JP4179602B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP4179602B2
JP4179602B2 JP2003074753A JP2003074753A JP4179602B2 JP 4179602 B2 JP4179602 B2 JP 4179602B2 JP 2003074753 A JP2003074753 A JP 2003074753A JP 2003074753 A JP2003074753 A JP 2003074753A JP 4179602 B2 JP4179602 B2 JP 4179602B2
Authority
JP
Japan
Prior art keywords
heat storage
expansion valve
heat exchanger
compressor
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003074753A
Other languages
Japanese (ja)
Other versions
JP2004279005A (en
JP2004279005A5 (en
Inventor
純一郎 手塚
禎夫 関谷
雅晴 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2003074753A priority Critical patent/JP4179602B2/en
Publication of JP2004279005A publication Critical patent/JP2004279005A/en
Publication of JP2004279005A5 publication Critical patent/JP2004279005A5/ja
Application granted granted Critical
Publication of JP4179602B2 publication Critical patent/JP4179602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷熱を蓄える蓄熱式空気調和機に関し、特に圧縮機への液戻り防止するものに好適である。
【0002】
【従来の技術】
従来、空気調和装置の運転中に停止指令を受けたとき、所定時間の間、凝縮器側の膨張弁を開き、蒸発器側の膨張弁を閉じた状態で圧縮機を運転させることで、圧縮機の停止前に熱交換器等に貯留されている液冷媒をレシーバに回収して圧縮機への液戻りを防止することが知られ、例えば特許文献1に記載されている。
【特許文献1】
特開平6−26716号公報
【0003】
【発明が解決しようとする課題】
上記従来技術においては、蓄熱式空気調和機に関しては考慮されてなく、蓄熱式空気調和機において運転を停止する場合に、凝縮器である室外熱交換器出口に設けられた室外膨張弁を開き、蒸発器である室内熱交換器入口に設けられた室内膨張弁および蓄熱膨張弁を閉じ、蓄熱熱交出口用電磁弁を開弁した状態で圧縮機を運転させると、液冷媒がレシーバ内に貯留しきれなくなる。そして、室外熱交換器および液配管内に液冷媒が溜まりこみ、冷媒の溜まれる空間がなくなった結果、高圧圧力が上昇し、すべての冷媒を回収することができないことになる。
【0004】
また、蓄熱熱交換器内に冷媒が残ってしまった状態から、製氷運転を始動する場合、始動後、蓄熱熱交換器に溜まっている液冷媒が蒸発できないまま液配管に押し出されてしまうため、液冷媒が圧縮機に吸い込まれてしまう。
【0005】
さらに、上記従来技術のように圧縮機の停止前に熱交換器等に貯留されている液冷媒をレシーバに回収しても、実際は各弁には微量の漏れなどが生じる場合があるため、次の運転までに時間が空いた場合、回収冷媒が漏れ出し圧縮機への液戻りを生じたり、液冷媒により希釈された油により圧縮機の潤滑不良を招いたりする場合がある。
【0006】
本発明の目的は上記従来技術の課題を解決し、蓄熱式空気調和機においても液戻りによる冷凍機油の希釈、液圧縮等を防止し、信頼性の向上を図ることにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明は、圧縮機、室外熱交換器、受液器、室内膨張弁、室内熱交換器を順次冷媒配管で接続する環状の回路と、前記受液器の出口側で分岐し蓄熱膨張弁、蓄熱熱交換器および蓄熱出口用電磁弁を介して前記室内熱交換器から圧縮機に接続する戻り配管に結合する回路を備えた蓄熱式空気調和機において、運転を停止する場合、室内膨張弁および蓄熱出口用電磁弁を閉止状態、蓄熱膨張弁を開状態とすると共に、圧縮機の運転を所定時間継続するものである。
【0008】
また、本発明は、圧縮機、室外熱交換器、受液器、室内膨張弁、室内熱交換器を順次冷媒配管で接続する環状の回路と、前記受液器の出口側で分岐し蓄熱膨張弁、蓄熱熱交換器および蓄熱出口用電磁弁を介して前記室内熱交換器から圧縮機に接続する戻り配管に結合する回路を備えた蓄熱式空気調和機において、運転を開始する場合、室内膨張弁を閉止状態として圧縮機を運転し、蓄熱出口用電磁弁を閉止状態として蓄熱膨張弁を一定時間開状態とし、その後、蓄熱出口用電磁弁を開くと共に、蓄熱膨張弁を所定開度まで閉じるものである。
【0009】
さらに、上記のものにおいて、蓄熱出口用電磁弁を開く際、蓄熱膨張弁は全閉とされ、所定時間経過後に所定開度まで開くことが望ましい。
