JP2005283041A - Humidity controller - Google Patents

Humidity controller Download PDF

Info

Publication number
JP2005283041A
JP2005283041A JP2004101597A JP2004101597A JP2005283041A JP 2005283041 A JP2005283041 A JP 2005283041A JP 2004101597 A JP2004101597 A JP 2004101597A JP 2004101597 A JP2004101597 A JP 2004101597A JP 2005283041 A JP2005283041 A JP 2005283041A
Authority
JP
Japan
Prior art keywords
heat exchanger
switching
valve
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004101597A
Other languages
Japanese (ja)
Inventor
Nobuki Matsui
伸樹 松井
Satoshi Ishida
智 石田
Tomohiro Yabu
知宏 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2004101597A priority Critical patent/JP2005283041A/en
Priority to PCT/JP2005/005965 priority patent/WO2005095868A1/en
Publication of JP2005283041A publication Critical patent/JP2005283041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid a problem of noise occurring when changing a circulating direction of refrigerant. <P>SOLUTION: In a refrigerant circuit 60, a compressor 63, a four way selector valve 64, a first adsorption heat exchanger 61, an expansion valve 65, and a second adsorption heat exchanger 62 are connected, it is composed such that refrigerant circulation can be reversed, and it carries out a vapor compression type refrigerating cycle. An adsorbent carrying out adsorption and desorption of moisture is carried on surfaces of the first adsorption heat exchanger 61 and the second adsorption heat exchanger 62. To alternately carry out adsorption and desorption of moisture in the first adsorption heat exchanger 61 and the second adsorption heat exchanger 62, a selector mechanism 64 is changed to change a circulating direction of the refrigerant of the refrigerant circuit 60. Moreover, before changing the refrigerant circulation, the compressor 63 is stopped for reducing a differential pressure between a high pressure side and a low pressure side of the refrigerant circuit 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸着剤を用いて湿度調節を行う調湿装置に関し、特に、蒸気圧縮式冷凍サイクルの冷媒回路を備えた調湿装置に係るものである。     The present invention relates to a humidity control apparatus that adjusts humidity using an adsorbent, and particularly relates to a humidity control apparatus including a refrigerant circuit of a vapor compression refrigeration cycle.

従来より、吸着剤を用いた調湿装置は、吸着剤による水分の吸着作用と脱離作用とを利用して空気の除湿又は加湿を行うように構成されている。この調湿装置は、吸着剤の水分吸着量が飽和域に達すると、水分を脱離して再生する必要がある。しかし、その際に吸着と再生とを単に交互に行っていたのでは、除湿や再生を断続的にしか行えないことになる。     Conventionally, a humidity control apparatus using an adsorbent is configured to perform dehumidification or humidification of air using an adsorption action and a desorption action of moisture by the adsorbent. When the moisture adsorption amount of the adsorbent reaches the saturation region, the humidity control apparatus needs to desorb moisture and regenerate it. However, if adsorption and regeneration are simply performed alternately at that time, dehumidification and regeneration can be performed only intermittently.

そこで、この種の調湿装置において、吸着剤を含む2つの吸着部材を用い、吸着側に用いるものと再生側に用いるものとを交互に切り換えて、常に吸着側の空気のみ、あるいは再生側の空気のみを室内に供給する方式が知られている(例えば、特許文献1参照)。この方式では、一方の吸着部材で吸着動作を行う間に他方で再生動作を行いながら、所定の時間が経過する毎に吸着側と再生側とを切り換えることにより、除湿運転又は加湿運転が連続して行われる(例えば、特許文献1参照)。     Therefore, in this type of humidity control apparatus, two adsorbing members containing an adsorbent are used, and the one used on the adsorption side and the one used on the regeneration side are switched alternately, so that only the air on the adsorption side or the regeneration side is always used. A method of supplying only air into the room is known (see, for example, Patent Document 1). In this method, the dehumidifying operation or the humidifying operation is continued by switching between the adsorption side and the regeneration side every time a predetermined time elapses while performing the regeneration operation on the other side while performing the adsorption operation on one of the adsorption members. (For example, refer to Patent Document 1).

上記再生動作は、吸着動作と次の吸着動作の間に行われる。したがって、吸着動作を短時間で行うためには吸着部材を加熱する必要がある。このため、上記調湿装置では、蒸気圧縮式冷凍サイクルの冷媒回路を用いて、冷媒の温熱により吸着部材を加熱するようにしている。
特開2003−028458号公報
The regeneration operation is performed between the adsorption operation and the next adsorption operation. Therefore, in order to perform the adsorption operation in a short time, it is necessary to heat the adsorption member. For this reason, in the said humidity control apparatus, the adsorption member is heated with the heat of a refrigerant | coolant using the refrigerant circuit of a vapor compression refrigeration cycle.
JP 2003-028458 A

上記調湿装置において、吸着剤を再生時に効率よく加熱するために、冷媒回路の凝縮器と吸着部材とを一体化することが考えられる。具体的には、凝縮器のフィンなどに吸着剤を担持するような構成である。この場合、2つの吸着部材を用いて吸着側と再生側を交互に切り換えるのと同じ動作を行うために、冷媒回路の2つの熱交換器には、いずれも吸着剤を担持したものを用いるとよい。こうすると、冷媒回路における冷媒の循環方向を切り換えながら、蒸発器となる熱交換器を吸着側に、凝縮器となる熱交換器を再生側に用いることにより、効率のよい運転が可能となる。     In the humidity control apparatus, in order to efficiently heat the adsorbent during regeneration, it is conceivable to integrate the condenser of the refrigerant circuit and the adsorbing member. Specifically, the adsorbent is supported on the fins of the condenser. In this case, in order to perform the same operation as alternately switching between the adsorption side and the regeneration side using two adsorption members, both of the two heat exchangers of the refrigerant circuit use those carrying an adsorbent. Good. In this way, while switching the refrigerant circulation direction in the refrigerant circuit, an efficient operation is possible by using the heat exchanger as an evaporator on the adsorption side and the heat exchanger as a condenser on the regeneration side.

ところで、冷媒回路における冷媒の循環方向を切り換えるのには、一般に四路切換弁が用いられている。しかし、上記調湿装置の運転時には、空調装置で冷暖房を切り換えたり、冷凍装置で逆サイクルのデフロスト運転を行ったりする際と比較すると、四路切換弁の切り換え頻度がはるかに多くなる(例えば、数分毎に切り換えが必要となることもある)。そして、上記四路切換弁の切り換え時には、冷媒が高圧側から低圧側へ流れるのに伴って四路切換弁又は配管内で比較的大きな音が発生する。特に、切り換え頻度が多くなると音の発生頻度も多くなり、運転騒音が大きな問題となる。     Incidentally, a four-way switching valve is generally used to switch the refrigerant circulation direction in the refrigerant circuit. However, when operating the humidity control device, the switching frequency of the four-way switching valve is much higher than when switching between cooling and heating with an air conditioning device or performing reverse cycle defrost operation with a refrigeration device (for example, It may be necessary to switch every few minutes). At the time of switching the four-way switching valve, a relatively loud sound is generated in the four-way switching valve or pipe as the refrigerant flows from the high pressure side to the low pressure side. In particular, when the frequency of switching increases, the frequency of sound generation increases, and driving noise becomes a major problem.

本発明は、斯かる点に鑑みてなされたものであり、冷媒の循環方向を切り換える際の音の問題を回避することを目的とするものである。     The present invention has been made in view of such a point, and an object thereof is to avoid the problem of noise when the refrigerant circulation direction is switched.

具体的に、図1に示すように、第1の発明は、圧縮機(63)と切換機構(64)と第1熱交換器(61)と膨張機構(65)と第2熱交換器(62)とが接続されて冷媒循環が可逆に構成され、蒸気圧縮式冷凍サイクルを行う冷媒回路(60)を備え、上記第1熱交換器(61)及び第2熱交換器(62)の表面に、水分の吸着及び脱離を行う吸着剤が担持された調湿装置を対象としている。そして、上記第1熱交換器(61)及び第2熱交換器(62)で水分の吸着と脱離とを交互に行うために、上記切換機構(64)を切り換えて冷媒回路(60)の冷媒の循環方向を切り換える循環切換手段(71)を備えている。加えて、該循環切換手段(71)の循環切り換え前に、冷媒回路(60)の高圧側と低圧側との差圧を低減する差圧低減手段(80)を備えている。     Specifically, as shown in FIG. 1, the first invention provides a compressor (63), a switching mechanism (64), a first heat exchanger (61), an expansion mechanism (65), and a second heat exchanger ( 62) and a refrigerant circuit (60) configured to perform reversible refrigerant circulation and performing a vapor compression refrigeration cycle, the surfaces of the first heat exchanger (61) and the second heat exchanger (62) In addition, the present invention is intended for a humidity control apparatus in which an adsorbent that adsorbs and desorbs moisture is supported. In order to alternately perform the adsorption and desorption of moisture in the first heat exchanger (61) and the second heat exchanger (62), the switching mechanism (64) is switched to change the refrigerant circuit (60). Circulation switching means (71) for switching the refrigerant circulation direction is provided. In addition, differential pressure reducing means (80) for reducing the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is provided before the circulation switching of the circulation switching means (71).

また、第2の発明は、上記第1の発明において、上記差圧低減手段(80)が圧縮機(63)を停止するように構成されている。     The second invention is configured such that, in the first invention, the differential pressure reducing means (80) stops the compressor (63).

また、第3の発明は、上記第1の発明において、上記圧縮機(63)が容量可変に構成され、上記差圧低減手段(80)が圧縮機(63)の運転容量を低減するように構成されている。     Further, in a third aspect of the present invention based on the first aspect, the compressor (63) is configured to have a variable capacity, and the differential pressure reducing means (80) reduces the operating capacity of the compressor (63). It is configured.

また、第4の発明は、上記第1の発明において、上記膨張機構(65)が開度可変の膨張弁で構成され、上記差圧低減手段(80)が膨張弁の開度を開くように構成されている。     According to a fourth aspect of the present invention, in the first aspect, the expansion mechanism (65) is configured by an expansion valve having a variable opening, and the differential pressure reducing means (80) opens the opening of the expansion valve. It is configured.

また、第5の発明は、上記第1の発明において、上記差圧低減手段(80)が、膨張機構(65)をバイパスするバイパス路(81)と、該バイパス路(81)に設けられた常閉のバイパス弁(82)とを備え、循環切換手段(71)の循環切り換え前にバイパス弁(82)を開口するように構成されている。     According to a fifth invention, in the first invention, the differential pressure reducing means (80) is provided in the bypass passage (81) bypassing the expansion mechanism (65) and the bypass passage (81). A normally closed bypass valve (82), and is configured to open the bypass valve (82) before the circulation switching of the circulation switching means (71).

また、第6の発明は、上記第1の発明において、上記差圧低減手段(80)が、圧縮機(63)の吐出側と吸込側とを繋ぐバイパス路(81)と、該バイパス路(81)に設けられた常閉のバイパス弁(82)とを備え、循環切換手段(71)の循環切り換え前にバイパス弁(82)を開口するように構成されている。     According to a sixth invention, in the first invention, the differential pressure reducing means (80) includes a bypass passage (81) connecting the discharge side and the suction side of the compressor (63), and the bypass passage ( 81) and a normally closed bypass valve (82), and is configured to open the bypass valve (82) before the circulation switching means (71) switches the circulation.

また、第7の発明は、上記第5又は第6の発明において、上記差圧低減手段(80)が、バイパス路(81)に設けられた流量調節機構(83)を備えている。     According to a seventh aspect, in the fifth or sixth aspect, the differential pressure reducing means (80) includes a flow rate adjusting mechanism (83) provided in the bypass passage (81).

また、第8の発明は、上記第1の発明において、上記差圧低減手段(80)が、圧縮機(63)に接続されたて常時ガス冷媒が流れるガス管(6b,6c)に設けられた常開の開閉弁(85)を備え、循環切換手段(71)の循環切り換え前に開閉弁(85)を閉じるように構成されている。     In an eighth aspect based on the first aspect, the differential pressure reducing means (80) is provided in the gas pipe (6b, 6c) connected to the compressor (63) and through which the gas refrigerant always flows. The normally open on-off valve (85) is provided so that the on-off valve (85) is closed before the circulation switching of the circulation switching means (71).

