WO2005095868A1 - Moisture conditioning device - Google Patents

Moisture conditioning device Download PDF

Info

Publication number
WO2005095868A1
WO2005095868A1 PCT/JP2005/005965 JP2005005965W WO2005095868A1 WO 2005095868 A1 WO2005095868 A1 WO 2005095868A1 JP 2005005965 W JP2005005965 W JP 2005005965W WO 2005095868 A1 WO2005095868 A1 WO 2005095868A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
switching
compressor
differential pressure
Prior art date
Application number
PCT/JP2005/005965
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuki Matsui
Satoshi Ishida
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2005095868A1 publication Critical patent/WO2005095868A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Definitions

  • the present invention relates to a humidity control apparatus for controlling humidity using an adsorbent, and more particularly to a humidity control apparatus having a refrigerant circuit of a vapor compression refrigeration cycle.
  • a humidity control apparatus using an adsorbent is configured to dehumidify or humidify air by utilizing an adsorbing action and a desorbing action of moisture by the adsorbent.
  • the humidity controller When the amount of water adsorbed by the adsorbent reaches a saturation range, it is necessary for the humidity controller to desorb water and regenerate the water.
  • the adsorption and the regeneration are simply performed alternately, the dehumidification and the regeneration can be performed only intermittently.
  • the regenerating operation is performed between the suction operation and the next suction operation. Therefore, in order to perform the suction operation in a short time, it is necessary to heat the suction member. For this reason, in the humidity control apparatus, the adsorption member is heated by the heat of the refrigerant using the refrigerant circuit of the vapor compression refrigeration cycle.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-028458
  • the condenser of the refrigerant circuit and the adsorbing member are integrated.
  • the configuration is such that the adsorbent is carried on the fins of the condenser.
  • suction using two suction members In order to perform the same operation as switching between the side and the regeneration side alternately, the two heat exchangers of the refrigerant circuit may each be one carrying an adsorbent. This allows efficient operation by switching the circulation direction of the refrigerant in the refrigerant circuit while using heat exchange as the evaporator on the adsorption side and heat exchange as the condenser on the regeneration side. .
  • a four-way switching valve is generally used to switch the direction of circulation of the refrigerant in the refrigerant circuit.
  • the frequency of switching the four-way switching valve is much higher than when the air conditioning device switches between cooling and heating and the refrigeration device performs reverse cycle defrosting operation (for example, Switching may be required every few minutes).
  • the four-way switching valve is switched, a relatively loud noise is generated in the four-way switching valve or the pipe as the refrigerant flows from the high pressure side to the low pressure side.
  • the switching frequency increases, the frequency of sound generation also increases, and driving noise becomes a major problem.
  • the present invention has been made in view of the above point, and has as its object to avoid the problem of noise when switching the refrigerant circulation direction.
  • the first invention comprises a compressor (63), a switching mechanism (64), a first heat exchange (61), an expansion mechanism (65), and a second heat exchange.
  • a refrigerant circuit (60) for performing a vapor compression refrigeration cycle.
  • the refrigerant circuit (60) is connected to the first heat exchanger (61) and the second heat exchanger (62). It is intended for a humidity control device whose surface carries an adsorbent that adsorbs and desorbs moisture. Then, in order to alternately adsorb and desorb moisture in the first heat exchanger (61) and the second heat exchanger (62), the cut-out structure (64) is switched to change the refrigerant circuit (60).
  • a circulation switching means (71) for switching the circulation direction of the refrigerant is provided.
  • a differential pressure reducing means (80) for reducing the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is provided.
  • the differential pressure reducing means (80) is a compressor.
  • (63) is configured to stop.
  • the compressor (63) is configured to have a variable capacity, and the differential pressure reducing means (80) reduces the operating capacity of the compressor (63). Configured to reduce It is.
  • the expansion mechanism (65) is constituted by an expansion valve having a variable opening, and the differential pressure reducing means (80) controls the opening of the expansion valve. It is configured to open.
  • the differential pressure reducing means (80) includes a bypass passage (81) that bypasses the expansion mechanism (65) and a bypass passage (81). And a normally closed bypass valve ( 82 ) provided so that the bypass valve (82) is opened before the circulation switching of the circulation switching means (71).
  • the differential pressure reducing means (80) includes a bypass passage (81) connecting the discharge side and the suction side of the compressor (63), A normally closed bypass valve (82) provided in the bypass passage (81), and configured to open the bypass valve (82) before the circulation switching of the circulation switching means (71).
  • a flow rate adjusting mechanism (83) provided in the pressure difference reducing means (80) force bypass path (81).
  • the differential pressure reducing means (80) is connected to a compressor (63) and has a gas pipe (6b, 6c) through which a gas refrigerant always flows.
  • a normally open / close valve (85) provided in the air conditioner is configured to close the on / off valve (85) before the circulation switching of the circulation switching means (71).
  • the switching mechanism (64) switches the direction of circulation of the refrigerant, and the continuous operation of the dehumidification and the humidification is performed.
  • the differential pressure reducing means (80) switches the cutting configuration (64) of the circulation switching means (71)
  • the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.
  • the operation of the refrigerant flowing instantaneously from the high pressure side to the low pressure side is suppressed.
  • the compressor (63) is stopped for a predetermined time before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71). After the switching of the switching mechanism (64), the operation of the compressor (63) is restarted.
  • the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.
  • the capacity of the compressor (63) is reduced, and After switching to (64), return the capacity of compressor (63).
  • the pressure difference between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by reducing the capacity of the compressor (63) by the differential pressure reducing means (80).
  • the switching mechanism (65) increases the opening of the expansion valve (65). After switching of 64), return the opening of the expansion valve (65).
  • the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by increasing the degree of opening of the expansion valve (65) by the differential pressure reducing means (80).
  • the bypass valve (82) is opened and switched off. After switching the configuration (64), close the binos valve (82). The differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by the opening of the bypass valve (82) by the differential pressure reducing means (80).
  • the amount of refrigerant flowing through the bypass path (81) is adjusted by the flow rate adjusting mechanism (83), and the noise generated by the refrigerant when the bypass valve (82) is switched is suppressed.
  • the on-off valve (85) is closed and the switching mechanism (64) is closed. After switching, open and close valve (85).
  • the on-off valve (85) By closing the on-off valve (85) by the differential pressure reducing means (80), the amount of circulating refrigerant is reduced, and the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.
  • the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced before switching the refrigerant circulation, so that the refrigerant instantaneously moves from the high pressure side to the low pressure side.
  • the operation of flowing the fluid does not occur, and the noise generated by the refrigerant can be prevented.
  • the sound of the refrigerant does not matter even if the switching frequency is high.
  • the compressor (63) is stopped before the switching of the switching mechanism (64).
  • the pressure difference between the high-pressure side and the low-pressure side of the refrigerant circuit (60) can be reliably reduced, so that the generation of refrigerant at the time of switching can be reliably prevented.
  • the flow rate adjusting mechanism (83) is provided in the bypass passage (81), so that the refrigerant gas bypass valve (82) is opened when the bypass valve (82) is opened. It is possible to suppress the operation in which the high-pressure-side force also momentarily flows to the low-pressure side. The sound generated by the refrigerant due to the opening of the bypass valve (82) is suppressed.
  • FIG. 1 is a circuit diagram showing a refrigerant circuit of the humidity control apparatus of the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing a humidity control apparatus of Embodiment 1.
  • FIG. 3 is a perspective view showing an adsorption heat exchanger of the first embodiment.
  • FIG. 4 is a schematic configuration diagram of a humidity control apparatus showing a flow of air in a first operation of the dehumidifying operation of the first embodiment.
  • FIG. 5 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a second operation of the dehumidifying operation of the first embodiment.
  • FIG. 6 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a first operation of the humidification operation of the first embodiment.
  • FIG. 7 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a second operation of the humidification operation of the first embodiment.
  • FIG. 8 is a circuit diagram showing a refrigerant circuit of a humidity control apparatus according to a fourth embodiment.
  • FIG. 9 is a circuit diagram showing a refrigerant circuit of a humidity control apparatus according to a fifth embodiment.
  • FIG. 10 is a circuit diagram showing a refrigerant circuit of a humidity control apparatus according to a sixth embodiment.
  • Second adsorption heat exchanger (second heat exchanger) 64
  • switching mechanism switching mechanism
  • the humidity control apparatus (10) of the present embodiment performs dehumidification and humidification of room air, and includes a flat hollow rectangular parallelepiped casing (11).
  • the casing (11) houses a refrigerant circuit (60) and the like, and the refrigerant circuit (60) includes the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62), Equipped with a compressor (63)!
  • each of the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62) is a cross-fin type fin “and” tube type heat exchanger.
  • the first heat exchanger and the second heat exchanger are configured.
  • the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62) are composed of a number of aluminum fins (6a) formed in a rectangular plate shape, and a copper piercing through the fins (6a). And a heat transfer tube (6b).
  • An adsorbent such as zeolite is supported on the outer surface of the fin (6a).
  • the first adsorption heat exchanger (61) forms a first adsorption member
  • the second adsorption heat exchanger (62) forms a second adsorption member.
  • the lower side is the front side of the casing (11), and the upper side is the rear side of the casing (11).
  • “right”, “left”, “upper”, and “lower” indicate Means in plane.
  • the casing (11) is formed in a flat box shape having a substantially square shape in plan view.
  • the left side plate (12) and the right side plate (13), and the front plate (14) and the rear plate (15) are located in the thickness direction of the casing (11), and are mutually separated. It constitutes two opposing end faces.
  • the left side plate (12) has an outdoor air intake (21) formed near the back plate (15), and an indoor air intake (22) formed near the front plate (14).
  • an exhaust outlet (23) is formed near the back plate (15), and an air supply outlet (24) is formed near the front plate (14).
  • the outdoor air inlet (21) and the indoor air inlet (22) constitute an air inlet
  • the exhaust outlet (23) and the supply air outlet (24) constitute an air outlet. ing.
  • a first partition plate (31) is provided upright toward the right side plate (13) from the center in the left-right direction.
  • the inner space (16) of the casing (11) is divided into right and left by a first partition (31).
  • the right side of the first partition plate (31) becomes the first space (17), and the left side of the first partition plate (31) becomes the second space (18).
  • the first space (17) of the casing (11) is divided into a front space and a back space by a seventh partition plate (37).
  • the compressor (63) and the exhaust fan (26) of the refrigerant circuit (60) are arranged in a space on the back side of the first space (17).
  • an expansion valve (65) and a four-way switching valve (64) of the refrigerant circuit (60) are also arranged in the space on the rear side (not shown).
  • an air supply fan (25) is arranged in a space on the front side in the first space (17).
  • the exhaust fan (26) is connected to an exhaust outlet (23), and the air supply fan (25) is connected to an air outlet (24).
  • a second partition (32), a third partition (33), and a sixth partition (36) are provided in the second space (18) of the casing (11).
  • the second partition plate (32) is set up near the front plate (14), and the third partition plate (33) is set up near the rear plate (15).
  • the second space (18) is partitioned into three spaces by a second partition plate (32) and a third partition plate (33) with a frontal force and a rearward force.
  • the sixth partition plate (36) is provided in a space between the second partition plate (32) and the third partition plate (33).
  • the sixth partition (36) is provided upright at the center in the left-right direction of the second space (18).
  • the space sandwiched between the second partition plate (32) and the third partition plate (33) is partitioned left and right by a sixth partition plate (36).
  • the space on the right side constitutes a first heat exchange chamber (41), in which the first adsorption heat exchanger (61) is arranged.
  • the space on the left side constitutes a second heat exchange chamber (42), in which the second adsorption heat exchange (62) is arranged. That is, the first heat exchange chamber (41) and the second heat exchange chamber (42) are arranged adjacent to each other.
  • the first heat exchange chamber (41) forms a first processing space
  • the second heat exchange chamber (42) forms a second processing space.
  • a fifth partition plate (35) is provided in the space between the third partition plate (33) and the rear plate (15) of the casing (11) in the second space (18).
  • the fifth partition plate (35) is provided so as to cross the center in the height direction of the space, and partitions the space up and down (see FIG. 2 (A)).
  • the space above the fifth partition plate (35) forms a first inflow channel (43), and the space below the fifth partition plate (35) forms a first outflow channel (44).
  • the first inflow path (43) communicates with the outdoor air suction port (21), and the first outflow path (44) communicates with the exhaust air outlet (23) via the exhaust fan (26).
  • a fourth partition (34) is provided in the space between the second partition (32) and the front plate (14) of the casing (11) in the second space (18).
  • the fourth partition plate (34) is provided so as to cross the center in the height direction of the space, and partitions the space up and down (see FIG. 2 (C)).
  • the space above the fourth partition plate (34) forms a second inflow channel (45), and the space below the fourth partition plate (34) forms a second outflow channel (46).
  • the second inflow path (45) communicates with the indoor air suction port (22), and the second outflow path (46) communicates with the air supply outlet (24) via the air supply fan (25). I have.
  • the first inflow path (43) and the first outflow path (44) are connected to the first heat exchange chamber (41) and the second heat exchange chamber (42) by the first heat exchange chamber (42). They are arranged so as to overlap along the third partition plate (33) as a side surface.
  • the second inflow path (45) and the second outflow path (46) face the third partition (33) of the first heat exchange chamber (41) and the second heat exchange chamber (42). They are arranged so as to overlap along a second partition plate (32) as a second side surface.
  • the first inflow path (43) and the second inflow path (45) constitute an inflow path
  • the first outflow path (44) and the second outflow path (46) constitute an outflow path. .
  • openings (51 to 54) are formed in the third partition plate (33) (see Fig. 2 (A)). O
  • the four openings (51 to 54) are arranged in a matrix direction. Are located in close proximity to each other, that is, two squares are arranged vertically and horizontally.
  • the first opening (51) connects the first inflow path (43) to the first heat exchange chamber (41), and the second opening (52) connects the first inflow path (43) to the first inflow path (43). 2 It communicates with the heat exchange chamber (42).
  • the third opening (53) connects the first outflow passage (44) to the first heat exchange chamber (41), and the fourth opening (54) connects the first outflow passage (44) to the first outflow passage (44). 2 Communicates with the heat exchange chamber (42).
  • openings (55 to 58) are formed in the second partition plate (32) (see FIG. 2C). O
  • the four openings (55 to 58) are arranged in a matrix direction. Are located in close proximity to each other, that is, two squares are arranged vertically and horizontally.
  • the fifth opening (55) communicates the second inflow path (45) with the first heat exchange chamber (41), and the sixth opening (56) communicates with the second inflow path (45). 2 It communicates with the heat exchange chamber (42).
  • the seventh opening (57) connects the second outflow passage (46) with the first heat exchange chamber (41), and the eighth opening (58) connects the second outflow passage (46) with the second outflow passage (46). 2 Communicates with the heat exchange chamber (42).
  • dampers (71 to 78) configured as opening / closing means for opening and closing each of the eight openings (51 to 58) to switch between air flow and shutoff are provided. That is, these dampers (71 to 78) are provided with the second partition plate (partition) (partition) between each inflow path (43, 45) and each outflow path (44, 46) and each heat exchange chamber (41, 42). 32) and the third partition plate (33).
  • a first damper (71) and a second damper (72) are provided in the first opening (51) and the second opening (52), respectively.
  • Two dampers (72) are arranged adjacent to each other.
  • the third opening (53) and the fourth opening (54) are provided with a third damper (73) and a fourth damper (74), and the third damper (73) and the fourth damper (74) are mutually connected. They are located next to each other.
  • the fifth opening (55) and the sixth opening (56) are provided with a fifth damper (75) and a sixth damper (76), and the fifth damper (75) and the sixth damper (76) are mutually connected. They are located next to each other.
  • the seventh opening (57) and the eighth opening (58) are provided with a seventh damper (77) and an eighth damper (78), and the seventh damper (77) and the eighth damper (78) are mutually connected. They are located next to each other.
  • the refrigerant circuit (60) will be described with reference to FIG.
  • the refrigerant circuit (60) includes a compressor (63), a four-way switching valve (64), a first adsorption heat exchange (61), an expansion valve (65), and a second adsorption heat exchange (62). They are sequentially connected by a refrigerant pipe (6c) to form a closed circuit.
  • the refrigerant circuit (60) is configured such that the charged refrigerant circulates to perform a vapor compression refrigeration cycle.
  • the four-way switching valve (64) constitutes a switching mechanism for switching the circulation direction of the refrigerant in the refrigerant circuit (60). Specifically, a discharge pipe (6d) of a compressor (63) is connected to a first port of the four-way switching valve (64), and a suction pipe of the compressor (63) is connected to a second port. (6e) is connected. One end of the first adsorption heat exchange (61) is connected to the third port of the four-way switching valve (64), and one end of the second adsorption heat exchange (62) is connected to the fourth port. Is connected. In the refrigerant circuit (60), the circulation of the refrigerant is reversible by the four-way switching valve (64).
  • the expansion valve (65) constitutes an expansion mechanism for expanding the refrigerant.
  • the refrigerant circuit (60) includes an adsorbent generated when water in the air is adsorbed by the adsorbent in the second adsorption heat exchange (62) or the first adsorption heat exchanger (61) serving as an evaporator.
  • the refrigerant absorbs heat.
  • the refrigerant heats the adsorbent and removes moisture from the adsorbent.
  • the refrigerant circuit (60) is configured to perform the adsorption and desorption of moisture in the first adsorption heat exchanger (61) or the second adsorption heat exchanger (62) with the first adsorption heat exchange (61).
  • the second adsorption heat exchange (62) is performed alternately to continuously dehumidify or humidify the air.
  • the refrigerant circuit (60) is controlled by a controller (70).
  • the controller (70) is provided with circulation switching means (71) and differential pressure reducing means (80).
  • the differential pressure reducing means (80) is provided before the circulation switching of the circulation switching means (71), that is, Before switching the four-way switching valve (64), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.
  • the differential pressure reducing means (80) is configured to stop the compressor (63), and before the four-way switching valve (64) of the circulation switching means (71) switches the compressor (63). ) Is stopped for a predetermined time, and after the four-way switching valve (64) is switched, the operation of the compressor (63) is restarted.
  • the first air that has flowed in from the outdoor air suction port (21) is sent from the first inflow path (43) to the second heat exchange chamber (42) through the second opening (52).
  • the first air passes upward through the second adsorption heat exchanger (62).
  • the second adsorption heat exchange (62) moisture in the first air is adsorbed on the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the second adsorption heat exchanger (62) flows out of the second heat exchange chamber (42) through the eighth opening (58) to the second outflow path (46). Thereafter, the first air is sucked into the air supply fan (25), and is supplied from the air supply outlet (24) to the room as supply air (SA).
  • the refrigerant discharged from the compressor (63) is condensed by releasing heat in the second adsorption heat exchanger (62), and then sent to the expansion valve (65) to be decompressed.
  • the decompressed refrigerant absorbs heat in the first adsorption heat exchange (61), evaporates, and is then sucked into the compressor (63) and compressed. Then, the compressed refrigerant is discharged again from the compressor (63).
  • the second air to which water has been imparted by the second adsorption heat exchanger (62) flows out to the first outflow path (44) through the second heat exchange chamber (42) and the fourth opening (54). Thereafter, the second air is sucked into the exhaust fan (26), and is discharged from the exhaust air outlet (23) to the outside as exhaust air (EA).
  • the first air that has flowed in from the outdoor air suction port (21) is sent from the first inflow path (43) to the first heat exchange chamber (41) through the first opening (51).
  • the first air passes upward through the first adsorption heat exchanger (61).
  • the first adsorption heat exchange (61) moisture in the first air is adsorbed on the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the first adsorption heat exchanger (61) flows out of the first heat exchange chamber (41) through the seventh opening (57) to the second outflow passage (46). Thereafter, the first air is sucked into the air supply fan (25), and is supplied from the air supply outlet (24) to the room as supply air (SA).
  • SA supply air
  • the dampers (71-78) of the openings (51-58), the first opening (51), the fourth opening (54), and the sixth opening (56) are switched.
  • the seventh opening (57) are in an open state
  • the second opening (52), the third opening (53), the fifth opening (55), and the eighth opening (58) are in a closed state.
  • outdoor air (OA) as the second air is supplied to the first adsorption heat exchanger (61), and the second adsorption heat exchanger (62) is supplied as the first air.
  • Room air (RA) is supplied.
  • the first air flowing from the indoor air suction port (22) flows from the second inflow path (45) to the second heat exchange chamber (42) through the sixth opening (56). Sent in.
  • the first air passes through the second adsorption heat exchange (62) downward from above.
  • the second adsorption heat exchange (62) moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant.
  • the dehydrated first air passes through the fourth opening (54), the first outflow passage (44), and the exhaust fan (26) in that order, and as exhaust air (EA), the exhaust air outlet (23). From the room.
  • the dampers (71 to 78) of the respective openings (51 to 58), the second opening (52), the third opening (53), and the fifth opening (55) are switched.
  • the eighth opening (58) are in an open state, and the first opening (51), the fourth opening (54), the sixth opening (56), and the seventh opening (57) are in a closed state.
  • the first adsorption heat exchanger (61) is supplied with room air (RA) as the first air
  • the second adsorption heat exchanger (62) is supplied with the second air.
  • Outdoor air (OA) is supplied.
  • the first air flowing from the indoor air suction port (22) passes through the fifth opening (55) from the second inflow path (45) to the first heat exchange chamber (41). Sent in.
  • the first air passes through the first adsorption heat exchanger (61) from top to bottom.
  • the first adsorption heat exchange (61) moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant.
  • the dehydrated first air passes through the third opening (53), the first outflow passage (44), and the exhaust fan (26) in that order, and as exhaust air (EA), the exhaust air outlet (23). From the room.
  • the second air flowing from the outdoor air suction port (21) is sent from the first inflow path (43) through the second opening (52) to the second heat exchange chamber (42).
  • the second air passes upward through the second adsorption heat exchanger (62).
  • the adsorbent carried on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent.
  • the desorbed water is given to the second air passing through the second adsorption heat exchange (62).
  • the humidified second air passes through the eighth opening (58), the second outflow passage (46), and the air supply fan (25) in this order, and is supplied from the air supply outlet (24) as supply air (SA). Room Supplied inside.
  • the first operation and the second operation are alternately switched during the dehumidifying operation, while the first operation and the second operation are alternately switched during the humidifying operation.
  • This switching is performed by the circulation switching means (71), for example, by switching the four-way switching valve (64) every three minutes.
  • the compressor (63) is stopped for a predetermined time before the differential pressure reducing means (80) switches the four-way switching valve (64) of the circulation switching means (71), and the four-way switching valve ( After the switching of 64), the operation of the compressor (63) is restarted.
  • the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) decreases, and the refrigerant instantaneously flows from the high pressure side to the low pressure side. Can be suppressed. As a result, the generation noise of the refrigerant at the time of switching is suppressed.
  • the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced, so that the refrigerant moves from the high pressure side to the low pressure side.
  • An instantaneous flowing operation does not occur, and it is possible to prevent the noise generated by the accompanying refrigerant.
  • the switching frequency is high, the sound of the refrigerant does not matter.
  • the capacity of the compressor (63) is reduced instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63). Things.
  • the compressor (63) is configured such that the operating capacity is variable, and for example, the operating frequency is switched to a plurality of stages by the inverter.
  • the differential pressure reducing means (80) reduces the operating frequency of the compressor (63) before switching the four-way switching valve (64), and reduces the operating frequency of the compressor (63) after switching the four-way switching valve (64). Return the operating frequency of) It is configured as follows.
  • the expansion valve (65) is configured to have a variable opening, and for example, is configured such that the opening changes by a motorized valve in a plurality of stages.
  • the differential pressure reducing means (80) increases the degree of opening of the expansion valve (65) before switching the four-way switching valve (64).
  • the opening degree of the expansion valve (65) is returned after the switching of the valve (64).
  • the bypass valve (82) is a valve that switches between a fully open position and a fully closed position, performs binos of refrigerant, and is a normally closed valve that is fully closed during normal operation. .
  • the valve control operation is performed.
  • the stage (84) opens the bypass valve (82) and closes the bypass valve (82) after switching the four-way switching valve (64). Due to the opening of the bypass valve (82) by the valve control means (84), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced, thereby suppressing the operation of the refrigerant flowing from the high pressure side to the low pressure side momentarily can do. As a result, the refrigerant generation noise at the time of switching is suppressed.
  • the flow rate regulator (83) is provided in the bypass path (81), the high pressure side through the refrigerant gas bypass valve (82) when the no-pass valve (82) is opened.
  • the operation in which the force also instantaneously flows to the low pressure side can be suppressed.
  • the noise generated by the refrigerant due to the opening of the bypass valve (82) is suppressed.
  • Other configurations, operations and effects are the same as those of the first embodiment.
  • the capillary tube is applied to the flow regulator (83), but a motorized valve or the like whose opening can be freely adjusted may be applied as a flow adjustment mechanism.
  • the bypass valve (82) may be constituted by a valve whose opening degree is adjustable, and the bypass valve (82) may have a flow rate adjusting function as the flow rate regulator (83).
  • the refrigerant of Embodiment 4 instead of the refrigerant of Embodiment 4 bypassing the expansion valve (65), the refrigerant flows from the discharge side of the compressor (63) to the suction side. It is designed to be bypassed.
  • valve control means provided in the controller (70).
  • Both ends of the bypass passage (81) are connected to the discharge pipe (6d) and the suction pipe (6e) of the compressor (63) to connect the discharge side and the suction side of the compressor (63),
  • the refrigerant is configured to flow from the discharge side of the compressor (63) to the suction side.
  • the bypass valve (82), the flow regulator (83), and the valve control means (84) are the same as in the fourth embodiment.
  • the refrigerant when the bypass valve (82) is opened, the refrigerant momentarily flows from the high pressure side to the low pressure side via the bypass valve (82) by the flow controller (83). Can be suppressed. Refrigerant generation noise due to the opening of the noise valve (82) is suppressed.
  • the differential pressure reducing means (80) of the first embodiment instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63), the differential pressure reducing means (80) ) Is to reduce the refrigerant circulation amount.
  • the differential pressure reducing means (80) of the present embodiment includes an on-off valve (85) provided in the suction pipe (6e) of the compressor (63), which is a gas pipe through which the gas refrigerant always flows. , Controller (70
  • the valve control means (84) closes the on-off valve (85) before switching the four-way switching valve (64), and opens the on-off valve (85) after switching the four-way switching valve (64). It is composed into!
  • the pressure up to the on-off valve (85) through the expansion valve (65) and the second adsorption heat exchanger (62) is maintained at a high pressure. Therefore, the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) becomes small, and the four-way switching valve (
  • the refrigerant sucked into the compressor (63) is suppressed, so that the liquid back of the liquid refrigerant returning to the compressor (63) can be reliably prevented.
  • Other configurations, operations, and effects are the same as those of the first embodiment.
  • the on-off valve (85) is provided on the suction pipe (6e) of the compressor (63).
  • the on-off valve (85) of (6e) the on-off valve (85) of the discharge pipe (6d) of the compressor (63), which is a gas pipe through which the gas refrigerant always flows, as shown by the dashed line in FIG. May be provided! That is, the on-off valve (85) is provided between the compressor (63) and the first port of the four-way switching valve (64).
  • the four-way switching valve (64), the first adsorption heat exchange (61), the expansion valve (65), and the second adsorption heat exchange (62) ) Is maintained at a low pressure up to the suction side of the compressor (63).
  • the differential pressure reducing means (80) of the second embodiment or the like is used together.
  • the present invention may be configured as follows in each of the above embodiments.

Abstract

A moisture conditioning device, wherein a refrigerant circuit (60) is formed by connecting a compressor (63), a four-way selector valve (64), a first adsorbing heat exchanger (61), an expansion valve (65), and a second adsorbing heat exchanger (62) to each other so that the circulation of a refrigerant can be reversed for performing a vapor compression refrigerating cycle. Adsorbent for adsorbing and desorbing moisture is carried on the surfaces of the first adsorbing heat exchanger (61) and the second adsorbing heat exchanger (62). To alternately adsorb and desorb the moisture by the first adsorbing heat exchanger (61) and the second adsorbing heat exchanger (62), the switching mechanism (four-way selector valve) (64) is switched to change the circulating direction of the refrigerant in the refrigerant circuit (60). In addition, before the circulation of the refrigerant is switched, the compressor (63) is stopped to lower a pressure difference between the high-pressure side and low-pressure side of the refrigerant circuit (60).

Description

明 細 書  Specification
調湿装置  Humidity control device
技術分野  Technical field
[0001] 本発明は、吸着剤を用いて湿度調節を行う調湿装置に関し、特に、蒸気圧縮式 冷凍サイクルの冷媒回路を備えた調湿装置に係るものである。  The present invention relates to a humidity control apparatus for controlling humidity using an adsorbent, and more particularly to a humidity control apparatus having a refrigerant circuit of a vapor compression refrigeration cycle.
背景技術  Background art
[0002] 従来より、吸着剤を用いた調湿装置は、吸着剤による水分の吸着作用と脱離作用 とを利用して空気の除湿又は加湿を行うように構成されている。この調湿装置は、吸 着剤の水分吸着量が飽和域に達すると、水分を脱離して再生する必要がある。しか し、その際に吸着と再生とを単に交互に行っていたのでは、除湿や再生を断続的に しか行えないことになる。  [0002] Conventionally, a humidity control apparatus using an adsorbent is configured to dehumidify or humidify air by utilizing an adsorbing action and a desorbing action of moisture by the adsorbent. When the amount of water adsorbed by the adsorbent reaches a saturation range, it is necessary for the humidity controller to desorb water and regenerate the water. However, at that time, if the adsorption and the regeneration are simply performed alternately, the dehumidification and the regeneration can be performed only intermittently.
[0003] そこで、この種の調湿装置にぉ 、て、吸着剤を含む 2つの吸着部材を用い、吸着 側に用いるものと再生側に用いるものとを交互に切り換えて、常に吸着側の空気の み、あるいは再生側の空気のみを室内に供給する方式が知られている(例えば、特 許文献 1参照)。この方式では、一方の吸着部材で吸着動作を行う間に他方で再生 動作を行いながら、所定の時間が経過する毎に吸着側と再生側とを切り換えることに より、除湿運転又は加湿運転が連続して行われる (例えば、特許文献 1参照)。  [0003] Therefore, in this type of humidity control apparatus, two adsorbing members including an adsorbent are used, and the one used on the adsorbing side and the one used on the regenerating side are alternately switched so that the air on the adsorbing side is always changed. A method of supplying only the air on the regeneration side or only the air on the regeneration side to the room is known (for example, see Patent Document 1). In this method, the dehumidifying operation or the humidifying operation is continuously performed by switching between the adsorption side and the regeneration side every time a predetermined time elapses while performing the adsorption operation with one adsorption member while performing the regeneration operation with the other. (For example, see Patent Document 1).
[0004] 上記再生動作は、吸着動作と次の吸着動作の間に行われる。したがって、吸着動 作を短時間で行うためには吸着部材を加熱する必要がある。このため、上記調湿装 置では、蒸気圧縮式冷凍サイクルの冷媒回路を用いて、冷媒の温熱により吸着部材 を加熱するようにしている。  [0004] The regenerating operation is performed between the suction operation and the next suction operation. Therefore, in order to perform the suction operation in a short time, it is necessary to heat the suction member. For this reason, in the humidity control apparatus, the adsorption member is heated by the heat of the refrigerant using the refrigerant circuit of the vapor compression refrigeration cycle.
特許文献 1:特開 2003— 028458号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-028458
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記調湿装置において、吸着剤を再生時に効率よく加熱するために、冷媒回路 の凝縮器と吸着部材とを一体ィ匕することが考えられる。具体的には、凝縮器のフィン などに吸着剤を担持するような構成である。この場合、 2つの吸着部材を用いて吸着 側と再生側を交互に切り換えるのと同じ動作を行うために、冷媒回路の 2つの熱交換 器には、いずれも吸着剤を担持したものを用いるとよい。こうすると、冷媒回路におけ る冷媒の循環方向を切り換えながら、蒸発器となる熱交 を吸着側に、凝縮器とな る熱交 を再生側に用いることにより、効率のよい運転が可能となる。 [0005] In the humidity control apparatus, in order to efficiently heat the adsorbent during regeneration, it is conceivable that the condenser of the refrigerant circuit and the adsorbing member are integrated. Specifically, the configuration is such that the adsorbent is carried on the fins of the condenser. In this case, suction using two suction members In order to perform the same operation as switching between the side and the regeneration side alternately, the two heat exchangers of the refrigerant circuit may each be one carrying an adsorbent. This allows efficient operation by switching the circulation direction of the refrigerant in the refrigerant circuit while using heat exchange as the evaporator on the adsorption side and heat exchange as the condenser on the regeneration side. .
[0006] ところで、冷媒回路における冷媒の循環方向を切り換えるのには、一般に四路切 換弁が用いられている。しかし、上記調湿装置の運転時には、空調装置で冷暖房を 切り換えたり、冷凍装置で逆サイクルのデフロスト運転を行ったりする際と比較すると 、四路切換弁の切り換え頻度がはるかに多くなる(例えば、数分毎に切り換えが必要 となることもある)。そして、上記四路切換弁の切り換え時には、冷媒が高圧側から低 圧側へ流れるのに伴って四路切換弁又は配管内で比較的大きな音が発生する。特 に、切り換え頻度が多くなると音の発生頻度も多くなり、運転騒音が大きな問題となる [0006] A four-way switching valve is generally used to switch the direction of circulation of the refrigerant in the refrigerant circuit. However, when the humidity control device is operated, the frequency of switching the four-way switching valve is much higher than when the air conditioning device switches between cooling and heating and the refrigeration device performs reverse cycle defrosting operation (for example, Switching may be required every few minutes). When the four-way switching valve is switched, a relatively loud noise is generated in the four-way switching valve or the pipe as the refrigerant flows from the high pressure side to the low pressure side. In particular, when the switching frequency increases, the frequency of sound generation also increases, and driving noise becomes a major problem.
[0007] 本発明は、斯カる点に鑑みてなされたものであり、冷媒の循環方向を切り換える 際の音の問題を回避することを目的とするものである。 [0007] The present invention has been made in view of the above point, and has as its object to avoid the problem of noise when switching the refrigerant circulation direction.
課題を解決するための手段  Means for solving the problem
[0008] 具体的に、図 1に示すように、第 1の発明は、圧縮機 (63)と切換機構 (64)と第 1熱 交 (61)と膨張機構 (65)と第 2熱交 (62)とが接続されて冷媒循環が可逆に 構成され、蒸気圧縮式冷凍サイクルを行う冷媒回路 (60)を備え、上記第 1熱交換器( 61)及び第 2熱交換器 (62)の表面に、水分の吸着及び脱離を行う吸着剤が担持され た調湿装置を対象としている。そして、上記第 1熱交換器 (61)及び第 2熱交換器 (62 )で水分の吸着と脱離とを交互に行うために、上記切 構 (64)を切り換えて冷媒 回路 (60)の冷媒の循環方向を切り換える循環切換手段(71)を備えて!/、る。加えて、 該循環切換手段 (71)の循環切り換え前に、冷媒回路 (60)の高圧側と低圧側との差 圧を低減する差圧低減手段 (80)を備えて!/ヽる。  [0008] Specifically, as shown in FIG. 1, the first invention comprises a compressor (63), a switching mechanism (64), a first heat exchange (61), an expansion mechanism (65), and a second heat exchange. And a refrigerant circuit (60) for performing a vapor compression refrigeration cycle. The refrigerant circuit (60) is connected to the first heat exchanger (61) and the second heat exchanger (62). It is intended for a humidity control device whose surface carries an adsorbent that adsorbs and desorbs moisture. Then, in order to alternately adsorb and desorb moisture in the first heat exchanger (61) and the second heat exchanger (62), the cut-out structure (64) is switched to change the refrigerant circuit (60). A circulation switching means (71) for switching the circulation direction of the refrigerant is provided. In addition, before the circulation switching of the circulation switching means (71), a differential pressure reducing means (80) for reducing the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is provided.
[0009] また、第 2の発明は、上記第 1の発明において、上記差圧低減手段 (80)が圧縮機  [0009] In a second aspect based on the first aspect, the differential pressure reducing means (80) is a compressor.
(63)を停止するように構成されて 、る。  (63) is configured to stop.
[0010] また、第 3の発明は、上記第 1の発明において、上記圧縮機 (63)が容量可変に構 成され、上記差圧低減手段 (80)が圧縮機 (63)の運転容量を低減するように構成さ れている。 [0010] In a third aspect based on the first aspect, the compressor (63) is configured to have a variable capacity, and the differential pressure reducing means (80) reduces the operating capacity of the compressor (63). Configured to reduce It is.
[0011] また、第 4の発明は、上記第 1の発明において、上記膨張機構 (65)が開度可変の 膨張弁で構成され、上記差圧低減手段 (80)が膨張弁の開度を開くように構成されて いる。  [0011] In a fourth aspect based on the first aspect, the expansion mechanism (65) is constituted by an expansion valve having a variable opening, and the differential pressure reducing means (80) controls the opening of the expansion valve. It is configured to open.
[0012] また、第 5の発明は、上記第 1の発明において、上記差圧低減手段 (80)が、膨張 機構 (65)をバイパスするバイパス路 (81)と、該バイパス路 (81)に設けられた常閉の バイパス弁 (82)とを備え、循環切換手段(71)の循環切り換え前にバイパス弁 (82)を 開口するように構成されて 、る。 [0012] In a fifth aspect based on the first aspect, the differential pressure reducing means (80) includes a bypass passage (81) that bypasses the expansion mechanism (65) and a bypass passage (81). And a normally closed bypass valve ( 82 ) provided so that the bypass valve (82) is opened before the circulation switching of the circulation switching means (71).
[0013] また、第 6の発明は、上記第 1の発明において、上記差圧低減手段 (80)が、圧縮 機 (63)の吐出側と吸込側とを繋ぐバイパス路 (81)と、該バイパス路 (81)に設けられ た常閉のバイパス弁 (82)とを備え、循環切換手段(71)の循環切り換え前にバイパス 弁 (82)を開口するように構成されて 、る。  [0013] In a sixth aspect based on the first aspect, the differential pressure reducing means (80) includes a bypass passage (81) connecting the discharge side and the suction side of the compressor (63), A normally closed bypass valve (82) provided in the bypass passage (81), and configured to open the bypass valve (82) before the circulation switching of the circulation switching means (71).
[0014] また、第 7の発明は、上記第 5又は第 6の発明において、上記差圧低減手段 (80) 力 バイパス路 (81)に設けられた流量調節機構 (83)を備えている。  [0014] In a seventh aspect based on the fifth or sixth aspect, there is provided a flow rate adjusting mechanism (83) provided in the pressure difference reducing means (80) force bypass path (81).
[0015] また、第 8の発明は、上記第 1の発明において、上記差圧低減手段 (80)が、圧縮 機 (63)に接続されたて常時ガス冷媒が流れるガス管 (6b, 6c)に設けられた常開の開 閉弁 (85)を備え、循環切換手段 (71)の循環切り換え前に開閉弁 (85)を閉じるように 構成されている。  [0015] In an eighth aspect based on the first aspect, the differential pressure reducing means (80) is connected to a compressor (63) and has a gas pipe (6b, 6c) through which a gas refrigerant always flows. A normally open / close valve (85) provided in the air conditioner is configured to close the on / off valve (85) before the circulation switching of the circulation switching means (71).
[0016] 〈作用〉  <Action>
すなわち、上記第 1の発明では、冷媒回路 (60)の第 1熱交換器 (61)と第 2熱交換 器 (62)のうち、蒸発器となる熱交^^の吸着剤で水分を吸着し、凝縮器となる熱交 換器では水分が脱離して吸着剤を再生する。このため、例えば、吸着側の空気を室 内に供給すると除湿運転が行われ、再生側の空気を室内に供給すると加湿運転が 行われる。また、除湿運転時と加湿運転時のいずれの場合も、切換機構 (64)により 冷媒の循環方向を切り換え、除湿や加湿の連続運転が行われる。  That is, in the first invention, of the first heat exchanger (61) and the second heat exchanger (62) of the refrigerant circuit (60), moisture is adsorbed by the adsorbent of the heat exchanger serving as an evaporator. Then, in the heat exchanger that becomes a condenser, moisture is desorbed and the adsorbent is regenerated. Therefore, for example, when the air on the adsorption side is supplied into the room, the dehumidifying operation is performed, and when the air on the regeneration side is supplied into the room, the humidifying operation is performed. In both cases of the dehumidifying operation and the humidifying operation, the switching mechanism (64) switches the direction of circulation of the refrigerant, and the continuous operation of the dehumidification and the humidification is performed.
[0017] この切り換える際、差圧低減手段 (80)が循環切換手段 (71)の切 構 (64)の切 り換える前に、冷媒回路 (60)の高圧側と低圧側との差圧を低減させるので、冷媒が 高圧側から低圧側へ瞬間的に流れる動作が抑制される。 [0018] 具体的に、上記第 2の発明では、差圧低減手段 (80)が循環切換手段 (71)の切 換機構 (64)の切り換える前に、圧縮機 (63)を所定時間停止させ、切換機構 (64)の 切り換え後に圧縮機 (63)の運転を再開させる。この差圧低減手段 (80)による圧縮機 (63)の停止によって冷媒回路 (60)の高圧側と低圧側との差圧を小さくする。 At the time of this switching, before the differential pressure reducing means (80) switches the cutting configuration (64) of the circulation switching means (71), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced. As a result, the operation of the refrigerant flowing instantaneously from the high pressure side to the low pressure side is suppressed. Specifically, in the second invention, the compressor (63) is stopped for a predetermined time before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71). After the switching of the switching mechanism (64), the operation of the compressor (63) is restarted. By stopping the compressor (63) by the differential pressure reducing means (80), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.
[0019] また、第 3の発明では、差圧低減手段 (80)が循環切換手段 (71)の切換機構 (64) の切り換える前に、圧縮機 (63)の容量を小さくし、切 構 (64)の切り換え後に圧 縮機 (63)の容量を戻す。この差圧低減手段 (80)による圧縮機 (63)の容量低下によ つて冷媒回路 (60)の高圧側と低圧側との差圧を小さくする。  In the third invention, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the capacity of the compressor (63) is reduced, and After switching to (64), return the capacity of compressor (63). The pressure difference between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by reducing the capacity of the compressor (63) by the differential pressure reducing means (80).
[0020] また、第 4の発明では、差圧低減手段 (80)が循環切換手段 (71)の切換機構 (64) の切り換える前に、膨張弁 (65)の開度を大きぐ切換機構 (64)の切り換え後に膨張 弁 (65)の開度を戻す。この差圧低減手段 (80)による膨張弁 (65)の開度の増加によ つて冷媒回路 (60)の高圧側と低圧側との差圧を小さくする。  [0020] In the fourth invention, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the switching mechanism (65) increases the opening of the expansion valve (65). After switching of 64), return the opening of the expansion valve (65). The differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by increasing the degree of opening of the expansion valve (65) by the differential pressure reducing means (80).
[0021] また、第 5の発明及び第 6の発明では、差圧低減手段 (80)が循環切換手段 (71) の切 構 (64)の切り換える前に、バイパス弁 (82)を開き、切 構 (64)の切り換 え後にバイノス弁 (82)を閉じる。この差圧低減手段 (80)によるバイパス弁 (82)の開 口によって冷媒回路 (60)の高圧側と低圧側との差圧を小さくする。  [0021] In the fifth invention and the sixth invention, before the differential pressure reducing means (80) switches the switching structure (64) of the circulation switching means (71), the bypass valve (82) is opened and switched off. After switching the configuration (64), close the binos valve (82). The differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced by the opening of the bypass valve (82) by the differential pressure reducing means (80).
[0022] また、第 7の発明では、バイパス路 (81)を流れる冷媒量が流量調節機構 (83)によ つて調節され、バイパス弁 (82)の切り換え時の冷媒発生音が抑制される。  [0022] In the seventh aspect, the amount of refrigerant flowing through the bypass path (81) is adjusted by the flow rate adjusting mechanism (83), and the noise generated by the refrigerant when the bypass valve (82) is switched is suppressed.
[0023] また、第 8の発明では、差圧低減手段 (80)が循環切換手段 (71)の切換機構 (64) の切り換える前に、開閉弁 (85)を閉じ、切 構 (64)の切り換え後に開閉弁 (85)を 開く。この差圧低減手段 (80)による開閉弁 (85)の閉鎖によって冷媒循環量が低下し 、冷媒回路 (60)の高圧側と低圧側との差圧を小さくする。  Further, in the eighth invention, before the differential pressure reducing means (80) switches the switching mechanism (64) of the circulation switching means (71), the on-off valve (85) is closed and the switching mechanism (64) is closed. After switching, open and close valve (85). By closing the on-off valve (85) by the differential pressure reducing means (80), the amount of circulating refrigerant is reduced, and the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced.
発明の効果  The invention's effect
[0024] したがって、本発明によれば、冷媒循環を切り換える前に、冷媒回路 (60)の高圧 側と低圧側との差圧を小さくするようにしたために、冷媒が高圧側から低圧側へ瞬間 的に流れる動作が起こらず、それに伴う冷媒の発生音を防止することができる。特に 、切り換え頻度が多 、場合にぉ ヽても冷媒の音が問題になることはな 、。  [0024] Therefore, according to the present invention, the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced before switching the refrigerant circulation, so that the refrigerant instantaneously moves from the high pressure side to the low pressure side. The operation of flowing the fluid does not occur, and the noise generated by the refrigerant can be prevented. In particular, the sound of the refrigerant does not matter even if the switching frequency is high.
[0025] また、第 2の発明によれば、切換機構 (64)の切り換え前に圧縮機 (63)を停止する ようにしたために、冷媒回路 (60)の高圧側と低圧側との差圧を確実に低減することが できるので、切り換え時の冷媒発生音を確実に防止することができる。 According to the second invention, the compressor (63) is stopped before the switching of the switching mechanism (64). With this configuration, the pressure difference between the high-pressure side and the low-pressure side of the refrigerant circuit (60) can be reliably reduced, so that the generation of refrigerant at the time of switching can be reliably prevented.
[0026] また、第 3〜6及び第 8の発明によれば、圧縮機 (63)の運転が継続されて 、るの で、調湿能力の低下を抑制することができる。  [0026] Further, according to the third to sixth and eighth inventions, since the operation of the compressor (63) is continued, a decrease in the humidity control ability can be suppressed.
[0027] また、第 7の発明によれば、バイパス路 (81)に流量調節機構 (83)を設けて!/、るの で、バイパス弁 (82)の開口時に冷媒カバイパス弁 (82)を介して高圧側力も低圧側へ 瞬間的に流れる動作を抑制することができる。バイパス弁 (82)の開口による冷媒発 生音が抑制される。  [0027] According to the seventh aspect of the present invention, the flow rate adjusting mechanism (83) is provided in the bypass passage (81), so that the refrigerant gas bypass valve (82) is opened when the bypass valve (82) is opened. It is possible to suppress the operation in which the high-pressure-side force also momentarily flows to the low-pressure side. The sound generated by the refrigerant due to the opening of the bypass valve (82) is suppressed.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]図 1は、実施形態 1の調湿装置の冷媒回路を示す回路図である。  FIG. 1 is a circuit diagram showing a refrigerant circuit of the humidity control apparatus of the first embodiment.
[図 2]図 2は、実施形態 1の調湿装置を示す概略構成図である。  FIG. 2 is a schematic configuration diagram showing a humidity control apparatus of Embodiment 1.
[図 3]図 3は、実施形態 1の吸着熱交換器を示す斜視図である。  FIG. 3 is a perspective view showing an adsorption heat exchanger of the first embodiment.
[図 4]図 4は、実施形態 1の除湿運転の第 1動作における空気の流れを示す調湿装 置の概略構成図である。  FIG. 4 is a schematic configuration diagram of a humidity control apparatus showing a flow of air in a first operation of the dehumidifying operation of the first embodiment.
[図 5]図 5は、実施形態 1の除湿運転の第 2動作における空気の流れを示す調湿装 置の概略構成図である。  FIG. 5 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a second operation of the dehumidifying operation of the first embodiment.
[図 6]図 6は、実施形態 1の加湿運転の第 1動作における空気の流れを示す調湿装 置の概略構成図である。  FIG. 6 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a first operation of the humidification operation of the first embodiment.
[図 7]図 7は、実施形態 1の加湿運転の第 2動作における空気の流れを示す調湿装 置の概略構成図である。  FIG. 7 is a schematic configuration diagram of a humidity control apparatus showing an air flow in a second operation of the humidification operation of the first embodiment.
[図 8]図 8は、実施形態 4の調湿装置の冷媒回路を示す回路図である。  FIG. 8 is a circuit diagram showing a refrigerant circuit of a humidity control apparatus according to a fourth embodiment.
[図 9]図 9は、実施形態 5の調湿装置の冷媒回路を示す回路図である。  FIG. 9 is a circuit diagram showing a refrigerant circuit of a humidity control apparatus according to a fifth embodiment.
[図 10]図 10は、実施形態 6の調湿装置の冷媒回路を示す回路図である。  FIG. 10 is a circuit diagram showing a refrigerant circuit of a humidity control apparatus according to a sixth embodiment.
符号の説明  Explanation of symbols
[0029] 10 調湿装置 [0029] 10 Humidity control device
60 冷媒回路  60 Refrigerant circuit
61 第 1吸着熱交換器 (第 1熱交換器)  61 1st adsorption heat exchanger (1st heat exchanger)
62 第 2吸着熱交換器 (第 2熱交換器) 64 四路切換弁 (切換機構) 62 Second adsorption heat exchanger (second heat exchanger) 64 Four-way switching valve (switching mechanism)
65 膨張弁 (膨張機構)  65 Expansion valve (expansion mechanism)
70 コントローラ  70 Controller
71 循環切換手段  71 Circulation switching means
80 差圧低減手段  80 Differential pressure reducing means
81 バイパス路  81 Bypass Road
82 バイパス弁  82 Bypass valve
83 流量調節器 (流量調節機構)  83 Flow controller (Flow controller)
84 弁制御手段  84 Valve control means
85 開閉弁  85 On-off valve
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0031] 〈発明の実施形態 1〉  <Embodiment 1 of the Invention>
図 1〜3に示すように、本実施形態の調湿装置(10)は、室内空気の除湿と加湿と を行うものであり、扁平な中空直方体状のケーシング(11)を備えている。そして、この ケーシング(11)には、冷媒回路 (60)等が収納され、該冷媒回路 (60)は、第 1吸着熱 交換器 (61)及び第 2吸着熱交換器 (62)の他、圧縮機 (63)等を備えて!/ヽる。  As shown in FIGS. 1 to 3, the humidity control apparatus (10) of the present embodiment performs dehumidification and humidification of room air, and includes a flat hollow rectangular parallelepiped casing (11). The casing (11) houses a refrigerant circuit (60) and the like, and the refrigerant circuit (60) includes the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62), Equipped with a compressor (63)!
[0032] 上記第 1吸着熱交換器 (61)及び第 2吸着熱交換器 (62)は、図 3に示すように、そ れぞれクロスフィン式のフィン 'アンド'チューブ型熱交換器によって第 1熱交換器及 び第 2熱交換器を構成して 、る。上記第 1吸着熱交換器 (61)及び第 2吸着熱交換器 (62)は、長方形板状に形成されたアルミニウム製の多数のフィン (6a)と、該フィン (6a )を貫通する銅製の伝熱管 (6b)とを備えている。上記フィン (6a)の外表面には、例え ばゼオライト等の吸着剤が担持されている。そして、上記第 1吸着熱交換器 (61)が第 1吸着部材を構成し、第 2吸着熱交換器 (62)が第 2吸着部材を構成している。  As shown in FIG. 3, each of the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62) is a cross-fin type fin “and” tube type heat exchanger. The first heat exchanger and the second heat exchanger are configured. The first adsorption heat exchanger (61) and the second adsorption heat exchanger (62) are composed of a number of aluminum fins (6a) formed in a rectangular plate shape, and a copper piercing through the fins (6a). And a heat transfer tube (6b). An adsorbent such as zeolite is supported on the outer surface of the fin (6a). The first adsorption heat exchanger (61) forms a first adsorption member, and the second adsorption heat exchanger (62) forms a second adsorption member.
[0033] 次に、図 2に基づいて、ケーシング(11)の内部構造について説明する。なお、図 2 (B)にお!/、ては、下側がケーシング(11)の正面側であって、上側がケーシング(11)の 背面側である。また、以下の説明における「右」「左」「上」「下」は、何れも参照する図 面におけるものを意味する。 Next, an internal structure of the casing (11) will be described with reference to FIG. In FIG. 2B, the lower side is the front side of the casing (11), and the upper side is the rear side of the casing (11). In the following description, “right”, “left”, “upper”, and “lower” indicate Means in plane.
[0034] 上記ケーシング(11)は、平面視が概ね正方形状で扁平な箱型に形成されている 。このケーシング(11)においては、左側面板(12)と右側面板(13)とが、また正面板( 14)と背面板(15)とがそれぞれケーシング(11)の厚さ方向に位置して互いに対向す る 2つの端面を構成している。上記左側面板(12)には、背面板(15)寄りに室外空気 吸込口(21)が形成され、正面板(14)寄りに室内空気吸込口(22)が形成されている。 一方、上記ケーシング(11)の右側面板(13)には、背面板(15)寄りに排気吹出口(23 )が形成され、正面板(14)寄りに給気吹出口(24)が形成されている。そして、上記室 外空気吸込口(21)及び室内空気吸込口(22)が空気の流入口を構成し、排気吹出 口(23)及び給気吹出口(24)が空気の流出口を構成している。  [0034] The casing (11) is formed in a flat box shape having a substantially square shape in plan view. In the casing (11), the left side plate (12) and the right side plate (13), and the front plate (14) and the rear plate (15) are located in the thickness direction of the casing (11), and are mutually separated. It constitutes two opposing end faces. The left side plate (12) has an outdoor air intake (21) formed near the back plate (15), and an indoor air intake (22) formed near the front plate (14). On the other hand, on the right side plate (13) of the casing (11), an exhaust outlet (23) is formed near the back plate (15), and an air supply outlet (24) is formed near the front plate (14). ing. The outdoor air inlet (21) and the indoor air inlet (22) constitute an air inlet, and the exhaust outlet (23) and the supply air outlet (24) constitute an air outlet. ing.
[0035] 上記ケーシング(11)の内部には、左右方向の中心部よりも右側面板(13)寄りに 第 1仕切板 (31)が立設されている。上記ケーシング (11)の内部空間(16)は、第 1仕 切板 (31)によって左右に仕切られている。そして、この第 1仕切板 (31)の右側が第 1 空間(17)となり、第 1仕切板 (31)の左側が第 2空間(18)となって 、る。  [0035] Inside the casing (11), a first partition plate (31) is provided upright toward the right side plate (13) from the center in the left-right direction. The inner space (16) of the casing (11) is divided into right and left by a first partition (31). The right side of the first partition plate (31) becomes the first space (17), and the left side of the first partition plate (31) becomes the second space (18).
[0036] 上記ケーシング(11)の第 1空間(17)は、第 7仕切板 (37)によって正面側の空間と 背面側の空間とに仕切られている。上記第 1空間(17)における背面側の空間には、 冷媒回路 (60)の圧縮機 (63)と排気ファン (26)とが配置されている。また、図示しない 力 この背面側の空間には、冷媒回路 (60)の膨張弁 (65)ゃ四路切換弁 (64)も配置 されている。一方、上記第 1空間(17)における正面側の空間には、給気ファン (25)が 配置されている。上記排気ファン (26)は排気吹出口(23)に接続され、上記給気ファ ン (25)は給気吹出口(24)に接続されて!ヽる。  [0036] The first space (17) of the casing (11) is divided into a front space and a back space by a seventh partition plate (37). The compressor (63) and the exhaust fan (26) of the refrigerant circuit (60) are arranged in a space on the back side of the first space (17). In addition, an expansion valve (65) and a four-way switching valve (64) of the refrigerant circuit (60) are also arranged in the space on the rear side (not shown). On the other hand, an air supply fan (25) is arranged in a space on the front side in the first space (17). The exhaust fan (26) is connected to an exhaust outlet (23), and the air supply fan (25) is connected to an air outlet (24).
[0037] 上記ケーシング(11)の第 2空間(18)には、第 2仕切板 (32)と第 3仕切板 (33)と第 6仕切板 (36)とが設けられて 、る。上記第 2仕切板 (32)は正面板(14)寄りに立設さ れ、第 3仕切板 (33)は背面板(15)寄りに立設されている。そして、上記第 2空間(18) は、第 2仕切板 (32)及び第 3仕切板 (33)により、正面側力 背面側に向力つて 3つの 空間に仕切られている。上記第 6仕切板 (36)は、第 2仕切板 (32)と第 3仕切板 (33) に挟まれた空間に設けられている。この第 6仕切板 (36)は、第 2空間(18)の左右方 向の中央に立設されて 、る。 [0038] 上記第 2仕切板 (32)と第 3仕切板 (33)に挟まれた空間は、第 6仕切板 (36)によつ て左右に仕切られる。このうち、右側の空間は、第 1熱交換室 (41)を構成しており、そ の内部に第 1吸着熱交換器 (61)が配置されている。一方、左側の空間は、第 2熱交 換室 (42)を構成しており、その内部に第 2吸着熱交 (62)が配置されている。つ まり、上記第 1熱交換室 (41)と第 2熱交換室 (42)とは、隣接して配置されている。そし て、上記第 1熱交換室 (41)が第 1処理空間を構成し、第 2熱交換室 (42)が第 2処理 空間を構成している。 [0037] A second partition (32), a third partition (33), and a sixth partition (36) are provided in the second space (18) of the casing (11). The second partition plate (32) is set up near the front plate (14), and the third partition plate (33) is set up near the rear plate (15). The second space (18) is partitioned into three spaces by a second partition plate (32) and a third partition plate (33) with a frontal force and a rearward force. The sixth partition plate (36) is provided in a space between the second partition plate (32) and the third partition plate (33). The sixth partition (36) is provided upright at the center in the left-right direction of the second space (18). [0038] The space sandwiched between the second partition plate (32) and the third partition plate (33) is partitioned left and right by a sixth partition plate (36). Of these, the space on the right side constitutes a first heat exchange chamber (41), in which the first adsorption heat exchanger (61) is arranged. On the other hand, the space on the left side constitutes a second heat exchange chamber (42), in which the second adsorption heat exchange (62) is arranged. That is, the first heat exchange chamber (41) and the second heat exchange chamber (42) are arranged adjacent to each other. The first heat exchange chamber (41) forms a first processing space, and the second heat exchange chamber (42) forms a second processing space.
[0039] 上記第 2空間(18)のうち第 3仕切板 (33)とケーシング(11)の背面板(15)〖こ挟ま れた空間には、第 5仕切板 (35)が設けられている。この第 5仕切板 (35)は、空間の高 さ方向の中央部を横断するように設けられ、空間を上下に仕切っている(図 2(A)を参 照)。そして、上記第 5仕切板 (35)の上側の空間が第 1流入路 (43)を構成し、下側の 空間が第 1流出路 (44)を構成している。また、上記第 1流入路 (43)は室外空気吸込 口(21)に連通し、第 1流出路 (44)は排気ファン (26)を介して排気吹出口(23)に連通 している。  In the space between the third partition plate (33) and the rear plate (15) of the casing (11) in the second space (18), a fifth partition plate (35) is provided. I have. The fifth partition plate (35) is provided so as to cross the center in the height direction of the space, and partitions the space up and down (see FIG. 2 (A)). The space above the fifth partition plate (35) forms a first inflow channel (43), and the space below the fifth partition plate (35) forms a first outflow channel (44). Further, the first inflow path (43) communicates with the outdoor air suction port (21), and the first outflow path (44) communicates with the exhaust air outlet (23) via the exhaust fan (26).
[0040] 一方、上記第 2空間(18)のうち第 2仕切板 (32)とケーシング(11)の正面板(14)に 挟まれた空間には、第 4仕切板 (34)が設けられている。この第 4仕切板 (34)は、空間 の高さ方向の中央部を横断するように設けられ、空間を上下に仕切っている(図 2(C) を参照)。そして、上記第 4仕切板 (34)の上側の空間が第 2流入路 (45)を構成し、下 側の空間が第 2流出路 (46)を構成している。また、上記第 2流入路 (45)は室内空気 吸込口(22)に連通し、第 2流出路 (46)は給気ファン (25)を介して給気吹出口(24)に 連通している。  On the other hand, in the space between the second partition (32) and the front plate (14) of the casing (11) in the second space (18), a fourth partition (34) is provided. ing. The fourth partition plate (34) is provided so as to cross the center in the height direction of the space, and partitions the space up and down (see FIG. 2 (C)). The space above the fourth partition plate (34) forms a second inflow channel (45), and the space below the fourth partition plate (34) forms a second outflow channel (46). The second inflow path (45) communicates with the indoor air suction port (22), and the second outflow path (46) communicates with the air supply outlet (24) via the air supply fan (25). I have.
[0041] このように、上記第 1流入路 (43)と第 1流出路 (44)とは、第 1熱交換室 (41)と第 2 熱交換室 (42)とが連続する第 1の側面としての第 3仕切板 (33)に沿って重畳して配 置されている。一方、上記第 2流入路 (45)と第 2流出路 (46)とは、第 1熱交換室 (41) と第 2熱交換室 (42)との第 3仕切板 (33)に対向する第 2の側面としての第 2仕切板( 32)に沿って重畳して配置されている。また、上記第 1流入路 (43)及び第 2流入路( 45)は流入通路を構成し、上記第 1流出路 (44)及び第 2流出路 (46)は流出通路を構 成している。 [0042] 上記第 3仕切板 (33)には、 4つの開口(51〜54)が形成されている(図 2(A)を参照 ) oこの 4つの開口(51〜54)は、行列方向に近接して位置し、つまり、上下左右に 2つ ずつ升目状に配置されている。そして、上記第 1開口(51)は、第 1流入路 (43)と第 1 熱交換室 (41)とを連通させ、上記第 2開口(52)は、第 1流入路 (43)と第 2熱交換室( 42)とを連通させている。また、上記第 3開口(53)は、第 1流出路 (44)と第 1熱交換室 (41)とを連通させ、上記第 4開口(54)は、第 1流出路 (44)と第 2熱交換室 (42)とを連 通させている。 As described above, the first inflow path (43) and the first outflow path (44) are connected to the first heat exchange chamber (41) and the second heat exchange chamber (42) by the first heat exchange chamber (42). They are arranged so as to overlap along the third partition plate (33) as a side surface. On the other hand, the second inflow path (45) and the second outflow path (46) face the third partition (33) of the first heat exchange chamber (41) and the second heat exchange chamber (42). They are arranged so as to overlap along a second partition plate (32) as a second side surface. The first inflow path (43) and the second inflow path (45) constitute an inflow path, and the first outflow path (44) and the second outflow path (46) constitute an outflow path. . [0042] Four openings (51 to 54) are formed in the third partition plate (33) (see Fig. 2 (A)). O The four openings (51 to 54) are arranged in a matrix direction. Are located in close proximity to each other, that is, two squares are arranged vertically and horizontally. The first opening (51) connects the first inflow path (43) to the first heat exchange chamber (41), and the second opening (52) connects the first inflow path (43) to the first inflow path (43). 2 It communicates with the heat exchange chamber (42). The third opening (53) connects the first outflow passage (44) to the first heat exchange chamber (41), and the fourth opening (54) connects the first outflow passage (44) to the first outflow passage (44). 2 Communicates with the heat exchange chamber (42).
[0043] 上記第 2仕切板 (32)には、 4つの開口(55〜58)が形成されている(図 2(C)を参照 ) oこの 4つの開口(55〜58)は、行列方向に近接して位置し、つまり、上下左右に 2つ ずつ升目状に配置されている。そして、上記第 5開口(55)は、第 2流入路 (45)と第 1 熱交換室 (41)とを連通させ、上記第 6開口(56)は、第 2流入路 (45)と第 2熱交換室( 42)とを連通させている。また、上記第 7開口(57)は、第 2流出路 (46)と第 1熱交換室 (41)とを連通させ、上記第 8開口(58)は、第 2流出路 (46)と第 2熱交換室 (42)とを連 通させている。  [0043] Four openings (55 to 58) are formed in the second partition plate (32) (see FIG. 2C). O The four openings (55 to 58) are arranged in a matrix direction. Are located in close proximity to each other, that is, two squares are arranged vertically and horizontally. The fifth opening (55) communicates the second inflow path (45) with the first heat exchange chamber (41), and the sixth opening (56) communicates with the second inflow path (45). 2 It communicates with the heat exchange chamber (42). The seventh opening (57) connects the second outflow passage (46) with the first heat exchange chamber (41), and the eighth opening (58) connects the second outflow passage (46) with the second outflow passage (46). 2 Communicates with the heat exchange chamber (42).
[0044] 図 4〜図 7に示すように、上記 8つの開口(51〜58)には、それぞれ開閉して空気 の流通と遮断とを切り換える開閉手段に構成されたダンバ (71〜78)が設けられてい る。つまり、これらのダンバ(71〜78)は、各流入路 (43,45)及び各流出路 (44,46)と各 熱交換室 (41,42)との区画部である第 2仕切板 (32)と第 3仕切板 (33)とに設けられて いる。  As shown in FIG. 4 to FIG. 7, dampers (71 to 78) configured as opening / closing means for opening and closing each of the eight openings (51 to 58) to switch between air flow and shutoff are provided. Provided. That is, these dampers (71 to 78) are provided with the second partition plate (partition) (partition) between each inflow path (43, 45) and each outflow path (44, 46) and each heat exchange chamber (41, 42). 32) and the third partition plate (33).
[0045] 具体的に、上記第 1開口(51)及び第 2開口(52)には第 1ダンバ(71)及び第 2ダン パ(72)が設けられ、この第 1ダンバ (71)と第 2ダンバ (72)とが互いに隣り合って配置 されている。上記第 3開口(53)及び第 4開口(54)には第 3ダンバ(73)及び第 4ダンバ (74)が設けられ、この第 3ダンバ (73)と第 4ダンバ (74)とが互いに隣り合って配置さ れている。上記第 5開口(55)及び第 6開口(56)には第 5ダンバ(75)及び第 6ダンパ( 76)が設けられ、この第 5ダンバ (75)と第 6ダンバ (76)とが互いに隣り合って配置され ている。上記第 7開口(57)及び第 8開口(58)には第 7ダンバ(77)及び第 8ダンバ(78 )が設けられ、この第 7ダンバ (77)と第 8ダンバ (78)とが互いに隣り合って配置されて いる。 [0046] 次に、上記冷媒回路 (60)について、図 1に基づいて説明する。 Specifically, a first damper (71) and a second damper (72) are provided in the first opening (51) and the second opening (52), respectively. Two dampers (72) are arranged adjacent to each other. The third opening (53) and the fourth opening (54) are provided with a third damper (73) and a fourth damper (74), and the third damper (73) and the fourth damper (74) are mutually connected. They are located next to each other. The fifth opening (55) and the sixth opening (56) are provided with a fifth damper (75) and a sixth damper (76), and the fifth damper (75) and the sixth damper (76) are mutually connected. They are located next to each other. The seventh opening (57) and the eighth opening (58) are provided with a seventh damper (77) and an eighth damper (78), and the seventh damper (77) and the eighth damper (78) are mutually connected. They are located next to each other. Next, the refrigerant circuit (60) will be described with reference to FIG.
[0047] 上記冷媒回路 (60)は、圧縮機 (63)と四路切換弁 (64)と第 1吸着熱交 (61)と 膨張弁 (65)と第 2吸着熱交 (62)とが順に冷媒配管 (6c)によって接続されて閉 回路に構成されている。この冷媒回路 (60)は、充填された冷媒が循環して蒸気圧縮 式の冷凍サイクルを行うように構成されて 、る。 [0047] The refrigerant circuit (60) includes a compressor (63), a four-way switching valve (64), a first adsorption heat exchange (61), an expansion valve (65), and a second adsorption heat exchange (62). They are sequentially connected by a refrigerant pipe (6c) to form a closed circuit. The refrigerant circuit (60) is configured such that the charged refrigerant circulates to perform a vapor compression refrigeration cycle.
[0048] 上記四路切換弁 (64)は、冷媒回路 (60)の冷媒の循環方向を切り換える切換機 構を構成している。具体的に、上記四路切換弁 (64)の第 1のポートには、圧縮機 (63 )の吐出管 (6d)が接続され、第 2のポートには、圧縮機 (63)の吸入管 (6e)が接続さ れている。また、上記四路切換弁 (64)の第 3のポートには、第 1吸着熱交翻 (61)の 一端が接続され、第 4のポートには、第 2吸着熱交 (62)の一端が接続されている 。そして、上記冷媒回路 (60)は、四路切換弁 (64)によって冷媒循環が可逆に構成さ れている。 [0048] The four-way switching valve (64) constitutes a switching mechanism for switching the circulation direction of the refrigerant in the refrigerant circuit (60). Specifically, a discharge pipe (6d) of a compressor (63) is connected to a first port of the four-way switching valve (64), and a suction pipe of the compressor (63) is connected to a second port. (6e) is connected. One end of the first adsorption heat exchange (61) is connected to the third port of the four-way switching valve (64), and one end of the second adsorption heat exchange (62) is connected to the fourth port. Is connected. In the refrigerant circuit (60), the circulation of the refrigerant is reversible by the four-way switching valve (64).
[0049] また、上記膨張弁 (65)は、冷媒を膨張させる膨張機構を構成して!/ヽる。  [0049] The expansion valve (65) constitutes an expansion mechanism for expanding the refrigerant.
[0050] 上記冷媒回路 (60)は、蒸発器となる第 2吸着熱交 (62)又は第 1吸着熱交換 器 (61)において、空気中の水分が吸着剤に吸着される際に生じる吸着熱を冷媒が 吸熱する。また、上記冷媒回路 (60)は、凝縮器となる第 1吸着熱交換器 (61)又は第 2吸着熱交換器 (62)において、冷媒が吸着剤を加熱し、該吸着剤から水分を脱離さ せる。 [0050] The refrigerant circuit (60) includes an adsorbent generated when water in the air is adsorbed by the adsorbent in the second adsorption heat exchange (62) or the first adsorption heat exchanger (61) serving as an evaporator. The refrigerant absorbs heat. Further, in the refrigerant circuit (60), in the first adsorption heat exchanger (61) or the second adsorption heat exchanger (62) serving as a condenser, the refrigerant heats the adsorbent and removes moisture from the adsorbent. Let go.
[0051] 上記冷媒回路 (60)は、第 1吸着熱交換器 (61)又は第 2吸着熱交換器 (62)にお ける水分の吸着と脱離とを第 1吸着熱交 (61)と第 2吸着熱交 (62)とで交互 に行って空気の除湿又は加湿を連続して行うように構成されている。  [0051] The refrigerant circuit (60) is configured to perform the adsorption and desorption of moisture in the first adsorption heat exchanger (61) or the second adsorption heat exchanger (62) with the first adsorption heat exchange (61). The second adsorption heat exchange (62) is performed alternately to continuously dehumidify or humidify the air.
[0052] 更に、上記冷媒回路 (60)は、コントローラ(70)によって制御されて 、る。該コント口 ーラ (70)は、循環切換手段 (71)と差圧低減手段 (80)とが設けられて 、る。  Further, the refrigerant circuit (60) is controlled by a controller (70). The controller (70) is provided with circulation switching means (71) and differential pressure reducing means (80).
[0053] 上記循環切換手段 (71)は、第 1吸着熱交換器 (61)及び第 2吸着熱交換器 (62) で水分の吸着と脱離とを交互に行うために、上記四路切換弁 (64)を切り換えて冷媒 回路 (60)の冷媒の循環方向を切り換えるように構成されて!、る。上記循環切換手段 (71)は、例えば、四路切換弁 (64)を 3分毎に切り換えるように構成されている。  [0053] The circulation switching means (71) is provided in the first adsorption heat exchanger (61) and the second adsorption heat exchanger (62) to alternately adsorb and desorb moisture. It is configured to switch the valve (64) to switch the circulation direction of the refrigerant in the refrigerant circuit (60). The circulation switching means (71) is configured to switch the four-way switching valve (64) every three minutes, for example.
[0054] 上記差圧低減手段 (80)は、循環切換手段(71)の循環の切り換え前に、つまり、 四路切換弁 (64)を切り換える前に、冷媒回路 (60)の高圧側と低圧側との差圧を低減 するように構成されている。具体的に、上記差圧低減手段 (80)は、圧縮機 (63)を停 止するように構成され、循環切換手段 (71)の四路切換弁 (64)の切り換え前に圧縮機 (63)を所定時間停止させ、四路切換弁 (64)の切り換え後に圧縮機 (63)の運転を再 開させるように構成されて 、る。 [0054] The differential pressure reducing means (80) is provided before the circulation switching of the circulation switching means (71), that is, Before switching the four-way switching valve (64), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced. Specifically, the differential pressure reducing means (80) is configured to stop the compressor (63), and before the four-way switching valve (64) of the circulation switching means (71) switches the compressor (63). ) Is stopped for a predetermined time, and after the four-way switching valve (64) is switched, the operation of the compressor (63) is restarted.
[0055] 上記差圧低減手段 (80)は、圧縮機 (63)を停止させることによって冷媒回路 (60) の高圧側と低圧側との差圧を小さくし、切り換え時の冷媒発生音を抑制するようにし ている。 [0055] The differential pressure reducing means (80) reduces the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) by stopping the compressor (63), thereby suppressing the noise generated by the refrigerant during switching. I try to do it.
[0056] 運転動作  [0056] Driving operation
次に、上記調湿装置(10)の調湿動作について説明する。この調湿装置(10)では 、除湿運転と加湿運転とが切り換え可能になって!/、る。  Next, the humidity control operation of the humidity control device (10) will be described. In this humidity control device (10), the dehumidification operation and the humidification operation can be switched!
[0057] 《除湿運転》 [0057] << Dehumidification operation >>
この除湿運転時において、調湿装置(10)では、給気ファン (25)及び排気ファン( 26)が運転される。そして、この調湿装置(10)は、室外空気 (OA)を第 1空気として取 り込んで室内に供給する一方、室内空気 (RA)を第 2空気として取り込んで室外に排 出する。  During the dehumidification operation, the air supply fan (25) and the exhaust fan (26) are operated in the humidity control device (10). The humidity control device (10) takes in the outdoor air (OA) as the first air and supplies it to the room, while taking in the room air (RA) as the second air and discharges it to the outside.
[0058] 先ず、除湿運転時の第 1動作について、図 1及び図 4を参照しながら説明する。こ の第 1動作では、第 1吸着熱交換器 (61)において吸着剤の再生が行われ、第 2吸着 熱交換器 (62)において第 1空気である室外空気 (OA)の除湿が行われる。  First, the first operation during the dehumidifying operation will be described with reference to FIGS. 1 and 4. In the first operation, the adsorbent is regenerated in the first adsorption heat exchanger (61), and the outdoor air (OA) as the first air is dehumidified in the second adsorption heat exchanger (62). .
[0059] 上記第 1動作時において、冷媒回路 (60)では、四路切換弁 (64)が図 1実線に示 す状態に切り換えられる。この状態で圧縮機 (63)を運転すると、冷媒回路 (60)で冷 媒が循環し、第 1吸着熱交換器 (61)が凝縮器となって第 2吸着熱交換器 (62)が蒸発 器となる第 1冷凍サイクル動作が行われる。  [0059] During the first operation, in the refrigerant circuit (60), the four-way switching valve (64) is switched to the state shown by the solid line in Fig. 1. When the compressor (63) is operated in this state, the refrigerant circulates in the refrigerant circuit (60), the first adsorption heat exchanger (61) becomes a condenser, and the second adsorption heat exchanger (62) evaporates. A first refrigeration cycle operation is performed.
[0060] 具体的に、上記圧縮機 (63)から吐出された冷媒は、第 1吸着熱交換器 (61)で放 熱して凝縮し、その後に膨張弁 (65)へ送られて減圧される。この減圧された冷媒は、 第 2吸着熱交 (62)で吸熱して蒸発し、その後に圧縮機 (63)へ吸入されて圧縮さ れる。そして、この圧縮された冷媒は、再び圧縮機 (63)から吐出される。  [0060] Specifically, the refrigerant discharged from the compressor (63) is condensed by releasing heat in the first adsorption heat exchanger (61), and then sent to the expansion valve (65) to be decompressed. . The decompressed refrigerant absorbs heat in the second adsorption heat exchange (62), evaporates, and is then sucked into the compressor (63) and compressed. Then, the compressed refrigerant is discharged again from the compressor (63).
[0061] また、上記第 1動作時において、各開口(51〜58)のダンバ(71〜78)を切り換える ことにより、第 2開口 (52)と第 3開口 (53)と第 5開口 (55)と第 8開口 (58)とを開口状態 とし、第 1開口(51)と第 4開口(54)と第 6開口(56)と第 7開口(57)とを閉鎖状態とする 。そして、図 4に示すように、第 1吸着熱交換器 (61)へ第 2空気としての室内空気 (RA )が供給され、第 2吸着熱交換器 (62)へ第 1空気としての室外空気 (OA)が供給され る。 In the first operation, the dampers (71 to 78) of the openings (51 to 58) are switched. Thereby, the second opening (52), the third opening (53), the fifth opening (55), and the eighth opening (58) are opened, and the first opening (51), the fourth opening (54) and The sixth opening (56) and the seventh opening (57) are closed. Then, as shown in FIG. 4, indoor air (RA) as second air is supplied to the first adsorption heat exchanger (61), and outdoor air as first air is supplied to the second adsorption heat exchanger (62). (OA) is supplied.
[0062] 具体的に、上記室内空気吸込口(22)より流入した第 2空気は、第 2流入路 (45)か ら第 5開口(55)を通って第 1熱交換室 (41)へ送り込まれる。この第 1熱交換室 (41)で は、第 2空気が第 1吸着熱交 (61)を上から下へ向力つて通過する。この第 1吸着 熱交換器 (61)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤 から水分が脱離する。この吸着剤から脱離した水分は、第 1吸着熱交 (61)を通 過する第 2空気に放出される。この第 1吸着熱交 (61)で水分を付与された第 2空 気は、第 1熱交換室 (41)から第 3開口(53)を通って第 1流出路 (44)へ流出する。そ の後、第 2空気は、排気ファン (26)へ吸い込まれ、排気吹出口(23)から排出空気( EA)として室外へ排出される。  [0062] Specifically, the second air flowing from the indoor air suction port (22) flows from the second inflow path (45) to the first heat exchange chamber (41) through the fifth opening (55). Sent in. In the first heat exchange chamber (41), the second air passes through the first adsorption heat exchange (61) downward from above. In the first adsorption heat exchanger (61), the adsorbent carried on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The water desorbed from the adsorbent is released to the second air passing through the first adsorption heat exchange (61). The second air to which water has been given by the first adsorption heat exchange (61) flows out of the first heat exchange chamber (41) through the third opening (53) to the first outflow path (44). Thereafter, the second air is sucked into the exhaust fan (26), and is exhausted from the exhaust air outlet (23) to the outside as exhaust air (EA).
[0063] 一方、上記室外空気吸込口(21)より流入した第 1空気は、第 1流入路 (43)から第 2開口(52)を通って第 2熱交換室 (42)へ送り込まれる。この第 2熱交換室 (42)では、 第 1空気が第 2吸着熱交換器 (62)を上力 下へ向かって通過する。この第 2吸着熱 交 (62)では、外表面に担持された吸着剤に第 1空気中の水分が吸着される。そ の際に生じる吸着熱は、冷媒が吸熱する。上記第 2吸着熱交換器 (62)で除湿された 第 1空気は、第 2熱交換室 (42)から第 8開口(58)を通って第 2流出路 (46)へ流出す る。その後、第 1空気は、給気ファン (25)へ吸い込まれ、給気吹出口(24)から供給空 気 (SA)として室内へ供給される。  [0063] On the other hand, the first air that has flowed in from the outdoor air suction port (21) is sent from the first inflow path (43) to the second heat exchange chamber (42) through the second opening (52). In the second heat exchange chamber (42), the first air passes upward through the second adsorption heat exchanger (62). In the second adsorption heat exchange (62), moisture in the first air is adsorbed on the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. The first air dehumidified by the second adsorption heat exchanger (62) flows out of the second heat exchange chamber (42) through the eighth opening (58) to the second outflow path (46). Thereafter, the first air is sucked into the air supply fan (25), and is supplied from the air supply outlet (24) to the room as supply air (SA).
[0064] 次に、上記除湿運転時の第 2動作について、図 1及び図 5を参照しながら説明す る。この第 2動作では、第 2吸着熱交翻 (62)において吸着剤の再生が行われ、第 1 吸着熱交換器 (61)において第 1空気である室外空気 (OA)の除湿が行われる。  Next, the second operation at the time of the dehumidifying operation will be described with reference to FIGS. 1 and 5. In the second operation, the adsorbent is regenerated in the second adsorption heat exchange (62), and the outdoor air (OA) as the first air is dehumidified in the first adsorption heat exchanger (61).
[0065] この第 2動作時において、冷媒回路 (60)では、四路切換弁 (64)が図 1破線に示 す状態に切り換えられる。この状態で圧縮機 (63)を運転すると、冷媒回路 (60)で冷 媒が循環し、第 1吸着熱交換器 (61)が蒸発器となって第 2吸着熱交換器 (62)が凝縮 器となる第 2冷凍サイクル動作が行われる。 [0065] During the second operation, in the refrigerant circuit (60), the four-way switching valve (64) is switched to the state shown by the broken line in FIG. When the compressor (63) is operated in this state, the refrigerant circulates in the refrigerant circuit (60), the first adsorption heat exchanger (61) becomes an evaporator, and the second adsorption heat exchanger (62) condenses. A second refrigeration cycle operation is performed.
[0066] 具体的に、上記圧縮機 (63)から吐出された冷媒は、第 2吸着熱交換器 (62)で放 熱して凝縮し、その後に膨張弁 (65)へ送られて減圧される。この減圧された冷媒は、 第 1吸着熱交 (61)で吸熱して蒸発し、その後に圧縮機 (63)へ吸入されて圧縮さ れる。そして、この圧縮された冷媒は、再び圧縮機 (63)から吐出される。  Specifically, the refrigerant discharged from the compressor (63) is condensed by releasing heat in the second adsorption heat exchanger (62), and then sent to the expansion valve (65) to be decompressed. . The decompressed refrigerant absorbs heat in the first adsorption heat exchange (61), evaporates, and is then sucked into the compressor (63) and compressed. Then, the compressed refrigerant is discharged again from the compressor (63).
[0067] また、上記第 2動作時において、各開口(51〜58)のダンバ(71〜78)を切り換える ことにより、第 1開口 (51)と第 4開口 (54)と第 6開口 (56)と第 7開口 (57)とを開口状態 とし、第 2開口(52)と第 3開口(53)と第 5開口(55)と第 8開口(58)とを閉鎖状態とする 。そして、図 5に示すように、第 1吸着熱交換器 (61)へ第 1空気としての室外空気( OA)が供給され、第 2吸着熱交 (62)へ第 2空気としての室内空気 (RA)が供給さ れる。  In the second operation, by switching the dampers (71-78) of the openings (51-58), the first opening (51), the fourth opening (54), and the sixth opening (56) are switched. ) And the seventh opening (57) are in an open state, and the second opening (52), the third opening (53), the fifth opening (55), and the eighth opening (58) are in a closed state. Then, as shown in FIG. 5, outdoor air (OA) as the first air is supplied to the first adsorption heat exchanger (61), and indoor air (OA) as the second air is supplied to the second adsorption heat exchange (62). RA) is supplied.
[0068] 具体的に、上記室内空気吸込口(22)より流入した第 2空気は、第 2流入路 (45)か ら第 6開口(56)を通って第 2熱交換室 (42)へ送り込まれる。この第 2熱交換室 (42)で は、第 2空気が第 2吸着熱交 (62)を上から下へ向力つて通過する。この第 2吸着 熱交換器 (62)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤 から水分が脱離する。この吸着剤から脱離した水分は、第 2吸着熱交 (62)を通 過する第 2空気に放出される。上記第 2吸着熱交換器 (62)で水分を付与された第 2 空気は、第 2熱交換室 (42)力 第 4開口(54)を通って第 1流出路 (44)へ流出する。 その後、第 2空気は、排気ファン (26)へ吸い込まれ、排気吹出口(23)から排出空気 ( EA)として室外へ排出される。  [0068] Specifically, the second air flowing from the indoor air suction port (22) flows from the second inflow path (45) to the second heat exchange chamber (42) through the sixth opening (56). Sent in. In the second heat exchange chamber (42), the second air passes through the second adsorption heat exchange (62) downward from above. In the second adsorption heat exchanger (62), the adsorbent carried on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The water desorbed from the adsorbent is released to the second air passing through the second adsorption heat exchange (62). The second air to which water has been imparted by the second adsorption heat exchanger (62) flows out to the first outflow path (44) through the second heat exchange chamber (42) and the fourth opening (54). Thereafter, the second air is sucked into the exhaust fan (26), and is discharged from the exhaust air outlet (23) to the outside as exhaust air (EA).
[0069] 一方、上記室外空気吸込口(21)より流入した第 1空気は、第 1流入路 (43)から第 1開口(51)を通って第 1熱交換室 (41)へ送り込まれる。この第 1熱交換室 (41)では、 第 1空気が第 1吸着熱交換器 (61)を上力 下へ向かって通過する。この第 1吸着熱 交 (61)では、外表面に担持された吸着剤に第 1空気中の水分が吸着される。そ の際に生じる吸着熱は、冷媒が吸熱する。上記第 1吸着熱交換器 (61)で除湿された 第 1空気は、第 1熱交換室 (41)から第 7開口(57)を通って第 2流出路 (46)へ流出す る。その後、第 1空気は、給気ファン (25)へ吸い込まれ、給気吹出口(24)から供給空 気 (SA)として室内へ供給される。 [0070] 《加湿運転》 [0069] On the other hand, the first air that has flowed in from the outdoor air suction port (21) is sent from the first inflow path (43) to the first heat exchange chamber (41) through the first opening (51). In the first heat exchange chamber (41), the first air passes upward through the first adsorption heat exchanger (61). In the first adsorption heat exchange (61), moisture in the first air is adsorbed on the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. The first air dehumidified by the first adsorption heat exchanger (61) flows out of the first heat exchange chamber (41) through the seventh opening (57) to the second outflow passage (46). Thereafter, the first air is sucked into the air supply fan (25), and is supplied from the air supply outlet (24) to the room as supply air (SA). [0070] << Humidification operation >>
上記加湿運転時において、調湿装置(10)では、給気ファン (25)及び排気ファン( 26)が運転される。そして、この調湿装置(10)は、室内空気 (RA)を第 1空気として取 り込んで室外に排出する一方、室外空気(OA)を第 2空気として取り込んで室内に供 給する。  During the humidifying operation, the humidity control device (10) operates the air supply fan (25) and the exhaust fan (26). The humidity control device (10) takes in the room air (RA) as the first air and discharges it outside the room, while taking in the outdoor air (OA) as the second air and supplies it to the room.
[0071] 先ず、加湿運転時の第 1動作について、図 1及び図 6を参照しながら説明する。こ の第 1動作では、第 1吸着熱交換器 (61)において第 2空気である室外空気 (OA)の 加湿が行われ、第 2吸着熱交換器 (62)において第 1空気である室内空気 (RA)から 水分の回収が行われる。上記第 1動作時においては、冷媒回路 (60)の四路切換弁( 64)が図 1実線に示す状態に切り換えられ、第 1冷凍サイクル動作が行われる。  First, the first operation during the humidification operation will be described with reference to FIGS. 1 and 6. In the first operation, outdoor air (OA) as the second air is humidified in the first adsorption heat exchanger (61), and indoor air as the first air in the second adsorption heat exchanger (62). Water is collected from (RA). In the first operation, the four-way switching valve (64) of the refrigerant circuit (60) is switched to the state shown by the solid line in FIG. 1, and the first refrigeration cycle operation is performed.
[0072] また、上記第 1動作時において、各開口(51〜58)のダンバ(71〜78)を切り換える ことにより、第 1開口 (51)と第 4開口 (54)と第 6開口 (56)と第 7開口 (57)とを開口状態 とし、第 2開口(52)と第 3開口(53)と第 5開口(55)と第 8開口(58)とを閉鎖状態とする 。そして、図 6に示すように、第 1吸着熱交換器 (61)には第 2空気としての室外空気( OA)が供給され、第 2吸着熱交換器 (62)には第 1空気としての室内空気 (RA)が供 給される。  In the first operation, by switching the dampers (71-78) of the openings (51-58), the first opening (51), the fourth opening (54), and the sixth opening (56) are switched. ) And the seventh opening (57) are in an open state, and the second opening (52), the third opening (53), the fifth opening (55), and the eighth opening (58) are in a closed state. Then, as shown in FIG. 6, outdoor air (OA) as the second air is supplied to the first adsorption heat exchanger (61), and the second adsorption heat exchanger (62) is supplied as the first air. Room air (RA) is supplied.
[0073] 具体的に、上記室内空気吸込口(22)より流入した第 1空気は、第 2流入路 (45)か ら第 6開口(56)を通って第 2熱交換室 (42)へ送り込まれる。この第 2熱交換室 (42)で は、第 1空気が第 2吸着熱交 (62)を上から下へ向力つて通過する。この第 2吸着 熱交 (62)では、外表面に担持された吸着剤に第 1空気中の水分が吸着される。 その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第 1空気は、第 4開口(54)、第 1流出路 (44)、排気ファン (26)を順に通過し、排出空気 (EA)として排 気吹出口(23)から室外へ排出される。  [0073] Specifically, the first air flowing from the indoor air suction port (22) flows from the second inflow path (45) to the second heat exchange chamber (42) through the sixth opening (56). Sent in. In the second heat exchange chamber (42), the first air passes through the second adsorption heat exchange (62) downward from above. In the second adsorption heat exchange (62), moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. Thereafter, the dehydrated first air passes through the fourth opening (54), the first outflow passage (44), and the exhaust fan (26) in that order, and as exhaust air (EA), the exhaust air outlet (23). From the room.
[0074] 一方、上記室外空気吸込口(21)より流入した第 2空気は、第 1流入路 (43)から第 1開口(51)を通って第 1熱交換室 (41)へ送り込まれる。この第 1熱交換室 (41)では、 第 2空気が第 1吸着熱交換器 (61)を上力 下へ向かって通過する。この第 1吸着熱 交換器 (61)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤か ら水分が脱離する。この吸着剤力 脱離した水分は、第 1吸着熱交 (61)を通過 する第 2空気に放出される。その後、加湿された第 2空気は、第 7開口(57)、第 2流出 路 (46)、給気ファン (25)を順に通過し、供給空気 (SA)として給気吹出口(24)から室 内へ供給される。 On the other hand, the second air that has flowed in from the outdoor air suction port (21) is sent from the first inflow path (43) to the first heat exchange chamber (41) through the first opening (51). In the first heat exchange chamber (41), the second air passes upward through the first adsorption heat exchanger (61). In the first adsorption heat exchanger (61), the adsorbent carried on the outer surface is heated by the refrigerant, and water is desorbed from the adsorbent. This adsorbent power The desorbed water passes through the first adsorption heat exchange (61) To be released into the second air. Thereafter, the humidified second air passes through the seventh opening (57), the second outflow channel (46), and the air supply fan (25) in this order, and is supplied from the air supply outlet (24) as supply air (SA). It is supplied to the room.
[0075] 次に、上記加湿運転時の第 2動作について、図 1及び図 7を参照しながら説明す る。この第 2動作では、第 2吸着熱交翻 (62)において第 2空気である室外空気 (OA )の加湿が行われ、第 1吸着熱交換器 (61)において第 1空気である室内空気 (RA)か ら水分の回収が行われる。上記第 2動作時においては、冷媒回路 (60)の四路切換 弁 (64)が図 1破線に示す状態に切り換えられ、第 2冷凍サイクル動作が行われる。  Next, the second operation during the humidification operation will be described with reference to FIGS. 1 and 7. In this second operation, outdoor air (OA) as the second air is humidified in the second adsorption heat exchange (62), and indoor air (the first air) as the first air in the first adsorption heat exchanger (61). Water is collected from RA). In the second operation, the four-way switching valve (64) of the refrigerant circuit (60) is switched to the state shown by the broken line in FIG. 1, and the second refrigeration cycle operation is performed.
[0076] また、上記第 2動作時において、各開口(51〜58)のダンバ(71〜78)を切り換える ことにより、第 2開口 (52)と第 3開口 (53)と第 5開口 (55)と第 8開口 (58)とを開口状態 とし、第 1開口(51)と第 4開口(54)と第 6開口(56)と第 7開口(57)とを閉鎖状態とする 。そして、図 7に示すように、第 1吸着熱交換器 (61)には第 1空気としての室内空気( RA)が供給され、第 2吸着熱交換器 (62)には第 2空気としての室外空気 (OA)が供 給される。  In the second operation, by switching the dampers (71 to 78) of the respective openings (51 to 58), the second opening (52), the third opening (53), and the fifth opening (55) are switched. ) And the eighth opening (58) are in an open state, and the first opening (51), the fourth opening (54), the sixth opening (56), and the seventh opening (57) are in a closed state. Then, as shown in FIG. 7, the first adsorption heat exchanger (61) is supplied with room air (RA) as the first air, and the second adsorption heat exchanger (62) is supplied with the second air. Outdoor air (OA) is supplied.
[0077] 具体的に、上記室内空気吸込口(22)より流入した第 1空気は、第 2流入路 (45)か ら第 5開口(55)を通って第 1熱交換室 (41)に送り込まれる。この第 1熱交換室 (41)で は、第 1空気が第 1吸着熱交換器 (61)を上から下に向かって通過する。この第 1吸着 熱交 (61)では、外表面に担持された吸着剤に第 1空気中の水分が吸着される。 その際に生じる吸着熱は、冷媒が吸熱する。その後、水分を奪われた第 1空気は、第 3開口(53)、第 1流出路 (44)、排気ファン (26)を順に通過し、排出空気 (EA)として排 気吹出口(23)から室外へ排出される。  Specifically, the first air flowing from the indoor air suction port (22) passes through the fifth opening (55) from the second inflow path (45) to the first heat exchange chamber (41). Sent in. In the first heat exchange chamber (41), the first air passes through the first adsorption heat exchanger (61) from top to bottom. In the first adsorption heat exchange (61), moisture in the first air is adsorbed by the adsorbent carried on the outer surface. The heat of adsorption generated at that time is absorbed by the refrigerant. Thereafter, the dehydrated first air passes through the third opening (53), the first outflow passage (44), and the exhaust fan (26) in that order, and as exhaust air (EA), the exhaust air outlet (23). From the room.
[0078] 一方、上記室外空気吸込口(21)より流入した第 2空気は、第 1流入路 (43)から第 2開口(52)を通って第 2熱交換室 (42)に送り込まれる。この第 2熱交換室 (42)では、 第 2空気が第 2吸着熱交換器 (62)を上力 下へ向かって通過する。この第 2吸着熱 交換器 (62)では、外表面に担持された吸着剤が冷媒により加熱され、この吸着剤か ら水分が脱離する。この吸着剤力 脱離した水分は、第 2吸着熱交 (62)を通過 する第 2空気に付与される。その後、加湿された第 2空気は、第 8開口(58)、第 2流出 路 (46)、給気ファン (25)を順に通過し、供給空気 (SA)として給気吹出口(24)から室 内へ供給される。 On the other hand, the second air flowing from the outdoor air suction port (21) is sent from the first inflow path (43) through the second opening (52) to the second heat exchange chamber (42). In the second heat exchange chamber (42), the second air passes upward through the second adsorption heat exchanger (62). In the second adsorption heat exchanger (62), the adsorbent carried on the outer surface is heated by the refrigerant, and moisture is desorbed from the adsorbent. The desorbed water is given to the second air passing through the second adsorption heat exchange (62). Thereafter, the humidified second air passes through the eighth opening (58), the second outflow passage (46), and the air supply fan (25) in this order, and is supplied from the air supply outlet (24) as supply air (SA). Room Supplied inside.
[0079] 《四路切換弁 (64)の切換制御》  [0079] << Switching control of four-way switching valve (64) >>
次に、上記四路切換弁 (64)の具体的な切換制御について説明する。  Next, specific switching control of the four-way switching valve (64) will be described.
[0080] 上述したように、除湿運転時において、第 1動作と第 2動作とを交互に切り換える 一方、加湿運転時において、第 1動作と第 2動作とを交互に切り換える。この切換は、 循環切換手段 (71)が、例えば、 3分毎に四路切換弁 (64)を切り換えて行う。  [0080] As described above, the first operation and the second operation are alternately switched during the dehumidifying operation, while the first operation and the second operation are alternately switched during the humidifying operation. This switching is performed by the circulation switching means (71), for example, by switching the four-way switching valve (64) every three minutes.
[0081] この切り換える際、差圧低減手段 (80)が循環切換手段 (71)の四路切換弁 (64)の 切り換える前に、圧縮機 (63)を所定時間停止させ、四路切換弁 (64)の切り換え後に 圧縮機 (63)の運転を再開させる。この差圧低減手段 (80)による圧縮機 (63)の停止 によって冷媒回路 (60)の高圧側と低圧側との差圧が小さくなり、冷媒が高圧側から 低圧側へ瞬間的に流れる動作を抑制することができる。この結果、切り換え時の冷媒 発生音が抑制される。  At the time of this switching, the compressor (63) is stopped for a predetermined time before the differential pressure reducing means (80) switches the four-way switching valve (64) of the circulation switching means (71), and the four-way switching valve ( After the switching of 64), the operation of the compressor (63) is restarted. When the compressor (63) is stopped by the differential pressure reducing means (80), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) decreases, and the refrigerant instantaneously flows from the high pressure side to the low pressure side. Can be suppressed. As a result, the generation noise of the refrigerant at the time of switching is suppressed.
[0082] 一実施形態 1の効果  [0082] Effects of Embodiment 1
以上のように、本実施形態によれば、冷媒循環を切り換える前に、冷媒回路 (60) の高圧側と低圧側との差圧を小さくするようにしたために、冷媒が高圧側から低圧側 へ瞬間的に流れる動作が起こらず、それに伴う冷媒の発生音を防止することができる 。特に、切り換え頻度が多い場合においても冷媒の音が問題になることはない。  As described above, according to the present embodiment, before switching the refrigerant circulation, the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced, so that the refrigerant moves from the high pressure side to the low pressure side. An instantaneous flowing operation does not occur, and it is possible to prevent the noise generated by the accompanying refrigerant. In particular, even when the switching frequency is high, the sound of the refrigerant does not matter.
[0083] また、四路切換弁 (64)の切り換え前に圧縮機 (63)を停止するようにしたために、 冷媒回路 (60)の高圧側と低圧側との差圧を確実に低減することができるので、切り 換え時の冷媒発生音を確実に防止することができる。  [0083] Further, since the compressor (63) is stopped before the four-way switching valve (64) is switched, it is necessary to reliably reduce the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60). Therefore, it is possible to reliably prevent the noise generated by the refrigerant when switching.
[0084] 〈発明の実施形態 2〉  <Embodiment 2 of the Invention>
次に、本発明の実施形態 2について詳細に説明する。  Next, Embodiment 2 of the present invention will be described in detail.
[0085] 本実施形態は、前記実施形態 1の差圧低減手段 (80)が圧縮機 (63)を停止させる ようにしたのに代えて、圧縮機 (63)の容量を低減するようにしたものである。  [0085] In the present embodiment, the capacity of the compressor (63) is reduced instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63). Things.
[0086] つまり、本実施形態において、圧縮機 (63)は、運転容量が可変に構成され、例え ば、インバータによって運転周波数が複数段に切り換わるように構成されている。そし て、上記差圧低減手段 (80)は、四路切換弁 (64)の切り換え前に圧縮機 (63)の運転 周波数を低減し、四路切換弁 (64)の切り換え後に圧縮機 (63)の運転周波数を戻す ように構成されている。 That is, in the present embodiment, the compressor (63) is configured such that the operating capacity is variable, and for example, the operating frequency is switched to a plurality of stages by the inverter. The differential pressure reducing means (80) reduces the operating frequency of the compressor (63) before switching the four-way switching valve (64), and reduces the operating frequency of the compressor (63) after switching the four-way switching valve (64). Return the operating frequency of) It is configured as follows.
[0087] したがって、本実施形態によれば、四路切換弁 (64)の切り換え前に圧縮機 (63) の運転周波数を低減するようにしたために、冷媒回路 (60)の高圧側と低圧側との差 圧を低減することができるので、切り換え時の冷媒発生音を防止することができる。ま た、上記圧縮機 (63)の運転が継続されているので、調湿能力の低下を抑制すること ができる。その他の構成、作用及び効果は実施形態 1と同様である。  [0087] Therefore, according to the present embodiment, since the operating frequency of the compressor (63) is reduced before the four-way switching valve (64) is switched, the high-pressure side and the low-pressure side of the refrigerant circuit (60) are reduced. Therefore, it is possible to prevent the noise generated by the refrigerant at the time of switching. Further, since the operation of the compressor (63) is continued, it is possible to suppress a decrease in humidity control ability. Other configurations, operations, and effects are the same as those of the first embodiment.
[0088] 〈発明の実施形態 3〉  <Embodiment 3 of the Invention>
次に、本発明の実施形態 3について詳細に説明する。  Next, Embodiment 3 of the present invention will be described in detail.
[0089] 本実施形態は、前記実施形態 1の差圧低減手段 (80)が圧縮機 (63)を停止させる ようにしたのに代えて、膨張弁 (65)の開度を開くようにしたものである。  In the present embodiment, the opening of the expansion valve (65) is opened instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63). Things.
[0090] つまり、本実施形態において、膨張弁 (65)が開度可変に構成され、例えば、電動 弁によって開度が複数段に変化するように構成されている。そして、上記差圧低減手 段 (80)は、四路切換弁 (64)の切り換え前に膨張弁 (65)の開度を大きくし、例えば、 膨張弁 (65)を全開にし、四路切換弁 (64)の切り換え後に膨張弁 (65)の開度を戻す ように構成されている。  That is, in the present embodiment, the expansion valve (65) is configured to have a variable opening, and for example, is configured such that the opening changes by a motorized valve in a plurality of stages. The differential pressure reducing means (80) increases the degree of opening of the expansion valve (65) before switching the four-way switching valve (64). The opening degree of the expansion valve (65) is returned after the switching of the valve (64).
[0091] したがって、本実施形態によれば、四路切換弁 (64)の切り換え前に膨張弁 (65) の開度を大きくするようにしたために、冷媒回路 (60)の高圧側と低圧側との差圧を低 減することができるので、切り換え時の冷媒発生音を防止することができる。また、上 記圧縮機 (63)の運転が継続されて 、るので、調湿能力の低下を抑制することができ る。その他の構成、作用及び効果は実施形態 1と同様である。  Therefore, according to the present embodiment, the opening degree of the expansion valve (65) is increased before switching the four-way switching valve (64), so that the high pressure side and the low pressure side of the refrigerant circuit (60) are Can be reduced, so that the noise generated at the time of switching can be prevented. Further, since the operation of the compressor (63) is continued, it is possible to suppress a decrease in humidity control ability. Other configurations, operations, and effects are the same as those of the first embodiment.
[0092] 〈発明の実施形態 4〉  <Embodiment 4 of the Invention>
次に、本発明の実施形態 4について図面に基づいて詳細に説明する。  Next, a fourth embodiment of the present invention will be described in detail with reference to the drawings.
[0093] 本実施形態は、図 8に示すように、前記実施形態 1の差圧低減手段 (80)が圧縮 機 (63)を停止させるようにしたのに代えて、冷媒が膨張弁 (65)をバイパスするように したものである。  [0093] In the present embodiment, as shown in Fig. 8, instead of the differential pressure reducing means (80) of Embodiment 1 stopping the compressor (63), the refrigerant is expanded by an expansion valve (65). ) Is bypassed.
[0094] つまり、本実施形態の差圧低減手段 (80)は、バイパス路 (81)とバイパス弁 (82)と 流量調節器 (83)とを備えると共に、コントローラ (70)に設けられた弁制御手段 (84)を 備えている。 [0095] 上記バイパス路 (81)は、両端が膨張弁 (65)の両側に接続され、冷媒が膨張弁( 65)をバイパスして第 1吸着熱交翻 (61)と第 2吸着熱交翻 (62)との間を相互に 流れるように構成されて 、る。 That is, the differential pressure reducing means (80) of the present embodiment includes the bypass passage (81), the bypass valve (82), the flow controller (83), and the valve provided in the controller (70). Control means (84) is provided. [0095] Both ends of the bypass passage (81) are connected to both sides of the expansion valve (65), and the refrigerant bypasses the expansion valve (65) and the first adsorption heat exchange (61) and the second adsorption heat exchange (61). It is constructed so that it flows mutually with the translator (62).
[0096] 上記バイパス弁 (82)は、全開位置と全閉位置とに切り換わる弁で構成され、冷媒 のバイノスを行うもので、通常運転時に全閉となる常閉の弁で構成されている。  [0096] The bypass valve (82) is a valve that switches between a fully open position and a fully closed position, performs binos of refrigerant, and is a normally closed valve that is fully closed during normal operation. .
[0097] 上記流量調節器 (83)は、キヤビラリチューブなどの流量調節機構を構成し、バイ パス弁 (82)と直列に設けられている。該流量調節器 (83)は、バイパス路 (81)を流れ る冷媒を調節するように構成されて ヽる。  [0097] The flow controller (83) constitutes a flow control mechanism such as a capillary tube, and is provided in series with the bypass valve (82). The flow regulator (83) is configured to regulate the refrigerant flowing through the bypass passage (81).
[0098] 上記弁制御手段 (84)は、四路切換弁 (64)の切り換え前にバイパス弁 (82)を開口 し、四路切換弁 (64)の切り換え後にバイパス弁 (82)を閉じるように構成されて!、る。  [0098] The valve control means (84) opens the bypass valve (82) before switching the four-way switching valve (64) and closes the bypass valve (82) after switching the four-way switching valve (64). Become composed! RU
[0099] したがって、除湿運転時及び加湿運転時において、第 1動作と第 2動作とを交互 に切り換える際、循環切換手段 (71)の四路切換弁 (64)の切り換える前に、弁制御手 段 (84)がバイパス弁 (82)を開口させ、四路切換弁 (64)の切り換え後にバイパス弁( 82)を閉じる。この弁制御手段 (84)によるバイパス弁 (82)の開口によって冷媒回路( 60)の高圧側と低圧側との差圧が小さくなり、冷媒が高圧側から低圧側へ瞬間的に 流れる動作を抑制することができる。この結果、切り換え時の冷媒発生音が抑制され る。  [0099] Therefore, when the first operation and the second operation are alternately switched during the dehumidifying operation and the humidifying operation, before switching the four-way switching valve (64) of the circulation switching means (71), the valve control operation is performed. The stage (84) opens the bypass valve (82) and closes the bypass valve (82) after switching the four-way switching valve (64). Due to the opening of the bypass valve (82) by the valve control means (84), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is reduced, thereby suppressing the operation of the refrigerant flowing from the high pressure side to the low pressure side momentarily can do. As a result, the refrigerant generation noise at the time of switching is suppressed.
[0100] また、本実施形態によれば、バイパス路 (81)に流量調節器 (83)を設けているので 、 ノ ィパス弁 (82)の開口時に冷媒カバイパス弁 (82)を介して高圧側力も低圧側へ瞬 間的に流れる動作を抑制することができる。この結果、バイパス弁 (82)の開口による 冷媒発生音が抑制される。その他の構成、作用及び効果は実施形態 1と同様である  [0100] Further, according to the present embodiment, since the flow rate regulator (83) is provided in the bypass path (81), the high pressure side through the refrigerant gas bypass valve (82) when the no-pass valve (82) is opened. The operation in which the force also instantaneously flows to the low pressure side can be suppressed. As a result, the noise generated by the refrigerant due to the opening of the bypass valve (82) is suppressed. Other configurations, operations and effects are the same as those of the first embodiment.
[0101] 尚、本実施形態においては、流量調節器 (83)にキヤビラリチューブを適用したが 、流量調節機構として開度調整自在な電動弁などを適用してもよい。その際、バイパ ス弁 (82)を開度調節自在な弁で構成し、バイパス弁 (82)が流量調節器 (83)としての 流量調節機能を有するようにしてもょ 、。 [0101] In the present embodiment, the capillary tube is applied to the flow regulator (83), but a motorized valve or the like whose opening can be freely adjusted may be applied as a flow adjustment mechanism. At this time, the bypass valve (82) may be constituted by a valve whose opening degree is adjustable, and the bypass valve (82) may have a flow rate adjusting function as the flow rate regulator (83).
[0102] また、本実施形態では、バイパス路 (81)に流量調節器 (83)を設けたが、バイパス 路 (81)の径等によって流量を調節するようにしてもよぐその際、流量調節器 (83)を 省略するようにしてもよ ヽ。 [0102] Further, in the present embodiment, the flow rate regulator (83) is provided in the bypass path (81), but the flow rate may be adjusted by the diameter of the bypass path (81) or the like. Controller (83) You may omit it.
[0103] 〈発明の実施形態 5〉  <Embodiment 5 of the Invention>
次に、本発明の実施形態 5について図面に基づいて詳細に説明する。  Next, a fifth embodiment of the present invention will be described in detail with reference to the drawings.
[0104] 本実施形態は、図 9に示すように、前記実施形態 4の冷媒が膨張弁 (65)をバイパ スするのに代えて、冷媒が圧縮機 (63)の吐出側から吸入側にバイパスするようにした ものである。 In this embodiment, as shown in FIG. 9, instead of the refrigerant of Embodiment 4 bypassing the expansion valve (65), the refrigerant flows from the discharge side of the compressor (63) to the suction side. It is designed to be bypassed.
[0105] つまり、本実施形態の差圧低減手段 (80)は、実施形態 4と同様に、バイパス路( That is, the differential pressure reducing means (80) of the present embodiment is similar to the fourth embodiment in that the
81)とバイパス弁 (82)と流量調節器 (83)とを備えると共に、コントローラ (70)に設けら れた弁制御手段 (84)を備えて!/、る。 81), a bypass valve (82) and a flow controller (83), and a valve control means (84) provided in the controller (70).
[0106] 上記バイパス路 (81)は、両端が圧縮機 (63)の吐出管 (6d)と吸入管 (6e)とに接続 されて圧縮機 (63)の吐出側と吸込側とを繋ぎ、冷媒が圧縮機 (63)の吐出側から吸 入側に流れるように構成されて!、る。上記バイパス弁 (82)、流量調節器 (83)及び弁 制御手段 (84)は、実施形態 4と同様である。  [0106] Both ends of the bypass passage (81) are connected to the discharge pipe (6d) and the suction pipe (6e) of the compressor (63) to connect the discharge side and the suction side of the compressor (63), The refrigerant is configured to flow from the discharge side of the compressor (63) to the suction side. The bypass valve (82), the flow regulator (83), and the valve control means (84) are the same as in the fourth embodiment.
[0107] したがって、除湿運転時及び加湿運転時において、第 1動作と第 2動作とを交互 に切り換える際、循環切換手段 (71)の四路切換弁 (64)の切り換える前に、弁制御手 段 (84)がバイパス弁 (82)を開口させ、四路切換弁 (64)の切り換え後にバイパス弁( [0107] Therefore, when the first operation and the second operation are alternately switched during the dehumidifying operation and the humidifying operation, before the four-way switching valve (64) of the circulation switching means (71) is switched, the valve control operation is performed. The stage (84) opens the bypass valve (82) and, after switching the four-way switching valve (64), the bypass valve (
82)を閉じる。この弁制御手段 (84)によるバイパス弁 (82)の開口によって冷媒が圧縮 機 (63)の吐出側力 吸入側に流れるので、冷媒回路 (60)の高圧側と低圧側との差 圧が小さくなり、冷媒が高圧側力 低圧側へ瞬間的に流れる動作を抑制することがで きる。この結果、切り換え時の冷媒発生音が抑制される。 Close 82). Since the refrigerant flows to the discharge side suction side of the compressor (63) by the opening of the bypass valve (82) by the valve control means (84), the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is small. Thus, the operation in which the refrigerant instantaneously flows to the high pressure side and the low pressure side can be suppressed. As a result, the noise generated at the time of switching is suppressed.
[0108] また、本実施形態によれば、流量調節器 (83)によって、バイパス弁 (82)の開口時 に冷媒がバイパス弁 (82)を介して高圧側から低圧側へ瞬間的に流れる動作を抑制 することができる。ノ イノス弁 (82)の開口による冷媒発生音が抑制される。  Further, according to the present embodiment, when the bypass valve (82) is opened, the refrigerant momentarily flows from the high pressure side to the low pressure side via the bypass valve (82) by the flow controller (83). Can be suppressed. Refrigerant generation noise due to the opening of the noise valve (82) is suppressed.
[0109] 尚、本実施形態においても実施形態 4と同様に、流量調節機構 (83)として開度調 整自在な電動弁などを適用してもよぐバイパス弁 (82)が流量調節機能を有するよう にしてもよい。また、バイパス路 (81)の径等によって流量を調節するようにしてもよい 。その他の構成、作用及び効果は実施形態 4と同様である。  [0109] In this embodiment, as in Embodiment 4, a bypass valve (82), which may be an electric valve whose degree of opening is adjustable as the flow rate adjusting mechanism (83), has a flow rate adjusting function. You may have it. Further, the flow rate may be adjusted by the diameter of the bypass passage (81) or the like. Other configurations, operations, and effects are the same as those of the fourth embodiment.
[0110] 〈発明の実施形態 6〉 次に、本発明の実施形態 6について図面に基づいて詳細に説明する。 <Embodiment 6 of the Invention> Next, a sixth embodiment of the present invention will be described in detail with reference to the drawings.
[0111] 本実施形態は、図 10に示すように、前記実施形態 1の差圧低減手段 (80)が圧縮 機 (63)を停止させるようにしたのに代えて、差圧低減手段 (80)が冷媒循環量を低減 するようにしたものである。 In the present embodiment, as shown in FIG. 10, instead of the differential pressure reducing means (80) of the first embodiment stopping the compressor (63), the differential pressure reducing means (80) ) Is to reduce the refrigerant circulation amount.
[0112] つまり、本実施形態の差圧低減手段 (80)は、常時ガス冷媒が流れるガス管である 圧縮機 (63)の吸入管 (6e)に設けられた開閉弁 (85)を備えると共に、コントローラ (70That is, the differential pressure reducing means (80) of the present embodiment includes an on-off valve (85) provided in the suction pipe (6e) of the compressor (63), which is a gas pipe through which the gas refrigerant always flows. , Controller (70
)に設けられた弁制御手段 (84)を備えて!/、る。 ) Is provided with the valve control means (84) provided in!).
[0113] 上記開閉弁 (85)は、全開位置と全閉位置とに切り換わる弁で構成され、四路切 換弁 (64)の第 2ポートと圧縮機 (63)の吸込口との間に設けられ、通常運転時に全開 となる常開の弁で構成されて 、る。 [0113] The on-off valve (85) is a valve that switches between a fully open position and a fully closed position, and is provided between the second port of the four-way switching valve (64) and the suction port of the compressor (63). It is provided with a normally open valve that is fully opened during normal operation.
[0114] 上記弁制御手段 (84)は、四路切換弁 (64)の切り換え前に開閉弁 (85)を閉鎖し、 四路切換弁 (64)の切り換え後に開閉弁 (85)を開くように構成されて!、る。 The valve control means (84) closes the on-off valve (85) before switching the four-way switching valve (64), and opens the on-off valve (85) after switching the four-way switching valve (64). It is composed into!
[0115] したがって、除湿運転時及び加湿運転時において、第 1動作と第 2動作とを交互 に切り換える際、循環切換手段 (71)の四路切換弁 (64)の切り換える前に、弁制御手 段 (84)が開閉弁 (85)を閉鎖し、四路切換弁 (64)の切り換え後に開閉弁 (85)を開く。 この弁制御手段 (84)による開閉弁 (85)の閉鎖によって該開閉弁 (85)より上流側が 高圧状態に維持される。 [0115] Therefore, when the first operation and the second operation are alternately switched during the dehumidifying operation and the humidifying operation, before the four-way switching valve (64) of the circulation switching means (71) is switched, the valve control operation is performed. The stage (84) closes the on-off valve (85) and opens the on-off valve (85) after switching the four-way switching valve (64). By closing the on-off valve (85) by the valve control means (84), the upstream side of the on-off valve (85) is maintained at a high pressure state.
[0116] つまり、上記圧縮機 (63)の吐出側力 四路切換弁 (64)、第 1吸着熱交換器 (61)That is, the discharge side force of the compressor (63), the four-way switching valve (64), the first adsorption heat exchanger (61)
、膨張弁 (65)及び第 2吸着熱交換器 (62)を経た開閉弁 (85)までが高圧状態に維持 される。よって、冷媒回路 (60)の高圧側と低圧側との差圧が小さくなり、四路切換弁(The pressure up to the on-off valve (85) through the expansion valve (65) and the second adsorption heat exchanger (62) is maintained at a high pressure. Therefore, the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) becomes small, and the four-way switching valve (
64)の切り換え時において、冷媒が高圧側から低圧側へ瞬間的に流れる動作を抑制 することができる。この結果、切り換え時の冷媒発生音が抑制される。 At the time of the switching of (64), the operation in which the refrigerant instantaneously flows from the high pressure side to the low pressure side can be suppressed. As a result, the noise generated at the time of switching is suppressed.
[0117] また、本実施形態では、圧縮機 (63)に吸入される冷媒が抑制されるので、液冷媒 のが圧縮機 (63)に戻る液バックが確実に防止することができる。その他の構成、作用 及び効果は実施形態 1と同様である。 [0117] Further, in the present embodiment, the refrigerant sucked into the compressor (63) is suppressed, so that the liquid back of the liquid refrigerant returning to the compressor (63) can be reliably prevented. Other configurations, operations, and effects are the same as those of the first embodiment.
[0118] 尚、本実施形態は、圧縮機 (63)の吸入管 (6e)に開閉弁 (85)を設けたが、吸入管 In this embodiment, the on-off valve (85) is provided on the suction pipe (6e) of the compressor (63).
(6e)の開閉弁 (85)に代えて、図 10に 1点鎖線で示すように、常時ガス冷媒が流れる ガス管である圧縮機 (63)の吐出管 (6d)に開閉弁 (85)を設けてもよ!ヽ。 [0119] つまり、上記開閉弁 (85)は、圧縮機 (63)と四路切換弁 (64)の第 1ポートとの間に 設けられている。この場合、開閉弁 (85)を閉じると、開閉弁 (85)から四路切換弁 (64) 、第 1吸着熱交翻 (61)、膨張弁 (65)及び第 2吸着熱交翻 (62)を経た圧縮機 (63 )の吸入側までが低圧状態に維持される。 Instead of the on-off valve (85) of (6e), the on-off valve (85) of the discharge pipe (6d) of the compressor (63), which is a gas pipe through which the gas refrigerant always flows, as shown by the dashed line in FIG. May be provided! That is, the on-off valve (85) is provided between the compressor (63) and the first port of the four-way switching valve (64). In this case, when the on-off valve (85) is closed, the four-way switching valve (64), the first adsorption heat exchange (61), the expansion valve (65), and the second adsorption heat exchange (62) ) Is maintained at a low pressure up to the suction side of the compressor (63).
[0120] また、上記開閉弁 (85)は、全閉に閉じる場合に限られず、開度を小さくし、冷媒循 環量を低減するようにしてもょ ヽ。  [0120] Further, the on-off valve (85) is not limited to the case where it is fully closed, and the opening degree may be reduced to reduce the refrigerant circulation amount.
[0121] また、本実施形態は、実施形態 2などの差圧低減手段 (80)を併用するようにして ちょい。  [0121] In the present embodiment, the differential pressure reducing means (80) of the second embodiment or the like is used together.
[0122] 〈その他の実施形態〉  <Other Embodiments>
本発明は、上記各実施形態について、以下のような構成としてもよい。  The present invention may be configured as follows in each of the above embodiments.
[0123] 上記各実施形態の切換機構 (64)は、四路切換弁 (64)としたが、ブリッジ回路と該 ブリッジ回路に設けられた 4つの弁によって冷媒循環方向を切り換えるようにしてもよ い。この場合においても弁の開閉による冷媒循環方向の切り換え時の冷媒発生音を 低減することができる。  Although the switching mechanism (64) in each of the above embodiments is a four-way switching valve (64), the switching direction of the refrigerant may be switched by a bridge circuit and four valves provided in the bridge circuit. No. Also in this case, it is possible to reduce the noise generated by the refrigerant when the refrigerant circulation direction is switched by opening and closing the valve.
[0124] また、上記差圧低減手段 (80)は、圧縮機 (63)等の復帰を切換機構 (64)の切り換 え後に行うようにしたが、圧縮機 (63)の復帰やバイパス弁 (82)の復帰は、切棚構( 64)の切り換え直前であってもよぐ要するに、切り換え時の冷媒発生を抑制しうる冷 媒圧力状態であればよい。  [0124] Further, the differential pressure reducing means (80) is configured to return the compressor (63) or the like after the switching of the switching mechanism (64). The return of (82) may be performed immediately before the switching of the shelf structure (64). In short, it is sufficient if the refrigerant pressure state is such that the generation of refrigerant at the time of switching can be suppressed.
産業上の利用可能性  Industrial applicability
[0125] 以上説明したように、本発明は、冷媒循環方向を切り換えて水分の吸着と脱離と を行う調湿装置について有用であり、特に、吸着剤が担持された熱交翻を有する 調湿装置に適している。 [0125] As described above, the present invention is useful for a humidity control apparatus that performs adsorption and desorption of moisture by switching the refrigerant circulation direction, and in particular, a control apparatus that has heat exchange with an adsorbent carried thereon. Suitable for wet equipment.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機 (63)と切 構 (64)と第 1熱交 (61)と膨張機構 (65)と第 2熱交 ( 62)とが接続されて冷媒循環が可逆に構成され、蒸気圧縮式冷凍サイクルを行う冷 媒回路 (60)を備え、  [1] The compressor (63), the cutting structure (64), the first heat exchange (61), the expansion mechanism (65), and the second heat exchange (62) are connected to form a reversible refrigerant circulation, Equipped with a refrigerant circuit (60) for performing a compression refrigeration cycle,
上記第 1熱交換器 (61)及び第 2熱交換器 (62)の表面に、水分の吸着及び脱離を 行う吸着剤が担持された調湿装置であって、  A humidity control device in which an adsorbent for adsorbing and desorbing moisture is carried on surfaces of the first heat exchanger (61) and the second heat exchanger (62),
上記第 1熱交 (61)及び第 2熱交 (62)で水分の吸着と脱離とを交互に行 うために、上記切換機構 (64)を切り換えて冷媒回路 (60)の冷媒の循環方向を切り換 える循環切換手段 (71)と、  In order to alternately adsorb and desorb moisture in the first heat exchange (61) and the second heat exchange (62), the switching mechanism (64) is switched to circulate the refrigerant in the refrigerant circuit (60). Circulation switching means (71) for switching directions,
該循環切換手段 (71)の循環切り換え前に、冷媒回路 (60)の高圧側と低圧側との 差圧を低減する差圧低減手段 (80)とを備えて!/ヽる  Before the circulation switching of the circulation switching means (71), a differential pressure reducing means (80) for reducing the differential pressure between the high pressure side and the low pressure side of the refrigerant circuit (60) is provided.
ことを特徴とする調湿装置。  A humidity control device characterized by that:
[2] 請求項 1において、 [2] In claim 1,
上記差圧低減手段 (80)は、圧縮機 (63)を停止するように構成されて!ヽる ことを特徴とする調湿装置。  The differential pressure reducing means (80) is configured to stop the compressor (63).
[3] 請求項 1において、 [3] In claim 1,
上記圧縮機 (63)は、容量可変に構成され、  The compressor (63) is configured to have a variable capacity,
上記差圧低減手段 (80)は、圧縮機 (63)の運転容量を低減するように構成されて いる  The differential pressure reducing means (80) is configured to reduce the operating capacity of the compressor (63).
ことを特徴とする調湿装置。  A humidity control device characterized by that:
[4] 請求項 1において、 [4] In claim 1,
上記膨張機構 (65)は、開度可変の膨張弁で構成され、  The expansion mechanism (65) is configured by an expansion valve having a variable opening,
上記差圧低減手段 (80)は、膨張弁の開度を開くように構成されている ことを特徴とする調湿装置。  The humidity control apparatus, wherein the differential pressure reducing means (80) is configured to open the opening of the expansion valve.
[5] 請求項 1において、 [5] In claim 1,
上記差圧低減手段 (80)は、膨張機構 (65)をバイパスするバイパス路 (81)と、該 バイパス路 (81)に設けられた常閉のバイパス弁 (82)とを備え、循環切換手段 (71)の 循環切り換え前にバイパス弁 (82)を開口するように構成されて!、る ことを特徴とする調湿装置。 The differential pressure reducing means (80) includes a bypass passage (81) that bypasses the expansion mechanism (65), and a normally closed bypass valve (82) provided in the bypass passage (81). It is configured to open the bypass valve (82) before switching the circulation of (71)! , A humidity control device characterized by that:
[6] 請求項 1において、 [6] In claim 1,
上記差圧低減手段 (80)は、圧縮機 (63)の吐出側と吸込側とを繋ぐバイパス路 (8 1)と、該バイパス路 (81)に設けられた常閉のバイパス弁(82)とを備え、循環切換手 段 (71)の循環切り換え前にバイパス弁(82)を開口するように構成されてレ、る ことを特徴とする調湿装置。  The differential pressure reducing means (80) includes a bypass passage (81) connecting the discharge side and the suction side of the compressor (63), and a normally closed bypass valve (82) provided in the bypass passage (81). A humidity control device comprising: a bypass valve (82) opened before the circulation switching of the circulation switching means (71).
[7] 請求項 5又は 6において、 [7] In claim 5 or 6,
上記差圧低減手段 (80)は、バイパス路 (81)に設けられた流量調節機構 (83)を備 えている  The differential pressure reducing means (80) includes a flow rate adjusting mechanism (83) provided in the bypass passage (81).
ことを特徴とする調湿装置。  A humidity control device characterized by that:
[8] 請求項 1において、 [8] In claim 1,
上記差圧低減手段 (80)は、圧縮機 (63)に接続されて常時ガス冷媒が流れるガス 管(6b, 6c)に設けられた常開の開閉弁 (85)を備え、循環切換手段(71)の循環切り 換え前に開閉弁 (85)を閉じるように構成されて 、る  The differential pressure reducing means (80) includes a normally open on-off valve (85) provided in a gas pipe (6b, 6c) connected to the compressor (63) and through which gas refrigerant flows constantly, and a circulation switching means ( The on-off valve (85) is configured to be closed before the circulation switch of (71).
ことを特徴とする調湿装置。  A humidity control device characterized by that:
羞替え用紙 (規則 26) Shuffle paper (Rule 26)
PCT/JP2005/005965 2004-03-31 2005-03-29 Moisture conditioning device WO2005095868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004101597A JP2005283041A (en) 2004-03-31 2004-03-31 Humidity controller
JP2004-101597 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095868A1 true WO2005095868A1 (en) 2005-10-13

Family

ID=35063864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005965 WO2005095868A1 (en) 2004-03-31 2005-03-29 Moisture conditioning device

Country Status (2)

Country Link
JP (1) JP2005283041A (en)
WO (1) WO2005095868A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117922A1 (en) * 2010-03-25 2011-09-29 三菱電機株式会社 Air conditioning device
AU2012281861B2 (en) * 2011-07-11 2015-06-25 Daikin Industries, Ltd. Humidity adjustment device
EP3489596A1 (en) * 2017-11-22 2019-05-29 Evolving Living Innovation Center E.L.I.C. S.r.l. Improved heat pump apparatus for air renewal in domestic rooms and the method of operation thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098573B2 (en) * 2007-10-31 2012-12-12 ダイキン工業株式会社 Humidity control device
JP5229368B2 (en) * 2011-09-29 2013-07-03 ダイキン工業株式会社 Humidity control device
CN104246382B (en) * 2012-03-14 2017-03-08 大金工业株式会社 Humidity control device
JP5786774B2 (en) * 2012-03-16 2015-09-30 ダイキン工業株式会社 Humidity control device
JP6204758B2 (en) * 2013-09-02 2017-09-27 ダイキン工業株式会社 Humidity control device
KR102056852B1 (en) * 2014-01-27 2019-12-17 한온시스템 주식회사 Air conditioning system for automotive vehicles
WO2018163422A1 (en) * 2017-03-10 2018-09-13 三菱電機株式会社 Refrigeration cycle device
CN109126374A (en) * 2017-06-27 2019-01-04 中国石油化工股份有限公司 A kind of rotary valve type adsorption system
JP7191914B2 (en) * 2020-10-14 2022-12-19 三菱電機株式会社 refrigeration cycle equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981465A (en) * 1982-10-29 1984-05-11 シャープ株式会社 Heat pump type refrigeration cycle
JPH05346256A (en) * 1990-06-01 1993-12-27 Samsung Electronics Co Ltd Method for controlling compressor of air conditioner
JPH0673667U (en) * 1993-03-17 1994-10-18 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air conditioning type heat pump system
JPH09250847A (en) * 1996-03-14 1997-09-22 Toshiba Corp Freezing cycle
JP2000274782A (en) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp Refrigeration cycle controller and refrigeration cycle control method
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device
JP2003240391A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981465A (en) * 1982-10-29 1984-05-11 シャープ株式会社 Heat pump type refrigeration cycle
JPH05346256A (en) * 1990-06-01 1993-12-27 Samsung Electronics Co Ltd Method for controlling compressor of air conditioner
JPH0673667U (en) * 1993-03-17 1994-10-18 ヤンマーディーゼル株式会社 Pressure equalizer in multi-room air conditioning type heat pump system
JPH09250847A (en) * 1996-03-14 1997-09-22 Toshiba Corp Freezing cycle
JP2000274782A (en) * 1999-03-25 2000-10-06 Mitsubishi Electric Corp Refrigeration cycle controller and refrigeration cycle control method
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device
JP2003240391A (en) * 2002-02-21 2003-08-27 Mitsubishi Electric Corp Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117922A1 (en) * 2010-03-25 2011-09-29 三菱電機株式会社 Air conditioning device
JP5312681B2 (en) * 2010-03-25 2013-10-09 三菱電機株式会社 Air conditioner
US9335072B2 (en) 2010-03-25 2016-05-10 Mitsubishi Electric Corporation Air-conditioning apparatus
AU2012281861B2 (en) * 2011-07-11 2015-06-25 Daikin Industries, Ltd. Humidity adjustment device
EP3489596A1 (en) * 2017-11-22 2019-05-29 Evolving Living Innovation Center E.L.I.C. S.r.l. Improved heat pump apparatus for air renewal in domestic rooms and the method of operation thereof

Also Published As

Publication number Publication date
JP2005283041A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4466774B2 (en) Humidity control device
WO2005095868A1 (en) Moisture conditioning device
JP3624910B2 (en) Humidity control device
KR100742074B1 (en) Humidity controller
AU2004295536B2 (en) Air conditioning system
JP4835688B2 (en) Air conditioner, air conditioning system
JP5018402B2 (en) Humidity control device
JP2005134099A (en) Air conditioner
JP5218135B2 (en) Humidity control device
WO2005103577A1 (en) Humidity controller
JP3695417B2 (en) Humidity control device
JP2005195285A (en) Air conditioner
JP3624893B2 (en) Humidity control device
JP2013190177A (en) Humidity controller
JP4341358B2 (en) Air conditioner
JP4525138B2 (en) Humidity control device
JP3807320B2 (en) Humidity control device
WO2006103968A1 (en) Humidity regulation device
JP4496821B2 (en) Humidity control device
JP4179051B2 (en) Humidity control device
JP4179052B2 (en) Humidity control device
JP2002018228A (en) Humidity controlling apparatus
JP2005164220A (en) Air conditioner
JP4273818B2 (en) Humidity control device
JP5195216B2 (en) Humidity control system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase