JPS5981465A - Heat pump type refrigeration cycle - Google Patents

Heat pump type refrigeration cycle

Info

Publication number
JPS5981465A
JPS5981465A JP19128582A JP19128582A JPS5981465A JP S5981465 A JPS5981465 A JP S5981465A JP 19128582 A JP19128582 A JP 19128582A JP 19128582 A JP19128582 A JP 19128582A JP S5981465 A JPS5981465 A JP S5981465A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow path
way switching
switching valve
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19128582A
Other languages
Japanese (ja)
Other versions
JPH0333990B2 (en
Inventor
乾 嘉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19128582A priority Critical patent/JPS5981465A/en
Publication of JPS5981465A publication Critical patent/JPS5981465A/en
Publication of JPH0333990B2 publication Critical patent/JPH0333990B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ヒートポンプ式冷凍サイクルに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type refrigeration cycle.

従来のヒートポンプ式冷凍サイクルにおいては、第1図
に示すごとく圧縮機1.四方切換弁3.室外側熱交換器
4.膨張装置5および室内側熱交換器6を順次環状に接
続し、冷房運転時には実線矢印で示すごとく圧縮機1か
らの高温高圧の冷媒ガスを室外側熱交換器4に送シ、こ
こで凝縮した後膨張装置5を介して室内側熱交換器6で
蒸発させ、暖房運転時には破線矢印で示すごとく圧縮機
1からの高温高圧の冷媒ガスを逆循環させて暖房を行う
ものである。
In a conventional heat pump type refrigeration cycle, as shown in Fig. 1, a compressor 1. Four-way switching valve 3. Outdoor heat exchanger4. The expansion device 5 and the indoor heat exchanger 6 are sequentially connected in an annular manner, and during cooling operation, high-temperature, high-pressure refrigerant gas is sent from the compressor 1 to the outdoor heat exchanger 4 as shown by the solid arrow, and is condensed there. The refrigerant gas is evaporated in an indoor heat exchanger 6 via a post-expansion device 5, and during heating operation, high-temperature, high-pressure refrigerant gas from the compressor 1 is reversely circulated as shown by the broken line arrow to perform heating.

一般にこの種の冷凍サイクルにおいて、暖房運転時、除
霜を行う場合、四方切換弁3を切換えることにより高温
高圧の冷媒ガスを室外側熱交換器4に流し、該熱交換B
4に付着した霜と熱交換させ、霜を融解除去するように
なっているが、該四方切換弁3を切換える際、室内側熱
交換器6中にあった高圧の液冷媒が圧縮機1に逆流し、
液圧縮防止用のアキュムレーター2巾に滞留してしまい
、該冷凍サイクル中を循環する冷媒量が不足するため十
分な除霜が行なえず、またこのために、除霜に多大の時
間を必要とし、その間暖房運転ができないことよシ、室
温の低下をまねき、快適性をそこなうという欠点があっ
た。
Generally, in this type of refrigeration cycle, when defrosting is performed during heating operation, the four-way switching valve 3 is switched to flow high-temperature, high-pressure refrigerant gas to the outdoor heat exchanger 4, and the heat exchanger B
4 is designed to melt and remove the frost by exchanging heat with the frost that has adhered to the compressor 1. However, when the four-way switching valve 3 is switched, the high-pressure liquid refrigerant that was in the indoor heat exchanger 6 is transferred to the compressor 1. backflow,
The refrigerant accumulates in two widths of the accumulator used to prevent liquid compression, and the amount of refrigerant circulating in the refrigeration cycle is insufficient, making it impossible to defrost sufficiently. However, the heating operation cannot be performed during this time, which causes a drop in the room temperature and impairs comfort.

本発明は、上記欠点を除去することを目的としてなした
ものであり、除霜時の圧縮機の液戻りを防止し、効果的
な除霜を行ない除霜時間の短縮を図ったヒートポンプ式
冷凍サイクルを提供するものである。
The present invention has been made with the aim of eliminating the above-mentioned drawbacks, and is a heat pump type refrigerator that prevents fluid from returning to the compressor during defrosting, performs effective defrosting, and shortens defrosting time. It provides a cycle.

