JPH11118266A - Refrigerant circuit - Google Patents

Refrigerant circuit

Info

Publication number
JPH11118266A
JPH11118266A JP28840397A JP28840397A JPH11118266A JP H11118266 A JPH11118266 A JP H11118266A JP 28840397 A JP28840397 A JP 28840397A JP 28840397 A JP28840397 A JP 28840397A JP H11118266 A JPH11118266 A JP H11118266A
Authority
JP
Japan
Prior art keywords
heat exchanger
expansion valve
supercooling
compressor
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28840397A
Other languages
Japanese (ja)
Other versions
JP4035871B2 (en
Inventor
Takeo Ueno
武夫 植野
Masaki Yamamoto
政樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP28840397A priority Critical patent/JP4035871B2/en
Publication of JPH11118266A publication Critical patent/JPH11118266A/en
Application granted granted Critical
Publication of JP4035871B2 publication Critical patent/JP4035871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant circuit that can prevent liquid from being sealed and returned and can improve reliability. SOLUTION: A refrigerant circuit introduces a liquid refrigerant sealed on the downstream side of a main expansion valve 10 on shipment by a capillary 20 for connecting the upper part 8A of a receiver 8 to the downstream side of the main inflation valve 10, and prevents the refrigerant from being sealed. Also, a supercooling circuit 30 branches from the downstream side of the main expansion valve 10, thus introducing a gaseous refrigerant expanded by the main expansion valve to the supercooling circuit 30 and preventing a liquid from being transiently returned to a compressor 5 from the supercooling circuit 30 on activation and stop where the supercooling cannot be performed easily. Furthermore, a gas refrigerant is supplied to an intake side 5A of the compressor 5 from the upper part 8A of the receiver via a connection capillary 20 and the supercooling circuit 30, thus preventing the gas shortage of the compressor 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷媒回路に関す
る。
[0001] The present invention relates to a refrigerant circuit.

【0002】[0002]

【従来の技術】従来、冷媒回路としては、図4に示すも
のがある。この冷媒回路は、室内熱交換器101,閉鎖
弁106,圧縮機102,室外熱交換器103,レシー
バ104,主膨張弁105,閉鎖弁107が順に接続さ
れた主回路を備えている。また、この冷媒回路は、レシ
ーバ104と主膨張弁105との間を流れる冷媒を過冷
却する過冷却熱交換器108を備えた過冷却回路110
を有している。この過冷却回路110は、主膨張弁10
5の上流から分岐して、過冷却膨張弁112,過冷却熱
交換器108を経由して圧縮機102の吸入側に接続さ
れている。
2. Description of the Related Art FIG. 4 shows a conventional refrigerant circuit. The refrigerant circuit includes a main circuit in which an indoor heat exchanger 101, a closing valve 106, a compressor 102, an outdoor heat exchanger 103, a receiver 104, a main expansion valve 105, and a closing valve 107 are sequentially connected. Further, the refrigerant circuit includes a subcooling circuit 110 including a subcooling heat exchanger 108 for supercooling the refrigerant flowing between the receiver 104 and the main expansion valve 105.
have. This subcooling circuit 110 is provided with the main expansion valve 10.
5 and is connected to the suction side of the compressor 102 via a subcooling expansion valve 112 and a subcooling heat exchanger 108.

【0003】この冷媒回路は、レシーバ104から室内
熱交換器101に向かう冷媒を、上記過冷却熱交換器1
08で過冷却することによって、冷房能力の向上を図っ
ている。
[0003] The refrigerant circuit transfers the refrigerant flowing from the receiver 104 to the indoor heat exchanger 101 through the subcooling heat exchanger 1.
08, the cooling capacity is improved.

【0004】[0004]

【発明が解決しようとする課題】ところで、一般に、こ
のような冷媒回路を備えた冷凍機あるいは空気調和機
は、出荷時には、閉鎖弁106,107が閉鎖されてい
て、主膨張弁105も閉まっている。このため、出荷か
ら据付けて運転するまでの期間に、閉鎖弁107と主膨
張弁105との間の冷媒配管において冷媒が液封状態に
なり、異常な圧力上昇を招く恐れがあるという問題があ
る。
Generally, in a refrigerator or an air conditioner provided with such a refrigerant circuit, when shipped, the closing valves 106 and 107 are closed and the main expansion valve 105 is also closed. I have. For this reason, during the period from shipping to installation and operation, there is a problem that the refrigerant is in a liquid-sealed state in the refrigerant pipe between the closing valve 107 and the main expansion valve 105, which may cause an abnormal increase in pressure. .

【0005】また、上記冷媒回路では、起動時に、レシ
ーバ104から過冷却回路110を経由して圧縮機10
2に液冷媒が導入される液バック現象で圧縮機102を
傷める恐れがある。
[0005] In the above-described refrigerant circuit, at the time of start-up, the compressor 104 is supplied from the receiver 104 via the subcooling circuit 110.
There is a possibility that the compressor 102 may be damaged due to the liquid back phenomenon in which the liquid refrigerant is introduced into the compressor 102.

【0006】そこで、この発明の目的は、液封や液バッ
クを防止でき、信頼性の向上を図れる冷媒回路を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refrigerant circuit which can prevent liquid sealing and liquid back and improve reliability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の冷媒回路は、室内熱交換器,圧縮
機,室外熱交換器,レシーバ,主膨張弁を接続する冷媒
回路であって、上記レシーバの上部と上記主膨張弁の下
流側とを連結するキャピラリを備えたことを特徴として
いる。
According to a first aspect of the present invention, there is provided a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve. And a capillary that connects an upper part of the receiver and a downstream side of the main expansion valve.

【0008】この請求項1の冷媒回路では、上記キャピ
ラリがレシーバの上部と主膨張弁の下流側とを連絡する
から、出荷時等において主膨張弁の下流側回路に封じら
れた液冷媒を上記キャピラリから上記レシーバの上部の
気相空間に導入することができる。したがって、主膨張
弁の下流で液封が発生することを防いで、信頼性を向上
できる。
In the refrigerant circuit of the first aspect, the capillary communicates the upper portion of the receiver with the downstream side of the main expansion valve. It can be introduced from the capillary into the vapor space above the receiver. Therefore, it is possible to prevent the occurrence of liquid seal downstream of the main expansion valve, and to improve reliability.

【0009】また、請求項2の冷媒回路は、室内熱交換
器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続
する冷媒回路であって、上記レシーバから上記主膨張弁
に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交
換器の上流側に接続された過冷却膨張弁とを有した過冷
却回路が、上記主膨張弁の下流側から分岐して上記圧縮
機の吸入側に接続されていることを特徴としている。
The refrigerant circuit of the present invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein the refrigerant flows from the receiver to the main expansion valve. A supercooling circuit having a supercooling heat exchanger for cooling the compressor and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger branches from the downstream side of the main expansion valve and suctions the compressor. Side.

【0010】この請求項2の発明では、上記過冷却回路
が主膨張弁の下流から分岐しているから、気相冷媒を過
冷却回路に導入できる。したがって、過冷却し難い起動
時や停止時に上記過冷却回路から圧縮機への過渡的な液
バックを防止でき、圧縮機の信頼性を向上できる。
According to the second aspect of the present invention, since the subcooling circuit branches off from the downstream side of the main expansion valve, the gaseous refrigerant can be introduced into the subcooling circuit. Therefore, at the time of starting or stopping when it is difficult to supercool, a transient liquid back from the supercooling circuit to the compressor can be prevented, and the reliability of the compressor can be improved.

【0011】また、請求項3の冷媒回路は、室内熱交換
器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続
する冷媒回路であって、上記レシーバの上部と上記主膨
張弁の下流側とを連結するキャピラリを備え、上記レシ
ーバから上記主膨張弁に流れる冷媒を冷やす過冷却熱交
換器とこの過冷却熱交換器の上流側に接続された過冷却
膨張弁とを有した過冷却回路が、上記主膨張弁の下流側
から分岐して上記圧縮機の吸入側に接続されていること
を特徴としている。
The refrigerant circuit of claim 3 is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein the upper part of the receiver and the main expansion valve are connected. A supercooling heat exchanger for cooling the refrigerant flowing from the receiver to the main expansion valve, and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger. A cooling circuit is branched from a downstream side of the main expansion valve and connected to a suction side of the compressor.

【0012】この請求項3の発明では、上記キャピラリ
がレシーバの上部と主膨張弁の下流側とを連絡するか
ら、出荷時等において主膨張弁の下流側回路に封じられ
た液冷媒を上記キャピラリから上記レシーバの上部の気
相空間に導入することができる。したがって、主膨張弁
の下流で液封が発生することを防いで、信頼性を向上で
きる。
According to the third aspect of the present invention, since the capillary communicates the upper portion of the receiver with the downstream side of the main expansion valve, the liquid refrigerant sealed in the downstream circuit of the main expansion valve at the time of shipping or the like is supplied to the capillary. Can be introduced into the gas phase space above the receiver. Therefore, it is possible to prevent the occurrence of liquid seal downstream of the main expansion valve, and to improve reliability.

【0013】また、上記過冷却回路が主膨張弁の下流か
ら分岐しているから、気相冷媒を過冷却回路に導入し
て、過冷却し難い起動時や停止時に過冷却回路から圧縮
機への過渡的な液バックを防止でき、圧縮機の信頼性を
向上できる。
Further, since the subcooling circuit branches off from the downstream of the main expansion valve, the gaseous refrigerant is introduced into the subcooling circuit, and when starting or stopping when it is difficult to perform subcooling, the subcooling circuit sends the refrigerant to the compressor. Transient liquid back can be prevented, and the reliability of the compressor can be improved.

【0014】さらには、上記キャピラリと上記過冷却回
路を経由して、上記レシーバ上部から上記圧縮機の吸入
側にガス冷媒を供給できるから、圧縮機のガス欠を防止
でき、信頼性を向上できる。
Further, gas refrigerant can be supplied from the upper portion of the receiver to the suction side of the compressor via the capillary and the supercooling circuit, so that the compressor can be prevented from running out of gas and reliability can be improved. .

【0015】また、請求項4の発明は、請求項1乃至3
のいずれか1つに記載の冷媒回路において、上記圧縮機
の吐出側を室外熱交換器に接続し、上記圧縮機の吸入側
を室内熱交換器に接続する冷房位置と、上記圧縮機の吐
出側を室内熱交換器に接続し、上記圧縮機の吸入側を室
外熱交換器に接続する暖房位置とに切り替えられる四路
切換弁と、上記室内熱交換器からの冷媒を上記レシーバ
に導き、上記レシーバ,主膨張弁を経由した冷媒を上記
室外熱交換器に導く一方、上記室外熱交換器からの冷媒
を上記レシーバに導き、上記レシーバ,主膨張弁を経由
した冷媒を上記室内熱交換器に導く整流回路とを備えた
ことを特徴としている。
[0015] The invention of claim 4 is the invention of claims 1 to 3
In the refrigerant circuit according to any one of the above, a discharge position of the compressor is connected to an outdoor heat exchanger, and a suction position of the compressor is connected to an indoor heat exchanger. Side to the indoor heat exchanger, a four-way switching valve that can be switched to a heating position to connect the suction side of the compressor to the outdoor heat exchanger, and the refrigerant from the indoor heat exchanger to the receiver, The refrigerant that has passed through the receiver and the main expansion valve is guided to the outdoor heat exchanger, while the refrigerant from the outdoor heat exchanger is guided to the receiver, and the refrigerant that has passed through the receiver and the main expansion valve is transmitted to the indoor heat exchanger. And a rectifier circuit that leads to

【0016】この請求項4の発明では、上記四路切換弁
を冷房位置にすれば、冷媒を圧縮機から室外熱交換器,
整流回路,レシーバ,主膨張弁,室内熱交換器の順に流
して、冷房を行える一方、上記四路切換弁を暖房位置に
すれば、冷媒を圧縮機から室内熱交換器,整流回路,レ
シーバ,主膨張弁,室外熱交換器の順に流して、暖房を
行える。また、上記冷房時,暖房時の両方において、上
記過冷却回路を働かせて、過冷却による能力向上を図れ
る。
According to the fourth aspect of the present invention, when the four-way switching valve is set to the cooling position, the refrigerant flows from the compressor to the outdoor heat exchanger,
Cooling can be performed by flowing the rectifier circuit, the receiver, the main expansion valve, and the indoor heat exchanger in this order. On the other hand, if the four-way switching valve is set to the heating position, the refrigerant flows from the compressor to the indoor heat exchanger, the rectifier circuit, the receiver, Heating can be performed by flowing in the order of the main expansion valve and the outdoor heat exchanger. In addition, in both the cooling and the heating, the subcooling circuit is operated to improve the performance by the supercooling.

【0017】また、請求項5の発明は、請求項1乃至4
のいずれか1つに記載の冷媒回路において、上記過冷却
膨張弁は、上記過冷却熱交換器の出口での過冷却回路の
温度に応じて開度が変化する感温筒式膨張弁であること
を特徴としている。
Further, the invention of claim 5 provides the invention according to claims 1 to 4
In the refrigerant circuit according to any one of the above, the supercooling expansion valve is a temperature-sensitive cylinder type expansion valve whose opening degree changes according to the temperature of the supercooling circuit at the outlet of the supercooling heat exchanger. It is characterized by:

【0018】この請求項5の発明では、上記感温筒式膨
張弁でもって、過冷却熱交換器の出口での冷媒温度の高
低に応じて、過冷却膨張弁の開度を大小に調節して、過
冷却度を所定の値に維持できる。
According to the fifth aspect of the present invention, the degree of opening of the subcooling expansion valve is adjusted by the temperature-sensitive cylinder type expansion valve according to the refrigerant temperature at the outlet of the subcooling heat exchanger. Thus, the degree of supercooling can be maintained at a predetermined value.

