JPS627462B2 - - Google Patents

Info

Publication number
JPS627462B2
JPS627462B2 JP371679A JP371679A JPS627462B2 JP S627462 B2 JPS627462 B2 JP S627462B2 JP 371679 A JP371679 A JP 371679A JP 371679 A JP371679 A JP 371679A JP S627462 B2 JPS627462 B2 JP S627462B2
Authority
JP
Japan
Prior art keywords
solenoid valve
condenser
evaporator
hot gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP371679A
Other languages
Japanese (ja)
Other versions
JPS5595069A (en
Inventor
Noryuki Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP371679A priority Critical patent/JPS5595069A/en
Publication of JPS5595069A publication Critical patent/JPS5595069A/en
Publication of JPS627462B2 publication Critical patent/JPS627462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は冷凍装置の改良に係り、特に、圧縮機
の吐出側から蒸発器へ至るホツトガスバイパス管
を設け、蒸発器の除霜をホツトガスで行うように
した冷凍装置に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to improvement of a refrigeration system, and in particular, a method for defrosting the evaporator by providing a hot gas bypass pipe from the discharge side of the compressor to the evaporator. This invention relates to a refrigeration system that uses hot gas.

(ロ) 従来の技術 従来、冷凍装置のホツトガスによる除霜方法に
は、蒸発器を凝縮器として使用し圧縮機から吐出
されたホツトガスを直に蒸発器に供給する逆サイ
クル方式や、圧縮機の吐出側に流路切換弁を設
け、この切換弁から凝縮器を側路して蒸発器へ至
るホツトガスバイパス管を設け、圧縮機から吐出
されたガスをホツトガスバイパス管を介して蒸発
器へ供給するホツトガスバイパス方式等がある。
これら、逆サイクル方式やホツトガスバイパス方
式は、圧縮機から吐出されたガスを直に蒸発器へ
供給しているため、ヒーター加熱による除霜方式
のように電力消費量はかからず、しかも、オフサ
イクル除霜方式に比して除霜時間を短縮できると
いう利点がある。
(b) Conventional technology Conventionally, methods for defrosting refrigeration equipment using hot gas include a reverse cycle method in which the evaporator is used as a condenser and the hot gas discharged from the compressor is directly supplied to the evaporator, and A flow path switching valve is provided on the discharge side, and a hot gas bypass pipe is provided from this switching valve to bypass the condenser and reach the evaporator, and the gas discharged from the compressor is passed through the hot gas bypass pipe to the evaporator. There are hot gas bypass methods, etc.
These reverse cycle methods and hot gas bypass methods supply the gas discharged from the compressor directly to the evaporator, so they do not consume as much power as defrosting methods that use heater heating. This method has the advantage that the defrosting time can be shortened compared to the off-cycle defrosting method.

(ハ) 発明が解決しようとする問題点 しかしながら、上述した逆サイクル方式やホツ
トガスバイパス方式は、単に圧縮機から吐出され
るホツトガスの感熱だけを利用するものであるた
め、着霜量が多いと蒸発器で液化した冷媒がその
まま圧縮機へ戻り、いわゆる液バツク現象を起こ
すという問題があつた。
(c) Problems to be Solved by the Invention However, the above-mentioned reverse cycle method and hot gas bypass method simply utilize the heat sensitivity of the hot gas discharged from the compressor, so if there is a large amount of frost formation, There was a problem in that the refrigerant liquefied in the evaporator returned to the compressor as it was, causing a so-called liquid back phenomenon.