【0010】
【発明の実施の形態】
本発明の一実施形態を図により説明する。
図1は一実施の形態を示す冷凍サイクル系統図であり、室外ユニットA、蓄熱ユニットB、室内ユニットCおよび制御装置Dから構成されている。室外ユニットAは、圧縮機1、四方弁2、凝縮器としての室外熱交換器3、室外膨張弁4、受液器5、アキュムレータ6で構成される。蓄熱ユニットBは、液配管用電磁弁7、蓄熱膨張弁8、蓄熱出口用電磁弁9、蓄熱入口用電磁弁14および蓄熱熱交換器10と蓄熱水槽11で構成されている。室内ユニットCは減圧装置としての室内膨張弁12、蒸発器としての室内熱交換器13で構成されている。
また、室外ユニットA、蓄熱ユニットB、室内ユニットCそれぞれの構成要素は冷媒配管で接続されている。図1では室内ユニットCを2台示しているが1台であっても3台以上であってもよい。
【0011】
次に、冷房運転、製氷運転における空気調和機の動作について順に説明する。
冷房運転時は、圧縮機1から吐出されたガス冷媒は四方弁2を介して送られ、室外熱交換器3で凝縮して液冷媒になる。この液冷媒は大きく開かれた室外膨張弁4を通り、受液器5に溜められ、そこから室外ユニットAを出て蓄熱ユニットBに向かう。そこで、蓄熱入口用電磁弁14及び蓄熱膨張弁8が開、液配管用電磁弁7及び蓄熱出口用電磁弁9が閉とされ、蓄熱熱交換器10であらかじめ蓄熱されている媒体と熱交換して過冷却される。過冷却された液冷媒は蓄熱ユニットBを出て室内ユニットCに流入する。なお、蓄熱を利用しない冷房運転の場合は、液管用電磁弁7を開として通過するため、蓄熱熱交換器10は通過しない。室内ユニットCに流入した液冷媒は減圧装置としての室内膨張弁12で減圧され、蒸発器としての室内熱交換器13で蒸発し、室内空気を冷却する。その後蒸発したガス冷媒は室内ユニットC、室外ユニットAを接続する戻りの冷媒配管を介して、室外ユニットA内の四方弁2、アキュムレータ6を介して圧縮機1に吸入される。
【0012】
ここで、運転制御部が冷房運転停止指令を受信した場合、停止冷媒回収制御を行う。停止冷媒回収制御開始により圧縮機1の運転継続するとともに、室内膨張弁12を閉止、蓄熱熱交換器出口用電磁弁9を閉止したままの状態で蓄熱膨張弁8を大きく開く。停止冷媒回収制御開始から一定時間経過後、停止冷媒回収制御を終了し、運転停止する。
【0013】
製氷運転時は、圧縮機1から吐出されたガス冷媒は四方弁2を介して送給され、室外熱交換器3で凝縮して液冷媒になる。この液冷媒は大きく開かれた室外膨張弁4を通り、受液器5に溜められ、そこから室外ユニットAを出て蓄熱ユニットBに向かう。蓄熱ユニットBに流入した液冷媒は減圧装置としての蓄熱膨張弁8で減圧され、蒸発器としての室内熱交換器13で蒸発し、蓄熱材を冷却する。その後蒸発したガス冷媒は蓄熱熱交出口用電磁弁9を通過し、室内ユニットC、室外ユニットAを接続する戻りの冷媒配管を介して、室外ユニットA内の四方弁2、アキュムレータ6を介して圧縮機1に吸入される。このとき、室内ユニットCの室内膨張弁12は閉止しており冷媒は流れていない。
【0014】
ここで製氷運転停止時は、運転制御部が製氷運転停止信号を受信した場合、停止冷媒回収制御にはいる。停止冷媒回収制御開始により圧縮機1を運転継続するとともに、室内膨張弁12の閉止を継続、蓄熱熱交換器出口用電磁弁9を閉止して、蓄熱膨張弁8を大きく開く。停止冷媒回収制御開始から一定時間経過後、停止冷媒回収制御を終了し、運転停止する。
【0015】
以上のように、運転停止指令をうけたとき、圧縮機1を一定時間運転継続するとともに、室内膨張弁12の閉を継続する一方、蓄熱熱交換器出口用電磁弁9を閉止した状態で蓄熱膨張弁8を大きく開くよう制御することで、室内熱交換器13と圧縮機1を接続する冷媒配管に存在した冷媒は、室外熱交換器3および室外熱交換器3の出口に設けられた受液器5を経由して蓄熱熱交換器10内に貯留される。これにより、圧縮機1の起動時に発生する液圧縮および油の希釈による潤滑不良に起因する故障を防止することができる。
【0016】
次に、冷房運転、製氷運転における他の実施の形態における空気調和機の動作について順に説明する。
停止中に、運転制御部が冷房運転開始信号を受信した場合、起動冷媒回収制御1にはいる。起動冷媒回収制御1開始により圧縮機1を所定周波数で運転開始するとともに、室内膨張弁12を閉止、蓄熱熱交換器出口用電磁弁9を閉止したままの状態で蓄熱膨張弁8を大きく開く。起動冷媒回収制御1開始から一定時間経過後、起動冷媒回収制御1を終了し、通常運転制御に移行する。
すなわち、圧縮機1を運転継続するとともに、室内膨張弁12を所定開度まで開き、蓄熱熱交換器出口用電磁弁9を閉止したままの状態、蓄熱熱交入口用電磁弁8または液配管用電磁弁7のいずれか一方を開き、蓄熱膨張弁8を大きく開き通常の冷房運転に移行する。
【0017】
また、停止中に、運転制御部が製氷運転開始信号を受信した場合、起動冷媒回収制御1を行う。起動冷媒回収制御1の開始により圧縮機1を所定周波数で運転開始するとともに、室内膨張弁12を閉止、蓄熱熱交換器出口用電磁弁9を閉止したままの状態で蓄熱膨張弁8を大きく開く。起動冷媒回収制御1の開始から一定時間経過後、起動冷媒回収制御1を終了し、通常運転制御に移行する。
すなわち、圧縮機1を運転、室内膨張弁12の閉止状態を継続したまま、蓄熱熱交出口用電磁弁9を開弁し、蓄熱液配管電磁弁7を開き、蓄熱膨張弁8を所定開度とすることで通常の製氷運転に移行する。
【0018】
