JPH01123965A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01123965A
JPH01123965A JP62281705A JP28170587A JPH01123965A JP H01123965 A JPH01123965 A JP H01123965A JP 62281705 A JP62281705 A JP 62281705A JP 28170587 A JP28170587 A JP 28170587A JP H01123965 A JPH01123965 A JP H01123965A
Authority
JP
Japan
Prior art keywords
bypass circuit
compressor
heat exchanger
accumulator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281705A
Other languages
Japanese (ja)
Inventor
Masami Imanishi
正美 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62281705A priority Critical patent/JPH01123965A/en
Publication of JPH01123965A publication Critical patent/JPH01123965A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To decrease a defrost time and prevent defrosted water from being frozen again by providing a first bypass circuit having a flow rate control valve between the discharge gas piping of a compressor and the inlet piping of an accumulator and a second bypass circuit having a solenoid valve for bypassing a second throttle device. CONSTITUTION: In a defrosting operation, a part of high temperature and high pressure gas refrigerant discharged from a compressor 1 enters an accumulator 11 through a first bypass circuit 20 from a discharge piping 2 and the rest thereof enters an indoor side heat exchanger 8 through a four-way selector valve 3 switched to a heating side and passes bypass circuit 63 for bypassing a second throttle device 6 through the first check valve 71 of a first throttling device 7. At this time, a solenoid valve 64 provided in the bypass circuit 63 is closed. Then, frost adhering on the surface of an outdoor side heat exchanger 4 is melted by the high temperature gas refrigerant and the refrigerant is condensed and liquefied and enters the accumulator 11 through the four-way selector valve 3. The first bypass circuit 20 detects the shell temperature of the compressor 1 or the temperature of the discharge piping 2 to close a flow rate control valve 21, so that switching loss is not generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和装置に関するもので、特にデフロ
スト運転時における冷媒制御に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air conditioner, and particularly to refrigerant control during defrost operation.

〔従来の技術〕[Conventional technology]

第2図は従来の空気調和装置の冷媒サイクルを示すもの
で、図において、1は圧縮機、3は四方切換弁、4は室
外側熱交換器、5はこの熱交換器4に送風する室外側フ
ァン、6は第2の絞り装置で、61は第2のキャピラリ
ーチューブ62を79イパスする第2の逆止弁、7は第
1の絞り装置で、71は第1のキャピラリーチューブ7
2をツマイノミスする第1の逆止弁、8は室内側熱交換
器、9はこの熱交換器8に送風する室内側ファン、11
はアキュームレータである。
Figure 2 shows the refrigerant cycle of a conventional air conditioning system. outer fan, 6 is a second throttle device, 61 is a second check valve that passes 79 the second capillary tube 62, 7 is a first throttle device, 71 is the first capillary tube 7;
2 is a first check valve that prevents a pinch error; 8 is an indoor heat exchanger; 9 is an indoor fan that blows air to this heat exchanger 8;
is an accumulator.

次に動作について説明する。まず、冷房運転時において
、圧縮8!1から吐出された高温高圧のガス冷媒は太い
実線矢印で示すように四方切換弁3を通電、室外側熱交
換器4において室外側ファン5により送風される室外空
気と熱交換し、冷媒は凝縮液化する。その後、冷媒は第
2の絞り装置6の第2の逆止弁61t″通り、第1の絞
り装置7の第1のキャピラリーチューブ72によ)減圧
され、低温、低圧液冷媒となる。かくして液冷媒は室内
側熱交換器8に入シ、室内側ファン91Cよ多送風され
る室内空気と熱交換して室内空気を冷却し、冷媒は蒸発
ガス化し四方切換弁3、アキュームレータ11を経て圧
縮機1に戻シ、以下上記動作がくシ返される。
Next, the operation will be explained. First, during cooling operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 8!1 is energized by the four-way switching valve 3 as shown by the thick solid arrow, and is blown by the outdoor fan 5 in the outdoor heat exchanger 4. It exchanges heat with outdoor air, and the refrigerant condenses and liquefies. Thereafter, the refrigerant passes through the second check valve 61t'' of the second expansion device 6 and is depressurized (by the first capillary tube 72 of the first expansion device 7) to become a low-temperature, low-pressure liquid refrigerant. The refrigerant enters the indoor heat exchanger 8 and cools the indoor air by exchanging heat with the indoor air blown by the indoor fan 91C.The refrigerant evaporates and becomes gas, passes through the four-way switching valve 3 and the accumulator 11, and then is sent to the compressor. 1, and the above operation is repeated.

次に暖房運転の場合は、圧縮機1から吐出された高温高
圧のガス冷媒は、細い実線で示すように暖房側に切換え
られた四方切換弁3を通電、室内側熱交換器8に入シ、
室内側ファン9によ多送風される室内空気と熱交換して
該空気を加熱し、冷媒は凝縮液化する。そして冷媒は第
1の絞り装置7の第1の逆止弁71を通電、第2の絞り
装置6の第2のキャピラリーチューブ62により減圧さ
れ、低温、低圧液冷媒となる。その後、液冷媒は室外側
熱交換器4に入シ室外側ファン5によ多送風される室外
空気と熱交換し、室外空気から採熱して該空気を冷却し
、冷媒は蒸発ガス化し、四方切換弁3、アキュームレー
タ11を通電圧縮機1へ戻シ、以下上記動作がくフ返さ
れる。なお、上記運転を継続して実施していると、例え
ば室外空気温度が低い場合、室外側熱交換器4に着霜が
生じる。この着霜が多くなると熱交換が低下し室外空気
からの採熱量が減少するため空調装置の暖房能力が著し
く低下するのでデフロストが必要となる。
Next, in the case of heating operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is energized by the four-way switching valve 3, which is switched to the heating side, as shown by the thin solid line, and is then input into the indoor heat exchanger 8. ,
The refrigerant is condensed and liquefied by exchanging heat with the indoor air blown by the indoor fan 9 to heat the air. Then, the refrigerant is energized through the first check valve 71 of the first expansion device 7 and is depressurized by the second capillary tube 62 of the second expansion device 6, becoming a low-temperature, low-pressure liquid refrigerant. After that, the liquid refrigerant enters the outdoor heat exchanger 4 and exchanges heat with the outdoor air that is blown by the outdoor fan 5, collects heat from the outdoor air and cools the air, and the refrigerant evaporates and gases. The switching valve 3 and the accumulator 11 are returned to the energized compressor 1, and the above operations are repeated thereafter. Note that if the above-mentioned operation is continued, frost will form on the outdoor heat exchanger 4, for example, if the outdoor air temperature is low. When this amount of frost increases, heat exchange decreases and the amount of heat extracted from the outdoor air decreases, resulting in a significant decrease in the heating capacity of the air conditioner, making defrosting necessary.

次にデフロスト運転について説明する。圧縮機1から吐
出された高温、高圧のガス冷媒は破線で示すように暖房
側から冷房側へ切換えられた四方切換弁3を通電、室外
側熱交換器4へ入る。ここで室外側ファン5は停止して
いる。そして室外側熱交換器4の表面に着霜している霜
を高温ガス冷媒で融解し、冷媒は凝縮液化して第2の絞
り装置6の第2の逆上弁61を通電、第1の絞り装置7
の第1のキャピラリーチューブ71にて減圧され低温、
低圧の液冷媒となシ室内側熱交換器8へ入る。ここで通
常、室内側ファン9は微風運転を行なうか、または停止
する。微風運転を行なえば低温、低圧の液冷媒と室内空
気は熱交換し、該空気は冷却し冷媒は蒸発ガス化し、そ
の後、四方切換弁3およびアキュームレータ11を経て
圧縮機1へ戻る。この場合は、室内側に冷風が吹出され
るので空調効果を著しく低下させてしまう。また、室内
側ファン9を停止させた場合、低温、低圧の液冷媒は採
熱できず、液のままアキュームレータ11に入シ圧縮機
1に戻るため、圧縮機1が液圧縮して圧縮機の故障を招
く。さらに室外熱交換器4に関しては、低外気温時、デ
フロスト運転終了後直ちに暖房運転に入るためデフロス
ト水が室外熱交換器4の表面から十分に落ちきれない状
態となシ、再び氷結することもあった。
Next, defrost operation will be explained. The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is energized through the four-way switching valve 3, which is switched from the heating side to the cooling side, as shown by the broken line, and enters the outdoor heat exchanger 4. At this point, the outdoor fan 5 is stopped. Then, the frost forming on the surface of the outdoor heat exchanger 4 is melted by the high-temperature gas refrigerant, the refrigerant is condensed and liquefied, and the second reverse valve 61 of the second throttle device 6 is energized, and the first Squeezing device 7
The pressure is reduced in the first capillary tube 71 of the
The low-pressure liquid refrigerant enters the indoor heat exchanger 8. At this point, the indoor fan 9 normally operates in a light breeze mode or is stopped. When the breeze operation is performed, the low-temperature, low-pressure liquid refrigerant and indoor air exchange heat, the air is cooled, the refrigerant evaporates, and then returns to the compressor 1 via the four-way switching valve 3 and the accumulator 11. In this case, cold air is blown indoors, which significantly reduces the air conditioning effect. Furthermore, when the indoor fan 9 is stopped, the low-temperature, low-pressure liquid refrigerant cannot collect heat and enters the accumulator 11 as a liquid and returns to the compressor 1. This may lead to malfunction. Furthermore, regarding the outdoor heat exchanger 4, when the outside temperature is low, since the heating operation starts immediately after the defrost operation ends, the defrost water may not be able to fall sufficiently from the surface of the outdoor heat exchanger 4, and it may freeze again. there were.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の空気調和装置は以上のように構成されているので
、暖房運転中のデフロスト時、冷風が室内に供給された
シ、冷風ストップを行なえば圧縮機の液圧縮トラブルの
可能性もあった。また、デフロスト時、高圧圧力が低い
ため、低圧圧力も低下し圧縮機能力が十分に発揮できず
デフロスト時間も長くかかった。さらに、暖房運転時に
四方切換弁3′t−冷房側に切換えデフロスト運転を行
なうため切換え熱ロスが生じた。また、低外気温時にお
いてはデフロスト水が室外側熱交換器4の表面から落ち
きれずに暖房運転に入るため、再氷結することもあった
Since conventional air conditioners are configured as described above, when defrosting during heating operation, cold air is supplied into the room, and if the cold air is stopped, there is a possibility of liquid compression problems in the compressor. Furthermore, during defrosting, since the high pressure was low, the low pressure was also low, making it impossible to fully utilize the compression function, and the defrosting time took a long time. Furthermore, during the heating operation, the four-way switching valve 3't is switched to the cooling side to perform the defrost operation, resulting in switching heat loss. Further, when the outside temperature is low, the defrost water does not completely fall off the surface of the outdoor heat exchanger 4 and enters the heating operation, which may cause it to refreeze.

この発明は上記のような問題点を解消するためになされ
たもので、デフロスト時間の短縮を計ることができると
同時に、デフ0スト水の水切り’に行なうことのできる
空気調和装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an air conditioner that can shorten the defrost time and at the same time drain the defrost water. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る空気調和装置は、圧縮機の吐出ガス配管
とアキュームレータ入口配管との間に流量制御弁を備え
た第1のバイパスn路を設け、第2の絞り製置全バイパ
スする電磁弁を備えた第2のバイパス回路を設けたもの
である。
The air conditioner according to the present invention provides a first bypass n path equipped with a flow rate control valve between the discharge gas piping of the compressor and the accumulator inlet piping, and a second solenoid valve that completely bypasses the throttle valve. A second bypass circuit is provided.

〔作 用〕 この発明においては、第1および第2のバイパス回路は
デフロスト運転時に開路し、四方切換弁全暖房側のまま
とし、室内側熱交換器および案外側熱交換器全凝縮器と
して作用し、室外側熱交換器のデフロストラ行なうと共
に、圧縮機の吐出ガス冷媒を低圧側にバイパスすること
により、低圧圧力を上昇させ、しかも低圧、液冷媒の採
熱源とすることができる。また、デフロスト終了前に室
内外ファンを運転させ、室外側熱交換器の水切シを行な
ったのち暖房運転に入るようにする。
[Function] In this invention, the first and second bypass circuits are opened during defrost operation, the four-way switching valve remains on the heating side, and the indoor side heat exchanger and the guide side heat exchanger function as a total condenser. However, by defrosting the outdoor heat exchanger and bypassing the gas refrigerant discharged from the compressor to the low pressure side, the low pressure can be increased and the low pressure liquid refrigerant can be used as a heat collection source. Also, before the defrost is finished, the indoor/outdoor fan is operated to drain the outdoor heat exchanger and then the heating operation is started.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明による空気調和装置の冷媒サイクルを示し
、図において、1は圧縮機、2はこの圧縮機の吐出配管
、3は四方切換弁、4は室外側熱交換器、5は室外側熱
交換器4に送風する室外側ファン、6は第2の絞り装置
で、61は第2のキャピラリーチューブ62全バイパス
する第2の逆止弁、63は第2の絞り装置6をバイパス
する第2のバイパス回路であシ、64は第2のバイパス
回路631C設けた電磁弁である。7は第1の絞り装置
で、71は第1のキャピラリーチューブ72をバイパス
する第1の逆止弁、8は室内側熱交換器、9は室内側熱
交換器8に送風する室内側ファン、10はアキュームレ
ータ11の入口配管、20は上記吐出配管2とアキュー
ムレータ11の入口配管10とをパイノξスする第1の
バイパス回路、21は第1のバイパス回路20に設けら
れた流量制御弁、30は圧縮機1のシェル温度または吐
出ガス温度全検出し、流量制御弁21に開閉信号を出力
するコントローラである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a refrigerant cycle of an air conditioner according to the present invention. In the figure, 1 is a compressor, 2 is a discharge pipe of this compressor, 3 is a four-way switching valve, 4 is an outdoor heat exchanger, and 5 is an outdoor heat exchanger. 6 is a second throttle device; 61 is a second check valve that completely bypasses the second capillary tube 62; 63 is a second check valve that bypasses the second throttle device 6; 64 is a solenoid valve provided with a second bypass circuit 631C. 7 is a first throttle device, 71 is a first check valve that bypasses the first capillary tube 72, 8 is an indoor heat exchanger, 9 is an indoor fan that blows air to the indoor heat exchanger 8; 10 is an inlet pipe of the accumulator 11, 20 is a first bypass circuit connecting the discharge pipe 2 and the inlet pipe 10 of the accumulator 11, 21 is a flow control valve provided in the first bypass circuit 20, 30 is a controller that detects the entire shell temperature or discharge gas temperature of the compressor 1 and outputs an opening/closing signal to the flow rate control valve 21.

次に動作について説明する。まず、冷房運転時において
、圧縮機1から吐出された高温、高圧のガス冷媒は太い
実線矢印で示すように四方切換弁3を通電、室外側熱交
換器4において室外側ファン5によ多送風される室外空
気と熱交換し、冷媒は凝縮液化する。その後、冷媒は第
2の絞り装置6の第2の逆止弁61を通り、第1の絞り
装置7の第1のキャピラリーチューブ72により減圧さ
れ、低温、低圧液冷媒となる。かぐして液冷媒は室内側
熱交換器8に入シ、室内側ファン9によ多送風される室
内空気と熱交換して室内空気を冷却し、冷媒は蒸発ガス
化し四方切換弁3、アキュームレータ11を経て圧縮機
1に戻シ、以下上記動作がくシ返される。
Next, the operation will be explained. First, during cooling operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is energized by the four-way switching valve 3 as shown by the thick solid line arrow, and the outdoor fan 5 blows the air in the outdoor heat exchanger 4. The refrigerant condenses and liquefies by exchanging heat with the outdoor air. Thereafter, the refrigerant passes through the second check valve 61 of the second expansion device 6, is depressurized by the first capillary tube 72 of the first expansion device 7, and becomes a low-temperature, low-pressure liquid refrigerant. The liquid refrigerant then enters the indoor heat exchanger 8 and exchanges heat with the indoor air blown by the indoor fan 9 to cool the indoor air, and the refrigerant is evaporated and gasified to the four-way switching valve 3 and the accumulator. 11 and then returned to the compressor 1, whereupon the above operation is repeated.

次に暖房運転の場合は、圧縮機1から吐出された高温高
圧のガス冷媒は、細い実線で示すように暖房側に切換え
られた四方切換弁3全通シ、室内側熱交換器8に入シ、
室内側ファン9によ多送風される室内空気と熱交換して
該空気を加熱し、冷媒は凝縮液化する。そして冷媒は第
1の絞り装置7の第1の逆止弁71を通電、第2の絞り
装置6の第2のキャピラリーチューブ62によフ減圧さ
れ、低温、低圧液冷媒となる。その後、液冷媒は室外側
熱交換器4に入シ室外側ファン5によ9送風される室外
空気と熱交換し、室外空気から採熱して該空気を冷却し
、冷媒は蒸発ガス化し、四方切換弁3、アキュームレー
タ11を通電圧縮機1へ戻シ、以下上記動作がくシ返さ
れる。なお、上記運転を継続して実施していると、例え
ば室外空気温度が低い場合、室外側熱交換器4に着霜が
生じる。この着霜が多くなると熱交換が低下し室外空気
からの採熱量が減少するため空調装置の暖房能力が著し
く低下するのでデフロストが必要となる。
Next, in the case of heating operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 3, which is switched to the heating side, and enters the indoor heat exchanger 8, as shown by the thin solid line. C,
The refrigerant is condensed and liquefied by exchanging heat with the indoor air blown by the indoor fan 9 to heat the air. Then, the refrigerant is energized through the first check valve 71 of the first expansion device 7 and depressurized by the second capillary tube 62 of the second expansion device 6, becoming a low-temperature, low-pressure liquid refrigerant. After that, the liquid refrigerant enters the outdoor heat exchanger 4 and exchanges heat with the outdoor air blown by the outdoor fan 5, collects heat from the outdoor air and cools the air, and the refrigerant evaporates and gases. The switching valve 3 and the accumulator 11 are returned to the energized compressor 1, and the above operations are then repeated. Note that if the above-mentioned operation is continued, frost will form on the outdoor heat exchanger 4, for example, if the outdoor air temperature is low. When this amount of frost increases, heat exchange decreases and the amount of heat extracted from the outdoor air decreases, resulting in a significant decrease in the heating capacity of the air conditioner, making defrosting necessary.

次にデフロスト運転について説明する。圧縮機1から吐
出された高温、高圧のガス冷媒は破線で示すように一部
は吐出配管2から第1のバイパス回路20全通)アキュ
ームレータ11へ入る。また、その他は暖房側に切換え
られている四方切換弁3を通電室内側熱交換器8へ入る
。このとき、室内側ファン9は停止しておシ、そのまま
第1の絞フ装置7の第1の逆止弁71を通電第2の絞り
装置6をバイパスする第2のバイパス回路63を通る。
Next, defrost operation will be explained. A portion of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 enters the accumulator 11 from the discharge pipe 2 (throughout the first bypass circuit 20), as shown by the broken line. In addition, the four-way switching valve 3, which has been switched to the heating side, is energized and enters the indoor heat exchanger 8. At this time, the indoor fan 9 is stopped, and the first check valve 71 of the first throttle device 7 is energized as it is through the second bypass circuit 63 that bypasses the second throttle device 6 .

この際、第2のバイパス回路63に設けられた電磁弁6
4は開路する。その後、高温ガス冷媒は室外側熱交換器
4へ入る。このとき、室外側ファン5は停止している。
At this time, the solenoid valve 6 provided in the second bypass circuit 63
4 is open circuit. The hot gas refrigerant then enters the outdoor heat exchanger 4. At this time, the outdoor fan 5 is stopped.