以下、本発明の一実施例を図面に基いて説明するO 第2図は本発明に係るヒートポンプ式冷凍サイクルの冷
媒回路図、第3図は本発明の他の実施例を示すヒートポ
ンプ式冷凍サイクルの冷媒回路図を示す。
Hereinafter, one embodiment of the present invention will be explained based on the drawings. Fig. 2 is a refrigerant circuit diagram of a heat pump type refrigeration cycle according to the present invention, and Fig. 3 is a heat pump type refrigeration cycle showing another embodiment of the present invention. The refrigerant circuit diagram is shown.

なお、実線矢印は、冷房運転時の冷媒の流れを示し、破
線矢印は、暖房運転時の冷媒の流れを示し、また細線矢
印は、冷凍サイクル切換時の冷媒の流れを示す。
Note that solid arrows indicate the flow of refrigerant during cooling operation, broken arrows indicate the flow of refrigerant during heating operation, and thin arrows indicate the flow of refrigerant during refrigeration cycle switching.

第2図において、11は圧縮機、12はアキュムレータ
ー、13は冷房運転と暖房運転を切換えや、賦方切換弁
、14は冷房運転時には凝縮器、暖房運転時には蒸発器
として作用する室外側熱交換器、15は膨張弁あるいは
キャピラリーチューブ等からなる膨張装置、16は冷房
運転時は蒸発器、暖房運転時には凝縮器として作用する
室内側熱交換器、17け圧縮機11の吸入側と四方切換
弁13を結ぶ流路中に設けた電磁弁、18は前記電磁弁
17と四方切換弁13の間の流路と室外側熱交換器14
と四方切換弁13との間の流路を結ぶ第1のバイパス流
路、19は前記電磁弁17と四方切換弁13間の流路と
室内側熱交換器16と四方切換弁13との間の流路を結
ぶ第2のバイパス流路、20は上記第1のバイパス流路
中に設けた第1の逆止弁、21は上記第2のバイパス流
路中に設けた第2の逆止弁である。
In Fig. 2, 11 is a compressor, 12 is an accumulator, 13 is a switching valve for switching between cooling operation and heating operation, and 14 is an outdoor heat source that acts as a condenser during cooling operation and as an evaporator during heating operation. Exchanger, 15 is an expansion device consisting of an expansion valve or capillary tube, etc., 16 is an indoor heat exchanger that acts as an evaporator during cooling operation and a condenser during heating operation, and 17 is a four-way switch with the suction side of compressor 11. A solenoid valve 18 is provided in a flow path connecting the valve 13 and the flow path between the solenoid valve 17 and the four-way switching valve 13 and the outdoor heat exchanger 14.
A first bypass flow path 19 connects the flow path between the solenoid valve 17 and the four-way switching valve 13, and a first bypass flow path 19 connects the flow path between the solenoid valve 17 and the four-way switching valve 13, and the indoor heat exchanger 16 and the four-way switching valve 13. 20 is a first check valve provided in the first bypass flow path; 21 is a second check valve provided in the second bypass flow path; It is a valve.

次に本発明の冷凍サイクルの動作について説明する。本
冷凍サイクルは、通常運転時には電磁弁17け開成し、
また第1及び第2の逆止弁20゜21は閉成状態となシ
、第1図に示した従来の冷凍サイクルと同様の運転状態
となる。
Next, the operation of the refrigeration cycle of the present invention will be explained. During normal operation, this refrigeration cycle opens 17 solenoid valves.
Furthermore, the first and second check valves 20 and 21 are not closed, resulting in an operating state similar to that of the conventional refrigeration cycle shown in FIG.

暖房運転時に、タイマーディアイザーあるいは利付検出
装置等(図示せず)の信号により、除霜を開始するため
に冷凍サイクルを暖房運転から冷房運転に切換えて行な
うが、その場合、まず、電磁弁17を閉成+−1しかる
後四方切換弁13を切換える。これで、室内側熱交換器
16中に滞留していた高温高圧の冷媒は、四方切換弁1
3、第1のバイパス流路18、第1の逆止弁20を通っ
て低温低圧の室外側熱交換器14中に流入する。この時
、電磁弁17が閉成されているので圧縮機11の吸入側
へ液冷媒が吸入されることが防止できる。
During heating operation, the refrigeration cycle is switched from heating operation to cooling operation in order to start defrosting in response to a signal from a timer de-izer or an interest detection device (not shown). In this case, first, the solenoid valve 17 After closing +-1, the four-way switching valve 13 is switched. The high-temperature, high-pressure refrigerant that had accumulated in the indoor heat exchanger 16 is now removed from the four-way switching valve 1.
3. It flows into the low temperature, low pressure outdoor heat exchanger 14 through the first bypass passage 18 and the first check valve 20. At this time, since the solenoid valve 17 is closed, liquid refrigerant can be prevented from being sucked into the suction side of the compressor 11.

この室内側熱交換器14中に流入してきた高温高圧の冷
媒により室外側熱交換器14に付着していた鞘が融解し
はじめる。次に室内側熱交換器16と室外側熱交換器1
4とが圧力バランスし室内側熱交換器16から室外側熱
交換器14へ冷媒が流れていかなくなった時に電磁弁1
7を開成する。
The high-temperature, high-pressure refrigerant flowing into the indoor heat exchanger 14 causes the sheath attached to the outdoor heat exchanger 14 to begin to melt. Next, the indoor heat exchanger 16 and the outdoor heat exchanger 1
When the pressure of 4 is balanced and refrigerant no longer flows from the indoor heat exchanger 16 to the outdoor heat exchanger 14, the solenoid valve 1
7 will be opened.

乙の時、圧縮機11からの吐出ガスにより室外側熱交換
器14の圧力は四方切換弁13と電磁弁17の間の流路
の圧力よシ高くなり、第1の逆止弁20は閉成状態とな
り、第1図の従来サイクルと同様の運転状態となる。
At time B, the pressure in the outdoor heat exchanger 14 becomes higher than the pressure in the flow path between the four-way switching valve 13 and the solenoid valve 17 due to the gas discharged from the compressor 11, and the first check valve 20 closes. This results in the same operating state as in the conventional cycle shown in FIG.

この様にして、圧縮機11からの高温高圧の吐出ガスに
より室外側熱交換器14に付着していた鞘が融解して除
去される。
In this way, the sheath attached to the outdoor heat exchanger 14 is melted and removed by the high temperature and high pressure discharged gas from the compressor 11.

除霜が終了し、再び暖房運転に切換える場合は、まず電
磁弁17を閉成し、しかる後、四方切換弁13を切換え
る。これで室外側熱交換器14中に滞留している高圧の
冷媒は、四方切換弁13、第2のバイパス流路19、第
2の逆止弁21を通って低圧の室内側熱交換器16中に
流入する。この時も電磁弁17が閉成されているので、
液冷媒が圧縮機11の吸入側へ吸入されることが防止で
きるO 次に、室外側熱交換器14と室内側熱交換器16が圧力
バランスし、室外側熱交換器14から室内側熱交換器1
6へ冷媒が流れなくなった時に電磁弁17を開成する。
When defrosting is completed and the heating operation is to be switched again, the solenoid valve 17 is first closed, and then the four-way switching valve 13 is switched. The high-pressure refrigerant remaining in the outdoor heat exchanger 14 is now transferred to the low-pressure indoor heat exchanger 16 through the four-way switching valve 13, the second bypass passage 19, and the second check valve 21. flow inside. Since the solenoid valve 17 is closed at this time,
The liquid refrigerant can be prevented from being sucked into the suction side of the compressor 11.Next, the outdoor heat exchanger 14 and the indoor heat exchanger 16 are pressure balanced, and the outdoor heat exchanger 14 performs indoor heat exchange. Vessel 1
When the refrigerant stops flowing to 6, the solenoid valve 17 is opened.

この時、圧縮機11からの吐出ガスによシ室内側熱交換
器16の圧力は、四方切換弁13と電磁弁17の間の流
路の圧力より高くなシ、第2の逆止弁21は閉成状態と
なり暖房運転を再開する。
At this time, due to the discharge gas from the compressor 11, the pressure in the indoor heat exchanger 16 is higher than the pressure in the flow path between the four-way switching valve 13 and the solenoid valve 17, and the second check valve 21 becomes closed and resumes heating operation.

第3図は、本発明の他の実施例を示すもので、第1のバ
イパス流路18を電磁弁17と四方切換弁13との間の
流路と室外側熱交換器14と膨張装置15との間の流路
を結ぶ様に設けた、又、第2のバイパス流路19を電磁
弁17と四方切換弁13との間の流路と室内側熱交換器
16と膨張装置15との間の流路を結ぶ様に設けたもの
であシ、前記第2図に示した実施例と同様の制御及び動
作を行なうものである。
FIG. 3 shows another embodiment of the present invention, in which the first bypass passage 18 is connected to the passage between the solenoid valve 17 and the four-way switching valve 13, the outdoor heat exchanger 14, and the expansion device 15. In addition, the second bypass flow path 19 is provided to connect the flow path between the solenoid valve 17 and the four-way switching valve 13, and the flow path between the indoor heat exchanger 16 and the expansion device 15. It is provided so as to connect the flow paths between the two, and performs the same control and operation as the embodiment shown in FIG. 2 above.

尚、本発明の実施にあたっては、第1のバイパス流路1
8を電磁弁17と四方切換弁13の間の流路と室外側熱
交換器14を含む四方切換弁13と膨張装置15間の流
路の任意の点を結ぶバイパス流路とすればよく、又第2
のバイパス流路19は電磁弁17と四方切換弁130間
の流路と室内側熱交換器16を含む四方切換弁13と膨
張装置15間の流路の任意の点と結ぶバイパス流路とす
ればよい。
In addition, in implementing the present invention, the first bypass flow path 1
8 may be a bypass flow path connecting the flow path between the electromagnetic valve 17 and the four-way switching valve 13 and the flow path between the four-way switching valve 13 including the outdoor heat exchanger 14 and the expansion device 15, Also second
The bypass flow path 19 is a bypass flow path that connects the flow path between the solenoid valve 17 and the four-way switching valve 130 and the flow path between the four-way switching valve 13 including the indoor heat exchanger 16 and the expansion device 15. Bye.

この様に、本発明によれば、領房運転時に除霜を行なう
ため冷凍サイクルを切換える際に圧縮機の吸入側−\、
室内側熱交換器あるいけ室外側熱交換器から液冷媒が流
入し、アキュムレーターへの滞留を防げるので、短時間
で効率のよい除霜ができ、除霜時の室温降下を少なくす
ることができる。
As described above, according to the present invention, when switching the refrigeration cycle for defrosting during room operation, the suction side of the compressor -\,
Liquid refrigerant flows into the indoor heat exchanger or the outdoor heat exchanger and prevents it from accumulating in the accumulator, allowing efficient defrosting in a short time and reducing the drop in room temperature during defrosting. can.

除霜運転から暖房運転に復帰した後も、ただちに定常状
態に近い冷媒分布で運転を行なうことができるので室温
の回復も早く行なえ、快適性のすぐれた暖房を行なうこ
とができる。
Even after returning from defrosting operation to heating operation, operation can be performed immediately with a refrigerant distribution close to a steady state, so the room temperature can be recovered quickly and heating can be performed with excellent comfort.

又、室外側熱交換器を常に霜の付着が少ない効率の良い
状態で使用できるため効率の良い暖房運転が可能となる
Moreover, since the outdoor heat exchanger can always be used in an efficient state with little frost, efficient heating operation is possible.

更に、圧縮機への液戻りが防止できるので、圧縮機の信
頼性も向上する。
Furthermore, since liquid can be prevented from returning to the compressor, the reliability of the compressor is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ式冷凍サイクルの冷媒回路
図、第2図は本発明に係るヒートポンプ式冷凍サイクル
の冷媒回路図、第3図は本発明の他の実施例を示すヒー
トポンプ式冷凍サイクルの冷媒阿略図である。 11は圧縮機、12はアキュムレーター、13は四方切
換弁、14は室外側熱交換器、15は膨張装置、16は
室内側熱交換器、17は電磁弁、18は第1のバイパス
流路、19は第2のバイパス流路、20d:第1の逆止
弁、21は第2の逆止弁をそれぞれ示す。
Figure 1 is a refrigerant circuit diagram of a conventional heat pump type refrigeration cycle, Figure 2 is a refrigerant circuit diagram of a heat pump type refrigeration cycle according to the present invention, and Figure 3 is a refrigerant circuit diagram of a heat pump type refrigeration cycle showing another embodiment of the present invention. This is a schematic diagram of a refrigerant. 11 is a compressor, 12 is an accumulator, 13 is a four-way switching valve, 14 is an outdoor heat exchanger, 15 is an expansion device, 16 is an indoor heat exchanger, 17 is a solenoid valve, 18 is a first bypass channel , 19 is a second bypass flow path, 20d is a first check valve, and 21 is a second check valve.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方切換弁、室内側熱交換器、膨張装置、室外
側熱交換器を順次環状に接続し、前記圧縮機の吸入側と
四方切換弁とを結ぶ流路中に電磁弁を設け、該電磁弁と
如方切換弁の間の流路より、室外側熱交換器を含む四方
切換弁と膨張装置間の流路の任意の点を結ぶ第1のバイ
パス流路及び室外側熱交換器を含む四方切換弁と膨張装
置間の流路の任意の点を結ぶ第2のバイパス流路をそれ
ぞれ設け、該第1及び第2のバイパス流路に各々第1及
び第2の逆止弁を設け、四方切換弁切換時に、所定時間
電磁弁を閉成することを特徴とするビートポンプ式冷凍
サイクル。
A compressor, a four-way switching valve, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are sequentially connected in an annular manner, and a solenoid valve is provided in a flow path connecting the suction side of the compressor and the four-way switching valve, A first bypass flow path connecting any point in the flow path between the four-way switching valve and the expansion device, including the outdoor heat exchanger, from the flow path between the solenoid valve and the two-way switching valve, and the outdoor heat exchanger. A second bypass flow path connecting any point in the flow path between the four-way switching valve containing the expansion device and the expansion device is provided, and first and second check valves are provided in the first and second bypass flow paths, respectively. A beat pump type refrigeration cycle characterized in that a solenoid valve is closed for a predetermined period of time when a four-way switching valve is switched.
JP19128582A 1982-10-29 1982-10-29 Heat pump type refrigeration cycle Granted JPS5981465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19128582A JPS5981465A (en) 1982-10-29 1982-10-29 Heat pump type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19128582A JPS5981465A (en) 1982-10-29 1982-10-29 Heat pump type refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5981465A true JPS5981465A (en) 1984-05-11
JPH0333990B2 JPH0333990B2 (en) 1991-05-21

Family

ID=16272016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19128582A Granted JPS5981465A (en) 1982-10-29 1982-10-29 Heat pump type refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5981465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095868A1 (en) * 2004-03-31 2005-10-13 Daikin Industries, Ltd. Moisture conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095868A1 (en) * 2004-03-31 2005-10-13 Daikin Industries, Ltd. Moisture conditioning device

Also Published As

Publication number Publication date
JPH0333990B2 (en) 1991-05-21

Similar Documents

Publication Publication Date Title
AU5997599A (en) Two-refrigerant refrigerating device
JP3175706B2 (en) Binary refrigeration equipment
JPS5981465A (en) Heat pump type refrigeration cycle
JPH09287847A (en) Heat recovery type air conditioner
JP2000111213A (en) Freezer
JPS5971963A (en) Heat pump type refrigeration cycle
JP3343916B2 (en) Refrigeration equipment
JP3134350B2 (en) Defrost control device
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JPS5971962A (en) Heat pump type refrigeration cycle
JPS63286676A (en) Air conditioner
JPS5852460Y2 (en) Refrigeration equipment
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS5981464A (en) Heat pump type refrigeration cycle
JPS58102067A (en) Air conditioner
JPS60245967A (en) Air conditioner
JP2533585B2 (en) Multi-room air conditioner
JPH0333993B2 (en)
JPS62299665A (en) Refrigerator
JPS62213654A (en) Heat pump type refrigeration cycle
JPS59217463A (en) Refrigeration cycle of air conditioner
JP2000274858A (en) Method for controlling operation of air conditioner
JPH0120709B2 (en)
JPS59210274A (en) Air conditioner
JPH01123965A (en) Air conditioner