以上によれば、運転開始指令をうけたとき、室内膨張弁12を閉止した状態で、圧縮機1を運転開始する一方、一定時間、蓄熱熱交換器出口用電磁弁9を閉止した状態で蓄熱膨張弁8を大きく開くよう制御した後、蓄熱熱交換器出口用電磁弁9を開弁するとともに蓄熱膨張弁8を所定開度まで閉じることで、停止時に冷媒回収運転を行えなかった場合、また停止中に弁の漏れ等により低圧ガス配管ないに冷媒が貯留してしまった場合などでは、室内熱交換器13と圧縮機1を接続する冷媒配管に存在した冷媒が室外熱交換器3および室外熱交換器3の出口に設けられた受液器5を経由して蓄熱熱交換器10内に貯留される。また、室内熱交換器13と圧縮機1を接続する冷媒配管に存在した冷媒を回収したあとで蓄熱熱交換器10と該冷媒配管を接続するため、蓄熱熱交換器10から戻る冷媒があっても、アキュムレータ6内の液量が過剰に増え、圧縮機1の起動時に発生する液圧縮等を起こすことを防止できる。
【0019】
次に、製氷運転における空気調和機の動作について説明する。
停止中に、運転制御部が製氷運転開始信号を受信した場合、起動冷媒回収制御1にはいる。起動冷媒回収制御1開始により圧縮機1を所定周波数で運転開始するとともに、室内膨張弁12を閉止、蓄熱熱交換器出口用電磁弁9を閉止したままの状態で蓄熱膨張弁8を大きく開く。このとき蓄熱液配管電磁弁7は開かれた状態にある。起動冷媒回収制御1の開始から一定時間経過後より、起動冷媒回収制御2に移行する。圧縮機1を運転、室内膨張弁12の閉止状態を継続したまま、蓄熱熱交換器出口用電磁弁9を開弁し、蓄熱膨張弁8を閉止することで蓄熱熱交換器10内の冷媒を回収する。起動冷媒回収制御2移行から一定時間経過後、起動冷媒回収制御2を終了し、通常運転制御に移行する。
すなわち、圧縮機1を運転、室内膨張弁12の閉止、蓄熱熱交換器出口用電磁弁9の開弁状態を継続したまま、蓄熱膨張弁8を所定開度とすることで通常の製氷運転に移行する。
【0020】
以上、起動冷媒回収制御1のあと起動冷媒回収制御2として、圧縮機1を運転、室内膨張弁12の閉止状態を継続したまま、蓄熱熱交換器出口用電磁弁9を開弁し、蓄熱膨張弁8を閉止することで蓄熱熱交換器10内の冷媒を回収するため、蓄熱熱交換器10内の冷媒存在量をあらかじめ蒸発器に適した量まで減らしておくことができるため、蓄熱膨張弁8の開弁時に蒸発しきれずに、液冷媒が接続配管に戻ることになり圧縮機1が液圧縮を起こすことがない。
【0021】
【発明の効果】
以上述べたように、本発明によれば、も液戻りによる冷凍機油の希釈、液圧縮等を防止し、信頼性の向上を図った蓄熱式空気調和機を得ることができる。
【図面の簡単な説明】
【図1】 本発明による一実施の形態を示す冷凍サイクル系統図である。
【符号の説明】
1…圧縮機、2…四方弁、3…室外熱交換器、4…室外膨張弁、5…受液器、6…アキュムレータ、7…蓄熱液配管用電磁弁、8…蓄熱膨張弁、9…蓄熱熱交出口用電磁弁、10…蓄熱熱交換器、11…蓄熱水槽、12…室内膨張弁、13…室内熱交換器、14…蓄熱入口用電磁弁、A…室外ユニット、B…蓄熱ユニット、C…室内ユニット、D…制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regenerative air conditioner that stores cold heat, and is particularly suitable for preventing liquid return to the compressor.
[0002]
[Prior art]
Conventionally, when a stop command is received during operation of the air conditioner, compression is performed by opening the expansion valve on the condenser side for a predetermined time and operating the compressor with the expansion valve on the evaporator side closed. It is known that liquid refrigerant stored in a heat exchanger or the like is collected in a receiver before the machine is stopped to prevent liquid return to the compressor, which is described in Patent Document 1, for example.
[Patent Document 1]
Japanese Patent Laid-Open No. Hei 6-26716
[Problems to be solved by the invention]
