JPH0120709B2 - - Google Patents

Info

Publication number
JPH0120709B2
JPH0120709B2 JP57194174A JP19417482A JPH0120709B2 JP H0120709 B2 JPH0120709 B2 JP H0120709B2 JP 57194174 A JP57194174 A JP 57194174A JP 19417482 A JP19417482 A JP 19417482A JP H0120709 B2 JPH0120709 B2 JP H0120709B2
Authority
JP
Japan
Prior art keywords
solenoid valve
heat exchanger
compressor
refrigerant
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57194174A
Other languages
Japanese (ja)
Other versions
JPS5984063A (en
Inventor
Yoshio Inui
Mitsumasa Yokofujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19417482A priority Critical patent/JPS5984063A/en
Publication of JPS5984063A publication Critical patent/JPS5984063A/en
Publication of JPH0120709B2 publication Critical patent/JPH0120709B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は、ヒートポンプ式冷凍サイクルの除霜
制御方法に関するものである。特に暖房サイクル
から冷房サイクルに切り換えることによつて除霜
を行うものに係る。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a defrosting control method for a heat pump type refrigeration cycle. In particular, it relates to defrosting by switching from a heating cycle to a cooling cycle.

<従来の技術> 従来のヒートポンプ式冷凍サイクルにおいては
第1図に示すごとく圧縮機1、四方切換弁3、室
外側熱交換器4、膨張装置5および室内側熱交換
器6を順次環状に接続し、冷房運転時には実線矢
印で示すごとく圧縮機1からの高温高圧の冷媒ガ
スを室外側熱交換器4に送り、ここで凝縮した後
膨張装置5を介して室内側熱交換器6で蒸発させ
暖房運転時には破線矢印で示すごとく圧縮機1か
らの高温高圧の冷媒ガスを逆循環させて暖房を行
うものである。
<Prior art> In a conventional heat pump type refrigeration cycle, a compressor 1, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion device 5, and an indoor heat exchanger 6 are sequentially connected in an annular manner as shown in FIG. During cooling operation, high-temperature, high-pressure refrigerant gas from the compressor 1 is sent to the outdoor heat exchanger 4 as shown by the solid line arrow, where it is condensed and then evaporated in the indoor heat exchanger 6 via the expansion device 5. During heating operation, the high temperature and high pressure refrigerant gas from the compressor 1 is reversely circulated as shown by the broken line arrow to perform heating.

一般にこの種の冷凍サイクルにおいて、暖房運
転時、除霜を行う場合、四方切換弁3を切換える
等して暖房サイクルを冷房サイクルに切り換える
ことにより高温高圧の冷媒ガスを室外側熱交換器
4に流し、該熱交換器4に付着した霜と熱交換さ
せ、霜を融解除去するようになつているが、該四
方切換弁3を切換える際、室内側熱交換器6中に
あつた高圧の液冷媒が圧縮機1に逆流し、液圧縮
防止用のアキユムレーター2中に滞留してしまい
当冷凍サイクル中に循環する冷媒量が不足するた
め十分な除霜が行なえず、またこのために、除霜
に多大の時間を必要とし、その間暖房運転ができ
ないことより、室温の低下をまねき、快適性をそ
こなうという欠点があつた。
Generally, in this type of refrigeration cycle, when defrosting is performed during heating operation, high temperature and high pressure refrigerant gas is passed to the outdoor heat exchanger 4 by switching the four-way switching valve 3 from the heating cycle to the cooling cycle. , the frost adhering to the heat exchanger 4 is exchanged with the frost to melt and remove the frost, but when the four-way switching valve 3 is switched, the high pressure liquid refrigerant in the indoor heat exchanger 6 is removed. The refrigerant flows back into the compressor 1 and accumulates in the accumulator 2, which prevents liquid compression, resulting in an insufficient amount of refrigerant circulating during the refrigeration cycle, making it impossible to perform sufficient defrosting. This has the disadvantage that it requires a large amount of time, and heating operation cannot be performed during that time, leading to a drop in room temperature and impairing comfort.

<発明が解決すべき課題> 暖房運転から除霜運転に切り換える時に高圧側
の液冷媒が圧縮機に逆流しないようにすることで
ある。
<Problem to be Solved by the Invention> It is to prevent liquid refrigerant on the high pressure side from flowing back into the compressor when switching from heating operation to defrosting operation.

