JPH0285660A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH0285660A
JPH0285660A JP23525788A JP23525788A JPH0285660A JP H0285660 A JPH0285660 A JP H0285660A JP 23525788 A JP23525788 A JP 23525788A JP 23525788 A JP23525788 A JP 23525788A JP H0285660 A JPH0285660 A JP H0285660A
Authority
JP
Japan
Prior art keywords
way valve
compressor
storage tank
heat storage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23525788A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatta
八田 博司
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP23525788A priority Critical patent/JPH0285660A/en
Publication of JPH0285660A publication Critical patent/JPH0285660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent a damage of the compressor by providing a means for controlling cross valves by which, during the defrosting, the refrigerant flowing out of an accumula tor is passed into an oil separator with heat storage tank and, after that, the refriger ant is sent through an oil return pipe to the compressor and by providing also a means for controlling oil return with a large valve opening for the return oil. CONSTITUTION:During the defrosting in the heating operation, the refrigerant gas compressed to a high temperature and high pressure by a compressor 1 does not enter an oil separator with heat storage tank 2 but flows through a first cross valve 8, bypass 31, line 33, four-way valve 3, and line 24 and into an indoor heat exchanger 6 where the refrigerant is liquefied by condensation. The refrigerant than flows through a fully opened expansion valve 5 and into an outdoor heat exchanger 4 which is thereby defrosted. The refrigerant next flows through a four-way valve 3, line 34, accumulator 7, line 30, third cross valve 10, bypass 28, and second cross valve 9 and into an oil separator with heat storage tank 2. The heat stored in the heat storage vessel 11 is then used to augment the dryness of the refrigerant, which, after being evaporated completely thereby, flows through an oil return pipe 32 and returns to the compressor 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房運転を継続しながら室外熱交換器の除霜
を行なう機能を備えたヒートポンプ式空気調和機に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner having a function of defrosting an outdoor heat exchanger while continuing heating operation.

従来の技術 近年、ヒートポンプ式空気調和機は、暖房運転時、室外
熱交換器に生ずる霜を除去する際、暖房室内の快適性を
維持するために、暖房α転を継続しながら室外熱交換器
の除霜を行なう方式が採用されている。
Conventional technology In recent years, heat pump type air conditioners have been developed to remove frost that forms on the outdoor heat exchanger during heating operation. A method of defrosting is adopted.

以下図面を参照しながら上述した従来のと一トボンブ式
空気調和機の一例について説明する。
An example of the above-mentioned conventional double bomb type air conditioner will be described below with reference to the drawings.

第3図は従来のヒートポンプ式空気調和機の冷凍サイク
ル図である。
FIG. 3 is a refrigeration cycle diagram of a conventional heat pump type air conditioner.

1は圧縮機、2は油分離器、3は冷のサイクル・暖房サ
イクルを切替える四方弁、4は冷房運転時凝縮器として
作用する室外熱交換器、5は膨張弁、6は冷房運転時蒸
発器として作用する室内熱交換器、7はアキュムレータ
で、これらを配管21゜33.24.25.26.27
.34.30にて、環状に接続して、冷凍サイクルを構
成している。
1 is a compressor, 2 is an oil separator, 3 is a four-way valve that switches between cooling and heating cycles, 4 is an outdoor heat exchanger that acts as a condenser during cooling operation, 5 is an expansion valve, and 6 is evaporation during cooling operation. 7 is an accumulator, which is connected to piping 21゜33.24.25.26.27
.. At 34.30, they are connected in a ring to form a refrigeration cycle.

32は油分離器2と圧縮機1の吸入側の配管30を接続
する配管で、間にオイル戻し弁12を介している。
32 is a pipe connecting the oil separator 2 and the suction side pipe 30 of the compressor 1, with an oil return valve 12 interposed therebetween.

13は暖房時、蒸発器となる室外熱交換器4の出口に設
けられた圧力センサーで、設定圧力以下になると除霜運
転検知手段41で除霜するかどうか判定する。42は膨
張弁制御手段で膨張弁5を制御、43はオイル戻し弁制
御手段でオイル戻し弁12を制御している。
A pressure sensor 13 is installed at the outlet of the outdoor heat exchanger 4 which serves as an evaporator during heating, and when the pressure falls below a set pressure, a defrosting operation detection means 41 determines whether defrosting is to be performed. 42 is an expansion valve control means for controlling the expansion valve 5, and 43 is an oil return valve control means for controlling the oil return valve 12.

以上のように構成されたヒートポンプ式空気調和機につ
いて、以下その動作について説明する。
The operation of the heat pump air conditioner configured as above will be described below.

冷房運転時は、圧縮機1で圧縮された高温、高圧の冷媒
ガスは、油分離器2.四方弁3を通り、室外熱交換器4
で放熱し凝縮液化する。更に膨張弁6にて、断熱膨張し
て、低温、低圧の気液二相の冷媒となり、室内熱交換器
6で吸熱し蒸発・ガス化してアキュムレータ7に至り、
圧縮機1に戻るサイクルを繰り返す。
During cooling operation, the high temperature, high pressure refrigerant gas compressed by the compressor 1 is passed through the oil separator 2. Passes through the four-way valve 3 and enters the outdoor heat exchanger 4
It radiates heat and condenses into liquid. It further expands adiabatically in the expansion valve 6 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, absorbs heat in the indoor heat exchanger 6, evaporates and gasifies, and reaches the accumulator 7.
Return to compressor 1 and repeat the cycle.

暖房運転時は、圧縮機1で圧縮された高温、高圧の冷媒
ガスは油分離器2.四方弁3を通り、室内熱交換器6で
凝縮液化する。更に膨張弁6にて、断熱膨張して、低温
、低圧の気液二相の冷媒となり、室外熱交換器4で吸熱
し、蒸発・ガス化してアキュムレータ7に至り、圧縮機
1に戻るサイクルを繰り返す。
During heating operation, the high temperature, high pressure refrigerant gas compressed by the compressor 1 is passed through the oil separator 2. It passes through a four-way valve 3 and is condensed and liquefied in an indoor heat exchanger 6. The refrigerant then expands adiabatically in the expansion valve 6 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, absorbs heat in the outdoor heat exchanger 4, evaporates and gasifies, reaches the accumulator 7, and returns to the compressor 1. repeat.

圧縮機1から冷媒と共に吐出される冷#機油は油分離器
2にて、分離され、分離された冷凍機油は、配管32を
通りオイル戻し弁12で減圧され、配管3oに導出され
、圧縮機1に戻される。
The cold machine oil discharged together with the refrigerant from the compressor 1 is separated in the oil separator 2, and the separated refrigerating machine oil passes through the pipe 32, is depressurized by the oil return valve 12, is led out to the pipe 3o, and is sent to the compressor. It is returned to 1.

次に暖房時の除霜運転の制御について第4図のフローチ
ャートも参照しながら説明する。
Next, the control of the defrosting operation during heating will be explained with reference to the flowchart of FIG. 4.

ステップ61で、圧力センサー13が検知した蒸発器出
口圧力が設定値以下になっているかどうか検知し、ステ
ップ62で、除霜運転をす乙かどうか判定する。除霜運
転をすると判定した場合、ステップ63にて膨張弁6の
開度を全開に設定・制御し、ステップ64でオイル戻し
弁12の開度を最適に設定・制御する。
In step 61, it is detected whether the evaporator outlet pressure detected by the pressure sensor 13 is below a set value, and in step 62, it is determined whether defrosting operation is to be performed. When it is determined that the defrosting operation is to be performed, the opening degree of the expansion valve 6 is set and controlled to be fully open in step 63, and the opening degree of the oil return valve 12 is optimally set and controlled in step 64.

以上の制御により、蒸発圧力が上昇し、室外熱交換′a
4に付着した霜を除去することが可能となる。
With the above control, the evaporation pressure increases and the outdoor heat exchange 'a
It becomes possible to remove the frost that has adhered to 4.

発明が解決しようとする課題 しかしながら上記のような構成では、除霜運転時に、膨
張弁の開度を大きくとるために、室外熱交換器で蒸発す
ることが出来なかった大量の液冷媒が圧縮機に戻るため
、液圧縮が起こり易くなり、最悪の場合、圧縮機が停止
したり、破損するという課題を有していた。
Problems to be Solved by the Invention However, with the above configuration, during defrosting operation, the opening degree of the expansion valve is increased, so a large amount of liquid refrigerant that could not be evaporated in the outdoor heat exchanger is transferred to the compressor. As a result, liquid compression is likely to occur, and in the worst case, the compressor may stop or be damaged.

本発明は上記課題に鑑み、除霜運転時に室外熱交換器で
蒸発することが出来なかった液冷媒が圧縮機に戻ること
を抑制する機能を備えたヒートポンプ式空気調和機を提
供するものである。
In view of the above-mentioned problems, the present invention provides a heat pump air conditioner having a function of suppressing liquid refrigerant that could not be evaporated in the outdoor heat exchanger from returning to the compressor during defrosting operation. .

課題を解決するだめの手段 上記課題を解決するために本発明のヒートポンプ式空気
調和機は圧縮機と、蓄熱槽付油分離器の間に設置した第
1三方弁、蓄熱槽付油分離器の出口に設置した第2三方
弁、アキュムレータと圧縮機の間に設置した第3三方弁
と、第1三方弁と四方弁の入口を結ぶバイパス回路、第
2三方弁と第3三方弁を結ぶバイパス回路と、蓄熱槽付
油分離器と圧縮機の吸入側の配管をオイル戻し弁を介し
て結ぶオイル戻し用配管を設け、暖房時の除霜時に蓄熱
槽付油分離器にアキュムレータより導出する冷媒を通し
た後にオイル戻し用配管を経て圧縮機に導出する三方弁
制御手段と、オイル戻し弁の開度を大きく設定するオイ
ル戻し制御手段を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention has a first three-way valve installed between the compressor and the oil separator with a heat storage tank, and a first three-way valve installed between the oil separator with a heat storage tank. A second three-way valve installed at the outlet, a third three-way valve installed between the accumulator and compressor, a bypass circuit connecting the first three-way valve and the inlet of the four-way valve, and a bypass connecting the second three-way valve and the third three-way valve. An oil return pipe is installed to connect the circuit, the oil separator with heat storage tank, and the piping on the suction side of the compressor via an oil return valve, and the refrigerant is drawn out from the accumulator to the oil separator with heat storage tank during defrosting during heating. The system is equipped with a three-way valve control means for guiding the oil through the oil return pipe to the compressor, and an oil return control means for setting the opening degree of the oil return valve to a large degree.

作  用 本発明は上記した構成によって、通常の冷暖房゛運転時
には、圧縮機より吐出される冷媒を蓄熱槽付油分離器を
介し蓄熱槽に伝熱的に熱量を与えた後に室内熱交換器に
導入するように第1三方弁及び第2三方弁を設定しかつ
アキュムレータより導出される冷媒を圧縮機の吸入側に
導入するように第3三方弁を設定し、暖房時の除霜運転
時は、圧縮機より吐出される冷媒を蓄熱槽付油分離器を
介さずに直接、室内熱交換器に導入するように第1三方
弁を切換えかつアキュムレータより導出される冷媒を蓄
熱槽付油分離器に導入した後に圧縮機の吸入側に導入す
るように第2三方弁、第3三方弁を設定することにより
通常の暖房運転時は蓄熱(曹付油分離器の蓄熱槽に熱が
貯められ、除霜運転時に、蓄熱槽内の熱が、アキュムレ
ータから流出する冷媒の乾き度を上げるのに使われるた
め液圧縮が起こりにくくなり圧縮機の信頼性が向上する
According to the above-described configuration, the present invention provides heat transfer to the refrigerant discharged from the compressor through the oil separator with heat storage tank to the heat storage tank during normal air-conditioning/heating operation, and then transfers the heat to the indoor heat exchanger. The first three-way valve and the second three-way valve are set to introduce the refrigerant into the suction side of the compressor, and the third three-way valve is set to introduce the refrigerant drawn out from the accumulator into the suction side of the compressor. , the first three-way valve is switched so that the refrigerant discharged from the compressor is directly introduced into the indoor heat exchanger without passing through the oil separator with a heat storage tank, and the refrigerant discharged from the accumulator is introduced into the oil separator with a heat storage tank. By setting the second three-way valve and the third three-way valve so that the heat is introduced into the suction side of the compressor after being introduced into During defrosting operation, the heat in the heat storage tank is used to increase the dryness of the refrigerant flowing out of the accumulator, making it difficult for liquid compression to occur and improving the reliability of the compressor.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて図面を参照しながら説明する。第1図は本発明の実
施例におけるヒートポンプ式空気調和機の冷凍サイクル
図とブロック図で、冷凍サイクルの構成については、第
3図の従来例と同一あるいは同等部分については、同一
の記号で示しているので特にここでは、従来例に更に付
は加えた構成について詳しく説明することにする。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings. Fig. 1 is a refrigeration cycle diagram and a block diagram of a heat pump type air conditioner according to an embodiment of the present invention. Regarding the configuration of the refrigeration cycle, the same or equivalent parts as in the conventional example shown in Fig. 3 are indicated by the same symbols. Therefore, here, we will specifically explain in detail the configuration with additional additions to the conventional example.

8は第1三方弁で、圧縮機1と蓄熱槽付油分離器2の間
に設置しており、四方弁3の入口の配管33とをバイパ
ス回路31にて接続している。9は第2三方弁で、蓄熱
槽付油分離器2とアキュムレータの出口の配管30.四
方弁3の入口の配管33をそれぞれ配管23.バイパス
回路2日にて接続している。10は第3三方弁で第2三
方弁とはバイパス回路28.アキュムV−夕7とは配管
30、圧縮機1とは配管36で接続している。11は蓄
熱槽で、14は蓄熱槽をおおう断熱槽である。
A first three-way valve 8 is installed between the compressor 1 and the oil separator 2 with a heat storage tank, and is connected to a pipe 33 at the inlet of the four-way valve 3 through a bypass circuit 31. 9 is a second three-way valve, which connects the oil separator with heat storage tank 2 and the outlet piping 30 of the accumulator. The inlet piping 33 of the four-way valve 3 is connected to the piping 23. The bypass circuit was connected on the 2nd day. 10 is a third three-way valve, and the second three-way valve is a bypass circuit 28. It is connected to the accumulator V-7 by a pipe 30 and to the compressor 1 by a pipe 36. 11 is a heat storage tank, and 14 is a heat insulation tank that covers the heat storage tank.

44は第1三方弁8.第2三方弁9.第3三方弁10を
制御する三方弁制御手段である。
44 is the first three-way valve 8. Second three-way valve9. This is a three-way valve control means that controls the third three-way valve 10.

以上のように構成されたヒートポンプ式空気調和機につ
いて、冷房時、暖房時の動作を説明する。
The operation of the heat pump air conditioner configured as described above during cooling and heating will be explained.

冷房時は、圧縮機1で圧縮された高温高圧の冷媒ガスは
、配管21.第1三方弁8.配管22を通り蓄熱槽付油
分離器2に入り、蓄熱槽11に伝熱的に熱量を与えまた
冷媒と共に吐出された冷凍機油を分離する。次に冷媒ガ
スは第2三方弁9゜配管23.配管33.四方弁3.配
管27を通9室外熱交換器4で放熱して凝縮・液化する
。更に減圧装置5にて、断熱膨張して、低温、低圧の気
液二相の冷媒となり、室内熱交換器6で吸熱し蒸発・ガ
ス化して、配管24.四方弁3.配管34を経てアキュ
ムレータ7に至り、圧縮機1に戻るサイクルを繰り返す
During cooling, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 is transferred to the pipe 21. First three-way valve8. The oil passes through the pipe 22 and enters the oil separator 2 with a heat storage tank, transfers heat to the heat storage tank 11, and separates the refrigerating machine oil discharged together with the refrigerant. Next, the refrigerant gas is transferred to the second three-way valve 9° pipe 23. Piping 33. Four-way valve 3. The heat is radiated through the pipe 27 and is condensed and liquefied by the outdoor heat exchanger 4. Furthermore, it undergoes adiabatic expansion in the pressure reducing device 5 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, which absorbs heat in the indoor heat exchanger 6 and is evaporated and gasified to the pipe 24. Four-way valve 3. The cycle of reaching the accumulator 7 via the pipe 34 and returning to the compressor 1 is repeated.

暖房時、圧縮機1で圧縮された高温高圧の冷媒ガスは配
管21.第1三方弁8.配管22を通り蓄熱槽付油分離
器2に入り、蓄熱槽11に伝熱的に熱量を与えまだ冷媒
と共に吐出された冷凍機油を分離する。次に冷媒ガスは
第2三方弁9.配管23、配管33.四方弁3.配管2
4f、通り室内熱交換器6で凝縮液化する。更に減圧装
置6にて、断熱膨張して、低温、低圧の気液二相の冷媒
となり、室外熱交換器4で吸熱し、蒸発・ガス化して配
管27.四方弁3を通りアキュムレータ7に至り、圧縮
機1に戻るサイクルを繰り返す。
During heating, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 is passed through the pipe 21. First three-way valve8. The oil passes through the pipe 22 and enters the oil separator 2 with a heat storage tank, transfers heat to the heat storage tank 11, and separates the refrigerating machine oil discharged together with the refrigerant. Next, the refrigerant gas is supplied to the second three-way valve 9. Piping 23, piping 33. Four-way valve 3. Piping 2
4f, it is condensed and liquefied in the indoor heat exchanger 6. Furthermore, it undergoes adiabatic expansion in the pressure reducing device 6 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, which absorbs heat in the outdoor heat exchanger 4 and is evaporated and gasified to the piping 27. The cycle of passing through the four-way valve 3 to the accumulator 7 and returning to the compressor 1 is repeated.

蓄熱槽付油分離器2で分離されたオイルは、配管32.
オイル戻し弁12を通り圧縮機1に戻される。
The oil separated by the oil separator 2 with a heat storage tank is transferred to the pipe 32.
The oil is returned to the compressor 1 through the oil return valve 12.

暖房時の除霜運転時は、圧縮機1にて圧縮された高温高
圧の冷媒ガスは、蓄熱槽付油分離器2に入らずに、第1
三方弁8.バイパス回路31.配管33.四方弁3.配
管24を通って、室内熱交換器6にて凝縮・液化する。
During defrosting operation during heating, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 does not enter the oil separator with heat storage tank 2, but instead enters the first oil separator.
Three-way valve 8. Bypass circuit 31. Piping 33. Four-way valve 3. It passes through the pipe 24 and is condensed and liquefied in the indoor heat exchanger 6.

更に、全開に設定されている膨張弁6を通り、室外熱交
換器4に入り付着している霜を除去する。次に四方弁3
.配管34、アキュムレータ7、配管30.第3三方弁
10゜バイパス回路28.第2三方弁9を通り蓄熱槽付
油分離器2に入る。この時に、蓄熱槽11に貯められた
熱は、冷媒の乾き度の上昇に使われ、冷媒は、完全に蒸
発し、オイル戻し用配管32を経て圧縮@1に戻る。
Further, the air passes through the expansion valve 6, which is set to be fully open, and enters the outdoor heat exchanger 4 to remove adhering frost. Next, four-way valve 3
.. Piping 34, accumulator 7, piping 30. Third three-way valve 10° bypass circuit 28. It passes through the second three-way valve 9 and enters the oil separator 2 with a heat storage tank. At this time, the heat stored in the heat storage tank 11 is used to increase the degree of dryness of the refrigerant, and the refrigerant is completely evaporated and returned to compression@1 via the oil return pipe 32.

次に第2図のフローチャートも参照しながら除霜運転時
の膨張弁5.オイル戻し弁12、及び三方弁8,9.1
0の制御について、更に詳しく説明する。
Next, while referring to the flowchart in FIG. 2, the expansion valve 5 during defrosting operation will be explained. Oil return valve 12 and three-way valve 8, 9.1
0 control will be explained in more detail.

ステップ61で、圧力センサー13が検知した蒸発器出
口圧力が設定値以下になっているかどうか検知し、ステ
ップ62で、除霜運転をするかどうか判定する。除霜運
転をすると判定した場合、ステップ63にて膨張弁6の
開度を全開に設定・制御し、ステップ64でオイル戻し
弁12の開度を全開とし、それまでに蓄熱槽付油分離器
2に貯留[7−Cいるオイルを圧縮機1に全て戻す。次
に第1三方弁8.第2三方弁9.第3三方弁1oを、除
霜回路になるように、三方弁制御手段44にて制御する
In step 61, it is detected whether the evaporator outlet pressure detected by the pressure sensor 13 is below a set value, and in step 62, it is determined whether to perform defrosting operation. If it is determined that defrosting operation is to be performed, the opening degree of the expansion valve 6 is set and controlled to be fully open in step 63, and the opening degree of the oil return valve 12 is fully opened in step 64. Return all the oil stored in 2 [7-C to compressor 1. Next, the first three-way valve 8. Second three-way valve9. The third three-way valve 1o is controlled by the three-way valve control means 44 so as to function as a defrosting circuit.

以上のように本実施例によれは、圧縮機と蓄熱槽付油分
離器2の間に設置した第1三方弁8.蓄熱槽付油分離器
2の出口に設置した第2三方弁9゜アキュムレータ7と
圧縮機10間に設置した第3三方弁1oと第1三方弁8
と四方弁3の入口を結ぶバイパス回路、第2三方弁9と
第3三方弁1゜を結ぶバイパス回路28と蓄熱槽付油分
離器2と圧縮機1の吸入側の配管3oをオイル戻し弁1
2を介して結ぶオイル戻し用配管32を設け、暖房時の
除霜時に蓄熱槽付油分離器2にアキュムレータ7より導
出する冷媒を通した後にオイル戻し用配管32を経て圧
縮機1に導出する三方弁制御手段44とオイル戻し弁1
2の開度を全開に設定するオイル戻し弁制御手段43を
備えることにより、室外熱交換器4より流出する乾き度
の小さい冷媒を、蓄熱槽付油分離器2の蓄熱PB11に
貯められた熱により、乾き度を上昇させることができ、
液圧縮が起こりにくくなり圧縮機1の信頼性の向上をは
かることができる。
As described above, according to this embodiment, the first three-way valve 8 is installed between the compressor and the oil separator 2 with a heat storage tank. A second three-way valve 9° installed at the outlet of the oil separator 2 with a heat storage tank.A third three-way valve 1o and a first three-way valve 8 installed between the accumulator 7 and the compressor 10.
and the bypass circuit connecting the inlet of the four-way valve 3, the bypass circuit connecting the second three-way valve 9 and the third three-way valve 1°, the oil separator with heat storage tank 2, and the piping 3o on the suction side of the compressor 1 as an oil return valve. 1
An oil return pipe 32 is provided, which connects the refrigerant from the accumulator 7 to the oil separator 2 with a heat storage tank during defrosting during heating, and then leads the refrigerant to the compressor 1 through the oil return pipe 32. Three-way valve control means 44 and oil return valve 1
By providing the oil return valve control means 43 that sets the opening degree of the oil separator 2 to full open, the refrigerant having a low degree of dryness flowing out from the outdoor heat exchanger 4 is transferred to the heat stored in the heat storage PB11 of the oil separator 2 with a heat storage tank. The dryness can be increased by
Liquid compression is less likely to occur, and the reliability of the compressor 1 can be improved.

発明の効果 以上のように本発明は、圧縮機と蓄熱槽付油分離器の間
に設置した第1三方弁、蓄熱槽付油分離器の出口に設置
した第2三方弁、アキュムレータと圧縮機の間に設置し
た第3三方弁と、第1三方弁と四方弁の入口を結ぶパイ
パヌ回路、第2三方弁と第3三方弁を結ぶバイパス回路
と、蓄熱槽付油分離器と、圧縮機の吸入側の配管をオイ
ル戻し弁を介して結ぶオイル戻し用配管を設け、暖房時
の除霜時に蓄熱槽付油分離器にアキュムレータより導出
する冷媒を通した後にオイル戻し用配管を経て圧縮機に
導出する三方弁制御手段と、オイル戻し弁の開度を大き
く設定するオイル戻し弁制御手段を備えることにより、
通常の暖房運転時に蓄熱槽付油分離器に貯められた熱が
、除霜運転時、室外熱交換器から流出する冷媒の乾き度
を上げるのに使用され、液圧縮が起こりにくくなり圧縮
機の信頼性が向上する。
Effects of the Invention As described above, the present invention provides a first three-way valve installed between a compressor and an oil separator with a heat storage tank, a second three-way valve installed at the outlet of the oil separator with a heat storage tank, an accumulator and a compressor. A third three-way valve installed between the two, a Paipanu circuit that connects the inlets of the first three-way valve and the four-way valve, a bypass circuit that connects the second three-way valve and the third three-way valve, an oil separator with a heat storage tank, and a compressor. An oil return pipe is installed that connects the suction side pipe of the compressor via an oil return valve, and after passing the refrigerant drawn from the accumulator to the oil separator with a heat storage tank during defrosting during heating, the refrigerant is returned to the compressor via the oil return pipe. By providing a three-way valve control means for leading out the oil return valve, and an oil return valve control means for setting the opening degree of the oil return valve to a large value,
The heat stored in the oil separator with heat storage tank during normal heating operation is used to increase the dryness of the refrigerant flowing out from the outdoor heat exchanger during defrosting operation, making it difficult for liquid compression to occur and increasing the dryness of the compressor. Improved reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるヒートポンプ式空気調
和機の冷凍サイクル図、第2図は同フローチャート図、
第3図は従来例におけるヒートポンプ式空気調和機の冷
凍サイクル図、第4図は同フローチャート図である。 1・・・・・・圧縮機、2・・・・・・蓄熱槽付油分離
器、8・・・・・・第1三方弁、9・・・・・・第2三
方弁、10・・・・・・第3三方弁。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名ス一
  壬摘織 9−翼2三t、1? @ 2 図 第3図
FIG. 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, and FIG. 2 is a flowchart diagram of the same.
FIG. 3 is a refrigeration cycle diagram of a conventional heat pump air conditioner, and FIG. 4 is a flow chart thereof. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Oil separator with heat storage tank, 8... First three-way valve, 9... Second three-way valve, 10. ...Third three-way valve. Name of agent: Patent attorney Shigetaka Awano and one other person Suichi Jinzumiori 9-Tsubasa 23t, 1? @2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、蓄熱槽付油分離器、四方弁、室外熱交換器、膨
張弁、室内熱交換器とアキュムレータを環状に接続して
冷凍サイクルを構成し、前記圧縮機と前記蓄熱槽付油分
離器の間に設置した第1三方弁、前記蓄熱槽付油分離器
の出口に設置した第2三方弁、前記アキュムレータと前
記圧縮機の間に設置した第3三方弁と、前記第1三方弁
と前記四方弁の入口を結ぶバイパス回路、前記第2三方
弁と前記第3三方弁を結ぶバイパス回路と、前記蓄熱槽
付油分離器と前記圧縮機の吸入側の配管をオイル戻し弁
を介して結ぶオイル戻し用配管を設け、暖房時の除霜時
に前記蓄熱槽付油分離器に前記アキュムレータより導出
する冷媒を通した後に前記オイル戻し用配管を経て前記
圧縮機に導出する三方弁制御手段と、前記オイル戻し弁
の開度を大きく設定するオイル戻し弁制御手段を備えた
ことを特徴とするヒートポンプ式空気調和機。
A refrigeration cycle is constructed by connecting a compressor, an oil separator with a heat storage tank, a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, and an accumulator in a ring, and the compressor and the oil separator with a heat storage tank are connected in a ring. a first three-way valve installed between the two, a second three-way valve installed at the outlet of the oil separator with a heat storage tank, a third three-way valve installed between the accumulator and the compressor, and the first three-way valve. A bypass circuit connecting the inlet of the four-way valve, a bypass circuit connecting the second three-way valve and the third three-way valve, and piping on the suction side of the oil separator with a heat storage tank and the compressor are connected through an oil return valve. A three-way valve control means is provided with an oil return pipe connecting the refrigerant to the compressor via the oil return pipe after passing the refrigerant drawn from the accumulator to the oil separator with a heat storage tank during defrosting during heating. . A heat pump type air conditioner, comprising: an oil return valve control means for setting a large opening degree of the oil return valve.
JP23525788A 1988-09-20 1988-09-20 Heat pump type air conditioner Pending JPH0285660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23525788A JPH0285660A (en) 1988-09-20 1988-09-20 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23525788A JPH0285660A (en) 1988-09-20 1988-09-20 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH0285660A true JPH0285660A (en) 1990-03-27

Family

ID=16983403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23525788A Pending JPH0285660A (en) 1988-09-20 1988-09-20 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0285660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867469B1 (en) * 2005-12-20 2008-11-06 룽-탄 후 Multi-range indoor air-conditioning heating system and ventilation control system and the energy-efficient control method of the same
CN104101127A (en) * 2013-04-01 2014-10-15 珠海格力电器股份有限公司 VRV (Varied Refrigerant Volume) air conditioning system and VRV air conditioning defrosting control method
WO2018198220A1 (en) * 2017-04-26 2018-11-01 三菱電機株式会社 Refrigerating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867469B1 (en) * 2005-12-20 2008-11-06 룽-탄 후 Multi-range indoor air-conditioning heating system and ventilation control system and the energy-efficient control method of the same
CN104101127A (en) * 2013-04-01 2014-10-15 珠海格力电器股份有限公司 VRV (Varied Refrigerant Volume) air conditioning system and VRV air conditioning defrosting control method
WO2018198220A1 (en) * 2017-04-26 2018-11-01 三菱電機株式会社 Refrigerating device
JPWO2018198220A1 (en) * 2017-04-26 2019-06-27 三菱電機株式会社 Refrigeration system

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
EP3093586B1 (en) Air conditioning device
US20190154320A1 (en) Exhaust heat recovery type of air-conditioning apparatus
JP3882056B2 (en) Refrigeration air conditioner
JP2002188873A (en) Refrigerating equipment of air conditioner
JPH10205933A (en) Air conditioner
JP3650088B2 (en) Heat pump equipment
JPH0285660A (en) Heat pump type air conditioner
JPH04324075A (en) Air conditioning apparatus
KR20220045359A (en) Multi-air conditioner for heating and cooling operations
JPH078999Y2 (en) Air source heat pump
KR102313304B1 (en) Air conditioner for carbon dioxide
CN113685916A (en) Air conditioning system and control method thereof
JP2765970B2 (en) Air conditioner
JPH0282060A (en) Heat pump type air conditioner
JP2002213839A (en) Multichamber air conditioner
JPH03170758A (en) Air conditioner
JP3407867B2 (en) Operation control method of air conditioner
JPH0282057A (en) Heat pump type air conditioner
JP2001280729A (en) Refrigerating device
JPH086203Y2 (en) Air conditioner
JP2646914B2 (en) Refrigeration equipment
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPS6346350B2 (en)
JPH06341726A (en) Multiroom type air conditioner