In the above prior art, the heat storage type air conditioner is not considered, and when the operation is stopped in the heat storage type air conditioner, the outdoor expansion valve provided at the outlet of the outdoor heat exchanger as a condenser is opened, When the compressor is operated with the indoor expansion valve and the thermal storage expansion valve provided at the inlet of the indoor heat exchanger, which is an evaporator, closed, and the electromagnetic valve for the thermal storage heat exchange outlet is opened, the liquid refrigerant is stored in the receiver. I can't finish it. As a result, liquid refrigerant accumulates in the outdoor heat exchanger and the liquid pipe, and as a result, there is no space for the refrigerant to accumulate. As a result, the high pressure rises and all the refrigerant cannot be recovered.
[0004]
In addition, when starting the ice making operation from the state where the refrigerant remains in the heat storage heat exchanger, the liquid refrigerant accumulated in the heat storage heat exchanger is pushed out to the liquid piping without being evaporated after the start, Liquid refrigerant is sucked into the compressor.
[0005]
Furthermore, even if the liquid refrigerant stored in the heat exchanger or the like is collected in the receiver before the compressor is stopped as in the above prior art, a slight amount of leakage may actually occur in each valve. If there is time before this operation, the recovered refrigerant may leak and cause liquid return to the compressor, or the oil diluted with the liquid refrigerant may cause poor lubrication of the compressor.
[0006]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to prevent dilution of refrigeration oil and liquid compression due to liquid return even in a heat storage type air conditioner, and to improve reliability.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an annular circuit that sequentially connects a compressor, an outdoor heat exchanger, a liquid receiver, an indoor expansion valve, and an indoor heat exchanger with refrigerant piping, and an outlet side of the liquid receiver. Operation is stopped in a regenerative air conditioner having a circuit that branches and connects to a return pipe connected to the compressor from the indoor heat exchanger via a heat storage expansion valve, a heat storage heat exchanger, and a heat storage outlet solenoid valve In this case, the indoor expansion valve and the heat storage outlet solenoid valve are closed, the heat storage expansion valve is opened, and the operation of the compressor is continued for a predetermined time.
[0008]
In addition, the present invention includes an annular circuit that sequentially connects a compressor, an outdoor heat exchanger, a liquid receiver, an indoor expansion valve, and an indoor heat exchanger with a refrigerant pipe, and a thermal storage expansion that branches at the outlet side of the liquid receiver. In a regenerative air conditioner having a circuit coupled to a return pipe connected to the compressor from the indoor heat exchanger via a valve, a heat storage heat exchanger, and a heat storage outlet solenoid valve, The compressor is operated with the valve closed, the heat storage outlet solenoid valve is closed, the heat storage expansion valve is opened for a certain period of time, and then the heat storage outlet solenoid valve is opened and the heat storage expansion valve is closed to a predetermined opening degree. Is.
[0009]
Furthermore, in the above, when opening the heat storage outlet solenoid valve, it is desirable that the heat storage expansion valve is fully closed and opened to a predetermined opening after a predetermined time.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a refrigeration cycle system diagram showing an embodiment, and includes an outdoor unit A, a heat storage unit B, an indoor unit C, and a control device D. The outdoor unit A includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3 as a condenser, an outdoor expansion valve 4, a liquid receiver 5, and an accumulator 6. The heat storage unit B includes a liquid piping solenoid valve 7, a heat storage expansion valve 8, a heat storage outlet solenoid valve 9, a heat storage inlet solenoid valve 14, a heat storage heat exchanger 10, and a heat storage water tank 11. The indoor unit C includes an indoor expansion valve 12 as a decompression device and an indoor heat exchanger 13 as an evaporator.
The constituent elements of the outdoor unit A, the heat storage unit B, and the indoor unit C are connected by refrigerant piping. Although two indoor units C are shown in FIG. 1, the number may be one or three or more.
[0011]
Next, operations of the air conditioner in the cooling operation and the ice making operation will be described in order.
During the cooling operation, the gas refrigerant discharged from the compressor 1 is sent through the four-way valve 2 and condensed in the outdoor heat exchanger 3 to become liquid refrigerant. This liquid refrigerant passes through the widely opened outdoor expansion valve 4 and is stored in the liquid receiver 5, from which it leaves the outdoor unit A and heads toward the heat storage unit B. Therefore, the heat storage inlet solenoid valve 14 and the heat storage expansion valve 8 are opened, the liquid piping solenoid valve 7 and the heat storage outlet solenoid valve 9 are closed, and the heat storage heat exchanger 10 exchanges heat with the previously stored medium. Overcooled. The supercooled liquid refrigerant exits the heat storage unit B and flows into the indoor unit C. In the case of cooling operation that does not use heat storage, the liquid pipe electromagnetic valve 7 is opened and the heat storage heat exchanger 10 does not pass. The liquid refrigerant flowing into the indoor unit C is depressurized by the indoor expansion valve 12 as a decompression device, evaporates in the indoor heat exchanger 13 as an evaporator, and cools the indoor air. Thereafter, the evaporated gas refrigerant is sucked into the compressor 1 via the four-way valve 2 and the accumulator 6 in the outdoor unit A via the return refrigerant pipe connecting the indoor unit C and the outdoor unit A.
[0012]
Here, when the operation control unit receives the cooling operation stop command, the stop refrigerant recovery control is performed. The operation of the compressor 1 is continued by the start of the stopped refrigerant recovery control, the indoor expansion valve 12 is closed, and the heat storage expansion valve 8 is greatly opened while the heat storage heat exchanger outlet electromagnetic valve 9 is closed. After a lapse of a certain time from the start of the stopped refrigerant recovery control, the stopped refrigerant recovery control is terminated and the operation is stopped.
[0013]
During the ice making operation, the gas refrigerant discharged from the compressor 1 is fed through the four-way valve 2 and condensed in the outdoor heat exchanger 3 to become liquid refrigerant. This liquid refrigerant passes through the widely opened outdoor expansion valve 4 and is stored in the liquid receiver 5, from which it leaves the outdoor unit A and heads toward the heat storage unit B. The liquid refrigerant that has flowed into the heat storage unit B is depressurized by the heat storage expansion valve 8 serving as a decompression device, evaporates in the indoor heat exchanger 13 serving as an evaporator, and cools the heat storage material. Thereafter, the evaporated gas refrigerant passes through the heat storage heat exchange outlet solenoid valve 9, and through the return refrigerant pipe connecting the indoor unit C and the outdoor unit A, via the four-way valve 2 and the accumulator 6 in the outdoor unit A. It is sucked into the compressor 1. At this time, the indoor expansion valve 12 of the indoor unit C is closed and no refrigerant flows.
[0014]
Here, when the ice making operation is stopped, when the operation control unit receives the ice making operation stop signal, the stopped refrigerant recovery control is entered. The compressor 1 is continuously operated by the start of the stop refrigerant recovery control, the indoor expansion valve 12 is kept closed, the heat storage heat exchanger outlet electromagnetic valve 9 is closed, and the heat storage expansion valve 8 is opened widely. After a lapse of a certain time from the start of the stopped refrigerant recovery control, the stopped refrigerant recovery control is terminated and the operation is stopped.
[0015]
As described above, when the operation stop command is received, the compressor 1 is continuously operated for a certain period of time, and the indoor expansion valve 12 is kept closed while the heat storage heat exchanger outlet electromagnetic valve 9 is closed. By controlling the expansion valve 8 to open widely, the refrigerant existing in the refrigerant pipe connecting the indoor heat exchanger 13 and the compressor 1 is received at the outlets of the outdoor heat exchanger 3 and the outdoor heat exchanger 3. It is stored in the heat storage heat exchanger 10 via the liquid device 5. As a result, it is possible to prevent a failure caused by poor lubrication due to liquid compression and oil dilution that occurs when the compressor 1 is started.
[0016]
Next, operation | movement of the air conditioner in other embodiment in air_conditionaing | cooling operation and ice making operation is demonstrated in order.
When the operation control unit receives the cooling operation start signal during the stop, the start refrigerant recovery control 1 is entered. The operation of the compressor 1 is started at a predetermined frequency by the start of the refrigerant recovery control 1 and the indoor expansion valve 12 is closed and the heat storage expansion valve 8 is largely opened while the heat storage heat exchanger outlet electromagnetic valve 9 is closed. After a certain period of time has elapsed since the start of the start refrigerant recovery control 1, the start refrigerant recovery control 1 is terminated, and the process proceeds to normal operation control.
That is, while the compressor 1 is continuously operated, the indoor expansion valve 12 is opened to a predetermined opening, and the heat storage heat exchanger outlet electromagnetic valve 9 is closed, the heat storage heat exchanger electromagnetic valve 8 or liquid piping Either one of the solenoid valves 7 is opened, the heat storage expansion valve 8 is opened widely, and a normal cooling operation is started.
[0017]
Further, when the operation control unit receives the ice making operation start signal during the stop, the starting refrigerant recovery control 1 is performed. The start of the starting refrigerant recovery control 1 starts the compressor 1 at a predetermined frequency, closes the indoor expansion valve 12, and opens the heat storage expansion valve 8 with the heat storage heat exchanger outlet electromagnetic valve 9 closed. . After a certain period of time has elapsed since the start of the start refrigerant recovery control 1, the start refrigerant recovery control 1 is terminated and the routine proceeds to normal operation control.
That is, the compressor 1 is operated and the indoor expansion valve 12 is kept closed, the heat storage heat exchange outlet solenoid valve 9 is opened, the heat storage liquid piping solenoid valve 7 is opened, and the heat storage expansion valve 8 is opened to a predetermined degree. To shift to normal ice making operation.
[0018]
According to the above, when the operation start command is received, the compressor 1 is started to operate with the indoor expansion valve 12 closed, while the heat storage heat exchanger outlet solenoid valve 9 is closed for a certain period of time. After controlling the expansion valve 8 to be opened widely, if the refrigerant recovery operation cannot be performed at the time of stoppage by opening the heat storage heat exchanger outlet solenoid valve 9 and closing the heat storage expansion valve 8 to a predetermined opening, When the refrigerant is stored in the low-pressure gas pipe due to valve leakage or the like during stoppage, the refrigerant present in the refrigerant pipe connecting the indoor heat exchanger 13 and the compressor 1 is removed from the outdoor heat exchanger 3 and the outdoor. It is stored in the heat storage heat exchanger 10 via the liquid receiver 5 provided at the outlet of the heat exchanger 3. In addition, after recovering the refrigerant present in the refrigerant pipe connecting the indoor heat exchanger 13 and the compressor 1, there is a refrigerant returning from the heat storage heat exchanger 10 in order to connect the heat storage heat exchanger 10 and the refrigerant pipe. However, it is possible to prevent the amount of liquid in the accumulator 6 from increasing excessively and causing liquid compression or the like that occurs when the compressor 1 is started.
