JPS6017639Y2 - Heat pump air conditioner - Google Patents

Heat pump air conditioner

Info

Publication number
JPS6017639Y2
JPS6017639Y2 JP10117279U JP10117279U JPS6017639Y2 JP S6017639 Y2 JPS6017639 Y2 JP S6017639Y2 JP 10117279 U JP10117279 U JP 10117279U JP 10117279 U JP10117279 U JP 10117279U JP S6017639 Y2 JPS6017639 Y2 JP S6017639Y2
Authority
JP
Japan
Prior art keywords
valve
high pressure
switching valve
way switching
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10117279U
Other languages
Japanese (ja)
Other versions
JPS5618865U (en
Inventor
孝之 杉本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP10117279U priority Critical patent/JPS6017639Y2/en
Publication of JPS5618865U publication Critical patent/JPS5618865U/ja
Application granted granted Critical
Publication of JPS6017639Y2 publication Critical patent/JPS6017639Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はヒートポンプ式空気調和機、詳しくは四路切換
弁を備え該切換弁の操作により冷暖房可能としたヒート
ポンプ式空気調和機に関する。
[Detailed Description of the Invention] The present invention relates to a heat pump type air conditioner, and more particularly to a heat pump type air conditioner that is equipped with a four-way switching valve and can be heated or cooled by operating the switching valve.

従来此種空気調和機では、フロスト時四路切換弁を切換
えて冷媒を逆サイクルで流通させて高湿高圧のホットガ
スによりデフロストを行なうようにしている。
Conventionally, in this type of air conditioner, when frosting occurs, a four-way selector valve is switched to circulate refrigerant in a reverse cycle to perform defrosting using high-humidity, high-pressure hot gas.

所が四路切換弁の操作によりデフロスト運転に切換えた
時、蒸発器はフロフトしているため、該蒸発器を通るホ
ットガスの高圧が上昇し難くて圧縮機入力が低下するこ
ととなり、デフロストのための熱量が少なくなってデフ
ロスト時間が長くなる問題がある。
When a factory switches to defrost operation by operating a four-way selector valve, the evaporator is in a floft state, so the high pressure of hot gas passing through the evaporator is difficult to rise, resulting in a decrease in compressor input, and the defrost operation is reduced. There is a problem that the amount of heat required for defrosting is reduced and the defrost time becomes longer.

又四路切換弁の切換動作により凝縮器から液冷媒が液パ
ツクして圧縮機構部を損傷せしめたり、高低圧の差圧が
一定の大きな値に達せず潤滑油が圧縮機構の潤滑部に確
実に供給されなくなって、寿命の低下を来たす問題があ
った。
In addition, the switching operation of the four-way selector valve may cause liquid refrigerant to pack up from the condenser and damage the compression mechanism, or the differential pressure between high and low pressures may not reach a certain large value, causing lubricating oil to reach the lubricating part of the compression mechanism. There was a problem that the product was no longer supplied, resulting in a shortened lifespan.

しかして本考案は以上の問題に鑑み考案したもので、デ
フロスト時四路切換弁を切換えることなく、ホットガス
の四路切換弁への流入を停止して、ホットガスの高圧圧
力を高圧制御弁により該制御弁の流入側で所定の設定圧
力に維持するごとくしなかなら、高圧制御弁を開いてホ
ットガスを蒸発器又は該蒸発器近傍に流通させて四路切
換弁から圧縮機に戻るデフロストサイクルを形威し、該
サイクル時における圧縮機の仕事量を、前記高圧の設定
圧力に見合う大なる量と威して多量の熱量を保有したホ
ットガスにより迅速かつ確実にデフロストを完了できる
と共に、従来の四路切換弁を切換えてデフロストを行な
う場合のような液バツクが生じるのを抑制すると共に、
潤滑油の供給不足による圧縮機構部が損傷する問題を全
くないようにしたのである。
However, the present invention was devised in view of the above problems, and it stops the flow of hot gas into the four-way switching valve during defrosting without switching the four-way switching valve, and controls the high pressure of the hot gas to the high-pressure control valve. to maintain a predetermined set pressure on the inlet side of the control valve, the high-pressure control valve is opened to allow hot gas to flow into the evaporator or the vicinity of the evaporator, and return to the compressor through the four-way selector valve. By shaping the cycle and increasing the work of the compressor during the cycle to a large amount commensurate with the set pressure of the high pressure, defrosting can be completed quickly and reliably using hot gas having a large amount of heat, and In addition to suppressing the liquid backflow that occurs when defrosting is performed by switching the conventional four-way switching valve,
This completely eliminates the problem of damage to the compression mechanism due to insufficient supply of lubricating oil.

即ち本考案は四路切換弁を備え、該切換弁の操作により
冷暖房可能としたヒートポンプ式空気調和機であって、
圧縮機の吐出口と前記四路切換弁との間の吐出管に、ホ
ットガスバイパス管の一端を接続すると共に、該バイパ
ス管の他端を、暖房用膨張機構と前記四路切換弁との間
の冷媒通路で、かつ冷房時凝縮器となり、暖房時蒸発器
となる室外コイルを含む冷媒通路に接続する一方、前記
バイパス管に高圧が冷暖房運転時の高圧より高い圧力に
なった場合に開く高圧制御弁を介装しさらに、前記バイ
パス管の吐出管への接続部と四路切換弁との間の吐出管
に、開閉弁を介装し、前記室外コイルがフロストしたと
き、前記開閉弁を閉じてデフロストを行なうごとくした
ことを特徴とするものである。
That is, the present invention is a heat pump type air conditioner equipped with a four-way switching valve and capable of heating and cooling by operating the switching valve,
One end of the hot gas bypass pipe is connected to the discharge pipe between the discharge port of the compressor and the four-way switching valve, and the other end of the bypass pipe is connected to the discharge pipe between the heating expansion mechanism and the four-way switching valve. It is connected to the refrigerant passage that includes an outdoor coil that serves as a condenser during cooling and an evaporator during heating, and opens when the high pressure in the bypass pipe becomes higher than the high pressure during heating and cooling operation. A high pressure control valve is interposed, and an on-off valve is interposed in the discharge pipe between the connection part of the bypass pipe to the discharge pipe and the four-way switching valve, and when the outdoor coil frosts, the on-off valve It is characterized by the fact that it closes and defrosts the air.

以下本考案ヒートポンプ式空気調和機の実施例と図面に
基づいて説明する。
The heat pump type air conditioner of the present invention will be described below based on embodiments and drawings.

図面において、Aは室外ユニット、Bは室外ユニットで
、これら各ユニットA、Bは連絡配管C9Cを介して接
続している。
In the drawings, A is an outdoor unit, B is an outdoor unit, and these units A and B are connected via a connecting pipe C9C.

前記室外ユニットAは圧縮機1、四路切換弁2、冷房時
凝縮器となり暖房時蒸発器となる室外コイル3、キャピ
ラリーチューブなどの暖房用膨張機構4、該膨張機構4
を側路するバイパス管5に介装した逆止弁6、受液器7
、アキュムレータ8を具備腰これら機器を冷媒配管9に
より接続している。
The outdoor unit A includes a compressor 1, a four-way switching valve 2, an outdoor coil 3 that becomes a condenser during cooling and an evaporator during heating, an expansion mechanism 4 for heating such as a capillary tube, and the expansion mechanism 4.
A check valve 6 and a liquid receiver 7 are installed in the bypass pipe 5 that bypasses the
, an accumulator 8, and these devices are connected by a refrigerant pipe 9.

又前記室内ユニツ)Bは冷房時蒸発器となり、暖房時凝
縮器となる室内コイル10、キャピラリーチューブなど
の冷房用膨張機構11、該膨張機構11を側路するバイ
パス管12に介装した逆止弁13を具備し、これらの機
器を冷媒配管14により接続している。
The indoor unit) B is an indoor coil 10 that serves as an evaporator during cooling and a condenser during heating, an expansion mechanism 11 for cooling such as a capillary tube, and a non-return check interposed in a bypass pipe 12 that bypasses the expansion mechanism 11. A valve 13 is provided, and these devices are connected by a refrigerant pipe 14.

そして前記各ユニットA、Bの冷媒配管9.14を前記
連絡配管C9Cにより接続している。
The refrigerant pipes 9.14 of each of the units A and B are connected by the communication pipe C9C.

又18は室外コイル3に設けた室外ファン、19は室内
コイル10に設けた室内ファンである。
Further, 18 is an outdoor fan provided on the outdoor coil 3, and 19 is an indoor fan provided on the indoor coil 10.

そして前記四路切換弁2の実線ごとく連通させて冷媒を
実線矢印の方向に流通させて暖房運転を行ない、又四路
切換弁2を点線のごとく連通させ冷媒を点線矢印の方向
に流通させて冷房運転を行なうようにしている。
Then, the four-way switching valve 2 is communicated as shown by the solid line to cause the refrigerant to flow in the direction of the solid line arrow to perform heating operation, and the four-way switching valve 2 is communicated as shown by the dotted line to allow the refrigerant to flow in the direction of the dotted line arrow. I am trying to run the air conditioner.

しかして本考案は、以上のごとく構成したヒートポンプ
式空気調和機において前記圧縮機1の吐出口と前記四路
切換弁2との間の吐出管9aにホットガスバイパス管1
5を接続して、該バイパス管15を、前記暖房用膨張機
構4と前記四路切換弁2との間の冷媒通路で、かつ前記
室外コイル3を含む冷媒通路に接続すると共に、前記バ
イパス管15に高圧が所定値以上になったときに開く高
圧制御弁HPCを介装する一方、前記バイパス管15の
吐出管9aへの接続部と、四路切換弁2との間の吐出管
9aに開閉弁16を介装し、前記室外コイル3がフロス
トしたとき、前記開閉弁16を閉じてデフロストを行な
うごとくしたのである。
Therefore, in the heat pump type air conditioner configured as described above, the present invention provides a hot gas bypass pipe in the discharge pipe 9a between the discharge port of the compressor 1 and the four-way switching valve 2.
5 to connect the bypass pipe 15 to the refrigerant passage between the heating expansion mechanism 4 and the four-way switching valve 2 and including the outdoor coil 3. 15 is equipped with a high pressure control valve HPC that opens when the high pressure exceeds a predetermined value. An on-off valve 16 is provided so that when the outdoor coil 3 frosts, the on-off valve 16 is closed to perform defrosting.

即ち第1図に示したものは、前記吐出管9aに接続した
バイパス管15を、前記室外コイル3の暖房時における
流出口近くの冷媒通路に接続すると共に、前記開閉弁1
6を、デフロスト時デフロスト指令を発する指令器17
の指令により閉動作させるように威し、かつ前記高圧制
御弁HPCが開く時の高圧値を、冷暖房運転時の高圧値
より高い所定値に設定すべく酸味前記開閉弁16を閉じ
たデフロスト時、前記室外、室内の各ファン18.19
を停止して圧縮機から吐出したホットガスを、前記高圧
制御弁HPCにより該制御弁HPCの流入側において高
圧の前記所定値を維持しながら該制御弁HPCを開いて
室外コイル3の流出口近くの流出させて、前記四路切換
弁2から圧縮機1に戻るデフロストサイクルを形成すべ
く威して、圧縮機1の仕事量を高圧の前記所定圧力に見
合う十分な量と威し、熱量不足なくデフロストを完了す
べく威したのである。
That is, in the case shown in FIG. 1, the bypass pipe 15 connected to the discharge pipe 9a is connected to the refrigerant passage near the outlet of the outdoor coil 3 during heating, and the on-off valve 1
6, a command device 17 that issues a defrost command during defrosting;
During defrosting, the on-off valve 16 is closed in order to cause the high pressure control valve HPC to close by a command, and to set the high pressure value when the high pressure control valve HPC opens to a predetermined value higher than the high pressure value during air conditioning operation; The outdoor and indoor fans 18.19
is stopped and the hot gas discharged from the compressor is maintained near the outlet of the outdoor coil 3 by opening the control valve HPC while maintaining the predetermined high pressure value on the inflow side of the control valve HPC by the high pressure control valve HPC. is forced to flow out and return to the compressor 1 from the four-way selector valve 2 to form a defrost cycle, and the amount of work of the compressor 1 is made sufficient to match the predetermined high pressure, thereby eliminating the lack of heat. I forced myself to complete the defrost without any problems.

前記開閉弁16は電磁弁を用い、又前記指令器17とし
て例えばディアイサー(図示せず)と設け、該ディアイ
サーによりフロストを検出して電気信号を出力させ電磁
弁のコイルに通電するごとくデフロスト指令を発するよ
うに威して、前記開閉弁16を指令器17のデフロスト
指令により閉動作させるのである。
The on-off valve 16 uses a solenoid valve, and the command unit 17 is provided with, for example, a deicer (not shown), and the deicer detects frost and outputs an electric signal to issue a defrost command by energizing the coil of the solenoid valve. The opening/closing valve 16 is closed by the defrost command from the command unit 17.

しかして以上の構成において、暖房運転時第2図モリエ
ル線図のごとく圧縮機1から点イに示す高温高圧のガス
冷媒が吐出し、室内コイル10で凝縮液化し点口の状態
となって膨張機構4に流入し、点ハに示す低温低圧状態
となる。
However, in the above configuration, during heating operation, the high-temperature, high-pressure gas refrigerant shown at point A is discharged from the compressor 1 as shown in the Mollier diagram in Figure 2, condenses in the indoor coil 10, becomes liquefied, becomes a point state, and expands. It flows into the mechanism 4 and becomes the low temperature and low pressure state shown in point c.

そして室外コイル3で蒸発し、点二の低圧ガス状態とな
って圧縮機1に流入する暖房サイクルIを繰返するので
ある。
Then, it is evaporated in the outdoor coil 3, becomes a low-pressure gas state at point 2, and flows into the compressor 1, thereby repeating the heating cycle I.

そして前記室外コイル3にプロットが生じて、前記指令
器17によりデフロスト指令が発せられ、前記開閉弁1
6が閉じると吐出ガスは昇圧して前記高圧制御器HPC
の所定の設定圧力に達し、第2図点ホの状態になると、
該高圧制御器HPCが開動作してホットガスが室外コイ
ル3の流出口近傍の冷媒流通路に流出し点へのごとく高
温低圧のガス状態となる。
Then, a plot is generated in the outdoor coil 3, a defrost command is issued by the command unit 17, and the on-off valve 1
6 closes, the pressure of the discharged gas increases and the high pressure controller HPC
When the predetermined set pressure is reached and the state of point E in Figure 2 is reached,
The high-pressure controller HPC is opened, and the hot gas flows into the refrigerant flow path near the outlet of the outdoor coil 3 and becomes a high-temperature, low-pressure gas.

そして該状態のホットガスが保有する熱が室外コイル3
のフロスト部に熱伝導してデフロストを行ない点トの低
温低圧状態となって圧縮機1に吸入するデフロストサイ
クル■を繰返すのである。
The heat held by the hot gas in this state is transferred to the outdoor coil 3.
The defrost cycle (3) is repeated where heat is conducted to the frost section of the compressor 1 to defrost the compressor 1, and the resulting low temperature and low pressure state is sucked into the compressor 1.

即ち前記デフロスト運転時圧縮機1の吐出圧力は冷暖房
運転時の高圧より高い点ホの前記設定圧力に維持される
ので、圧縮機1の点イから点へに至る仕事量を該設定圧
力に見合う大なる量にでき、ホットガスが保有する熱量
を十分大きくできて熱量不足なく迅速にデフロストを行
なえ、デフロスト時間を短縮できるのである。
That is, during the defrost operation, the discharge pressure of the compressor 1 is maintained at the set pressure at point E, which is higher than the high pressure during the cooling/heating operation, so that the amount of work of the compressor 1 from point A to point A is matched to the set pressure. It is possible to make a large amount of hot gas, and the amount of heat held by the hot gas can be made sufficiently large, so that defrosting can be performed quickly without running out of heat, and the defrosting time can be shortened.

又デフロストが完了すると、該完了状態を前記指令器1
7のディアイサーが検出しデフロスト指令を解消して、
前記開閉弁16が開動作すると共に前記高圧制御弁HP
Cが閉動作し、再び第2図■に示す暖房サイクルによる
暖房運転が行なわれることになるのである。
When the defrost is completed, the completion state is indicated by the command unit 1.
7 deicer detects and cancels the defrost command,
When the on-off valve 16 opens, the high pressure control valve HP
C is closed, and heating operation according to the heating cycle shown in FIG. 2 (3) is performed again.

尚以上の説明では、前記ホットガスバイパス管15は、
室外コイル3の暖房時における流出口近傍の冷媒通路に
接続したが、室外コイル3の途中に接続してもよく、又
第1図点線で示すごとく室外コイル3と暖房用膨張機構
4との間の冷媒通路に接続してもよく、この場合デフロ
スト時ホットガスが室外コイルの全体を流通するので、
一層確実にデフロストを行なえるのである。
In the above description, the hot gas bypass pipe 15 is
Although it is connected to the refrigerant passage near the outlet of the outdoor coil 3 during heating, it may also be connected in the middle of the outdoor coil 3, or between the outdoor coil 3 and the heating expansion mechanism 4 as shown by the dotted line in Figure 1. It may also be connected to the refrigerant path of
Defrosting can be performed more reliably.

又前記高圧制御弁HPCが開く時の高圧の前記所定値は
、冷暖房時における高圧値より高くしているので、ホッ
トガスが暖房時低圧側へバイパスすることが生じないこ
とは勿論のこと、冷房時バイパス管15を点線のごとく
室外コイル3の冷房時における下流側へ接続した場合で
も、該接続位置にバイパスするようなことは生じないの
である。
In addition, since the predetermined value of the high pressure when the high pressure control valve HPC opens is set higher than the high pressure value during heating and cooling, it goes without saying that hot gas will not bypass to the low pressure side during heating and cooling. Even when the bypass pipe 15 is connected to the downstream side of the outdoor coil 3 during cooling as shown by the dotted line, bypassing to the connection position does not occur.

尚バイパス管15における高圧制御弁HPCの出口側に
第1図点線で示すごとくデフロスト時のみ開く電磁弁2
0を設けてもよく、冷暖房時ホットガスがバイパスする
ことを一層確実に防止できる。
Furthermore, on the outlet side of the high pressure control valve HPC in the bypass pipe 15, there is a solenoid valve 2 that opens only during defrost, as shown by the dotted line in Figure 1.
0 may be provided, and it is possible to more reliably prevent hot gas from bypassing during cooling and heating.

以上のごとく本考案は吐出管からホットガスバイパス管
を、暖房用膨張機構と四路切換弁との間の冷媒通路に接
続すると共に、前記バイパス管に高圧圧力が冷暖房運転
時の高圧より高い圧力になったときに開く高圧制御弁を
介装し、さらに、前記バイパス管の吐出管への接続部と
四路切換弁との間の吐出管に開閉弁を介装腰該開閉弁を
閉じることによりデフロストを行なうごとくしたので、
デフロスト時圧縮機から吐出するガス冷媒の圧力を前記
高圧制御弁で設定される冷暖房運転時の高圧より高い圧
力に常時維持することができるので、圧縮機の仕事量を
該設定圧力に見合う大なる量にでき、ホットガスが保有
する熱量が十分大きくできて熱量不足なく迅速にデフロ
ストを行なえ、デフロスト時間を短縮できるのである。
As described above, the present invention connects the hot gas bypass pipe from the discharge pipe to the refrigerant passage between the heating expansion mechanism and the four-way switching valve, and also provides a high pressure in the bypass pipe that is higher than the high pressure during heating and cooling operation. a high-pressure control valve that opens when I tried to defrost it by
Since the pressure of the gas refrigerant discharged from the compressor during defrosting can be constantly maintained at a higher pressure than the high pressure set by the high pressure control valve during cooling/heating operation, the workload of the compressor can be adjusted to a level corresponding to the set pressure. The amount of heat held by the hot gas can be made sufficiently large, so defrosting can be performed quickly without running out of heat, and the defrosting time can be shortened.

又デフロスト時四路切換弁の切換えは全く行なわないの
で、逆サイクルによるデフロストの場合のごとく四路切
換弁の切換えによる問題、即ち凝縮作用を行なっていた
室外コイルから液令媒が液バツクするのを従来に比し抑
制でき従って、圧縮機構部の損傷も抑制でき、また、高
低圧の差圧が一定の大きな値に達せず、潤滑油が圧縮機
構の潤滑部に確実に供給されなくって寿命の低下を来た
す問題を全くなくすることができ、しかもデフロスト時
室外コイルには冷媒が流れないので、逆サイクルによる
デフロストの場合のごとく室内コイルが冷却作用して暖
房効果を低下させるようなことは全くないのである。
Also, since the four-way selector valve is not switched at all during defrost, there is a problem caused by switching the four-way selector valve, as in the case of defrosting with a reverse cycle, that is, the liquid receptacle backs up from the outdoor coil that was performing the condensing action. Compared to the conventional method, damage to the compression mechanism can be suppressed, and the differential pressure between high and low pressures will not reach a certain large value, and lubricating oil will not be reliably supplied to the lubricating parts of the compression mechanism, which will shorten the service life. Furthermore, since refrigerant does not flow to the outdoor coil during defrosting, the indoor coil does not act as a cooling agent and reduce the heating effect, as is the case with reverse cycle defrosting. Not at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示す冷媒配管系統図、第2図
はモリエル線図である。 1・・・・・・圧縮機、2・・・・・・四路切換弁、3
・・・・・・室外コイル、4・・・・・・暖房用膨張機
構、9a・・・・・・吐出管、15・・・・・・バイパ
ス管、16・・・・・・開閉弁、RPC・・・・・・高
圧制御弁。
FIG. 1 is a refrigerant piping system diagram showing an embodiment of the present invention, and FIG. 2 is a Mollier diagram. 1... Compressor, 2... Four-way switching valve, 3
...Outdoor coil, 4...Heating expansion mechanism, 9a...Discharge pipe, 15...Bypass pipe, 16...Opening/closing valve , RPC...High pressure control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 四路切換弁2を備えた、該切換弁2の操作により冷暖房
可能としたヒートポンプ式空気調和機であって、圧縮機
1の吐出口と前記四路切換弁2との間の吐出管9aに、
ホットガスバイパス管15の一端を接続すると共に、該
バイパス管15の他端を、暖房用膨張機構4と前記四路
切換弁2との間の冷媒通路で、かつ冷房時凝縮器となり
暖房時蒸発器となる室外コイル3を含む冷媒通路に接続
する一方、前記バイパス管15に高圧が冷暖房運転時の
高圧より高い圧力になった場合に開く高圧制御弁HPC
を介装し、さらに前記バイパス管15の吐出管9aへの
接続部と、四路切換弁2との間の吐出管9aに、開閉弁
16を介装し前記室外コイル3がフロストしたとき、前
記開閉弁16を閉じてデフロストを行な−)ごとくした
ことを特徴とするヒートポンプ式空気調和機。
A heat pump type air conditioner equipped with a four-way switching valve 2 and capable of heating and cooling by operating the switching valve 2, in which a discharge pipe 9a between the discharge port of the compressor 1 and the four-way switching valve 2 ,
One end of the hot gas bypass pipe 15 is connected, and the other end of the bypass pipe 15 is connected to the refrigerant passage between the heating expansion mechanism 4 and the four-way switching valve 2, and serves as a condenser during cooling and evaporates during heating. A high pressure control valve HPC is connected to the refrigerant passage including the outdoor coil 3 serving as a container, and the bypass pipe 15 has a high pressure control valve HPC that opens when the high pressure becomes higher than the high pressure during air conditioning operation.
and further an on-off valve 16 is interposed in the discharge pipe 9a between the connection part of the bypass pipe 15 to the discharge pipe 9a and the four-way switching valve 2, and when the outdoor coil 3 is frosted, A heat pump type air conditioner characterized in that defrosting is performed by closing the on-off valve 16.
JP10117279U 1979-07-19 1979-07-19 Heat pump air conditioner Expired JPS6017639Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10117279U JPS6017639Y2 (en) 1979-07-19 1979-07-19 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10117279U JPS6017639Y2 (en) 1979-07-19 1979-07-19 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JPS5618865U JPS5618865U (en) 1981-02-19
JPS6017639Y2 true JPS6017639Y2 (en) 1985-05-30

Family

ID=29333916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10117279U Expired JPS6017639Y2 (en) 1979-07-19 1979-07-19 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPS6017639Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152563A (en) * 1984-08-22 1986-03-15 株式会社日立製作所 Heat pump type air conditioner

Also Published As

Publication number Publication date
JPS5618865U (en) 1981-02-19

Similar Documents

Publication Publication Date Title
CN211739592U (en) Air conditioning system capable of continuously heating
US7770411B2 (en) System and method for using hot gas reheat for humidity control
US7213407B2 (en) Wide temperature range heat pump
US7360372B2 (en) Refrigeration system
KR101598624B1 (en) Air conditioning system
WO2015140951A1 (en) Air conditioner
CN101344335B (en) Refrigeration circulation device
US11927376B2 (en) Refrigeration cycle apparatus
KR20210100461A (en) Air conditioning apparatus
JP5517891B2 (en) Air conditioner
JP5601890B2 (en) Air conditioner
JPS6017639Y2 (en) Heat pump air conditioner
US11486616B2 (en) Refrigeration device
CN210154145U (en) Air conditioning system
JP2000146319A (en) Heat pump type air conditioner
JP3511161B2 (en) Air conditioner
JP2002340390A (en) Air conditioner for multiple rooms
CN111076459A (en) Heat pump air conditioning system and control method thereof
KR100643689B1 (en) Heat pump air-conditioner
CN108151352A (en) A kind of heat pump air conditioning system
CN220287825U (en) Refrigerant system and air conditioner
CN215951814U (en) Air conditioning unit
CN211503305U (en) All-weather industrial dehumidifier
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPS6346350B2 (en)