また、斯る問題を解決するために、圧縮機と凝
縮器の間の吐出管と、圧縮機と蒸発器の間の吸入
管を熱交換的に蓄熱槽内に入れたいわゆるサーモ
バンク方式の除霜装置が考案されいてる。この方
式は、冷却運転中に圧縮機から吐出されるホツト
ガスで蓄熱槽を加熱しておき、除霜時に、蒸発器
で液化した冷媒を蓄熱槽へ導くものであり、ホツ
トガスの感熱と潜熱の双方を利用することにより
蒸発器で液化した冷媒を蓄熱槽で完全に気化でき
るため、液バツクの防止には効果がある。
In addition, in order to solve this problem, we have removed the so-called thermobank system in which the discharge pipe between the compressor and condenser and the suction pipe between the compressor and evaporator are placed inside a heat storage tank for heat exchange. A frosting device has been devised. In this method, a heat storage tank is heated with hot gas discharged from a compressor during cooling operation, and during defrosting, the liquefied refrigerant in an evaporator is guided to the heat storage tank. By using this, the refrigerant that has been liquefied in the evaporator can be completely vaporized in the heat storage tank, which is effective in preventing liquid back-up.

しかしながら、上述したサーモバンク方式をは
じめとするいづれのホツトガス除霜方式でも以下
に説明するような問題があり、改善策が要望され
ている。すなわち、ホツトガスによる除霜方式
は、今まで冷却運転下にあつて冷たくなつている
蒸発器へいきなりホツトガスを供給するものであ
るため、除霜運転の初期にはホツトガスが蒸発器
内で液化滞溜し、圧縮機へ戻る冷媒量が減少して
低圧圧力が低下すると共に高圧側圧力も低下し、
除霜能力が低下してしまうという問題があつた。
However, all hot gas defrosting systems including the above-mentioned thermobank system have the following problems, and improvements are desired. In other words, in the defrosting method using hot gas, hot gas is suddenly supplied to the evaporator, which has been under cooling operation and has become cold, so at the beginning of defrosting operation, the hot gas liquefies and accumulates in the evaporator. However, as the amount of refrigerant returning to the compressor decreases, the low pressure decreases, and the high pressure side pressure also decreases.
There was a problem that the defrosting ability decreased.

本発明は斯る点に鑑みなされたもので、ホツト
ガス除霜による除霜時間の短縮、サーモバンク方
式による除霜終了後の液バツク防止といつた働
き、更には再冷却運転時の冷凍能力をすみやかに
安定させるいわゆるポンプダウン運転機能を備え
つつ、除霜運転の初期におけるホツトガスの蒸発
器内での液化滞溜を防ぎ、冷媒循環量の減少をな
くして除霜能力を向上させることを目的とする。
The present invention was developed in view of these points, and has functions such as shortening the defrosting time by hot gas defrosting, preventing liquid back-up after defrosting by using a thermobank method, and further increasing the refrigerating capacity during recooling operation. The objective is to prevent hot gas from liquefying and accumulating in the evaporator in the early stages of defrosting operation, and to eliminate a decrease in the amount of refrigerant circulating, thereby improving defrosting ability, while providing a so-called pump-down operation function that quickly stabilizes the operation. do.

(ニ) 問題点を解決するための手段 本発明は、圧縮機、凝縮器、膨張弁、蒸発器及
び蓄熱槽を有し、前記圧縮機の吐出側と蒸発器の
入口側とをホツトガスバイパス管で接続し、この
バイパス管の圧縮機側の接続部にその流路を凝縮
器側とホツトガスバイパス管側とに切替える流路
切換弁を設け、圧縮機と凝縮器の間の吐出管の一
部と、圧縮機と蒸発器の間の吸入管の一部とを蓄
熱槽内に入れると共に、前記吸入管と並列に短絡
管を接続し、凝縮器の入口側と蒸発器の出口側と
の間に冷媒回収管を設け、前記短絡管、冷媒回収
管、及び凝縮器の出口側配管のそれぞれに第1電
磁弁、第2電磁弁、第3電磁弁と逆止弁を設ける
と共に膨張弁に並列に第4電磁弁を設け、これら
第1乃至第4電磁弁及び前記流路切換弁の開閉に
よつて冷却運転、除霜運転及び除霜終了後の冷媒
回収運転を切替える冷凍装置において、前記流路
切換弁と電磁弁とは、冷却運転時には、流路切換
弁を凝縮器側に切替えて第1電磁弁と第2電磁弁
を開、第3電磁弁と第4電磁弁を閉とし、少なく
とも除霜運転の初期には、流路切換弁をホツトガ
スバイパス管側に切替えると共に第1電磁弁を
閉、第2電磁弁と第3電磁弁と第4電磁弁を開と
し、冷媒回収運転時には、流路切換弁を再び凝縮
器側に切替えると共にすべての電磁弁を閉とする
よう構成したものである。
(d) Means for solving the problems The present invention has a compressor, a condenser, an expansion valve, an evaporator, and a heat storage tank, and a hot gas bypass between the discharge side of the compressor and the inlet side of the evaporator. A flow path switching valve is provided at the connection part of the bypass pipe on the compressor side to switch the flow path between the condenser side and the hot gas bypass pipe side. A part of the suction pipe between the compressor and the evaporator is placed in a heat storage tank, and a short-circuit pipe is connected in parallel with the suction pipe to connect the inlet side of the condenser and the outlet side of the evaporator. A refrigerant recovery pipe is provided in between, and a first solenoid valve, a second solenoid valve, a third solenoid valve, and a check valve are provided in each of the short circuit pipe, the refrigerant recovery pipe, and the outlet side pipe of the condenser, and an expansion valve. A refrigeration system in which a fourth solenoid valve is provided in parallel with the refrigeration system, and cooling operation, defrosting operation, and refrigerant recovery operation after defrosting are switched by opening and closing these first to fourth solenoid valves and the flow path switching valve, The flow path switching valve and the solenoid valve are such that during cooling operation, the flow path switching valve is switched to the condenser side, the first solenoid valve and the second solenoid valve are opened, and the third solenoid valve and the fourth solenoid valve are closed. At least in the initial stage of defrosting operation, the flow path switching valve is switched to the hot gas bypass pipe side, the first solenoid valve is closed, the second solenoid valve, the third solenoid valve, and the fourth solenoid valve are opened to recover the refrigerant. During operation, the flow path switching valve is switched back to the condenser side and all electromagnetic valves are closed.

(ホ) 作用 本発明の冷凍装置は上記のような機器の構成に
より、冷却運転時には圧縮機から吐出されるホツ
トガスで蓄熱槽を加熱しておき、除霜終了後の再
冷却運転時に、蒸発器からの液化した冷媒を蓄熱
槽で完全に気化させて、液バツクを防いでいる。
また、除霜運転時の初期には、圧縮機から吐出さ
れたホツトガスをホツトガスバイパス管を介して
蒸発器へ導き、従前のようにホツトガスによる除
霜を行うだけでなく、冷却運転中に凝縮器や受液
器内に残溜した高温の液冷媒を、凝縮器と蒸発器
との圧力差によつて、冷媒回収管や凝縮器の出口
側配管を介して蒸発器内へ導くことができ、この
高温冷媒で蒸発器を加熱することにより、該蒸発
器内でのホツトガスの液化滞溜を低減し、冷媒循
環量の減少を押え、除霜能力を向上できるように
している。更に、冷媒回収運転では、除霜時に蒸
発器内に貯つた液冷媒を、蓄熱槽で気化した後、
凝縮器内に再回収できるようにして、再冷却運転
時の冷凍能力をすみやかに安定できるようにして
いる。
(e) Effect The refrigeration system of the present invention has the above-mentioned equipment configuration. During cooling operation, the heat storage tank is heated with hot gas discharged from the compressor, and during recooling operation after defrosting, the evaporator is heated. The liquefied refrigerant is completely vaporized in the heat storage tank to prevent liquid back-up.
In addition, at the beginning of defrosting operation, the hot gas discharged from the compressor is guided to the evaporator via the hot gas bypass pipe, and in addition to defrosting with hot gas as before, it is also condensed during cooling operation. The high-temperature liquid refrigerant remaining in the container or liquid receiver can be guided into the evaporator via the refrigerant recovery pipe or the condenser outlet pipe due to the pressure difference between the condenser and the evaporator. By heating the evaporator with this high-temperature refrigerant, it is possible to reduce the liquefaction and accumulation of hot gas in the evaporator, suppress the decrease in the amount of refrigerant circulation, and improve the defrosting ability. Furthermore, in the refrigerant recovery operation, after the liquid refrigerant stored in the evaporator during defrosting is vaporized in the heat storage tank,
By making it possible to recover it in the condenser, the refrigeration capacity can be quickly stabilized during recooling operation.

(ヘ) 実施例 以下本発明を図に示す実施例に基づいて説明す
る。
(f) Examples The present invention will be described below based on examples shown in the drawings.

1は圧縮機、2は凝縮器、3は受液器、4は膨
張弁、5は蒸発器、6はアキユームレータであ
り、これらは順次接続して冷凍サイクルを構成す
る。
1 is a compressor, 2 is a condenser, 3 is a liquid receiver, 4 is an expansion valve, 5 is an evaporator, and 6 is an accumulator, which are connected in sequence to constitute a refrigeration cycle.

7は除霜装置ユニツトであり、該ユニツトは圧
縮機1と凝縮器2との間の吐出管8の熱交換部9
と蒸発器5とアキユームレータ6との間の吸入管
10の熱交換部11とを夫々熱交換的に接続した
蓄熱槽12と、前記吸入管10の熱交換部11に
直列に設けた吸入圧力調整弁13と、該吸入圧力
調整弁と熱交換部11とに並列に設けた短絡管1
5と、この短絡管に設けた冷却運転時のみ開放さ
れる電磁弁14と、前記凝縮器2と受液器3とに
並列に入口側に三方切換電磁弁16を出口側にエ
ジエクター接続部17を設けたホツトガスバイパ
ス管18と、前記エジエクター接続部17と受液
器3との間に直列に設けた電磁弁19と逆止弁2
0と、前記三方切換電磁弁16と凝縮器2との間
と蒸発器5の出口側とを接続する冷媒回収管22
と、該冷媒回収管に設けた初期除霜運転時のみ開
放される電磁弁21とを一体に組込んで構成して
いる。電磁弁19は冷却運転時と初期除霜運転時
とに開放されている。23は膨張弁4に並列に設
けた電磁弁で、該電磁弁は除霜運転時のみ開放さ
れる。
7 is a defrosting device unit, which includes a heat exchange section 9 of a discharge pipe 8 between the compressor 1 and the condenser 2;
and a heat exchange section 11 of a suction pipe 10 between the evaporator 5 and the accumulator 6 are respectively connected for heat exchange. A pressure regulating valve 13 and a short-circuit pipe 1 provided in parallel with the suction pressure regulating valve and the heat exchange section 11.
5, a solenoid valve 14 provided in this short-circuit pipe that is opened only during cooling operation, a three-way switching solenoid valve 16 on the inlet side in parallel with the condenser 2 and receiver 3, and an ejector connection part 17 on the outlet side. A solenoid valve 19 and a check valve 2 are provided in series between the ejector connection portion 17 and the liquid receiver 3.
0, and a refrigerant recovery pipe 22 connecting between the three-way switching solenoid valve 16 and the condenser 2 and the outlet side of the evaporator 5.
and a solenoid valve 21 which is provided in the refrigerant recovery pipe and is opened only during initial defrosting operation. The solenoid valve 19 is open during cooling operation and initial defrosting operation. 23 is a solenoid valve provided in parallel with the expansion valve 4, and this solenoid valve is opened only during defrosting operation.

上記の構成において、冷却運転時には電磁弁1
4,19は開、電磁弁21,23は閉、三方切換
電磁弁16は凝縮器2側に開いているために、圧
縮機1で圧縮された高温高圧のガス冷媒は実線矢
印で示すように吐出管8の熱交換部9で蓄熱槽1
2と熱交換させて蓄熱させ凝縮器2で凝縮液化さ
せると共に受液器3に貯溜される。前記受液器3
に貯溜された液冷媒は逆止弁20と電磁弁19と
を介して膨張弁4で減圧され蒸発器5で蒸発気化
して短絡管15の電磁弁14を通りアキユームレ
ータ6から圧縮機1に帰還し以後同様に繰返す。
In the above configuration, during cooling operation, the solenoid valve 1
4 and 19 are open, solenoid valves 21 and 23 are closed, and the three-way switching solenoid valve 16 is open to the condenser 2 side, so the high temperature and high pressure gas refrigerant compressed by the compressor 1 flows as shown by the solid line arrow. Heat storage tank 1 at heat exchange section 9 of discharge pipe 8
The liquid is stored in the liquid receiver 3 through heat exchange with the liquid liquid, and is condensed and liquefied in the condenser 2, and stored in the liquid receiver 3. The liquid receiver 3
The liquid refrigerant stored in Return to and repeat the same process thereafter.

除霜運転時の初期には電磁弁19,21,23
は開、電磁弁14は閉、三方切換電磁弁16はホ
ツトガスバイパス管18側に開いているため、圧
縮機1で圧縮された高温の吐出ガスは点線矢印で
示すように三方切換電磁弁16からホツトガスバ
イパス管18を流れてエジエクター接続部17で
凝縮器2内と受液器3内の高温液冷媒を該受液器
側から吸引して気液混合状態で電磁弁23を介し
て蒸発器5内に流入させると共に前記凝縮器2内
と受液器3内との高温液冷媒を該凝縮器側から圧
力差により冷媒回収管22を通り蒸発器5の出口
側から該蒸発器内に流入させて貯溜させる。前記
蒸発器5内に凝縮器2と受液器3との液冷媒が供
給された一定時間後には電磁弁19,21が閉じ
られてホツトガスバイパス管18だけの除霜状態
に入る。エジエクター接続部17と受液器3との
間に設けた逆止弁20はホツトガスがエジエクタ
ー接続部17から該ホツトガス圧力と受液器3内
圧力とに差が生じた時に前記受液器3内に逆流し
て寝込んで冷媒循環量が減少するのを防止してい
る。
At the beginning of defrosting operation, solenoid valves 19, 21, 23
is open, the solenoid valve 14 is closed, and the three-way switching solenoid valve 16 is open to the hot gas bypass pipe 18 side, so the high temperature discharge gas compressed by the compressor 1 flows through the three-way switching solenoid valve 16 as shown by the dotted arrow. The hot gas flows through the bypass pipe 18, and the high-temperature liquid refrigerant in the condenser 2 and liquid receiver 3 is sucked from the receiver side at the ejector connection part 17 and evaporated via the solenoid valve 23 in a gas-liquid mixed state. At the same time, the high temperature liquid refrigerant in the condenser 2 and receiver 3 is caused to flow from the condenser side through the refrigerant recovery pipe 22 and into the evaporator from the outlet side of the evaporator 5 due to the pressure difference. Let it flow in and store it. After a certain period of time after the liquid refrigerant of the condenser 2 and liquid receiver 3 is supplied into the evaporator 5, the solenoid valves 19 and 21 are closed, and only the hot gas bypass pipe 18 enters a defrosting state. A check valve 20 provided between the ejector connection 17 and the liquid receiver 3 is used to prevent hot gas from entering the liquid receiver 3 when there is a difference between the pressure of the hot gas and the pressure inside the liquid receiver 3. This prevents the refrigerant from flowing backwards and causing a decrease in the amount of refrigerant circulating.

前記ホツトガスバイパス管18だけのホツトガ
ス除霜状態に入つたホツトガスは蒸発器5を除霜
して熱交換され液化した冷媒を吸入圧力調整弁1
3で減圧して熱交換部11で蓄熱槽12と熱交換
して気化しアキユームレータ6を介して圧縮機1
に帰還させる。
The hot gas that has entered the hot gas defrosting state only in the hot gas bypass pipe 18 defrosts the evaporator 5, undergoes heat exchange, and liquefies the refrigerant into the suction pressure regulating valve 1.
The pressure is reduced in step 3, and the heat exchanger 11 exchanges heat with the heat storage tank 12 to vaporize it, and then it is transferred to the compressor 1 via the accumulator 6.
to return to.

除霜終了後すべての電磁弁14,19,21,
23を閉寒し三方切換電磁弁16を凝縮器2側に
切替えると、蒸発器5に貯つた液冷媒は吸入圧力
調整弁13と蓄熱槽12内の熱交換部11とを通
り圧縮機1に吸込まれて該圧縮機から吐出され凝
縮器2で液化され受液器3に該受液器の出口側に
設けた電磁弁19が閉塞しているため順次貯溜さ
れてすべて回収された時点で電磁弁14,19を
開放して冷却運転に入る。
After defrosting, all solenoid valves 14, 19, 21,
23 is closed and the three-way solenoid valve 16 is switched to the condenser 2 side, the liquid refrigerant stored in the evaporator 5 passes through the suction pressure regulating valve 13 and the heat exchange section 11 in the heat storage tank 12 to the compressor 1. The liquid is sucked in, discharged from the compressor, liquefied in the condenser 2, and stored in the receiver 3 because the solenoid valve 19 provided on the outlet side of the receiver is closed. Valves 14 and 19 are opened and cooling operation begins.

尚、本実施例では初期除霜運転時において、蒸
発器5内に高温冷媒が供給された一定時間後に、
電磁弁19,21を閉じてホツトガスバイパス管
18だけによる除霜運転に入るものについて説明
したが、蒸発器5に高温冷媒が供給された後は、
電磁弁19,21の開閉状態はその後除霜能力に
影響を及ぼすものではない。すなわち、電磁弁1
9をそのまま開放状態にしておいても、流路切換
弁16がホツトガスバイパス管18側に切替つて
いること、及び電磁弁19と凝縮器2の間の配管
には逆止弁20が設けられていることから、ホツ
トガスバイパス管18を流れるホツトガスが凝縮
器2の出口側配管へ逆流するようなことはないた
め、ホツトガスバイパス管18を介して蒸発器5
へ流れるホツトガス量は電磁弁19を閉じたとき
と同じとなり、除霜能力に大きな影響を及ぼすこ
とはない。また、電磁弁21をそのまま開放状態
にしておいても、流路切換弁16がホツトガスバ
イパス管18側に切替つていることから、ホツト
ガスが冷媒回収管22を介して蒸発器5内へ流入
するようなことはなく、凝縮器2と蒸発器5との
圧力が均等になつて凝縮器2の高温冷媒が蒸発器
5へ供給されなくなるだけであり、除霜後の液冷
媒が冷媒回収管22を介して少しづつ凝縮器2に
回収されることにより除霜後の液処理が助けられ
ることはあつても、蒸発器5の除霜にあてられる
ホツトガス量は、電磁弁21を閉じたときと変わ
らないこととなり、除霜能力に大きな影響を与え
るものではない。
In this embodiment, during the initial defrosting operation, after a certain period of time after the high temperature refrigerant is supplied into the evaporator 5,
Although we have described the case where the solenoid valves 19 and 21 are closed and the defrosting operation is started using only the hot gas bypass pipe 18, after the high temperature refrigerant is supplied to the evaporator 5,
The opening and closing states of the solenoid valves 19 and 21 do not affect the defrosting ability thereafter. That is, solenoid valve 1
9 is left open, the flow path switching valve 16 is switched to the hot gas bypass pipe 18 side, and the piping between the solenoid valve 19 and the condenser 2 is provided with a check valve 20. Therefore, the hot gas flowing through the hot gas bypass pipe 18 will not flow back to the outlet side piping of the condenser 2, so the hot gas flowing through the hot gas bypass pipe 18 will not flow back to the outlet side piping of the condenser 2.
The amount of hot gas flowing into the air is the same as when the solenoid valve 19 is closed, and does not significantly affect the defrosting ability. Furthermore, even if the solenoid valve 21 is left open, hot gas will flow into the evaporator 5 via the refrigerant recovery pipe 22 because the flow path switching valve 16 is switched to the hot gas bypass pipe 18 side. This does not happen; the pressures in the condenser 2 and evaporator 5 become equal, and the high-temperature refrigerant in the condenser 2 is no longer supplied to the evaporator 5. Although the liquid treatment after defrosting may be helped by recovering the hot gas little by little to the condenser 2 via the This will not change and will not have a major impact on the defrosting ability.

更に、本実施例ではホツトガスバイパス管18
にエジエクター接続部17を設けたものについて
説明したが、高温冷媒を蒸発器5へ導くことがで
きるのは、凝縮器2と蒸発器5との圧力差、及び
エジエクター17による吸引作用であり、実施の
形態によつてはエジエクター17はなくてもよ
い。
Furthermore, in this embodiment, the hot gas bypass pipe 18
Although the ejector connection part 17 has been described above, the high temperature refrigerant can be guided to the evaporator 5 due to the pressure difference between the condenser 2 and the evaporator 5 and the suction action by the ejector 17. Depending on the form of the ejector 17, the ejector 17 may not be provided.

また、除霜装置をユニツト化して一体に形成し
たため、既存の冷凍装置にも簡単に組込むことが
できる。
Furthermore, since the defrosting device is integrated into a unit, it can be easily incorporated into existing refrigeration equipment.

(ト) 発明の効果 以上のように本発明の冷凍装置によれば、除霜
終了後の再冷却運転時における液バツク防止や、
再冷却運転時に冷凍能力が不安定になるのを防ぐ
といつた従前の機能を備えつつ、除霜運転時の初
期には、凝縮器内に残溜した高温冷媒を、冷媒回
収管と凝縮器の吐出側配管の双方を介して蒸発器
へ供給して該蒸発器を加熱し、蒸発器内でのホツ
トガスの液化滞溜やこれによる冷媒循環量の減少
を防ぎ、除霜能力を向上できる。
(G) Effects of the Invention As described above, according to the refrigeration system of the present invention, liquid back-up can be prevented during re-cooling operation after defrosting,
Although it has the conventional function of preventing refrigeration capacity from becoming unstable during recooling operation, at the beginning of defrosting operation, high temperature refrigerant remaining in the condenser is removed from the refrigerant recovery pipe and condenser. The hot gas is supplied to the evaporator through both of the discharge side pipes to heat the evaporator, thereby preventing the hot gas from liquefying and accumulating in the evaporator and reducing the amount of refrigerant circulating due to this, thereby improving the defrosting ability.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す冷凍回路図であ
る。 1…圧縮機、2…凝縮器、4…膨張弁、5…蒸
発器、8…吐出管、9,11…熱交換部、10…
吸入管、12…蓄熱槽、13…吸入圧力調整弁、
14,19,21,22…電磁弁、15…短絡
管、16…三方切換電磁弁、17…エジエクター
接続部、18…ホツトガスバイパス管、22…冷
媒回収管。
The figure is a refrigeration circuit diagram showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Condenser, 4... Expansion valve, 5... Evaporator, 8... Discharge pipe, 9, 11... Heat exchange part, 10...
Suction pipe, 12... Heat storage tank, 13... Suction pressure regulating valve,
14, 19, 21, 22... Solenoid valve, 15... Short circuit pipe, 16... Three-way switching solenoid valve, 17... Ejector connection part, 18... Hot gas bypass pipe, 22... Refrigerant recovery pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、膨張弁及び蒸発器を順次配
管接続すると共に、圧縮機と凝縮器の間の吐出管
及び、圧縮機と蒸発器の間の吸入管の夫々の一部
を内部に収納した蓄熱槽を備え、かつ、前記圧縮
機の吐出側と蒸発器の入口側をホツトガスバイパ
ス管で接続し、このバイパス管の圧縮機側の接続
部にその流路を凝縮器側とホツトガスバイパス管
側とに切り替える流路切換弁を設け、前記蓄熱槽
内に入れられた吸入管の一部と並列に第1電磁弁
を有する短絡管を接続し、凝縮器の入口側と蒸発
器の出口側とを第2電磁弁を有する冷媒回収管で
接続し、更に凝縮器の出口側配管に第3電磁弁と
逆止弁を直列に設けると共に膨張弁と並列に第4
電磁弁を設けてなり、冷却運転時には、流路切換
弁を凝縮器側に切り替えると共に第1電磁弁と第
3電磁弁を開、第2電磁弁と第4電磁弁を閉とし
て冷却サイクルを形成し、除霜運転時には、流路
切換弁をホツトガスバイパス管側に切り替えると
共に第1電磁弁を閉、第4電磁弁を開として除霜
サイクルを形成し、更に、冷媒回収運転時には、
流路切換弁を再び凝縮器側に切り替えると共にす
べての電磁弁を閉として冷媒回収サイクルを形成
している冷凍装置において、この装置には、除霜
運転時の初期に、前記第2電磁弁と第3電磁弁と
を開放する機構が設けられていることを特徴とす
る冷凍装置。
1 Connect the compressor, condenser, expansion valve, and evaporator with piping in sequence, and store each part of the discharge pipe between the compressor and condenser and the suction pipe between the compressor and evaporator inside. The discharge side of the compressor and the inlet side of the evaporator are connected by a hot gas bypass pipe, and the flow path is connected to the connection part of the bypass pipe on the compressor side to connect the condenser side and the hot gas A flow path switching valve is provided to switch between the inlet side of the condenser and the inlet side of the evaporator. A refrigerant recovery pipe having a second solenoid valve is connected to the outlet side, and a third solenoid valve and a check valve are connected in series to the outlet side piping of the condenser, and a fourth solenoid valve is connected in parallel to the expansion valve.
A solenoid valve is provided, and during cooling operation, the flow path switching valve is switched to the condenser side, the first solenoid valve and the third solenoid valve are opened, and the second solenoid valve and the fourth solenoid valve are closed to form a cooling cycle. During defrosting operation, the flow path switching valve is switched to the hot gas bypass pipe side, the first solenoid valve is closed, and the fourth solenoid valve is opened to form a defrosting cycle, and furthermore, during refrigerant recovery operation,
In a refrigeration system in which a refrigerant recovery cycle is formed by switching the flow path switching valve back to the condenser side and closing all solenoid valves, this system includes a second solenoid valve and a second solenoid valve at the beginning of defrosting operation. A refrigeration system characterized by being provided with a mechanism for opening a third solenoid valve.
JP371679A 1979-01-10 1979-01-10 Refrigeration equipment Granted JPS5595069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP371679A JPS5595069A (en) 1979-01-10 1979-01-10 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP371679A JPS5595069A (en) 1979-01-10 1979-01-10 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5595069A JPS5595069A (en) 1980-07-18
JPS627462B2 true JPS627462B2 (en) 1987-02-17

Family

ID=11565036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP371679A Granted JPS5595069A (en) 1979-01-10 1979-01-10 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5595069A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157859U (en) * 1981-03-31 1982-10-04
JPS57184467U (en) * 1981-05-19 1982-11-22

Also Published As

Publication number Publication date
JPS5595069A (en) 1980-07-18

Similar Documents

Publication Publication Date Title
KR102173814B1 (en) Cascade heat pump system
JP2017026171A (en) Air conditioner
JPS627462B2 (en)
US20230112903A1 (en) Method for defrosting a thermal regulation circuit for a vehicle, in particular for a motor vehicle
JP3754272B2 (en) Air conditioner
JP3175709B2 (en) Binary refrigeration equipment
JPS5826511B2 (en) Defrosting device for refrigerators
JPH01123966A (en) Refrigerator
JP3723413B2 (en) Air conditioner
JP2002327969A (en) Refrigerating system
JPH0420752A (en) Double-element type freezer device
JPS5852460Y2 (en) Refrigeration equipment
JPS6144126Y2 (en)
JPS6032535Y2 (en) Heat recovery air conditioner
JP3063746B2 (en) Refrigeration equipment
JPS6032534Y2 (en) Heat recovery air conditioner
JPS6130131Y2 (en)
JPS6346350B2 (en)
JPH065572Y2 (en) Refrigeration equipment
JPH0413583Y2 (en)
JPS5838937Y2 (en) Heat recovery air conditioner
JPH0120709B2 (en)
JPS6015084Y2 (en) Refrigeration equipment
JPS6015081Y2 (en) Refrigeration equipment
JPH04320774A (en) Freezer device