[0019]
Next, the operation of the air conditioner in the ice making operation will be described.
When the operation control unit receives the ice making operation start signal during the stop, the start refrigerant recovery control 1 is entered. The operation of the compressor 1 is started at a predetermined frequency by the start of the refrigerant recovery control 1 and the indoor expansion valve 12 is closed and the heat storage expansion valve 8 is largely opened while the heat storage heat exchanger outlet electromagnetic valve 9 is closed. At this time, the heat storage liquid piping solenoid valve 7 is in an open state. After a certain period of time has elapsed since the start of the start refrigerant recovery control 1, the process proceeds to the start refrigerant recovery control 2. While the compressor 1 is operated and the indoor expansion valve 12 is kept closed, the heat storage heat exchanger outlet solenoid valve 9 is opened and the heat storage expansion valve 8 is closed, so that the refrigerant in the heat storage heat exchanger 10 is removed. to recover. After a lapse of a certain time from the transition to the startup refrigerant recovery control 2, the startup refrigerant recovery control 2 is terminated and the routine proceeds to normal operation control.
That is, the compressor 1 is operated, the indoor expansion valve 12 is closed, and the heat storage heat exchanger outlet solenoid valve 9 is kept open, so that the heat storage expansion valve 8 is set to a predetermined opening for normal ice making operation. Transition.
[0020]
As described above, as the starting refrigerant recovery control 2 after the starting refrigerant recovery control 1, the compressor 1 is operated, the indoor expansion valve 12 is kept closed, the solenoid valve 9 for the outlet of the heat storage heat exchanger is opened, and the heat storage expansion is performed. Since the refrigerant in the heat storage heat exchanger 10 is recovered by closing the valve 8, the refrigerant existing amount in the heat storage heat exchanger 10 can be reduced to an amount suitable for the evaporator in advance. When the valve 8 is not opened, the liquid refrigerant returns to the connection pipe without being evaporated, and the compressor 1 does not cause liquid compression.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a regenerative air conditioner that prevents dilution of refrigeration oil due to liquid return, liquid compression, and the like and improves reliability.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle system diagram showing an embodiment according to the present invention.
[Explanation of symbols]
1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... Outdoor expansion valve, 5 ... Receiver, 6 ... Accumulator, 7 ... Solenoid valve for heat storage liquid piping, 8 ... Heat storage expansion valve, 9 ... Heat storage heat exchange outlet solenoid valve, 10 ... heat storage heat exchanger, 11 ... heat storage tank, 12 ... indoor expansion valve, 13 ... indoor heat exchanger, 14 ... heat storage inlet solenoid valve, A ... outdoor unit, B ... heat storage unit , C: indoor unit, D: control device.

Claims (3)

圧縮機、室外熱交換器、受液器、室内膨張弁、室内熱交換器を順次冷媒配管で接続する環状の回路と、前記受液器の出口側で分岐し蓄熱膨張弁、蓄熱熱交換器および蓄熱出口用電磁弁を介して前記室内熱交換器から圧縮機に接続する戻り配管に結合する回路を備えた蓄熱式空気調和機において、
運転を停止する場合、前記室内膨張弁および前記蓄熱出口用電磁弁を閉止状態、前記蓄熱膨張弁を開状態とすると共に、前記圧縮機の運転を所定時間継続することを特徴とする蓄熱式空調調和機。
An annular circuit that sequentially connects a compressor, an outdoor heat exchanger, a liquid receiver, an indoor expansion valve, and an indoor heat exchanger with refrigerant piping, and a heat storage expansion valve and a heat storage heat exchanger that are branched at the outlet side of the liquid receiver And a regenerative air conditioner comprising a circuit coupled to a return pipe connected to the compressor from the indoor heat exchanger via a solenoid valve for heat storage outlet,
When the operation is stopped, the indoor expansion valve and the heat storage outlet solenoid valve are closed, the heat storage expansion valve is opened, and the operation of the compressor is continued for a predetermined time. Harmony machine.
圧縮機、室外熱交換器、受液器、室内膨張弁、室内熱交換器を順次冷媒配管で接続する環状の回路と、前記受液器の出口側で分岐し蓄熱膨張弁、蓄熱熱交換器および蓄熱出口用電磁弁を介して前記室内熱交換器から圧縮機に接続する戻り配管に結合する回路を備えた蓄熱式空気調和機において、
運転を開始する場合、前記室内膨張弁を閉止状態として前記圧縮機を運転し、前記蓄熱出口用電磁弁を閉止状態としてその後、前記蓄熱出口用電磁弁を開くと共に、前記蓄熱膨張弁を所定開度とすることを特徴とする蓄熱式空調調和機。
An annular circuit that sequentially connects a compressor, an outdoor heat exchanger, a liquid receiver, an indoor expansion valve, and an indoor heat exchanger with refrigerant piping, and a heat storage expansion valve and a heat storage heat exchanger that are branched at the outlet side of the liquid receiver And a regenerative air conditioner comprising a circuit coupled to a return pipe connected to the compressor from the indoor heat exchanger via a solenoid valve for heat storage outlet,
When starting the operation, the indoor expansion valve the compressor is operated as a closed state, after Teso the electromagnetic valve for the heat storage outlet and a closed state, opens the solenoid valve for the heat storage outlet, the heat storage expansion valve thermal storage type air-conditioning conditioner characterized by a a predetermined opening.
請求項2に記載のものにおいて、蓄熱出口用電磁弁を開く際、前記蓄熱膨張弁は全閉とされ、所定時間経過後に所定開度とすることを特徴とする蓄熱式空気調和機。The regenerative air conditioner according to claim 2, wherein when the heat storage outlet solenoid valve is opened, the heat storage expansion valve is fully closed, and a predetermined opening degree is set after a predetermined time has elapsed.
JP2003074753A 2003-03-19 2003-03-19 Thermal storage air conditioner Expired - Fee Related JP4179602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074753A JP4179602B2 (en) 2003-03-19 2003-03-19 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074753A JP4179602B2 (en) 2003-03-19 2003-03-19 Thermal storage air conditioner

Publications (3)

Publication Number Publication Date
JP2004279005A JP2004279005A (en) 2004-10-07
JP2004279005A5 JP2004279005A5 (en) 2005-12-15
JP4179602B2 true JP4179602B2 (en) 2008-11-12

Family

ID=33290254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074753A Expired - Fee Related JP4179602B2 (en) 2003-03-19 2003-03-19 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP4179602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752933A (en) * 2018-09-28 2021-05-04 大金工业株式会社 Air conditioning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645745A (en) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 Air conditioner capable of continuously heating and control method thereof
CN115420028B (en) * 2021-06-01 2024-02-06 广东美的暖通设备有限公司 Multi-split system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752933A (en) * 2018-09-28 2021-05-04 大金工业株式会社 Air conditioning system
CN112752933B (en) * 2018-09-28 2022-04-08 大金工业株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2004279005A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
CN101233375B (en) Method for preventing spill start in heat pump and controller
KR100564444B1 (en) Apparatus and method for liquid refrigerant temperature preventing accumulation of air conditioner
JPH11107966A (en) Air conditioning device
JP4179602B2 (en) Thermal storage air conditioner
US11512881B2 (en) Air conditioning apparatus
KR102017405B1 (en) Heat pump
KR100821729B1 (en) Air conditioning system
JP2004251570A (en) Oil recovery method for air conditioning system and air conditioning system
JPH06323636A (en) Refrigerator
JP3063746B2 (en) Refrigeration equipment
JPS58102067A (en) Air conditioner
JPH0282057A (en) Heat pump type air conditioner
JPH048704B2 (en)
JP2001280768A (en) Refrigerator
KR101908302B1 (en) Refrigeration system
JP4661561B2 (en) Refrigeration equipment
JPH0285660A (en) Heat pump type air conditioner
JPH0413583Y2 (en)
JPH04320774A (en) Freezer device
JPH0120709B2 (en)
JPH01127870A (en) Air conditioner
JPH025338Y2 (en)
CN113685916A (en) Air conditioning system and control method thereof
JPH11325627A (en) Refrigerator
JP2708926B2 (en) Multi-source refrigeration equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

R150 Certificate of patent or registration of utility model

Ref document number: 4179602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees