JP4661561B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4661561B2
JP4661561B2 JP2005346233A JP2005346233A JP4661561B2 JP 4661561 B2 JP4661561 B2 JP 4661561B2 JP 2005346233 A JP2005346233 A JP 2005346233A JP 2005346233 A JP2005346233 A JP 2005346233A JP 4661561 B2 JP4661561 B2 JP 4661561B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
gas
stage
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005346233A
Other languages
Japanese (ja)
Other versions
JP2007147244A (en
Inventor
修二 藤本
敦史 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005346233A priority Critical patent/JP4661561B2/en
Publication of JP2007147244A publication Critical patent/JP2007147244A/en
Application granted granted Critical
Publication of JP4661561B2 publication Critical patent/JP4661561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、二段圧縮冷凍サイクルと単段圧縮冷凍サイクルが切り換え可能な冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus capable of switching between a two-stage compression refrigeration cycle and a single-stage compression refrigeration cycle.

従来より、二段圧縮冷凍サイクルと単段圧縮冷凍サイクルが切り換え可能な冷凍装置が知られている。例えば、特許文献1には、この種の冷凍装置によって構成された空気調和装置が開示されている。この特許文献1の空気調和装置は、その暖房運転中において、外気温が比較的低い場合(例えば0℃を下回る場合)には二段圧縮冷凍サイクルを行い、外気温がさほど低くない場合には単段圧縮冷凍サイクルを行う。また、冷房運転中において、この空気調和装置は、単段圧縮冷凍サイクルを行う。   Conventionally, a refrigeration apparatus capable of switching between a two-stage compression refrigeration cycle and a single-stage compression refrigeration cycle is known. For example, Patent Literature 1 discloses an air conditioner configured by this type of refrigeration apparatus. The air conditioner of Patent Document 1 performs a two-stage compression refrigeration cycle when the outside air temperature is relatively low (for example, below 0 ° C.) during the heating operation, and when the outside air temperature is not so low. Perform a single-stage compression refrigeration cycle. Further, during the cooling operation, the air conditioner performs a single-stage compression refrigeration cycle.

また、上記特許文献1の空気調和装置は、中間圧冷媒の気液分離器を備えている。そして、二段圧縮冷凍サイクルを行う際には、気液分離器で分離された中間圧のガス冷媒を低段側圧縮機の吐出冷媒と共に高段側圧縮機へ吸入させることで、いわゆるエコノマイザ効果を得るようにしている。つまり、気液分離器からの飽和状態のガス冷媒を混入することで高段側圧縮機へ吸入される冷媒の過熱度を低下させ、それによって高段側圧縮機への入力の削減を図っている。
特開2001−235245号公報
The air conditioner of Patent Document 1 includes a gas-liquid separator for intermediate pressure refrigerant. When performing the two-stage compression refrigeration cycle, the so-called economizer effect is achieved by sucking the intermediate-pressure gas refrigerant separated by the gas-liquid separator into the high-stage compressor together with the refrigerant discharged from the low-stage compressor. Like to get. In other words, by mixing the saturated gas refrigerant from the gas-liquid separator, the degree of superheat of the refrigerant sucked into the high-stage compressor is reduced, thereby reducing the input to the high-stage compressor. Yes.
JP 2001-235245 A

ここで、特許文献1に開示されているような冷凍装置において、二段圧縮冷凍サイクルから単段圧縮冷凍サイクルへの切り換えが行われると、二段圧縮冷凍サイクル中には冷媒が流通していた高段側圧縮機やその吸入側が冷媒の循環経路から遮断されることになり、これらの部分に冷媒が閉じ込められた状態となる。高段側圧縮機やその吸入側に多量の冷媒が存在すると、これらの冷媒が停止中の高段側圧縮機へ侵入し、高段側圧縮機内の冷凍機油に溶解してしまうおそれがある。そして、冷凍機油に比較的多量の冷媒が溶け込んだ状態で高段側圧縮機を起動すると、冷凍機油に溶け込んでいた冷媒がガス化して冷凍機油が泡立ってしまう現象(いわゆるフォーミング現象)が生じてしまい、高段側圧縮機が潤滑不良に陥って焼き付き等のトラブルの原因になるおそれがある。   Here, in the refrigeration apparatus disclosed in Patent Document 1, when switching from the two-stage compression refrigeration cycle to the single-stage compression refrigeration cycle, the refrigerant circulated in the two-stage compression refrigeration cycle. The high-stage compressor and its suction side are blocked from the refrigerant circulation path, and the refrigerant is confined in these portions. If a large amount of refrigerant exists on the high-stage compressor or the suction side thereof, these refrigerants may enter the stopped high-stage compressor and be dissolved in the refrigeration oil in the high-stage compressor. When the high-stage compressor is started with a relatively large amount of refrigerant dissolved in the refrigeration oil, a phenomenon (so-called forming phenomenon) occurs in which the refrigerant dissolved in the refrigeration oil gasifies and the refrigeration oil bubbles. As a result, the high-stage compressor may suffer from poor lubrication and cause troubles such as seizure.

本発明は、かかる点に鑑みてなされたものであり、その目的は、単段圧縮冷凍サイクル中に停止する圧縮機へ冷媒が溜まり込むのを防止し、この圧縮機を起動して二段圧縮冷凍サイクルを再開する際のトラブルを未然に防止することにある。   The present invention has been made in view of the above points, and an object of the present invention is to prevent refrigerant from accumulating in a compressor that stops during a single-stage compression refrigeration cycle, and to start the compressor to perform two-stage compression. It is to prevent troubles when restarting the refrigeration cycle.

第1の発明は、第1圧縮機(21)と第2圧縮機(31)と中間圧冷媒の気液分離器(33)とが接続された冷媒回路(15)を備え、上記冷媒回路(15)では、上記第1圧縮機(21)の吐出冷媒と上記気液分離器(33)からの中間圧のガス冷媒とを上記第2圧縮機(31)へ吸入させて二段圧縮二段膨張冷凍サイクルを行う二段圧縮動作と、上記第2圧縮機(31)を停止させて上記第1圧縮機(21)だけで冷媒を圧縮して単段圧縮冷凍サイクルを行う単段圧縮動作とが切り換え可能となっている冷凍装置を対象としている。そして、上記冷媒回路(15)のうち上記単段圧縮動作中に冷媒が循環する部分から上記第2圧縮機(31)の吸入側を遮断する遮断状態に設定可能な遮断機構(50)と、上記二段圧縮動作から上記単段圧縮動作への切り換え時に、上記遮断機構(50)を遮断状態に設定して上記第2圧縮機(31)を運転することによって該第2圧縮機(31)の吸入側から冷媒を排出する冷媒排出動作を行う制御手段(90)とを備えるものである。   1st invention is equipped with the refrigerant circuit (15) to which the 1st compressor (21), the 2nd compressor (31), and the gas-liquid separator (33) of the intermediate pressure refrigerant | coolant were connected, The said refrigerant circuit ( 15), the refrigerant discharged from the first compressor (21) and the intermediate-pressure gas refrigerant from the gas-liquid separator (33) are sucked into the second compressor (31) to perform two-stage compression and two-stage compression. A two-stage compression operation for performing an expansion refrigeration cycle, and a single-stage compression operation for performing a single-stage compression refrigeration cycle by stopping the second compressor (31) and compressing the refrigerant only by the first compressor (21). It is intended for refrigeration equipment that can be switched. A shut-off mechanism (50) that can be set to a shut-off state that shuts off a suction side of the second compressor (31) from a portion of the refrigerant circuit (15) in which the refrigerant circulates during the single-stage compression operation; At the time of switching from the two-stage compression operation to the single-stage compression operation, the second compressor (31) is operated by setting the shut-off mechanism (50) to the shut-off state and operating the second compressor (31). And a control means (90) for performing a refrigerant discharge operation for discharging the refrigerant from the suction side.