かくして、室外側熱交換器4の表面に着霜した霜を高温
ガス冷媒で融解し、冷媒は凝縮液化して四方切換弁3全
通シアキュームレータ11へ入る。ここで第1のバイパ
ス回路20から入ってきた高温ガス冷媒と混合し、高温
ガス冷媒から採熱し、蒸発ガス化し圧縮機1に戻る。こ
の場合、第1のバイパス回路20は圧縮機1のシェル温
度または吐出配管2の温度を検知し、例えばシェル温度
が80℃以上または吐出配管2の温度が130℃以上の
とき、流量制御弁21を閉路するようにしている。した
がって、デフロスト時においては四方切換弁3が暖房側
から冷房側へ切換えることなくデフロスト運転に入るこ
とができるため、切換えロスがない。また高温ガス冷媒
が室内側熱交換器8内全通過するため、室内側に冷風が
でない。さらに、高温ガス冷媒を低圧側へバイパスする
ため、低圧圧力が上昇し圧縮機1の能力を十分に発揮で
き、デフロスト時間の短縮を計ることができる。また、
デフロスト終了直前に室内側ファン9および室外側ファ
ン5を運転させるため、デフロスト終了前の高圧異常上
昇を防止し、かつ室外側熱交換器4のデフロスト水の水
切シを行なうことができる。
In this way, the frost formed on the surface of the outdoor heat exchanger 4 is melted by the high-temperature gas refrigerant, and the refrigerant is condensed and liquefied and enters the four-way switching valve 3 all-through shaker 11. Here, it is mixed with the high-temperature gas refrigerant that has entered from the first bypass circuit 20, extracts heat from the high-temperature gas refrigerant, evaporates into gas, and returns to the compressor 1. In this case, the first bypass circuit 20 detects the shell temperature of the compressor 1 or the temperature of the discharge pipe 2. For example, when the shell temperature is 80°C or higher or the temperature of the discharge pipe 2 is 130°C or higher, the flow control valve 21 I am trying to make a closed circuit. Therefore, during defrosting, the four-way switching valve 3 can enter the defrosting operation without switching from the heating side to the cooling side, so there is no switching loss. Furthermore, since the high-temperature gas refrigerant passes through the entire interior of the indoor heat exchanger 8, there is no cold air inside the room. Furthermore, since the high-temperature gas refrigerant is bypassed to the low-pressure side, the low-pressure pressure increases, the capacity of the compressor 1 can be fully demonstrated, and the defrost time can be shortened. Also,
Since the indoor fan 9 and the outdoor fan 5 are operated immediately before the end of defrosting, an abnormal rise in high pressure can be prevented before the end of defrosting, and the defrost water in the outdoor heat exchanger 4 can be drained.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、圧縮機の吐出ガ
ス配管とアキュームレータ入口配管との間に流量制御弁
を備えた第1のバイパス回路を設置1 け、第2の絞り装置をパイノぐスする電磁弁を備えた第
2のバイパス回路を設けたので、四方切換弁の切換えロ
スを防止し、室内側への冷風の吹出しを防止すると共に
、低圧圧力の上昇に伴なう圧縮機能力の向上によりブフ
ロスト時間の短縮を計ることができる。また、デフロス
ト運転終了直前に水切シラ行なえるのでデフロスト水の
再氷結を防ぐことができる。
As explained above, according to the present invention, the first bypass circuit equipped with the flow control valve is installed between the discharge gas pipe of the compressor and the accumulator inlet pipe, and the second throttle device is connected to the pipe bypass circuit. A second bypass circuit equipped with a solenoid valve is provided, which prevents switching loss of the four-way switching valve, prevents cold air from blowing into the room, and reduces compression function power due to rise in low pressure. By improving this, it is possible to shorten the bufrost time. Furthermore, since the water can be drained immediately before the end of the defrost operation, re-freezing of the defrost water can be prevented.

【図面の簡単な説明】 第1図はこの発明の一実施例による空気調和装置の冷媒
サイクル図、第2図は従来の空気調和装置の冷媒サイク
ル図でちる。 1・・・圧縮機、2・・・吐出配管、3・・・四方切換
弁、4・・・室外側熱交換器、5・・・室外側ファン、
6・・・第2の絞り装置、7・・・第1の絞り装置、8
・・・室内側熱交換器、9・・・室内側ファン、10・
・・アキュームレータ入口配管、11・・・アキューム
レータ、20・・・第1のパイノ々ス回路、21・・・
流量制御弁、30・・・コントローラ、63・・・第2
のバイハス回路、64・・・電磁弁。 なお、図中同一符号は同−又は相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigerant cycle diagram of an air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigerant cycle diagram of a conventional air conditioner. DESCRIPTION OF SYMBOLS 1...Compressor, 2...Discharge piping, 3...Four-way switching valve, 4...Outdoor side heat exchanger, 5...Outdoor side fan,
6... Second diaphragm device, 7... First diaphragm device, 8
...Indoor heat exchanger, 9...Indoor fan, 10.
... Accumulator inlet piping, 11... Accumulator, 20... First pinosu circuit, 21...
Flow control valve, 30...controller, 63...second
Bypass circuit, 64... solenoid valve. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方切換弁、室内側熱交換器、第1および第
2の絞り装置、室外側熱交換器およびアキュームレータ
の順に冷媒配管接続し、上記圧縮機吐出配管とアキュー
ムレータ入口配管をバイパスする第1のバイパス回路、
このバイパス回路に圧縮機のシェル温度の温度信号また
は圧縮機吐出配管の配管温度信号により冷媒流量をコン
トロールする流量制御弁、上記信号により流量制御弁の
開度調整を行なうコントローラを備え、上記第2の絞り
装置をバイパスする第2のバイパス回路と、このバイパ
ス回路に電磁弁を備えたことを特徴とする空気調和装置
The compressor, the four-way switching valve, the indoor heat exchanger, the first and second throttling devices, the outdoor heat exchanger, and the accumulator are connected to the refrigerant pipes in this order, and the first pipe bypasses the compressor discharge pipe and the accumulator inlet pipe. bypass circuit,
This bypass circuit is equipped with a flow control valve that controls the refrigerant flow rate based on a temperature signal of the shell temperature of the compressor or a pipe temperature signal of the compressor discharge pipe, and a controller that adjusts the opening degree of the flow rate control valve based on the above signal. An air conditioner comprising: a second bypass circuit that bypasses the throttle device; and a solenoid valve in the bypass circuit.
JP62281705A 1987-11-07 1987-11-07 Air conditioner Pending JPH01123965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281705A JPH01123965A (en) 1987-11-07 1987-11-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281705A JPH01123965A (en) 1987-11-07 1987-11-07 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01123965A true JPH01123965A (en) 1989-05-16

Family

ID=17642831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281705A Pending JPH01123965A (en) 1987-11-07 1987-11-07 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01123965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387907C (en) * 2003-03-04 2008-05-14 东芝开利株式会社 Air conditioning apparatus
CN113661364A (en) * 2019-04-18 2021-11-16 三菱电机株式会社 Control device for air conditioner, outdoor unit, relay unit, heat source unit, and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387907C (en) * 2003-03-04 2008-05-14 东芝开利株式会社 Air conditioning apparatus
CN113661364A (en) * 2019-04-18 2021-11-16 三菱电机株式会社 Control device for air conditioner, outdoor unit, relay unit, heat source unit, and air conditioner

Similar Documents

Publication Publication Date Title
JP4622901B2 (en) Air conditioner
KR100333814B1 (en) Dual unit type air conditioner for heating and cooling and defrosting method thereof
JP2002188873A (en) Refrigerating equipment of air conditioner
JPH10205933A (en) Air conditioner
JPH08159621A (en) Air conditioner
JP2877552B2 (en) Air conditioner
JPH01123965A (en) Air conditioner
JPH09119754A (en) Air conditioner
JP2550762B2 (en) Air conditioner
JP2646709B2 (en) Air conditioner
JPH03170758A (en) Air conditioner
JP2002061978A (en) Air conditioner
JPH02247466A (en) Air conditioner
JPH01127870A (en) Air conditioner
JP2524382B2 (en) Air conditioner
JPH04324067A (en) Air conditioner
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system
JPH04136669A (en) Multi-room air conditioner
JPH086203Y2 (en) Air conditioner
JPH02223778A (en) Defrosting device for air-conditioning machine
JPH01127841A (en) Air-conditioning device
JPH08320172A (en) Air conditioner
JPH10141815A (en) Air conditioner
JPS5825233Y2 (en) air conditioner
JPH0285660A (en) Heat pump type air conditioner