は、再び圧縮機3に送り込まれて、暖房運転に使用される。   Further, in the air conditioner 1, during the heating operation, the four-way valve 7 is operated by the control device 28, and the high-temperature and high-pressure gaseous refrigerant compressed by the compressor 3 is sent to the indoor heat exchanger 6. The high-temperature and high-pressure gaseous refrigerant sent to the indoor heat exchanger 6 is heat-exchanged with the indoor atmosphere by the indoor heat exchanger 6 and contributes to heating of the indoor atmosphere and is liquefied. This liquid refrigerant is temporarily stored in the receiver 11 after being supercooled by the supercooling heat exchanger 14. The liquid refrigerant in the receiver 11 is expanded by the heating expansion valve 5b and becomes a low-temperature refrigerant. The low-temperature refrigerant is vaporized by heat exchange with the outside air by the outdoor heat exchanger 4 and then temporarily stored in the accumulator 16. The refrigerant stored in the accumulator 16 is sent again to the compressor 3 and used for heating operation.

ここで、室内熱交換器6を通過した冷媒の一部は、バイパス流路12に取り出される。バイパス流路12に取り出された冷媒は、過冷却用膨張弁13によって膨張させられて低温低圧の冷媒となり、過冷却用熱交換器14によって、室内熱交換器6からレシーバ11から冷房用膨張弁5aに供給される高圧の液冷媒と熱交換させられて、この高圧の液冷媒の過冷却に寄与する。   Here, a part of the refrigerant that has passed through the indoor heat exchanger 6 is taken out to the bypass passage 12. The refrigerant taken out to the bypass channel 12 is expanded by the supercooling expansion valve 13 to become a low-temperature and low-pressure refrigerant, and is cooled from the indoor heat exchanger 6 to the receiver 11 by the supercooling heat exchanger 14. Heat exchange with the high-pressure liquid refrigerant supplied to 5a contributes to the supercooling of the high-pressure liquid refrigerant.

この空気調和装置1の運転中は、冷媒回路2内の冷媒量が適正となるよう、制御装置28による冷媒回路2内の冷媒量の調整が行われる。
具体的には、制御装置28は、アキュームレータ16内及びレシーバ11内の液冷媒(余剰冷媒)を監視して、この情報に基づいて、アキュームレータ16内及びレシーバ11内の液冷媒(余剰冷媒)がほぼなくなり、かつ冷媒量が不足しないように、冷媒回収装置21及び冷媒供給装置22の動作を制御する。
During the operation of the air conditioner 1, the amount of refrigerant in the refrigerant circuit 2 is adjusted by the control device 28 so that the amount of refrigerant in the refrigerant circuit 2 is appropriate.
Specifically, the control device 28 monitors the liquid refrigerant (surplus refrigerant) in the accumulator 16 and the receiver 11, and based on this information, the liquid refrigerant (surplus refrigerant) in the accumulator 16 and the receiver 11 is detected. The operations of the refrigerant recovery device 21 and the refrigerant supply device 22 are controlled so that the refrigerant amount is almost eliminated and the refrigerant amount is not short.

以下、制御装置28によるアキュームレータ16内の液冷媒の検出原理について説明する。
アキュームレータ16内の液冷媒は、過熱度がほとんどないので、アキュームレータ16内に液冷媒が存在している場合には、アキュームレータ16の底部からアキュームレータ16内の液体を圧縮機3に戻す液戻し流路17内の液体も過熱度がほとんどない。
一方、アキュームレータ16内の液冷媒が全て排出された場合には、アキュームレータ16内の気体冷媒が過熱度を持つことになり、これによって液戻し流路17内の液体も過熱度を持つようになる。
制御装置28は、このことを利用して、アキュームレータ16内の液冷媒の有無を検出する。
Hereinafter, the detection principle of the liquid refrigerant in the accumulator 16 by the control device 28 will be described.
Since the liquid refrigerant in the accumulator 16 has almost no degree of superheat, when the liquid refrigerant exists in the accumulator 16, the liquid return flow path for returning the liquid in the accumulator 16 to the compressor 3 from the bottom of the accumulator 16. The liquid in 17 has little superheat.
On the other hand, when all of the liquid refrigerant in the accumulator 16 is discharged, the gas refrigerant in the accumulator 16 has a degree of superheat, so that the liquid in the liquid return channel 17 also has a degree of superheat. .
The control device 28 uses this fact to detect the presence or absence of the liquid refrigerant in the accumulator 16.

具体的には、戻り液温度測定装置27によって得られた液戻し流路17内の液体の温度と、低圧側冷媒圧力測定装置26によって得られた、圧縮機3に供給される冷媒の圧力とに基づいて、液戻し流路17内の液体の過熱度を求め、液戻し流路17内の液体に過熱度が生じていない場合にはアキュームレータ16内に液冷媒が貯留されていると判定し、液戻し流路17内の液体が過熱度を持っている場合にはアキュームレータ16内から全ての液冷媒が排出されたと判定する。   Specifically, the temperature of the liquid in the liquid return channel 17 obtained by the return liquid temperature measuring device 27 and the pressure of the refrigerant supplied to the compressor 3 obtained by the low-pressure side refrigerant pressure measuring device 26. Based on the above, the degree of superheat of the liquid in the liquid return channel 17 is obtained, and when the degree of superheat does not occur in the liquid in the liquid return channel 17, it is determined that the liquid refrigerant is stored in the accumulator 16. When the liquid in the liquid return channel 17 has a superheat degree, it is determined that all the liquid refrigerant has been discharged from the accumulator 16.

以下、制御装置28によるレシーバ11内の液冷媒の検出原理について説明する。
空気調和装置1の冷房運転時には、前記のように、レシーバ11内の冷媒の一部がレシーバ11の底部からバイパス流路12に取り出される。
レシーバ11内に液冷媒がある状態では、バイパス流路12に液冷媒が十分に供給されるので、過冷却用膨張弁13の開度をそれほど大きくない一定の開度とすることで、過冷却熱交換器14による過冷却が十分に行われて、室内熱交換器6を通過した冷媒に所定の過熱度を持たせることができる。ここで、室内熱交換器6を通過した冷媒の過熱度は、室内側冷媒温度測定装置23の測定値と低圧側冷媒圧力測定装置26の測定値に基づいて求められる。
Hereinafter, the detection principle of the liquid refrigerant in the receiver 11 by the control device 28 will be described.
During the cooling operation of the air conditioner 1, a part of the refrigerant in the receiver 11 is taken out from the bottom of the receiver 11 to the bypass channel 12 as described above.
In the state where the liquid refrigerant is present in the receiver 11, the liquid refrigerant is sufficiently supplied to the bypass flow path 12. Therefore, by setting the opening degree of the expansion valve 13 for supercooling to a certain degree of opening degree, the supercooling is performed. Subcooling is sufficiently performed by the heat exchanger 14, and the refrigerant that has passed through the indoor heat exchanger 6 can have a predetermined degree of superheat. Here, the degree of superheat of the refrigerant that has passed through the indoor heat exchanger 6 is obtained based on the measured value of the indoor refrigerant temperature measuring device 23 and the measured value of the low-pressure refrigerant pressure measuring device 26.

一方、レシーバ11内に液冷媒がない状態では、バイパス流路12には液冷媒が十分に供給されずにフラッシュが生じて冷媒流量が不足するので、過冷却熱交換器14による過冷却を十分に行わせて、室内熱交換器6を通過した冷媒に所定の過熱度を持たせるためには、過冷却用膨張弁13の開度を大きくしなくてはならない。
つまり、室内熱交換器6を通過した冷媒に所定の過熱度を持たせるように過冷却用膨張弁13の開度を制御した場合、レシーバ11内に液冷媒がある状態と液冷媒がない状態とでは、図2のグラフに示すように、過冷却用膨張弁13の開度に明確な差が生じる。
On the other hand, in the state where there is no liquid refrigerant in the receiver 11, liquid refrigerant is not sufficiently supplied to the bypass flow path 12, and flashing occurs and the refrigerant flow rate is insufficient. Therefore, the supercooling heat exchanger 14 is sufficiently cooled. In order to make the refrigerant having passed through the indoor heat exchanger 6 have a predetermined degree of superheat, the opening degree of the supercooling expansion valve 13 must be increased.
That is, when the opening degree of the supercooling expansion valve 13 is controlled so that the refrigerant that has passed through the indoor heat exchanger 6 has a predetermined degree of superheat, there are liquid refrigerant in the receiver 11 and no liquid refrigerant. Then, as shown in the graph of FIG. 2, there is a clear difference in the opening degree of the supercooling expansion valve 13.

制御装置28は、このことを利用して、冷房運転時におけるレシーバ11内の液冷媒の有無を検出する。
具体的には、空気調和装置1の冷房運転中に、上記のように過冷却用膨張弁13の開度の制御を行いながら、冷媒回収装置21の回収側自動弁21cまたは冷媒供給装置22の供給側自動弁22cを開いて、冷媒回路2からの冷媒の取出しまたは冷媒回路2への冷媒の追加を行う。
そして、冷媒の取出しを行うか冷媒の追加を行うことで過冷却用膨張弁13の開度が少なくなる場合にはレシーバ11内に液冷媒がないと判定し、冷媒の取出しを行うか冷媒の追加を行っても過冷却用膨張弁13の開度に明確な変化が生じない場合には、レシーバ11内に液冷媒があると判定する。
Using this, the control device 28 detects the presence or absence of the liquid refrigerant in the receiver 11 during the cooling operation.
Specifically, during the cooling operation of the air conditioner 1, while controlling the opening degree of the supercooling expansion valve 13 as described above, the recovery-side automatic valve 21 c of the refrigerant recovery device 21 or the refrigerant supply device 22 is controlled. The supply-side automatic valve 22c is opened to take out the refrigerant from the refrigerant circuit 2 or add the refrigerant to the refrigerant circuit 2.
When the opening degree of the supercooling expansion valve 13 is reduced by removing the refrigerant or adding the refrigerant, it is determined that there is no liquid refrigerant in the receiver 11, and the refrigerant is taken out or the refrigerant If no clear change occurs in the opening degree of the supercooling expansion valve 13 even after the addition, it is determined that there is liquid refrigerant in the receiver 11.

なお、レシーバ11内の液冷媒量が適正範囲を超えた場合にも、過冷却用膨張弁13の開度が変化するので、このことを利用して冷媒量の調整を行ってもよいが、レシーバ11内の液冷媒の有無による開度変化の方が大きいので、レシーバ11内の液冷媒の有無に基づいて冷媒量の調整を行う方が高精度の調整を行うことができる。   In addition, even when the amount of liquid refrigerant in the receiver 11 exceeds the appropriate range, the degree of opening of the supercooling expansion valve 13 changes, so this may be used to adjust the amount of refrigerant. Since the opening degree change due to the presence or absence of the liquid refrigerant in the receiver 11 is larger, the adjustment of the refrigerant amount based on the presence or absence of the liquid refrigerant in the receiver 11 can be performed with higher accuracy.

空気調和装置1の暖房運転時には、前記のように、暖房用膨張弁5bに、レシーバ11の底部から取り出した冷媒が送り込まれる。
レシーバ11内に液冷媒がある状態では、暖房用膨張弁5bに液冷媒が十分に供給されるので、暖房用膨張弁5bの開度をそれほど大きくない一定の開度とすることで、室外熱交換器4の過熱度運転が十分に行われて、室外熱交換器4を通過した冷媒に所定の過熱度を持たせることができる。ここで、室内熱交換器6を通過した冷媒の過熱度は、室外側冷媒温度測定装置24の測定値と低圧側冷媒圧力測定装置26の測定値に基づいて求められる。
During the heating operation of the air conditioner 1, the refrigerant taken out from the bottom of the receiver 11 is fed into the heating expansion valve 5b as described above.
In the state where the liquid refrigerant is in the receiver 11, the liquid refrigerant is sufficiently supplied to the heating expansion valve 5b. Therefore, by setting the opening of the heating expansion valve 5b to a certain degree of opening, the outdoor heat The superheat degree operation | movement of the exchanger 4 is fully performed, and the refrigerant | coolant which passed the outdoor heat exchanger 4 can have a predetermined superheat degree. Here, the degree of superheat of the refrigerant that has passed through the indoor heat exchanger 6 is obtained based on the measurement value of the outdoor refrigerant temperature measurement device 24 and the measurement value of the low-pressure side refrigerant pressure measurement device 26.

一方、レシーバ11内に液冷媒がない状態では、暖房用膨張弁5bには液冷媒が十分に供給されずにフラッシュが生じて冷媒流量が不足するので、室外熱交換器4による過熱度運転を十分に行わせて、室外熱交換器4を通過した冷媒に所定の過熱度を持たせるためには、暖房用膨張弁5bの開度を大きくしなくてはならない。
つまり、室外熱交換器4を通過した冷媒に所定の過熱度を持たせるように暖房用膨張弁5bの開度を制御した場合、レシーバ11内に液冷媒がある状態と液冷媒がない状態とでは、図3のグラフに示すように、暖房用膨張弁5bの開度に明確な差が生じる。
On the other hand, in the state where there is no liquid refrigerant in the receiver 11, liquid refrigerant is not sufficiently supplied to the heating expansion valve 5 b, and flashing occurs and the refrigerant flow rate becomes insufficient. Therefore, the superheat operation by the outdoor heat exchanger 4 is performed. In order to make it sufficiently performed and to give the refrigerant having passed the outdoor heat exchanger 4 a predetermined degree of superheat, the opening degree of the heating expansion valve 5b must be increased.
That is, when the opening degree of the heating expansion valve 5b is controlled so that the refrigerant that has passed through the outdoor heat exchanger 4 has a predetermined degree of superheat, there are liquid refrigerant in the receiver 11 and no liquid refrigerant. Then, as shown in the graph of FIG. 3, a clear difference arises in the opening degree of the expansion valve 5b for heating.

制御装置28は、このことを利用して、暖房運転時におけるレシーバ11内の液冷媒の有無を検出する。
具体的には、空気調和装置1の暖房運転中に、上記のように暖房用膨張弁5bの開度の制御を行いながら、冷媒回収装置21の回収側自動弁21cまたは冷媒供給装置22の供給側自動弁22cを開いて、冷媒回路2からの冷媒の取出しまたは冷媒回路2への冷媒の追加を行う。
そして、冷媒の取出しを行うか冷媒の追加を行うことで暖房用膨張弁5bの開度が少なくなる場合にはレシーバ11内に液冷媒がないと判定し、冷媒の取出しを行うか冷媒の追加を行っても暖房用膨張弁5bの開度に明確な変化が生じない場合には、レシーバ11内に液冷媒があると判定する。
Using this, the control device 28 detects the presence or absence of the liquid refrigerant in the receiver 11 during the heating operation.
Specifically, during the heating operation of the air conditioner 1, the supply of the recovery-side automatic valve 21c of the refrigerant recovery device 21 or the refrigerant supply device 22 is performed while controlling the opening degree of the heating expansion valve 5b as described above. The side automatic valve 22c is opened to take out the refrigerant from the refrigerant circuit 2 or add the refrigerant to the refrigerant circuit 2.
If the opening of the heating expansion valve 5b is reduced by removing the refrigerant or adding the refrigerant, it is determined that there is no liquid refrigerant in the receiver 11, and the refrigerant is taken out or added. If a clear change does not occur in the opening degree of the heating expansion valve 5b even after performing the above, it is determined that there is liquid refrigerant in the receiver 11.

なお、レシーバ11内の液冷媒量が適正範囲を超えた場合には、その分過冷却がつくため、暖房用膨張弁5bの開度が変化する。この場合の暖房用膨張弁5bの変化を利用して冷媒量の調整を行ってもよいが、レシーバ11内の液冷媒の有無による開度変化の方が大きいので、レシーバ11内の液冷媒の有無に基づいて冷媒量を調整する方が高精度の調整を行うことができる。   Note that when the amount of liquid refrigerant in the receiver 11 exceeds the appropriate range, the amount of supercooling is increased accordingly, and the opening of the heating expansion valve 5b changes. In this case, the amount of refrigerant may be adjusted by using the change of the heating expansion valve 5b. However, since the opening degree change due to the presence or absence of the liquid refrigerant in the receiver 11 is larger, the liquid refrigerant in the receiver 11 It is possible to adjust with higher accuracy by adjusting the refrigerant amount based on the presence or absence.

ここで、空気調和装置1の暖房運転時におけるレシーバ11内の液冷媒の有無は、上記のように暖房用膨張弁5bの開度に基づいて検出する以外にも、過冷却用膨張弁13の開度に基づいて検出することも可能である。
以下、過冷却用膨張弁13の開度に基づく空気調和装置1の暖房運転時におけるレシーバ11内の液冷媒の有無の検出原理について説明する。
Here, the presence or absence of the liquid refrigerant in the receiver 11 during the heating operation of the air conditioner 1 is detected based on the opening degree of the heating expansion valve 5b as described above. It is also possible to detect based on the opening.
Hereinafter, the detection principle of the presence or absence of liquid refrigerant in the receiver 11 during the heating operation of the air-conditioning apparatus 1 based on the opening degree of the supercooling expansion valve 13 will be described.

空気調和装置1の暖房運転時において、レシーバ11内に液冷媒がある状態では、冷媒の過冷却がそれほど必要でないので、過冷却用膨張弁13の開度をそれほど大きくない一定の開度とすることで、室外熱交換器4を通過した冷媒に所定の過熱度を持たせることができる。
一方、レシーバ11内に液冷媒がない状態では、暖房用膨張弁5bには液冷媒が十分に供給されずにフラッシュが生じて冷媒流量が不足するので、室外熱交換器4による過熱度運転を十分に行って室外熱交換器4を通過した冷媒に所定の過熱度を持たせるためには、過冷却用膨張弁13の開度を大きくして、レシーバ11に送り込まれる冷媒により大きな過冷却度を持たせる必要がある。
During the heating operation of the air conditioner 1, when the liquid refrigerant is present in the receiver 11, the refrigerant is not required to be supercooled so much, so that the degree of opening of the supercooling expansion valve 13 is set to a certain degree of opening that is not so large. Thus, the refrigerant having passed through the outdoor heat exchanger 4 can have a predetermined degree of superheat.
On the other hand, in the state where there is no liquid refrigerant in the receiver 11, liquid refrigerant is not sufficiently supplied to the heating expansion valve 5 b, and flashing occurs and the refrigerant flow rate becomes insufficient. Therefore, the superheat operation by the outdoor heat exchanger 4 is performed. In order to give the refrigerant having passed through the outdoor heat exchanger 4 a predetermined degree of superheat sufficiently, the degree of supercooling is increased by increasing the degree of opening of the supercooling expansion valve 13 and the refrigerant sent to the receiver 11. It is necessary to have.

つまり、室外熱交換器4を通過した冷媒に所定の過熱度を持たせるように過冷却用膨張弁13の開度を制御した場合、レシーバ11内に液冷媒がある状態と液冷媒がない状態とでは、過冷却用膨張弁13の開度に明確な差が生じる。
制御装置28は、このことを利用して、レシーバ11内の液冷媒の有無を検出する。
具体的には、空気調和装置1の暖房運転中に、上記のように過冷却用膨張弁13の開度の制御を行いながら、冷媒回路2からの冷媒の取出しまたは冷媒の追加を行う。
そして、冷媒の取出しを行うか冷媒の追加を行うことで過冷却用膨張弁13の開度が少なくなる場合にはレシーバ11内に液冷媒がないと判定し、冷媒の取り出しを行うか冷媒の追加を行っても過冷却用膨張弁13の開度に明確な変化が生じない場合には、レシーバ11内に液冷媒があると判定する。
That is, when the opening degree of the supercooling expansion valve 13 is controlled so that the refrigerant that has passed through the outdoor heat exchanger 4 has a predetermined degree of superheat, there are liquid refrigerant in the receiver 11 and no liquid refrigerant. Then, a clear difference is generated in the opening degree of the supercooling expansion valve 13.
The control apparatus 28 detects the presence or absence of the liquid refrigerant in the receiver 11 using this.
Specifically, during the heating operation of the air conditioner 1, the refrigerant is taken out from the refrigerant circuit 2 or the refrigerant is added while controlling the opening degree of the supercooling expansion valve 13 as described above.
When the opening degree of the supercooling expansion valve 13 is reduced by removing the refrigerant or adding the refrigerant, it is determined that there is no liquid refrigerant in the receiver 11, and the refrigerant is taken out or the refrigerant If no clear change occurs in the opening degree of the supercooling expansion valve 13 even after the addition, it is determined that there is liquid refrigerant in the receiver 11.

以下、この空気調和装置1の具体的な動作について、図4及び図5のフローチャートを用いて説明する。
まず、図4に示すように、空気調和装置1を起動すると、制御装置28は、室内雰囲気温度測定装置の測定値と使用者等が設定した設定温度とを比較して、この結果に基づいて運転モードを決定する(ステップS1)。
制御装置28は、室内温度が設定温度を上回った場合には、空気調和装置1に冷房運転を行わせ(ステップS2)、室内温度が設定温度を下回った場合には、空気調和装置1に暖房運転を行わせる(ステップS3)。
Hereinafter, a specific operation of the air conditioner 1 will be described with reference to the flowcharts of FIGS. 4 and 5.
First, as shown in FIG. 4, when the air conditioner 1 is started, the control device 28 compares the measured value of the indoor atmosphere temperature measuring device with the set temperature set by the user and the like, and based on this result. An operation mode is determined (step S1).
When the room temperature exceeds the set temperature, the control device 28 causes the air conditioner 1 to perform a cooling operation (step S2). When the room temperature falls below the set temperature, the controller 28 heats the air conditioner 1. Operation is performed (step S3).

空気調和装置1を冷房運転することで、室内熱交換器6による冷媒の気化が行われるので、冷房運転を継続することで、アキュームレータ16内の冷媒が次第に減少する。
制御装置28は、液戻し流路17内の液体の過熱度を監視して(ステップS4)、この過熱度が所定温度(仮に「α°C」とする)を超えた場合には、アキュームレータ16内の液冷媒がなくなったと判断して、冷媒量の調整を行う。
Since the refrigerant is vaporized by the indoor heat exchanger 6 by performing the cooling operation of the air conditioner 1, the refrigerant in the accumulator 16 is gradually reduced by continuing the cooling operation.
The control device 28 monitors the degree of superheat of the liquid in the liquid return channel 17 (step S4), and when the degree of superheat exceeds a predetermined temperature (assuming “α ° C”), the accumulator 16 It is determined that the liquid refrigerant in the tank has run out, and the refrigerant amount is adjusted.

制御装置28は、室内熱交換器6を通過した冷媒の過熱度が所定温度(仮に「β°C」とする)を持つように過冷却用膨張弁13の開度を制御しながらその開度を監視し、この開度に基づいて、冷媒の追加を行うか、冷媒の回収を行うかを判定する(ステップS5)。
具体的には、制御装置28は、過冷却用膨張弁13の開度が適正範囲を超えている場合には、冷媒量が不足していると判断して冷媒の追加操作を行い(ステップS6)、過冷却用膨張弁13の開度が適正範囲以下である場合には、冷媒が適正量以上あると判断して、冷媒の回収操作を行う(ステップS7)。
The control device 28 controls the opening degree of the supercooling expansion valve 13 so that the degree of superheat of the refrigerant that has passed through the indoor heat exchanger 6 has a predetermined temperature (assuming “β ° C”). And whether to add refrigerant or to collect refrigerant is determined based on the opening degree (step S5).
Specifically, when the opening degree of the supercooling expansion valve 13 exceeds the appropriate range, the control device 28 determines that the amount of the refrigerant is insufficient and performs an additional operation of the refrigerant (step S6). ) When the opening degree of the supercooling expansion valve 13 is less than or equal to the appropriate range, it is determined that the amount of refrigerant is greater than or equal to the appropriate amount, and the refrigerant is collected (step S7).

制御装置28は、過冷却用膨張弁13の開度が適正範囲を超えているかどうかを、冷媒回路2内の冷媒を冷媒回収装置21によって回収するか、または冷媒回路2内に冷媒供給装置22によって冷媒を追加した際の、過冷却用膨張弁13の開度の変化量に基づいて判断する。
具体的には、前記したように、図2に示す冷媒量と過冷却用膨張弁13の開度との関係に基づいて、冷媒回路2内の冷媒を回収するか冷媒回路2内に冷媒を追加することで過冷却用膨張弁13の開度が明らかに変化する場合には開度が適正範囲を超えていると判断し、開度がほぼ一定である場合には、開度が適正範囲以下であると判断する。
The control device 28 collects the refrigerant in the refrigerant circuit 2 by the refrigerant collecting device 21 or determines whether the opening degree of the supercooling expansion valve 13 exceeds the proper range or the refrigerant supply device 22 in the refrigerant circuit 2. This is determined based on the amount of change in the degree of opening of the subcooling expansion valve 13 when the refrigerant is added.
Specifically, as described above, based on the relationship between the refrigerant amount and the opening degree of the supercooling expansion valve 13 shown in FIG. When the opening degree of the expansion valve 13 for supercooling clearly changes by adding, it is determined that the opening degree exceeds the appropriate range, and when the opening degree is substantially constant, the opening degree is within the appropriate range. It is determined that:

以下、冷房運転時における冷媒の追加操作について説明する。
制御装置28は、冷媒供給装置22の供給側自動弁22dを開いて、冷媒回路2内に少量ずつ冷媒を追加する。
ここで、冷媒供給装置22は、冷媒回路2の低圧回路側に冷媒を供給するので、追加した冷媒がアキュームレータ16にも供給される。このため、制御装置28は、再び液戻し流路17内の液体の過熱度の監視を行い(ステップS8)、アキュームレータ16内の液冷媒がなくなったと判断したのちに、過冷却用膨張弁13の開度が安定しているかどうかを確認し(ステップS9)、開度が安定している場合には冷媒量の調整作業を終了し(ステップS10)、安定していない場合には、ステップS6に戻って冷媒の供給を継続する。
Hereinafter, the operation of adding the refrigerant during the cooling operation will be described.
The control device 28 opens the supply-side automatic valve 22 d of the refrigerant supply device 22 and adds refrigerant to the refrigerant circuit 2 little by little.
Here, since the refrigerant supply device 22 supplies the refrigerant to the low-pressure circuit side of the refrigerant circuit 2, the added refrigerant is also supplied to the accumulator 16. For this reason, the control device 28 again monitors the degree of superheat of the liquid in the liquid return passage 17 (step S8), and after determining that the liquid refrigerant in the accumulator 16 has run out, the control device 28 controls the expansion valve 13 for supercooling. It is confirmed whether the opening degree is stable (step S9). If the opening degree is stable, the adjustment operation of the refrigerant amount is finished (step S10), and if not, the process goes to step S6. Return and continue supplying refrigerant.

以下、冷房運転時における冷媒の回収操作について説明する。
制御装置28は、冷媒回収装置21によって一定量ずつ冷媒の回収を行う。本実施形態では、制御装置28は、回収側自動弁21cを一定時間Tだけ開いては閉じる操作を繰り返すことで、一回の取出し量を規定している(なお、回収側自動弁21cの代わりに回収側電子膨張弁を用いた場合には、その開度と開放時間とによって一回の取出し量を規定する)。
制御装置28は、このように一定量ずつ冷媒を回収しながら、過冷却用膨張弁13の開度を監視し(ステップS11)、開度が急増した場合には、冷媒量が適正範囲を下回ったと判断して、冷媒回収装置21による冷媒の回収を停止させるとともに、冷媒供給装置22に、冷媒回収装置21による一回の取出し量以下の所定量だけ冷媒を供給させ(ステップS12)、冷媒量の調整作業を終了させる(ステップS10)。
本実施形態では、制御装置28は、供給側自動弁22cを、冷媒回収装置21による一回当たりの冷媒供給時間T以下の時間、例えば1/2Tだけ開くことで、一回の取出し量以下の冷媒を供給する。
Hereinafter, the refrigerant recovery operation during the cooling operation will be described.
The control device 28 recovers the refrigerant by a certain amount by the refrigerant recovery device 21. In the present embodiment, the control device 28 defines a single extraction amount by repeating the operation of opening and closing the collection-side automatic valve 21c for a predetermined time T (instead of the collection-side automatic valve 21c). When a recovery-side electronic expansion valve is used, the amount of one extraction is defined by its opening and opening time).
The controller 28 monitors the opening degree of the supercooling expansion valve 13 while collecting the refrigerant in a certain amount in this way (step S11), and if the opening degree suddenly increases, the refrigerant amount falls below the appropriate range. The refrigerant recovery device 21 stops the recovery of the refrigerant, and the refrigerant supply device 22 is supplied with a predetermined amount of refrigerant equal to or less than the amount taken out once by the refrigerant recovery device 21 (step S12). The adjustment work is terminated (step S10).
In the present embodiment, the control device 28 opens the supply-side automatic valve 22c for a time equal to or shorter than the refrigerant supply time T per time by the refrigerant recovery device 21, for example, 1 / 2T, so that the amount of discharge is less than one time. Supply refrigerant.

次に、空気調和装置1の暖房運転時の動作について説明する(図5参照)。
空気調和装置1を暖房運転することで、室内熱交換器6による冷媒の気化が行われるので、冷房運転を継続することで、アキュームレータ16内の冷媒が次第に減少する。
制御装置28は、液戻し流路17内の液体の過熱度を監視して(ステップS11)、この過熱度が所定温度α°Cを超えた場合には、アキュームレータ16内の液冷媒がなくなったと判断して、冷媒量の調整を行う。
Next, the operation | movement at the time of the heating operation of the air conditioning apparatus 1 is demonstrated (refer FIG. 5).
Since the refrigerant is vaporized by the indoor heat exchanger 6 by performing the heating operation of the air conditioner 1, the refrigerant in the accumulator 16 is gradually reduced by continuing the cooling operation.
The control device 28 monitors the degree of superheat of the liquid in the liquid return channel 17 (step S11), and when the degree of superheat exceeds a predetermined temperature α ° C., the liquid refrigerant in the accumulator 16 is exhausted. Judgment is made and the amount of refrigerant is adjusted.

制御装置28は、室外熱交換器4を通過した冷媒の過熱度が所定温度(仮に「γ°C」とする)を持つように暖房用膨張弁5bの開度を制御しながらその開度を監視し、この開度に基づいて、冷媒の追加を行うか、冷媒の回収を行うかを判定する(ステップS12)。
具体的には、制御装置28は、暖房用膨張弁5bの開度が適正範囲を超えている場合には、冷媒量が不足していると判断して冷媒の追加操作を行い(ステップS13)、暖房用膨張弁5bの開度が適正範囲以下である場合には、冷媒が適正量以上あると判断して、冷媒の回収操作を行う(ステップS14)。
The controller 28 controls the opening degree of the heating expansion valve 5b so that the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger 4 has a predetermined temperature (assuming “γ ° C”). Monitoring is performed, and it is determined based on the opening degree whether the refrigerant is added or the refrigerant is recovered (step S12).
Specifically, when the opening degree of the heating expansion valve 5b exceeds the appropriate range, the control device 28 determines that the amount of the refrigerant is insufficient and performs an additional operation of the refrigerant (step S13). When the opening of the heating expansion valve 5b is less than or equal to the appropriate range, it is determined that the amount of refrigerant is greater than or equal to the appropriate amount, and a refrigerant recovery operation is performed (step S14).

制御装置28は、暖房用膨張弁5bの開度が適正範囲を超えているかどうかを、冷媒回路2内の冷媒を冷媒回収装置21によって回収するか、または冷媒回路2内に冷媒供給装置22によって冷媒を追加した際の、暖房用膨張弁5bの開度の変化量に基づいて判断する。
具体的には、前記したように、図3に示す冷媒量と暖房用膨張弁5bの開度との関係に基づいて、冷媒回路2内の冷媒を回収するか冷媒回路2内に冷媒を追加することで暖房用膨張弁5bの開度が明らかに変化する場合には開度が適正範囲を超えていると判断し、開度がほぼ一定である場合には、開度が適正範囲以下であると判断する。
The control device 28 collects the refrigerant in the refrigerant circuit 2 by the refrigerant collecting device 21 or determines whether the opening degree of the heating expansion valve 5b exceeds the appropriate range or by the refrigerant supply device 22 in the refrigerant circuit 2. The determination is based on the amount of change in the opening of the heating expansion valve 5b when the refrigerant is added.
Specifically, as described above, the refrigerant in the refrigerant circuit 2 is recovered or added to the refrigerant circuit 2 based on the relationship between the refrigerant amount and the opening degree of the heating expansion valve 5b shown in FIG. When the opening degree of the heating expansion valve 5b clearly changes, it is determined that the opening degree exceeds the appropriate range. When the opening degree is substantially constant, the opening degree is less than the appropriate range. Judge that there is.

以下、暖房運転時における冷媒の追加操作について説明する。
制御装置28は、冷媒供給装置22の供給側自動弁22dを開いて、冷媒回路2内に少量ずつ冷媒を追加する。
ここで、冷媒供給装置22は、冷媒回路2の低圧回路側に冷媒を供給するので、追加した冷媒がアキュームレータ16にも供給される。このため、制御装置28は、再び液戻し流路17内の液体の過熱度の監視を行い(ステップS15)、アキュームレータ16内の液冷媒がなくなったと判断したのちに、過冷却用膨張弁13の開度が安定しているかどうかを確認し(ステップS16)、開度が安定している場合には冷媒量の調整作業を終了し(ステップS17)、安定していない場合には、ステップS13に戻って冷媒の供給を継続する。
Hereinafter, an additional operation of the refrigerant during the heating operation will be described.
The control device 28 opens the supply-side automatic valve 22 d of the refrigerant supply device 22 and adds refrigerant to the refrigerant circuit 2 little by little.
Here, since the refrigerant supply device 22 supplies the refrigerant to the low-pressure circuit side of the refrigerant circuit 2, the added refrigerant is also supplied to the accumulator 16. For this reason, the control device 28 again monitors the degree of superheat of the liquid in the liquid return passage 17 (step S15), and after determining that the liquid refrigerant in the accumulator 16 has run out, the control device 28 controls the expansion valve 13 for supercooling. It is confirmed whether the opening degree is stable (step S16). If the opening degree is stable, the adjustment operation of the refrigerant amount is finished (step S17). If the opening degree is not stable, the process goes to step S13. Return and continue supplying refrigerant.

以下、暖房運転時における冷媒の回収操作について説明する。
制御装置28は、冷媒回収装置21によって一定量ずつ冷媒の回収を行う。本実施形態では、制御装置28は、回収側自動弁21cを一定時間Tだけ開いては閉じる操作を繰り返すことで、一回の取出し量を規定している。
制御装置28は、このように一定量ずつ冷媒を回収しながら、過冷却用膨張弁13の開度を監視し(ステップS18)、開度が急増した場合には、冷媒量が適正範囲を下回ったと判断して、冷媒回収装置21による冷媒の回収を停止させるとともに、冷媒供給装置22に、冷媒回収装置21による一回の取出し量以下の所定量だけ冷媒を供給させ(ステップS19)、冷媒量の調整作業を終了させる(ステップS10)。
Hereinafter, the refrigerant recovery operation during the heating operation will be described.
The control device 28 recovers the refrigerant by a certain amount by the refrigerant recovery device 21. In the present embodiment, the control device 28 defines a single extraction amount by repeating the operation of opening and closing the collection-side automatic valve 21c for a certain time T.
The controller 28 monitors the opening degree of the supercooling expansion valve 13 while collecting the refrigerant in a certain amount in this way (step S18), and if the opening degree suddenly increases, the refrigerant amount falls below the appropriate range. The refrigerant recovery device 21 stops the recovery of the refrigerant, and the refrigerant supply device 22 is supplied with a predetermined amount of refrigerant equal to or less than a single extraction amount by the refrigerant recovery device 21 (step S19). The adjustment work is terminated (step S10).

以上述べたように、本実施形態に係る空気調和装置1によれば、レシーバ11内の液冷媒の有無を正確に確認しながら、冷媒回路2の冷媒量の調整を行うことができるので、冷媒回路2内の冷媒量を必要最小限にして、運転効率を向上させることができる。
また、この空気調和装置1では、アキュームレータ16内の余剰冷媒をなくした状態でレシーバ11内の液冷媒を最小限にするので、アキュームレータ16を有しておりながら、冷媒回路2内の冷媒量を最小限にすることができる。
As described above, according to the air conditioning apparatus 1 according to the present embodiment, the refrigerant amount of the refrigerant circuit 2 can be adjusted while accurately confirming the presence or absence of the liquid refrigerant in the receiver 11, so that the refrigerant It is possible to improve the operation efficiency by minimizing the amount of refrigerant in the circuit 2.
Further, in this air conditioner 1, since the liquid refrigerant in the receiver 11 is minimized with the excess refrigerant in the accumulator 16 being eliminated, the amount of refrigerant in the refrigerant circuit 2 is reduced while the accumulator 16 is provided. Can be minimized.

ここで、本実施形態では、空気調和装置1の暖房運転時に、暖房用膨張弁5bの開度に基づいて冷媒回路2の冷媒量の調整を行う例を示したが、これに限られることなく、暖房運転時においても、過冷却用膨張弁13の開度に基づいて冷媒回路2の冷媒量の調整を行う構成としてもよい。   Here, although the example which adjusts the refrigerant | coolant amount of the refrigerant circuit 2 based on the opening degree of the expansion valve 5b for heating at the time of heating operation of the air conditioning apparatus 1 was shown in this embodiment, it is not restricted to this. Even during the heating operation, the refrigerant amount of the refrigerant circuit 2 may be adjusted based on the opening degree of the supercooling expansion valve 13.

この場合には、図6のフローチャートに示すように、冷媒回路2内での冷媒の流れの変動を抑えるために、基本的には過冷却用膨張弁13の開度を固定し、レシーバ11内の液冷媒の有無を判定する段階(ステップS12,S18)で、液冷媒の有無の判定に先立って、室外熱交換器4を通過した冷媒が適切な過熱度(仮に「δ」°Cとする)を持つように過冷却用膨張弁13の開度を調整し(ステップS21、S24)、この時の開度に基づいて液冷媒の有無の判定を行い、判定終了後は再び過冷却用膨張弁13の開度を固定する(ステップS22,S23)。   In this case, as shown in the flowchart of FIG. 6, in order to suppress fluctuations in the refrigerant flow in the refrigerant circuit 2, the opening degree of the supercooling expansion valve 13 is basically fixed and the receiver 11 In the stage of determining the presence or absence of the liquid refrigerant (steps S12 and S18), prior to the determination of the presence or absence of the liquid refrigerant, the refrigerant that has passed through the outdoor heat exchanger 4 has an appropriate degree of superheat (assuming “δ” ° C.). ) To adjust the opening degree of the supercooling expansion valve 13 (steps S21 and S24), and the presence or absence of liquid refrigerant is determined based on the opening degree at this time. The opening degree of the valve 13 is fixed (steps S22 and S23).

[第二実施形態]
次に、本発明の第二実施形態について、図7を用いて説明する。
本実施形態に係る空気調和装置31は、第一実施形態に示す空気調和装置1において、冷媒回収装置21及び冷媒供給装置22を冷媒回路2に対して着脱可能にしたことを特徴とするものである。
以下、第一実施形態に示す空気調和装置1と同一または同様の構成については、同じ符号を用いて示し、詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
The air conditioner 31 according to this embodiment is characterized in that, in the air conditioner 1 shown in the first embodiment, the refrigerant recovery device 21 and the refrigerant supply device 22 are detachable from the refrigerant circuit 2. is there.
Hereinafter, the same or similar configurations as those of the air conditioner 1 shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

空気調和装置31では、冷媒回収装置21の回収側接続配管21bが、冷媒回路2に対してバルブ21eを介して着脱可能にして接続されている。そして、バルブ21eを閉じることで、冷媒回路2と回収側接続配管21bとを遮断して、これらの着脱を行うことができる。   In the air conditioner 31, the recovery side connection pipe 21b of the refrigerant recovery device 21 is detachably connected to the refrigerant circuit 2 via a valve 21e. Then, by closing the valve 21e, the refrigerant circuit 2 and the recovery side connection pipe 21b can be shut off, and these can be attached and detached.

また、空気調和装置31では、冷媒供給装置22の供給側接続配管22bが、冷媒回路2に対してバルブ22eを介して着脱可能にして接続されている。そして、バルブ22eを閉じることで、冷媒回路2と供給側接続配管22bとを遮断して、これらの着脱を行うことができる。   Further, in the air conditioner 31, the supply side connection pipe 22b of the refrigerant supply device 22 is detachably connected to the refrigerant circuit 2 via the valve 22e. And by closing valve | bulb 22e, the refrigerant circuit 2 and the supply side connection piping 22b can be interrupted | blocked, and these can be attached or detached.

このように構成される空気調和装置31では、冷媒回収装置21及び冷媒供給装置22を、必要なとき以外は冷媒回路2から取り外すことができるので、空気調和装置31の設置スペースを低減することができる。
また、複数の空気調和装置31間で、冷媒回収装置21と冷媒供給装置22とのうちの少なくともいずれか一方について共有することができるので、装置コストを低減することができる。
In the air conditioner 31 configured as described above, the refrigerant recovery device 21 and the refrigerant supply device 22 can be removed from the refrigerant circuit 2 except when necessary, so that the installation space of the air conditioner 31 can be reduced. it can.
Moreover, since at least any one of the refrigerant | coolant collection | recovery apparatus 21 and the refrigerant | coolant supply apparatus 22 can be shared between the some air conditioning apparatuses 31, apparatus cost can be reduced.

本発明の第一実施形態に係る空気調和装置の構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus which concerns on 1st embodiment of this invention. 冷媒回路の冷媒量と過冷却用膨張弁の開度との関係を示すグラフである。It is a graph which shows the relationship between the refrigerant | coolant amount of a refrigerant circuit, and the opening degree of the expansion valve for supercooling. 冷媒回路の冷媒量と暖房用膨張弁の開度との関係を示すグラフである。It is a graph which shows the relationship between the refrigerant | coolant amount of a refrigerant circuit, and the opening degree of the expansion valve for heating. 本発明の第一実施形態に係る空気調和装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る空気調和装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る空気調和装置の暖房運転時の動作の他の例を示すフローチャートである。It is a flowchart which shows the other example of the operation | movement at the time of the heating operation of the air conditioning apparatus which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る空気調和装置の構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus which concerns on 2nd embodiment of this invention.

符号の説明Explanation of symbols

1,31 空気調和装置
2 冷媒回路
3 圧縮機
4 室外熱交換器(凝縮器、蒸発器)
5a 冷房用膨張弁
5b 暖房用膨張弁
6 室内熱交換器(蒸発器、凝縮器)
11 レシーバ
12 バイパス流路
13 過冷却用膨張弁
14 過冷却熱交換器
16 アキュームレータ
17 液戻し流路
21 冷媒回収装置
22 冷媒供給装置
23 室内側冷媒温度測定装置
24 室外側冷媒温度測定装置
26 低圧側冷媒圧力測定装置
27 戻り液温度測定装置
28 制御装置
1,31 Air conditioner 2 Refrigerant circuit 3 Compressor 4 Outdoor heat exchanger (condenser, evaporator)
5a Expansion valve for cooling 5b Expansion valve for heating 6 Indoor heat exchanger (evaporator, condenser)
DESCRIPTION OF SYMBOLS 11 Receiver 12 Bypass flow path 13 Supercooling expansion valve 14 Supercooling heat exchanger 16 Accumulator 17 Liquid return flow path 21 Refrigerant recovery device 22 Refrigerant supply device 23 Indoor side refrigerant temperature measurement device 24 Outdoor refrigerant temperature measurement device 26 Low pressure side Refrigerant pressure measuring device 27 Return liquid temperature measuring device 28 Control device

Claims (14)

冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を冷却して液化させる凝縮器と、該凝縮器を通過した冷媒を膨張させる膨張弁と、該膨張弁を通過した冷媒を加熱して気化させる蒸発器と、該蒸発器から前記圧縮機に供給される冷媒を一時的に貯留するアキュームレータとを有する冷媒回路に、前記アキュームレータの底部と前記圧縮機の上流部とを接続して前記アキュームレータ内の液体を前記圧縮機に供給する液戻し流路を設けた構成の空気調和装置に対して、
前記液戻し流路を通過する液体の温度を測定する戻り液温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記戻り液温度測定装置の測定値及び前記低圧側圧力測定装置の測定値に基づいて前記液戻し流路を流通する液体の過熱度を検出し、
該液体に過熱度が生じていることをもって前記アキュームレータ内から全ての液冷媒が排出されたと判定する空気調和装置のアキュームレータ内液冷媒検出方法。
A compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant delivered by the compressor, an expansion valve that expands the refrigerant that has passed through the condenser, and a refrigerant that has passed through the expansion valve is heated. The accumulator is connected to a refrigerant circuit having an evaporator to be vaporized, and an accumulator for temporarily storing refrigerant supplied from the evaporator to the compressor, by connecting a bottom portion of the accumulator and an upstream portion of the compressor. For an air conditioner configured to provide a liquid return flow path for supplying the liquid inside to the compressor,
A return liquid temperature measuring device for measuring the temperature of the liquid passing through the liquid return flow path;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
Detecting the degree of superheat of the liquid flowing through the liquid return channel based on the measurement value of the return liquid temperature measurement device and the measurement value of the low pressure side pressure measurement device;
A method for detecting liquid refrigerant in an accumulator of an air conditioner that determines that all liquid refrigerant has been discharged from within the accumulator when the degree of superheat has occurred in the liquid.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を外気との熱交換によって冷却して液化させる室外熱交換器と、該室外熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバを通過した冷媒を膨張させる冷房用膨張弁と、該冷房用膨張弁を通過した冷媒を室内雰囲気との熱交換によって加熱して気化させる室内熱交換器とを有する冷媒回路に、前記レシーバの底部から該レシーバ内の冷媒の一部を取り出して前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記レシーバから前記冷房用膨張弁に送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、
前記室内熱交換器を通過した冷媒の温度を測定する室内側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記空気調和装置の冷房運転中に、前記室内側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室内熱交換器を通過した冷媒の過熱度を検出し、
該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路への冷媒の追加を行い、
前記過冷却用膨張弁の開度の変化が生じなくなった時点で前記レシーバ内に液冷媒が存在していると判定する空気調和装置のレシーバ内液冷媒検出方法。
A compressor that compresses the refrigerant; an outdoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with outside air; and a receiver that temporarily stores the refrigerant that has passed through the outdoor heat exchanger; A refrigerant circuit having a cooling expansion valve that expands the refrigerant that has passed through the receiver, and an indoor heat exchanger that heats and vaporizes the refrigerant that has passed through the cooling expansion valve by heat exchange with the indoor atmosphere. A bypass flow path that extracts a part of the refrigerant in the receiver from the bottom of the receiver and supplies the refrigerant to the upstream side of the compressor, a supercooling expansion valve that expands the refrigerant supplied to the bypass flow path, and the receiver An air conditioner having a structure including a supercooling heat exchanger that supercools the refrigerant sent to the cooling expansion valve by heat exchange with the refrigerant expanded by the supercooling expansion valve,
An indoor-side refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the indoor heat exchanger;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
During the cooling operation of the air conditioner, the degree of superheat of the refrigerant that has passed through the indoor heat exchanger is detected based on the measured value of the indoor refrigerant temperature measuring device and the measured value of the low pressure refrigerant pressure measuring device,
Adding refrigerant to the refrigerant circuit while controlling the opening of the expansion valve for supercooling so that the degree of superheat becomes a predetermined value,
A method for detecting liquid refrigerant in a receiver of an air conditioner that determines that liquid refrigerant is present in the receiver at the time when the opening of the expansion valve for supercooling no longer changes.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路からなる空気調和装置に、
前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、
該過熱度が所定の値となるように前記暖房用膨張弁の開度を制御しながら前記冷媒回路への冷媒の追加を行い、
前記暖房用膨張弁の開度の変化が生じなくなった時点で前記レシーバ内に液冷媒が存在していると判定する空気調和装置のレシーバ内液冷媒検出方法。
A compressor that compresses the refrigerant; an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with an indoor atmosphere; and a receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger And a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and an outdoor heat exchanger that heats and vaporizes the refrigerant that has passed through the heating expansion valve by heat exchange with the outside air In the air conditioner consisting of
An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
During the heating operation of the air conditioner, detecting the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger based on the measurement value of the outdoor refrigerant temperature measurement device and the measurement value of the low-pressure refrigerant pressure measurement device,
Adding refrigerant to the refrigerant circuit while controlling the opening of the heating expansion valve so that the degree of superheat becomes a predetermined value,
A method for detecting liquid refrigerant in a receiver of an air conditioner that determines that liquid refrigerant is present in the receiver when a change in the opening of the heating expansion valve no longer occurs.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路に、前記室内熱交換器を通過した冷媒の一部を前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記室内熱交換器から前記レシーバに送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、
前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、
該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路への冷媒の追加を行い、
前記過冷却用膨張弁の開度の変化が生じなくなった時点で前記レシーバ内に液冷媒が存在していると判定する空気調和装置のレシーバ内液冷媒検出方法。
A compressor that compresses the refrigerant; an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with an indoor atmosphere; and a receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger And a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and an outdoor heat exchanger that heats and vaporizes the refrigerant that has passed through the heating expansion valve by heat exchange with the outside air A bypass passage that supplies a part of the refrigerant that has passed through the indoor heat exchanger to the upstream side of the compressor, a supercooling expansion valve that expands the refrigerant supplied to the bypass passage, and the indoor An air conditioner having a configuration in which a supercooling heat exchanger that supercools the refrigerant sent from the heat exchanger to the receiver by heat exchange with the refrigerant expanded by the supercooling expansion valve,
An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
During the heating operation of the air conditioner, detecting the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger based on the measurement value of the outdoor refrigerant temperature measurement device and the measurement value of the low-pressure refrigerant pressure measurement device,
Adding refrigerant to the refrigerant circuit while controlling the opening of the expansion valve for supercooling so that the degree of superheat becomes a predetermined value,
A method for detecting liquid refrigerant in a receiver of an air conditioner that determines that liquid refrigerant is present in the receiver at the time when the opening of the expansion valve for supercooling no longer changes.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を外気との熱交換によって冷却して液化させる室外熱交換器と、該室外熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバを通過した冷媒を膨張させる冷房用膨張弁と、該冷房用膨張弁を通過した冷媒を室内雰囲気との熱交換によって加熱して気化させる室内熱交換器とを有する冷媒回路に、前記レシーバの底部から該レシーバ内の冷媒の一部を取り出して前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記レシーバから前記冷房用膨張弁に送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、
前記室内熱交換器を通過した冷媒の温度を測定する室内側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記空気調和装置の冷房運転中に、前記室内側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室内熱交換器を通過した冷媒の過熱度を検出し、
該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路からの冷媒の取り出しを行い、
前記過冷却用膨張弁の開度の変化が生じた時点で前記レシーバ内の液冷媒がなくなったと判定する空気調和装置のレシーバ内液冷媒検出方法。
A compressor that compresses the refrigerant; an outdoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with outside air; and a receiver that temporarily stores the refrigerant that has passed through the outdoor heat exchanger; A refrigerant circuit having a cooling expansion valve that expands the refrigerant that has passed through the receiver, and an indoor heat exchanger that heats and vaporizes the refrigerant that has passed through the cooling expansion valve by heat exchange with the indoor atmosphere. A bypass flow path that extracts a part of the refrigerant in the receiver from the bottom of the receiver and supplies the refrigerant to the upstream side of the compressor, a supercooling expansion valve that expands the refrigerant supplied to the bypass flow path, and the receiver An air conditioner having a structure including a supercooling heat exchanger that supercools the refrigerant sent to the cooling expansion valve by heat exchange with the refrigerant expanded by the supercooling expansion valve,
An indoor-side refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the indoor heat exchanger;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
During the cooling operation of the air conditioner, the degree of superheat of the refrigerant that has passed through the indoor heat exchanger is detected based on the measured value of the indoor refrigerant temperature measuring device and the measured value of the low pressure refrigerant pressure measuring device,
Taking out the refrigerant from the refrigerant circuit while controlling the opening degree of the supercooling expansion valve so that the degree of superheat becomes a predetermined value,
A method for detecting liquid refrigerant in a receiver of an air conditioner that determines that liquid refrigerant in the receiver is exhausted when a change in the opening degree of the supercooling expansion valve occurs.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路からなる空気調和装置に、
前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、
該過熱度が所定の値となるように前記暖房用膨張弁の開度を制御しながら前記冷媒回路からの冷媒の取り出しを行い、
前記暖房用膨張弁の開度の変化が生じた時点で前記レシーバ内の液冷媒がなくなったと判定する空気調和装置のレシーバ内液冷媒検出方法。
A compressor that compresses the refrigerant; an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with an indoor atmosphere; and a receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger And a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and an outdoor heat exchanger that heats and vaporizes the refrigerant that has passed through the heating expansion valve by heat exchange with the outside air In the air conditioner consisting of
An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
During the heating operation of the air conditioner, detecting the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger based on the measurement value of the outdoor refrigerant temperature measurement device and the measurement value of the low-pressure refrigerant pressure measurement device,
Taking out the refrigerant from the refrigerant circuit while controlling the opening of the heating expansion valve so that the degree of superheat becomes a predetermined value,
A method for detecting liquid refrigerant in a receiver of an air conditioner that determines that the liquid refrigerant in the receiver is exhausted when a change in the opening of the heating expansion valve occurs.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器とを有する冷媒回路に、前記室内熱交換器を通過した冷媒の一部を前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記室内熱交換器から前記レシーバに送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを設けた構成の空気調和装置に、
前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置とを設け、
前記空気調和装置の暖房運転中に、前記室外側冷媒温度測定装置の測定値及び前記低圧側冷媒圧力測定装置の測定値に基づいて前記室外熱交換器を通過した冷媒の過熱度を検出し、
該過熱度が所定の値となるように前記過冷却用膨張弁の開度を制御しながら前記冷媒回路からの冷媒の取り出しを行い、
前記過冷却用膨張弁の開度の変化が生じた時点で前記レシーバ内の液冷媒がなくなったと判定する空気調和装置のレシーバ内液冷媒検出方法。
A compressor that compresses the refrigerant; an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with an indoor atmosphere; and a receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger And a heating expansion valve that expands the refrigerant taken out from the bottom of the receiver, and an outdoor heat exchanger that heats and vaporizes the refrigerant that has passed through the heating expansion valve by heat exchange with the outside air A bypass passage that supplies a part of the refrigerant that has passed through the indoor heat exchanger to the upstream side of the compressor, a supercooling expansion valve that expands the refrigerant supplied to the bypass passage, and the indoor An air conditioner having a configuration in which a supercooling heat exchanger that supercools the refrigerant sent from the heat exchanger to the receiver by heat exchange with the refrigerant expanded by the supercooling expansion valve,
An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger;
A low-pressure side refrigerant pressure measuring device for measuring the pressure of the refrigerant supplied to the compressor,
During the heating operation of the air conditioner, detecting the degree of superheat of the refrigerant that has passed through the outdoor heat exchanger based on the measurement value of the outdoor refrigerant temperature measurement device and the measurement value of the low-pressure refrigerant pressure measurement device,
Taking out the refrigerant from the refrigerant circuit while controlling the opening degree of the supercooling expansion valve so that the degree of superheat becomes a predetermined value,
A method for detecting liquid refrigerant in a receiver of an air conditioner that determines that liquid refrigerant in the receiver is exhausted when a change in the opening degree of the supercooling expansion valve occurs.
請求項2から4のいずれかに記載の空気調和装置のレシーバ内液冷媒検出方法を用いて前記レシーバ内の液冷媒の有無を判定しながら前記冷媒回路内に冷媒を段階的に追加してゆき、
前記レシーバ内の液冷媒が検出された時点で前記冷媒の追加を停止する空気調和装置の冷媒量調整方法。
The refrigerant is gradually added to the refrigerant circuit while determining the presence or absence of the liquid refrigerant in the receiver using the method for detecting liquid refrigerant in the receiver of the air conditioner according to any one of claims 2 to 4. ,
The refrigerant | coolant amount adjustment method of the air conditioning apparatus which stops the addition of the said refrigerant | coolant at the time of detecting the liquid refrigerant in the said receiver.
請求項5から7のいずれかに記載の空気調和装置のレシーバ内液冷媒検出方法を用いて前記レシーバ内の液冷媒の有無を判定しながら前記冷媒回路内の冷媒を一定量ずつ段階的に取り出してゆき、
前記レシーバ内の液冷媒がなくなったと判定された時点で前記冷媒の取り出しを停止し、前記冷媒の一回の取り出し量未満の所定量の冷媒を冷媒回路に追加して調整を完了する空気調和装置の冷媒量調整方法。
The refrigerant in the refrigerant circuit is taken out step by step while determining the presence or absence of the liquid refrigerant in the receiver using the method for detecting liquid refrigerant in the receiver of the air conditioner according to any one of claims 5 to 7. Go,
When it is determined that the liquid refrigerant in the receiver is exhausted, the air conditioning apparatus completes the adjustment by stopping the extraction of the refrigerant and adding a predetermined amount of refrigerant that is less than a single extraction amount of the refrigerant to the refrigerant circuit. Refrigerant amount adjustment method.
冷媒回路にアキュームレータ及びレシーバが設けられた空気調和装置を、請求項1記載の空気調和装置のアキュームレータ内冷媒量検出方法を用いて前記アキュームレータ内の液冷媒量を検出しながら、該アキュームレータ内の液冷媒がなくなるまで運転したのち、
請求項8または請求項9記載の空気調和装置の冷媒量調整方法を用いて前記冷媒回路内の冷媒量を調整する空気調和装置の冷媒量調整方法。
An air conditioner in which an accumulator and a receiver are provided in a refrigerant circuit, while detecting the amount of liquid refrigerant in the accumulator using the refrigerant amount detection method in the accumulator of the air conditioner according to claim 1, After driving until the refrigerant runs out,
A refrigerant quantity adjustment method for an air conditioner, wherein the refrigerant quantity in the refrigerant circuit is adjusted using the refrigerant quantity adjustment method for an air conditioner according to claim 8 or 9.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を外気との熱交換によって冷却して液化させる室外熱交換器と、該室外熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバを通過した冷媒を膨張させる冷房用膨張弁と、該冷房用膨張弁を通過した冷媒を室内雰囲気との熱交換によって加熱して気化させる室内熱交換器と、前記レシーバの底部から該レシーバ内の冷媒の一部を取り出して前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記レシーバから前記冷房用膨張弁に送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを有する冷媒回路に、
前記室内熱交換器を通過した冷媒の温度を測定する室内側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置と、
前記冷媒回路の前記圧縮機の上流側から前記冷媒を回収する冷媒回収装置と、
前記冷媒回路の前記冷房用膨張弁の上流側から前記冷媒回路に前記冷媒を供給する冷媒供給装置と、
前記冷房用膨張弁、前記過冷却用膨張弁、前記冷媒回収装置、及び前記冷媒供給装置の動作を、請求項8または9に記載の空気調和装置の冷媒量調整方法に基づいて制御して冷房運転時における前記冷媒回路内の冷媒量を調整する制御装置とを設けた空気調和装置。
A compressor that compresses the refrigerant; an outdoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with outside air; and a receiver that temporarily stores the refrigerant that has passed through the outdoor heat exchanger; A cooling expansion valve that expands the refrigerant that has passed through the receiver, an indoor heat exchanger that heats and vaporizes the refrigerant that has passed through the cooling expansion valve by heat exchange with the indoor atmosphere, and the bottom of the receiver A bypass flow path for taking out a part of the refrigerant in the receiver and supplying it to the upstream side of the compressor, a supercooling expansion valve for expanding the refrigerant supplied to the bypass flow path, and the cooling expansion from the receiver A refrigerant circuit having a supercooling heat exchanger that supercools the refrigerant sent to the valve by heat exchange with the refrigerant expanded by the supercooling expansion valve,
An indoor-side refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the indoor heat exchanger;
A low-pressure side refrigerant pressure measuring device that measures the pressure of the refrigerant supplied to the compressor;
A refrigerant recovery device for recovering the refrigerant from the upstream side of the compressor of the refrigerant circuit;
A refrigerant supply device for supplying the refrigerant to the refrigerant circuit from the upstream side of the cooling expansion valve of the refrigerant circuit;
The operations of the cooling expansion valve, the supercooling expansion valve, the refrigerant recovery device, and the refrigerant supply device are controlled based on the refrigerant amount adjustment method of the air conditioner according to claim 8 or 9, thereby cooling the air. An air conditioner provided with a control device that adjusts the amount of refrigerant in the refrigerant circuit during operation.
冷媒を圧縮する圧縮機と、該圧縮機が送出する冷媒を室内雰囲気との熱交換によって冷却して液化させる室内熱交換器と、該室内熱交換器を通過した冷媒を一時的に貯留するレシーバと、該レシーバの底部から取り出された冷媒を膨張させる暖房用膨張弁と、該暖房用膨張弁を通過した冷媒を外気との熱交換によって加熱して気化させる室外熱交換器と、前記室内熱交換器を通過した冷媒の一部を前記圧縮機の上流側に供給するバイパス流路と、該バイパス流路に供給された冷媒を膨張させる過冷却用膨張弁と、前記室内熱交換器から前記レシーバに送り込まれる冷媒を前記過冷却用膨張弁によって膨張された冷媒との熱交換によって過冷却する過冷却熱交換器とを有する冷媒回路に、
前記室外熱交換器を通過した冷媒の温度を測定する室外側冷媒温度測定装置と、
前記圧縮機に供給される冷媒の圧力を測定する低圧側冷媒圧力測定装置と、
前記冷媒回路の前記圧縮機の上流側から前記冷媒を回収する冷媒回収装置と、
前記冷媒回路の前記暖房用膨張弁の上流側から前記冷媒回路に前記冷媒を供給する冷媒供給装置と、
前記暖房用膨張弁、前記過冷却用膨張弁、前記冷媒回収装置、及び前記冷媒供給装置の動作を、請求項8または9に記載の空気調和装置の冷媒量調整方法に基づいて制御して暖房運転時における前記冷媒回路内の冷媒量を調整する制御装置とを設けた空気調和装置。
A compressor that compresses the refrigerant; an indoor heat exchanger that cools and liquefies the refrigerant delivered by the compressor by heat exchange with an indoor atmosphere; and a receiver that temporarily stores the refrigerant that has passed through the indoor heat exchanger A heating expansion valve that expands the refrigerant extracted from the bottom of the receiver, an outdoor heat exchanger that heats and vaporizes the refrigerant that has passed through the heating expansion valve by heat exchange with the outside air, and the indoor heat A bypass passage that supplies a part of the refrigerant that has passed through the exchanger to the upstream side of the compressor, an expansion valve for supercooling that expands the refrigerant supplied to the bypass passage, and the indoor heat exchanger In a refrigerant circuit having a supercooling heat exchanger that supercools the refrigerant sent to the receiver by heat exchange with the refrigerant expanded by the supercooling expansion valve,
An outdoor refrigerant temperature measuring device that measures the temperature of the refrigerant that has passed through the outdoor heat exchanger;
A low-pressure side refrigerant pressure measuring device that measures the pressure of the refrigerant supplied to the compressor;
A refrigerant recovery device for recovering the refrigerant from the upstream side of the compressor of the refrigerant circuit;
A refrigerant supply device for supplying the refrigerant to the refrigerant circuit from the upstream side of the heating expansion valve of the refrigerant circuit;
The operation of the expansion valve for heating, the expansion valve for supercooling, the refrigerant recovery device, and the refrigerant supply device is controlled and heated based on the refrigerant amount adjustment method of the air conditioner according to claim 8 or 9. An air conditioner provided with a control device that adjusts the amount of refrigerant in the refrigerant circuit during operation.
前記冷媒回路が、前記圧縮機に供給される冷媒を一時的に貯留するアキュームレータと、
前記アキュームレータの底部と前記圧縮機の上流部とを接続して前記アキュームレータ内の液体を前記圧縮機に供給する液戻し流路と、
前記液戻し流路を通過する液体の温度を測定する戻り液温度測定装置とを有し、
前記制御装置が、前記戻り液温度測定装置の測定値及び前記低圧側圧力測定装置の測定値に基づいて前記液戻し流路を流通する液体の過熱度を検出し、該液体に過熱度が生じたことをもって前記冷媒回路内の冷媒量の調整を開始する請求項11または12記載の空気調和装置。
An accumulator in which the refrigerant circuit temporarily stores the refrigerant supplied to the compressor;
A liquid return passage for connecting the bottom of the accumulator and the upstream part of the compressor to supply the liquid in the accumulator to the compressor;
A return liquid temperature measuring device for measuring the temperature of the liquid passing through the liquid return flow path,
The control device detects the degree of superheat of the liquid flowing through the liquid return channel based on the measurement value of the return liquid temperature measurement device and the measurement value of the low pressure side pressure measurement device, and the degree of superheat is generated in the liquid. The air conditioning apparatus according to claim 11 or 12, wherein the adjustment of the amount of refrigerant in the refrigerant circuit is started.
前記冷媒回路に対して、前記冷媒回収装置と前記冷媒供給装置とのうちの少なくともいずれか一方が着脱可能とされている請求項11から13のいずれかに記載の空気調和装置。   The air conditioning apparatus according to any one of claims 11 to 13, wherein at least one of the refrigerant recovery device and the refrigerant supply device is detachable from the refrigerant circuit.
JP2005047939A 2005-02-23 2005-02-23 Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system Withdrawn JP2006234239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047939A JP2006234239A (en) 2005-02-23 2005-02-23 Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047939A JP2006234239A (en) 2005-02-23 2005-02-23 Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system

Publications (1)

Publication Number Publication Date
JP2006234239A true JP2006234239A (en) 2006-09-07

Family

ID=37042098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047939A Withdrawn JP2006234239A (en) 2005-02-23 2005-02-23 Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system

Country Status (1)

Country Link
JP (1) JP2006234239A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163100A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
JP2010019439A (en) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp Refrigerating cycle device and operation method of refrigerating cycle device
US7813245B2 (en) 2005-09-30 2010-10-12 Yamaha Corporation Optical disk image forming device, optical disk image forming method and optical disk
US20100275626A1 (en) * 2007-12-28 2010-11-04 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
CN104676845A (en) * 2015-03-26 2015-06-03 广东美的暖通设备有限公司 Multi-split system and control method thereof
CN105333660A (en) * 2015-11-09 2016-02-17 南京天加空调设备有限公司 Method for protecting compressor of multi-split air conditioning system
WO2017010007A1 (en) * 2015-07-16 2017-01-19 三菱電機株式会社 Air conditioner
JPWO2017175299A1 (en) * 2016-04-05 2018-10-25 三菱電機株式会社 Refrigeration cycle equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813245B2 (en) 2005-09-30 2010-10-12 Yamaha Corporation Optical disk image forming device, optical disk image forming method and optical disk
JP2007163100A (en) * 2005-12-16 2007-06-28 Daikin Ind Ltd Air conditioner
US20100275626A1 (en) * 2007-12-28 2010-11-04 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
US8578725B2 (en) * 2007-12-28 2013-11-12 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
JP2010019439A (en) * 2008-07-08 2010-01-28 Mitsubishi Electric Corp Refrigerating cycle device and operation method of refrigerating cycle device
CN104676845A (en) * 2015-03-26 2015-06-03 广东美的暖通设备有限公司 Multi-split system and control method thereof
WO2017010007A1 (en) * 2015-07-16 2017-01-19 三菱電機株式会社 Air conditioner
CN105333660A (en) * 2015-11-09 2016-02-17 南京天加空调设备有限公司 Method for protecting compressor of multi-split air conditioning system
CN105333660B (en) * 2015-11-09 2018-02-06 南京天加空调设备有限公司 A kind of compressor protection method of multiple on-line system
JPWO2017175299A1 (en) * 2016-04-05 2018-10-25 三菱電機株式会社 Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
US9683768B2 (en) Air-conditioning apparatus
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
US7730729B2 (en) Refrigerating machine
EP3587948B1 (en) Air conditioner
EP1998124B1 (en) Air conditioner
EP2012079A1 (en) Air conditioner
US10724777B2 (en) Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
EP3059521A1 (en) Air conditioning device
JP6223469B2 (en) Air conditioner
JP2006234239A (en) Accumulator liquid refrigerant detecting method for air conditioning system, receiver liquid refrigerant detecting method, refrigerant amount adjusting method and air conditioning system
AU2009248466B2 (en) Refrigeration Apparatus
JP2006284035A (en) Air conditioner and its control method
WO2008032568A1 (en) Refrigeration device
JP2005282885A (en) Air conditioner
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
US10845098B2 (en) Air conditioner
KR20100096857A (en) Air conditioner
JP2006242506A (en) Thermal storage type air conditioner
JP2015102256A (en) Air conditioner
EP1970654A1 (en) Air conditioner
JP2008111585A (en) Air conditioner
KR20050017004A (en) Refrigeration equipment
KR20080043130A (en) Control metheod for airconditioner
JP2015135192A (en) Air conditioning device
JP6410935B2 (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513