JP2000146319A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JP2000146319A
JP2000146319A JP32535198A JP32535198A JP2000146319A JP 2000146319 A JP2000146319 A JP 2000146319A JP 32535198 A JP32535198 A JP 32535198A JP 32535198 A JP32535198 A JP 32535198A JP 2000146319 A JP2000146319 A JP 2000146319A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
condenser
heat pump
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32535198A
Other languages
Japanese (ja)
Other versions
JP4056151B2 (en
Inventor
Tadashi Shimada
忠 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP32535198A priority Critical patent/JP4056151B2/en
Publication of JP2000146319A publication Critical patent/JP2000146319A/en
Application granted granted Critical
Publication of JP4056151B2 publication Critical patent/JP4056151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type air conditioner, increased in a refrigerant recovering rate upon switching the same into heating operation. SOLUTION: A heat pump type air conditioner is provided with a refrigerant pipeline 6, in which a compressor 1, an outdoor condenser 2, an indoor condenser 3, an expansion valve 4 and an indoor evaporator 5 are connected in this order, a bypass pipe 7, guiding refrigerant discharged out of the compressor into the indoor condenser while detouring the outdoor condenser, solenoid valves 8, 9, guiding the refrigerant discharged out of the compressor 1 to the side of the outdoor condenser 2 upon cooling operation while guiding the refrigerant to the bypass pipe 7 upon heating operation, and a refrigerant recovering pipe 10 for returning the refrigerant, stagnated in the outdoor condenser 2, to the suction side of the compressor 1. An opening and closing valve 11 is provided between one end of the refrigerant recovering pipe at the suction side of the compressor 1 and the outlet port side of the indoor evaporator 5 while the opening and closing valve 11 is closed for a predetermined period of time upon starting the heating operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒を利用して冷
暖房を行うヒートポンプ式空気調和装置に関し、特に暖
房運転に切り替えたときの冷媒回収率を高めたヒートポ
ンプ式空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner which performs cooling and heating by using a refrigerant, and more particularly to a heat pump type air conditioner which has a high refrigerant recovery rate when switching to a heating operation.

【0002】[0002]

【従来の技術】ヒートポンプ式空気調和装置は、図3に
示すように空調ユニット13内にサブコンデンサと呼ば
れる室内熱交換器(室内コンデンサ)3を設け、コンプ
レッサ1によって圧縮された高温高圧の冷媒を暖房熱源
として利用するようにしたシステムである。つまり、冷
房、暖房ともに冷媒を用いた熱サイクル運転を行って室
内を冷暖房するものである。
2. Description of the Related Art In a heat pump type air conditioner, an indoor heat exchanger (indoor condenser) 3 called a sub-condenser is provided in an air conditioning unit 13 as shown in FIG. This system is used as a heating heat source. In other words, both the cooling and the heating perform the heat cycle operation using the refrigerant to cool and heat the room.

【0003】空調ユニット13外にはメインコンデンサ
と呼ばれる室外熱交換器(室外コンデンサ)2が設けら
れ、2つの電磁弁8,9により暖房運転時と冷房運転時
とで機能させるコンデンサ2,3を切り替えることによ
って運転モードが切り替えられる。つまり、冷房運転時
においては、コンプレッサ1から吐出した冷媒はメイン
コンデンサ2に導入され、暖房運転時にはバイパス管7
によりメインコンデンサ2を迂回して直接サブコンデン
サ3に導入される。便宜的に以下の説明では、冷房運転
時に形成される冷凍サイクルを冷房サイクル、暖房運転
時に形成される冷凍サイクルを暖房サイクルと呼ぶ。
Outside the air conditioning unit 13, an outdoor heat exchanger (outdoor condenser) 2 called a main condenser is provided, and condensers 2, 3 functioning during heating operation and cooling operation by two solenoid valves 8, 9 are provided. By switching, the operation mode is switched. That is, during the cooling operation, the refrigerant discharged from the compressor 1 is introduced into the main condenser 2, and during the heating operation, the bypass pipe 7
, Bypasses the main capacitor 2 and is directly introduced into the sub capacitor 3. For convenience, in the following description, the refrigeration cycle formed during the cooling operation is referred to as a cooling cycle, and the refrigeration cycle formed during the heating operation is referred to as a heating cycle.

【0004】こうしたヒートポンプ式空気調和装置にお
いて、暖房運転時にはメインコンデンサ2を迂回させる
暖房サイクルが形成されるため、メインコンデンサ2に
冷媒が過剰に滞留すると暖房サイクル内を循環する冷媒
量が不足するおそれがある。
[0004] In such a heat pump type air conditioner, a heating cycle is formed to bypass the main condenser 2 during the heating operation, so that if the refrigerant stays in the main condenser 2 excessively, the amount of the refrigerant circulating in the heating cycle may become insufficient. There is.