第1の発明では、冷凍装置(10)が二段圧縮動作と単段圧縮動作が切り換え可能に構成される。二段圧縮動作中の冷媒回路(15)では、第1圧縮機(21)と第2圧縮機(31)で冷媒を順に圧縮すると共に、気液分離器(33)の上流と下流のそれぞれにおいて冷媒を二段階に膨張させる二段圧縮二段膨張冷凍サイクルが行われる。一方、単段圧縮動作中の冷媒回路(15)では、第2圧縮機(31)が停止して第1圧縮機(21)だけが運転され、第1圧縮機(21)だけで冷媒を圧縮する単段圧縮冷凍サイクルが行われる。この単段圧縮動作中において、遮断機構(50)は、遮断状態に設定され、冷媒回路(15)のうち上記単段圧縮動作中に冷媒が循環する部分から上記第2圧縮機(31)の吸入側を遮断する。   In the first invention, the refrigeration apparatus (10) is configured to be switchable between a two-stage compression operation and a single-stage compression operation. In the refrigerant circuit (15) during the two-stage compression operation, the first compressor (21) and the second compressor (31) sequentially compress the refrigerant, and at the upstream and downstream of the gas-liquid separator (33), respectively. A two-stage compression and two-stage expansion refrigeration cycle is performed in which the refrigerant is expanded in two stages. On the other hand, in the refrigerant circuit (15) during the single-stage compression operation, the second compressor (31) is stopped and only the first compressor (21) is operated, and the refrigerant is compressed only by the first compressor (21). A single-stage compression refrigeration cycle is performed. During this single-stage compression operation, the shut-off mechanism (50) is set to a shut-off state, and the second compressor (31) is connected to the refrigerant circuit (15) from the portion where the refrigerant circulates during the single-stage compression operation. Shut off the suction side.

この発明において、二段圧縮動作から単段圧縮動作へ切り換わる際には、制御手段(90)によって冷媒排出動作が行われる。冷媒排出動作中には、遮断機構(50)が遮断状態に設定され、上記冷媒回路(15)のうち上記単段圧縮動作中に冷媒が循環する部分から上記第2圧縮機(31)の吸入側が遮断される。冷媒排出動作中には、この状態で第2圧縮機(31)が運転される。第2圧縮機(31)は、その吸入側に残存する冷媒を吸い込んで圧縮し、その吐出側へ圧縮した冷媒を吐出する。従って、冷媒排出動作中には、上記第2圧縮機(31)の吸入側から冷媒が排出されてゆく。   In the present invention, when the two-stage compression operation is switched to the single-stage compression operation, the refrigerant discharge operation is performed by the control means (90). During the refrigerant discharge operation, the shut-off mechanism (50) is set in the shut-off state, and the second compressor (31) is sucked from the portion of the refrigerant circuit (15) where the refrigerant circulates during the single-stage compression operation. The side is blocked. During the refrigerant discharge operation, the second compressor (31) is operated in this state. The second compressor (31) sucks and compresses the refrigerant remaining on the suction side, and discharges the compressed refrigerant to the discharge side. Accordingly, during the refrigerant discharge operation, the refrigerant is discharged from the suction side of the second compressor (31).

第2の発明は、上記第1の発明において、上記気液分離器(33)は、分離されたガス冷媒の流出側が上記第2圧縮機(31)の吸入側と常に連通状態になる一方、上記遮断機構(50)は、その遮断状態において、上記第2圧縮機(31)の吸入側と上記気液分離器(33)の両方を上記冷媒回路(15)のうち上記単段圧縮動作中に冷媒が循環する部分から遮断するように構成されるものである。   In a second aspect based on the first aspect, the gas-liquid separator (33) is such that the outflow side of the separated gas refrigerant is always in communication with the suction side of the second compressor (31), In the shut-off state, the shut-off mechanism (50) performs both the suction side of the second compressor (31) and the gas-liquid separator (33) during the single-stage compression operation in the refrigerant circuit (15). Further, the refrigerant is configured to be blocked from a portion where the refrigerant circulates.

第2の発明において、遮断状態の遮断機構(50)は、第2圧縮機(31)の吸入側と気液分離器(33)の両方を、冷媒回路(15)のうち単段圧縮動作中に冷媒が循環する部分から遮断する。遮断機構(50)が遮断状態になっていても、気液分離器(33)は第2圧縮機(31)の吸入側と連通したままになっている。冷媒排出動作中において、第2圧縮機(31)は、その吸入側だけでなく、気液分離器(33)からもガス冷媒を吸い込む。従って、この発明の冷媒排出動作中には、第2圧縮機(31)によって気液分離器(33)からも残存する冷媒が排出されてゆく。   In the second invention, the shut-off mechanism (50) in the shut-off state is performing a single-stage compression operation in the refrigerant circuit (15) for both the suction side of the second compressor (31) and the gas-liquid separator (33). Shut off from the part where the refrigerant circulates. Even when the shut-off mechanism (50) is in the shut-off state, the gas-liquid separator (33) remains in communication with the suction side of the second compressor (31). During the refrigerant discharge operation, the second compressor (31) sucks the gas refrigerant not only from the suction side but also from the gas-liquid separator (33). Therefore, during the refrigerant discharge operation of the present invention, the remaining refrigerant is discharged from the gas-liquid separator (33) by the second compressor (31).

第3の発明は、上記第1又は第2の発明において、上記制御手段(90)は、冷媒排出動作中における第2圧縮機(31)の吸入圧力が所定値以下になると冷媒排出動作を終了させるように構成されるものである。   According to a third aspect, in the first or second aspect, the control means (90) ends the refrigerant discharge operation when the suction pressure of the second compressor (31) during the refrigerant discharge operation becomes a predetermined value or less. It is comprised so that it may make it.

第3の発明では、制御手段(90)が第2圧縮機(31)の吸入圧力に基づいて冷媒排出動作の終了を判断する。冷媒排出動作中に第2圧縮機(31)の吸入側に残存する冷媒が少なくなってくると、それに伴って第2圧縮機(31)が吸入する冷媒の圧力(即ち、吸入圧力)が次第に低下してゆく。そこで、制御手段(90)は、第2圧縮機(31)の吸入圧力が基準値以下になると、第2圧縮機(31)の吸入側に残存する冷媒の量が充分に少なくなったと判断し、冷媒排出動作を終了させる。   In the third invention, the control means (90) determines the end of the refrigerant discharge operation based on the suction pressure of the second compressor (31). When the refrigerant remaining on the suction side of the second compressor (31) decreases during the refrigerant discharge operation, the pressure of the refrigerant sucked by the second compressor (31) (that is, the suction pressure) gradually increases. It will decline. Therefore, the control means (90) determines that the amount of refrigerant remaining on the suction side of the second compressor (31) has become sufficiently small when the suction pressure of the second compressor (31) is below the reference value. Then, the refrigerant discharge operation is terminated.

第4の発明は、上記第1又は第2の発明において、上記制御手段(90)は、冷媒排出動作中における第2圧縮機(31)の吐出温度が所定値以上になると冷媒排出動作を終了させるように構成されるものである。   In a fourth aspect based on the first or second aspect, the control means (90) ends the refrigerant discharge operation when the discharge temperature of the second compressor (31) during the refrigerant discharge operation becomes equal to or higher than a predetermined value. It is comprised so that it may make it.

第4の発明では、制御手段(90)が第2圧縮機(31)の吐出温度に基づいて冷媒排出動作の終了を判断する。ここで、冷媒排出動作中に第2圧縮機(31)の吸入側に残存する冷媒が少なくなってくると、第2圧縮機(31)が吸入する冷媒の圧力(即ち、吸入圧力)が次第に低下してゆき、それに伴って第2圧縮機(31)が吸入する冷媒の密度が小さくなるため、単位時間あたりに第2圧縮機(31)を通過する冷媒の質量も少なくなってゆく。そして、単位時間あたりに第2圧縮機(31)の圧縮過程において冷媒に加えられる熱量はほぼ同じであるため、第2圧縮機(31)を通過する冷媒の質量流量が少なくなると、それに伴って第2圧縮機(31)の圧縮過程における冷媒の温度上昇幅が大きくなり、その結果、第2圧縮機(31)が吐出する冷媒の温度(即ち、吐出温度)が上昇してゆく。そこで、制御手段(90)は、第2圧縮機(31)の吐出温度が基準値以上になると、第2圧縮機(31)の吸入側に残存する冷媒の量が充分に少なくなったと判断し、冷媒排出動作を終了させる。   In the fourth invention, the control means (90) determines the end of the refrigerant discharge operation based on the discharge temperature of the second compressor (31). Here, when the refrigerant remaining on the suction side of the second compressor (31) decreases during the refrigerant discharge operation, the pressure of the refrigerant sucked by the second compressor (31) (that is, the suction pressure) gradually increases. Accordingly, the density of the refrigerant sucked by the second compressor (31) decreases accordingly, and the mass of the refrigerant passing through the second compressor (31) per unit time also decreases. And since the amount of heat applied to the refrigerant in the compression process of the second compressor (31) per unit time is substantially the same, when the mass flow rate of the refrigerant passing through the second compressor (31) decreases, along with that, The temperature rise of the refrigerant in the compression process of the second compressor (31) increases, and as a result, the temperature of the refrigerant discharged from the second compressor (31) (that is, the discharge temperature) increases. Therefore, the control means (90) determines that the amount of refrigerant remaining on the suction side of the second compressor (31) has become sufficiently small when the discharge temperature of the second compressor (31) becomes equal to or higher than the reference value. Then, the refrigerant discharge operation is terminated.