【0019】また、請求項6の発明は、室内熱交換器,
圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する
冷媒回路であって、上記圧縮機の吐出側を室外熱交換器
に接続し、上記圧縮機の吸入側を室内熱交換器に接続す
る冷房位置と、上記圧縮機の吐出側を室内熱交換器に接
続し、上記圧縮機の吸入側を室外熱交換器に接続する暖
房位置とに切り替えられる四路切換弁と、上記室内熱交
換器に第2端が接続され、上記レシーバ上部の所定箇所
に第3端が接続され、上記レシーバ上部の別の箇所に第
4端が接続され、上記室外熱交換器に第5端が接続さ
れ、上記主膨張弁に第1端が接続されており、上記第2
端と第3端との間に接続されたキャピラリと、上記第4
端と第5端との間に接続されたキャピラリと、上記第5
端と第1端との間に上記第1端から上記第5端に向かっ
て順方向に接続された逆止弁と、上記第1端と上記第2
端との間に上記第1端から第2端に向かって順方向に接
続された逆止弁とを有する整流回路と、上記主膨張弁の
下流側から分岐して上記圧縮機の吸入側に接続されてい
て、上記レシーバから上記主膨張弁に流れる冷媒を冷や
す過冷却熱交換器とこの過冷却熱交換器の下流側に接続
された過冷却膨張弁とを有した過冷却回路とを備えたこ
とを特徴としている。
The invention according to claim 6 is an indoor heat exchanger,
A refrigerant circuit for connecting a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein a discharge side of the compressor is connected to an outdoor heat exchanger, and a suction side of the compressor is connected to an indoor heat exchanger. A four-way switching valve that is switched to a cooling position, a heating position where the discharge side of the compressor is connected to an indoor heat exchanger, and a suction side of the compressor is connected to an outdoor heat exchanger, and the indoor heat exchange. A second end is connected to the receiver, a third end is connected to a predetermined portion of the upper portion of the receiver, a fourth end is connected to another portion of the upper portion of the receiver, and a fifth end is connected to the outdoor heat exchanger. A first end connected to the main expansion valve, and a second end connected to the second expansion valve;
A capillary connected between the end and the third end;
A capillary connected between the end and the fifth end;
A check valve connected between the first end and the first end in a forward direction from the first end to the fifth end; and a check valve connected to the first end and the second end.
A rectifier circuit having a check valve connected in a forward direction from the first end to the second end between the first and second ends; and a rectifying circuit branched from a downstream side of the main expansion valve to a suction side of the compressor. A supercooling circuit that is connected and has a supercooling heat exchanger that cools the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected downstream of the supercooling heat exchanger. It is characterized by that.

【0020】この請求項6の発明では、上記四路切換弁
を冷房位置にすれば、順に、圧縮機,室外熱交換器,第
5端,キャピラリ,第4端,レシーバ上部,主膨張弁,
第1端,逆止弁,第2端,室内熱交換器に冷媒を流し
て、冷房を行える。一方、上記四路切換弁を暖房位置に
すれば、順に、圧縮機,室内熱交換器,第2端,キャピ
ラリ,レシーバ上部,主膨張弁,第1端,逆止弁,第5
端,室外熱交換器に冷媒を流して暖房を行える。
According to the sixth aspect of the present invention, if the four-way switching valve is set to the cooling position, the compressor, the outdoor heat exchanger, the fifth end, the capillary, the fourth end, the receiver upper part, the main expansion valve,
Cooling can be performed by flowing a refrigerant through the first end, the check valve, the second end, and the indoor heat exchanger. On the other hand, if the four-way switching valve is set to the heating position, the compressor, the indoor heat exchanger, the second end, the capillary, the receiver upper part, the main expansion valve, the first end, the check valve, and the fifth
At the end, heating can be performed by flowing a refrigerant through the outdoor heat exchanger.

【0021】ここで、上記第2端と第3端との間のキャ
ピラリと第4端と第5端との間のキャピラリとはレシー
バ上部に接続されているので、一方のキャピラリと他方
のキャピラリとの間には気相冷媒が存在していて両者間
の圧損は液相の圧損に比べて数十倍になる。したがっ
て、上記一方のキャピラリから他方のキャピラリに流れ
る冷媒は、上記一方のキャピラリからレシーバを経て主
膨張弁に流れる冷媒に比べて非常に少なくなる。
Here, since the capillary between the second end and the third end and the capillary between the fourth and fifth ends are connected to the upper part of the receiver, one capillary and the other capillary are connected. And the pressure loss between them is several tens of times greater than the pressure loss of the liquid phase. Therefore, the amount of refrigerant flowing from the one capillary to the other capillary is much smaller than the amount of refrigerant flowing from the one capillary to the main expansion valve via the receiver.

【0022】また、上記請求項6の発明によれば、出荷
時等に上記主膨張弁が閉じられていたときにも、上記2
つのキャピラリが、室内熱交換器と主膨張弁との間の冷
媒回路をレシーバ上部,室外熱交換器に連通させるか
ら、液封を防いで故障を防ぎ、信頼性を高めることがで
きる。
According to the sixth aspect of the present invention, even when the main expansion valve is closed at the time of shipping or the like, the above-mentioned 2nd expansion valve can be used.
The two capillaries allow the refrigerant circuit between the indoor heat exchanger and the main expansion valve to communicate with the upper part of the receiver and the outdoor heat exchanger, so that liquid sealing is prevented, failure is prevented, and reliability can be improved.

【0023】さらには、上記過冷却回路を主膨張弁の下
流から分岐させたから、主膨張弁で膨張させた冷媒を過
冷却回路に導いて、この過冷却回路から圧縮機への液バ
ックを招くことなく、過冷却を行い、信頼性および能力
を向上できる。
Further, since the subcooling circuit is branched from the downstream side of the main expansion valve, the refrigerant expanded by the main expansion valve is guided to the subcooling circuit, and the liquid from the subcooling circuit to the compressor is caused. Without supercooling, reliability and performance can be improved.

【0024】また、請求項7の発明は、室内熱交換器,
圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する
冷媒回路であって、上記圧縮機の吐出側を室外熱交換器
に接続し、上記圧縮機の吸入側を室内熱交換器に接続す
る冷房位置と、上記圧縮機の吐出側を室内熱交換器に接
続し、上記圧縮機の吸入側を室外熱交換器に接続する暖
房位置とに切り替えられる四路切換弁と、上記室内熱交
換器に第2端が接続され、上記レシーバ上部の所定箇所
に第3端が接続され、上記レシーバ上部の別の箇所に第
4端が接続され、上記室外熱交換器に第5端が接続さ
れ、上記主膨張弁に第1端が接続されており、上記第2
端と第3端との間に接続されたキャピラリと、上記第4
端と第5端との間に接続されたキャピラリと、上記第5
端と第1端との間に上記第1端から上記第5端に向かっ
て順方向に接続された逆止弁と、上記第1端と上記第2
端との間に上記第1端から第2端に向かって順方向に接
続された逆止弁とを有する整流回路と、上記主膨張弁の
上流側から分岐して上記圧縮機の吸入側に接続されてい
て、上記レシーバから上記主膨張弁に流れる冷媒を冷や
す過冷却熱交換器とこの過冷却熱交換器の上流側に接続
された過冷却膨張弁とを有した過冷却回路とを備えたこ
とを特徴としている。
The invention according to claim 7 is an indoor heat exchanger,
A refrigerant circuit for connecting a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein a discharge side of the compressor is connected to an outdoor heat exchanger, and a suction side of the compressor is connected to an indoor heat exchanger. A four-way switching valve that is switched to a cooling position, a heating position where the discharge side of the compressor is connected to an indoor heat exchanger, and a suction side of the compressor is connected to an outdoor heat exchanger, and the indoor heat exchange. A second end is connected to the receiver, a third end is connected to a predetermined portion of the upper portion of the receiver, a fourth end is connected to another portion of the upper portion of the receiver, and a fifth end is connected to the outdoor heat exchanger. A first end connected to the main expansion valve, and a second end connected to the second expansion valve;
A capillary connected between the end and the third end;
A capillary connected between the end and the fifth end;
A check valve connected between the first end and the first end in a forward direction from the first end to the fifth end; and a check valve connected to the first end and the second end.
A rectifier circuit having a check valve connected in a forward direction from the first end to the second end between the first and second ends; and a rectifying circuit branched from an upstream side of the main expansion valve to a suction side of the compressor. A supercooling circuit having a supercooling heat exchanger connected to and cooling the refrigerant flowing from the receiver to the main expansion valve and a supercooling expansion valve connected upstream of the supercooling heat exchanger. It is characterized by that.

【0025】この請求項7の発明は、上記四路切換弁と
上記キャピラリを含んだ整流回路でもって、冷房と暖房
の両方を行え、かつ、冷房,暖房の両方において過冷却
回路を働かせて、能力を向上できる点は上記請求項6の
発明と同じである。
According to a seventh aspect of the present invention, a rectifying circuit including the four-way switching valve and the capillary can perform both cooling and heating, and operate a supercooling circuit in both cooling and heating. The point that the capability can be improved is the same as the above-mentioned invention of claim 6.

【0026】この請求項7の発明が、請求項6の発明と
異なる点は、上記過冷却回路が主膨張弁の上流側から分
岐している点である。これにより、主膨張弁の開度変化
が過冷却回路の過冷却度に影響を与えることを抑制で
き、制御性が良くなる。また、請求項8の発明は、請求
項6または7に記載の冷媒回路において、上記レシーバ
上部と上記過冷却熱交換器の下流側とを連絡する連絡キ
ャピラリを備えたことを特徴としている。
The seventh aspect of the present invention differs from the sixth aspect of the present invention in that the supercooling circuit branches off from the upstream side of the main expansion valve. Thereby, it is possible to suppress the change in the opening degree of the main expansion valve from affecting the degree of subcooling of the subcooling circuit, and controllability is improved. An eighth aspect of the present invention is the refrigerant circuit according to the sixth or seventh aspect, further comprising a communication capillary that communicates the upper portion of the receiver with a downstream side of the subcooling heat exchanger.

【0027】この請求項8の発明によれば、上記連絡キ
ャピラリによって、上記レシーバ上部のガス冷媒を上記
過冷却熱交換器の下流側に導入できるから、圧縮機への
液バックを抑えることができる。
According to the eighth aspect of the present invention, since the gas refrigerant in the upper portion of the receiver can be introduced downstream of the supercooling heat exchanger by the communication capillary, liquid back to the compressor can be suppressed. .

【0028】また、請求項9の発明は、室内熱交換器,
圧縮機,室外熱交換器,レシーバ,主膨張弁を接続する
冷媒回路であって、上記レシーバの上部と上記主膨張弁
の下流側とを連結するキャピラリを備え、上記レシーバ
から上記主膨張弁に流れる冷媒を冷やす過冷却熱交換器
とこの過冷却熱交換器の上流側に接続された過冷却膨張
弁とを有した過冷却回路が、上記主膨張弁の上流側から
分岐して上記圧縮機の吸入側に接続されていることを特
徴としている。
The ninth aspect of the present invention provides an indoor heat exchanger,
A refrigerant circuit that connects a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, the refrigerant circuit including a capillary that connects an upper portion of the receiver and a downstream side of the main expansion valve, from the receiver to the main expansion valve. A supercooling circuit having a supercooling heat exchanger for cooling the flowing refrigerant and a supercooling expansion valve connected to the upstream side of the supercooling heat exchanger branches from the upstream side of the main expansion valve and the compressor It is characterized in that it is connected to the suction side.

【0029】この請求項9の発明では、上記キャピラリ
でもって、レシーバの上部を主膨張弁の下流側に連通さ
せることによって、出荷時等において、主膨張弁の下流
側回路に封じられた液冷媒を上記キャピラリから上記レ
シーバの上部の気相空間に導入することができる。した
がって、主膨張弁の下流で液封が発生することを防い
で、信頼性を向上できる。また、上記過冷却回路が主膨
張弁の上流側から分岐しているから、主膨張弁の開度変
化が過冷却回路の過冷却度に影響を与えることを抑制で
き、制御性が良くなる。
According to the ninth aspect of the present invention, the upper portion of the receiver is communicated with the downstream side of the main expansion valve by the capillary so that the liquid refrigerant sealed in the downstream circuit of the main expansion valve at the time of shipping or the like. Can be introduced from the capillary into the gas phase space above the receiver. Therefore, it is possible to prevent the occurrence of liquid seal downstream of the main expansion valve, and to improve reliability. Further, since the subcooling circuit branches off from the upstream side of the main expansion valve, it is possible to suppress a change in the opening degree of the main expansion valve from affecting the degree of supercooling of the subcooling circuit, thereby improving controllability.

【0030】また、請求項10の発明は、室内熱交換
器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続
する冷媒回路であって、上記レシーバから上記主膨張弁
に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交
換器の上流側に接続された過冷却膨張弁とを有した過冷
却回路が、上記主膨張弁の上流側から分岐して上記圧縮
機の吸入側に接続されていて、上記レシーバの上部を、
上記過冷却膨張弁と上記過冷却熱交換器との間に連結す
る連絡キャピラリとを備えたことを特徴としている。
A tenth aspect of the present invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein refrigerant flowing from the receiver to the main expansion valve is provided. A supercooling circuit having a supercooling heat exchanger for cooling and a supercooling expansion valve connected to an upstream side of the supercooling heat exchanger is branched from an upstream side of the main expansion valve to a suction side of the compressor. And the top of the above receiver,
A communication capillary connected between the supercooling expansion valve and the supercooling heat exchanger is provided.

【0031】この請求項10の発明では、上記連絡キャ
ピラリから過冷却膨張弁の下流にガス冷媒を導入して、
過冷却熱交換し難い起動時や停止時に過冷却回路から圧
縮機へ液バックすることを防止できる。
According to the tenth aspect of the present invention, a gas refrigerant is introduced from the communication capillary downstream of the supercooling expansion valve.
It is possible to prevent the liquid from flowing back from the supercooling circuit to the compressor at the time of starting or stopping when it is difficult to exchange supercooling heat.

【0032】また、請求項11の発明は、室内熱交換
器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続
する冷媒回路であって、上記レシーバから上記主膨張弁
に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交
換器の上流側に接続された過冷却膨張弁とを有した過冷
却回路が、上記主膨張弁の下流側から分岐して上記圧縮
機の吸入側に接続されていて、上記レシーバの上部を、
上記過冷却膨張弁と上記過冷却熱交換器との間に連結す
る連絡キャピラリとを備えたことを特徴としている。
An eleventh aspect of the present invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein the refrigerant flowing from the receiver to the main expansion valve is connected to the refrigerant circuit. A supercooling circuit having a supercooling heat exchanger for cooling and a supercooling expansion valve connected to an upstream side of the supercooling heat exchanger branches from a downstream side of the main expansion valve to a suction side of the compressor. And the top of the above receiver,
A communication capillary connected between the supercooling expansion valve and the supercooling heat exchanger is provided.

【0033】この請求項11の発明では、上記過冷却回
路が主膨張弁の下流側で分岐していることによって、過
冷却回路による過冷却の増大を図って、能力の向上を図
れる。
In the eleventh aspect of the present invention, since the subcooling circuit branches off downstream of the main expansion valve, the supercooling circuit can increase the supercooling and improve the capacity.

【0034】また、この請求項11の発明では、前記し
た請求項10と同様に、上記連絡キャピラリから過冷却
膨張弁の下流にガス冷媒を導入して、過冷却熱交換し難
い起動時や停止時に過冷却回路から圧縮機へ液バックす
ることを防止でき、圧縮機の信頼性を向上できる。
According to the eleventh aspect of the present invention, similarly to the tenth aspect, a gas refrigerant is introduced from the communication capillary downstream of the supercooling expansion valve so as to start and stop when it is difficult to exchange supercooling heat. At times, liquid back from the supercooling circuit to the compressor can be prevented, and the reliability of the compressor can be improved.

【0035】また、請求項12の発明は、室内熱交換
器,圧縮機,室外熱交換器,レシーバ,主膨張弁を接続
する冷媒回路であって、上記レシーバから上記主膨張弁
に流れる冷媒を冷やす過冷却熱交換器とこの過冷却熱交
換器の上流側に接続された過冷却膨張弁とを有した過冷
却回路が、上記主膨張弁の下流側から分岐して上記圧縮
機の吸入側に接続されていて、上記レシーバの上部を、
上記過冷却熱交換器の下流側に連結する連絡キャピラリ
を備えたことを特徴としている。
A twelfth aspect of the present invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve, wherein refrigerant flows from the receiver to the main expansion valve. A supercooling circuit having a supercooling heat exchanger for cooling and a supercooling expansion valve connected to an upstream side of the supercooling heat exchanger branches from a downstream side of the main expansion valve to a suction side of the compressor. And the top of the above receiver,
A communication capillary connected to the downstream side of the supercooling heat exchanger is provided.

【0036】この請求項12の発明では、過冷却回路が
主膨張弁の下流側から分岐しているから、過冷却回路に
よる過冷却の増大を図って、能力の向上を図れる。ま
た、上記連絡キャピラリによって、上記レシーバ上部の
ガス冷媒を上記過冷却熱交換器の下流側に導入できるか
ら、圧縮機への液バックを抑えることができる。
In the twelfth aspect of the present invention, since the subcooling circuit branches off from the downstream side of the main expansion valve, the supercooling circuit can increase the supercooling and improve the capacity. Further, the gas capillary in the upper part of the receiver can be introduced to the downstream side of the subcooling heat exchanger by the communication capillary, so that liquid back to the compressor can be suppressed.

【0037】[0037]

【発明の実施の形態】以下、この発明を図示の実施の形
態により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

【0038】〔第1実施形態〕図1に、この発明の冷媒
回路の第1実施形態を示す。この実施の形態は、室内熱
交換器1,閉鎖弁2,四路切換弁3,圧縮機5,室外熱
交換器6,ブリッジ整流回路7,レシーバ8,主膨張弁
10,閉鎖弁11を備えている。上記閉鎖弁2は、室内
熱交換器1と四路切換弁3との間に接続されている。ま
た、上記室外熱交換器6は、上記四路切換弁3とブリッ
ジ整流回路7との間に接続されている。また、上記閉鎖
弁11はブリッジ整流回路7と室内熱交換器1との間に
接続されている。
[First Embodiment] FIG. 1 shows a first embodiment of a refrigerant circuit according to the present invention. This embodiment includes an indoor heat exchanger 1, a closing valve 2, a four-way switching valve 3, a compressor 5, an outdoor heat exchanger 6, a bridge rectifier circuit 7, a receiver 8, a main expansion valve 10, and a closing valve 11. ing. The closing valve 2 is connected between the indoor heat exchanger 1 and the four-way switching valve 3. Further, the outdoor heat exchanger 6 is connected between the four-way switching valve 3 and the bridge rectifier circuit 7. The closing valve 11 is connected between the bridge rectifier circuit 7 and the indoor heat exchanger 1.

【0039】そして、上記圧縮機5は、吸入側5Aが四
路切換弁3の第1端3Aに接続されており、吐出側5B
が四路切換弁3の第3端3Cに接続されている。また、
上記レシーバ8は、その上部8Aが上記ブリッジ整流回
路7の第3端7Cに接続されており、その底部8Bが過
冷却熱交換器15の被冷却配管15Aに接続されてい
る。この被冷却配管15Aは、主膨張弁10に接続され
ている。また、この主膨張弁10は、ブリッジ整流回路
7の第1端7Aに接続されている。そして、この主膨張
弁10と上記第1端7Aとの接続配管17と上記レシー
バ8の上部8Aとの間には連絡キャピラリ20が接続さ
れている。また、上記接続配管17には、過冷却用の感
温筒式膨張弁21が接続され、この膨張弁21は過冷却
熱交換器15の冷却配管15Bに接続されている。そし
て、この冷却配管15Bは、圧縮機5の吸入側5Aに接
続されている。上記過冷却熱交換器15と感温筒式膨張
弁21とが過冷却回路30を構成している。
The compressor 5 has a suction side 5A connected to a first end 3A of the four-way switching valve 3, and a discharge side 5B.
Is connected to the third end 3 </ b> C of the four-way switching valve 3. Also,
The receiver 8 has an upper portion 8A connected to the third end 7C of the bridge rectifier circuit 7, and a lower portion 8B connected to a cooled pipe 15A of the subcooling heat exchanger 15. This cooled pipe 15 </ b> A is connected to the main expansion valve 10. The main expansion valve 10 is connected to the first end 7A of the bridge rectifier circuit 7. A connection capillary 20 is connected between a connection pipe 17 between the main expansion valve 10 and the first end 7A and an upper portion 8A of the receiver 8. The connection pipe 17 is connected to a temperature-sensitive cylindrical expansion valve 21 for supercooling, and the expansion valve 21 is connected to a cooling pipe 15B of the supercooling heat exchanger 15. The cooling pipe 15B is connected to the suction side 5A of the compressor 5. The supercooling heat exchanger 15 and the temperature-sensitive cylinder type expansion valve 21 constitute a supercooling circuit 30.

【0040】上記ブリッジ整流回路7は、その第1端7
Aから第2端7Bに向かって順方向の逆止弁25と、第
2端7Bから第3端7Cに向かって順方向の逆止弁26
と、第3端7Cから第4端7Dに向かって逆方向の逆止
弁27と、第4端7Dから第1端7Aに向かって逆方向
の逆止弁28とで構成されている。
The bridge rectifier circuit 7 has a first end 7.
A, a check valve 25 in a forward direction from the second end 7B to the second end 7B;
Check valve 26 in forward direction from second end 7B to third end 7C
And a check valve 27 in the reverse direction from the third end 7C to the fourth end 7D, and a check valve 28 in the reverse direction from the fourth end 7D to the first end 7A.

【0041】上記構成の冷媒回路によれば、上記四路切
換弁3が図1の実線経路を形成しているときには、冷房
動作を行う。すなわち、圧縮機5が吐出した冷媒は、四
路切換弁3を経由して室外熱交換器6に送出され、この
室外熱交換器6で放熱する。次に、上記室外熱交換器6
で冷やされた冷媒は、ブリッジ整流回路7の第4端7D
から逆止弁27に流入し、第3端7Cからレシーバ8の
上部8Aに流入する。そして、このレシーバ8を経て液
相となった冷媒は、過冷却熱交換器15の被冷却配管1
5Aに流入して、冷却配管15Bを流れる冷えた冷媒に
よってさらに冷やされて過冷却される。次に、この過冷
却された冷媒は、主膨張弁10で膨張してから、接続配
管17の分岐点17Aで、ブリッジ整流回路7の第1端
7Aに向かうメイン流と過冷却用の感温筒式膨張弁21
に向かう過冷却流とに分岐する。この過冷却流は、上記
感温筒式膨張弁21で膨張されてから過冷却熱交換器1
5の冷却配管15Bに流入して、被冷却配管15Aを流
れる冷媒から熱を奪ってから、圧縮機5の吸入側5Aに
流入する。
According to the refrigerant circuit having the above-described configuration, when the four-way switching valve 3 forms the solid line path in FIG. 1, the cooling operation is performed. That is, the refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 6 via the four-way switching valve 3 and radiates heat in the outdoor heat exchanger 6. Next, the outdoor heat exchanger 6
The refrigerant cooled at the fourth end 7D of the bridge rectification circuit 7
From the third end 7C into the upper portion 8A of the receiver 8. The refrigerant that has become a liquid phase through the receiver 8 is connected to the cooled pipe 1 of the subcooling heat exchanger 15.
5A, and further cooled by the cooled refrigerant flowing through the cooling pipe 15B to be supercooled. Next, after the supercooled refrigerant is expanded by the main expansion valve 10, the main flow toward the first end 7 </ b> A of the bridge rectifier circuit 7 at the branch point 17 </ b> A of the connection pipe 17 and the temperature sensitivity for supercooling Cylindrical expansion valve 21
Branches into a supercooled flow towards. The supercooled flow is expanded by the temperature-sensitive cylinder type expansion valve 21 and then cooled by the supercooled heat exchanger 1.
5 flows into the cooling pipe 15B, takes heat from the refrigerant flowing through the pipe 15A to be cooled, and then flows into the suction side 5A of the compressor 5.

【0042】一方、上記メイン流は、ブリッジ整流回路
7の第1端7Aから流入して逆止弁25を経て第2端7
Bから流出し、さらに閉鎖弁11を経て室内熱交換器1
に達し、この室内熱交換器1で吸熱してから、閉鎖弁2
を経由して、四路切換弁3の第2端3B,第1端3Aを
経て、圧縮機5の吸入側に流入する。
On the other hand, the main flow flows from the first end 7A of the bridge rectifier circuit 7 and passes through the check valve 25 to the second end 7A.
B, and further flows through the closing valve 11 to the indoor heat exchanger 1.
And the heat is absorbed by the indoor heat exchanger 1, and then the closing valve 2
Flows through the second end 3B and the first end 3A of the four-way switching valve 3 into the suction side of the compressor 5.

【0043】また、上記四路切換弁3が図1の破線経路
を形成しているときには、暖房動作を行う。すなわち、
圧縮機5が吐出した冷媒は、四路切換弁3を経由して室
内熱交換器1に送出され、この室内熱交換器1で放熱す
る。次に、上記室内熱交換器1で冷やされた冷媒は、ブ
リッジ整流回路7の第2端7Bから逆止弁26に流入
し、第3端7Cからレシーバ8の上部8Aに流入する。
そして、このレシーバ8を経て液相となった冷媒は、過
冷却熱交換器15の被冷却配管15Aに流入して、冷却
配管15Bを流れる冷えた冷媒によってさらに冷やされ
て過冷却される。次に、この過冷却された冷媒は、主膨
張弁10で膨張してから、接続配管17の分岐点17A
で、ブリッジ整流回路7の第1端7Aに向かうメイン流
と過冷却用の感温筒式膨張弁21に向かう過冷却流とに
分岐する。この過冷却流は、上記感温筒式膨張弁21で
膨張されてから過冷却熱交換器15の冷却配管15Bに
流入して、被冷却配管15Aを流れる冷媒から熱を奪っ
てから、圧縮機5の吸入側5Aに流入する。
When the four-way switching valve 3 forms the dashed path in FIG. 1, a heating operation is performed. That is,
The refrigerant discharged from the compressor 5 is sent to the indoor heat exchanger 1 via the four-way switching valve 3, and radiates heat in the indoor heat exchanger 1. Next, the refrigerant cooled in the indoor heat exchanger 1 flows into the check valve 26 from the second end 7B of the bridge rectifier circuit 7, and flows into the upper portion 8A of the receiver 8 from the third end 7C.
The refrigerant in the liquid phase after passing through the receiver 8 flows into the cooled pipe 15A of the subcooling heat exchanger 15, and is further cooled and cooled by the cooled refrigerant flowing through the cooling pipe 15B. Next, after the supercooled refrigerant expands in the main expansion valve 10, the branch point 17A
Then, the flow branches into a main flow toward the first end 7A of the bridge rectifier circuit 7 and a supercooled flow toward the temperature-sensitive cylindrical expansion valve 21 for supercooling. The supercooled flow is expanded by the temperature-sensitive cylinder type expansion valve 21 and then flows into the cooling pipe 15B of the supercooling heat exchanger 15 to remove heat from the refrigerant flowing through the pipe 15A to be cooled, and 5 into the suction side 5A.

【0044】一方、上記メイン流は、ブリッジ整流回路
7の第1端7Aから流入して逆止弁28を経て第4端7
Bから流出し、室外熱交換器6に達し、この室外熱交換
器6で吸熱してから、四路切換弁3の第4端3D,第1
端3Aを経て、圧縮機5の吸入側に流入する。この実施
の形態では、連絡キャピラリ20がレシーバ8の上部8
Aと主膨張弁10の下流側とを連絡する。したがって、
出荷時等に、閉じた閉鎖弁2,逆止弁26,レシーバ
8,被冷却配管15A,主膨張弁10の間に封じられた
液冷媒を、レシーバ8の上部8Aから連絡キャピラリ2
0を経由して主膨張弁10の下流の回路に導入できる。
したがって、冷媒の液封を防いで、異常な圧力上昇によ
る故障を防ぎ、信頼性の向上を図れる。
On the other hand, the main flow flows from the first end 7A of the bridge rectifier circuit 7 and passes through the check valve 28 to the fourth end 7A.
B, reaches the outdoor heat exchanger 6, absorbs heat in the outdoor heat exchanger 6, and then returns to the fourth end 3D of the four-way switching valve 3, the first end 3D.
Through the end 3A, it flows into the suction side of the compressor 5. In this embodiment, the communication capillary 20 is connected to the upper part 8 of the receiver 8.
A communicates with the downstream side of the main expansion valve 10. Therefore,
At the time of shipment or the like, the liquid refrigerant sealed between the closed shut-off valve 2, the check valve 26, the receiver 8, the pipe 15A to be cooled, and the main expansion valve 10 is transferred from the upper part 8A of the receiver 8 to the communication capillary 2.
0 can be introduced into a circuit downstream of the main expansion valve 10.
Therefore, liquid sealing of the refrigerant is prevented, failure due to abnormal pressure rise is prevented, and reliability can be improved.

【0045】また、この実施の形態では、上記過冷却回
路30が主膨張弁10の下流から分岐しているから、主
膨張弁10で膨張した気相冷媒を過冷却回路30に導入
できる。したがって、過冷却しにくい起動時や停止時に
上記過冷却回路30から圧縮機5への過渡的な液バック
を防止でき、圧縮機5の故障を防いで信頼性を向上でき
る。
In this embodiment, since the subcooling circuit 30 branches off from the downstream side of the main expansion valve 10, the gas-phase refrigerant expanded by the main expansion valve 10 can be introduced into the subcooling circuit 30. Therefore, at the time of starting or stopping when it is difficult to perform supercooling, transient liquid back from the supercooling circuit 30 to the compressor 5 can be prevented, and failure of the compressor 5 can be prevented and reliability can be improved.

【0046】また、この実施の形態では、四路切換弁3
を冷房位置(実線)にすれば、冷媒を圧縮機5から室外熱
交換器6,整流回路7,レシーバ8,主膨張弁10,室
内熱交換器2の順に流して、冷房を行える。一方、四路
切換弁3を暖房位置(破線)にすれば、冷媒を圧縮機5か
ら室内熱交換器6,整流回路7,レシーバ8,主膨張弁
10,室外熱交換器6の順に流して暖房を行える。さら
に、上記冷房時,暖房時の両方において、上記過冷却回
路30を働かせて、過冷却による能力向上を図れる。ま
た、この実施の形態では、上記感温筒式膨張弁21の感
温筒21Aでもって、過冷却熱交換器15の出口での冷
媒温度を検出し、この冷媒温度の高低に応じて、感温筒
式膨張弁21の開度を大小に調節して、過冷却度を所定
の値に維持できる。
In this embodiment, the four-way switching valve 3
Is set to the cooling position (solid line), cooling can be performed by flowing the refrigerant from the compressor 5 to the outdoor heat exchanger 6, the rectifier circuit 7, the receiver 8, the main expansion valve 10, and the indoor heat exchanger 2 in this order. On the other hand, if the four-way switching valve 3 is set to the heating position (broken line), the refrigerant flows from the compressor 5 in the order of the indoor heat exchanger 6, the rectifier circuit 7, the receiver 8, the main expansion valve 10, and the outdoor heat exchanger 6. Heating can be done. Further, in both the cooling and the heating, the supercooling circuit 30 is operated to improve the performance by the supercooling. Further, in this embodiment, the temperature of the refrigerant at the outlet of the subcooling heat exchanger 15 is detected by the temperature-sensitive cylinder 21A of the temperature-sensitive cylinder type expansion valve 21, and the temperature is detected in accordance with the level of the refrigerant temperature. The degree of supercooling can be maintained at a predetermined value by adjusting the degree of opening of the warm cylinder type expansion valve 21 to be large or small.

【0047】〔第2実施形態〕次に、図2(A)に、この
発明の第2実施形態を示す。この第2実施形態は、ブリ
ッジ整流回路の構成だけが、上記第1実施形態と異な
る。したがって、この第2実施形態では、第1実施形態
と異なる点について重点的に説明する。
[Second Embodiment] Next, FIG. 2A shows a second embodiment of the present invention. The second embodiment differs from the first embodiment only in the configuration of the bridge rectifier circuit. Therefore, in the second embodiment, points different from the first embodiment will be mainly described.

【0048】すなわち、この第2実施形態では、ブリッ
ジ整流回路41の第2端41Bとレシーバ8の上部8A
の所定箇所8A−1との間に、逆止弁に換えてキャピラ
リ42が接続されている。この所定箇所8A−1が第3
端41Cをなす。また、上記所定箇所8A−1と所定距
離だけ離れたレシーバ上部箇所8A−2(第4端41D)
と第4端41Eとの間にキャピラリ43が接続されてい
る。そして、逆止弁25,キャピラリ42,キャピラリ
43,逆止弁28がブリッジ整流回路41を構成してい
る。
That is, in the second embodiment, the second end 41B of the bridge rectifier circuit 41 and the upper portion 8A of the receiver 8
The capillary 42 is connected to the predetermined location 8A-1 in place of the check valve. This predetermined location 8A-1 is the third
The end 41C is formed. Further, a receiver upper portion 8A-2 (fourth end 41D) separated from the predetermined portion 8A-1 by a predetermined distance.
The capillary 43 is connected between the first end and the fourth end 41E. The check valve 25, the capillary 42, the capillary 43, and the check valve 28 constitute a bridge rectifier circuit 41.

【0049】この第2実施形態では、第1端41Aと第
2端41Bとの間のキャピラリ42と第4端41Dと第
5端41Eとの間のキャピラリ43とはレシーバ上部8
Aの異なる箇所8A−1,8A−2に接続されているの
で、一方のキャピラリ42と他方のキャピラリ43との
間には気相冷媒が存在していて両者間の圧損は液相の圧
損に比べて数十倍になる。したがって、上記キャピラリ
42,43からキャピラリ43,42に流れる冷媒は、
上記キャピラリ42,43からレシーバ8を経て主膨張
弁10に流れる冷媒に比べて非常に少なくなる。これに
より、上記ブリッジ整流回路41は第1実施形態の整流
回路7と略同等の整流動作を果たせるのである。また、
この第2実施形態によれば、キャピラリ43がレシーバ
上部8Aを主膨張弁10の下流側の回路に連通させるか
ら、この実施の形態では、したがって、出荷時等に、主
膨張弁10が閉じられていて、閉じた閉鎖弁2,キャピ
ラリ42,レシーバ8,被冷却配管15A,主膨張弁1
0の間に封じられた液冷媒を、レシーバ8の上部8Aか
らキャピラリ43を経由して主膨張弁10の下流の回路
に導入できる。したがって、冷媒の液封を防いで、異常
な圧力上昇による故障を防ぎ、信頼性の向上を図れる。
In the second embodiment, the capillary 42 between the first end 41A and the second end 41B and the capillary 43 between the fourth end 41D and the fifth end 41E are connected to the upper part 8 of the receiver.
A is connected to different points 8A-1 and 8A-2 of A, so that a gas-phase refrigerant exists between one capillary 42 and the other capillary 43, and the pressure loss between the two is a liquid-phase pressure loss. It is several tens of times in comparison. Therefore, the refrigerant flowing from the capillaries 42, 43 to the capillaries 43, 42 is:
The amount of refrigerant flowing from the capillaries 42 and 43 via the receiver 8 to the main expansion valve 10 is extremely small. As a result, the bridge rectifier circuit 41 can perform a rectification operation substantially equivalent to that of the rectifier circuit 7 of the first embodiment. Also,
According to the second embodiment, since the capillary 43 connects the receiver upper portion 8A to a circuit downstream of the main expansion valve 10, in this embodiment, therefore, the main expansion valve 10 is closed at the time of shipping or the like. Closed valve 2, capillary 42, receiver 8, pipe 15A to be cooled, main expansion valve 1
The liquid refrigerant sealed during zero can be introduced from the upper part 8A of the receiver 8 into the circuit downstream of the main expansion valve 10 via the capillary 43. Therefore, liquid sealing of the refrigerant is prevented, failure due to abnormal pressure rise is prevented, and reliability can be improved.

【0050】尚、この第2実施形態において、ブリッジ
整流回路41の第2端41Bから第3端41Cに向かっ
て順方向の逆止弁をキャピラリ42と並列に接続し、第
4端41Dから第5端41Eに向かって逆方向の逆止弁
をキャピラリ43と並列に接続した場合には、上記逆止
弁もしくはキャピラリのいずれかが故障した場合にも整
流回路の機能を維持でき、信頼性を向上できる。
In this second embodiment, a check valve in the forward direction from the second end 41B to the third end 41C of the bridge rectifier circuit 41 is connected in parallel with the capillary 42, and the fourth end 41D is connected to the fourth end 41D. When a check valve in the reverse direction toward the fifth end 41E is connected in parallel with the capillary 43, the function of the rectifier circuit can be maintained even if either the check valve or the capillary fails, and reliability is improved. Can be improved.

【0051】〔第3実施形態〕次に、図2(B)に、この
発明の第3実施形態を示す。この第3実施形態は、主膨
張弁10の上流側から過冷却回路30が分岐している点
だけが、第2実施形態と異なる。したがって、この第3
実施形態では、第2実施形態と異なる点だけを重点的に
説明する。
[Third Embodiment] FIG. 2B shows a third embodiment of the present invention. The third embodiment differs from the second embodiment only in that a subcooling circuit 30 branches from the upstream side of the main expansion valve 10. Therefore, this third
In the embodiment, only the points different from the second embodiment will be mainly described.

【0052】この第3実施形態では、主膨張弁10の開
度変化が過冷却回路30の過冷却度に影響を与えること
を抑制でき、制御性が良くなる。
In the third embodiment, it is possible to suppress a change in the opening degree of the main expansion valve 10 from affecting the degree of supercooling of the subcooling circuit 30, thereby improving controllability.

【0053】尚、この第3実施形態において、ブリッジ
整流回路41の第2端41Bから第3端41Cに向かっ
て順方向の逆止弁をキャピラリ42と並列に接続し、第
4端41Dから第5端41Eに向かって逆方向の逆止弁
をキャピラリ43と並列に接続した場合には、上記逆止
弁もしくはキャピラリのいずれかが故障した場合にも整
流回路の機能を維持でき、信頼性を向上できる。
In the third embodiment, a check valve in the forward direction from the second end 41B to the third end 41C of the bridge rectifier circuit 41 is connected in parallel with the capillary 42, and the fourth end 41D is connected to the fourth end 41D. When a check valve in the reverse direction toward the fifth end 41E is connected in parallel with the capillary 43, the function of the rectifier circuit can be maintained even if either the check valve or the capillary fails, and reliability is improved. Can be improved.

【0054】〔第4実施形態〕次に、図2(C)に、この
発明の第4実施形態を示す。この第4実施形態が、先述
の第1実施形態と異なる点は、主膨張弁10の上流側か
ら過冷却回路30が分岐している点と、連絡キャピラリ
51がレシーバ8上部8Aと過冷却熱交換器冷却配管1
5Bと感温筒21Aとの間の冷媒配管52に接続されて
いる点の2点だけである。
[Fourth Embodiment] FIG. 2C shows a fourth embodiment of the present invention. The fourth embodiment differs from the first embodiment in that the supercooling circuit 30 branches off from the upstream side of the main expansion valve 10 and that the communication capillary 51 is connected to the upper portion 8A of the receiver 8 and the supercooling heat. Exchanger cooling piping 1
Only two points are connected to the refrigerant pipe 52 between 5B and the temperature sensing cylinder 21A.

【0055】この第4実施形態によれば、レシーバ8上
部8Aのガス冷媒を連絡キャピラリ51から冷媒配管5
2に供給することで、感温筒21Aが検知する温度を高
くして、感温筒式膨張弁21の開度を大き目にすること
ができる。これにより、過冷却回路30による過冷却度
を増大させて、能力の向上を図れる。
According to the fourth embodiment, the gas refrigerant in the upper portion 8A of the receiver 8 is transferred from the communication capillary 51 to the refrigerant pipe 5A.
2, the temperature detected by the temperature-sensitive cylinder 21A can be increased, and the degree of opening of the temperature-sensitive cylinder type expansion valve 21 can be increased. Thereby, the degree of supercooling by the subcooling circuit 30 is increased, and the performance can be improved.

【0056】また、上記連絡キャピラリ51から過冷却
熱交換器15の下流側に温度の高いガス冷媒を導入する
ことで、圧縮機5の吸入側への液バックを抑えることが
できる。
Further, by introducing a high-temperature gas refrigerant from the communication capillary 51 to the downstream side of the subcooling heat exchanger 15, liquid back to the suction side of the compressor 5 can be suppressed.

【0057】〔第5実施形態〕次に、図3(A)に、この
発明の第5実施形態を示す。この第5実施形態は、連絡
キャピラリ61が、レシーバ上部8Aから、過冷却用の
膨張弁21と過冷却配管15Bとの間の冷媒配管62に
接続されている点だけが第4実施形態と異なる。
[Fifth Embodiment] Next, FIG. 3A shows a fifth embodiment of the present invention. The fifth embodiment is different from the fourth embodiment only in that a communication capillary 61 is connected from a receiver upper portion 8A to a refrigerant pipe 62 between the supercooling expansion valve 21 and the supercooling pipe 15B. .

【0058】この第5実施形態では、連絡キャピラリ6
1から過冷却用の膨張弁21の下流にガス冷媒を導入し
て、過冷却熱交換し難い起動時や停止時に過冷却回路3
0から圧縮機5へ液バックすることを防止できる。
In the fifth embodiment, the connecting capillary 6
1 to the downstream of the supercooling expansion valve 21, the supercooling circuit 3 is used at the time of starting or stopping when it is difficult to exchange supercooling heat.
Liquid back from 0 to the compressor 5 can be prevented.

【0059】〔第6実施形態〕次に、図3(B)に、この
発明の第6実施形態を示す。この第6実施形態は、主膨
張弁10の上流側から過冷却回路30が分岐している点
だけが、第1実施形態と異なる。この第6実施形態で
は、主膨張弁10の開度変化が過冷却回路30の過冷却
度に影響を与えることを抑制できる。
[Sixth Embodiment] Next, FIG. 3B shows a sixth embodiment of the present invention. The sixth embodiment is different from the first embodiment only in that the subcooling circuit 30 branches from the upstream side of the main expansion valve 10. In the sixth embodiment, it is possible to suppress a change in the opening degree of the main expansion valve 10 from affecting the degree of supercooling of the subcooling circuit 30.

【0060】〔第7実施形態〕次に、図3(C)に、この
発明の第7実施形態を示す。この第7実施形態は、連絡
キャピラリ71がレシーバ上部8Aを過冷却用の膨張弁
21と過冷却配管15Bとの間の冷媒配管72に接続し
ている点だけが、上述の第1実施形態と異なる。
[Seventh Embodiment] Next, FIG. 3C shows a seventh embodiment of the present invention. The seventh embodiment differs from the first embodiment only in that the communication capillary 71 connects the receiver upper portion 8A to the refrigerant pipe 72 between the supercooling expansion valve 21 and the supercooling pipe 15B. different.

【0061】この第7実施形態では、連絡キャピラリ7
1から過冷却用の膨張弁21の下流にガス冷媒を導入し
て、過冷却熱交換し難い起動時や停止時に過冷却回路3
0から圧縮機5へ液バックすることを防止できる。した
がって、圧縮機5の信頼性を向上させることができる。
In the seventh embodiment, the connecting capillary 7
1 to the downstream of the supercooling expansion valve 21, the supercooling circuit 3 is used at the time of starting or stopping when it is difficult to exchange supercooling heat.
Liquid back from 0 to the compressor 5 can be prevented. Therefore, the reliability of the compressor 5 can be improved.

【0062】尚、上記第1〜第7実施形態において、圧
縮機3を停止させる10秒〜20秒前から主電動弁10
を全閉にしてレシーバ8にポンプダウンすることによっ
て、過渡時の圧縮機3への液バックを防止できる。ま
た、起動時には、レシーバ8に液冷媒が溜まっているの
で、主電動弁10を徐々に開いて、圧縮機3に液バック
しないようにすれば良い。
In the first to seventh embodiments, the main motor-operated valve 10 starts 10 seconds to 20 seconds before the compressor 3 is stopped.
Is fully closed and the pump is pumped down to the receiver 8, it is possible to prevent liquid back to the compressor 3 at the time of transition. Further, at the time of startup, since the liquid refrigerant is stored in the receiver 8, the main motor-operated valve 10 may be gradually opened so that the liquid does not flow back to the compressor 3.

【0063】また、デフロスト(除霜)運転に入る10秒
〜20秒前に主電動弁10を全閉(もしくは小開度)にす
ると共に、デフロスト中には主電動弁10の開度を一定
の開度に保つことによって、デフロスト開始時の圧縮機
5への過渡的な液バックを防止できる。
The main motor-operated valve 10 is fully closed (or has a small opening) 10 to 20 seconds before the defrost (defrost) operation is started, and the opening of the main motor-operated valve 10 is kept constant during defrosting. By maintaining the opening degree, it is possible to prevent transient liquid back to the compressor 5 at the start of defrost.

【0064】また、上記実施の形態では、冷媒としてR
407Cを用いたが、R22等他の冷媒を使用しても良
い。もっとも、R407Cを用いた場合には、R407
C(非共沸混合冷媒)の特徴を最大限に生かして、過渡時
の信頼性を飛躍的に向上できると共に、能力とCOPを
向上できる。
In the above embodiment, the refrigerant is R
Although 407C was used, other refrigerants such as R22 may be used. However, when R407C is used, R407
By taking full advantage of the characteristics of C (non-azeotropic refrigerant mixture), the reliability during transition can be dramatically improved, and the capacity and COP can be improved.

【0065】[0065]

【発明の効果】以上より明らかなように、この発明の請
求項1の発明の冷媒回路は、室内熱交換器,圧縮機,室
外熱交換器,レシーバ,主膨張弁を接続する冷媒回路で
あって、上記レシーバの上部と上記主膨張弁の下流側と
を連結するキャピラリを備えている。
As is clear from the above, the refrigerant circuit according to the first aspect of the present invention is a refrigerant circuit for connecting an indoor heat exchanger, a compressor, an outdoor heat exchanger, a receiver, and a main expansion valve. And a capillary connecting the upper part of the receiver and the downstream side of the main expansion valve.

【0066】この請求項1の冷媒回路では、上記キャピ
ラリがレシーバの上部と主膨張弁の下流側とを連絡する
から、出荷時等において主膨張弁の下流で液封が発生す
ることを防いで、信頼性を向上できる。
In the refrigerant circuit of the first aspect, since the capillary communicates the upper portion of the receiver with the downstream side of the main expansion valve, it is possible to prevent the occurrence of liquid seal downstream of the main expansion valve at the time of shipping or the like. , Reliability can be improved.

【0067】また、請求項2の冷媒回路は、過冷却回路
が、主膨張弁の下流側から分岐して圧縮機の吸入側に接
続されている。この請求項2の発明では、上記過冷却回
路が主膨張弁の下流から分岐しているから、主膨張弁で
膨張した気相冷媒を過冷却回路に導入できる。したがっ
て、過冷却し難い起動時や停止時に過冷却回路から圧縮
機への過渡的な液バックを防止でき、圧縮機の信頼性を
向上できる。
Further, in the refrigerant circuit according to the second aspect, the subcooling circuit is branched from the downstream side of the main expansion valve and connected to the suction side of the compressor. According to the second aspect of the present invention, since the subcooling circuit branches off from the downstream side of the main expansion valve, the gas-phase refrigerant expanded by the main expansion valve can be introduced into the subcooling circuit. Therefore, it is possible to prevent a transient liquid back from the supercooling circuit to the compressor at the time of starting or stopping when it is difficult to supercool, and it is possible to improve the reliability of the compressor.

【0068】また、請求項3の冷媒回路は、レシーバの
上部と主膨張弁の下流側とを連結するキャピラリでもっ
て、出荷時等において、主膨張弁の下流側に封じられた
液冷媒を、レシーバの上部の気相空間に導入することが
でき、冷媒の液封を防いで、信頼性を向上できる。
Further, the refrigerant circuit according to the third aspect of the present invention uses a capillary connecting the upper part of the receiver and the downstream side of the main expansion valve to supply the liquid refrigerant sealed downstream of the main expansion valve at the time of shipping or the like. It can be introduced into the gaseous space above the receiver, preventing liquid refrigerant from being sealed and improving reliability.

【0069】また、この請求項3の発明は、過冷却回路
が主膨張弁の下流から分岐しているから、主膨張弁で膨
張した気相冷媒を過冷却回路に導入して、過冷却し難い
起動時や停止時に過冷却回路から圧縮機への過渡的な液
バックを防止でき、圧縮機の信頼性を向上できる。
According to the third aspect of the present invention, since the subcooling circuit branches off from the downstream side of the main expansion valve, the gaseous refrigerant expanded by the main expansion valve is introduced into the subcooling circuit to perform subcooling. Transient liquid back from the supercooling circuit to the compressor during difficult starting and stopping can be prevented, and the reliability of the compressor can be improved.

【0070】さらには、上記キャピラリと上記過冷却回
路を経由して、上記レシーバ上部から上記圧縮機の吸入
側にガス冷媒を供給できるから、圧縮機のガス欠を防止
でき、信頼性を向上できる。
Further, a gas refrigerant can be supplied from the upper part of the receiver to the suction side of the compressor via the capillary and the subcooling circuit, so that the compressor can be prevented from running out of gas and the reliability can be improved. .

【0071】また、請求項4の発明は、請求項1乃至3
のいずれか1つに記載の冷媒回路において、四路切換弁
と、整流回路とを備え、上記四路切換弁を冷房位置にす
れば、冷媒を圧縮機から室外熱交換器,整流回路,レシ
ーバ,主膨張弁,室内熱交換器の順に流して、冷房を行
える。一方、上記四路切換弁を暖房位置にすれば、冷媒
を圧縮機から室内熱交換器,整流回路,レシーバ,主膨
張弁,室外熱交換器の順に流して、暖房を行える。ま
た、上記冷房時,暖房時の両方において、過冷却回路を
働かせて、過冷却による能力向上を図れる。
The invention according to claim 4 is the invention according to claims 1 to 3
The refrigerant circuit according to any one of the above, further comprising a four-way switching valve and a rectifier circuit, wherein the refrigerant is transferred from the compressor to the outdoor heat exchanger, the rectifier circuit, and the receiver by setting the four-way selector valve to the cooling position. , The main expansion valve, and the indoor heat exchanger in that order to perform cooling. On the other hand, if the four-way switching valve is set to the heating position, the refrigerant can be heated by flowing the refrigerant from the compressor in the order of the indoor heat exchanger, the rectifier circuit, the receiver, the main expansion valve, and the outdoor heat exchanger. In addition, in both the above-mentioned cooling and heating, the supercooling circuit is activated to improve the performance by the supercooling.

【0072】また、請求項5の発明は、請求項1乃至4
のいずれか1つに記載の冷媒回路において、過冷却膨張
弁は、過冷却熱交換器の出口での過冷却回路の温度に応
じて開度が変化する感温筒式膨張弁である。この請求項
5の発明では、感温筒式膨張弁でもって、過冷却熱交換
器の出口での冷媒温度の高低に応じて、過冷却膨張弁の
開度を大小に調節して、過冷却度を所定の値に維持でき
る。
Further, the invention of claim 5 is the invention of claims 1 to 4
In the refrigerant circuit according to any one of the above, the supercooling expansion valve is a temperature-sensitive cylinder type expansion valve whose opening degree changes according to the temperature of the supercooling circuit at the outlet of the supercooling heat exchanger. According to the fifth aspect of the present invention, the degree of opening of the supercooling expansion valve is adjusted by the temperature-sensitive cylinder type expansion valve according to the refrigerant temperature at the outlet of the supercooling heat exchanger, and the supercooling is performed. The degree can be maintained at a predetermined value.

【0073】また、請求項6の発明は、四路切換弁を冷
房位置にすれば、順に、圧縮機,室外熱交換器,整流回
路の第5端,整流回路のキャピラリ,整流回路の第4
端,レシーバ上部,主膨張弁,整流回路の第1端,整流
回路の逆止弁,整流回路の第2端,室内熱交換器に冷媒
を流して冷房を行える。一方、四路切換弁を暖房位置に
すれば、順に、圧縮機,室内熱交換器,第2端,キャピ
ラリ,レシーバ上部,主膨張弁,第1端,逆止弁,第5
端,室外熱交換器に冷媒を流して、暖房を行える。ここ
で、第2端と第3端との間のキャピラリと第4端と第5
端との間のキャピラリとはレシーバ上部に接続されてい
るので、一方のキャピラリと他方のキャピラリとの間に
は気相冷媒が存在していて両者間の圧損は液相の圧損に
比べて数十倍になる。したがって、上記一方のキャピラ
リから他方のキャピラリに流れる冷媒は、一方のキャピ
ラリからレシーバを経て主膨張弁に流れる冷媒に比べて
非常に少なくなる。
Further, when the four-way switching valve is set to the cooling position, the compressor, the outdoor heat exchanger, the fifth end of the rectifier circuit, the capillary of the rectifier circuit, and the fourth terminal of the rectifier circuit are arranged in this order.
The cooling can be performed by flowing the refrigerant through the end, the upper portion of the receiver, the main expansion valve, the first end of the rectifier circuit, the check valve of the rectifier circuit, the second end of the rectifier circuit, and the indoor heat exchanger. On the other hand, if the four-way switching valve is set to the heating position, the compressor, the indoor heat exchanger, the second end, the capillary, the receiver upper part, the main expansion valve, the first end, the check valve, and the fifth
At the end, the refrigerant can flow through the outdoor heat exchanger for heating. Here, the capillary between the second end and the third end, the fourth end and the fifth end
Since the capillary between the ends is connected to the upper part of the receiver, there is a gas-phase refrigerant between one capillary and the other capillary, and the pressure loss between the two is smaller than the pressure loss of the liquid phase. 10 times. Therefore, the amount of the refrigerant flowing from the one capillary to the other capillary is much smaller than the amount of the refrigerant flowing from the one capillary to the main expansion valve via the receiver.

【0074】また、この請求項6の発明によれば、出荷
時等に上記主膨張弁が閉じられていたときにも、上記2
つのキャピラリが、主膨張弁の下流側の回路をレシーバ
上部に連通させるから、液封を防いで故障を防ぎ、信頼
性を高めることができる。さらには、過冷却回路を主膨
張弁の下流から分岐させたから、この過冷却回路から圧
縮機への液バックを招くことなく、過冷却を行って、信
頼性および能力を向上させることができる。
According to the sixth aspect of the present invention, even when the main expansion valve is closed at the time of shipping or the like, the above-mentioned 2nd expansion valve can be used.
Since the two capillaries communicate the circuit downstream of the main expansion valve with the upper part of the receiver, liquid sealing can be prevented, failure can be prevented, and reliability can be improved. Furthermore, since the subcooling circuit is branched from the downstream side of the main expansion valve, the supercooling can be performed without causing liquid back from the subcooling circuit to the compressor, thereby improving reliability and performance.

【0075】また、請求項7の発明は、上記四路切換弁
と上記キャピラリを含んだ整流回路でもって、冷房と暖
房の両方を行え、かつ、冷房,暖房の両方において過冷
却回路を働かせて、能力を向上できる点は上記請求項6
の発明と同じである。
Further, according to the invention of claim 7, both the cooling and the heating can be performed by the rectifying circuit including the four-way switching valve and the capillary, and the supercooling circuit operates in both the cooling and the heating. Claim 6 is that the ability can be improved.
The invention is the same as the invention of

【0076】この請求項7の発明が、請求項6の発明と
異なる点は、上記過冷却回路が主膨張弁の上流側から分
岐している点である。これにより、主膨張弁の開度変化
が過冷却回路の過冷却度に影響を与えることが抑えら
れ、制御性が良くなる。
The seventh aspect of the present invention differs from the sixth aspect of the present invention in that the supercooling circuit branches off from the upstream side of the main expansion valve. This suppresses a change in the opening degree of the main expansion valve from affecting the degree of supercooling of the subcooling circuit, and improves controllability.

【0077】また、請求項8の発明は、請求項6または
7に記載の冷媒回路において、レシーバ上部と過冷却熱
交換器の下流側とを連絡する連絡キャピラリを備えた。
The invention according to claim 8 is the refrigerant circuit according to claim 6 or 7, further comprising a communication capillary for communicating an upper portion of the receiver and a downstream side of the subcooling heat exchanger.

【0078】この請求項8の発明によれば、連絡キャピ
ラリによって、レシーバ上部のガス冷媒を過冷却熱交換
器の下流側に導入できるから、圧縮機への液バックを抑
えることができ、信頼性を向上できる。
According to the eighth aspect of the present invention, the gas capillary at the upper portion of the receiver can be introduced downstream of the supercooling heat exchanger by the communication capillary, so that the liquid back to the compressor can be suppressed, and the reliability can be improved. Can be improved.

【0079】また、請求項9の発明は、レシーバの上部
と主膨張弁の下流側とを連結するキャピラリを備え、過
冷却回路が主膨張弁の上流側から分岐して圧縮機の吸入
側に接続されている。この請求項9の発明では、キャピ
ラリでもって、レシーバの上部を主膨張弁の下流側に連
通させることによって、出荷時等において、主膨張弁の
下流側冷媒回路に封じられた液冷媒をレシーバ上部の気
相空間に導入することができ、液封を防止できる。ま
た、上記過冷却回路が主膨張弁の上流側から分岐してい
るから、過冷却回路が主膨張弁の下流側から分岐してい
る場合に比べて、最大過冷却度を大きく設定できる。
The ninth aspect of the present invention comprises a capillary connecting the upper part of the receiver and the downstream side of the main expansion valve, and the supercooling circuit branches from the upstream side of the main expansion valve to the suction side of the compressor. It is connected. According to the ninth aspect of the present invention, the upper portion of the receiver is communicated with the downstream side of the main expansion valve by a capillary, so that the liquid refrigerant sealed in the downstream side refrigerant circuit of the main expansion valve can be transferred to the upper portion of the receiver at the time of shipping or the like. Can be introduced into the gas phase space, and liquid sealing can be prevented. Further, since the subcooling circuit branches off from the upstream side of the main expansion valve, the maximum degree of subcooling can be set larger than when the subcooling circuit branches off from the downstream side of the main expansion valve.

【0080】また、請求項10の発明は、レシーバ上部
を過冷却膨張弁と過冷却熱交換器との間に連結する連絡
キャピラリとを備えた。この請求項10の発明では、連
絡キャピラリから過冷却膨張弁の下流にガス冷媒を導入
して、過冷却熱交換し難い起動時や停止時に過冷却回路
から圧縮機へ液バックすることを防止できる。
The invention according to claim 10 is provided with a communication capillary connecting the upper portion of the receiver between the supercooling expansion valve and the supercooling heat exchanger. According to the tenth aspect of the present invention, the gas refrigerant is introduced from the communication capillary to the downstream of the supercooling expansion valve, so that the liquid can be prevented from flowing back from the supercooling circuit to the compressor at the time of starting or stopping when it is difficult to exchange supercooling heat. .

【0081】また、請求項11の発明は、過冷却回路
が、主膨張弁の下流側から分岐して圧縮機の吸入側に接
続されていて、レシーバの上部を過冷却膨張弁と過冷却
熱交換器との間に連結する連絡キャピラリとを備えた。
この請求項11の発明では、過冷却回路が主膨張弁の下
流側で分岐していることによって、過冷却回路による過
冷却の増大を図って、能力の向上を図れる。
According to an eleventh aspect of the present invention, the supercooling circuit is branched from the downstream side of the main expansion valve and connected to the suction side of the compressor, and the upper part of the receiver is connected to the supercooling expansion valve and the supercooling heat source. A communication capillary connected to the exchanger.
According to the eleventh aspect of the present invention, since the subcooling circuit is branched downstream of the main expansion valve, the supercooling circuit can increase the supercooling and improve the capacity.

【0082】また、この請求項11の発明では、前記請
求項10と同様に、連絡キャピラリから過冷却膨張弁の
下流にガス冷媒を導入して、過冷却熱交換し難い起動時
や停止時に過冷却回路から圧縮機へ液バックすることを
防止でき、圧縮機の信頼性を向上できる。
According to the eleventh aspect of the present invention, similarly to the tenth aspect, a gas refrigerant is introduced from the communication capillary downstream of the supercooling expansion valve so that the supercooling heat exchange is difficult at the time of starting or stopping. Liquid back from the cooling circuit to the compressor can be prevented, and the reliability of the compressor can be improved.

【0083】また、請求項12の発明は、過冷却回路
が、主膨張弁の下流側から分岐して圧縮機の吸入側に接
続されていて、レシーバの上部を過冷却熱交換器の下流
側に連結する連絡キャピラリを備えている。
According to a twelfth aspect of the present invention, the subcooling circuit is branched from the downstream side of the main expansion valve and connected to the suction side of the compressor, and the upper part of the receiver is connected to the downstream side of the subcooling heat exchanger. It has a communication capillary connected to.

【0084】この請求項12の発明では、過冷却回路が
主膨張弁の下流側から分岐しているから、過冷却回路に
よる過冷却の増大を図って、能力の向上を図れる。ま
た、連絡キャピラリによって、レシーバ上部のガス冷媒
を過冷却熱交換器の下流側に導入できるから、圧縮機へ
の液バックを抑えて、信頼性を向上できる。
According to the twelfth aspect of the present invention, since the subcooling circuit branches off from the downstream side of the main expansion valve, the supercooling circuit can increase the supercooling and improve the capacity. In addition, the communication capillary allows the gas refrigerant in the upper part of the receiver to be introduced downstream of the subcooling heat exchanger, so that liquid back to the compressor can be suppressed and reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の冷媒回路の第1実施形態を示す回
路図である。
FIG. 1 is a circuit diagram showing a first embodiment of a refrigerant circuit of the present invention.

【図2】 図2(A)はこの発明の第2実施形態を示す回
路図であり、図2(B)は第3実施形態を示す回路図であ
り、図2(C)は第4実施形態を示す回路図である。
FIG. 2A is a circuit diagram showing a second embodiment of the present invention, FIG. 2B is a circuit diagram showing a third embodiment, and FIG. 2C is a circuit diagram showing a fourth embodiment. FIG. 3 is a circuit diagram showing an embodiment.

【図3】 図3(A)はこの発明の第5実施形態を示す回
路図であり、図3(B)は第6実施形態を示す回路図であ
り、図3(C)は第7実施形態を示す回路図である。
3 (A) is a circuit diagram showing a fifth embodiment of the present invention, FIG. 3 (B) is a circuit diagram showing a sixth embodiment, and FIG. 3 (C) is a seventh embodiment. FIG. 3 is a circuit diagram showing an embodiment.

【図4】 従来の冷媒回路を示す回路図である。FIG. 4 is a circuit diagram showing a conventional refrigerant circuit.

【符号の説明】[Explanation of symbols]

1…室内熱交換器、2…閉鎖弁、3…四路切換弁、5…
圧縮機、6…室外熱交換器、7…ブリッジ整流回路、8
…レシーバ、8A…レシーバ上部、10…主膨張弁、1
1…閉鎖弁、15…過冷却熱交換器、15A…被冷却配
管、15B…冷却配管、17…接続配管、20…連絡キ
ャピラリ、21…感温筒式膨張弁、30…過冷却回路、
41…ブリッジ整流回路、42…キャピラリ、43…キ
ャピラリ、61,71…連絡キャピラリ。
DESCRIPTION OF SYMBOLS 1 ... Indoor heat exchanger, 2 ... Closing valve, 3 ... Four-way switching valve, 5 ...
Compressor, 6 outdoor heat exchanger, 7 bridge rectifier circuit, 8
... Receiver, 8A ... Receiver upper part, 10 ... Main expansion valve, 1
DESCRIPTION OF SYMBOLS 1 ... Closure valve, 15 ... Supercooling heat exchanger, 15A ... Cooling piping, 15B ... Cooling piping, 17 ... Connection piping, 20 ... Communication capillary, 21 ... Temperature-sensitive cylinder type expansion valve, 30 ... Supercooling circuit,
41: Bridge rectifier circuit, 42: Capillary, 43: Capillary, 61, 71: Contact capillary.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 室内熱交換器(1),圧縮機(5),室外熱
交換器(6),レシーバ(8),主膨張弁(10)を接続する
冷媒回路であって、 上記レシーバ(8)の上部(8A)と上記主膨張弁(10)の
下流側とを連結するキャピラリ(20)を備えたことを特
徴とする冷媒回路。
A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10), wherein the receiver ( 8) A refrigerant circuit comprising a capillary (20) for connecting an upper portion (8A) of 8) and a downstream side of the main expansion valve (10).
【請求項2】 室内熱交換器(1),圧縮機(5),室外熱
交換器(6),レシーバ(8),主膨張弁(10)を接続する
冷媒回路であって、 上記レシーバ(8)から上記主膨張弁(10)に流れる冷媒
を冷やす過冷却熱交換器とこの過冷却熱交換器(15)の
上流側に接続された過冷却膨張弁とを有した過冷却回路
(30)が、上記主膨張弁(10)の下流側から分岐して上
記圧縮機(5)の吸入側に接続されていることを特徴とす
る冷媒回路。
2. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). A supercooling circuit having a supercooling heat exchanger for cooling the refrigerant flowing from 8) to the main expansion valve (10) and a supercooling expansion valve connected upstream of the supercooling heat exchanger (15).
(30) A refrigerant circuit, wherein the refrigerant circuit branches from a downstream side of the main expansion valve (10) and is connected to a suction side of the compressor (5).
【請求項3】 室内熱交換器(1),圧縮機(5),室外熱
交換器(6),レシーバ(8),主膨張弁(10)を接続する
冷媒回路であって、 上記レシーバ(8)の上部(8A)と上記主膨張弁(10)の
下流側とを連結するキャピラリ(20)を備え、 上記レシーバ(8)から上記主膨張弁(10)に流れる冷媒
を冷やす過冷却熱交換器(15)とこの過冷却熱交換器
(15)の上流側に接続された過冷却膨張弁(21)とを有
した過冷却回路(30)が、上記主膨張弁(10)の下流側
から分岐して上記圧縮機(5)の吸入側に接続されている
ことを特徴とする冷媒回路。
3. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). 8) a capillary (20) connecting the upper part (8A) of the main expansion valve (10) and the downstream side of the main expansion valve (10), and supercooling heat for cooling the refrigerant flowing from the receiver (8) to the main expansion valve (10). Exchanger (15) and this subcooling heat exchanger
A supercooling circuit (30) having a supercooling expansion valve (21) connected to the upstream side of (15) branches off from the downstream side of the main expansion valve (10) and is connected to the compressor (5). A refrigerant circuit connected to the suction side.
【請求項4】 請求項1乃至3のいずれか1つに記載の
冷媒回路において、上記圧縮機(5)の吐出側を室外熱交
換器(6)に接続し、上記圧縮機(5)の吸入側を室内熱交
換器(1)に接続する冷房位置と、上記圧縮機(5)の吐出
側を室内熱交換器(1)に接続し、上記圧縮機(5)の吸入
側を室外熱交換器(6)に接続する暖房位置とに切り替え
られる四路切換弁(3)と、 上記室内熱交換器(1)からの冷媒を上記レシーバ(8)に
導き、上記レシーバ(8),主膨張弁(10)を経由した冷
媒を上記室外熱交換器(6)に導く一方、上記室外熱交換
器(6)からの冷媒を上記レシーバ(8)に導き、上記レシ
ーバ(8),主膨張弁(10)を経由した冷媒を上記室内熱
交換器(1)に導く整流回路(7,41)とを備えたことを
特徴とする冷媒回路。
4. The refrigerant circuit according to claim 1, wherein a discharge side of the compressor (5) is connected to an outdoor heat exchanger (6). The cooling position where the suction side is connected to the indoor heat exchanger (1), the discharge side of the compressor (5) is connected to the indoor heat exchanger (1), and the suction side of the compressor (5) is the outdoor heat A four-way switching valve (3) that is switched to a heating position connected to an exchanger (6); and a refrigerant from the indoor heat exchanger (1) that is guided to the receiver (8). The refrigerant that has passed through the expansion valve (10) is guided to the outdoor heat exchanger (6), while the refrigerant from the outdoor heat exchanger (6) is guided to the receiver (8). A rectifier circuit (7, 41) for guiding the refrigerant via the valve (10) to the indoor heat exchanger (1).
【請求項5】 請求項1乃至4のいずれか1つに記載の
冷媒回路において、上記過冷却膨張弁(21)は、上記過
冷却熱交換器(15)の出口での過冷却回路(30)の温度
に応じて開度が変化する感温筒式膨張弁(21)であるこ
とを特徴とする冷媒回路。
5. The refrigerant circuit according to claim 1, wherein the subcooling expansion valve (21) is connected to a subcooling circuit (30) at an outlet of the subcooling heat exchanger (15). A refrigerant circuit characterized in that it is a temperature-sensitive cylinder type expansion valve (21) whose degree of opening changes according to the temperature of (1).
【請求項6】 室内熱交換器(1),圧縮機(5),室外熱
交換器(6),レシーバ(8),主膨張弁(10)を接続する
冷媒回路であって、 上記圧縮機(5)の吐出側を室外熱交換器(6)に接続し、
上記圧縮機(5)の吸入側を室内熱交換器(1)に接続する
冷房位置と、上記圧縮機(5)の吐出側を室内熱交換器
(1)に接続し、上記圧縮機(5)の吸入側を室外熱交換器
(6)に接続する暖房位置とに切り替えられる四路切換弁
(3)と、 上記室内熱交換器(1)に第2端(41B)が接続され、上
記レシーバ(8)上部(8A)の所定箇所(8A−1)に第3
端(41C)が接続され、上記レシーバ(8)上部(8A)の
別の箇所(8A−2)に第4端(41D)が接続され、上記
室外熱交換器(6)に第5端(41E)が接続され、上記主
膨張弁(10)に第1端(41A)が接続されており、上記
第2端(41B)と第3端(41C)との間に接続されたキ
ャピラリ(42)と、上記第4端(41D)と第5端(41
E)との間に接続されたキャピラリ(43)と、上記第5
端(41E)と第1端(41A)との間に上記第1端(41
A)から上記第5端(41E)に向かって順方向に接続さ
れた逆止弁(25)と、上記第1端(41A)と上記第2端
(41B)との間に上記第1端(41A)から第2端(41
B)に向かって順方向に接続された逆止弁(28)とを有
する整流回路(41)と、 上記主膨張弁(10)の下流側から分岐して上記圧縮機
(5)の吸入側に接続されていて、上記レシーバ(8)から
上記主膨張弁(10)に流れる冷媒を冷やす過冷却熱交換
器(15)とこの過冷却熱交換器(15)の下流側に接続さ
れた過冷却膨張弁(21)とを有した過冷却回路(30)と
を備えたことを特徴とする冷媒回路。
6. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). Connect the discharge side of (5) to the outdoor heat exchanger (6),
A cooling position at which the suction side of the compressor (5) is connected to the indoor heat exchanger (1), and an indoor heat exchanger at the discharge side of the compressor (5).
(1) Connect the suction side of the compressor (5) to an outdoor heat exchanger
Four-way switching valve that can be switched to the heating position connected to (6)
(3), a second end (41B) is connected to the indoor heat exchanger (1), and a third end (8A-1) is provided at a predetermined location (8A-1) on the upper portion (8A) of the receiver (8).
The end (41C) is connected, the fourth end (41D) is connected to another portion (8A-2) of the upper portion (8A) of the receiver (8), and the fifth end (41) is connected to the outdoor heat exchanger (6). 41E), a first end (41A) is connected to the main expansion valve (10), and a capillary (42) connected between the second end (41B) and the third end (41C). ), The fourth end (41D) and the fifth end (41
E) and a capillary (43) connected between
Between the end (41E) and the first end (41A).
A) a check valve (25) connected in a forward direction from the fifth end (41E) to the fifth end (41E), the first end (41A) and the second end
(41B) between the first end (41A) and the second end (41
A rectifier circuit (41) having a check valve (28) connected in the forward direction toward B), and a compressor branched from a downstream side of the main expansion valve (10).
A supercooling heat exchanger (15) connected to the suction side of (5) for cooling the refrigerant flowing from the receiver (8) to the main expansion valve (10), and a downstream side of the supercooling heat exchanger (15) And a supercooling circuit (30) having a supercooling expansion valve (21) connected to the refrigerant circuit.
【請求項7】 室内熱交換器(1),圧縮機(5),室外熱
交換器(6),レシーバ(8),主膨張弁(10)を接続する
冷媒回路であって、 上記圧縮機(5)の吐出側を室外熱交換器(6)に接続し、
上記圧縮機(5)の吸入側を室内熱交換器(1)に接続する
冷房位置と、上記圧縮機(5)の吐出側を室内熱交換器
(1)に接続し、上記圧縮機(5)の吸入側を室外熱交換器
(6)に接続する暖房位置とに切り替えられる四路切換弁
(3)と、 上記室内熱交換器(1)に第2端(41B)が接続され、上
記レシーバ(8)上部(8A)の所定箇所(8A−1)に第3
端(41C)が接続され、上記レシーバ(8)上部(8A)の
別の箇所(8A−2)に第4端(41D)が接続され、上記
室外熱交換器(6)に第5端(41E)が接続され、上記主
膨張弁(10)に第1端(41A)が接続されており、上記
第2端(41B)と第3端(41C)との間に接続されたキ
ャピラリ(42)と、上記第4端(41D)と第5端(41
E)との間に接続されたキャピラリ(43)と、上記第5
端(41E)と第1端(41A)との間に上記第1端(41
A)から上記第5端(41E)に向かって順方向に接続さ
れた逆止弁(28)と、上記第1端(41A)と上記第2端
(41B)との間に上記第1端(41A)から第2端(41
B)に向かって順方向に接続された逆止弁(25)とを有
する整流回路(41)と、 上記主膨張弁(10)の上流側から分岐して上記圧縮機
(5)の吸入側に接続されていて、上記レシーバ(8)から
上記主膨張弁(10)に流れる冷媒を冷やす過冷却熱交換
器(15)とこの過冷却熱交換器(15)の上流側に接続さ
れた過冷却膨張弁(21)とを有した過冷却回路(30)と
を備えたことを特徴とする冷媒回路。
7. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). Connect the discharge side of (5) to the outdoor heat exchanger (6),
A cooling position at which the suction side of the compressor (5) is connected to the indoor heat exchanger (1), and an indoor heat exchanger at the discharge side of the compressor (5).
(1) Connect the suction side of the compressor (5) to an outdoor heat exchanger
Four-way switching valve that can be switched to the heating position connected to (6)
(3), a second end (41B) is connected to the indoor heat exchanger (1), and a third end (8A-1) is provided at a predetermined location (8A-1) on the upper portion (8A) of the receiver (8).
The end (41C) is connected, the fourth end (41D) is connected to another portion (8A-2) of the upper portion (8A) of the receiver (8), and the fifth end (41) is connected to the outdoor heat exchanger (6). 41E), a first end (41A) is connected to the main expansion valve (10), and a capillary (42) connected between the second end (41B) and the third end (41C). ), The fourth end (41D) and the fifth end (41
E) and a capillary (43) connected between
Between the end (41E) and the first end (41A).
A) a check valve (28) connected in the forward direction from the fifth end (41E) to the first end (41A) and the second end.
(41B) between the first end (41A) and the second end (41
A rectifier circuit (41) having a check valve (25) connected in the forward direction toward B), and a compressor branched from an upstream side of the main expansion valve (10).
A supercooling heat exchanger (15) connected to the suction side of (5) for cooling the refrigerant flowing from the receiver (8) to the main expansion valve (10), and an upstream of the supercooling heat exchanger (15) And a supercooling circuit (30) having a supercooling expansion valve (21) connected to the refrigerant circuit.
【請求項8】 請求項6または7に記載の冷媒回路にお
いて、 上記レシーバ(8)上部(8A)と上記過冷却熱交換器(1
5)の下流側とを連絡する連絡キャピラリ(51)を備え
たことを特徴とする冷媒回路。
8. The refrigerant circuit according to claim 6, wherein an upper portion (8A) of the receiver (8) and the subcooling heat exchanger (1) are provided.
5) A refrigerant circuit comprising a communication capillary (51) for communicating with the downstream side of (5).
【請求項9】 室内熱交換器(1),圧縮機(5),室外熱
交換器(6),レシーバ(8),主膨張弁(10)を接続する
冷媒回路であって、 上記レシーバ(8)の上部(8A)と上記主膨張弁(10)の
下流側とを連結するキャピラリ(20)を備え、 上記レシーバ(8)から上記主膨張弁(10)に流れる冷媒
を冷やす過冷却熱交換器(15)とこの過冷却熱交換器
(15)の上流側に接続された過冷却膨張弁(21)とを有
した過冷却回路(30)が、上記主膨張弁(10)の上流側
から分岐して上記圧縮機(5)の吸入側に接続されている
ことを特徴とする冷媒回路。
9. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). 8) a capillary (20) connecting the upper part (8A) of the main expansion valve (10) and the downstream side of the main expansion valve (10), and supercooling heat for cooling the refrigerant flowing from the receiver (8) to the main expansion valve (10). Exchanger (15) and this subcooling heat exchanger
A supercooling circuit (30) having a supercooling expansion valve (21) connected to the upstream side of (15) branches off from the upstream side of the main expansion valve (10) and is connected to the compressor (5). A refrigerant circuit connected to the suction side.
【請求項10】 室内熱交換器(1),圧縮機(5),室外
熱交換器(6),レシーバ(8),主膨張弁(10)を接続す
る冷媒回路であって、 上記レシーバ(8)から上記主膨張弁(10)に流れる冷媒
を冷やす過冷却熱交換器(15)とこの過冷却熱交換器
(15)の上流側に接続された過冷却膨張弁(21)とを有
した過冷却回路(30)が、上記主膨張弁(10)の上流側
から分岐して上記圧縮機(5)の吸入側に接続されてい
て、 上記レシーバ(8)の上部(8A)を、上記過冷却膨張弁
(21)と上記過冷却熱交換器(15)との間に連結する連
絡キャピラリ(61)とを備えたことを特徴とする冷媒回
路。
10. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). 8) a subcooling heat exchanger (15) for cooling the refrigerant flowing from the main expansion valve (10) to the main expansion valve (10);
A supercooling circuit (30) having a supercooling expansion valve (21) connected to the upstream side of (15) branches off from the upstream side of the main expansion valve (10) and is connected to the compressor (5). The upper part (8A) of the receiver (8) connected to the suction side is connected to the supercooling expansion valve.
A refrigerant circuit comprising a communication capillary (61) connected between the supercooling heat exchanger (15) and the supercooling heat exchanger (15).
【請求項11】 室内熱交換器(1),圧縮機(5),室外
熱交換器(6),レシーバ(8),主膨張弁(10)を接続す
る冷媒回路であって、 上記レシーバ(8)から上記主膨張弁(10)に流れる冷媒
を冷やす過冷却熱交換器(15)とこの過冷却熱交換器
(15)の上流側に接続された過冷却膨張弁(21)とを有
した過冷却回路(30)が、上記主膨張弁(10)の下流側
から分岐して上記圧縮機(5)の吸入側に接続されてい
て、 上記レシーバ(8)の上部(8A)を、上記過冷却膨張弁
(21)と上記過冷却熱交換器(15)との間に連結する連
絡キャピラリ(61)とを備えたことを特徴とする冷媒回
路。
11. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). 8) a subcooling heat exchanger (15) for cooling the refrigerant flowing from the main expansion valve (10) to the main expansion valve (10);
A supercooling circuit (30) having a supercooling expansion valve (21) connected to the upstream side of (15) branches off from the downstream side of the main expansion valve (10) and is connected to the compressor (5). The upper part (8A) of the receiver (8) connected to the suction side is connected to the supercooling expansion valve.
A refrigerant circuit comprising a communication capillary (61) connected between the supercooling heat exchanger (15) and the supercooling heat exchanger (15).
【請求項12】 室内熱交換器(1),圧縮機(5),室外
熱交換器(6),レシーバ(8),主膨張弁(10)を接続す
る冷媒回路であって、 上記レシーバ(8)から上記主膨張弁(10)に流れる冷媒
を冷やす過冷却熱交換器(15)とこの過冷却熱交換器
(15)の上流側に接続された過冷却膨張弁(21)とを有
した過冷却回路(30)が、上記主膨張弁(10)の下流側
から分岐して上記圧縮機(5)の吸入側に接続されてい
て、 上記レシーバ(8)の上部(8A)を、上記過冷却熱交換器
(15)の下流側に連結する連絡キャピラリ(51)を備え
たことを特徴とする冷媒回路。
12. A refrigerant circuit for connecting an indoor heat exchanger (1), a compressor (5), an outdoor heat exchanger (6), a receiver (8), and a main expansion valve (10). 8) a subcooling heat exchanger (15) for cooling the refrigerant flowing from the main expansion valve (10) to the main expansion valve (10);
A supercooling circuit (30) having a supercooling expansion valve (21) connected to the upstream side of (15) branches off from the downstream side of the main expansion valve (10) and is connected to the compressor (5). The upper part (8A) of the receiver (8) connected to the suction side is connected to the subcooling heat exchanger.
A refrigerant circuit comprising a communication capillary (51) connected downstream of (15).
JP28840397A 1997-10-21 1997-10-21 Refrigerant circuit Expired - Fee Related JP4035871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28840397A JP4035871B2 (en) 1997-10-21 1997-10-21 Refrigerant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28840397A JP4035871B2 (en) 1997-10-21 1997-10-21 Refrigerant circuit

Publications (2)

Publication Number Publication Date
JPH11118266A true JPH11118266A (en) 1999-04-30
JP4035871B2 JP4035871B2 (en) 2008-01-23

Family

ID=17729765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28840397A Expired - Fee Related JP4035871B2 (en) 1997-10-21 1997-10-21 Refrigerant circuit

Country Status (1)

Country Link
JP (1) JP4035871B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074991A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating unit
WO2004013549A1 (en) * 2002-08-02 2004-02-12 Daikin Industries, Ltd. Refrigeration equipment
EP1582827A1 (en) * 2003-01-10 2005-10-05 Daikin Industries, Ltd. Refrigeration system and method for detecting quantity of refrigerant of refrigeration system
JP2007139257A (en) * 2005-11-16 2007-06-07 Fujitsu General Ltd Refrigeration device
WO2007102463A1 (en) * 2006-03-06 2007-09-13 Daikin Industries, Ltd. Refrigeration device
WO2007148727A1 (en) * 2006-06-21 2007-12-27 Daikin Industries, Ltd. Refrigeration device
JP2009222348A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
EP2233860A1 (en) * 2007-12-07 2010-09-29 Mitsubishi Heavy Industries, Ltd. Refrigerant circuit
EP2320161A1 (en) * 2002-11-22 2011-05-11 Daikin Industries, Ltd. Air conditioner
JP2012107858A (en) * 2012-01-30 2012-06-07 Daikin Industries Ltd Refrigerating device
JPWO2010086954A1 (en) * 2009-01-27 2012-07-26 三菱電機株式会社 Air conditioner and refrigerating machine oil return method
CN103090579A (en) * 2011-10-31 2013-05-08 中国科学院理化技术研究所 Air conditioner heat pump system of electric automobile
CN103147983A (en) * 2011-12-07 2013-06-12 中国科学院理化技术研究所 Scroll compressor with middle air supplement function
JP2014194313A (en) * 2013-03-29 2014-10-09 Fujitsu General Ltd Refrigeration cycle device
WO2015053168A1 (en) * 2013-10-07 2015-04-16 ダイキン工業株式会社 Refrigeration device
JP2015083894A (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration unit
CN105135760A (en) * 2015-09-28 2015-12-09 江苏宝奥兰空调设备有限公司 Refrigerating system and control method
CN105588361A (en) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system
WO2020130756A1 (en) 2018-12-21 2020-06-25 Samsung Electronics Co., Ltd. Air conditioner
JP2020101324A (en) * 2018-12-21 2020-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
CN114322369A (en) * 2021-12-17 2022-04-12 深圳市深蓝电子股份有限公司 Air source heat pump system, control method, computer device and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101413421B1 (en) * 2014-01-28 2014-07-01 주식회사삼원기연 Energy saving freezer and refrigerator by supplying supercooled refrigerant

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074991A (en) * 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating unit
US7171825B2 (en) 2002-08-02 2007-02-06 Daikin Industries, Ltd. Refrigeration equipment
WO2004013549A1 (en) * 2002-08-02 2004-02-12 Daikin Industries, Ltd. Refrigeration equipment
AU2003281797B2 (en) * 2002-08-02 2005-12-22 Daikin Industries, Ltd. Refrigeration equipment
EP2320161A1 (en) * 2002-11-22 2011-05-11 Daikin Industries, Ltd. Air conditioner
EP1582827A4 (en) * 2003-01-10 2006-08-02 Daikin Ind Ltd Refrigeration system and method for detecting quantity of refrigerant of refrigeration system
CN100350201C (en) * 2003-01-10 2007-11-21 大金工业株式会社 Refrigeration system and method for detecting quantity of refrigerant of refrigeration system
EP1582827A1 (en) * 2003-01-10 2005-10-05 Daikin Industries, Ltd. Refrigeration system and method for detecting quantity of refrigerant of refrigeration system
US7506518B2 (en) 2003-01-10 2009-03-24 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
US7647784B2 (en) 2003-01-10 2010-01-19 Daikin Industries, Ltd. Refrigeration device and method for detecting refrigerant amount of refrigeration device
JP2007139257A (en) * 2005-11-16 2007-06-07 Fujitsu General Ltd Refrigeration device
WO2007102463A1 (en) * 2006-03-06 2007-09-13 Daikin Industries, Ltd. Refrigeration device
JP2007240026A (en) * 2006-03-06 2007-09-20 Daikin Ind Ltd Refrigerating device
JP4715561B2 (en) * 2006-03-06 2011-07-06 ダイキン工業株式会社 Refrigeration equipment
AU2007223486B2 (en) * 2006-03-06 2010-03-04 Daikin Industries, Ltd. Refrigeration system
KR100960196B1 (en) 2006-03-06 2010-05-27 다이킨 고교 가부시키가이샤 Refrigeration device
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
US8166771B2 (en) 2006-06-21 2012-05-01 Daikin Industries, Ltd. Refrigeration system
AU2007262044B2 (en) * 2006-06-21 2010-09-16 Daikin Industries, Ltd. Refrigeration system
EP2034255A4 (en) * 2006-06-21 2014-08-20 Daikin Ind Ltd Refrigeration device
EP2034255A1 (en) * 2006-06-21 2009-03-11 Daikin Industries, Ltd. Refrigeration device
KR101044464B1 (en) * 2006-06-21 2011-06-27 다이킨 고교 가부시키가이샤 Refrigeration device
WO2007148727A1 (en) * 2006-06-21 2007-12-27 Daikin Industries, Ltd. Refrigeration device
EP2233860A4 (en) * 2007-12-07 2013-12-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
EP2233860A1 (en) * 2007-12-07 2010-09-29 Mitsubishi Heavy Industries, Ltd. Refrigerant circuit
JP2009222348A (en) * 2008-03-18 2009-10-01 Daikin Ind Ltd Refrigerating device
US9115917B2 (en) 2009-01-27 2015-08-25 Mitsubishi Electric Corporation Air-conditioner and method of returning and cooling compressor oil
JPWO2010086954A1 (en) * 2009-01-27 2012-07-26 三菱電機株式会社 Air conditioner and refrigerating machine oil return method
CN103090579A (en) * 2011-10-31 2013-05-08 中国科学院理化技术研究所 Air conditioner heat pump system of electric automobile
CN103147983A (en) * 2011-12-07 2013-06-12 中国科学院理化技术研究所 Scroll compressor with middle air supplement function
JP2012107858A (en) * 2012-01-30 2012-06-07 Daikin Industries Ltd Refrigerating device
JP2014194313A (en) * 2013-03-29 2014-10-09 Fujitsu General Ltd Refrigeration cycle device
WO2015053168A1 (en) * 2013-10-07 2015-04-16 ダイキン工業株式会社 Refrigeration device
US9733000B2 (en) 2013-10-07 2017-08-15 Daikin Industries, Ltd. Refrigeration apparatus
JP2015096799A (en) * 2013-10-07 2015-05-21 ダイキン工業株式会社 Refrigeration device
CN105637304A (en) * 2013-10-07 2016-06-01 大金工业株式会社 Refrigeration device
AU2014333021B2 (en) * 2013-10-07 2016-06-16 Daikin Industries, Ltd. Refrigeration apparatus
CN105637304B (en) * 2013-10-07 2017-04-05 大金工业株式会社 Refrigerating plant
JP2015083894A (en) * 2013-10-25 2015-04-30 ダイキン工業株式会社 Refrigeration unit
CN105135760A (en) * 2015-09-28 2015-12-09 江苏宝奥兰空调设备有限公司 Refrigerating system and control method
CN105588361A (en) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system
WO2020130756A1 (en) 2018-12-21 2020-06-25 Samsung Electronics Co., Ltd. Air conditioner
JP2020101324A (en) * 2018-12-21 2020-07-02 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
EP3870910A4 (en) * 2018-12-21 2022-03-23 Samsung Electronics Co., Ltd. Air conditioner
US11473816B2 (en) 2018-12-21 2022-10-18 Samsung Electronics Co., Ltd. Air conditioner
CN114322369A (en) * 2021-12-17 2022-04-12 深圳市深蓝电子股份有限公司 Air source heat pump system, control method, computer device and storage medium
CN114322369B (en) * 2021-12-17 2024-03-12 深圳市深蓝电子股份有限公司 Air source heat pump system, control method, computer device, and storage medium

Also Published As

Publication number Publication date
JP4035871B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JPH11118266A (en) Refrigerant circuit
US20240085044A1 (en) Air-conditioning apparatus
EP0976994B1 (en) Refrigerator and method of filling it with coolant
RU2432532C2 (en) Procedure for control of refrigerator and refrigerator with time delay of compressor turning on
JP2005214575A (en) Refrigerator
JP3228892B2 (en) Refrigeration equipment
JPH10227533A (en) Air-conditioner
JP2004020070A (en) Heat pump type cold-hot water heater
JP4090240B2 (en) Cooling system
JPH07190515A (en) Freezer
JP2005214442A (en) Refrigerator
JPH10220880A (en) Air conditioner
JPH07332814A (en) Heat pump system
JP3070223B2 (en) Refrigerant heating air conditioner
JP2002364937A (en) Refrigerator
JP2001021242A (en) Refrigerator
JP4153203B2 (en) Cooling system
JP3783153B2 (en) Air conditioner
JPH11294904A (en) Lubricant discharge control device of refrigeration cycle
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JP2001280768A (en) Refrigerator
JPH05288410A (en) Freezer device
JP4023385B2 (en) Refrigeration equipment
JPH0285660A (en) Heat pump type air conditioner
JPH1038389A (en) Freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Effective date: 20070618

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071009

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071022

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101109

LAPS Cancellation because of no payment of annual fees