〈作用〉
すなわち、上記第1の発明では、冷媒回路(60)の第1熱交換器(61)と第2熱交換器(62)のうち、蒸発器となる熱交換器の吸着剤で水分を吸着し、凝縮器となる熱交換器では水分が脱離して吸着剤を再生する。このため、例えば、吸着側の空気を室内に供給すると除湿運転が行われ、再生側の空気を室内に供給すると加湿運転が行われる。また、除湿運転時と加湿運転時のいずれの場合も、切換機構(64)により冷媒の循環方向を切り換え、除湿や加湿の連続運転が行われる。
<Action>
That is, in the first aspect of the invention, moisture is adsorbed by the adsorbent of the heat exchanger serving as an evaporator, out of the first heat exchanger (61) and the second heat exchanger (62) of the refrigerant circuit (60). In the heat exchanger as a condenser, moisture is desorbed and the adsorbent is regenerated. For this reason, for example, the dehumidifying operation is performed when the adsorption-side air is supplied into the room, and the humidifying operation is performed when the regeneration-side air is supplied into the room. In both cases of the dehumidifying operation and the humidifying operation, the refrigerant circulation direction is switched by the switching mechanism (64), and the dehumidifying and humidifying continuous operation is performed.

この切り換える際、差圧低減手段(80)が循環切換手段(71)の切換機構(64)の切り換える前に、冷媒回路(60)の高圧側と低圧側との差圧を低減させるので、冷媒が高圧側から低圧側へ瞬間的に流れる動作が抑制される。     In this switching, the differential pressure reducing means (80) reduces the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) before the switching mechanism (64) of the circulation switching means (71) is switched. Is suppressed from instantaneously flowing from the high pressure side to the low pressure side.

具体的に、上記第2の発明では、差圧低減手段(80)が循環切換手段(71)の切換機構(64)の切り換える前に、圧縮機(63)を所定時間停止させ、切換機構(64)の切り換え後に圧縮機(63)の運転を再開させる。この差圧低減手段(80)による圧縮機(63)の停止によって冷媒回路(60)の高圧側と低圧側との差圧を小さくする。     Specifically, in the second invention, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the compressor (63) is stopped for a predetermined time, and the switching mechanism ( 64) Restart the compressor (63) after switching. By stopping the compressor (63) by the differential pressure reducing means (80), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.

また、第3の発明では、差圧低減手段(80)が循環切換手段(71)の切換機構(64)の切り換える前に、圧縮機(63)の容量を小さくし、切換機構(64)の切り換え後に圧縮機(63)の容量を戻す。この差圧低減手段(80)による圧縮機(63)の容量低下によって冷媒回路(60)の高圧側と低圧側との差圧を小さくする。     Further, in the third invention, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the capacity of the compressor (63) is reduced, and the switching mechanism (64) Return the capacity of the compressor (63) after switching. The differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by the capacity reduction of the compressor (63) by the differential pressure reducing means (80).

また、第4の発明では、差圧低減手段(80)が循環切換手段(71)の切換機構(64)の切り換える前に、膨張弁(65)の開度を大きく、切換機構(64)の切り換え後に膨張弁(65)の開度を戻す。この差圧低減手段(80)による膨張弁(65)の開度の増加によって冷媒回路(60)の高圧側と低圧側との差圧を小さくする。     Further, in the fourth invention, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the opening degree of the expansion valve (65) is increased so that the switching mechanism (64) Return the opening of the expansion valve (65) after switching. By increasing the opening of the expansion valve (65) by the differential pressure reducing means (80), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.

また、第5の発明及び第6の発明では、差圧低減手段(80)が循環切換手段(71)の切換機構(64)の切り換える前に、バイパス弁(82)を開き、切換機構(64)の切り換え後にバイパス弁(82)を閉じる。この差圧低減手段(80)によるバイパス弁(82)の開口によって冷媒回路(60)の高圧側と低圧側との差圧を小さくする。     In the fifth and sixth inventions, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the bypass valve (82) is opened, and the switching mechanism (64 ) Close the bypass valve (82) after switching. By opening the bypass valve (82) by the differential pressure reducing means (80), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.

また、第7の発明では、バイパス路(81)を流れる冷媒量が流量調節機構(83)によって調節され、バイパス弁(82)の切り換え時の冷媒発生音が抑制される。     In the seventh invention, the amount of refrigerant flowing through the bypass passage (81) is adjusted by the flow rate adjusting mechanism (83), and the refrigerant generation sound at the time of switching of the bypass valve (82) is suppressed.

また、第8の発明では、差圧低減手段(80)が循環切換手段(71)の切換機構(64)の切り換える前に、開閉弁(85)を閉じ、切換機構(64)の切り換え後に開閉弁(85)を開く。この差圧低減手段(80)による開閉弁(85)の閉鎖によって冷媒循環量が低下し、冷媒回路(60)の高圧側と低圧側との差圧を小さくする。     In the eighth aspect of the invention, the differential pressure reducing means (80) closes the on-off valve (85) before switching of the switching mechanism (64) of the circulation switching means (71), and opens and closes after switching of the switching mechanism (64). Open valve (85). By closing the on-off valve (85) by the differential pressure reducing means (80), the refrigerant circulation amount is reduced, and the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.

したがって、本発明によれば、冷媒循環を切り換える前に、冷媒回路(60)の高圧側と低圧側との差圧を小さくするようにしたために、冷媒が高圧側から低圧側へ瞬間的に流れる動作が起こらず、それに伴う冷媒の発生音を防止することができる。特に、切り換え頻度が多い場合においても冷媒の音が問題になることはない。     Therefore, according to the present invention, since the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced before switching the refrigerant circulation, the refrigerant instantaneously flows from the high pressure side to the low pressure side. The operation does not occur, and it is possible to prevent the generated sound of the refrigerant. In particular, even when the switching frequency is high, the sound of the refrigerant does not become a problem.

また、第2の発明によれば、切換機構(64)の切り換え前に圧縮機(63)を停止するようにしたために、冷媒回路(60)の高圧側と低圧側との差圧を確実に低減することができるので、切り換え時の冷媒発生音を確実に防止することができる。     According to the second aspect of the invention, since the compressor (63) is stopped before the switching mechanism (64) is switched, the pressure difference between the high pressure side and the low pressure side of the refrigerant circuit (60) is reliably ensured. Since it can be reduced, it is possible to reliably prevent refrigerant generation noise at the time of switching.

また、第3〜6及び第8の発明によれば、圧縮機(63)の運転が継続されているので、調湿能力の低下を抑制することができる。     Moreover, according to the 3rd-6th and 8th invention, since the driving | operation of a compressor (63) is continued, the fall of humidity control ability can be suppressed.

また、第7の発明によれば、バイパス路(81)に流量調節機構(83)を設けているので、バイパス弁(82)の開口時に冷媒がバイパス弁(82)を介して高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。バイパス弁(82)の開口による冷媒発生音が抑制される。     Further, according to the seventh aspect, since the flow rate adjusting mechanism (83) is provided in the bypass passage (81), the refrigerant flows from the high pressure side through the bypass valve (82) when the bypass valve (82) is opened. The operation that instantaneously flows to the side can be suppressed. Refrigerant generation noise due to the opening of the bypass valve (82) is suppressed.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〈発明の実施形態1〉
図1〜3に示すように、本実施形態の調湿装置(10)は、室内空気の除湿と加湿とを行うものであり、扁平な中空直方体状のケーシング(11)を備えている。そして、このケーシング(11)には、冷媒回路(60)等が収納され、該冷媒回路(60)は、第1吸着熱交換器(61)及び第2吸着熱交換器(62)の他、圧縮機(63)等を備えている。
<Embodiment 1>
As shown in FIGS. 1-3, the humidity control apparatus (10) of this embodiment performs dehumidification and humidification of indoor air, and is provided with the flat hollow rectangular parallelepiped casing (11). The casing (11) contains a refrigerant circuit (60) and the like. The refrigerant circuit (60) includes the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62), It has a compressor (63).

上記第1吸着熱交換器(61)及び第2吸着熱交換器(62)は、図3に示すように、それぞれクロスフィン式のフィン・アンド・チューブ型熱交換器によって第1熱交換器及び第2熱交換器を構成している。上記第1吸着熱交換器(61)及び第2吸着熱交換器(62)は、長方形板状に形成されたアルミニウム製の多数のフィン(6a)と、該フィン(6a)を貫通する銅製の伝熱管(6b)とを備えている。上記フィン(6a)の外表面には、例えばゼオライト等の吸着剤が担持されている。そして、上記第1吸着熱交換器(61)が第1吸着部材を構成し、第2吸着熱交換器(62)が第2吸着部材を構成している。     As shown in FIG. 3, the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62) are each a first heat exchanger and a cross fin type fin-and-tube heat exchanger. The 2nd heat exchanger is comprised. The first adsorptive heat exchanger (61) and the second adsorptive heat exchanger (62) are made of a large number of aluminum fins (6a) formed in a rectangular plate shape and made of copper penetrating the fins (6a). And a heat transfer tube (6b). For example, an adsorbent such as zeolite is supported on the outer surface of the fin (6a). The first adsorption heat exchanger (61) constitutes a first adsorption member, and the second adsorption heat exchanger (62) constitutes a second adsorption member.

次に、図2に基づいて、ケーシング(11)の内部構造について説明する。なお、図2(B)においては、下側がケーシング(11)の正面側であって、上側がケーシング(11)の背面側である。また、以下の説明における「右」「左」「上」「下」は、何れも参照する図面におけるものを意味する。     Next, the internal structure of the casing (11) will be described with reference to FIG. In FIG. 2B, the lower side is the front side of the casing (11) and the upper side is the back side of the casing (11). In the following description, “right”, “left”, “upper”, and “lower” all refer to those in the referenced drawings.

上記ケーシング(11)は、平面視が概ね正方形状で扁平な箱型に形成されている。このケーシング(11)においては、左側面板(12)と右側面板(13)とが、また正面板(14)と背面板(15)とがそれぞれケーシング(11)の厚さ方向に位置して互いに対向する2つの端面を構成している。上記左側面板(12)には、背面板(15)寄りに室外空気吸込口(21)が形成され、正面板(14)寄りに室内空気吸込口(22)が形成されている。一方、上記ケーシング(11)の右側面板(13)には、背面板(15)寄りに排気吹出口(23)が形成され、正面板(14)寄りに給気吹出口(24)が形成されている。そして、上記室外空気吸込口(21)及び室内空気吸込口(22)が空気の流入口を構成し、排気吹出口(23)及び給気吹出口(24)が空気の流出口を構成している。     The casing (11) is formed in a flat box shape with a substantially square shape in plan view. In this casing (11), the left side plate (12) and the right side plate (13), and the front plate (14) and the back plate (15) are positioned in the thickness direction of the casing (11) and are mutually connected. Two opposing end faces are formed. The left side plate (12) has an outdoor air inlet (21) near the back plate (15), and an indoor air inlet (22) near the front plate (14). On the other hand, the right side plate (13) of the casing (11) is formed with an exhaust outlet (23) closer to the rear plate (15) and an air supply outlet (24) closer to the front plate (14). ing. The outdoor air inlet (21) and the indoor air inlet (22) constitute an air inlet, and the exhaust outlet (23) and the air supply outlet (24) constitute an air outlet. Yes.

上記ケーシング(11)の内部には、左右方向の中心部よりも右側面板(13)寄りに第1仕切板(31)が立設されている。上記ケーシング(11)の内部空間(16)は、第1仕切板(31)によって左右に仕切られている。そして、この第1仕切板(31)の右側が第1空間(17)となり、第1仕切板(31)の左側が第2空間(18)となっている。     A first partition plate (31) is erected in the casing (11) closer to the right side plate (13) than the central portion in the left-right direction. The internal space (16) of the casing (11) is partitioned left and right by the first partition plate (31). The right side of the first partition (31) is the first space (17), and the left side of the first partition (31) is the second space (18).

上記ケーシング(11)の第1空間(17)は、第7仕切板(37)によって正面側の空間と背面側の空間とに仕切られている。上記第1空間(17)における背面側の空間には、冷媒回路(60)の圧縮機(63)と排気ファン(26)とが配置されている。また、図示しないが、この背面側の空間には、冷媒回路(60)の膨張弁(65)や四路切換弁(64)も配置されている。一方、上記第1空間(17)における正面側の空間には、給気ファン(25)が配置されている。上記排気ファン(26)は排気吹出口(23)に接続され、上記給気ファン(25)は給気吹出口(24)に接続されている。     The first space (17) of the casing (11) is partitioned into a front-side space and a back-side space by a seventh partition plate (37). A compressor (63) and an exhaust fan (26) of the refrigerant circuit (60) are disposed in the space on the back side in the first space (17). Although not shown, an expansion valve (65) and a four-way switching valve (64) of the refrigerant circuit (60) are also arranged in the space on the back side. On the other hand, an air supply fan (25) is arranged in the space on the front side in the first space (17). The exhaust fan (26) is connected to the exhaust outlet (23), and the air supply fan (25) is connected to the air supply outlet (24).

上記ケーシング(11)の第2空間(18)には、第2仕切板(32)と第3仕切板(33)と第6仕切板(36)とが設けられている。上記第2仕切板(32)は正面板(14)寄りに立設され、第3仕切板(33)は背面板(15)寄りに立設されている。そして、上記第2空間(18)は、第2仕切板(32)及び第3仕切板(33)により、正面側から背面側に向かって3つの空間に仕切られている。上記第6仕切板(36)は、第2仕切板(32)と第3仕切板(33)に挟まれた空間に設けられている。この第6仕切板(36)は、第2空間(18)の左右方向の中央に立設されている。     A second partition plate (32), a third partition plate (33), and a sixth partition plate (36) are provided in the second space (18) of the casing (11). The second partition plate (32) is erected closer to the front plate (14), and the third partition plate (33) is erected closer to the rear plate (15). The second space (18) is partitioned into three spaces from the front side to the back side by the second partition plate (32) and the third partition plate (33). The sixth partition plate (36) is provided in a space between the second partition plate (32) and the third partition plate (33). The sixth partition plate (36) is erected at the center in the left-right direction of the second space (18).

上記第2仕切板(32)と第3仕切板(33)に挟まれた空間は、第6仕切板(36)によって左右に仕切られる。このうち、右側の空間は、第1熱交換室(41)を構成しており、その内部に第1吸着熱交換器(61)が配置されている。一方、左側の空間は、第2熱交換室(42)を構成しており、その内部に第2吸着熱交換器(62)が配置されている。つまり、上記第1熱交換室(41)と第2熱交換室(42)とは、隣接して配置されている。そして、上記第1熱交換室(41)が第1処理空間を構成し、第2熱交換室(42)が第2処理空間を構成している。     The space sandwiched between the second partition plate (32) and the third partition plate (33) is partitioned left and right by the sixth partition plate (36). Among these, the space on the right side constitutes the first heat exchange chamber (41), and the first adsorption heat exchanger (61) is disposed therein. On the other hand, the left space constitutes the second heat exchange chamber (42), and the second adsorption heat exchanger (62) is disposed therein. That is, the first heat exchange chamber (41) and the second heat exchange chamber (42) are disposed adjacent to each other. The first heat exchange chamber (41) constitutes a first processing space, and the second heat exchange chamber (42) constitutes a second processing space.

上記第2空間(18)のうち第3仕切板(33)とケーシング(11)の背面板(15)に挟まれた空間には、第5仕切板(35)が設けられている。この第5仕切板(35)は、空間の高さ方向の中央部を横断するように設けられ、空間を上下に仕切っている(図2(A)を参照)。そして、上記第5仕切板(35)の上側の空間が第1流入路(43)を構成し、下側の空間が第1流出路(44)を構成している。また、上記第1流入路(43)は室外空気吸込口(21)に連通し、第1流出路(44)は排気ファン(26)を介して排気吹出口(23)に連通している。     A fifth partition plate (35) is provided in a space between the third partition plate (33) and the back plate (15) of the casing (11) in the second space (18). The fifth partition plate (35) is provided so as to cross the central portion in the height direction of the space, and partitions the space up and down (see FIG. 2A). The upper space of the fifth partition plate (35) constitutes the first inflow passage (43), and the lower space constitutes the first outflow passage (44). The first inflow passage (43) communicates with the outdoor air inlet (21), and the first outflow passage (44) communicates with the exhaust outlet (23) via the exhaust fan (26).

一方、上記第2空間(18)のうち第2仕切板(32)とケーシング(11)の正面板(14)に挟まれた空間には、第4仕切板(34)が設けられている。この第4仕切板(34)は、空間の高さ方向の中央部を横断するように設けられ、空間を上下に仕切っている(図2(C)を参照)。そして、上記第4仕切板(34)の上側の空間が第2流入路(45)を構成し、下側の空間が第2流出路(46)を構成している。また、上記第2流入路(45)は室内空気吸込口(22)に連通し、第2流出路(46)は給気ファン(25)を介して給気吹出口(24)に連通している。     On the other hand, a fourth partition plate (34) is provided in a space between the second partition plate (32) and the front plate (14) of the casing (11) in the second space (18). This 4th partition plate (34) is provided so that the center part of the height direction of a space may be crossed, and the space is partitioned up and down (refer FIG.2 (C)). The upper space of the fourth partition plate (34) constitutes the second inflow passage (45), and the lower space constitutes the second outflow passage (46). The second inflow passage (45) communicates with the indoor air inlet (22), and the second outflow passage (46) communicates with the air supply outlet (24) via the air supply fan (25). Yes.

このように、上記第1流入路(43)と第1流出路(44)とは、第1熱交換室(41)と第2熱交換室(42)とが連続する第1の側面としての第3仕切板(33)に沿って重畳して配置されている。一方、上記第2流入路(45)と第2流出路(46)とは、第1熱交換室(41)と第2熱交換室(42)との第3仕切板(33)に対向する第2の側面としての第2仕切板(32)に沿って重畳して配置されている。また、上記第1流入路(43)及び第2流入路(45)は流入通路を構成し、上記第1流出路(44)及び第2流出路(46)は流出通路を構成している。     Thus, the first inflow passage (43) and the first outflow passage (44) serve as a first side surface in which the first heat exchange chamber (41) and the second heat exchange chamber (42) are continuous. It arrange | positions so that it may overlap along a 3rd partition plate (33). On the other hand, the second inflow passage (45) and the second outflow passage (46) face the third partition plate (33) of the first heat exchange chamber (41) and the second heat exchange chamber (42). It arrange | positions so that it may overlap along the 2nd partition plate (32) as a 2nd side surface. The first inflow passage (43) and the second inflow passage (45) constitute an inflow passage, and the first outflow passage (44) and the second outflow passage (46) constitute an outflow passage.

上記第3仕切板(33)には、4つの開口(51〜54)が形成されている(図2(A)を参照)。この4つの開口(51〜54)は、行列方向に近接して位置し、つまり、上下左右に2つずつ升目状に配置されている。そして、上記第1開口(51)は、第1流入路(43)と第1熱交換室(41)とを連通させ、上記第2開口(52)は、第1流入路(43)と第2熱交換室(42)とを連通させている。また、上記第3開口(53)は、第1流出路(44)と第1熱交換室(41)とを連通させ、上記第4開口(54)は、第1流出路(44)と第2熱交換室(42)とを連通させている。     Four openings (51 to 54) are formed in the third partition plate (33) (see FIG. 2A). The four openings (51 to 54) are located close to each other in the matrix direction, that is, two openings are arranged in a grid pattern on the top, bottom, left, and right. The first opening (51) communicates the first inflow passage (43) and the first heat exchange chamber (41), and the second opening (52) communicates with the first inflow passage (43) and the first heat exchange chamber (41). 2 The heat exchange chamber (42) is in communication. The third opening (53) communicates the first outflow passage (44) and the first heat exchange chamber (41), and the fourth opening (54) communicates with the first outflow passage (44) and the first heat exchange chamber (41). 2 The heat exchange chamber (42) is in communication.

上記第2仕切板(32)には、4つの開口(55〜58)が形成されている(図2(C)を参照)。この4つの開口(55〜58)は、行列方向に近接して位置し、つまり、上下左右に2つずつ升目状に配置されている。そして、上記第5開口(55)は、第2流入路(45)と第1熱交換室(41)とを連通させ、上記第6開口(56)は、第2流入路(45)と第2熱交換室(42)とを連通させている。また、上記第7開口(57)は、第2流出路(46)と第1熱交換室(41)とを連通させ、上記第8開口(58)は、第2流出路(46)と第2熱交換室(42)とを連通させている。     Four openings (55 to 58) are formed in the second partition plate (32) (see FIG. 2C). These four openings (55 to 58) are located close to each other in the matrix direction, that is, two openings are arranged in a grid pattern on the top, bottom, left, and right. The fifth opening (55) communicates the second inflow channel (45) and the first heat exchange chamber (41), and the sixth opening (56) communicates with the second inflow channel (45) and the first heat exchange chamber (41). 2 The heat exchange chamber (42) is in communication. The seventh opening (57) communicates the second outflow passage (46) with the first heat exchange chamber (41), and the eighth opening (58) communicates with the second outflow passage (46). 2 The heat exchange chamber (42) is in communication.

図4〜図7に示すように、上記8つの開口(51〜58)には、それぞれ開閉して空気の流通と遮断とを切り換える開閉手段に構成されたダンパ(71〜78)が設けられている。つまり、これらのダンパ(71〜78)は、各流入路(43,45)及び各流出路(44,46)と各熱交換室(41,42)との区画部である第2仕切板(32)と第3仕切板(33)とに設けられている。     As shown in FIGS. 4 to 7, the eight openings (51 to 58) are provided with dampers (71 to 78) each configured as an opening / closing means that opens and closes and switches between air flow and blockage. Yes. That is, these dampers (71 to 78) are provided with a second partition plate (partition between the inflow passages (43, 45) and the outflow passages (44, 46) and the heat exchange chambers (41, 42)). 32) and the third partition plate (33).

具体的に、上記第1開口(51)及び第2開口(52)には第1ダンパ(71)及び第2ダンパ(72)が設けられ、この第1ダンパ(71)と第2ダンパ(72)とが互いに隣り合って配置されている。上記第3開口(53)及び第4開口(54)には第3ダンパ(73)及び第4ダンパ(74)が設けられ、この第3ダンパ(73)と第4ダンパ(74)とが互いに隣り合って配置されている。上記第5開口(55)及び第6開口(56)には第5ダンパ(75)及び第6ダンパ(76)が設けられ、この第5ダンパ(75)と第6ダンパ(76)とが互いに隣り合って配置されている。上記第7開口(57)及び第8開口(58)には第7ダンパ(77)及び第8ダンパ(78)が設けられ、この第7ダンパ(77)と第8ダンパ(78)とが互いに隣り合って配置されている。     Specifically, the first opening (51) and the second opening (52) are provided with a first damper (71) and a second damper (72), and the first damper (71) and the second damper (72). Are arranged next to each other. The third opening (53) and the fourth opening (54) are provided with a third damper (73) and a fourth damper (74), and the third damper (73) and the fourth damper (74) are mutually connected. They are placed next to each other. The fifth opening (55) and the sixth opening (56) are provided with a fifth damper (75) and a sixth damper (76), and the fifth damper (75) and the sixth damper (76) are mutually connected. They are placed next to each other. A seventh damper (77) and an eighth damper (78) are provided in the seventh opening (57) and the eighth opening (58), and the seventh damper (77) and the eighth damper (78) are mutually connected. They are placed next to each other.

次に、上記冷媒回路(60)について、図1に基づいて説明する。     Next, the refrigerant circuit (60) will be described with reference to FIG.

上記冷媒回路(60)は、圧縮機(63)と四路切換弁(64)と第1吸着熱交換器(61)と膨張弁(65)と第2吸着熱交換器(62)とが順に冷媒配管(6c)によって接続されて閉回路に構成されている。この冷媒回路(60)は、充填された冷媒が循環して蒸気圧縮式の冷凍サイクルを行うように構成されている。     The refrigerant circuit (60) includes a compressor (63), a four-way switching valve (64), a first adsorption heat exchanger (61), an expansion valve (65), and a second adsorption heat exchanger (62) in this order. It is connected to the refrigerant pipe (6c) to form a closed circuit. The refrigerant circuit (60) is configured to perform a vapor compression refrigeration cycle by circulating the filled refrigerant.

上記四路切換弁(64)は、冷媒回路(60)の冷媒の循環方向を切り換える切換機構を構成している。具体的に、上記四路切換弁(64)の第1のポートには、圧縮機(63)の吐出管(6d)が接続され、第2のポートには、圧縮機(63)の吸入管(6e)が接続されている。また、上記四路切換弁(64)の第3のポートには、第1吸着熱交換器(61)の一端が接続され、第4のポートには、第2吸着熱交換器(62)の一端が接続されている。そして、上記冷媒回路(60)は、四路切換弁(64)によって冷媒循環が可逆に構成されている。     The four-way selector valve (64) constitutes a switching mechanism for switching the refrigerant circulation direction in the refrigerant circuit (60). Specifically, the discharge port (6d) of the compressor (63) is connected to the first port of the four-way selector valve (64), and the suction pipe of the compressor (63) is connected to the second port. (6e) is connected. One end of the first adsorption heat exchanger (61) is connected to the third port of the four-way switching valve (64), and the fourth port of the second adsorption heat exchanger (62). One end is connected. The refrigerant circuit (60) is configured such that the refrigerant circulation is reversible by the four-way switching valve (64).

また、上記膨張弁(65)は、冷媒を膨張させる膨張機構を構成している。     The expansion valve (65) constitutes an expansion mechanism for expanding the refrigerant.

上記冷媒回路(60)は、蒸発器となる第2吸着熱交換器(62)又は第1吸着熱交換器(61)において、空気中の水分が吸着剤に吸着される際に生じる吸着熱を冷媒が吸熱する。また、上記冷媒回路(60)は、凝縮器となる第1吸着熱交換器(61)又は第2吸着熱交換器(62)において、冷媒が吸着剤を加熱し、該吸着剤から水分を脱離させる。     In the second adsorption heat exchanger (62) or the first adsorption heat exchanger (61) serving as an evaporator, the refrigerant circuit (60) generates adsorption heat generated when moisture in the air is adsorbed by the adsorbent. The refrigerant absorbs heat. In the first adsorption heat exchanger (61) or the second adsorption heat exchanger (62) serving as a condenser, the refrigerant circuit (60) heats the adsorbent and removes moisture from the adsorbent. Let go.

上記冷媒回路(60)は、第1吸着熱交換器(61)又は第2吸着熱交換器(62)における水分の吸着と脱離とを第1吸着熱交換器(61)と第2吸着熱交換器(62)とで交互に行って空気の除湿又は加湿を連続して行うように構成されている。     The refrigerant circuit (60) performs the adsorption and desorption of moisture in the first adsorption heat exchanger (61) or the second adsorption heat exchanger (62) with the first adsorption heat exchanger (61) and the second adsorption heat. It is configured to alternately perform dehumidification or humidification of air by alternately performing with the exchanger (62).

更に、上記冷媒回路(60)は、コントローラ(70)によって制御されている。該コントローラ(70)は、循環切換手段(71)と差圧低減手段(80)とが設けられている。     Furthermore, the refrigerant circuit (60) is controlled by a controller (70). The controller (70) is provided with a circulation switching means (71) and a differential pressure reducing means (80).

上記循環切換手段(71)は、第1吸着熱交換器(61)及び第2吸着熱交換器(62)で水分の吸着と脱離とを交互に行うために、上記四路切換弁(64)を切り換えて冷媒回路(60)の冷媒の循環方向を切り換えるように構成されている。上記循環切換手段(71)は、例えば、四路切換弁(64)を3分毎に切り換えるように構成されている。     The circulation switching means (71) includes the four-way switching valve (64) in order to alternately adsorb and desorb moisture in the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62). ) To switch the circulation direction of the refrigerant in the refrigerant circuit (60). The circulation switching means (71) is configured to switch the four-way switching valve (64) every 3 minutes, for example.

上記差圧低減手段(80)は、循環切換手段(71)の循環の切り換え前に、つまり、四路切換弁(64)を切り換える前に、冷媒回路(60)の高圧側と低圧側との差圧を低減するように構成されている。具体的に、上記差圧低減手段(80)は、圧縮機(63)を停止するように構成され、循環切換手段(71)の四路切換弁(64)の切り換え前に圧縮機(63)を所定時間停止させ、四路切換弁(64)の切り換え後に圧縮機(63)の運転を再開させるように構成されている。     The differential pressure reducing means (80) is connected between the high pressure side and the low pressure side of the refrigerant circuit (60) before switching the circulation of the circulation switching means (71), that is, before switching the four-way switching valve (64). It is configured to reduce the differential pressure. Specifically, the differential pressure reducing means (80) is configured to stop the compressor (63), and before the switching of the four-way switching valve (64) of the circulation switching means (71), the compressor (63) Is stopped for a predetermined time, and after the four-way switching valve (64) is switched, the operation of the compressor (63) is resumed.

上記差圧低減手段(80)は、圧縮機(63)を停止させることによって冷媒回路(60)の高圧側と低圧側との差圧を小さくし、切り換え時の冷媒発生音を抑制するようにしている。     The differential pressure reducing means (80) reduces the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) by stopping the compressor (63), and suppresses refrigerant generation noise during switching. ing.

−運転動作−
次に、上記調湿装置(10)の調湿動作について説明する。この調湿装置(10)では、除湿運転と加湿運転とが切り換え可能になっている。
-Driving action-
Next, the humidity control operation of the humidity control apparatus (10) will be described. In the humidity control apparatus (10), the dehumidifying operation and the humidifying operation can be switched.

《除湿運転》
この除湿運転時において、調湿装置(10)では、給気ファン(25)及び排気ファン(26)が運転される。そして、この調湿装置(10)は、室外空気(OA)を第1空気として取り込んで室内に供給する一方、室内空気(RA)を第2空気として取り込んで室外に排出する。
《Dehumidification operation》
During the dehumidifying operation, the air supply fan (25) and the exhaust fan (26) are operated in the humidity control apparatus (10). The humidity control apparatus (10) takes outdoor air (OA) as the first air and supplies it to the room, while taking in the indoor air (RA) as the second air and discharges it to the outside.

先ず、除湿運転時の第1動作について、図1及び図4を参照しながら説明する。この第1動作では、第1吸着熱交換器(61)において吸着剤の再生が行われ、第2吸着熱交換器(62)において第1空気である室外空気(OA)の除湿が行われる。     First, the first operation during the dehumidifying operation will be described with reference to FIGS. 1 and 4. In this first operation, the adsorbent is regenerated in the first adsorption heat exchanger (61), and the outdoor air (OA), which is the first air, is dehumidified in the second adsorption heat exchanger (62).

上記第1動作時において、冷媒回路(60)では、四路切換弁(64)が図1実線に示す状態に切り換えられる。この状態で圧縮機(63)を運転すると、冷媒回路(60)で冷媒が循環し、第1吸着熱交換器(61)が凝縮器となって第2吸着熱交換器(62)が蒸発器となる第1冷凍サイクル動作が行われる。     During the first operation, in the refrigerant circuit (60), the four-way selector valve (64) is switched to the state shown by the solid line in FIG. When the compressor (63) is operated in this state, the refrigerant circulates in the refrigerant circuit (60), the first adsorption heat exchanger (61) becomes a condenser, and the second adsorption heat exchanger (62) becomes an evaporator. The first refrigeration cycle operation is performed.

具体的に、上記圧縮機(63)から吐出された冷媒は、第1吸着熱交換器(61)で放熱して凝縮し、その後に膨張弁(65)へ送られて減圧される。この減圧された冷媒は、第2吸着熱交換器(62)で吸熱して蒸発し、その後に圧縮機(63)へ吸入されて圧縮される。そして、この圧縮された冷媒は、再び圧縮機(63)から吐出される。     Specifically, the refrigerant discharged from the compressor (63) dissipates heat in the first adsorption heat exchanger (61) and condenses, and then is sent to the expansion valve (65) to be depressurized. The decompressed refrigerant absorbs heat and evaporates in the second adsorption heat exchanger (62), and is then sucked into the compressor (63) and compressed. Then, the compressed refrigerant is discharged again from the compressor (63).

また、上記第1動作時において、各開口(51〜58)のダンパ(71〜78)を切り換えることにより、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とを開口状態とし、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とを閉鎖状態とする。そして、図4に示すように、第1吸着熱交換器(61)へ第2空気としての室内空気(RA)が供給され、第2吸着熱交換器(62)へ第1空気としての室外空気(OA)が供給される。     In the first operation, the second opening (52), the third opening (53), the fifth opening (55), and the second opening (51) are switched by switching the dampers (71 to 78) of the openings (51 to 58). The eight openings (58) are in the open state, and the first opening (51), the fourth opening (54), the sixth opening (56), and the seventh opening (57) are in the closed state. Then, as shown in FIG. 4, indoor air (RA) as second air is supplied to the first adsorption heat exchanger (61), and outdoor air as the first air is supplied to the second adsorption heat exchanger (62). (OA) is supplied.

具体的に、上記室内空気吸込口(22)より流入した第2空気は、第2流入路(45)から第5開口(55)を通って第1熱交換室(41)へ送り込まれる。この第1熱交換室(41)では、第2空気が第1吸着熱交換器(61)を上から下へ向かって通過する。この第1吸着熱交換器(61)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。この吸着剤から脱離した水分は、第1吸着熱交換器(61)を通過する第2空気に放出される。この第1吸着熱交換器(61)で水分を付与された第2空気は、第1熱交換室(41)から第3開口(53)を通って第1流出路(44)へ流出する。その後、第2空気は、排気ファン(26)へ吸い込まれ、排気吹出口(23)から排出空気(EA)として室外へ排出される。     Specifically, the 2nd air which flowed in from the said indoor air suction inlet (22) is sent into a 1st heat exchange chamber (41) through a 5th opening (55) from a 2nd inflow path (45). In the first heat exchange chamber (41), the second air passes through the first adsorption heat exchanger (61) from top to bottom. In the first adsorption heat exchanger (61), the adsorbent supported on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is released to the second air passing through the first adsorption heat exchanger (61). The second air given moisture in the first adsorption heat exchanger (61) flows out from the first heat exchange chamber (41) through the third opening (53) to the first outflow passage (44). Thereafter, the second air is sucked into the exhaust fan (26), and discharged from the exhaust outlet (23) to the outside as exhaust air (EA).

一方、上記室外空気吸込口(21)より流入した第1空気は、第1流入路(43)から第2開口(52)を通って第2熱交換室(42)へ送り込まれる。この第2熱交換室(42)では、第1空気が第2吸着熱交換器(62)を上から下へ向かって通過する。この第2吸着熱交換器(62)では、外表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。上記第2吸着熱交換器(62)で除湿された第1空気は、第2熱交換室(42)から第8開口(58)を通って第2流出路(46)へ流出する。その後、第1空気は、給気ファン(25)へ吸い込まれ、給気吹出口(24)から供給空気(SA)として室内へ供給される。     On the other hand, the 1st air which flowed in from the said outdoor air suction inlet (21) is sent into a 2nd heat exchange chamber (42) through a 2nd opening (52) from a 1st inflow path (43). In the second heat exchange chamber (42), the first air passes from the top to the bottom through the second adsorption heat exchanger (62). In the second adsorption heat exchanger (62), moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. The first air dehumidified in the second adsorption heat exchanger (62) flows out from the second heat exchange chamber (42) through the eighth opening (58) to the second outflow passage (46). Thereafter, the first air is sucked into the air supply fan (25) and is supplied into the room as supply air (SA) from the air supply outlet (24).

次に、上記除湿運転時の第2動作について、図1及び図5を参照しながら説明する。この第2動作では、第2吸着熱交換器(62)において吸着剤の再生が行われ、第1吸着熱交換器(61)において第1空気である室外空気(OA)の除湿が行われる。     Next, the second operation during the dehumidifying operation will be described with reference to FIGS. In the second operation, the adsorbent is regenerated in the second adsorption heat exchanger (62), and the outdoor air (OA) that is the first air is dehumidified in the first adsorption heat exchanger (61).

この第2動作時において、冷媒回路(60)では、四路切換弁(64)が図1破線に示す状態に切り換えられる。この状態で圧縮機(63)を運転すると、冷媒回路(60)で冷媒が循環し、第1吸着熱交換器(61)が蒸発器となって第2吸着熱交換器(62)が凝縮器となる第2冷凍サイクル動作が行われる。     During this second operation, in the refrigerant circuit (60), the four-way selector valve (64) is switched to the state shown by the broken line in FIG. When the compressor (63) is operated in this state, the refrigerant circulates in the refrigerant circuit (60), the first adsorption heat exchanger (61) becomes an evaporator, and the second adsorption heat exchanger (62) becomes a condenser. The second refrigeration cycle operation is performed.

具体的に、上記圧縮機(63)から吐出された冷媒は、第2吸着熱交換器(62)で放熱して凝縮し、その後に膨張弁(65)へ送られて減圧される。この減圧された冷媒は、第1吸着熱交換器(61)で吸熱して蒸発し、その後に圧縮機(63)へ吸入されて圧縮される。そして、この圧縮された冷媒は、再び圧縮機(63)から吐出される。     Specifically, the refrigerant discharged from the compressor (63) dissipates heat and condenses in the second adsorption heat exchanger (62), and then is sent to the expansion valve (65) to be depressurized. The decompressed refrigerant absorbs heat and evaporates in the first adsorption heat exchanger (61), and is then sucked into the compressor (63) and compressed. Then, the compressed refrigerant is discharged again from the compressor (63).

また、上記第2動作時において、各開口(51〜58)のダンパ(71〜78)を切り換えることにより、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とを開口状態とし、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とを閉鎖状態とする。そして、図5に示すように、第1吸着熱交換器(61)へ第1空気としての室外空気(OA)が供給され、第2吸着熱交換器(62)へ第2空気としての室内空気(RA)が供給される。     In the second operation, the first opening (51), the fourth opening (54), the sixth opening (56), and the first opening (51) are switched by switching the dampers (71 to 78) of the openings (51 to 58). 7 opening (57) is made into an open state, and 2nd opening (52), 3rd opening (53), 5th opening (55), and 8th opening (58) are made into a closed state. Then, as shown in FIG. 5, outdoor air (OA) as first air is supplied to the first adsorption heat exchanger (61), and indoor air as second air is supplied to the second adsorption heat exchanger (62). (RA) is supplied.

具体的に、上記室内空気吸込口(22)より流入した第2空気は、第2流入路(45)から第6開口(56)を通って第2熱交換室(42)へ送り込まれる。この第2熱交換室(42)では、第2空気が第2吸着熱交換器(62)を上から下へ向かって通過する。この第2吸着熱交換器(62)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。この吸着剤から脱離した水分は、第2吸着熱交換器(62)を通過する第2空気に放出される。上記第2吸着熱交換器(62)で水分を付与された第2空気は、第2熱交換室(42)から第4開口(54)を通って第1流出路(44)へ流出する。その後、第2空気は、排気ファン(26)へ吸い込まれ、排気吹出口(23)から排出空気(EA)として室外へ排出される。     Specifically, the 2nd air which flowed in from the above-mentioned indoor air suction opening (22) is sent into the 2nd heat exchange room (42) through the 6th opening (56) from the 2nd inflow passage (45). In the second heat exchange chamber (42), the second air passes through the second adsorption heat exchanger (62) from top to bottom. In the second adsorption heat exchanger (62), the adsorbent supported on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is released to the second air passing through the second adsorption heat exchanger (62). The second air given moisture in the second adsorption heat exchanger (62) flows out from the second heat exchange chamber (42) through the fourth opening (54) to the first outflow passage (44). Thereafter, the second air is sucked into the exhaust fan (26), and discharged from the exhaust outlet (23) to the outside as exhaust air (EA).

一方、上記室外空気吸込口(21)より流入した第1空気は、第1流入路(43)から第1開口(51)を通って第1熱交換室(41)へ送り込まれる。この第1熱交換室(41)では、第1空気が第1吸着熱交換器(61)を上から下へ向かって通過する。この第1吸着熱交換器(61)では、外表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。上記第1吸着熱交換器(61)で除湿された第1空気は、第1熱交換室(41)から第7開口(57)を通って第2流出路(46)へ流出する。その後、第1空気は、給気ファン(25)へ吸い込まれ、給気吹出口(24)から供給空気(SA)として室内へ供給される。     On the other hand, the 1st air which flowed in from the said outdoor air inlet (21) is sent into a 1st heat exchange chamber (41) through a 1st inlet (51) through a 1st opening (51). In the first heat exchange chamber (41), the first air passes through the first adsorption heat exchanger (61) from top to bottom. In the first adsorption heat exchanger (61), moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. The first air dehumidified by the first adsorption heat exchanger (61) flows out from the first heat exchange chamber (41) through the seventh opening (57) to the second outflow passage (46). Thereafter, the first air is sucked into the air supply fan (25) and is supplied into the room as supply air (SA) from the air supply outlet (24).

《加湿運転》
上記加湿運転時において、調湿装置(10)では、給気ファン(25)及び排気ファン(26)が運転される。そして、この調湿装置(10)は、室内空気(RA)を第1空気として取り込んで室外に排出する一方、室外空気(OA)を第2空気として取り込んで室内に供給する。
《Humidification operation》
During the humidification operation, the air supply fan (25) and the exhaust fan (26) are operated in the humidity control apparatus (10). And this humidity control apparatus (10) takes in indoor air (RA) as 1st air, and discharges it outside, while taking in outdoor air (OA) as 2nd air and supplies it indoors.

先ず、加湿運転時の第1動作について、図1及び図6を参照しながら説明する。この第1動作では、第1吸着熱交換器(61)において第2空気である室外空気(OA)の加湿が行われ、第2吸着熱交換器(62)において第1空気である室内空気(RA)から水分の回収が行われる。上記第1動作時においては、冷媒回路(60)の四路切換弁(64)が図1実線に示す状態に切り換えられ、第1冷凍サイクル動作が行われる。     First, the first operation during the humidifying operation will be described with reference to FIGS. 1 and 6. In this first operation, the outdoor air (OA) that is the second air is humidified in the first adsorption heat exchanger (61), and the indoor air that is the first air in the second adsorption heat exchanger (62) ( The water is recovered from (RA). During the first operation, the four-way switching valve (64) of the refrigerant circuit (60) is switched to the state shown by the solid line in FIG. 1, and the first refrigeration cycle operation is performed.

また、上記第1動作時において、各開口(51〜58)のダンパ(71〜78)を切り換えることにより、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とを開口状態とし、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とを閉鎖状態とする。そして、図6に示すように、第1吸着熱交換器(61)には第2空気としての室外空気(OA)が供給され、第2吸着熱交換器(62)には第1空気としての室内空気(RA)が供給される。     In the first operation, the first opening (51), the fourth opening (54), the sixth opening (56), and the first opening are switched by switching the dampers (71 to 78) of the openings (51 to 58). 7 opening (57) is made into an open state, and 2nd opening (52), 3rd opening (53), 5th opening (55), and 8th opening (58) are made into a closed state. Then, as shown in FIG. 6, outdoor air (OA) as second air is supplied to the first adsorption heat exchanger (61), and first air is supplied to the second adsorption heat exchanger (62). Room air (RA) is supplied.

具体的に、上記室内空気吸込口(22)より流入した第1空気は、第2流入路(45)から第6開口(56)を通って第2熱交換室(42)へ送り込まれる。この第2熱交換室(42)では、第1空気が第2吸着熱交換器(62)を上から下へ向かって通過する。この第2吸着熱交換器(62)では、外表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第1空気は、第4開口(54)、第1流出路(44)、排気ファン(26)を順に通過し、排出空気(EA)として排気吹出口(23)から室外へ排出される。     Specifically, the 1st air which flowed in from the said indoor air suction inlet (22) is sent into a 2nd heat exchange chamber (42) through a 6th opening (56) from a 2nd inflow path (45). In the second heat exchange chamber (42), the first air passes from the top to the bottom through the second adsorption heat exchanger (62). In the second adsorption heat exchanger (62), moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. Thereafter, the first air deprived of moisture passes through the fourth opening (54), the first outflow passage (44), and the exhaust fan (26) in this order, and from the exhaust outlet (23) as exhaust air (EA). It is discharged outside the room.

一方、上記室外空気吸込口(21)より流入した第2空気は、第1流入路(43)から第1開口(51)を通って第1熱交換室(41)へ送り込まれる。この第1熱交換室(41)では、第2空気が第1吸着熱交換器(61)を上から下へ向かって通過する。この第1吸着熱交換器(61)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。この吸着剤から脱離した水分は、第1吸着熱交換器(61)を通過する第2空気に放出される。その後、加湿された第2空気は、第7開口(57)、第2流出路(46)、給気ファン(25)を順に通過し、供給空気(SA)として給気吹出口(24)から室内へ供給される。     On the other hand, the 2nd air which flowed in from the said outdoor air suction inlet (21) is sent into a 1st heat exchange chamber (41) through a 1st inflow path (43) through a 1st opening (51). In the first heat exchange chamber (41), the second air passes through the first adsorption heat exchanger (61) from top to bottom. In the first adsorption heat exchanger (61), the adsorbent supported on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is released to the second air passing through the first adsorption heat exchanger (61). Thereafter, the humidified second air sequentially passes through the seventh opening (57), the second outflow passage (46), and the air supply fan (25), and is supplied as supply air (SA) from the air supply outlet (24). Supplied indoors.

次に、上記加湿運転時の第2動作について、図1及び図7を参照しながら説明する。この第2動作では、第2吸着熱交換器(62)において第2空気である室外空気(OA)の加湿が行われ、第1吸着熱交換器(61)において第1空気である室内空気(RA)から水分の回収が行われる。上記第2動作時においては、冷媒回路(60)の四路切換弁(64)が図1破線に示す状態に切り換えられ、第2冷凍サイクル動作が行われる。     Next, the second operation during the humidification operation will be described with reference to FIGS. In the second operation, the outdoor air (OA), which is the second air, is humidified in the second adsorption heat exchanger (62), and the indoor air (the first air, in the first adsorption heat exchanger (61)). The water is recovered from (RA). During the second operation, the four-way selector valve (64) of the refrigerant circuit (60) is switched to the state shown by the broken line in FIG. 1, and the second refrigeration cycle operation is performed.

また、上記第2動作時において、各開口(51〜58)のダンパ(71〜78)を切り換えることにより、第2開口(52)と第3開口(53)と第5開口(55)と第8開口(58)とを開口状態とし、第1開口(51)と第4開口(54)と第6開口(56)と第7開口(57)とを閉鎖状態とする。そして、図7に示すように、第1吸着熱交換器(61)には第1空気としての室内空気(RA)が供給され、第2吸着熱交換器(62)には第2空気としての室外空気(OA)が供給される。     In the second operation, the second opening (52), the third opening (53), the fifth opening (55), and the second opening (51) are switched by switching the dampers (71 to 78) of the openings (51 to 58). The eight openings (58) are in the open state, and the first opening (51), the fourth opening (54), the sixth opening (56), and the seventh opening (57) are in the closed state. Then, as shown in FIG. 7, the first adsorption heat exchanger (61) is supplied with indoor air (RA) as the first air, and the second adsorption heat exchanger (62) as the second air. Outdoor air (OA) is supplied.

具体的に、上記室内空気吸込口(22)より流入した第1空気は、第2流入路(45)から第5開口(55)を通って第1熱交換室(41)に送り込まれる。この第1熱交換室(41)では、第1空気が第1吸着熱交換器(61)を上から下に向かって通過する。この第1吸着熱交換器(61)では、外表面に担持された吸着剤に第1空気中の水分が吸着される。その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第1空気は、第3開口(53)、第1流出路(44)、排気ファン(26)を順に通過し、排出空気(EA)として排気吹出口(23)から室外へ排出される。     Specifically, the 1st air which flowed in from the said indoor air suction inlet (22) is sent into a 1st heat exchange chamber (41) through a 5th opening (55) from a 2nd inflow path (45). In the first heat exchange chamber (41), the first air passes from the top to the bottom through the first adsorption heat exchanger (61). In the first adsorption heat exchanger (61), moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. Thereafter, the first air deprived of moisture passes through the third opening (53), the first outflow passage (44), and the exhaust fan (26) in this order, and is discharged from the exhaust outlet (23) as exhaust air (EA). It is discharged outside the room.

一方、上記室外空気吸込口(21)より流入した第2空気は、第1流入路(43)から第2開口(52)を通って第2熱交換室(42)に送り込まれる。この第2熱交換室(42)では、第2空気が第2吸着熱交換器(62)を上から下へ向かって通過する。この第2吸着熱交換器(62)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤から水分が脱離する。この吸着剤から脱離した水分は、第2吸着熱交換器(62)を通過する第2空気に付与される。その後、加湿された第2空気は、第8開口(58)、第2流出路(46)、給気ファン(25)を順に通過し、供給空気(SA)として給気吹出口(24)から室内へ供給される。     On the other hand, the 2nd air which flowed in from the said outdoor air suction inlet (21) is sent into a 2nd heat exchange chamber (42) through a 2nd opening (52) from a 1st inflow path (43). In the second heat exchange chamber (42), the second air passes through the second adsorption heat exchanger (62) from top to bottom. In the second adsorption heat exchanger (62), the adsorbent supported on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The moisture desorbed from the adsorbent is given to the second air passing through the second adsorption heat exchanger (62). Thereafter, the humidified second air sequentially passes through the eighth opening (58), the second outflow passage (46), and the air supply fan (25), and serves as supply air (SA) from the air supply outlet (24). Supplied indoors.

《四路切換弁(64)の切換制御》
次に、上記四路切換弁(64)の具体的な切換制御について説明する。
<Switching control of four-way switching valve (64)>
Next, specific switching control of the four-way switching valve (64) will be described.

上述したように、除湿運転時において、第1動作と第2動作とを交互に切り換える一方、加湿運転時において、第1動作と第2動作とを交互に切り換える。この切換は、循環切換手段(71)が、例えば、3分毎に四路切換弁(64)を切り換えて行う。     As described above, the first operation and the second operation are alternately switched during the dehumidifying operation, while the first operation and the second operation are alternately switched during the humidifying operation. This switching is performed by the circulation switching means (71), for example, by switching the four-way switching valve (64) every 3 minutes.

この切り換える際、差圧低減手段(80)が循環切換手段(71)の四路切換弁(64)の切り換える前に、圧縮機(63)を所定時間停止させ、四路切換弁(64)の切り換え後に圧縮機(63)の運転を再開させる。この差圧低減手段(80)による圧縮機(63)の停止によって冷媒回路(60)の高圧側と低圧側との差圧が小さくなり、冷媒が高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。この結果、切り換え時の冷媒発生音が抑制される。     At the time of switching, before the differential pressure reducing means (80) switches the four-way switching valve (64) of the circulation switching means (71), the compressor (63) is stopped for a predetermined time, and the four-way switching valve (64) Restart the compressor (63) after switching. By stopping the compressor (63) by the differential pressure reducing means (80), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced, and the refrigerant flows instantaneously from the high pressure side to the low pressure side. Can be suppressed. As a result, the refrigerant generation noise at the time of switching is suppressed.

−実施形態1の効果−
以上のように、本実施形態によれば、冷媒循環を切り換える前に、冷媒回路(60)の高圧側と低圧側との差圧を小さくするようにしたために、冷媒が高圧側から低圧側へ瞬間的に流れる動作が起こらず、それに伴う冷媒の発生音を防止することができる。特に、切り換え頻度が多い場合においても冷媒の音が問題になることはない。
-Effect of Embodiment 1-
As described above, according to the present embodiment, the refrigerant is changed from the high pressure side to the low pressure side because the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced before switching the refrigerant circulation. The operation that flows instantaneously does not occur, and it is possible to prevent the noise generated by the refrigerant. In particular, even when the switching frequency is high, the sound of the refrigerant does not become a problem.

また、四路切換弁(64)の切り換え前に圧縮機(63)を停止するようにしたために、冷媒回路(60)の高圧側と低圧側との差圧を確実に低減することができるので、切り換え時の冷媒発生音を確実に防止することができる。     In addition, since the compressor (63) is stopped before the four-way switching valve (64) is switched, the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) can be reliably reduced. Thus, it is possible to reliably prevent refrigerant generation noise at the time of switching.

〈発明の実施形態2〉
次に、本発明の実施形態2について詳細に説明する。
<Embodiment 2 of the invention>
Next, Embodiment 2 of the present invention will be described in detail.

本実施形態は、前記実施形態1の差圧低減手段(80)が圧縮機(63)を停止させるようにしたのに代えて、圧縮機(63)の容量を低減するようにしたものである。     In this embodiment, instead of the differential pressure reducing means (80) of Embodiment 1 stopping the compressor (63), the capacity of the compressor (63) is reduced. .

つまり、本実施形態において、圧縮機(63)は、運転容量が可変に構成され、例えば、インバータによって運転周波数が複数段に切り換わるように構成されている。そして、上記差圧低減手段(80)は、四路切換弁(64)の切り換え前に圧縮機(63)の運転周波数を低減し、四路切換弁(64)の切り換え後に圧縮機(63)の運転周波数を戻すように構成されている。     That is, in the present embodiment, the compressor (63) is configured such that the operating capacity is variable, and for example, the operating frequency is switched to a plurality of stages by an inverter. The differential pressure reducing means (80) reduces the operating frequency of the compressor (63) before switching the four-way switching valve (64), and after switching the four-way switching valve (64), the compressor (63) The operation frequency is returned.

したがって、本実施形態によれば、四路切換弁(64)の切り換え前に圧縮機(63)の運転周波数を低減するようにしたために、冷媒回路(60)の高圧側と低圧側との差圧を低減することができるので、切り換え時の冷媒発生音を防止することができる。また、上記圧縮機(63)の運転が継続されているので、調湿能力の低下を抑制することができる。その他の構成、作用及び効果は実施形態1と同様である。     Therefore, according to the present embodiment, since the operating frequency of the compressor (63) is reduced before the switching of the four-way switching valve (64), the difference between the high pressure side and the low pressure side of the refrigerant circuit (60). Since the pressure can be reduced, it is possible to prevent refrigerant generation noise at the time of switching. Moreover, since the operation of the compressor (63) is continued, it is possible to suppress a decrease in humidity control capability. Other configurations, operations, and effects are the same as those in the first embodiment.

〈発明の実施形態3〉
次に、本発明の実施形態3について詳細に説明する。
Embodiment 3 of the Invention
Next, Embodiment 3 of the present invention will be described in detail.

本実施形態は、前記実施形態1の差圧低減手段(80)が圧縮機(63)を停止させるようにしたのに代えて、膨張弁(65)の開度を開くようにしたものである。     In this embodiment, instead of the differential pressure reducing means (80) of Embodiment 1 stopping the compressor (63), the opening of the expansion valve (65) is opened. .

つまり、本実施形態において、膨張弁(65)が開度可変に構成され、例えば、電動弁によって開度が複数段に変化するように構成されている。そして、上記差圧低減手段(80)は、四路切換弁(64)の切り換え前に膨張弁(65)の開度を大きくし、例えば、膨張弁(65)を全開にし、四路切換弁(64)の切り換え後に膨張弁(65)の開度を戻すように構成されている。     That is, in the present embodiment, the expansion valve (65) is configured to have a variable opening, and for example, the opening is configured to change in multiple stages by an electric valve. The differential pressure reducing means (80) increases the opening of the expansion valve (65) before switching the four-way switching valve (64), for example, fully opens the expansion valve (65), and opens the four-way switching valve. The opening of the expansion valve (65) is returned after switching (64).

したがって、本実施形態によれば、四路切換弁(64)の切り換え前に膨張弁(65)の開度を大きくするようにしたために、冷媒回路(60)の高圧側と低圧側との差圧を低減することができるので、切り換え時の冷媒発生音を防止することができる。また、上記圧縮機(63)の運転が継続されているので、調湿能力の低下を抑制することができる。その他の構成、作用及び効果は実施形態1と同様である。     Therefore, according to this embodiment, since the opening degree of the expansion valve (65) is increased before the switching of the four-way switching valve (64), the difference between the high pressure side and the low pressure side of the refrigerant circuit (60). Since the pressure can be reduced, it is possible to prevent refrigerant generation noise at the time of switching. Moreover, since the operation of the compressor (63) is continued, it is possible to suppress a decrease in humidity control capability. Other configurations, operations, and effects are the same as those in the first embodiment.

〈発明の実施形態4〉
次に、本発明の実施形態4について図面に基づいて詳細に説明する。
<Embodiment 4 of the Invention>
Next, a fourth embodiment of the present invention will be described in detail based on the drawings.

本実施形態は、図8に示すように、前記実施形態1の差圧低減手段(80)が圧縮機(63)を停止させるようにしたのに代えて、冷媒が膨張弁(65)をバイパスするようにしたものである。     In this embodiment, as shown in FIG. 8, instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63), the refrigerant bypasses the expansion valve (65). It is what you do.

つまり、本実施形態の差圧低減手段(80)は、バイパス路(81)とバイパス弁(82)と流量調節器(83)とを備えると共に、コントローラ(70)に設けられた弁制御手段(84)を備えている。     That is, the differential pressure reducing means (80) of the present embodiment includes a bypass passage (81), a bypass valve (82), and a flow rate regulator (83), and valve control means ( 84).

上記バイパス路(81)は、両端が膨張弁(65)の両側に接続され、冷媒が膨張弁(65)をバイパスして第1吸着熱交換器(61)と第2吸着熱交換器(62)との間を相互に流れるように構成されている。     The bypass path (81) is connected at both ends to both sides of the expansion valve (65), and the refrigerant bypasses the expansion valve (65) so as to bypass the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62). ) Between each other.

上記バイパス弁(82)は、全開位置と全閉位置とに切り換わる弁で構成され、冷媒のバイパスを行うもので、通常運転時に全閉となる常閉の弁で構成されている。     The bypass valve (82) is configured by a valve that switches between a fully open position and a fully closed position, and bypasses the refrigerant, and is configured by a normally closed valve that is fully closed during normal operation.

上記流量調節器(83)は、キャピラリチューブなどの流量調節機構を構成し、バイパス弁(82)と直列に設けられている。該流量調節器(83)は、バイパス路(81)を流れる冷媒を調節するように構成されている。     The flow rate regulator (83) constitutes a flow rate regulation mechanism such as a capillary tube, and is provided in series with the bypass valve (82). The flow rate regulator (83) is configured to regulate the refrigerant flowing through the bypass passage (81).

上記弁制御手段(84)は、四路切換弁(64)の切り換え前にバイパス弁(82)を開口し、四路切換弁(64)の切り換え後にバイパス弁(82)を閉じるように構成されている。     The valve control means (84) is configured to open the bypass valve (82) before switching the four-way switching valve (64) and close the bypass valve (82) after switching the four-way switching valve (64). ing.

したがって、除湿運転時及び加湿運転時において、第1動作と第2動作とを交互に切り換える際、循環切換手段(71)の四路切換弁(64)の切り換える前に、弁制御手段(84)がバイパス弁(82)を開口させ、四路切換弁(64)の切り換え後にバイパス弁(82)を閉じる。この弁制御手段(84)によるバイパス弁(82)の開口によって冷媒回路(60)の高圧側と低圧側との差圧が小さくなり、冷媒が高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。この結果、切り換え時の冷媒発生音が抑制される。     Accordingly, when the first operation and the second operation are alternately switched during the dehumidifying operation and the humidifying operation, before the four-way switching valve (64) of the circulation switching means (71) is switched, the valve control means (84) Opens the bypass valve (82) and closes the bypass valve (82) after switching the four-way switching valve (64). The opening of the bypass valve (82) by the valve control means (84) reduces the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60), and suppresses the instantaneous flow of refrigerant from the high pressure side to the low pressure side. can do. As a result, the refrigerant generation noise at the time of switching is suppressed.

また、本実施形態によれば、バイパス路(81)に流量調節器(83)を設けているので、バイパス弁(82)の開口時に冷媒がバイパス弁(82)を介して高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。この結果、バイパス弁(82)の開口による冷媒発生音が抑制される。その他の構成、作用及び効果は実施形態1と同様である。     According to the present embodiment, since the flow rate regulator (83) is provided in the bypass passage (81), the refrigerant flows from the high pressure side to the low pressure side via the bypass valve (82) when the bypass valve (82) is opened. It is possible to suppress the movement that flows instantaneously. As a result, refrigerant generation noise due to the opening of the bypass valve (82) is suppressed. Other configurations, operations, and effects are the same as those in the first embodiment.

尚、本実施形態においては、流量調節器(83)にキャピラリチューブを適用したが、流量調節機構として開度調整自在な電動弁などを適用してもよい。その際、バイパス弁(82)を開度調節自在な弁で構成し、バイパス弁(82)が流量調節器(83)としての流量調節機能を有するようにしてもよい。     In the present embodiment, the capillary tube is applied to the flow rate regulator (83), but an electric valve with adjustable opening may be applied as the flow rate adjustment mechanism. At this time, the bypass valve (82) may be configured as a valve whose opening degree is adjustable, and the bypass valve (82) may have a flow rate adjusting function as the flow rate regulator (83).

また、本実施形態では、バイパス路(81)に流量調節器(83)を設けたが、バイパス路(81)の径等によって流量を調節するようにしてもよく、その際、流量調節器(83)を省略するようにしてもよい。     In the present embodiment, the flow rate regulator (83) is provided in the bypass passage (81). However, the flow rate may be adjusted by the diameter of the bypass passage (81). 83) may be omitted.

〈発明の実施形態5〉
次に、本発明の実施形態5について図面に基づいて詳細に説明する。
<Embodiment 5 of the Invention>
Next, a fifth embodiment of the present invention will be described in detail based on the drawings.

本実施形態は、図9に示すように、前記実施形態4の冷媒が膨張弁(65)をバイパスするのに代えて、冷媒が圧縮機(63)の吐出側から吸入側にバイパスするようにしたものである。     In the present embodiment, as shown in FIG. 9, the refrigerant in the fourth embodiment is bypassed from the expansion valve (65) so that the refrigerant bypasses from the discharge side to the suction side of the compressor (63). It is a thing.

つまり、本実施形態の差圧低減手段(80)は、実施形態4と同様に、バイパス路(81)とバイパス弁(82)と流量調節器(83)とを備えると共に、コントローラ(70)に設けられた弁制御手段(84)を備えている。     That is, the differential pressure reducing means (80) of the present embodiment includes the bypass passage (81), the bypass valve (82), and the flow rate regulator (83), as in the fourth embodiment, and the controller (70). Provided valve control means (84).

上記バイパス路(81)は、両端が圧縮機(63)の吐出管(6d)と吸入管(6e)とに接続されて圧縮機(63)の吐出側と吸込側とを繋ぎ、冷媒が圧縮機(63)の吐出側から吸入側に流れるように構成されている。上記バイパス弁(82)、流量調節器(83)及び弁制御手段(84)は、実施形態4と同様である。     The bypass path (81) is connected at both ends to the discharge pipe (6d) and suction pipe (6e) of the compressor (63) to connect the discharge side and suction side of the compressor (63), and the refrigerant is compressed. The machine (63) is configured to flow from the discharge side to the suction side. The bypass valve (82), the flow rate regulator (83), and the valve control means (84) are the same as those in the fourth embodiment.

したがって、除湿運転時及び加湿運転時において、第1動作と第2動作とを交互に切り換える際、循環切換手段(71)の四路切換弁(64)の切り換える前に、弁制御手段(84)がバイパス弁(82)を開口させ、四路切換弁(64)の切り換え後にバイパス弁(82)を閉じる。この弁制御手段(84)によるバイパス弁(82)の開口によって冷媒が圧縮機(63)の吐出側から吸入側に流れるので、冷媒回路(60)の高圧側と低圧側との差圧が小さくなり、冷媒が高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。この結果、切り換え時の冷媒発生音が抑制される。     Accordingly, when the first operation and the second operation are alternately switched during the dehumidifying operation and the humidifying operation, before the four-way switching valve (64) of the circulation switching means (71) is switched, the valve control means (84) Opens the bypass valve (82) and closes the bypass valve (82) after switching the four-way switching valve (64). Since the refrigerant flows from the discharge side to the suction side of the compressor (63) by the opening of the bypass valve (82) by the valve control means (84), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is small. Thus, the operation of the refrigerant flowing instantaneously from the high pressure side to the low pressure side can be suppressed. As a result, the refrigerant generation noise at the time of switching is suppressed.

また、本実施形態によれば、流量調節器(83)によって、バイパス弁(82)の開口時に冷媒がバイパス弁(82)を介して高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。バイパス弁(82)の開口による冷媒発生音が抑制される。     In addition, according to the present embodiment, the flow regulator (83) suppresses an operation in which the refrigerant instantaneously flows from the high pressure side to the low pressure side via the bypass valve (82) when the bypass valve (82) is opened. Can do. Refrigerant generation noise due to the opening of the bypass valve (82) is suppressed.

尚、本実施形態においても実施形態4と同様に、流量調節機構(83)として開度調整自在な電動弁などを適用してもよく、バイパス弁(82)が流量調節機能を有するようにしてもよい。また、バイパス路(81)の径等によって流量を調節するようにしてもよい。その他の構成、作用及び効果は実施形態4と同様である。     In the present embodiment, as in the fourth embodiment, an electric valve or the like whose opening degree can be adjusted may be applied as the flow rate adjusting mechanism (83), and the bypass valve (82) has a flow rate adjusting function. Also good. Further, the flow rate may be adjusted by the diameter of the bypass passage (81). Other configurations, operations, and effects are the same as those in the fourth embodiment.

〈発明の実施形態6〉
次に、本発明の実施形態6について図面に基づいて詳細に説明する。
<Sixth Embodiment of the Invention>
Next, a sixth embodiment of the present invention will be described in detail based on the drawings.

本実施形態は、図10に示すように、前記実施形態1の差圧低減手段(80)が圧縮機(63)を停止させるようにしたのに代えて、差圧低減手段(80)が冷媒循環量を低減するようにしたものである。     In the present embodiment, as shown in FIG. 10, the differential pressure reducing means (80) is replaced with a refrigerant instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63). The amount of circulation is reduced.

つまり、本実施形態の差圧低減手段(80)は、常時ガス冷媒が流れるガス管である圧縮機(63)の吸入管(6e)に設けられた開閉弁(85)を備えると共に、コントローラ(70)に設けられた弁制御手段(84)を備えている。     That is, the differential pressure reducing means (80) of the present embodiment includes an on-off valve (85) provided in the suction pipe (6e) of the compressor (63), which is a gas pipe through which gas refrigerant always flows, and a controller ( 70) provided with a valve control means (84).

上記開閉弁(85)は、全開位置と全閉位置とに切り換わる弁で構成され、四路切換弁(64)の第2ポートと圧縮機(63)の吸込口との間に設けられ、通常運転時に全開となる常開の弁で構成されている。     The on-off valve (85) is composed of a valve that switches between a fully open position and a fully closed position, and is provided between the second port of the four-way selector valve (64) and the suction port of the compressor (63), It consists of a normally open valve that is fully open during normal operation.

上記弁制御手段(84)は、四路切換弁(64)の切り換え前に開閉弁(85)を閉鎖し、四路切換弁(64)の切り換え後に開閉弁(85)を開くように構成されている。     The valve control means (84) is configured to close the opening / closing valve (85) before switching the four-way switching valve (64) and to open the opening / closing valve (85) after switching the four-way switching valve (64). ing.

したがって、除湿運転時及び加湿運転時において、第1動作と第2動作とを交互に切り換える際、循環切換手段(71)の四路切換弁(64)の切り換える前に、弁制御手段(84)が開閉弁(85)を閉鎖し、四路切換弁(64)の切り換え後に開閉弁(85)を開く。この弁制御手段(84)による開閉弁(85)の閉鎖によって該開閉弁(85)より上流側が高圧状態に維持される。     Accordingly, when the first operation and the second operation are alternately switched during the dehumidifying operation and the humidifying operation, before the four-way switching valve (64) of the circulation switching means (71) is switched, the valve control means (84) Closes the on-off valve (85) and opens the on-off valve (85) after switching the four-way selector valve (64). By closing the on-off valve (85) by the valve control means (84), the upstream side of the on-off valve (85) is maintained in a high pressure state.

つまり、上記圧縮機(63)の吐出側から四路切換弁(64)、第1吸着熱交換器(61)、膨張弁(65)及び第2吸着熱交換器(62)を経た開閉弁(85)までが高圧状態に維持される。よって、冷媒回路(60)の高圧側と低圧側との差圧が小さくなり、四路切換弁(64)の切り換え時において、冷媒が高圧側から低圧側へ瞬間的に流れる動作を抑制することができる。この結果、切り換え時の冷媒発生音が抑制される。     That is, the on-off valve (4) from the discharge side of the compressor (63) through the four-way switching valve (64), the first adsorption heat exchanger (61), the expansion valve (65) and the second adsorption heat exchanger (62). Up to 85) is maintained at high pressure. Therefore, the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced, and when the four-way selector valve (64) is switched, the operation of the instantaneous flow of refrigerant from the high pressure side to the low pressure side is suppressed. Can do. As a result, the refrigerant generation noise at the time of switching is suppressed.

また、本実施形態では、圧縮機(63)に吸入される冷媒が抑制されるので、液冷媒のが圧縮機(63)に戻る液バックが確実に防止することができる。その他の構成、作用及び効果は実施形態1と同様である。     Further, in the present embodiment, since the refrigerant sucked into the compressor (63) is suppressed, liquid back in which the liquid refrigerant returns to the compressor (63) can be reliably prevented. Other configurations, operations, and effects are the same as those in the first embodiment.

尚、本実施形態は、圧縮機(63)の吸入管(6e)に開閉弁(85)を設けたが、吸入管(6e)の開閉弁(85)に代えて、図10に1点鎖線で示すように、常時ガス冷媒が流れるガス管である圧縮機(63)の吐出管(6d)に開閉弁(85)を設けてもよい。     In the present embodiment, the on-off valve (85) is provided in the suction pipe (6e) of the compressor (63). However, instead of the on-off valve (85) of the suction pipe (6e), FIG. As shown, the on-off valve (85) may be provided in the discharge pipe (6d) of the compressor (63), which is a gas pipe through which gas refrigerant always flows.

つまり、上記開閉弁(85)は、圧縮機(63)と四路切換弁(64)の第1ポートとの間に設けられている。この場合、開閉弁(85)を閉じると、開閉弁(85)から四路切換弁(64)、第1吸着熱交換器(61)、膨張弁(65)及び第2吸着熱交換器(62)を経た圧縮機(63)の吸入側までが低圧状態に維持される。     That is, the on-off valve (85) is provided between the compressor (63) and the first port of the four-way switching valve (64). In this case, when the on-off valve (85) is closed, the on-off valve (85) to the four-way switching valve (64), the first adsorption heat exchanger (61), the expansion valve (65), and the second adsorption heat exchanger (62 ) Through the suction side of the compressor (63) is maintained in a low pressure state.

また、上記開閉弁(85)は、全閉に閉じる場合に限られず、開度を小さくし、冷媒循環量を低減するようにしてもよい。     The on-off valve (85) is not limited to being fully closed, and the opening degree may be reduced to reduce the refrigerant circulation amount.

また、本実施形態は、実施形態2などの差圧低減手段(80)を併用するようにしてもよい。     In the present embodiment, the differential pressure reducing means (80) such as the second embodiment may be used in combination.

〈その他の実施形態〉
本発明は、上記各実施形態について、以下のような構成としてもよい。
<Other embodiments>
The present invention may be configured as follows for each of the above embodiments.

上記各実施形態の切換機構(64)は、四路切換弁(64)としたが、ブリッジ回路と該ブリッジ回路に設けられた4つの弁によって冷媒循環方向を切り換えるようにしてもよい。この場合においても弁の開閉による冷媒循環方向の切り換え時の冷媒発生音を低減することができる。     Although the switching mechanism (64) in each of the above embodiments is the four-way switching valve (64), the refrigerant circulation direction may be switched by a bridge circuit and four valves provided in the bridge circuit. Even in this case, it is possible to reduce the refrigerant generation sound when the refrigerant circulation direction is switched by opening and closing the valve.

また、上記差圧低減手段(80)は、圧縮機(63)等の復帰を切換機構(64)の切り換え後に行うようにしたが、圧縮機(63)の復帰やバイパス弁(82)の復帰は、切換機構(64)の切り換え直前であってもよく、要するに、切り換え時の冷媒発生を抑制しうる冷媒圧力状態であればよい。     The differential pressure reducing means (80) is such that the compressor (63) and the like are restored after the switching mechanism (64) is switched, but the compressor (63) and the bypass valve (82) are restored. May be immediately before the switching of the switching mechanism (64), in short, as long as the refrigerant pressure state can suppress the generation of refrigerant at the time of switching.

以上説明したように、本発明は、冷媒循環方向を切り換えて水分の吸着と脱離とを行う調湿装置について有用であり、特に、吸着剤が担持された熱交換器を有する調湿装置に適している。     As described above, the present invention is useful for a humidity control apparatus that performs adsorption and desorption of moisture by switching the refrigerant circulation direction, and particularly for a humidity control apparatus having a heat exchanger carrying an adsorbent. Are suitable.

実施形態1の調湿装置の冷媒回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit of the humidity control apparatus of Embodiment 1. 実施形態1の調湿装置を示す概略構成図である。It is a schematic block diagram which shows the humidity control apparatus of Embodiment 1. 実施形態1の吸着熱交換器を示す斜視図である。It is a perspective view which shows the adsorption heat exchanger of Embodiment 1. FIG. 実施形態1の除湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in the 1st operation | movement of the dehumidification driving | operation of Embodiment 1. 実施形態1の除湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in 2nd operation | movement of the dehumidification driving | operation of Embodiment 1. 実施形態1の加湿運転の第1動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in the 1st operation | movement of the humidification driving | operation of Embodiment 1. 実施形態1の加湿運転の第2動作における空気の流れを示す調湿装置の概略構成図である。It is a schematic block diagram of the humidity control apparatus which shows the flow of the air in 2nd operation | movement of the humidification driving | operation of Embodiment 1. 実施形態4の調湿装置の冷媒回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit of the humidity control apparatus of Embodiment 4. 実施形態5の調湿装置の冷媒回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit of the humidity control apparatus of Embodiment 5. 実施形態6の調湿装置の冷媒回路を示す回路図である。It is a circuit diagram which shows the refrigerant circuit of the humidity control apparatus of Embodiment 6.

符号の説明Explanation of symbols

10 調湿装置
60 冷媒回路
61 第1吸着熱交換器(第1熱交換器)
62 第2吸着熱交換器(第2熱交換器)
63 圧縮機
64 四路切換弁(切換機構)
65 膨張弁(膨張機構)
70 コントローラ
71 循環切換手段
80 差圧低減手段
81 バイパス路
82 バイパス弁
83 流量調節器(流量調節機構)
84 弁制御手段
85 開閉弁
10 Humidity control device
60 Refrigerant circuit
61 First adsorption heat exchanger (first heat exchanger)
62 Second adsorption heat exchanger (second heat exchanger)
63 Compressor
64 Four-way selector valve (switching mechanism)
65 Expansion valve (expansion mechanism)
70 controller
71 Circulation switching means
80 Means to reduce differential pressure
81 Bypass
82 Bypass valve
83 Flow controller (Flow control mechanism)
84 Valve control means
85 On-off valve

Claims (8)

圧縮機(63)と切換機構(64)と第1熱交換器(61)と膨張機構(65)と第2熱交換器(62)とが接続されて冷媒循環が可逆に構成され、蒸気圧縮式冷凍サイクルを行う冷媒回路(60)を備え、
上記第1熱交換器(61)及び第2熱交換器(62)の表面に、水分の吸着及び脱離を行う吸着剤が担持された調湿装置であって、
上記第1熱交換器(61)及び第2熱交換器(62)で水分の吸着と脱離とを交互に行うために、上記切換機構(64)を切り換えて冷媒回路(60)の冷媒の循環方向を切り換える循環切換手段(71)と、
該循環切換手段(71)の循環切り換え前に、冷媒回路(60)の高圧側と低圧側との差圧を低減する差圧低減手段(80)とを備えている
ことを特徴とする調湿装置。
The compressor (63), the switching mechanism (64), the first heat exchanger (61), the expansion mechanism (65), and the second heat exchanger (62) are connected so that the refrigerant circulation is reversible, and the vapor compression Equipped with a refrigerant circuit (60) that performs a refrigerating cycle,
A humidity control apparatus in which an adsorbent that adsorbs and desorbs moisture is supported on the surfaces of the first heat exchanger (61) and the second heat exchanger (62),
In order to alternately perform the adsorption and desorption of moisture in the first heat exchanger (61) and the second heat exchanger (62), the switching mechanism (64) is switched to change the refrigerant in the refrigerant circuit (60). Circulation switching means (71) for switching the circulation direction;
Humidity adjustment characterized by comprising differential pressure reducing means (80) for reducing the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) before the circulation switching of the circulation switching means (71). apparatus.
請求項1において、
上記差圧低減手段(80)は、圧縮機(63)を停止するように構成されている
ことを特徴とする調湿装置。
In claim 1,
The humidity control apparatus, wherein the differential pressure reducing means (80) is configured to stop the compressor (63).
請求項1において、
上記圧縮機(63)は、容量可変に構成され、
上記差圧低減手段(80)は、圧縮機(63)の運転容量を低減するように構成されている
ことを特徴とする調湿装置。
In claim 1,
The compressor (63) has a variable capacity,
The humidity control apparatus, wherein the differential pressure reducing means (80) is configured to reduce an operating capacity of the compressor (63).
請求項1において、
上記膨張機構(65)は、開度可変の膨張弁で構成され、
上記差圧低減手段(80)は、膨張弁の開度を開くように構成されている
ことを特徴とする調湿装置。
In claim 1,
The expansion mechanism (65) is composed of an expansion valve with variable opening,
The humidity control apparatus, wherein the differential pressure reducing means (80) is configured to open an opening of the expansion valve.
請求項1において、
上記差圧低減手段(80)は、膨張機構(65)をバイパスするバイパス路(81)と、該バイパス路(81)に設けられた常閉のバイパス弁(82)とを備え、循環切換手段(71)の循環切り換え前にバイパス弁(82)を開口するように構成されている
ことを特徴とする調湿装置。
In claim 1,
The differential pressure reducing means (80) includes a bypass passage (81) that bypasses the expansion mechanism (65) and a normally closed bypass valve (82) provided in the bypass passage (81), and a circulation switching means. A humidity control apparatus configured to open the bypass valve (82) before switching the circulation of (71).
請求項1において、
上記差圧低減手段(80)は、圧縮機(63)の吐出側と吸込側とを繋ぐバイパス路(81)と、該バイパス路(81)に設けられた常閉のバイパス弁(82)とを備え、循環切換手段(71)の循環切り換え前にバイパス弁(82)を開口するように構成されている
ことを特徴とする調湿装置。
In claim 1,
The differential pressure reducing means (80) includes a bypass passage (81) connecting the discharge side and the suction side of the compressor (63), and a normally closed bypass valve (82) provided in the bypass passage (81). The humidity control apparatus is characterized in that the bypass valve (82) is opened before the circulation switching of the circulation switching means (71).
請求項5又は6において、
上記差圧低減手段(80)は、バイパス路(81)に設けられた流量調節機構(83)を備えている
ことを特徴とする調湿装置。
In claim 5 or 6,
The said pressure difference reducing means (80) is equipped with the flow volume adjustment mechanism (83) provided in the bypass (81), The humidity control apparatus characterized by the above-mentioned.
請求項1において、
上記差圧低減手段(80)は、圧縮機(63)に接続されて常時ガス冷媒が流れるガス管(6b,6c)に設けられた常開の開閉弁(85)を備え、循環切換手段(71)の循環切り換え前に開閉弁(85)を閉じるように構成されている
ことを特徴とする調湿装置。
In claim 1,
The differential pressure reducing means (80) includes a normally open on-off valve (85) provided in a gas pipe (6b, 6c) connected to the compressor (63) and through which a gas refrigerant always flows. 71) A humidity control device configured to close the on-off valve (85) before switching to circulation.
JP2004101597A 2004-03-31 2004-03-31 Humidity controller Pending JP2005283041A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004101597A JP2005283041A (en) 2004-03-31 2004-03-31 Humidity controller
PCT/JP2005/005965 WO2005095868A1 (en) 2004-03-31 2005-03-29 Moisture conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101597A JP2005283041A (en) 2004-03-31 2004-03-31 Humidity controller

Publications (1)

Publication Number Publication Date
JP2005283041A true JP2005283041A (en) 2005-10-13

Family

ID=35063864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101597A Pending JP2005283041A (en) 2004-03-31 2004-03-31 Humidity controller

Country Status (2)

Country Link
JP (1) JP2005283041A (en)
WO (1) WO2005095868A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109096A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
WO2013008570A1 (en) * 2011-07-11 2013-01-17 ダイキン工業 株式会社 Humidity adjustment device
JP2013076476A (en) * 2011-09-29 2013-04-25 Daikin Industries Ltd Humidity controller
WO2013136714A1 (en) * 2012-03-14 2013-09-19 ダイキン工業株式会社 Humidity control equipment
JP2013194964A (en) * 2012-03-16 2013-09-30 Daikin Industries Ltd Humidity control device
JP2015048978A (en) * 2013-09-02 2015-03-16 ダイキン工業株式会社 Humidity controller
WO2018163422A1 (en) * 2017-03-10 2018-09-13 三菱電機株式会社 Refrigeration cycle device
CN109126374A (en) * 2017-06-27 2019-01-04 中国石油化工股份有限公司 A kind of rotary valve type adsorption system
KR102056852B1 (en) * 2014-01-27 2019-12-17 한온시스템 주식회사 Air conditioning system for automotive vehicles
JP2021012015A (en) * 2020-10-14 2021-02-04 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2785060T3 (en) 2010-03-25 2020-10-05 Mitsubishi Electric Corp Air conditioning device
US20190154270A1 (en) * 2017-11-22 2019-05-23 Evolving Living Innovation Center E.L.I.C. S.r.l. Heat pump apparatus for air renewal in domestic rooms and the method of operation thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981465A (en) * 1982-10-29 1984-05-11 シャープ株式会社 Heat pump type refrigeration cycle
KR920001142A (en) * 1990-06-01 1992-01-30 강진구 Compressor control method of air conditioner
JP2597634Y2 (en) * 1993-03-17 1999-07-12 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air-conditioning heat pump system
JPH09250847A (en) * 1996-03-14 1997-09-22 Toshiba Corp Freezing cycle
JP3782248B2 (en) * 1999-03-25 2006-06-07 三菱電機株式会社 Air conditioner and control method thereof
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device
JP2003240391A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Air conditioner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109096A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
CN103649646A (en) * 2011-07-11 2014-03-19 大金工业株式会社 Humidity adjustment device
WO2013008570A1 (en) * 2011-07-11 2013-01-17 ダイキン工業 株式会社 Humidity adjustment device
JP2013036731A (en) * 2011-07-11 2013-02-21 Daikin Industries Ltd Humidity adjustment device
CN103649646B (en) * 2011-07-11 2015-03-25 大金工业株式会社 Humidity adjustment device
US8915451B2 (en) 2011-07-11 2014-12-23 Daikin Industries, Ltd. Humidity adjustment device
JP2013076476A (en) * 2011-09-29 2013-04-25 Daikin Industries Ltd Humidity controller
JP2013217633A (en) * 2012-03-14 2013-10-24 Daikin Industries Ltd Humidity control equipment
CN104246382B (en) * 2012-03-14 2017-03-08 大金工业株式会社 Humidity control device
CN104246382A (en) * 2012-03-14 2014-12-24 大金工业株式会社 Humidity controller
WO2013136714A1 (en) * 2012-03-14 2013-09-19 ダイキン工業株式会社 Humidity control equipment
US9441844B2 (en) 2012-03-14 2016-09-13 Daikin Industries, Ltd. Humidity controller
JP2013194964A (en) * 2012-03-16 2013-09-30 Daikin Industries Ltd Humidity control device
JP2015048978A (en) * 2013-09-02 2015-03-16 ダイキン工業株式会社 Humidity controller
KR102056852B1 (en) * 2014-01-27 2019-12-17 한온시스템 주식회사 Air conditioning system for automotive vehicles
WO2018163422A1 (en) * 2017-03-10 2018-09-13 三菱電機株式会社 Refrigeration cycle device
JPWO2018163422A1 (en) * 2017-03-10 2019-11-07 三菱電機株式会社 Refrigeration cycle equipment
CN109126374A (en) * 2017-06-27 2019-01-04 中国石油化工股份有限公司 A kind of rotary valve type adsorption system
JP2021012015A (en) * 2020-10-14 2021-02-04 三菱電機株式会社 Refrigeration cycle device
JP7191914B2 (en) 2020-10-14 2022-12-19 三菱電機株式会社 refrigeration cycle equipment

Also Published As

Publication number Publication date
WO2005095868A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP3624910B2 (en) Humidity control device
WO2005095868A1 (en) Moisture conditioning device
WO2010029724A1 (en) Humidity control device
JP5018402B2 (en) Humidity control device
JP3861902B2 (en) Humidity control device
JP3891207B2 (en) Humidity control device
JP2005164165A (en) Air conditioning system
WO2005103577A1 (en) Humidity controller
JP3695417B2 (en) Humidity control device
JP3624893B2 (en) Humidity control device
JP2013190177A (en) Humidity controller
JP4341358B2 (en) Air conditioner
AU2006229152B2 (en) Humidity control system
JP2004060954A (en) Humidity controller
JP4525138B2 (en) Humidity control device
JP4179051B2 (en) Humidity control device
JP2014129950A (en) Humidification unit
JP4179052B2 (en) Humidity control device
JP3668764B2 (en) Humidity control device
JP2004321885A (en) Humidity control element
JP2005164220A (en) Air conditioner
JP4273818B2 (en) Humidity control device
JP3744524B2 (en) Humidity control device
JP2006349326A (en) Humidity conditioner
JP5195216B2 (en) Humidity control system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018