<課題を解決する手段> 圧縮機11、室外側熱交換器13、減圧装置1
5、室内側熱交換器16を順次接続し、上記圧縮
機11の吐出側と室外側熱交換器13との間に第
1の電磁弁12を介装すると共に上記室内側熱交
換器16と圧縮機11の吸込側との間に第2の電
磁弁17を介装し、上記圧縮機11吐出側と第2
電磁弁17入口側とを連通する第1のバイパス流
路20を設けると共に上記第1電磁弁12の出口
側と圧縮機11吸込側とを連通する第2のバイパ
ス流通路21を設け、上記第1のバイパス流路2
0に第3の電磁弁19を介装すると共に第2のバ
イパス流路21に第4の電磁弁22を介装してヒ
ートポンプ式冷凍サイクルを構成する。
<Means for solving the problem> Compressor 11, outdoor heat exchanger 13, pressure reducing device 1
5. The indoor heat exchangers 16 are connected in sequence, and the first solenoid valve 12 is interposed between the discharge side of the compressor 11 and the outdoor heat exchanger 13, and the indoor heat exchanger 16 and A second solenoid valve 17 is interposed between the suction side of the compressor 11 and the second solenoid valve 17 is interposed between the discharge side of the compressor 11 and the
A first bypass passage 20 is provided that communicates with the inlet side of the solenoid valve 17, and a second bypass passage 21 is provided that communicates the outlet side of the first solenoid valve 12 with the suction side of the compressor 11. 1 bypass flow path 2
A heat pump type refrigeration cycle is constructed by interposing a third solenoid valve 19 in the second bypass passage 21 and a fourth solenoid valve 22 in the second bypass passage 21.

このようなサイクルにおいて、暖房時には、圧
縮機11の吐出冷媒を、第1の電磁弁12を閉成
すると共に第3の電磁弁19を開成することによ
つて、第1のバイパス流路20を通して、室内側
熱交換器16に流通させる。そしてこの室内側熱
交換器16を通過して減圧装置、室外側熱交換器
13を流通した冷媒を、第4の電磁弁22を開成
することによつて、第2のバイパス流路21を通
して、圧縮機11の吸込側に帰環させる。
In such a cycle, during heating, the refrigerant discharged from the compressor 11 is passed through the first bypass passage 20 by closing the first solenoid valve 12 and opening the third solenoid valve 19. , to the indoor heat exchanger 16. Then, by opening the fourth electromagnetic valve 22, the refrigerant that has passed through the indoor heat exchanger 16 and passed through the pressure reducing device and the outdoor heat exchanger 13 is passed through the second bypass flow path 21. It is returned to the suction side of the compressor 11.

一方、除霜時には、第4の電磁弁22を閉成し
第1の電磁弁12を開成することによつて高圧冷
媒を低圧側に流入させ、その後に第3の電磁弁1
9を閉成し第2の電磁弁17を開成することによ
つて、圧縮機11の吐出冷媒を、室外熱交換器1
3、減圧装置、室内側熱交換器に順次流通させ
る。
On the other hand, during defrosting, the fourth solenoid valve 22 is closed and the first solenoid valve 12 is opened to allow high pressure refrigerant to flow into the low pressure side, and then the third solenoid valve 1
9 and open the second solenoid valve 17, the refrigerant discharged from the compressor 11 is transferred to the outdoor heat exchanger 1.
3. Flow through the pressure reduction device and the indoor heat exchanger in sequence.

<作用> 暖房運転から除霜運転に切り換える際に、第4
の電磁弁22を閉成し第1の電磁弁12を開成す
ることによつて、高圧冷媒は、圧縮機11を通ら
ずに第1バイパス流路20を通つて低圧側である
室外側熱交換器に流入する。これにより、高圧冷
媒が圧縮機11やアキユムレータに滞留すること
がなく、しかも高圧冷媒が室外側熱交換器に流入
することによつて、除霜が一部行われる。このよ
うにして圧縮機11を中心とした高低圧をある程
度バランスしてから第3の電磁弁19を閉成し第
2の電磁弁17を開成することで完全な逆サイク
ル(冷房サイクル)として除霜を行う。
<Function> When switching from heating operation to defrosting operation, the fourth
By closing the first solenoid valve 22 and opening the first solenoid valve 12, the high-pressure refrigerant passes through the first bypass flow path 20 without passing through the compressor 11, and is transferred to the outdoor side heat exchanger on the low pressure side. Flow into the vessel. As a result, the high-pressure refrigerant does not remain in the compressor 11 or the accumulator, and moreover, defrosting is partially performed by flowing the high-pressure refrigerant into the outdoor heat exchanger. In this way, after the high and low pressures centered on the compressor 11 are balanced to some extent, the third solenoid valve 19 is closed and the second solenoid valve 17 is opened, resulting in a complete reverse cycle (cooling cycle). Do frost.