本発明では、二段圧縮動作の終了後に冷媒排出動作を行うことで、第2圧縮機(31)の吸入側から残存する冷媒を排出している。このため、単段圧縮動作が行われていて第2圧縮機(31)が停止している間も、第2圧縮機(31)内の冷凍機油に多量の冷媒が溶解してしまうのを防止できる。従って、本発明によれば、第2圧縮機(31)を起動して二段圧縮動作を再開した時に第2圧縮機(31)内でフォーミング現象が生じるのを防止でき、フォーミング現象による潤滑不良に起因した焼き付き等のトラブルを未然に防止することができる。   In the present invention, the remaining refrigerant is discharged from the suction side of the second compressor (31) by performing the refrigerant discharge operation after the end of the two-stage compression operation. For this reason, a large amount of refrigerant is prevented from being dissolved in the refrigerating machine oil in the second compressor (31) even when the single compressor operation is performed and the second compressor (31) is stopped. it can. Therefore, according to the present invention, when the second compressor (31) is started and the two-stage compression operation is resumed, it is possible to prevent the forming phenomenon from occurring in the second compressor (31), and the poor lubrication due to the forming phenomenon. Troubles such as burn-in caused by the above can be prevented in advance.

また、上記第2の発明では、第2圧縮機(31)の吸入側と常に連通している気液分離器(33)に溜まり込んだ冷媒も、冷媒排出動作を行うことによって気液分離器(33)から排出できる。従って、停止中の第2圧縮機(31)に気液分離器(33)内の冷媒が侵入するのを防止でき、その後に第2圧縮機(31)を起動する際にフォーミング現象が発生するのを確実に防止できる。   In the second aspect of the invention, the refrigerant that has accumulated in the gas-liquid separator (33) that is always in communication with the suction side of the second compressor (31) is also subjected to the refrigerant discharge operation to perform the gas-liquid separator. It can be discharged from (33). Accordingly, the refrigerant in the gas-liquid separator (33) can be prevented from entering the stopped second compressor (31), and a forming phenomenon occurs when the second compressor (31) is started thereafter. Can be surely prevented.

また、上記第3,第4の発明によれば、第2圧縮機(31)の吸入圧力や吐出温度を監視することで、第2圧縮機(31)の吸入側に残存する冷媒が充分に削減されたことを確実に判断することができる。   According to the third and fourth aspects of the present invention, the refrigerant remaining on the suction side of the second compressor (31) is sufficiently monitored by monitoring the suction pressure and discharge temperature of the second compressor (31). It is possible to reliably determine that the amount has been reduced.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の冷凍装置は、冷房運転と暖房運転とが可能なヒートポンプ式の空気調和装置(10)を構成している。   The refrigeration apparatus of the present embodiment constitutes a heat pump type air conditioner (10) capable of cooling operation and heating operation.

図1に示すように、この空気調和装置(10)は、室外に設置される室外ユニット(20)と、増設用のユニットを構成するオプションユニット(30)と、室内に設置される室内ユニット(40)とを備えている。上記室外ユニット(20)は、第1連絡配管(11)及び第2連絡配管(12)を介してオプションユニット(30)と接続している。また、室内ユニット(40)は、第3連絡配管(13)及び第4連絡配管(14)を介してオプションユニット(30)と接続している。その結果、この空気調和装置(10)では、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる冷媒回路(15)が構成されている。   As shown in FIG. 1, this air conditioner (10) includes an outdoor unit (20) installed outside, an optional unit (30) constituting an expansion unit, and an indoor unit ( 40) and. The outdoor unit (20) is connected to the option unit (30) via the first connection pipe (11) and the second connection pipe (12). The indoor unit (40) is connected to the option unit (30) via the third connection pipe (13) and the fourth connection pipe (14). As a result, in this air conditioner (10), a refrigerant circuit (15) is configured in which a refrigerant circulates and a vapor compression refrigeration cycle is performed.

なお、オプションユニット(30)は、既設のセパレート型の空気調和装置にも適用可能なパワーアップユニットを構成している。例えば、既設の空気調和装置が室外ユニット(20)と室内ユニット(40)とから成る冷媒回路で単段圧縮冷凍サイクルが行うものであっても、これら室外ユニット(20)及び室内ユニット(40)の間にオプションユニット(30)を接続することにより、この空気調和装置(10)の冷媒回路(15)で二段圧縮二段膨張冷凍サイクルが可能となる。   The option unit (30) constitutes a power-up unit that can be applied to an existing separate type air conditioner. For example, even if an existing air conditioner performs a single-stage compression refrigeration cycle with a refrigerant circuit composed of an outdoor unit (20) and an indoor unit (40), these outdoor unit (20) and indoor unit (40) By connecting the optional unit (30) between the two, a two-stage compression and two-stage expansion refrigeration cycle is possible in the refrigerant circuit (15) of the air conditioner (10).

〈室外ユニット〉
上記室外ユニット(20)には、第1圧縮機である低段側圧縮機(21)と、熱源側熱交換器である室外熱交換器(22)と、室外側膨張弁(25)と、四路切換弁(23)とが設けられている。
<Outdoor unit>
The outdoor unit (20) includes a low stage compressor (21) as a first compressor, an outdoor heat exchanger (22) as a heat source side heat exchanger, an outdoor expansion valve (25), A four-way switching valve (23) is provided.

上記低段側圧縮機(21)は、全密閉型のスクロール圧縮機で構成されている。上記室外熱交換器(22)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器で構成されている。図示しないが、室外熱交換器(22)の近傍には、室外ファンが設置されている。室外ファンは、室外熱交換器(22)へ室外空気を送風する。上記室外側膨張弁(25)は、開度可変の電子膨張弁で構成されている。   The low-stage compressor (21) is a hermetic scroll compressor. The outdoor heat exchanger (22) is a so-called cross fin type fin-and-tube heat exchanger. Although not shown, an outdoor fan is installed in the vicinity of the outdoor heat exchanger (22). The outdoor fan blows outdoor air to the outdoor heat exchanger (22). The outdoor expansion valve (25) is an electronic expansion valve having a variable opening.

上記四路切換弁(23)には、4つのポートが設けられている。四路切換弁(23)では、第1ポートが低段側圧縮機(21)の吐出管(21a)に、第2ポートが低段側圧縮機(21)の吸入管(21b)にそれぞれ接続されている。また、四路切換弁(23)では、第3ポートが室外熱交換器(22)及び室外側膨張弁(25)を介して第2連絡配管(12)に、第4ポートが第1連絡配管(11)にそれぞれ接続されている。この四路切換弁(23)は、第1ポートと第3ポートが連通して第2ポートと第4ポートが連通する第1状態(図1に実線で示す状態)と、第1ポートと第4ポートが連通して第2ポートと第3ポートが連通する第2状態(図1に破線で示す状態)とに切り換え可能となっている。   The four-way selector valve (23) is provided with four ports. In the four-way selector valve (23), the first port is connected to the discharge pipe (21a) of the low-stage compressor (21), and the second port is connected to the suction pipe (21b) of the low-stage compressor (21). Has been. In the four-way switching valve (23), the third port is connected to the second connection pipe (12) via the outdoor heat exchanger (22) and the outdoor expansion valve (25), and the fourth port is the first connection pipe. (11) is connected to each. The four-way switching valve (23) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, It is possible to switch to a second state (state indicated by a broken line in FIG. 1) in which four ports communicate and the second port and third port communicate.

〈オプションユニット〉
上記オプションユニット(30)には、第2圧縮機である高段側圧縮機(31)と、三方弁(32)と、気液分離器(33)と、オプション側膨張弁(34)とが設けられている。上記高段側圧縮機(31)は、全密閉型のスクロール圧縮機で構成されている。
<Option unit>
The optional unit (30) includes a high-stage compressor (31) as a second compressor, a three-way valve (32), a gas-liquid separator (33), and an optional expansion valve (34). Is provided. The high-stage compressor (31) is a fully-enclosed scroll compressor.

更に、上記オプションユニット(30)には、主配管(35)が設けられている。この主配管(35)は、その一端が第2連絡配管(12)に、他端が第4連絡配管(14)にそれぞれ接続されている。主配管(35)には、電磁弁(SV)が設けられている。   Furthermore, the optional unit (30) is provided with a main pipe (35). The main pipe (35) has one end connected to the second connecting pipe (12) and the other end connected to the fourth connecting pipe (14). The main pipe (35) is provided with a solenoid valve (SV).

上記気液分離器(33)は、気液二相状態の冷媒を液冷媒とガス冷媒とに分離するものである。具体的に、気液分離器(33)は、縦長の円筒状に形成された密閉容器で構成されている。気液分離器(33)には、液流入管(33a)と液流出管(33b)が接続されている。液流入管(33a)と液流出管(33b)は、共に気液分離器(33)の胴部を貫通している。気液分離器(33)の内部空間では、その上部に液流入管(33a)の一端が、その下部に液流出管(33b)の一端がそれぞれ開口している。また、気液分離器(33)には、ガス流出管(33c)が接続されている。ガス流出管(33c)は、気液分離器(33)の頂部を貫通しており、その一端が気液分離器(33)の内部の上端付近に開口している。   The gas-liquid separator (33) separates the gas-liquid two-phase refrigerant into a liquid refrigerant and a gas refrigerant. Specifically, the gas-liquid separator (33) is composed of a sealed container formed in a vertically long cylindrical shape. A liquid inflow pipe (33a) and a liquid outflow pipe (33b) are connected to the gas-liquid separator (33). Both the liquid inflow pipe (33a) and the liquid outflow pipe (33b) pass through the body of the gas-liquid separator (33). In the internal space of the gas-liquid separator (33), one end of the liquid inflow pipe (33a) is opened in the upper part, and one end of the liquid outflow pipe (33b) is opened in the lower part. In addition, a gas outflow pipe (33c) is connected to the gas-liquid separator (33). The gas outflow pipe (33c) passes through the top of the gas-liquid separator (33), and one end thereof opens near the upper end inside the gas-liquid separator (33).

上記液流入管(33a)の他端と液流出管(33b)の他端は、それぞれ主配管(35)に接続されている。主配管(35)では、電磁弁(SV)よりも第4連絡配管(14)側の部分に液流入管(33a)が、電磁弁(SV)よりも第2連絡配管(12)側の部分に液流出管(33b)がそれぞれ接続されている。また、ガス流出管(33c)の他端は、高段側圧縮機(31)の吸入管(31b)に接続されている。つまり、気液分離器(33)からガス冷媒を導出するためのガス流出管(33c)は、吸入管(31b)を介して高段側圧縮機(31)の吸入側と常に連通した状態になっている。   The other end of the liquid inflow pipe (33a) and the other end of the liquid outflow pipe (33b) are connected to the main pipe (35), respectively. In the main pipe (35), the liquid inflow pipe (33a) is located on the fourth communication pipe (14) side of the solenoid valve (SV), and the second communication pipe (12) side of the solenoid valve (SV). A liquid outflow pipe (33b) is connected to each. The other end of the gas outflow pipe (33c) is connected to the suction pipe (31b) of the high-stage compressor (31). That is, the gas outflow pipe (33c) for deriving the gas refrigerant from the gas-liquid separator (33) is always in communication with the suction side of the high stage compressor (31) via the suction pipe (31b). It has become.

上記液流入管(33a)には、上記オプション側膨張弁(34)が配置されている。このオプション側膨張弁(34)は、開度可変の電子膨張弁で構成されている。一方、液流出管(33b)には、第1逆止弁(CV-1)が設けられている。この第1逆止弁(CV-1)は、気液分離器(33)から主配管(35)へ向かう方向の冷媒流通だけを許容する。   The option side expansion valve (34) is disposed in the liquid inflow pipe (33a). The option side expansion valve (34) is an electronic expansion valve with a variable opening. On the other hand, the liquid outflow pipe (33b) is provided with a first check valve (CV-1). This first check valve (CV-1) allows only the refrigerant flow in the direction from the gas-liquid separator (33) to the main pipe (35).

上記三方弁(32)には、3つのポートが設けられている。三方弁(32)では、第1ポートが第3連絡配管(13)に、第2ポートが高段側圧縮機(31)の吸入管(31b)に、第3ポートが第1連絡配管(11)にそれぞれ接続されている。この三方弁(32)は、第3ポートが第1ポートと連通して第2ポートから遮断される第1状態(図1に実線で示す状態)と、第3ポートが第2ポートと連通して第1ポートから遮断される第2状態(図1に破線で示す状態)とに切り換え可能となっている。   The three-way valve (32) is provided with three ports. In the three-way valve (32), the first port is connected to the third connecting pipe (13), the second port is connected to the suction pipe (31b) of the high stage compressor (31), and the third port is connected to the first connecting pipe (11). ) Is connected to each. The three-way valve (32) has a first state (state indicated by a solid line in FIG. 1) in which the third port communicates with the first port and is blocked from the second port, and the third port communicates with the second port. Thus, it is possible to switch to a second state (state indicated by a broken line in FIG. 1) that is blocked from the first port.

上記高段側圧縮機(31)の吐出管(31a)は、三方弁(32)の第1ポートと第3連絡配管(13)を繋ぐ配管に接続されている。この吐出管(31a)には、第2逆止弁(CV-2)が設けられている。第2逆止弁(CV-2)は高段側圧縮機(31)から吐出される方向の冷媒流通だけを許容する。   The discharge pipe (31a) of the high-stage compressor (31) is connected to a pipe connecting the first port of the three-way valve (32) and the third connection pipe (13). The discharge pipe (31a) is provided with a second check valve (CV-2). The second check valve (CV-2) allows only the refrigerant flow in the direction discharged from the high stage compressor (31).

上記オプションユニット(30)において、三方弁(32)と電磁弁(SV)とオプション側膨張弁(34)と第1逆止弁(CV-1)とは、二段圧縮動作と単段圧縮動作が相互に切り換わるように冷媒回路(15)での冷媒の循環経路を切り換える切換機構を構成している。また、三方弁(32)とオプション側膨張弁(34)と第1逆止弁(CV-1)とは、冷媒回路(15)のうち単段圧縮動作中に冷媒が流れる部分から高段側圧縮機(31)の吸入側と気液分離器(33)とを遮断する遮断機構(50)を構成している。なお、二段圧縮動作と単段圧縮動作については後述する。   In the option unit (30) above, the three-way valve (32), solenoid valve (SV), option side expansion valve (34), and first check valve (CV-1) have two-stage compression operation and single-stage compression operation. The switching mechanism is configured to switch the refrigerant circulation path in the refrigerant circuit (15) so as to switch to each other. In addition, the three-way valve (32), the option side expansion valve (34), and the first check valve (CV-1) are located on the higher stage side from the part of the refrigerant circuit (15) where the refrigerant flows during the single stage compression operation. A shut-off mechanism (50) that shuts off the suction side of the compressor (31) and the gas-liquid separator (33) is configured. The two-stage compression operation and the single-stage compression operation will be described later.

〈室内ユニット〉
室内ユニット(40)には、利用側熱交換器である室内熱交換器(41)と、室内側膨張弁(42)とが設けられている。室内熱交換器(41)は、クロスフィン型のフィン・アンド・チューブ熱交換器で構成されている。図示しないが、室内熱交換器(41)の近傍には、室内ファンが設置されている。室内ファンは、室内熱交換器(41)へ室内空気を送風する。上記室内側膨張弁(42)は、開度可変の電子膨張弁で構成されている。
<Indoor unit>
The indoor unit (40) is provided with an indoor heat exchanger (41) that is a use side heat exchanger and an indoor side expansion valve (42). The indoor heat exchanger (41) is a cross-fin type fin-and-tube heat exchanger. Although not shown, an indoor fan is installed in the vicinity of the indoor heat exchanger (41). The indoor fan blows indoor air to the indoor heat exchanger (41). The indoor expansion valve (42) is an electronic expansion valve having a variable opening.

〈コントローラ〉
本実施形態の空気調和装置(10)は、コントローラ(70)を備えている。このコントローラ(70)は、二段圧縮動作から単段圧縮動作へ切り換わる際に所定の冷媒排出動作を行う制御手段を構成している。
<controller>
The air conditioner (10) of the present embodiment includes a controller (70). The controller (70) constitutes control means for performing a predetermined refrigerant discharge operation when switching from the two-stage compression operation to the single-stage compression operation.

上記コントローラ(70)には、高段側圧縮機(31)の吸入圧力の実測値が入力されている。そして、コントローラ(70)は、冷媒排出動作中に高段側圧縮機(31)の吸入圧力が所定の基準値以下になると、冷媒排出動作を終了させるように構成されている。なお、コントローラ(70)が行う動作の詳細については後述する。   The controller (70) receives an actual value of the suction pressure of the high stage compressor (31). The controller (70) is configured to end the refrigerant discharge operation when the suction pressure of the high-stage compressor (31) falls below a predetermined reference value during the refrigerant discharge operation. Details of the operation performed by the controller (70) will be described later.

−運転動作−
上記空気調和装置(10)の運転動作について説明する。
-Driving action-
The operation of the air conditioner (10) will be described.

〈冷房運転〉
冷房運転中の動作について、図2を参照しながら説明する。
<Cooling operation>
The operation during the cooling operation will be described with reference to FIG.

冷房運転中には、単段圧縮動作が行われる。この冷房運転では、四路切換弁(23)と三方弁(32)がそれぞれ第1状態に設定され、電磁弁(SV)が開かれる。また、室外側膨張弁(25)全開状態に、オプション側膨張弁(34)が全閉状態にそれぞれ設定される一方、室内側膨張弁(42)の開度が運転条件に応じて適宜調節される。更に、この冷房運転では、低段側圧縮機(21)だけが運転され、高段側圧縮機(31)は停止状態となる。そして、冷媒回路(15)では、低段側圧縮機(21)だけで冷媒を圧縮する単段圧縮冷凍サイクルが行われる。   A single-stage compression operation is performed during the cooling operation. In this cooling operation, the four-way switching valve (23) and the three-way valve (32) are set to the first state, and the electromagnetic valve (SV) is opened. In addition, the outdoor expansion valve (25) is set to the fully open state, and the option side expansion valve (34) is set to the fully closed state, while the opening of the indoor side expansion valve (42) is appropriately adjusted according to the operating conditions. The Furthermore, in this cooling operation, only the low-stage compressor (21) is operated, and the high-stage compressor (31) is stopped. And in a refrigerant circuit (15), the single stage compression refrigeration cycle which compresses a refrigerant only with a low stage side compressor (21) is performed.

低段側圧縮機(21)から吐出された冷媒は、室外熱交換器(22)へ送られ、室外空気へ放熱して凝縮する。室外熱交換器(22)で凝縮した冷媒は、オプションユニット(30)の主配管(35)を通って室内ユニット(40)へ送られる。室内ユニット(40)に流入した冷媒は、室内側膨張弁(42)を通過する際に低圧まで減圧される。減圧後の低圧冷媒は、室内熱交換器(41)へ送られ、室内空気から吸熱して蒸発する。室内熱交換器(41)では室内空気が冷却され、冷却された室内空気が室内へ送り返される。室内熱交換器(41)で蒸発した冷媒は、オプションユニット(30)の三方弁(32)を通過して室外ユニット(20)へ送られ、低段側圧縮機(21)へ吸入されて圧縮される。   The refrigerant discharged from the low-stage compressor (21) is sent to the outdoor heat exchanger (22) where it dissipates heat to the outdoor air and condenses. The refrigerant condensed in the outdoor heat exchanger (22) is sent to the indoor unit (40) through the main pipe (35) of the option unit (30). The refrigerant flowing into the indoor unit (40) is decompressed to a low pressure when passing through the indoor expansion valve (42). The decompressed low-pressure refrigerant is sent to the indoor heat exchanger (41), and absorbs heat from the indoor air to evaporate. In the indoor heat exchanger (41), the room air is cooled, and the cooled room air is sent back into the room. The refrigerant evaporated in the indoor heat exchanger (41) passes through the three-way valve (32) of the optional unit (30), is sent to the outdoor unit (20), and is sucked into the low-stage compressor (21) for compression. Is done.

〈第1暖房運転〉
第1暖房運転中の動作について、図3を参照しながら説明する。
<First heating operation>
The operation during the first heating operation will be described with reference to FIG.

第1暖房運転中には、単段圧縮動作が行われる。この第1暖房運転では、四路切換弁(23)が第2状態に、三方弁(32)が第1状態にそれぞれ設定され、電磁弁(SV)が開かれる。また、室内側膨張弁(42)が全開状態に、オプション側膨張弁(34)が全閉状態にそれぞれ設定される一方、室外側膨張弁(25)の開度が運転条件に応じて適宜調節される。更に、この第1暖房運転では、低段側圧縮機(21)だけが運転され、高段側圧縮機(31)は停止状態となる。そして、冷媒回路(15)では、低段側圧縮機(21)だけで冷媒を圧縮する単段圧縮冷凍サイクルが行われる。   During the first heating operation, a single-stage compression operation is performed. In the first heating operation, the four-way switching valve (23) is set to the second state, the three-way valve (32) is set to the first state, and the electromagnetic valve (SV) is opened. In addition, the indoor expansion valve (42) is set to the fully open state and the option side expansion valve (34) is set to the fully closed state, while the opening of the outdoor expansion valve (25) is appropriately adjusted according to the operating conditions. Is done. Further, in the first heating operation, only the low stage compressor (21) is operated, and the high stage compressor (31) is stopped. And in a refrigerant circuit (15), the single stage compression refrigeration cycle which compresses a refrigerant only with a low stage side compressor (21) is performed.

低段側圧縮機(21)から吐出された冷媒は、オプションユニット(30)の三方弁(32)を通過して室内ユニット(40)へ送られる。室内ユニット(40)に流入した冷媒は、室内熱交換器(41)で室内空気へ放熱して凝縮する。室内熱交換器(41)では室内空気が加熱され、加熱された室内空気が室内へ送り返される。室内熱交換器(41)で凝縮した冷媒は、オプションユニット(30)の主配管(35)を通って室外ユニット(20)へ送られる。室外ユニット(20)に流入した冷媒は、室外側膨張弁(25)を通過する際に減圧され、その後に室外熱交換器(22)で室外空気から吸熱して蒸発する。室外熱交換器(22)で蒸発した冷媒は、低段側圧縮機(21)へ吸入されて圧縮される。   The refrigerant discharged from the low-stage compressor (21) passes through the three-way valve (32) of the option unit (30) and is sent to the indoor unit (40). The refrigerant flowing into the indoor unit (40) dissipates heat to the indoor air and condenses in the indoor heat exchanger (41). In the indoor heat exchanger (41), the room air is heated, and the heated room air is sent back into the room. The refrigerant condensed in the indoor heat exchanger (41) is sent to the outdoor unit (20) through the main pipe (35) of the option unit (30). The refrigerant flowing into the outdoor unit (20) is depressurized when passing through the outdoor expansion valve (25), and then absorbs heat from the outdoor air and evaporates in the outdoor heat exchanger (22). The refrigerant evaporated in the outdoor heat exchanger (22) is sucked into the low stage compressor (21) and compressed.

〈第2暖房運転〉
第2暖房運転中の動作について、図4を参照しながら説明する。
<Second heating operation>
The operation during the second heating operation will be described with reference to FIG.

第2暖房運転中には、二段圧縮動作が行われる。この第2暖房運転では、四路切換弁(23)及び三方弁(32)が第2状態に設定され、電磁弁(SV)が閉じられる。また、室内側膨張弁(42)が全開状態に設定され、オプション側膨張弁(34)及び室外側膨張弁(25)の開度が運転条件に応じて適宜調節される。更に、この第2暖房運転では、低段側圧縮機(21)と高段側圧縮機(31)の両方が運転される。そして、冷媒回路(15)では、低段側圧縮機(21)と高段側圧縮機(31)で冷媒を順次圧縮すると共に、オプション側膨張弁(34)と室外側膨張弁(25)で冷媒を順次膨張させる二段圧縮二段膨張冷凍サイクルが行われる。   During the second heating operation, a two-stage compression operation is performed. In the second heating operation, the four-way switching valve (23) and the three-way valve (32) are set to the second state, and the electromagnetic valve (SV) is closed. Further, the indoor side expansion valve (42) is set to a fully open state, and the opening degrees of the option side expansion valve (34) and the outdoor side expansion valve (25) are appropriately adjusted according to the operating conditions. Further, in the second heating operation, both the low stage compressor (21) and the high stage compressor (31) are operated. In the refrigerant circuit (15), the low-stage compressor (21) and the high-stage compressor (31) sequentially compress the refrigerant, and the option-side expansion valve (34) and the outdoor expansion valve (25). A two-stage compression and two-stage expansion refrigeration cycle for sequentially expanding the refrigerant is performed.

低段側圧縮機(21)から吐出された中間圧冷媒は、オプションユニット(30)の三方弁(32)と吸入管(33b)を順に通って高段側圧縮機(31)へ吸入される。また、気液分離器(33)の中間圧のガス冷媒も、ガス流出管(33c)と吸入管(33b)を順に通って高段側圧縮機(31)へ吸入される。高段側圧縮機(31)から吐出された高圧冷媒は、吐出管(31a)を通って室内ユニット(40)へ送られる。室内ユニット(40)に流入した高圧冷媒は、室内熱交換器(41)で室内空気へ放熱して凝縮する。室内熱交換器(41)では室内空気が加熱され、加熱された室内空気が室内へ送り返される。   The intermediate-pressure refrigerant discharged from the low-stage compressor (21) is sucked into the high-stage compressor (31) through the three-way valve (32) and the suction pipe (33b) of the option unit (30) in this order. . The intermediate-pressure gas refrigerant in the gas-liquid separator (33) is also drawn into the high-stage compressor (31) through the gas outlet pipe (33c) and the suction pipe (33b) in this order. The high-pressure refrigerant discharged from the high stage compressor (31) is sent to the indoor unit (40) through the discharge pipe (31a). The high-pressure refrigerant flowing into the indoor unit (40) dissipates heat to the indoor air and condenses in the indoor heat exchanger (41). In the indoor heat exchanger (41), the room air is heated, and the heated room air is sent back into the room.

室内熱交換器(41)で凝縮した冷媒は、オプションユニット(30)の液流入管(33a)へ流入し、オプション側膨張弁(34)で減圧されて中間圧となってから気液分離器(33)へ流入する。気液分離器(33)では、気液二相状態の中間圧冷媒がガス冷媒と液冷媒とに分離される。上述したように、気液分離器(33)で分離された飽和状態のガス冷媒は、高段側圧縮機(31)の吸入側へ送られる。一方、気液分離器(33)で分離された飽和状態の液冷媒は、液流出管(33b)を通って室外ユニット(20)へ送られる。室外ユニット(20)へ流入した中間圧の液冷媒は、室外側膨張弁(25)を通過するに減圧され、その後に室外熱交換器(22)で室外空気から吸熱して蒸発する。室外熱交換器(22)で蒸発した冷媒は、低段側圧縮機(21)に吸入されて圧縮される。   The refrigerant condensed in the indoor heat exchanger (41) flows into the liquid inflow pipe (33a) of the option unit (30) and is reduced in pressure by the option side expansion valve (34) to become an intermediate pressure. Flows into (33). In the gas-liquid separator (33), the gas-liquid two-phase intermediate pressure refrigerant is separated into a gas refrigerant and a liquid refrigerant. As described above, the saturated gas refrigerant separated by the gas-liquid separator (33) is sent to the suction side of the high stage compressor (31). On the other hand, the saturated liquid refrigerant separated by the gas-liquid separator (33) is sent to the outdoor unit (20) through the liquid outflow pipe (33b). The intermediate-pressure liquid refrigerant that has flowed into the outdoor unit (20) is depressurized to pass through the outdoor expansion valve (25), and then absorbs heat from the outdoor air and evaporates in the outdoor heat exchanger (22). The refrigerant evaporated in the outdoor heat exchanger (22) is sucked into the low stage compressor (21) and compressed.

〈冷媒排出動作〉
上述したように、二段圧縮動作から単段圧縮動作へ切り換わる際には、コントローラ(70)によって冷媒排出動作が行われる。具体的に、この冷媒排出動作は、第2暖房運転から冷房運転や第1暖房運転への切り換え時に行われる。つまり、第2暖房運転から冷房運転や第1暖房運転へ切り換わる際には、第2暖房運転を一旦終了させてから冷媒排出動作が行われ、その後に冷房運転や第1暖房運転が開始される。
<Refrigerant discharge operation>
As described above, when the two-stage compression operation is switched to the single-stage compression operation, the refrigerant discharge operation is performed by the controller (70). Specifically, the refrigerant discharge operation is performed when switching from the second heating operation to the cooling operation or the first heating operation. That is, when the second heating operation is switched to the cooling operation or the first heating operation, the second heating operation is temporarily ended and then the refrigerant discharge operation is performed, and then the cooling operation and the first heating operation are started. The

冷媒排出動作中において、コントローラ(70)は、三方弁(32)を第1状態に設定すると共にオプション側膨張弁(34)を全閉し、低段側圧縮機(21)を停止させて高段側圧縮機(31)だけを運転する。高段側圧縮機(31)の運転中は、第1逆止弁(CV-1)の高段側圧縮機(31)寄りが低圧となる。このため、第1逆止弁(CV-1)は、閉状態となる。   During the refrigerant discharge operation, the controller (70) sets the three-way valve (32) to the first state, fully closes the option side expansion valve (34), and stops the low stage compressor (21) to increase the high pressure. Operate only the stage side compressor (31). During operation of the high-stage compressor (31), the first check valve (CV-1) close to the high-stage compressor (31) has a low pressure. For this reason, the first check valve (CV-1) is closed.

冷媒排出動作中において、高段側圧縮機(31)の吸入側と気液分離器(33)は、三方弁(32)とオプション側膨張弁(34)と第1逆止弁(CV-1)とによって、冷媒回路(15)のうち単段圧縮動作中に冷媒が流れる部分から遮断されている。この状態で高段側圧縮機(31)を運転すると、高段側圧縮機(31)は、その吸入管(31b)内に残存するガス冷媒や気液分離器(33)内のガス冷媒を吸入し、吸入したガス冷媒を圧縮して吐出管(31a)へ吐出する。高段側圧縮機(31)から吐出管(31a)へ吐出された冷媒は、第2逆止弁(CV-2)を通過し、冷媒回路(15)のうち単段圧縮動作中に冷媒が流れる部分へ送り出されてゆく。   During the refrigerant discharge operation, the suction side of the high-stage compressor (31) and the gas-liquid separator (33) include the three-way valve (32), the option side expansion valve (34), and the first check valve (CV-1 ) Is blocked from the portion of the refrigerant circuit (15) through which the refrigerant flows during the single-stage compression operation. When the high-stage compressor (31) is operated in this state, the high-stage compressor (31) removes the gas refrigerant remaining in the suction pipe (31b) and the gas refrigerant in the gas-liquid separator (33). Inhaled, the sucked gas refrigerant is compressed and discharged to the discharge pipe (31a). The refrigerant discharged from the high-stage compressor (31) to the discharge pipe (31a) passes through the second check valve (CV-2), and the refrigerant is discharged during the single-stage compression operation in the refrigerant circuit (15). It is sent out to the flowing part.

気液分離器(33)からガス冷媒が高段側圧縮機(31)によって吸い出されると、気液分離器(33)の内圧が次第に低下し、気液分離器(33)内の液冷媒が蒸発してゆく。また、気液分離器(33)内の液冷媒の量が減少してくると、更には液流入管(33a)や液流出管(33b)に残存する液冷媒が気液分離器(33)内へ流入する。このように、冷媒排出動作中には、高段側圧縮機(31)の吸入側や気液分離器(33)などに残留する冷媒が、冷媒回路(15)のうち単段圧縮動作中に冷媒が流れる部分へと排出されてゆく。   When gas refrigerant is sucked out of the gas-liquid separator (33) by the high-stage compressor (31), the internal pressure of the gas-liquid separator (33) gradually decreases, and the liquid refrigerant in the gas-liquid separator (33) Evaporates. When the amount of the liquid refrigerant in the gas-liquid separator (33) decreases, the liquid refrigerant remaining in the liquid inflow pipe (33a) and the liquid outflow pipe (33b) further flows into the gas-liquid separator (33). Flows in. As described above, during the refrigerant discharge operation, the refrigerant remaining on the suction side of the high-stage compressor (31), the gas-liquid separator (33), and the like is transferred during the single-stage compression operation in the refrigerant circuit (15). It is discharged to the part where the refrigerant flows.

冷媒排出動作中において、高段側圧縮機(31)の吸入側や気液分離器(33)などに残留する冷媒が減少してくると、高段側圧縮機(31)が吸入する冷媒の圧力(即ち、吸入圧力)が次第に低下してくる。そして、コントローラ(70)は、高段側圧縮機(31)の吸入圧力が所定の基準値(例えば0.2MPa)以下になると、高段側圧縮機(31)の吸入側や気液分離器(33)などに残留する冷媒の量が充分に少なくなったと判断し、高段側圧縮機(31)を停止させて冷媒排出動作を終了する。   During the refrigerant discharge operation, if the refrigerant remaining on the suction side of the high-stage compressor (31) or the gas-liquid separator (33) decreases, the refrigerant sucked by the high-stage compressor (31) The pressure (that is, the suction pressure) gradually decreases. Then, when the suction pressure of the high stage compressor (31) falls below a predetermined reference value (for example, 0.2 MPa), the controller (70) is configured such that the suction side and the gas-liquid separator of the high stage compressor (31). It is determined that the amount of refrigerant remaining in (33) or the like has sufficiently decreased, and the high-stage compressor (31) is stopped to end the refrigerant discharge operation.

−実施形態の効果−
本実施形態では、二段圧縮動作の終了後に冷媒排出動作を行うことで、高段側圧縮機(31)の吸入側から残存する冷媒を排出している。このため、単段圧縮動作中に高段側圧縮機(31)が停止している間も、高段側圧縮機(31)内の冷凍機油に多量の冷媒が溶解してしまうのを防止できる。従って、本実施形態によれば、高段側圧縮機(31)を起動して二段圧縮動作を再開した時に高段側圧縮機(31)内でフォーミング現象が生じるのを防止でき、フォーミング現象による潤滑不良に起因した焼き付き等のトラブルを未然に防止することができる。
-Effect of the embodiment-
In the present embodiment, the refrigerant discharge operation is performed after the end of the two-stage compression operation, whereby the remaining refrigerant is discharged from the suction side of the high-stage compressor (31). For this reason, it is possible to prevent a large amount of refrigerant from being dissolved in the refrigerating machine oil in the high-stage compressor (31) while the high-stage compressor (31) is stopped during the single-stage compression operation. . Therefore, according to this embodiment, when the high-stage compressor (31) is started and the two-stage compression operation is restarted, it is possible to prevent the forming phenomenon from occurring in the high-stage compressor (31), and the forming phenomenon It is possible to prevent troubles such as seizure due to poor lubrication.

また、本実施形態は、高段側圧縮機(31)の吸入側と常に連通している気液分離器(33)に溜まり込んだ冷媒も、冷媒排出動作を行うことによって気液分離器(33)から排出できる。従って、停止中の高段側圧縮機(31)に気液分離器(33)内の冷媒が侵入するのを防止でき、その後に高段側圧縮機(31)を起動する際にフォーミング現象が発生するのを確実に防止できる。   In addition, in the present embodiment, the refrigerant accumulated in the gas-liquid separator (33) that is always in communication with the suction side of the high-stage compressor (31) is also subjected to the refrigerant discharge operation, so that the gas-liquid separator ( 33) can be discharged. Therefore, the refrigerant in the gas-liquid separator (33) can be prevented from entering the stopped high stage compressor (31), and the forming phenomenon occurs when the high stage compressor (31) is started after that. It can be surely prevented from occurring.

また、本実施形態によれば、高段側圧縮機(31)の吸入圧力を監視することで、高段側圧縮機(31)の吸入側に残存する冷媒が充分に削減されたことを確実に判断することができ、適切なタイミングで冷媒排出動作を終了させることができるる。   Further, according to the present embodiment, it is ensured that the refrigerant remaining on the suction side of the high stage compressor (31) has been sufficiently reduced by monitoring the suction pressure of the high stage compressor (31). The refrigerant discharge operation can be terminated at an appropriate timing.

−実施形態の変形例1−
本実施形態において、コントローラ(70)は、高段側圧縮機(31)が吐出した冷媒の温度(即ち、吐出温度)に基づいて冷媒排出動作の終了を判断するように構成されていてもよい。
-Modification 1 of embodiment-
In the present embodiment, the controller (70) may be configured to determine the end of the refrigerant discharge operation based on the temperature of the refrigerant discharged from the high stage compressor (31) (that is, the discharge temperature). .

具体的に、本変形例のコントローラ(70)は、高段側圧縮機(31)の吐出温度が所定の基準値(例えば60℃)以上になると、冷媒排出動作を終了させるように構成されていてもよい。   Specifically, the controller (70) of the present modification is configured to end the refrigerant discharge operation when the discharge temperature of the high-stage compressor (31) becomes a predetermined reference value (for example, 60 ° C.) or higher. May be.

ここで、高段側圧縮機(31)の吸入側や気液分離器(33)などに残留する冷媒の量が減少してくると、冷媒排出動作中の高段側圧縮機(31)が吸入する冷媒の圧力(即ち、吸入圧力)が次第に低下してゆき、それに伴って高段側圧縮機(31)が吸入する冷媒の密度が小さくなるため、単位時間あたりに高段側圧縮機(31)を通過する冷媒の質量も少なくなってゆく。そして、単位時間あたりに高段側圧縮機(31)の圧縮過程において冷媒に加えられる熱量はほぼ同じであるため、高段側圧縮機(31)を通過する冷媒の質量流量が少なくなると、それに伴って高段側圧縮機(31)の圧縮過程における冷媒の温度上昇幅が大きくなり、その結果、高段側圧縮機(31)が吐出する冷媒の温度(即ち、吐出温度)が上昇してゆく。   Here, when the amount of refrigerant remaining on the suction side of the high-stage compressor (31), the gas-liquid separator (33), or the like decreases, the high-stage compressor (31) during the refrigerant discharge operation is reduced. Since the pressure of the refrigerant sucked (that is, the suction pressure) gradually decreases and the density of the refrigerant sucked by the high stage compressor (31) decreases accordingly, the high stage compressor (per unit time) The mass of refrigerant passing through 31) will also decrease. And since the amount of heat applied to the refrigerant in the compression process of the high stage compressor (31) per unit time is almost the same, if the mass flow rate of the refrigerant passing through the high stage compressor (31) decreases, Accordingly, the temperature rise of the refrigerant in the compression process of the high-stage compressor (31) increases, and as a result, the temperature of the refrigerant discharged from the high-stage compressor (31) (that is, the discharge temperature) increases. go.

そこで、このコントローラ(70)は、高段側圧縮機(31)の吐出温度が基準値以上になると、高段側圧縮機(31)の吸入側や気液分離器(33)などに残留する冷媒の量が充分に少なくなったと判断し、高段側圧縮機(31)を停止させて冷媒排出動作を終了させる。   Therefore, when the discharge temperature of the high-stage compressor (31) exceeds the reference value, the controller (70) remains on the suction side of the high-stage compressor (31), the gas-liquid separator (33), and the like. It is determined that the amount of the refrigerant has become sufficiently small, the high stage compressor (31) is stopped, and the refrigerant discharge operation is terminated.

−実施形態の変形例2−
上記実施形態では、本発明に係る冷凍装置によって空気調和装置を構成しているが、水の冷却や加熱を行う冷温水装置を本発明に係る冷凍装置によって構成してもよい。その場合、冷媒回路(15)では、利用側熱交換器として例えばプレート式熱交換器が設けられる。そして、このプレート式熱交換器では、冷媒との熱交換によって水の加熱や冷却が行われる。
-Modification 2 of embodiment-
In the said embodiment, although the air conditioning apparatus is comprised with the freezing apparatus which concerns on this invention, you may comprise the cold / hot water apparatus which cools and heats water with the freezing apparatus which concerns on this invention. In that case, in the refrigerant circuit (15), for example, a plate heat exchanger is provided as the use side heat exchanger. In this plate heat exchanger, water is heated and cooled by heat exchange with the refrigerant.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、二段圧縮冷凍サイクルと単段圧縮冷凍サイクルが切り換え可能な冷凍装置について有用である。   As described above, the present invention is useful for a refrigeration apparatus that can switch between a two-stage compression refrigeration cycle and a single-stage compression refrigeration cycle.

空気調和装置の構成を示す冷媒回路の配管系統図である。It is a piping system diagram of a refrigerant circuit showing the composition of an air harmony device. 冷房運転中の動作を示す冷媒回路の配管系統図である。It is a piping system diagram of a refrigerant circuit showing the operation during cooling operation. 第1暖房運転中の動作を示す冷媒回路の配管系統図である。It is a piping system diagram of a refrigerant circuit showing operation in the 1st heating operation. 第2暖房運転中の動作を示す冷媒回路の配管系統図である。It is a piping system diagram of a refrigerant circuit showing operation during the 2nd heating operation. 冷媒排出動作を示す冷媒回路の配管系統図である。It is a piping system diagram of a refrigerant circuit showing refrigerant discharge operation.

符号の説明Explanation of symbols

15 冷媒回路
21 低段側圧縮機(第1圧縮機)
31 高段側圧縮機(第2圧縮機)
33 気液分離器
50 遮断機構
90 コントローラ(制御手段)
15 Refrigerant circuit
21 Low stage compressor (first compressor)
31 High stage compressor (second compressor)
33 Gas-liquid separator
50 Shut-off mechanism
90 Controller (control means)

Claims (4)

第1圧縮機(21)と第2圧縮機(31)と中間圧冷媒の気液分離器(33)とが接続された冷媒回路(15)を備え、
上記冷媒回路(15)では、上記第1圧縮機(21)の吐出冷媒と上記気液分離器(33)からの中間圧のガス冷媒とを上記第2圧縮機(31)へ吸入させて二段圧縮二段膨張冷凍サイクルを行う二段圧縮動作と、上記第2圧縮機(31)を停止させて上記第1圧縮機(21)だけで冷媒を圧縮して単段圧縮冷凍サイクルを行う単段圧縮動作とが切り換え可能となっている冷凍装置であって、
上記冷媒回路(15)のうち上記単段圧縮動作中に冷媒が循環する部分から上記第2圧縮機(31)の吸入側を遮断する遮断状態に設定可能な遮断機構(50)と、
上記二段圧縮動作から上記単段圧縮動作への切り換え時に、上記遮断機構(50)を遮断状態に設定して上記第2圧縮機(31)を運転することによって該第2圧縮機(31)の吸入側から冷媒を排出する冷媒排出動作を行う制御手段(90)と
を備えていることを特徴とする冷凍装置。
A refrigerant circuit (15) to which a first compressor (21), a second compressor (31), and a gas-liquid separator (33) for intermediate pressure refrigerant are connected;
In the refrigerant circuit (15), the refrigerant discharged from the first compressor (21) and the intermediate-pressure gas refrigerant from the gas-liquid separator (33) are sucked into the second compressor (31) to be A two-stage compression operation in which a two-stage compression refrigeration cycle is performed, and a single-stage compression refrigeration cycle in which the second compressor (31) is stopped and the refrigerant is compressed only by the first compressor (21). A refrigeration apparatus capable of switching between stage compression operation,
A shut-off mechanism (50) that can be set to a shut-off state that shuts off a suction side of the second compressor (31) from a portion where the refrigerant circulates during the single-stage compression operation in the refrigerant circuit (15);
At the time of switching from the two-stage compression operation to the single-stage compression operation, the second compressor (31) is operated by setting the shut-off mechanism (50) to the shut-off state and operating the second compressor (31). And a control means (90) for performing a refrigerant discharge operation for discharging the refrigerant from the suction side.
請求項1において、
上記気液分離器(33)は、分離されたガス冷媒の流出側が上記第2圧縮機(31)の吸入側と常に連通状態になる一方、
上記遮断機構(50)は、その遮断状態において、上記第2圧縮機(31)の吸入側と上記気液分離器(33)の両方を上記冷媒回路(15)のうち上記単段圧縮動作中に冷媒が循環する部分から遮断するように構成されていることを特徴とする冷凍装置。
In claim 1,
In the gas-liquid separator (33), the outflow side of the separated gas refrigerant is always in communication with the suction side of the second compressor (31),
In the shut-off state, the shut-off mechanism (50) performs both the suction side of the second compressor (31) and the gas-liquid separator (33) during the single-stage compression operation in the refrigerant circuit (15). The refrigeration apparatus is configured to be cut off from a portion where the refrigerant circulates.
請求項1又は2において、
上記制御手段(90)は、冷媒排出動作中における第2圧縮機(31)の吸入圧力が所定値以下になると冷媒排出動作を終了させるように構成されていることを特徴とする冷凍装置。
In claim 1 or 2,
The refrigeration apparatus characterized in that the control means (90) is configured to end the refrigerant discharge operation when the suction pressure of the second compressor (31) during the refrigerant discharge operation becomes a predetermined value or less.
請求項1又は2において、
上記制御手段(90)は、冷媒排出動作中における第2圧縮機(31)の吐出温度が所定値以上になると冷媒排出動作を終了させるように構成されていることを特徴とする冷凍装置。
In claim 1 or 2,
The refrigeration apparatus characterized in that the control means (90) is configured to terminate the refrigerant discharge operation when the discharge temperature of the second compressor (31) during the refrigerant discharge operation reaches a predetermined value or more.
JP2005346233A 2005-11-30 2005-11-30 Refrigeration equipment Expired - Fee Related JP4661561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346233A JP4661561B2 (en) 2005-11-30 2005-11-30 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346233A JP4661561B2 (en) 2005-11-30 2005-11-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007147244A JP2007147244A (en) 2007-06-14
JP4661561B2 true JP4661561B2 (en) 2011-03-30

Family

ID=38208842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346233A Expired - Fee Related JP4661561B2 (en) 2005-11-30 2005-11-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4661561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104501437A (en) * 2014-11-25 2015-04-08 珠海格力电器股份有限公司 Heat pump system and method for operating the same
CN115560493A (en) * 2022-11-07 2023-01-03 珠海格力电器股份有限公司 Heat pump system and control method of heat pump system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346474A (en) * 1999-06-03 2000-12-15 Daikin Ind Ltd Refrigerator
JP2001056156A (en) * 1999-06-11 2001-02-27 Daikin Ind Ltd Air conditioning apparatus
JP2001263854A (en) * 2000-03-22 2001-09-26 Aisin Seiki Co Ltd Heat pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346474A (en) * 1999-06-03 2000-12-15 Daikin Ind Ltd Refrigerator
JP2001056156A (en) * 1999-06-11 2001-02-27 Daikin Ind Ltd Air conditioning apparatus
JP2001263854A (en) * 2000-03-22 2001-09-26 Aisin Seiki Co Ltd Heat pump

Also Published As

Publication number Publication date
JP2007147244A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4974714B2 (en) Water heater
WO2008032645A1 (en) Refrigeration device
JP2007147218A (en) Refrigerating device
KR20150109749A (en) Air Conditioner and Controlling method for the same
JP2007240026A (en) Refrigerating device
JP2007240025A (en) Refrigerating device
JP2006078087A (en) Refrigeration unit
JP2006308207A (en) Refrigerating device
JP3750520B2 (en) Refrigeration equipment
JP2001235245A (en) Freezer
JP2007155143A (en) Refrigerating device
JP4661561B2 (en) Refrigeration equipment
JP6735896B2 (en) Refrigeration cycle equipment
JP5163161B2 (en) Auxiliary heating unit and air conditioner
JP4552721B2 (en) Refrigeration equipment
JP2008002743A (en) Refrigerating device
JP5765325B2 (en) Refrigeration equipment
JP4407013B2 (en) Heat pump equipment
JP2007147228A (en) Refrigerating device
JP2007147227A (en) Refrigerating device
JP4661725B2 (en) Refrigeration equipment
JP4779609B2 (en) Refrigeration equipment
JP5644920B2 (en) Air conditioner
KR100575693B1 (en) Air conditioner with sub compression loop
JP2006125794A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees