JPS6346350B2 - - Google Patents

Info

Publication number
JPS6346350B2
JPS6346350B2 JP56201316A JP20131681A JPS6346350B2 JP S6346350 B2 JPS6346350 B2 JP S6346350B2 JP 56201316 A JP56201316 A JP 56201316A JP 20131681 A JP20131681 A JP 20131681A JP S6346350 B2 JPS6346350 B2 JP S6346350B2
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
solenoid valve
outdoor heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201316A
Other languages
Japanese (ja)
Other versions
JPS58102067A (en
Inventor
Hitoshi Iijima
Fumio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56201316A priority Critical patent/JPS58102067A/en
Publication of JPS58102067A publication Critical patent/JPS58102067A/en
Publication of JPS6346350B2 publication Critical patent/JPS6346350B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は起動・停止を繰り返しながら運転さ
れる空気調和装置において、その暖房運転時に室
外側熱交換器のデフロスト運転をしながら暖房運
転も継続できるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an air conditioner that is operated while repeatedly starting and stopping, and is capable of continuing heating operation while defrosting an outdoor heat exchanger during heating operation.

従来の空気調和装置は第1図に示すように冷媒
が圧縮機1、四方弁3、室内側熱交換器7、膨張
弁6、室外側熱交換器4、アキユムレータ8から
上記圧縮機1へ戻る回路を構成している。なおこ
の場合は暖房運転を示しているので室内側熱交換
器7は凝縮器、室外側熱交換器4は蒸発器として
動作する。また冷房運転する場合は四方弁3を切
換えて室内側熱交換器7を蒸発器、室外側熱交換
器4を凝縮器として動作させる。ここで9は室外
側熱交換器用フアン、10は室内側熱交換器用フ
アンである。
In a conventional air conditioner, as shown in FIG. 1, refrigerant returns to the compressor 1 from a compressor 1, a four-way valve 3, an indoor heat exchanger 7, an expansion valve 6, an outdoor heat exchanger 4, and an accumulator 8. It constitutes a circuit. Note that since this case indicates heating operation, the indoor heat exchanger 7 operates as a condenser, and the outdoor heat exchanger 4 operates as an evaporator. Further, in the case of cooling operation, the four-way valve 3 is switched to operate the indoor heat exchanger 7 as an evaporator and the outdoor heat exchanger 4 as a condenser. Here, 9 is a fan for an outdoor heat exchanger, and 10 is a fan for an indoor heat exchanger.

上記のような空気調和装置において、暖房運転
中に室外側熱交換器4をデフロスト運転するとき
は冷房運転時と同様四方弁3を切換えて冷媒の流
れを逆にし、室外側熱交換器4を凝縮器、室内側
熱交換器7を蒸発器とするので、フアン10の運
転を中止するか、またはヒータに入力して温風を
作り出さなければならなかつた。
In the above air conditioner, when performing defrost operation on the outdoor heat exchanger 4 during heating operation, the four-way valve 3 is switched to reverse the flow of refrigerant and the outdoor heat exchanger 4 is operated in the same way as during cooling operation. Since the condenser and the indoor heat exchanger 7 are used as an evaporator, it is necessary to stop the operation of the fan 10 or to generate hot air by inputting power to a heater.

また圧縮機1の停止時は高圧側冷媒と低圧側冷
媒が混合、バランスし、圧縮機1の起動後徐々に
高圧と低圧との差が大きくなりながら定常運転状
態へと移行していく。従つて圧縮機1が再び起動
するときは低圧側の蒸発器にたまり込んだ冷媒液
を吸入圧縮して凝縮器に運び込む仕事を必要と
し、連続運転時に比べてCOPが悪くなつていた。
Further, when the compressor 1 is stopped, the high pressure side refrigerant and the low pressure side refrigerant are mixed and balanced, and after the compressor 1 is started, the difference between the high pressure and the low pressure gradually increases as the state shifts to a steady operating state. Therefore, when the compressor 1 is restarted, it is necessary to suck and compress the refrigerant liquid accumulated in the evaporator on the low pressure side and carry it to the condenser, resulting in a worse COP than during continuous operation.

この発明は暖房運転時室外側熱交換器のデフロ
スト動作を行なうとき、室内側熱交換器内の冷媒
の流れを停止させて暖房運転は継続したまま室外
側熱交換器のデフロスト動作を行なうとともに、
圧縮機の停止時に高圧側と低圧側に分離配分され
た冷媒を混合せず分離したままに保持し、従来装
置では圧縮機の再起動時に発生していたエネルギ
ーロスをなくし、効率向上を図るとともに短時間
で定常運転状態に移行できる空気調和装置を提供
することを目的とする。
In this invention, when defrosting the outdoor heat exchanger during heating operation, the flow of refrigerant in the indoor heat exchanger is stopped and the defrosting operation of the outdoor heat exchanger is performed while the heating operation continues.
When the compressor is stopped, the refrigerant that is distributed separately to the high-pressure side and the low-pressure side is kept separate without mixing, eliminating the energy loss that would occur when restarting the compressor with conventional equipment, and improving efficiency. It is an object of the present invention to provide an air conditioner that can shift to a steady operating state in a short time.

以下この発明の詳細につき図示実施例をもとに
説明する。
The details of this invention will be explained below based on the illustrated embodiments.

第2図において、2は圧縮機1の吐出側と四方
弁3の入口側との間に設けられた逆止弁、5は室
外側熱交換器4と膨張弁6との間に設けられ、圧
縮機1の駆動時には開、停止時に閉となる第1の
電磁弁、11は圧縮機1の吐出側と、室外側熱交
換器4とこの電磁弁5との間を第2の電磁弁12
を介して連結した冷媒分岐管(以下バイパス管)
であり、上記以外は第1図に示す従来の装置と同
様なものである。
In FIG. 2, 2 is a check valve provided between the discharge side of the compressor 1 and the inlet side of the four-way valve 3, 5 is provided between the outdoor heat exchanger 4 and the expansion valve 6, A first solenoid valve 11 is open when the compressor 1 is running and closed when the compressor 1 is stopped, and a second solenoid valve 12 is connected between the discharge side of the compressor 1 and the outdoor heat exchanger 4 and this solenoid valve 5.
Refrigerant branch pipes (hereinafter referred to as bypass pipes) connected via
Other than the above, this device is the same as the conventional device shown in FIG.

このように構成された空気調和装置にあつて室
内温度を所定値に維持するため室内温度を検出す
る温度検出素子(図示せず)で圧縮機1を駆動、
停止して冷凍サイクルを運転、停止するがその駆
動・停止に連動して、電磁弁5は開・閉する。従
つて圧縮機1の停止時、電磁弁5は閉となるので
室内側熱交換器7内の高温・高圧の冷媒液は膨張
弁6内に流入することがなく、またそれ故室外側
熱交換器4内には高温・高圧の冷媒液は流入しな
い。一方圧縮機1の吐出側には逆止弁2が設けら
れているので室内側熱交換器7の冷媒ガスや凝縮
した冷媒液は圧縮機1に戻ることもない。
In the air conditioner configured as described above, in order to maintain the indoor temperature at a predetermined value, the compressor 1 is driven by a temperature detection element (not shown) that detects the indoor temperature.
The solenoid valve 5 opens and closes in conjunction with the operation and stop of the refrigeration cycle. Therefore, when the compressor 1 is stopped, the solenoid valve 5 is closed, so the high temperature and high pressure refrigerant liquid in the indoor heat exchanger 7 does not flow into the expansion valve 6, and therefore the outdoor heat exchanger 7 does not flow into the expansion valve 6. No high-temperature, high-pressure refrigerant liquid flows into the container 4. On the other hand, since the check valve 2 is provided on the discharge side of the compressor 1, the refrigerant gas and condensed refrigerant liquid in the indoor heat exchanger 7 do not return to the compressor 1.

従つて圧縮機1が再起動するとき、冷凍サイク
ル中の高圧側冷媒と、低圧側冷媒とは分離された
ままであり、その再起動時に電磁弁5は開するか
ら短時間で所定の圧力差が得られ、定常運転状態
に移行する。
Therefore, when the compressor 1 is restarted, the high pressure side refrigerant and the low pressure side refrigerant in the refrigeration cycle remain separated, and the solenoid valve 5 is opened at the time of restart, so that a predetermined pressure difference is achieved in a short time. obtained, and the state shifts to steady operation.

上記逆止弁2、電磁弁5からなる高低圧分離手
段を有さない第1図に示す従来の空気調和装置
と、第2図に示す空気調和装置の再起動から定常
運転に移行するまでの時間は従来装置で約5分か
かつたものが、この実施例では1分20秒であつ
た。
The conventional air conditioner shown in FIG. 1 which does not have high and low pressure separation means consisting of the check valve 2 and the solenoid valve 5, and the air conditioner shown in FIG. 2 from restart to transition to steady operation. While it took about 5 minutes with the conventional device, it took 1 minute and 20 seconds in this example.

なお上記開閉素子は電磁弁5に限らず他の開閉
弁でもよく、要は圧縮機1の停止時に閉、起動時
に開するものであれば何でもよい。
The above-mentioned opening/closing element is not limited to the electromagnetic valve 5, but may be any other opening/closing valve, as long as it closes when the compressor 1 is stopped and opens when the compressor 1 is started.

さらに暖房運転時、室外側熱交換器4に霜が溜
ると、この室外側熱交換器4の熱交換率が悪くな
りCOPが低下するのでこの霜を取り除くデフロ
スト運転をする。
Furthermore, during heating operation, if frost accumulates on the outdoor heat exchanger 4, the heat exchange efficiency of the outdoor heat exchanger 4 deteriorates and the COP decreases, so a defrost operation is performed to remove this frost.

この場合、デフロスト運転指令の信号と同時に
電磁弁5は閉じて冷媒バイパス通路11の第2電
磁弁12は開となる。従つて、室内側熱交換器7
内にある高温・高圧の冷媒ガスはそのまま周囲に
熱を放出しながら凝縮し、高温・高圧の冷媒液と
なる。一方、室外側熱交換器4には圧縮機1で圧
縮された高温・高圧の冷媒ガスが冷媒バイパス管
11を通つて室外側熱交換器4に入り、ここで霜
に熱を与えてこの霜を溶融し、四方弁3を介して
アキユムレータ8から再び圧縮機1に入り、圧縮
機1で再び圧縮されて高温・高圧の冷媒ガスとな
り冷媒バイパス管11を介して室外側熱交換器4
に入る。
In this case, the solenoid valve 5 closes and the second solenoid valve 12 of the refrigerant bypass passage 11 opens simultaneously with the defrost operation command signal. Therefore, the indoor heat exchanger 7
The high-temperature, high-pressure refrigerant gas inside condenses while releasing heat to the surroundings, becoming a high-temperature, high-pressure refrigerant liquid. On the other hand, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 passes through the refrigerant bypass pipe 11 and enters the outdoor heat exchanger 4, where it gives heat to the frost and causes the frost to form. is melted, enters the compressor 1 again from the accumulator 8 via the four-way valve 3, is compressed again by the compressor 1, becomes high-temperature and high-pressure refrigerant gas, and passes through the refrigerant bypass pipe 11 to the outdoor heat exchanger 4.
to go into.

このように、この実施例においては室内側熱交
換器7に溜つている高温・高圧の冷媒ガスにより
暖房運転が継続され、しかも、この室内側熱交換
器7内の冷媒の熱は十二分に利用することができ
る。またこの実施例においては四方弁3の切換動
作を行なうことなくデフロスト運転を行なわせる
ことができる。
In this way, in this embodiment, the heating operation is continued using the high-temperature, high-pressure refrigerant gas stored in the indoor heat exchanger 7, and the heat of the refrigerant in the indoor heat exchanger 7 is more than enough. It can be used for. Further, in this embodiment, defrost operation can be performed without switching the four-way valve 3.

また第2図の実施例において、暖房運転時室内
温度を調節するため圧縮機1が駆動・停止を繰り
返すが、その時、第2の電磁弁12をこの駆動・
停止に連動して閉・開を行なわせる。勿論デフロ
スト運転時は上記と同様な動作を行なわせる。
Further, in the embodiment shown in FIG. 2, the compressor 1 is repeatedly driven and stopped in order to adjust the indoor temperature during heating operation, and at that time, the second solenoid valve 12 is activated and stopped.
It closes and opens in conjunction with the stop. Of course, during defrost operation, the same operation as above is performed.

このように構成すると圧縮機1の停止時、第2
の電磁弁12は開となるので圧縮機1の出口側冷
媒が冷媒バイパス通路11を通つて室外側熱交換
器4に流れ、圧縮機1の出口側圧力が低下し入口
側圧力とバランスする。従つて圧縮機1の再起動
時、入口側と出口側の圧力差がないので起動トル
クが小さくてすみ、再起動時の消費電力が少なく
てすむ。そのほか起動トルクが小さくてすむので
圧縮機1を小形にできるなどの効果もある。
With this configuration, when the compressor 1 is stopped, the second
Since the solenoid valve 12 is opened, the refrigerant on the outlet side of the compressor 1 flows through the refrigerant bypass passage 11 to the outdoor heat exchanger 4, and the pressure on the outlet side of the compressor 1 decreases and balances with the pressure on the inlet side. Therefore, when restarting the compressor 1, since there is no pressure difference between the inlet side and the outlet side, the starting torque can be small, and the power consumption at the time of restarting can be reduced. In addition, since the starting torque is small, the compressor 1 can be made smaller.

なお圧縮機1の出口側と逆止弁2との間の冷媒
量は少なく、かつ電磁弁5が閉じ、逆止弁2があ
るので、第2の電磁弁12を開いて圧縮機1の出
口側冷媒を室外熱交換器4に流しても、室外側熱
交換器4が高圧になることはない。
Note that the amount of refrigerant between the outlet side of the compressor 1 and the check valve 2 is small, and the solenoid valve 5 is closed, and since the check valve 2 is present, the second solenoid valve 12 is opened and the outlet of the compressor 1 is closed. Even if the side refrigerant flows into the outdoor heat exchanger 4, the pressure in the outdoor heat exchanger 4 does not become high.

さらにこの第2の電磁弁12を暖房運転時にお
いて、圧縮機1の停止時は開、圧縮機1の起動時
はその起動後所定の短時間おいてから閉じるよう
に構成する。
Furthermore, during heating operation, the second solenoid valve 12 is configured to open when the compressor 1 is stopped, and to close after a predetermined short period of time when the compressor 1 is started.

このようにすると圧縮機1の再起動時、圧縮さ
れた冷媒を低圧側に流すのでさらに起動トルクが
小さくてすむ。
In this way, when the compressor 1 is restarted, the compressed refrigerant flows to the low pressure side, so that the starting torque can be further reduced.

さらにまた第2図の実施例において、暖房運転
中のデフロスト運転において、そのデフロスト開
始時にはまず第2の電磁弁12を開し、その所定
短時間後に第1の電磁弁5を閉するようにし、ま
たデフロスト終了時には第2の電磁弁12を閉
し、その所定短時間後に第1の電磁弁5を開する
ように構成する。第2の電磁弁12をこのように
制御する制御信号は室外側熱交換器4に設けられ
ているデフロスト検出器(図示せず)で与える。
Furthermore, in the embodiment shown in FIG. 2, in the defrost operation during the heating operation, the second solenoid valve 12 is first opened at the start of the defrost, and the first solenoid valve 5 is closed after a predetermined short time, Further, the second solenoid valve 12 is closed at the end of defrosting, and the first solenoid valve 5 is opened after a predetermined short time. A control signal for controlling the second electromagnetic valve 12 in this manner is provided by a defrost detector (not shown) provided in the outdoor heat exchanger 4.

このように構成するとデフロスト時室外側熱交
換器4に素早く高温・高圧の冷媒ガスが流入する
ので、デフロストの時間が短くなり、またデフロ
スト終了時に第2の電磁弁12を閉じてから第1
の電磁弁5を開するまでの間室外側熱交換器4内
の冷媒が使用されて流出するので、次の暖房運転
中に移行したとき、室外側熱交換器4の蒸発器と
しての機能復帰が早くなり効率が向上する。
With this configuration, high-temperature, high-pressure refrigerant gas quickly flows into the outdoor heat exchanger 4 during defrosting, so the defrosting time becomes shorter.
Since the refrigerant in the outdoor heat exchanger 4 is used and flows out until the solenoid valve 5 is opened, the function of the outdoor heat exchanger 4 as an evaporator is restored when the next heating operation starts. becomes faster and efficiency improves.

以上述べたようにこの発明は暖房運転からデフ
ロスト運転に移行するとき、室内側熱交換器の冷
媒はその流れを停止し、室外側熱交換器にのみ圧
縮機からの冷媒を循環させているので室内側熱交
換器は暖房運転を継続しつつデフロスト運転をさ
せることができるとともに、冷暖房運転時におい
て、圧縮機の停止時、高圧側と低圧側とに冷媒を
分離配分させたままにしておくことができるの
で、圧縮機再起動時の起動エネルギーロスを少な
くすることができるものである。
As described above, when the present invention shifts from heating operation to defrost operation, the flow of refrigerant in the indoor heat exchanger is stopped and the refrigerant from the compressor is circulated only in the outdoor heat exchanger. The indoor heat exchanger can perform defrost operation while continuing heating operation, and during cooling/heating operation, when the compressor is stopped, the refrigerant can be kept separated and distributed between the high pressure side and the low pressure side. This makes it possible to reduce startup energy loss when restarting the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空気調和装置の冷凍サイクル構
成図、第2図はこの発明の一実施例を示す空気調
和装置の冷凍サイクル構成図である。 図中同一符号は同一または相当部分を示し、1
は圧縮機、2は逆止弁、3は四方弁、4は室外側
熱交換器、5は第1の電磁弁、6は膨張弁、7は
室内側熱交換器、8はアキユムレータ、11はバ
イパス路、12は第2の電磁弁である。
FIG. 1 is a block diagram of a refrigeration cycle of a conventional air conditioner, and FIG. 2 is a block diagram of a refrigeration cycle of an air conditioner showing an embodiment of the present invention. The same symbols in the figures indicate the same or corresponding parts, 1
is a compressor, 2 is a check valve, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a first solenoid valve, 6 is an expansion valve, 7 is an indoor heat exchanger, 8 is an accumulator, 11 is a The bypass passage 12 is a second solenoid valve.

Claims (1)

【特許請求の範囲】 1 圧縮機、四方弁、室内側熱交換器、膨張手
段、室外側熱交換器、上記四方弁、上記圧縮機を
順次直列に接続し上記圧縮機入口と上記四方弁の
間にアキユムレータを設け、室内の設定温度に応
じて圧縮機の運転、停止を繰り返す空気調和装置
において、上記圧縮機出口から上記四方弁の間に
設けられた逆止弁と、上記室内側熱交換器出口か
ら上記室外側熱交換器入口の間に設けられ、冷暖
房運転中、上記圧縮機の停止時には高圧側と低圧
側に分離配分された冷媒を混合させないよう閉
し、圧縮機駆動時には開し、かつ暖房運転中のデ
フロスト時には閉する第1の電磁弁と、上記圧縮
機出口および上記逆止弁間と上記室外側熱交換器
入口側とを接続する冷媒分岐管と、この冷媒分岐
管の途中に設けられ、冷暖房運転中、上記圧縮機
の停止時には上記圧縮機出口と上記室外側熱交換
器入口側を通ずるように開し、圧縮機駆動時には
閉し、かつ暖房運転中のデフロスト時には上記圧
縮機出口からの高圧冷媒を上記室外側熱交換器に
送るよう開する第2の電磁弁とを備えたことを特
徴とする空気調和装置。 2 第2の電磁弁は暖房運転中圧縮機起動の所定
時間後に閉するように構成されたこと特許請求の
範囲第1項記載の空気調和装置。 3 第1の電磁弁は、デフロスト開始時には第2
の電磁弁が開した所定時間後に閉し、かつデフロ
スト終了時には第2の電磁弁が閉した所定時間後
に開するように構成されたことを特徴とする特許
請求の範囲第1項記載の空気調和装置。
[Scope of Claims] 1. A compressor, a four-way valve, an indoor heat exchanger, an expansion means, an outdoor heat exchanger, the four-way valve, and the compressor are connected in series, and the inlet of the compressor and the four-way valve are connected in series. In an air conditioner that repeatedly starts and stops the compressor depending on the set indoor temperature with an accumulator provided between the check valve and the indoor heat exchanger, the check valve is provided between the compressor outlet and the four-way valve. The refrigerant is installed between the outlet of the heat exchanger and the inlet of the outdoor heat exchanger, and is closed to prevent mixing of the refrigerant separated into the high-pressure side and the low-pressure side when the compressor is stopped during cooling/heating operation, and is opened when the compressor is running. , and a first solenoid valve that closes during defrosting during heating operation; a refrigerant branch pipe connecting the compressor outlet and the check valve to the outdoor heat exchanger inlet side; It is provided in the middle, and opens so that the compressor outlet and the outdoor heat exchanger inlet side are connected when the compressor is stopped during cooling/heating operation, closes when the compressor is running, and when defrosting during heating operation. and a second solenoid valve that opens to send high-pressure refrigerant from the compressor outlet to the outdoor heat exchanger. 2. The air conditioner according to claim 1, wherein the second solenoid valve is configured to close after a predetermined period of time after starting the compressor during heating operation. 3 The first solenoid valve closes the second solenoid valve when defrosting starts.
The air conditioner according to claim 1, wherein the air conditioner is configured to close a predetermined time after the first solenoid valve opens, and to open after a predetermined time after the second solenoid valve closes when defrosting ends. Device.
JP56201316A 1981-12-14 1981-12-14 Air conditioner Granted JPS58102067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201316A JPS58102067A (en) 1981-12-14 1981-12-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201316A JPS58102067A (en) 1981-12-14 1981-12-14 Air conditioner

Publications (2)

Publication Number Publication Date
JPS58102067A JPS58102067A (en) 1983-06-17
JPS6346350B2 true JPS6346350B2 (en) 1988-09-14

Family

ID=16438982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201316A Granted JPS58102067A (en) 1981-12-14 1981-12-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS58102067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775082B2 (en) 2016-04-07 2020-09-15 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621726B2 (en) * 1985-11-28 1994-03-23 三菱電機株式会社 Air conditioner
JPS6291759A (en) * 1985-10-15 1987-04-27 三菱電機株式会社 Defrostation system of refrigeration cycle for heat pump
JP5404471B2 (en) 2010-02-26 2014-01-29 三菱電機株式会社 HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434268U (en) * 1977-08-10 1979-03-06

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277984B2 (en) * 2009-01-20 2013-08-28 トヨタ自動車株式会社 Cathode active material
JP5784961B2 (en) * 2011-04-28 2015-09-24 国立大学法人高知大学 Method for producing coated active material
CN103548186B (en) * 2011-05-23 2017-04-26 丰田自动车株式会社 Positive electrode active material particles, and positive electrode and all-solid-state battery using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434268U (en) * 1977-08-10 1979-03-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775082B2 (en) 2016-04-07 2020-09-15 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPS58102067A (en) 1983-06-17

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
US7089754B2 (en) Apparatus and method for controlling heating operation in heat pump system
JP2008096033A (en) Refrigerating device
JP3341404B2 (en) Operation control device for air conditioner
JP4269476B2 (en) Refrigeration equipment
JPS6346350B2 (en)
JPH06265242A (en) Engine driven heat pump
JP2007051820A (en) Air conditioner
EP0077414B1 (en) Air temperature conditioning system
JP3082560B2 (en) Dual cooling system
JP3407867B2 (en) Operation control method of air conditioner
JPH03211380A (en) Air conditioner
JP3063746B2 (en) Refrigeration equipment
JPH0120709B2 (en)
JPS6361584B2 (en)
JP4023385B2 (en) Refrigeration equipment
JP2533585B2 (en) Multi-room air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH0333990B2 (en)
JPS6032535Y2 (en) Heat recovery air conditioner
JPH0333993B2 (en)
JP2001004240A (en) Operation control method for air conditioner
JPH07133973A (en) Freezing apparatus
JPH046377A (en) Control method of defrosting of refrigerating device
JPS6015084Y2 (en) Refrigeration equipment