<実施例> 以下、本発明の一実施例を図面に基いて説明す
る。
<Example> An example of the present invention will be described below based on the drawings.

なお、実線矢印は、冷房運転時の冷媒の流れを
示し、破線矢印は、暖房運転時の冷媒の流れを示
し、また細線矢印は、冷凍サイクル切換時の冷媒
の流れを示す。
Note that solid arrows indicate the flow of refrigerant during cooling operation, broken arrows indicate the flow of refrigerant during heating operation, and thin arrows indicate the flow of refrigerant during refrigeration cycle switching.

第2図において、11は冷媒ガスを圧縮するた
めの圧縮機で、その吐出側には第1の電磁弁12
を介して室外側熱交換器13の一端を接続し、該
室外側熱交換器13の他端には圧縮機11の運転
停止時に閉成する第5の電磁弁14及び膨張装置
15を介して室内側熱交換器16の一端を接続し
又、該室内側熱交換器16の他端には第2の電磁
弁17、アキユムレーター18を介して圧縮機1
1の吸込側を接続している。
In FIG. 2, 11 is a compressor for compressing refrigerant gas, and a first solenoid valve 12 is installed on the discharge side of the compressor.
One end of the outdoor heat exchanger 13 is connected to the outdoor heat exchanger 13 via a fifth electromagnetic valve 14 that is closed when the compressor 11 stops operating, and an expansion device 15 to the other end of the outdoor heat exchanger 13. One end of the indoor heat exchanger 16 is connected, and the compressor 1 is connected to the other end of the indoor heat exchanger 16 via a second solenoid valve 17 and an accumulator 18.
The suction side of 1 is connected.

前記圧縮機11と第1の電磁弁12間の流路と
前記室内側熱交換器16と第2の電磁弁17間の
流路との間を連通する第1のバイパス流路20を
設けると共に、この第1のバイパス流路20に第
3の電磁弁19を介在させ、また前記第1の電磁
弁12と室外側熱交換器13間の流路と前記第2
の電磁弁17と圧縮機11間の流路間とを連通す
る第2のバイパス流路21を設けると共にこの第
2のバイパス流路21には第4の電磁弁22を介
在させている。
A first bypass flow path 20 is provided that communicates between the flow path between the compressor 11 and the first solenoid valve 12 and the flow path between the indoor heat exchanger 16 and the second solenoid valve 17. , a third solenoid valve 19 is interposed in the first bypass flow path 20, and a flow path between the first solenoid valve 12 and the outdoor heat exchanger 13 and the second
A second bypass flow path 21 is provided to communicate between the solenoid valve 17 and the flow path between the compressor 11, and a fourth solenoid valve 22 is interposed in the second bypass flow path 21.

第3図及び第4図は、本発明のヒートポンプ式
冷凍サイクルにおける前記圧縮機11、第1の電
磁弁12、第2の電磁弁17、第3の電磁弁1
9、第4の電磁弁22及び第5の電磁弁14の冷
房運転及び暖房運転時の動作状態を示したもので
あり、圧縮機11の運転、停止に際して各電磁弁
はこの第3図及び第4図の如く動作する。
3 and 4 show the compressor 11, the first solenoid valve 12, the second solenoid valve 17, and the third solenoid valve 1 in the heat pump refrigeration cycle of the present invention.
9. This shows the operating states of the fourth solenoid valve 22 and the fifth solenoid valve 14 during cooling operation and heating operation, and when the compressor 11 is started or stopped, each solenoid valve is It operates as shown in Figure 4.

先ず最初冷房運転に際し、第1の電磁弁12第
2の電磁弁17、および第5の電磁弁14を開成
して圧縮機11を運転すると該圧縮機11で圧縮
された高温、高圧の冷媒ガスは第1の電磁弁12
を介して室外側熱交換器13に流れ、ここで凝縮
された後、第5の電磁弁14および膨張装置15
を介して室内側熱交換器16内に送られる。而し
て該室内側熱交換器16に送られた液状の冷媒は
室内側熱交換器16内で蒸発し、この時周囲より
気化熱を奪う。然る後室内側熱交換器16で気化
した冷媒ガスは第2の電磁弁17を通して圧縮機
11に帰還される。この動作の繰返しにより室内
は上記室内側熱交換器16により所定の温度に冷
却される。
First, during cooling operation, when the first solenoid valve 12, second solenoid valve 17, and fifth solenoid valve 14 are opened and the compressor 11 is operated, the high temperature and high pressure refrigerant gas compressed by the compressor 11 is released. is the first solenoid valve 12
The flow passes through the outdoor heat exchanger 13 and is condensed there, followed by the fifth solenoid valve 14 and the expansion device 15.
It is sent into the indoor heat exchanger 16 via. The liquid refrigerant sent to the indoor heat exchanger 16 evaporates within the indoor heat exchanger 16, and at this time takes vaporization heat from the surroundings. After that, the refrigerant gas vaporized in the indoor heat exchanger 16 is returned to the compressor 11 through the second electromagnetic valve 17. By repeating this operation, the interior of the room is cooled to a predetermined temperature by the indoor heat exchanger 16.

而して室内温度が所定の温度に達するとサーモ
スタツト(図示せず)が動作して圧縮機11の運
転を停止すると共に第1の電磁弁12および第5
の電磁弁14が閉成し、また第3の電磁弁19が
開成する。このため圧縮機11の高圧側の冷媒は
第1のバイパス流路20を通じて圧縮機11の低
圧側に流れ、圧縮機11の吐出側と吸入側の圧力
はバランスする。またこのとき、第1の電磁弁1
2と第5の電磁弁14の間の室外側熱交換器13
内の高圧冷媒は、通常運転時に近い状態に保持さ
れる。
When the indoor temperature reaches a predetermined temperature, a thermostat (not shown) operates to stop the operation of the compressor 11, and the first solenoid valve 12 and the fifth solenoid valve
The third solenoid valve 14 is closed, and the third solenoid valve 19 is opened. Therefore, the refrigerant on the high pressure side of the compressor 11 flows to the low pressure side of the compressor 11 through the first bypass passage 20, and the pressures on the discharge side and suction side of the compressor 11 are balanced. Also, at this time, the first solenoid valve 1
outdoor heat exchanger 13 between the second and fifth solenoid valves 14
The high-pressure refrigerant inside is maintained at a state close to that of normal operation.

然る後、室温が上昇し、これをサーモスタツト
が検知すると圧縮機11が再始動すると共に第1
の電磁弁12および第5の電磁弁14が開成し、
また第3の電磁弁19が閉成する。このようにし
てただちに通常運転に入るものである。
After that, the room temperature rises, and when the thermostat detects this, the compressor 11 is restarted and the first
The solenoid valve 12 and the fifth solenoid valve 14 are opened,
Also, the third solenoid valve 19 is closed. In this way, normal operation is immediately started.

次に暖房運転について説明する。暖房運転に際
しては第3の電磁弁19及び第4の電磁弁22を
開成し、第1の電磁弁12及び第2の電磁弁17
を閉成して圧縮機11を運転すれば良く、このよ
うにすることにより圧縮機11からの冷媒ガスは
第3の電磁弁19、第1のバイパス流路20を通
つて室内側熱交換器16に流れ、ここで凝縮され
た後膨張装置15および第5の電磁弁14を通し
て室外側熱交換器13に給送される。即ち室内側
熱交換器16は凝縮器として作用し、室外側熱交
換器13は蒸発器として作用する。そして室外側
熱交換器13で蒸発した冷媒ガスは第2のバイパ
ス流路21および第4の電磁弁22を通して圧縮
機11に帰還される。
Next, heating operation will be explained. During heating operation, the third solenoid valve 19 and the fourth solenoid valve 22 are opened, and the first solenoid valve 12 and the second solenoid valve 17 are opened.
The compressor 11 only needs to be operated by closing the compressor 11, and by doing so, the refrigerant gas from the compressor 11 passes through the third electromagnetic valve 19 and the first bypass passage 20 to the indoor heat exchanger. 16 , where it is condensed and then fed to the outdoor heat exchanger 13 through the expansion device 15 and the fifth solenoid valve 14 . That is, the indoor heat exchanger 16 acts as a condenser, and the outdoor heat exchanger 13 acts as an evaporator. The refrigerant gas evaporated in the outdoor heat exchanger 13 is returned to the compressor 11 through the second bypass passage 21 and the fourth electromagnetic valve 22.

然る後室内温度が室内側熱交換器16の作用に
よつて所定温度に達するとサーモスタツトが動作
して圧縮機11の運転を停止すると共に第3の電
磁弁19および第5の電磁弁14が閉成しまた第
1の電磁弁12が開成する。このようにして、上
述冷房運転の時と同様にして圧縮機11の高圧冷
媒ガスは第1の電磁弁12及び第2のバイパス流
路21を介して低圧側に流れ圧力バランスすると
共に室内側熱交換器16の高圧冷媒はそのまま保
持される。
After that, when the indoor temperature reaches a predetermined temperature due to the action of the indoor heat exchanger 16, the thermostat operates to stop the operation of the compressor 11, and the third solenoid valve 19 and the fifth solenoid valve 14 are activated. is closed and the first solenoid valve 12 is opened. In this way, the high pressure refrigerant gas in the compressor 11 flows to the low pressure side via the first electromagnetic valve 12 and the second bypass flow path 21, and the pressure is balanced, and the indoor heat is The high pressure refrigerant in the exchanger 16 is retained.

再始動時には冷房時と同様の動作にて圧縮機1
1が始動すると共に第3の電磁弁19および第5
の電磁弁14が開成し、また第1の電磁弁12が
閉成する。このようにして、通常の暖房運転に入
る。
When restarting, compressor 1 operates in the same way as during cooling.
1 starts, the third solenoid valve 19 and the fifth solenoid valve
The first solenoid valve 14 is opened, and the first solenoid valve 12 is closed. In this way, normal heating operation begins.

次に除霜運転について説明する。第5図は上記
ヒートポンプ式冷凍サイクルにおける上記圧縮機
11、第1の電磁弁12、第2の電磁弁17、第
3の電磁弁19、第4の電磁弁22、及び第5の
電磁弁14の冷凍サイクル切換時の動作状態を示
したものであり、除霜時冷凍サイクル切換に際し
て各電磁弁は第5図の如く動作する。即ち、暖房
運転時、室外側熱交換器13に付着した霜を取り
除くために除霜運転を行なう場合、冷凍サイクル
を暖房運転から冷房運転に切換えて行うが、その
場合、まず第4の電磁弁22を閉成した後、第1
の電磁弁12を開成する。
Next, the defrosting operation will be explained. FIG. 5 shows the compressor 11, the first solenoid valve 12, the second solenoid valve 17, the third solenoid valve 19, the fourth solenoid valve 22, and the fifth solenoid valve 14 in the heat pump type refrigeration cycle. Fig. 5 shows the operating state when switching the refrigeration cycle, and each electromagnetic valve operates as shown in Fig. 5 when switching the refrigeration cycle during defrosting. That is, when performing a defrosting operation to remove frost attached to the outdoor heat exchanger 13 during heating operation, the refrigeration cycle is switched from heating operation to cooling operation. After closing 22, the first
The solenoid valve 12 is opened.

こうすることによつて、室内側熱交換器16中
に滞溜している高温、高圧の冷媒は第1のバイパ
ス流路20、第3の電磁弁19および第1の電磁
弁12を通じて、低温、低圧の室外側熱交換器1
3中に流れ込む。このとき第4の電磁弁22は閉
成しているので第2のバイパス流路21を通して
高温、高圧の冷媒液が圧縮機11の吸入側へ帰る
ことはない。この時、室内側熱交換器13中に流
れ込んだ高温、高圧の冷媒と室外側熱交換器13
に付着した霜とが熱交換を行い霜が融けはじめ
る。次に室内側熱交換器16と室外側熱交換器1
3とが圧力バランスし室内側熱交換器16から室
外側熱交換器13へ冷媒が流れて行かなくなつた
時、第3の電磁弁19を閉成し、次いで第2の電
磁弁17を開成する。
By doing this, the high temperature, high pressure refrigerant accumulated in the indoor heat exchanger 16 is transferred to a low temperature state through the first bypass passage 20, the third solenoid valve 19, and the first solenoid valve 12. , low pressure outdoor heat exchanger 1
It flows into 3. At this time, the fourth electromagnetic valve 22 is closed, so that high-temperature, high-pressure refrigerant liquid does not return to the suction side of the compressor 11 through the second bypass passage 21. At this time, the high temperature and high pressure refrigerant that has flowed into the indoor heat exchanger 13 and the outdoor heat exchanger 13
The frost that adheres to the surface exchanges heat with the frost, and the frost begins to melt. Next, the indoor heat exchanger 16 and the outdoor heat exchanger 1
3 and the pressure balance and the refrigerant no longer flows from the indoor heat exchanger 16 to the outdoor heat exchanger 13, the third solenoid valve 19 is closed, and then the second solenoid valve 17 is opened. do.

これにより、冷凍サイクルは完全に冷房運転に
切換つたことになり、第2の電磁弁17を通して
室内側熱交換器16側から圧縮機11に吸入され
た冷媒ガスは第1の電磁弁12を通じて室外側熱
交換器13に吐出され、この高温、高圧の冷媒ガ
スにより室外側熱交換器13に付着した霜が取り
除かれる。このように各電磁弁を制御することに
より、圧縮機11の吸入側へ冷媒液が逆流するこ
となく、冷凍サイクルを切換えることができ、ア
キユムレーター12に冷媒液が滞溜して、サイク
ル中の冷媒量が不足するということが防げるため
効率の良い除霜が行える。
As a result, the refrigeration cycle is completely switched to cooling operation, and the refrigerant gas sucked into the compressor 11 from the indoor heat exchanger 16 side through the second solenoid valve 17 is transferred to the room through the first solenoid valve 12. The refrigerant gas is discharged to the outside heat exchanger 13, and frost adhering to the outdoor heat exchanger 13 is removed by this high-temperature, high-pressure refrigerant gas. By controlling each electromagnetic valve in this way, the refrigeration cycle can be switched without the refrigerant liquid flowing back to the suction side of the compressor 11, and the refrigerant liquid accumulates in the accumulator 12, causing the refrigerant in the cycle to Defrosting can be carried out efficiently because it prevents the amount from being insufficient.

次に除霜が完了した除霜運転(冷房運転)から
暖房運転に冷凍サイクルを切換える場合、まず第
2の電磁弁17を閉成し、次いで第3の電磁弁1
9を開成する。これにより、室外側熱交換器13
中にある高圧の冷媒液は第1の電磁弁12、第1
のバイパス流路20、第3の電磁弁19を通して
室内側熱交換器16中に流れ込む。室外側熱交換
器13と室内側熱交換器16が圧力バランスして
室外側熱交換器13から冷媒が流れていかなくな
つた時第1の電磁弁12を閉成し、次いで第4の
電磁弁22を開成する。
Next, when switching the refrigeration cycle from defrosting operation (cooling operation) where defrosting is completed to heating operation, first close the second solenoid valve 17, then close the third solenoid valve 1.
Open 9. As a result, the outdoor heat exchanger 13
The high-pressure refrigerant liquid inside the first electromagnetic valve 12, the first
It flows into the indoor heat exchanger 16 through the bypass passage 20 and the third solenoid valve 19 . When the pressures of the outdoor heat exchanger 13 and the indoor heat exchanger 16 are balanced and the refrigerant no longer flows from the outdoor heat exchanger 13, the first solenoid valve 12 is closed, and then the fourth solenoid valve 12 is closed. Valve 22 is opened.

これにより冷凍サイクルは完全に暖房運転に切
換つたことになり、この間圧縮機11の吸入側へ
冷媒液が逆流することがないので、ただちに通常
状態に近い状態で暖房運転を再開することができ
る。
As a result, the refrigeration cycle is completely switched to the heating operation, and since the refrigerant liquid does not flow back to the suction side of the compressor 11 during this time, the heating operation can be immediately resumed in a state close to the normal state.

<効果> 以上本発明によれば、暖房サイクルら除霜サイ
クルに切り換える際に、高圧側の冷媒を第1バイ
パス流路を通すことで圧縮機を通さずに低圧の室
外側熱交換器へ流し高低圧をバランスさせてから
完全に除霜(冷房)サイクルに切り換えるように
したので、切り換え時に高圧冷媒が圧縮機に流入
することがなく圧縮機、アキユムレータに冷媒が
滞溜しない。
<Effects> According to the present invention, when switching from the heating cycle to the defrosting cycle, the high-pressure refrigerant is passed through the first bypass flow path to flow to the low-pressure outdoor heat exchanger without passing through the compressor. Since the high and low pressures are balanced before switching completely to the defrosting (cooling) cycle, high-pressure refrigerant does not flow into the compressor at the time of switching, and refrigerant does not accumulate in the compressor or accumulator.

従つて、完全に除霜サイクルに切り換える前に
高温高圧冷媒が室外熱交換器に流入して除霜を一
部行うと共に除霜サイクルに完全に切り換えてか
らは十分冷媒がサイクル中を循環するので、効率
良く素早く短時間で除霜を行うことができ、除霜
の間の室内温度の降下を小さく抑えて快適性を保
つことができる。又、サイクルの切り換えは高低
圧を一旦バランスさせてから完全に切り換えるよ
うにしているので、除霜運転、暖房運転の立ち上
がりが早く、特に暖房運転再開時に室温の回復を
早めることができる。
Therefore, before completely switching to the defrosting cycle, high-temperature, high-pressure refrigerant flows into the outdoor heat exchanger to partially defrost the air, and after completely switching to the defrosting cycle, sufficient refrigerant circulates through the cycle. , defrosting can be performed efficiently and quickly in a short time, and the drop in indoor temperature during defrosting can be kept small to maintain comfort. In addition, since the cycle is switched once the high and low pressures are balanced and then completely switched, the defrosting operation and the heating operation can be started quickly, and the room temperature can be recovered quickly especially when the heating operation is restarted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ式冷凍サイクルの
冷媒回路図、第2図は本発明に係るヒートポンプ
式冷凍サイクルの冷媒回路図、第3図は本発明の
冷凍サイクルにおける圧縮機および第1ないし第
5電磁弁の冷房時の動作説明図、第4図は同暖房
時の動作説明図、第5図は同除霜時の動作説明図
である。 11は圧縮機、12は第1の電磁弁、14は第
5の電磁弁、17は第2の電磁弁、20は第1の
バイパス流路、19は第3の電磁弁、21は第2
のバイパス流路、22は第4の電磁弁をそれぞれ
示す。
FIG. 1 is a refrigerant circuit diagram of a conventional heat pump refrigeration cycle, FIG. 2 is a refrigerant circuit diagram of a heat pump refrigeration cycle according to the present invention, and FIG. FIG. 4 is an explanatory diagram of the operation of the solenoid valve during cooling, FIG. 4 is an explanatory diagram of the operation during heating, and FIG. 5 is an explanatory diagram of the operation during defrosting. 11 is a compressor, 12 is a first solenoid valve, 14 is a fifth solenoid valve, 17 is a second solenoid valve, 20 is a first bypass passage, 19 is a third solenoid valve, 21 is a second solenoid valve.
22 represents a fourth solenoid valve.

Claims (1)

【特許請求の範囲】 1 圧縮機11、室外側熱交換器13、減圧装置
15、室内側熱交換器16を順次接続し、上記圧
縮機11の吐出側と室外側熱交換器13との間に
第1の電磁弁12を介装すると共に上記室内側熱
交換器16と圧縮機11の吸込側との間に第2の
電磁弁17を介装し、上記圧縮機11吐出側と第
2電磁弁17入口側とを連通する第1のバイパス
流路20を設けると共に上記第1電磁弁12の出
口側と圧縮機11吸込側とを連通する第2のバイ
パス流通路21を設け、上記第1のバイパス流路
20に第3の電磁弁19を介装すると共に第2の
バイパス流路21に第4の電磁弁22を介装して
ヒートポンプ式冷凍サイクルを構成したものにお
いて、 暖房時には、圧縮機11の吐出冷媒を、第1の
電磁弁12を閉成すると共に第3の電磁弁19を
開成することによつて、第1のバイパス流路20
を通して、室内側熱交換器16に流通させ、この
室内側熱交換器16を通過して減圧装置、室外側
熱交換器13を流通した冷媒を、第4の電磁弁2
2を開成することによつて、第2のバイパス流路
21を通して、圧縮機11の吸込側に帰環させ、 除霜時には、第4の電磁弁22を閉成し第1の
電磁弁12を開成することによつて高圧冷媒を低
圧側に流入させ、その後に第3の電磁弁19を閉
成し第2の電磁弁17を開成することによつて、
圧縮機11の吐出冷媒を、室外熱交換器13、減
圧装置、室内側熱交換器に順次流通させたことを
特徴とするヒートポンプ式冷凍サイクルの除霜制
御方法。
[Claims] 1. A compressor 11, an outdoor heat exchanger 13, a pressure reducing device 15, and an indoor heat exchanger 16 are connected in sequence, and between the discharge side of the compressor 11 and the outdoor heat exchanger 13. A first solenoid valve 12 is interposed between the indoor heat exchanger 16 and the suction side of the compressor 11, and a second solenoid valve 17 is interposed between the indoor heat exchanger 16 and the suction side of the compressor 11. A first bypass passage 20 is provided that communicates with the inlet side of the solenoid valve 17, and a second bypass passage 21 is provided that communicates the outlet side of the first solenoid valve 12 with the suction side of the compressor 11. In a heat pump type refrigeration cycle in which a third solenoid valve 19 is interposed in the first bypass flow path 20 and a fourth solenoid valve 22 is interposed in the second bypass flow path 21, during heating, The refrigerant discharged from the compressor 11 is transferred to the first bypass passage 20 by closing the first solenoid valve 12 and opening the third solenoid valve 19.
The refrigerant that has passed through the indoor heat exchanger 16 and passed through the pressure reducing device and the outdoor heat exchanger 13 is passed through the fourth electromagnetic valve 2.
By opening 2, the air is returned to the suction side of the compressor 11 through the second bypass flow path 21. During defrosting, the fourth solenoid valve 22 is closed and the first solenoid valve 12 is closed. By opening the valve, the high-pressure refrigerant flows into the low-pressure side, and then by closing the third solenoid valve 19 and opening the second solenoid valve 17,
A defrosting control method for a heat pump refrigeration cycle, characterized in that refrigerant discharged from a compressor 11 is passed through an outdoor heat exchanger 13, a pressure reducing device, and an indoor heat exchanger in sequence.
JP19417482A 1982-11-04 1982-11-04 Heat pump type refrigeration cycle Granted JPS5984063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19417482A JPS5984063A (en) 1982-11-04 1982-11-04 Heat pump type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19417482A JPS5984063A (en) 1982-11-04 1982-11-04 Heat pump type refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5984063A JPS5984063A (en) 1984-05-15
JPH0120709B2 true JPH0120709B2 (en) 1989-04-18

Family

ID=16320153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19417482A Granted JPS5984063A (en) 1982-11-04 1982-11-04 Heat pump type refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5984063A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144444A (en) * 2007-12-14 2009-07-02 Komatsu Ltd Construction machine
JP7295318B1 (en) * 2022-09-20 2023-06-20 日立ジョンソンコントロールズ空調株式会社 air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433334A (en) * 1977-08-17 1979-03-12 Takenaka Komuten Co Method of breaking rock* stone* concrete* etc* by expansion
JPS58124864A (en) * 1982-01-20 1983-07-25 Kiichi Taga Sealing system consisting of wedge-shaped gap and particles, fibers and grease filling gap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433334A (en) * 1977-08-17 1979-03-12 Takenaka Komuten Co Method of breaking rock* stone* concrete* etc* by expansion
JPS58124864A (en) * 1982-01-20 1983-07-25 Kiichi Taga Sealing system consisting of wedge-shaped gap and particles, fibers and grease filling gap

Also Published As

Publication number Publication date
JPS5984063A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
US11193705B2 (en) Refrigeration cycle apparatus
JPH0120709B2 (en)
JPS6346350B2 (en)
JP2889762B2 (en) Air conditioner
JP4179602B2 (en) Thermal storage air conditioner
JPH03170758A (en) Air conditioner
JPS6361584B2 (en)
JP3063746B2 (en) Refrigeration equipment
JP3291886B2 (en) Air conditioner and control method thereof
JPH0333990B2 (en)
JPH04263742A (en) Refrigerator
JPS6339827B2 (en)
JPS6017639Y2 (en) Heat pump air conditioner
JPH02287060A (en) Air conditioner
JPH04320774A (en) Freezer device
JPH04350480A (en) Defrost controller
JPS5981464A (en) Heat pump type refrigeration cycle
JPS632859Y2 (en)
JPH04251144A (en) Operation control device of air conditioner
KR20210020459A (en) Air conditioner
JPS6032535Y2 (en) Heat recovery air conditioner
JPH0333993B2 (en)
JPH08226720A (en) Air conditioning equipment
JPS627462B2 (en)
JPH046377A (en) Control method of defrosting of refrigerating device