JPH0333990B2 - - Google Patents
Info
- Publication number
- JPH0333990B2 JPH0333990B2 JP19128582A JP19128582A JPH0333990B2 JP H0333990 B2 JPH0333990 B2 JP H0333990B2 JP 19128582 A JP19128582 A JP 19128582A JP 19128582 A JP19128582 A JP 19128582A JP H0333990 B2 JPH0333990 B2 JP H0333990B2
- Authority
- JP
- Japan
- Prior art keywords
- way switching
- valve
- heat exchanger
- switching valve
- defrosting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000010257 thawing Methods 0.000 claims description 19
- 238000005057 refrigeration Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 9
- 239000003507 refrigerant Substances 0.000 description 24
- 238000010586 diagram Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
Description
【発明の詳細な説明】
本発明は、ヒートポンプ式冷凍サイクルに関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type refrigeration cycle.
従来のヒートポンプ式冷凍サイクルにおいて
は、第1図に示すごとく圧縮機1、四方切換弁
3、室外側熱交換器4、膨張装置5および室内側
熱交換器6を順次環状に接続し、冷房運転時には
実線矢印で示すごとく圧縮機1からの高温高圧の
冷媒ガスを室外側熱交換器4に送り、ここで凝縮
した後膨張装置5を介して室内側熱交換器6で蒸
発させ、暖房運転時には破線矢印で示すごとく圧
縮機1からの高温高圧の冷媒ガスを逆循環させて
暖房を行うものである。 In a conventional heat pump type refrigeration cycle, a compressor 1, a four-way switching valve 3, an outdoor heat exchanger 4, an expansion device 5, and an indoor heat exchanger 6 are sequentially connected in an annular manner as shown in FIG. Sometimes, as shown by the solid arrow, high-temperature, high-pressure refrigerant gas from the compressor 1 is sent to the outdoor heat exchanger 4, where it is condensed and then evaporated in the indoor heat exchanger 6 via the expansion device 5, during heating operation. As shown by the broken line arrow, high-temperature, high-pressure refrigerant gas from the compressor 1 is reversely circulated to perform heating.
一般にこの種の冷凍サイクルにおいて、暖房運
転時、除霜を行う場合、四方切換弁3を切換える
ことにより高温高圧の冷媒ガスを室外側熱交換器
4に流し、該熱交換器4に付着した霜と熱交換さ
せ、霜を融解除去するようになつているが、該四
方切換弁3を切換える際、室内側熱交換器6中に
あつた高圧の液冷媒が圧縮機1に逆流し、液圧縮
防止用のアキユムレーター2中に滞留してしま
い、該冷凍サイクル中を循環する冷媒量が不足す
るため十分な除霜が行なえず、またこのために、
除霜に多大の時間を必要とし、その間暖房運転が
できないことより、室温の低下をまねき、快適性
をそこなうという欠点があつた。 Generally, in this type of refrigeration cycle, when defrosting is performed during heating operation, the four-way switching valve 3 is switched to flow high-temperature, high-pressure refrigerant gas to the outdoor heat exchanger 4. However, when the four-way switching valve 3 is switched, the high-pressure liquid refrigerant in the indoor heat exchanger 6 flows back into the compressor 1, causing the liquid to be compressed. As the refrigerant accumulates in the preventive accumulator 2 and the amount of refrigerant circulating in the refrigeration cycle is insufficient, sufficient defrosting cannot be performed.
It takes a lot of time to defrost, and heating operation cannot be performed during that time, which causes a drop in room temperature and impairs comfort.
本発明は、上記欠点を除去することを目的とし
てなしたものであり、除霜時の圧縮機の液戻りを
防止し、効果的な除霜を行ない除霜時間の短縮を
図つたヒートポンプ式冷凍サイクルを提供するも
のである。 The present invention has been made with the aim of eliminating the above-mentioned drawbacks, and is a heat pump type refrigerator that prevents fluid from returning to the compressor during defrosting, performs effective defrosting, and shortens defrosting time. It provides a cycle.
以下、本発明の一実施例を図面に基いて説明す
る。 Hereinafter, one embodiment of the present invention will be described based on the drawings.
第2図は本発明に係るヒートポンプ式冷凍サイ
クルの冷媒回路図、第3図は本発明の他の実施例
を示すヒートポンプ式冷凍サイクルの冷媒回路図
を示す。 FIG. 2 is a refrigerant circuit diagram of a heat pump type refrigeration cycle according to the present invention, and FIG. 3 is a refrigerant circuit diagram of a heat pump type refrigeration cycle showing another embodiment of the present invention.
なお、実線矢印は、冷房運転時の冷媒の流れを
示し、破線矢印は、暖房運転時の冷媒の流れを示
し、また細線矢印は、冷凍サイクル切換時の冷媒
の流れを示す。 Note that solid arrows indicate the flow of refrigerant during cooling operation, broken arrows indicate the flow of refrigerant during heating operation, and thin arrows indicate the flow of refrigerant during refrigeration cycle switching.
第2図において、11は圧縮機、12はアキユ
ムレーター、13は冷房運転と暖房運転を切換え
る四方切換弁、14は冷房運転時には凝縮器、暖
房運転時には蒸発器として作用する室外側熱交換
器、15は膨張弁あるいはキヤピラリーチユーブ
等からなる膨張装置、16は冷房運転時は蒸発
器、暖房運転時には凝縮器として作用する室内側
熱交換器、17は圧縮機11の吸入側と四方切換
弁13を結ぶ流路中に設けた電磁弁、18は前記
電磁弁17と四方切換弁13の間の流路と室外側
熱交換器14と四方切換弁13との間の流路を結
ぶ第1のバイパス流路、19は前記電磁弁17と
四方切換弁13間の流路と室内側熱交換器16と
四方切換弁13との間の流路を結ぶ第2のバイパ
ス流路、20は上記第1のバイパス流路中に設け
た第1の逆止弁、21は上記第2のバイパス流路
中に設けた第2の逆止弁である。 In FIG. 2, 11 is a compressor, 12 is an accumulator, 13 is a four-way switching valve that switches between cooling operation and heating operation, 14 is an outdoor heat exchanger that acts as a condenser during cooling operation and as an evaporator during heating operation, and 15 1 is an expansion device consisting of an expansion valve or a capillary reach tube, 16 is an evaporator during cooling operation, and an indoor heat exchanger which acts as a condenser during heating operation; 17 is an inlet side of compressor 11 and a four-way switching valve 13 A solenoid valve 18 is a first bypass that connects the flow path between the solenoid valve 17 and the four-way switching valve 13 and the flow path between the outdoor heat exchanger 14 and the four-way switching valve 13. A flow path 19 is a second bypass flow path connecting the flow path between the electromagnetic valve 17 and the four-way switching valve 13 and the flow path between the indoor heat exchanger 16 and the four-way switching valve 13, and 20 is the first bypass flow path. A first check valve 21 is provided in the bypass flow path, and 21 is a second check valve provided in the second bypass flow path.
次に本発明の冷凍サイクルの動作について説明
する。本冷凍サイクルは、通常運転時には電磁弁
17は開成し、また第1及び第2の逆止弁20,
21は閉成状態となり、第1図に示した従来の冷
凍サイクルと同様の運転状態となる。 Next, the operation of the refrigeration cycle of the present invention will be explained. In this refrigeration cycle, during normal operation, the solenoid valve 17 is open, and the first and second check valves 20,
21 is in a closed state, and the operating state is similar to that of the conventional refrigeration cycle shown in FIG.
暖房運転時に、タイマーデイアイサーあるいは
霜付検出装置等(図示せず)の信号により、除霜
を開始するために冷凍サイクルを暖房運転から冷
房運転に切換えて行なうが、その場合、まず、電
磁弁17を閉成し、しかる後四方切換弁13を切
換える。これで、室内側熱交換器16中に滞留し
ていた高温高圧の冷媒は、四方切換弁13、第1
のバイパス流路18、第1の逆止弁20を通つて
低温低圧の室外側熱交換器14中に流入する。こ
の時、電磁弁17が閉成されているので圧縮機1
1の吸入側へ液冷媒が吸入されることが防止でき
る。この室内側熱交換器14中に流入してきた高
温高圧の冷媒により室外側熱交換器14に付着し
ていた霜が融解しはじめる。次に室内側熱交換器
16と室外側熱交換器14とが圧力バランスし室
内側熱交換器16から室外側熱交換器14へ冷媒
が流れていかなくなつた時に電磁弁17を開成す
る。この時、圧縮機11からの吐出ガスにより室
外側熱交換器14の圧力は四方切換弁13と電磁
弁17の間の流路の圧力より高くなり、第1の逆
止弁20は閉成状態となり、第1図の従来サイク
ルと同様の運転状態となる。 During heating operation, the refrigeration cycle is switched from heating operation to cooling operation in order to start defrosting in response to a signal from a timer day icer or frost detection device (not shown). In this case, first, the solenoid valve 17 is closed, and then the four-way switching valve 13 is switched. Now, the high temperature and high pressure refrigerant that had accumulated in the indoor heat exchanger 16 is removed from the four-way switching valve 13 and the first
It flows into the low-temperature, low-pressure outdoor heat exchanger 14 through the bypass passage 18 and the first check valve 20 . At this time, since the solenoid valve 17 is closed, the compressor 1
It is possible to prevent liquid refrigerant from being sucked into the suction side of 1. The high-temperature, high-pressure refrigerant that has flowed into the indoor heat exchanger 14 begins to melt the frost that has adhered to the outdoor heat exchanger 14 . Next, when the pressures of the indoor heat exchanger 16 and the outdoor heat exchanger 14 are balanced and the refrigerant no longer flows from the indoor heat exchanger 16 to the outdoor heat exchanger 14, the solenoid valve 17 is opened. At this time, the pressure in the outdoor heat exchanger 14 becomes higher than the pressure in the flow path between the four-way switching valve 13 and the solenoid valve 17 due to the gas discharged from the compressor 11, and the first check valve 20 is in the closed state. This results in an operating state similar to that of the conventional cycle shown in FIG.
この様にして、圧縮機11からの高温高圧の吐
出ガスにより室外側熱交換器14に付着していた
霜が融解して除去される。 In this way, the frost adhering to the outdoor heat exchanger 14 is melted and removed by the high-temperature, high-pressure discharge gas from the compressor 11.
除霜が終了し、再び暖房運転に切換える場合
は、まず電磁弁17を閉成し、しかる後、四方切
換弁13を切換える。これで室外側熱交換器14
中に滞留している高圧の冷媒は、四方切換弁1
3、第2のバイパス流路19、第2の逆止弁21
を通つて低圧の室内側熱交換器16中に流入す
る。この時も電磁弁17が閉成されているので、
液冷媒が圧縮機11の吸入側へ吸入されることが
防止できる。 When defrosting is completed and the heating operation is to be switched again, the solenoid valve 17 is first closed, and then the four-way switching valve 13 is switched. Now the outdoor heat exchanger 14
The high pressure refrigerant stagnant inside the four-way switching valve 1
3. Second bypass flow path 19, second check valve 21
and into the low pressure indoor heat exchanger 16. Since the solenoid valve 17 is closed at this time,
Liquid refrigerant can be prevented from being sucked into the suction side of the compressor 11.
次に、室外側熱交換器14と室内側熱交換器1
6が圧力バランスし、室外側熱交換器14から室
内側熱交換器16へ冷媒が流れなくなつた時に電
磁弁17を開成する。この時、圧縮機11からの
吐出ガスにより室内側熱交換器16の圧力は、四
方切換弁13と電磁弁17の間の流路の圧力より
高くなり、第2の逆止弁21は閉成状態となり暖
房運転を再開する。 Next, the outdoor heat exchanger 14 and the indoor heat exchanger 1
6 opens the solenoid valve 17 when the pressure is balanced and refrigerant no longer flows from the outdoor heat exchanger 14 to the indoor heat exchanger 16. At this time, the pressure in the indoor heat exchanger 16 becomes higher than the pressure in the flow path between the four-way switching valve 13 and the solenoid valve 17 due to the gas discharged from the compressor 11, and the second check valve 21 closes. The heating operation will resume.
第3図は、本発明の他の実施例を示すもので、
第1のバイパス流路18を電磁弁17と四方切換
弁13との間の流路と室外側熱交換器14と膨張
装置15との間の流路を結ぶ様に設けた、又、第
2のバイパス流路19を電磁弁17と四方切換弁
13との間の流路と室内側熱交換器16と膨張装
置15との間の流路を結ぶ様に設けたものであ
り、前記第2図に示した実施例と同様の制御及び
動作を行なうものである。 FIG. 3 shows another embodiment of the present invention,
A first bypass flow path 18 is provided to connect the flow path between the solenoid valve 17 and the four-way switching valve 13 and the flow path between the outdoor heat exchanger 14 and the expansion device 15. A bypass flow path 19 is provided to connect the flow path between the solenoid valve 17 and the four-way switching valve 13 and the flow path between the indoor heat exchanger 16 and the expansion device 15. It performs the same control and operation as the embodiment shown in the figure.
尚、本発明の実施にあたつては、第1のバイパ
ス流路18を電磁弁17と四方切換弁13の間の
流路と室外側熱交換器14を含む四方切換弁13
と膨張装置15間の流路の任意の点を結ぶバイパ
ス流路とすればよく、又第2のバイパス流路19
は電磁弁17と四方切換弁13の間の流路と室内
側熱交換器16を含む四方切換弁13と膨張装置
15間の流路の任意の点と結ぶバイパス流路とす
ればよい。 In carrying out the present invention, the first bypass passage 18 is a passage between the electromagnetic valve 17 and the four-way switching valve 13 and the four-way switching valve 13 including the outdoor heat exchanger 14.
A bypass flow path connecting any point in the flow path between the expansion device 15 and the expansion device 15 may be used.
may be a bypass flow path connecting the flow path between the solenoid valve 17 and the four-way switching valve 13 and the flow path between the four-way switching valve 13 including the indoor heat exchanger 16 and the expansion device 15 at any point.
この様に、本発明によれば、暖房運転時に除霜
を行なうため冷凍サイクルを切換える際に圧縮機
の吸入側へ、室内側熱交換器あるいは室外側熱交
換器から液冷媒が流入し、アキユムレーターへの
滞留を防げるので、短時間で効率のよい除霜がで
き、除霜時の室温降下を少なくすることができ
る。 As described above, according to the present invention, when switching the refrigeration cycle for defrosting during heating operation, liquid refrigerant flows from the indoor heat exchanger or the outdoor heat exchanger into the suction side of the compressor, and the accumulator This prevents defrost from accumulating in the air, enabling efficient defrosting in a short time and reducing the drop in room temperature during defrosting.
除霜運転から暖房運転に復帰した後も、ただち
に定常状態に近い冷媒分布で運転を行なうことが
できるので室温の回復も早く行なえ、快適性のす
ぐれた暖房を行なうことができる。 Even after returning from defrosting operation to heating operation, operation can be performed immediately with a refrigerant distribution close to a steady state, so the room temperature can be recovered quickly and heating can be performed with excellent comfort.
又、室外側熱交換器を常に霜の付着が少ない効
率の良い状態で使用できるため効率の良い暖房運
転が可能となる。 Moreover, since the outdoor heat exchanger can always be used in an efficient state with little frost, efficient heating operation is possible.
更に、圧縮機への液戻りが防止できるので、圧
縮機の信頼性も向上する。 Furthermore, since liquid can be prevented from returning to the compressor, the reliability of the compressor is also improved.
第1図は従来のヒートポンプ式冷凍サイクルの
冷媒回路図、第2図は本発明に係るヒートポンプ
式冷凍サイクルの冷媒回路図、第3図は本発明の
他の実施例を示すヒートポンプ式冷凍サイクルの
冷媒回路図である。
11は圧縮機、12はアキユムレーター、13
は四方切換弁、14は室外側熱交換器、15は膨
張装置、16は室内側熱交換器、17は電磁弁、
18は第1のバイパス流路、19は第2のバイパ
ス流路、20は第1の逆止弁、21は第2の逆止
弁をそれぞれ示す。
Figure 1 is a refrigerant circuit diagram of a conventional heat pump type refrigeration cycle, Figure 2 is a refrigerant circuit diagram of a heat pump type refrigeration cycle according to the present invention, and Figure 3 is a refrigerant circuit diagram of a heat pump type refrigeration cycle showing another embodiment of the present invention. It is a refrigerant circuit diagram. 11 is a compressor, 12 is an accumulator, 13
is a four-way switching valve, 14 is an outdoor heat exchanger, 15 is an expansion device, 16 is an indoor heat exchanger, 17 is a solenoid valve,
18 is a first bypass flow path, 19 is a second bypass flow path, 20 is a first check valve, and 21 is a second check valve.
Claims (1)
膨張弁、室内側熱交換器を順次接続し、暖房時に
おける除霜を四方切換弁によつて暖房サイクルか
ら冷房サイクルに切り換えることによつて行うヒ
ートポンプ式冷凍サイクルにおいて、 圧縮機の吸入側と四方切換弁との間の流路に、
当該流路を開閉する電磁弁を設け、 この電磁弁と四方切換弁との間の流路と、上記
室外側熱交換器を含む四方切換弁と電動膨張弁と
の間の任意の点と、を結ぶ第1のバイパス通路を
設けると共に、この第1のバイパス通路に四方切
換弁側から室外側熱交換器側への流通のみを可能
とする逆止弁を設け、 上記電磁弁と四方切換弁との間の流路と、上記
室内側熱交換器を含む四方切換弁と電動膨張弁と
の間の任意の点と、を結ぶ第2のバイパス通路を
設けると共に、この第2のバイパス通路に四方切
換弁側から室内側熱交換器側への流通のみを可能
とする逆止弁を設け、 当該冷凍サイクルの運転を制御すると共に、上
記四方切換弁及び電磁弁を制御する制御部を設
け、 上記制御部は、 上記四方切換弁を、冷房運転時または除霜運転
時に冷房サイクル側に切換え暖房運転時に暖房サ
イクル側に切換える四方切換弁制御手段と、 上記電磁弁を、冷房運転時または暖房運転時に
上記流路を開成し除霜切換え時に上記流路を閉成
するよう制御する電磁弁制御手段と、 除霜開始切換え時に、上記電磁弁を閉成した
後、四方切換弁を暖房サイクルから冷房サイクル
に切換えてから、遅延して電磁弁を開成するよう
に制御する除霜開始制御手段と、 除霜終了切換え時に、上記電磁弁を閉成した
後、四方切換弁を冷房サイクルから暖房サイクル
に切換えてから、遅延して電磁弁を開成するよう
に制御する除霜終了制御手段と、 から構成して成るヒートポンプ式冷凍サイクル。[Claims] 1. A compressor, a four-way switching valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger are connected in sequence, and defrosting during heating is performed from the heating cycle to the cooling cycle using the four-way switching valve. In the heat pump type refrigeration cycle, which is performed by switching to the
A solenoid valve that opens and closes the flow path is provided, and a flow path between the solenoid valve and the four-way switching valve, and an arbitrary point between the four-way switching valve including the outdoor heat exchanger and the electric expansion valve; A first bypass passage is provided that connects the solenoid valve and the four-way switching valve, and a check valve is provided in the first bypass passage that allows flow only from the four-way switching valve side to the outdoor heat exchanger side. A second bypass passage is provided that connects the flow path between the two and an arbitrary point between the four-way switching valve including the indoor heat exchanger and the electric expansion valve, and a second bypass passage is provided in the second bypass passage. A check valve that allows flow only from the four-way switching valve side to the indoor heat exchanger side is provided, and a control unit that controls the operation of the refrigeration cycle and the four-way switching valve and the solenoid valve is provided, The control section includes a four-way switching valve control means that switches the four-way switching valve to the cooling cycle side during cooling operation or defrosting operation and switches the four-way switching valve to the heating cycle side during heating operation; a solenoid valve control means for controlling the flow path to open at the time of defrosting and closing the flow path at the time of switching to start defrosting; A defrosting start control means controls to open a solenoid valve with a delay after switching to a defrosting cycle, and a four-way switching valve is controlled to switch from a cooling cycle to a heating cycle after closing the solenoid valve when switching to end defrosting. A heat pump type refrigeration cycle comprising: a defrosting end control means for controlling a solenoid valve to open with a delay after switching;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19128582A JPS5981465A (en) | 1982-10-29 | 1982-10-29 | Heat pump type refrigeration cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19128582A JPS5981465A (en) | 1982-10-29 | 1982-10-29 | Heat pump type refrigeration cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5981465A JPS5981465A (en) | 1984-05-11 |
JPH0333990B2 true JPH0333990B2 (en) | 1991-05-21 |
Family
ID=16272016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19128582A Granted JPS5981465A (en) | 1982-10-29 | 1982-10-29 | Heat pump type refrigeration cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5981465A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005283041A (en) * | 2004-03-31 | 2005-10-13 | Daikin Ind Ltd | Humidity controller |
-
1982
- 1982-10-29 JP JP19128582A patent/JPS5981465A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5981465A (en) | 1984-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1598610B1 (en) | Apparatus and method for controlling heating operation in heat pump system | |
US4557115A (en) | Heat pump having improved compressor lubrication | |
JP4269476B2 (en) | Refrigeration equipment | |
JPH06265242A (en) | Engine driven heat pump | |
JPH0333990B2 (en) | ||
EP0077414B1 (en) | Air temperature conditioning system | |
CN113685916A (en) | Air conditioning system and control method thereof | |
JPH0752031B2 (en) | Heat pump type air conditioner | |
JPS6361584B2 (en) | ||
JPS6346350B2 (en) | ||
JPH09318229A (en) | Refrigerating device | |
JPH0120709B2 (en) | ||
JPH0333989B2 (en) | ||
JP3407867B2 (en) | Operation control method of air conditioner | |
JPH0333993B2 (en) | ||
JP3134350B2 (en) | Defrost control device | |
JPH0320571A (en) | Air conditioner | |
JP3063746B2 (en) | Refrigeration equipment | |
JPS62237260A (en) | Defrostation control method of heat pump type air conditioner | |
JPH0217370A (en) | Operation control device for air conditioning device | |
JPH04340044A (en) | Operation control device of air conditioner | |
JPH04251144A (en) | Operation control device of air conditioner | |
JP3326835B2 (en) | Refrigeration cycle | |
JPH086203Y2 (en) | Air conditioner | |
JPH0579901B2 (en) |