【0005】そこで本願出願人は、暖房運転の起動時に
おいて、メインコンデンサ2に滞留している、いわゆる
寝込み冷媒をコンプレッサ1の吸入側へ戻すべく、メイ
ンコンデンサ2とコンプレッサ1の吸入側との間に冷媒
回収管10および電磁弁12を設けることを先に提案し
た。
Accordingly, the applicant of the present application has proposed a method of returning the so-called stagnant refrigerant, which is retained in the main condenser 2, to the suction side of the compressor 1 between the main condenser 2 and the suction side of the compressor 1 when starting the heating operation. It has been previously proposed to provide a refrigerant recovery pipe 10 and an electromagnetic valve 12 in the apparatus.

【0006】ちなみに、ヒートポンプ式空気調和装置に
は、暖房性能を向上させるため冷媒を熱源として利用す
るヒートポンプシステムに加え、エンジン冷却水を熱源
として利用するヒータコアシステムを併用したものもあ
る。また、除湿機能を織り込んで除湿暖房を実現し、フ
ロントガラスの曇りを防止して安全運転を確保するもの
が一般的である。さらに、そもそもエンジン冷却水を利
用できない電気自動車や鉄道車両のエアコンとしても有
用である。
Incidentally, some heat pump type air conditioners use a heater core system which uses engine cooling water as a heat source in addition to a heat pump system which uses a refrigerant as a heat source in order to improve heating performance. In general, a dehumidifying heating is realized by incorporating a dehumidifying function, and fogging of a windshield is prevented to ensure safe driving. Furthermore, it is also useful as an air conditioner for electric vehicles and railway vehicles that cannot use engine cooling water in the first place.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述した従
来のヒートポンプ式空気調和装置では、暖房運転の起動
時に、電磁弁12を開くことで冷媒回収管10を介して
メインコンデンサ2の寝込み冷媒をコンプレッサ1の吸
入側へ引き込むが、冬期の日射が強い日のように室内温
度が室外温度よりも高くなると、サブコンデンサ3にお
ける熱交換量が少なくなるので、コンプレッサ1の吸入
側の冷媒圧が充分に低下しない。このため、冷媒回収管
10を設けたとしてもメインコンデンサ2の寝込み冷媒
の回収率には一定の限界があった。
In the above-described conventional heat pump type air conditioner, when the heating operation is started, the solenoid valve 12 is opened so that the refrigerant stored in the main condenser 2 is compressed via the refrigerant recovery pipe 10. However, when the indoor temperature becomes higher than the outdoor temperature as in the case of intense solar radiation in winter, the amount of heat exchange in the sub-condenser 3 decreases, and the refrigerant pressure on the suction side of the compressor 1 is sufficiently increased. Does not drop. For this reason, even if the refrigerant recovery pipe 10 is provided, the recovery rate of the stagnant refrigerant of the main condenser 2 has a certain limit.

【0008】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、暖房運転に切り替えたとき
の冷媒回収率を高めたヒートポンプ式空気調和装置を提
供することを目的とする。
[0008] The present invention has been made in view of such problems of the prior art, and it is an object of the present invention to provide a heat pump type air conditioner having an improved refrigerant recovery rate when switching to a heating operation. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のヒートポンプ式空気調和装置は、少なくと
もコンプレッサ(1)、室外コンデンサ(2)、室内コ
ンデンサ(3)、減圧手段(4)および室内エバポレー
タ(5)がこの順序で冷媒配管(6)により接続され、
前記コンプレッサから吐出された冷媒を前記室外コンデ
ンサを迂回させて前記室内コンデンサへ導くバイパス管
(7)と、前記コンプレッサから吐出された冷媒を冷房
運転時は前記室外コンデンサ側へ導き、暖房運転時は前
記バイパス管へ導く冷媒流路切替手段(8,9)と、前
記室外コンデンサに滞留している冷媒を前記コンプレッ
サの吸入側へ戻すための冷媒回収管(10)とを備えた
ヒートポンプ式空気調和装置において、前記コンプレッ
サの吸入側の前記冷媒回収管の一端と、前記室内エバポ
レータの出口側との間に、開閉弁(11)が設けられて
いることを特徴とする。
In order to achieve the above object, a heat pump type air conditioner of the present invention comprises at least a compressor (1), an outdoor condenser (2), an indoor condenser (3), and a pressure reducing means (4). And the indoor evaporator (5) are connected in this order by a refrigerant pipe (6),
A bypass pipe (7) for guiding the refrigerant discharged from the compressor to the indoor condenser by bypassing the outdoor condenser, and guiding the refrigerant discharged from the compressor to the outdoor condenser side during the cooling operation; A heat pump type air conditioner comprising: refrigerant flow switching means (8, 9) for leading to the bypass pipe; and a refrigerant recovery pipe (10) for returning refrigerant staying in the outdoor condenser to the suction side of the compressor. The apparatus is characterized in that an on-off valve (11) is provided between one end of the refrigerant recovery pipe on the suction side of the compressor and an outlet side of the indoor evaporator.

【0010】このとき前記開閉弁は、暖房運転の起動時
に所定時間だけ閉じることを特徴とする。
At this time, the opening and closing valve is characterized in that it is closed for a predetermined time when the heating operation is started.

【0011】本発明のヒートポンプ式空気調和装置で
は、コンプレッサの吸入側の冷媒回収管の一端と室内エ
バポレータの出口側との間に開閉弁が設けられているの
で、暖房運転の起動時にこれを所定時間だけ閉じると、
室内の温度条件に拘わらず、室内コンデンサおよび室内
エバポレータ側からコンプレッサの吸入側へ流れる冷媒
が遮断される。
In the heat pump type air conditioner of the present invention, an on-off valve is provided between one end of the refrigerant recovery pipe on the suction side of the compressor and the outlet side of the indoor evaporator. If you close for a time,
Regardless of the indoor temperature condition, the refrigerant flowing from the indoor condenser and the indoor evaporator to the suction side of the compressor is shut off.

【0012】したがって、コンプレッサの駆動にともな
い当該コンプレッサの吸入側の冷媒圧が低下するので、
室外コンデンサに寝込んだ冷媒が冷媒回収管を通ってコ
ンプレッサに吸入される。
Therefore, the refrigerant pressure on the suction side of the compressor decreases with the driving of the compressor,
The refrigerant stored in the outdoor condenser is sucked into the compressor through the refrigerant recovery pipe.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1および図2は本発明のヒートポ
ンプ式空気調和装置の実施形態を示すブロック図であ
り、図1は定常運転時、図2は暖房運転起動時をそれぞ
れ示す。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are block diagrams showing an embodiment of a heat pump type air conditioner of the present invention. FIG. 1 shows a steady operation and FIG. 2 shows a heating operation start.

【0014】この空気調和装置は、室内外の空気(内外
気)を選択的に取り入れて空気調和した後、室内の所定
の場所へ向かって吹き出す空調ユニット13を有してい
る。
This air conditioner has an air conditioning unit 13 that selectively takes in air inside and outside the room (inside and outside air), air-conditions the air, and blows the air toward a predetermined place in the room.

【0015】この空調ユニット13は、取り入れた空気
を室内に向かって送るためのダクト14を有し、このダ
クト14内に、白抜き矢印で示す空気流れ方向の上流側
から順に、内気取入口および外気取入口を選択的に開閉
するインテークドアと、インテークドアにより選択され
た内外気をダクト14内に導入して下流側に向かって圧
送するブロアファンと(何れも図示を省略する)、冷媒
を蒸発させて空気を冷却する室内エバポレータ5(以
下、単に「エバポレータ」ともいう。)と、主として暖
房運転時に働き、ガス冷媒を凝縮液化させて空気を加熱
する室内コンデンサとしてのサブコンデンサ3とを有し
ている。
The air conditioning unit 13 has a duct 14 for sending the introduced air toward the room. Inside the duct 14, an inside air intake port and an inside air intake port are arranged in order from the upstream side in the air flow direction indicated by a white arrow. An intake door for selectively opening and closing the outside air intake, a blower fan for introducing the inside and outside air selected by the intake door into the duct 14 and forcing the air toward the downstream side (both not shown), It has an indoor evaporator 5 (hereinafter also simply referred to as “evaporator”) for evaporating and cooling the air, and a sub-condenser 3 as an indoor condenser for mainly operating during a heating operation and condensing and liquefying a gas refrigerant to heat the air. are doing.

【0016】図示はしないが、サブコンデンサ3の前面
には、このサブコンデンサ3を通過する空気とこれを迂
回する空気との割合を調節するためのエアミックスドア
が回動自在に設けられ、またサブコンデンサ3の下流側
には、温度調節された空気を室内の所定の場所に向かつ
て吹き出すための各種吹出口が形成されている。
Although not shown, an air mix door for adjusting the ratio of the air passing through the sub-condenser 3 and the air bypassing the sub-condenser 3 is rotatably provided on the front surface of the sub-condenser 3. On the downstream side of the sub-condenser 3, various air outlets for blowing the temperature-controlled air toward a predetermined place in the room are formed.

【0017】このヒートポンプ式空気調和装置は、冷
房、暖房ともに冷媒を用いた熱サイクル運転を行うこと
によって室内の冷房と除湿暖房とを行うものであって、
従来と同様な冷凍サイクルを有している。
This heat pump type air conditioner performs indoor cooling and dehumidifying and heating by performing a heat cycle operation using a refrigerant for both cooling and heating.
It has the same refrigeration cycle as before.

【0018】すなわち、空調ユニット13の外部には、
図外のエンジンにより回転駆動されるコンプレッサ1
と、主に冷房運転時に働く室外コンデンサとしてのメイ
ンコンデンサ2とが設けられている。冷凍サイクルは、
コンプレツサ1、メインコンデンサ2、サブコンデンサ
3、リキッドタンク15、減圧手段としての膨張弁4、
エバポレータ5、サブエバポレータ19およびアキュム
レータ16をこの順に冷媒配管6で接続し、その中に冷
媒を封入して構成されている。
That is, outside the air conditioning unit 13,
Compressor 1 rotationally driven by an unillustrated engine
And a main condenser 2 serving as an outdoor condenser mainly working during the cooling operation. The refrigeration cycle
A compressor 1, a main condenser 2, a sub condenser 3, a liquid tank 15, an expansion valve 4 as a pressure reducing means,
The evaporator 5, the sub-evaporator 19 and the accumulator 16 are connected in this order by the refrigerant pipe 6, and the refrigerant is sealed therein.

【0019】リキッドタンク15は、気液を分離して液
冷媒を一度蓄え、液冷媒のみを膨張弁4へ送り出すもの
であり、通常、エアの分離や水分・異物の除去を行う機
能も備えている。
The liquid tank 15 separates gas and liquid, stores the liquid refrigerant once, and sends out only the liquid refrigerant to the expansion valve 4. The liquid tank 15 usually has a function of separating air and removing moisture and foreign matter. I have.

【0020】膨張弁4は、液冷媒を減圧膨張させて蒸発
しやすい低温低圧の霧状冷媒にするとともに、エバポレ
ータ5の出口温度を感知して冷媒流量を自動調節する
(温度作動式の場合)機能を備えている。
The expansion valve 4 decompresses and expands the liquid refrigerant into a low-temperature and low-pressure mist-like refrigerant that is easy to evaporate and senses the outlet temperature of the evaporator 5 to automatically adjust the refrigerant flow rate (in the case of a temperature-operated type). Has functions.

【0021】また、アキュムレータ16は、余剰冷媒の
貯留と気液の分離を行い、ガス冷媒のみをコンプレツサ
1へ戻すためのものであり、比較的容量のある容器であ
るため、仮に冷媒が液状態で帰還してきても、これを気
化してコンプレツサ1へ戻すことができ、液圧縮による
コンプレツサ1の破損を防止することができるようにな
っている。
The accumulator 16 is for storing the surplus refrigerant and separating gas and liquid and returning only the gas refrigerant to the compressor 1. Since the accumulator 16 is a container having a relatively large capacity, it is assumed that the refrigerant is in a liquid state. , It can be vaporized and returned to the compressor 1, and damage to the compressor 1 due to liquid compression can be prevented.

【0022】ここで、リキッドタンク15とアキュムレ
ータ16は、一般的に機能が一部共通しているため、必
ずしも常に両方設ける必要はないが、本発明では、後述
するようにメインコンデンサ2の出口から液冷媒として
冷媒回収を行うため、少なくともアキュムレータ16は
省略しないのが望ましい。したがって、例えば、本実施
形態のように、減圧手段として温度作動式膨張弁4を用
いる場合には、リキッドタンク15とアキュムレータ1
6を両方設け、また、減圧手段として温度作動式膨張弁
4に代えて、いわゆるオリフィス付き電磁弁(弁位置が
全開状態と絞り状態の二段階に切替え可能な流量切替電
磁弁)を用いる場合には、アキュムレータ16のみを設
けて、リキッドタンク15を省略してもよい。
Here, since the liquid tank 15 and the accumulator 16 generally have some common functions, it is not always necessary to always provide both of them. However, in the present invention, as will be described later, the outlet of the main condenser 2 is used. At least the accumulator 16 is preferably not omitted in order to recover the refrigerant as the liquid refrigerant. Therefore, for example, when the temperature-operated expansion valve 4 is used as the pressure reducing means as in the present embodiment, the liquid tank 15 and the accumulator 1
In the case where a so-called solenoid valve with an orifice (a flow switching solenoid valve whose valve position can be switched between two stages of a fully open state and a throttle state) is used instead of the temperature-operated expansion valve 4 as the pressure reducing means. Alternatively, only the accumulator 16 may be provided, and the liquid tank 15 may be omitted.

【0023】ちなみに、エバポレータ5とアキュムレー
タ16との間に設けられたサブエバポレータ19は、シ
ーズヒータ20に接続されて冷媒を加温するための熱交
換器の一種であって、冬期などのように外気温度が低い
場合には冷媒温度も低下し、コンプレッサ1の起動時に
おいて当該コンプレッサ1へガス状冷媒を供給するため
の予熱手段である。ただし、本発明のヒートポンプ式空
気調和装置には必ずしも必須のものではなく、これを省
略することもできる。
Incidentally, the sub-evaporator 19 provided between the evaporator 5 and the accumulator 16 is a type of heat exchanger connected to the sheathed heater 20 for heating the refrigerant, such as in winter. When the outside air temperature is low, the refrigerant temperature also decreases, and is a preheating means for supplying the gaseous refrigerant to the compressor 1 when the compressor 1 is started. However, the heat pump type air conditioner of the present invention is not always essential, and may be omitted.

【0024】また、図中の符号17は、反対方向の流れ
を阻止するための逆止弁であり、18はメインコンデン
サ2へ空気を送り、これを冷却するためのコンデンサフ
ァンである。
Reference numeral 17 in the drawing denotes a check valve for preventing flow in the opposite direction, and reference numeral 18 denotes a condenser fan for sending air to the main condenser 2 and cooling it.

【0025】本実施形態では、暖房運転時と冷房運転時
とで機能させるコンデンサを切り替えるため、コンプレ
ツサ1の吐出□とメインコンデンサ2の入ロとの間およ
びバイパス管7に冷媒流路切替手段としての電磁弁8,
9が設けられている。これらの電磁弁8,9を選択的に
切り替えることで、コンプレツサ1から吐出された冷媒
をメインコンデンサ2導く冷房サイクルと、コンプレッ
サ1から吐出された冷媒をバイパス管7を介して直接サ
ブコンデンサ3へ導く暖房サイクルとが切り替えられ
る。
In this embodiment, in order to switch the condenser functioning between the heating operation and the cooling operation, the refrigerant flow switching means is provided between the discharge □ of the compressor 1 and the inlet of the main condenser 2 and in the bypass pipe 7. Solenoid valve 8,
9 are provided. By selectively switching the solenoid valves 8 and 9, a cooling cycle for guiding the refrigerant discharged from the compressor 1 to the main condenser 2 and a refrigerant discharged from the compressor 1 directly to the sub-condenser 3 via the bypass pipe 7. The induction heating cycle is switched.

【0026】すなわち、冷房運転時には電磁弁8を開き
電磁弁9を閉じ、コンプレツサ1かち吐出された冷媒を
電磁弁8→メインコンデンサ2→サブコンデンサ3→リ
キッドタンク15→膨張弁4→工バポレータ5→サブエ
バポレータ19→アキュムレータ16と流してコンプレ
ッサ1へ帰還する冷房サイクルを形成する。これによ
り、エバポレータ5においては、霧状冷媒と取入れ空気
との熱交換が行われ、霧状冷媒が蒸発しながら冷媒通路
の周囲を通過する取入れ空気が冷却され、室内が冷房さ
れる。また、メインコンデンサ2においては、エバポレ
ータ5で奪った熱を外気との熱交換により外部に放出し
て、ガス冷媒を冷却し凝縮液化させる。なお、このと
き、サブコンデンサ3は熱交換器としてはほとんど機能
しない。
That is, during the cooling operation, the solenoid valve 8 is opened and the solenoid valve 9 is closed, and the refrigerant discharged from the compressor 1 is discharged from the solenoid valve 8 → the main condenser 2 → the sub condenser 3 → the liquid tank 15 → the expansion valve 4 → the evaporator 5 A cooling cycle is formed in which the sub-evaporator 19 flows through the accumulator 16 and returns to the compressor 1. Thereby, in the evaporator 5, heat exchange between the mist refrigerant and the intake air is performed, the intake air passing around the refrigerant passage is evaporated while the mist refrigerant evaporates, and the room is cooled. Further, in the main condenser 2, the heat taken by the evaporator 5 is released to the outside by heat exchange with the outside air to cool the gas refrigerant and condense and liquefy it. At this time, the sub-condenser 3 hardly functions as a heat exchanger.

【0027】これに対し、暖房運転時には、電磁弁8を
閉じ電磁弁9を開き、コンプレツサ1から吐出された冷
媒をバイパス管7を介して直接サブコンデンサ3に導入
する。つまり、メインコンデンサ72使用せす、コンプ
レツサ1から出た冷媒が、電磁弁9→バイパス管7→サ
ブコンデンサ3→リキッドタンク15→膨張弁4→エバ
ポレータ5→サブエバポレータ19→アキュムレータ1
6と流れてコンプレツサ1に帰還する暖房サイクルを形
成する。これにより、コンプレツサ1から吐出されメイ
ンコンデンサ2をバイパスした高温高圧のガス冷媒は、
サブコンデンサ3で凝縮液化されて放熱を行い、エバポ
レータ5で冷却された空気は加熱されて室内に吹き出さ
れもって室内が暖房される。その際、エバポレータ5は
取入れ空気を冷却して除湿を行うので、除湿暖房が実現
される。
On the other hand, during the heating operation, the electromagnetic valve 8 is closed and the electromagnetic valve 9 is opened, and the refrigerant discharged from the compressor 1 is directly introduced into the sub-condenser 3 via the bypass pipe 7. That is, the refrigerant discharged from the compressor 1 to be used by the main condenser 72 is discharged from the solenoid valve 9 → the bypass pipe 7 → the sub condenser 3 → the liquid tank 15 → the expansion valve 4 → the evaporator 5 → the sub evaporator 19 → the accumulator 1
6 and form a heating cycle which returns to the compressor 1. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 and bypassing the main condenser 2 is
The air condensed and liquefied by the sub-condenser 3 to radiate heat, and the air cooled by the evaporator 5 is heated and blown out into the room to heat the room. At that time, the evaporator 5 cools the intake air to perform dehumidification, so that dehumidification heating is realized.

【0028】なお、図中の符号21は、反対方向の流れ
を阻止するための逆止弁であり、メインコンデンサ2か
ら流出した冷媒が電磁弁9へ逆流するのを防止する。
Reference numeral 21 in the figure is a check valve for preventing the flow in the opposite direction, and prevents the refrigerant flowing out of the main condenser 2 from flowing back to the solenoid valve 9.

【0029】本実施形態では、暖房運転の起動時におい
てメインコンデンサ2に滞留している冷媒をコンプレッ
サ1の吸入側に戻す冷媒回収システムとして、メインコ
ンデンサ2の出口から冷媒を回収するようにしている。
すなわち、メインコンデンサ2の出□配管に三方コネク
タを介して冷媒回収管10を接統することにより、冷媒
回収ラインを分岐形成し、この冷媒回収管10(冷媒回
収ライン)に電磁弁12および逆止弁22を設け、冷媒
回収管10の他端をアキュムレータ16の入口側に三方
コネクタを介して接続して冷媒を戻すシステムとしてい
る。電磁弁12を設けるのは、冷房運転時にメインコン
デンサ2かち流出した冷媒が冷媒回収ライン10に流れ
るのを防止するためである。
In the present embodiment, a refrigerant recovery system for returning the refrigerant stagnating in the main condenser 2 to the suction side of the compressor 1 at the time of starting the heating operation is to recover the refrigerant from the outlet of the main condenser 2. .
That is, by connecting the refrigerant recovery pipe 10 to the outlet pipe of the main condenser 2 via a three-way connector, a refrigerant recovery line is branched and formed, and the solenoid valve 12 and the reverse valve are connected to the refrigerant recovery pipe 10 (refrigerant recovery line). A stop valve 22 is provided, and the other end of the refrigerant recovery pipe 10 is connected to the inlet side of the accumulator 16 via a three-way connector to return the refrigerant. The solenoid valve 12 is provided to prevent the refrigerant flowing out of the main condenser 2 from flowing to the refrigerant recovery line 10 during the cooling operation.

【0030】このように、メインコンデンサ2の出口か
ら冷媒の回収を行うようにすれば、メインコンデンサ2
内では下部に液冷媒が溜まっているため、冷媒を液状態
で回収することができる。そのため、ガス状態で回収す
る場合に比べて冷媒回収時間と画収量とが大幅に改善さ
れる。
As described above, if the refrigerant is recovered from the outlet of the main condenser 2, the main condenser 2
Inside, the liquid refrigerant is stored in the lower part, so that the refrigerant can be recovered in a liquid state. Therefore, the refrigerant recovery time and the yield of the refrigerant are greatly improved as compared with the case where the refrigerant is recovered in a gas state.

【0031】特に本実施形態では、サブエバポレータ1
9と、冷媒回収管10の一端との間に電磁弁(本発明の
開閉弁に相当する)11を設け、暖房運転の起動時の所
定時間だけこの電磁弁11を閉じることとしている。こ
の電磁弁11の開閉操作は、マイクロコンピュータ23
から送出される指令信号によって行われ、同様に他の電
磁弁8,9,11の開閉操作もこのマイクロコンピュー
タ23からの指令信号によって行われる。
Particularly, in this embodiment, the sub-evaporator 1
An electromagnetic valve (corresponding to an on-off valve according to the present invention) 11 is provided between 9 and one end of the refrigerant recovery pipe 10, and this electromagnetic valve 11 is closed for a predetermined time when the heating operation is started. The opening and closing operation of the solenoid valve 11 is performed by the microcomputer 23
The opening and closing operations of the other solenoid valves 8, 9 and 11 are also performed by the command signal from the microcomputer 23.

【0032】次に動作を説明する。冷房運転を行う場合
には、図1に示すように電磁弁9,12を閉じ、電磁弁
8,11を開いてコンプレッサ1を駆動する。またシー
ズヒータ19は作動しない。
Next, the operation will be described. When the cooling operation is performed, the compressor 1 is driven by closing the solenoid valves 9 and 12 and opening the solenoid valves 8 and 11 as shown in FIG. The sheath heater 19 does not operate.

【0033】これにより、コンプレッサ1から吐出され
た冷媒は、電磁弁8→メインコンデンサ2→逆止弁17
→サブコンデンサ3→リキッドタンク15→膨張弁4→
エバポレータ5→サブエバポレータ19→電磁弁11→
アキュムレータ16を通ってコンプレッサ1へ帰還す
る。これが冷房時に形成される冷房サイクルであり、エ
バポレータ5にて取り入れ空気が冷却され、この冷風が
室内へ供給されることになる。
Thus, the refrigerant discharged from the compressor 1 is supplied to the solenoid valve 8 → the main condenser 2 → the check valve 17.
→ Subcondenser 3 → Liquid tank 15 → Expansion valve 4 →
Evaporator 5 → Sub-evaporator 19 → Solenoid valve 11 →
It returns to the compressor 1 through the accumulator 16. This is a cooling cycle formed at the time of cooling. The intake air is cooled by the evaporator 5, and the cool air is supplied to the room.

【0034】これに対して、暖房運転を行う場合には、
図2に示すように電磁弁9,12を開き、電磁弁8を閉
じてコンプレッサ1を駆動するが、その起動時において
電磁弁11を閉じておく。これにより、コンプレッサ1
の駆動にともなって当該コンプレッサ1の吸入側の冷媒
圧が低下するので、メインコンデンサ2に寝込んでいた
ガス状および液状冷媒は、そのほとんどが冷媒回収管1
0を通ってコンプレッサ1に吸引される。この冷媒回収
を所定時間だけ行ったのち、電磁弁11を開くと、コン
プレッサ1から吐出された冷媒は、電磁弁9→逆止弁2
1→サブコンデンサ3→リキッドタンク15→膨張弁4
→エバポレータ5→サブエバポレータ19→電磁弁11
→アキュムレータ16を通ってコンプレッサ1へ帰還す
る。これが暖房時に形成される暖房サイクルであり、エ
バポレータ5にて取り入れ空気が冷却されたのち、サブ
コンデンサ3にてこの冷風が加熱されるので、除湿暖房
された低湿高温の空気が室内へ供給されることになる。
On the other hand, when performing the heating operation,
As shown in FIG. 2, the solenoid valves 9 and 12 are opened, the solenoid valve 8 is closed, and the compressor 1 is driven. When the compressor 1 is started, the solenoid valve 11 is closed. Thereby, the compressor 1
As the pressure of the refrigerant on the suction side of the compressor 1 decreases with the drive of the compressor 1, most of the gaseous and liquid refrigerants that have fallen in the main condenser 2 have a refrigerant recovery pipe 1
0 and is sucked into the compressor 1. After performing this refrigerant collection for a predetermined time, when the solenoid valve 11 is opened, the refrigerant discharged from the compressor 1 is discharged from the solenoid valve 9 to the check valve 2.
1 → Subcondenser 3 → Liquid tank 15 → Expansion valve 4
→ evaporator 5 → sub-evaporator 19 → solenoid valve 11
→ Return to the compressor 1 through the accumulator 16. This is a heating cycle formed at the time of heating. After the intake air is cooled by the evaporator 5, the cold air is heated by the sub-condenser 3, so that the dehumidified and heated low-humidity and high-temperature air is supplied to the room. Will be.

【0035】なお、以上説明した実施形態は、本発明の
理解を容易にするために記載されたものであって、本発
明を限定するために記載されたものではない。したがっ
て、上記の実施形態に開示された各要素は、本発明の技
術的範囲に属する全ての設計変更や均等物をも含む趣旨
である。
The embodiments described above are described for the purpose of facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

【0036】[0036]

【発明の効果】以上述べたように本発明によれば、コン
プレッサの駆動にともない当該コンプレッサの吸入側の
冷媒圧が低下し、室外コンデンサに寝込んだ冷媒が冷媒
回収管を通ってコンプレッサに吸入されるので、暖房運
転時における暖房サイクルの冷媒量を充分に確保するこ
とができ、暖房性能が高まることになる。
As described above, according to the present invention, as the compressor is driven, the refrigerant pressure on the suction side of the compressor is reduced, and the refrigerant stored in the outdoor condenser is sucked into the compressor through the refrigerant recovery pipe. Therefore, the amount of refrigerant in the heating cycle during the heating operation can be sufficiently ensured, and the heating performance is enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヒートポンプ式空気調和装置の実施形
態を示すブロック図(定常運転時)である。
FIG. 1 is a block diagram (at the time of steady operation) showing an embodiment of a heat pump type air conditioner of the present invention.

【図2】本発明のヒートポンプ式空気調和装置の実施形
態を示すブロック図(暖房運転起動時)である。
FIG. 2 is a block diagram (at the time of starting a heating operation) showing an embodiment of a heat pump type air conditioner of the present invention.

【図3】従来のヒートポンプ式空気調和装置を示すブロ
ック図である。
FIG. 3 is a block diagram showing a conventional heat pump type air conditioner.

【符号の説明】[Explanation of symbols]

1…コンプレッサ 2…メインコンデンサ(室外コンデンサ) 3…サブコンデンサ(室内コンデンサ) 4…膨張弁(減圧手段) 5…室内エバポレータ 6…冷媒配管 7…バイパス管 8,9…電磁弁(冷媒流路切替手段) 10…冷媒回収管 11…電磁弁(開閉弁) DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Main condenser (outdoor condenser) 3 ... Sub-condenser (indoor condenser) 4 ... Expansion valve (decompression means) 5 ... Indoor evaporator 6 ... Refrigerant piping 7 ... Bypass pipe 8, 9 ... Solenoid valve (refrigerant flow path switching) Means) 10: Refrigerant recovery pipe 11: Solenoid valve (open / close valve)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくともコンプレッサ、室外コンデン
サ、室内コンデンサ、減圧手段および室内エバポレータ
がこの順序で冷媒配管により接続され、前記コンプレッ
サから吐出された冷媒を前記室外コンデンサを迂回させ
て前記室内コンデンサへ導くバイパス管と、前記コンプ
レッサから吐出された冷媒を冷房運転時は前記室外コン
デンサ側へ導き、暖房運転時は前記バイパス管へ導く冷
媒流路切替手段と、前記室外コンデンサに滞留している
冷媒を前記コンプレッサの吸入側へ戻すための冷媒回収
管とを備えたヒートポンプ式空気調和装置において、 前記コンプレッサの吸入側の前記冷媒回収管の一端と、
前記室内エバポレータの出口側との間に、開閉弁が設け
られていることを特徴とするヒートポンプ式空気調和装
置。
At least a compressor, an outdoor condenser, an indoor condenser, a pressure reducing means and an indoor evaporator are connected in this order by a refrigerant pipe, and a bypass for guiding refrigerant discharged from the compressor to the indoor condenser by bypassing the outdoor condenser. A pipe, refrigerant flow switching means for guiding the refrigerant discharged from the compressor to the outdoor condenser side during the cooling operation, and guiding the refrigerant discharged to the bypass pipe during the heating operation, and supplying the refrigerant remaining in the outdoor condenser to the compressor. A heat pump type air conditioner including a refrigerant recovery pipe for returning to the suction side of the compressor, one end of the refrigerant recovery pipe on the suction side of the compressor,
An on-off valve is provided between the indoor evaporator and an outlet side of the indoor evaporator.
【請求項2】前記開閉弁は、暖房運転の起動時に所定時
間だけ閉じることを特徴とする請求項1記載のヒートポ
ンプ式空気調和装置。
2. The heat pump type air conditioner according to claim 1, wherein the on-off valve is closed for a predetermined time when the heating operation is started.
JP32535198A 1998-11-16 1998-11-16 Heat pump air conditioner Expired - Fee Related JP4056151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32535198A JP4056151B2 (en) 1998-11-16 1998-11-16 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32535198A JP4056151B2 (en) 1998-11-16 1998-11-16 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JP2000146319A true JP2000146319A (en) 2000-05-26
JP4056151B2 JP4056151B2 (en) 2008-03-05

Family

ID=18175852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32535198A Expired - Fee Related JP4056151B2 (en) 1998-11-16 1998-11-16 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP4056151B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042574A (en) * 2001-08-01 2003-02-13 Denso Corp Vapor compression refrigerator
WO2003083388A1 (en) * 2002-03-29 2003-10-09 Kabushiki Kaisha Toshiba Refrigerator
US6851273B2 (en) * 2003-05-01 2005-02-08 Lg Electronics Inc. Air conditioner and outdoor unit therefor
JP2006336907A (en) * 2005-05-31 2006-12-14 Toshiba Kyaria Kk Refrigerating cycle device
CN105402937A (en) * 2015-12-22 2016-03-16 广东志高暖通设备股份有限公司 Air-conditioning system
CN106871478A (en) * 2017-03-21 2017-06-20 李军 A kind of frequency conversion type dehumidifying, air conditioner integrated machine
CN112810394A (en) * 2019-11-15 2021-05-18 现代自动车株式会社 Heat pump system for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042574A (en) * 2001-08-01 2003-02-13 Denso Corp Vapor compression refrigerator
WO2003083388A1 (en) * 2002-03-29 2003-10-09 Kabushiki Kaisha Toshiba Refrigerator
US7448226B2 (en) 2002-03-29 2008-11-11 Kabushiki Kaisha Toshiba Refrigerator
US6851273B2 (en) * 2003-05-01 2005-02-08 Lg Electronics Inc. Air conditioner and outdoor unit therefor
JP2006336907A (en) * 2005-05-31 2006-12-14 Toshiba Kyaria Kk Refrigerating cycle device
JP4652131B2 (en) * 2005-05-31 2011-03-16 東芝キヤリア株式会社 Refrigeration cycle equipment
CN105402937A (en) * 2015-12-22 2016-03-16 广东志高暖通设备股份有限公司 Air-conditioning system
CN106871478A (en) * 2017-03-21 2017-06-20 李军 A kind of frequency conversion type dehumidifying, air conditioner integrated machine
CN112810394A (en) * 2019-11-15 2021-05-18 现代自动车株式会社 Heat pump system for vehicle
CN112810394B (en) * 2019-11-15 2023-12-22 现代自动车株式会社 Heat pump system for vehicle

Also Published As

Publication number Publication date
JP4056151B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP3939445B2 (en) Air conditioner for automobile
JP2003291635A (en) Air-conditioner
KR20160111577A (en) Heat pump system for vehicle
KR101511508B1 (en) Heat pump system for vehicle
JP2962019B2 (en) Vehicle air conditioner
CN109982877B (en) Vehicle heat pump system
JP4056151B2 (en) Heat pump air conditioner
CN110475683B (en) Air conditioning apparatus
JP3929606B2 (en) Air conditioner for automobile
JP2011225174A (en) Vehicular air conditioner
JP2985098B2 (en) Automotive air conditioners
JP2525338B2 (en) Defrost mechanism of heat pump type air conditioner
KR101430005B1 (en) Heat pump system for vehicle and its control method
JP3980189B2 (en) Air conditioner for automobile
JP5465520B2 (en) Air conditioner for vehicles
JP3830242B2 (en) Heat pump type automotive air conditioner
JP3980186B2 (en) Heat pump type automotive air conditioner
JPS6017639Y2 (en) Heat pump air conditioner
KR20080009398A (en) Air conditioner type heat pump
JP2001280744A (en) Air conditioner
JPH06193972A (en) Air conditioner
JP2001280764A (en) Air conditioning system
JPH05203274A (en) Air conditioning apparatus
JP2797656B2 (en) Heat pump type air conditioner
CN115703323A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees