JPH04324067A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH04324067A
JPH04324067A JP3009596A JP959691A JPH04324067A JP H04324067 A JPH04324067 A JP H04324067A JP 3009596 A JP3009596 A JP 3009596A JP 959691 A JP959691 A JP 959691A JP H04324067 A JPH04324067 A JP H04324067A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pressure reducing
reducing mechanism
bypass path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3009596A
Other languages
Japanese (ja)
Other versions
JP2800428B2 (en
Inventor
Mari Sada
真理 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3009596A priority Critical patent/JP2800428B2/en
Publication of JPH04324067A publication Critical patent/JPH04324067A/en
Application granted granted Critical
Publication of JP2800428B2 publication Critical patent/JP2800428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To reduce refrigerant charging amount by reducing a diameter of a refrigerant tube in a branch type air conditioner. CONSTITUTION:A liquid tube between a heat source side heat exchanger 2 of a main refrigerant circuit 10 and an outdoor pressure reducing mechanism 4, particularly a branch liquid tube 31a of the liquid tube side of the exchanger 3 is bypass-connected to a suction line by a bypass passage 11 for cooling refrigerant through a pressure reducing mechanism. A heat exchanger 12 for heat exchanging refrigerant flowing in a downstream side tube of the mechanism 13 of the passage 11 with refrigerant flowing between an indoor pressure reducing mechanism 6 of a main refrigerant circuit 10 and the mechanism 4, is provided to cool the refrigerant in the liquid tube. Thus, refrigerant charging amount is reduced by reducing a diameter of the refrigerant tube while improving a refrigerating capacity and maintaining overheat operation preventive effect.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、室外と室内とに減圧機
構を備えた空気調和装置に係り、特に、冷媒配管を細管
化するための対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with outdoor and indoor pressure reducing mechanisms, and more particularly to measures for making refrigerant piping thinner.

【0002】0002

【従来の技術】従来より、例えば実開平1―16977
2号公報に開示される如く、図4に示すように、圧縮機
(a)及び蒸発器となる熱源側熱交換器(b)及び減圧
機構(c)を室外に、レシ―バ(d)及び凝縮器となる
利用側熱交換器(e)を室内にそれぞれ配置し、上記各
機器(a)〜(e)を冷媒配管で順次接続してなる主冷
媒回路(f)を備えた空気調和装置において、上記主冷
媒回路(f)の減圧機構(c)−レシ―バ(d)間と圧
縮機(a)の吸入管とをバイパス接続する冷媒冷却用バ
イパス路(g)を設け、この冷媒冷却用バイパス路(g
)にキャピラリチュ―ブ(h)を介設し、さらに冷媒冷
却用バイパス路(g)のキャピラリチュ―ブ(h)下流
側配管を流通する冷媒と減圧機構(c)直前の液管を流
通する冷媒との熱交換を行うための熱交換器(i)を設
け、この熱交換器(i)で冷媒冷却用バイパス路(g)
のキャピラリチュ―ブ(h)で減圧された冷媒と主冷媒
回路(f)中の液冷媒との熱交換を行わせ、減圧機構(
c)直前の液冷媒を冷却することにより、液冷媒の比体
積を適度に調節し、もって、冷凍能力の拡大を図ろうと
するものは公知の技術である。
[Prior Art] Conventionally, for example, Utility Model Application Publication No. 1-16977
As disclosed in Publication No. 2, as shown in FIG. and a user-side heat exchanger (e) serving as a condenser are arranged indoors, and each of the above-mentioned devices (a) to (e) is sequentially connected through refrigerant piping to form a main refrigerant circuit (f). In the apparatus, a refrigerant cooling bypass passage (g) is provided to bypass connect the main refrigerant circuit (f) between the pressure reducing mechanism (c) and the receiver (d) and the suction pipe of the compressor (a). Refrigerant cooling bypass path (g
), and the refrigerant flowing through the downstream piping of the capillary tube (h) of the refrigerant cooling bypass path (g) and the liquid pipe immediately before the pressure reducing mechanism (c). A heat exchanger (i) is provided for exchanging heat with the refrigerant, and this heat exchanger (i) connects the refrigerant cooling bypass path (g).
The depressurized refrigerant in the capillary tube (h) exchanges heat with the liquid refrigerant in the main refrigerant circuit (f), and the pressure reducing mechanism (
c) It is a known technique that attempts to expand the refrigerating capacity by appropriately adjusting the specific volume of the liquid refrigerant by cooling the immediately preceding liquid refrigerant.

【0003】0003

【発明が解決しようとする課題】上記従来のものでは、
冷媒は図中実線矢印に示すように流れ、その冷媒状態は
、図5のモリエル線図に示すようになる。すなわち、冷
媒冷却用バイパス路(g)側に流れた冷媒は、図中■か
ら■の状態まで減圧された後、■の状態で吸入管に戻る
。そして、上記熱交換器(i)において、■の状態の冷
媒と■の状態の冷媒との熱交換が行われて、各々■と■
の状態に変化する結果、減圧機構(c)に流通する冷媒
は冷却されて比体積が小さくなり、吸入管に合流する冷
媒(■)は湿りガスとなる。その結果、長い液管中を通
過する間の圧力損失により比体積が増大した冷媒(■)
が元の状態に小さくなるので減圧機構(c)での減圧流
量制御機能が正常に維持され、一方、圧縮機(a)の吸
入側では熱源側熱交換器(b)通過後の過熱ガス(■)
が冷媒(■)のインジェクション効果によって、温度低
下し、適正な過熱蒸気となって、圧縮機(a)に吸入さ
れる。つまり、熱交換させる冷媒間の温度差(Δt)を
大きくとることができるので、冷却が十分に行われるの
である。
[Problem to be solved by the invention] In the above conventional method,
The refrigerant flows as shown by the solid arrow in the figure, and the state of the refrigerant is as shown in the Mollier diagram of FIG. That is, the refrigerant flowing to the refrigerant cooling bypass path (g) is depressurized from ■ to the state shown in the figure, and then returns to the suction pipe in the state shown in ■. Then, in the heat exchanger (i), heat exchange is performed between the refrigerant in the state of ■ and the refrigerant in the state of ■, respectively.
As a result of the change in state, the refrigerant flowing through the pressure reducing mechanism (c) is cooled and its specific volume becomes smaller, and the refrigerant (■) flowing into the suction pipe becomes a wet gas. As a result, the refrigerant (■) has an increased specific volume due to pressure loss while passing through a long liquid pipe.
is reduced to its original state, so the pressure reduction flow rate control function in the pressure reduction mechanism (c) is maintained normally.On the other hand, on the suction side of the compressor (a), the superheated gas after passing through the heat source side heat exchanger (b) ■)
Due to the injection effect of the refrigerant (■), the temperature of the steam is lowered and becomes properly superheated steam, which is sucked into the compressor (a). In other words, since the temperature difference (Δt) between the refrigerants to be heat exchanged can be large, sufficient cooling can be achieved.

【0004】ところで、近年、空気調和装置における冷
媒充填量の低減が要請されており、そのためには液配管
の小径化を図る必要があるが、その場合、上記従来のも
のでは、以下のような問題が生じる。
[0004] Incidentally, in recent years, there has been a demand for reducing the amount of refrigerant charged in air conditioners, and for this purpose it is necessary to reduce the diameter of the liquid piping. A problem arises.

【0005】すなわち、減圧機構として室外減圧機構と
室内減圧機構とを備えた冷暖房両用の空気調和装置にお
いて(特にいわゆるマルチ形空気調和装置の場合)、上
記従来のものを適用すると、両減圧機構間の液管から冷
媒冷却用バイパス路(g)が分岐する構成となるが、例
えば冷房運転時、冷媒は室外減圧機構を通過することに
より減圧され、また、冷媒配管が細いので圧力損失が大
きいことから、図5において冷媒冷却用バイパス路(g
)との分岐部の冷媒状態(■)の圧力は、図中破線矢印
に示すようにかなり低下することになる。したがって、
熱交換させる冷媒間の温度差(Δt)が小さくなるとと
もに、冷媒冷却用バイパス路(g)との分岐部で体積増
加に伴ない液冷媒の一部がガス化するいわゆるフラッシ
ュ現象が生じ、冷媒冷却用バイパス路(g)への冷媒バ
イパス量が不安定になる虞れがあった。また、フラッシ
ュした冷媒が冷媒冷却用バイパス路(g)に流れると、
減圧機構(h)により流通が阻害されるので、熱交換器
(i)による冷媒冷却効果がさらに低下するという問題
があった。
[0005] That is, when the above-mentioned conventional system is applied to an air conditioner for both cooling and heating that is equipped with an outdoor pressure reducing mechanism and an indoor pressure reducing mechanism as pressure reducing mechanisms (particularly in the case of a so-called multi-type air conditioner), The refrigerant cooling bypass path (g) branches from the liquid pipe, but for example, during cooling operation, the refrigerant is depressurized by passing through an outdoor decompression mechanism, and the refrigerant pipe is thin, so there is a large pressure loss. 5, the refrigerant cooling bypass path (g
) The pressure in the refrigerant state (■) at the branch point with the refrigerant (■) will drop considerably as shown by the broken line arrow in the figure. therefore,
As the temperature difference (Δt) between the refrigerants to be heat exchanged becomes smaller, a so-called flash phenomenon occurs in which a part of the liquid refrigerant is gasified due to the increase in volume at the branch point with the refrigerant cooling bypass path (g), and the refrigerant There was a risk that the amount of refrigerant bypassed to the cooling bypass path (g) would become unstable. Also, when the flashed refrigerant flows into the refrigerant cooling bypass path (g),
There was a problem in that the refrigerant cooling effect by the heat exchanger (i) was further reduced because the pressure reduction mechanism (h) obstructed the flow.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、冷媒配管の小径化に伴なう圧力損失
に起因する冷却能力の減小や冷媒のフラッシュを有効に
防止しうる手段を講じることにより、主冷媒回路中の液
冷媒の冷却効果を確保し、もって、冷媒配管の小径化に
よる冷媒充填量の低減を可能とすることにある。
[0006] The present invention has been made in view of the above points, and its object is to effectively prevent a decrease in cooling capacity and flash of the refrigerant caused by pressure loss accompanying the reduction in the diameter of refrigerant piping. By taking such measures, it is possible to ensure the cooling effect of the liquid refrigerant in the main refrigerant circuit, thereby making it possible to reduce the amount of refrigerant charged by reducing the diameter of the refrigerant piping.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
、請求項1の発明の講じた手段は、図1に示すように、
圧縮機(1)、熱源側熱交換器(3)、室外減圧機構(
4)、室内減圧機構(6)及び利用側熱交換器(7)を
冷媒配管(9)で順次接続してなる主冷媒回路(10)
を備えた空気調和装置を対象とする。
[Means for Solving the Problems] In order to achieve the above object, the means taken by the invention of claim 1 are as shown in FIG.
Compressor (1), heat source side heat exchanger (3), outdoor pressure reduction mechanism (
4), a main refrigerant circuit (10) formed by sequentially connecting an indoor pressure reduction mechanism (6) and a user-side heat exchanger (7) with a refrigerant pipe (9);
Targets air conditioners equipped with

【0008】さらに、空気調和装置に、上記主冷媒回路
(10)の熱源側熱交換器(3)−室外減圧機構(4)
間の液管と吸入ラインとをバイパス接続する冷媒冷却用
バイパス路(11A)と、該冷媒冷却用バイパス路(1
1A)に介設された減圧機構(13)と、上記冷媒冷却
用バイパス路(11A)の減圧機構(13)下流側の配
管を流通する冷媒と上記主冷媒回路(10)の各減圧機
構(4),(5)間の液管を流通する冷媒との間で熱交
換を行うための熱交換器(12)とを設ける構成とした
ものである。
[0008] Furthermore, the air conditioner includes a heat source side heat exchanger (3) of the main refrigerant circuit (10) - an outdoor decompression mechanism (4).
A refrigerant cooling bypass path (11A) connects the liquid pipe and the suction line between the refrigerant cooling bypass paths (11A) and 11A.
1A), the refrigerant flowing through the piping downstream of the pressure reducing mechanism (13) of the refrigerant cooling bypass passage (11A), and each of the pressure reducing mechanisms (10) of the main refrigerant circuit (10). The structure includes a heat exchanger (12) for exchanging heat with the refrigerant flowing through the liquid pipe between 4) and (5).

【0009】請求項2の発明の講じた手段は、図2に示
すように、上記請求項1の発明における冷媒冷却用バイ
パス路(11A)に代えて、上記熱源側熱交換器(3)
の分流液管(31a)と吸入ラインとをバイパス接続す
る冷媒冷却用バイパス路(11B)を設け、該冷媒冷却
用バイパス路(11B)に減圧機構(13)を介設する
The means taken by the invention of claim 2 is that, as shown in FIG.
A refrigerant cooling bypass path (11B) is provided to bypass-connect the branch liquid pipe (31a) and the suction line, and a pressure reducing mechanism (13) is interposed in the refrigerant cooling bypass path (11B).

【0010】さらに、上記冷媒冷却用バイパス路(11
B)の減圧機構(13)下流側の配管を流通する冷媒と
上記主冷媒回路(10)の各減圧機構(4),(5)間
の液管を流通する冷媒との間で熱交換を行うための熱交
換器(12)を設けたものである。
Furthermore, the refrigerant cooling bypass passage (11
Heat exchange is performed between the refrigerant flowing through the piping on the downstream side of the pressure reduction mechanism (13) in B) and the refrigerant flowing through the liquid pipes between the pressure reduction mechanisms (4) and (5) of the main refrigerant circuit (10). A heat exchanger (12) is provided for this purpose.

【0011】請求項3の発明の講じた手段は、図3に示
すように、上記請求項1の発明における冷媒冷却用バイ
パス路(11A)に代えて、圧縮機(1)の吐出管と吸
入ラインとをバイパス接続する冷媒冷却用バイパス路(
11C)を設け、該冷媒冷却用バイパス路(11C)に
、上記熱源側熱交換器(3)の補助熱交換器(3a)と
減圧機構(13)とを上流側から順に介設する。
As shown in FIG. 3, the means taken by the invention according to claim 3 is that, instead of the refrigerant cooling bypass passage (11A) in the invention according to claim 1, the discharge pipe and suction pipe of the compressor (1) are used. Bypass path for refrigerant cooling that bypasses the line (
11C), and the auxiliary heat exchanger (3a) of the heat source side heat exchanger (3) and the pressure reduction mechanism (13) are interposed in the refrigerant cooling bypass path (11C) in order from the upstream side.

【0012】さらに、上記冷媒冷却用バイパス路(11
C)の減圧機構(13)下流側の配管を流通する冷媒と
上記主冷媒回路(10)の各減圧機構(4),(5)間
の液管を流通する冷媒との間で熱交換を行うための熱交
換器(12)を設けたものである。
Furthermore, the refrigerant cooling bypass passage (11
Heat exchange is performed between the refrigerant flowing through the piping on the downstream side of the pressure reducing mechanism (13) in C) and the refrigerant flowing through the liquid pipes between the pressure reducing mechanisms (4) and (5) of the main refrigerant circuit (10). A heat exchanger (12) is provided for this purpose.

【0013】請求項4の発明の講じた手段は、上記請求
項1,2又は3の発明において、圧縮機(1)の吐出管
と室外減圧機構(4)−室内減圧機構(6)間の液管と
をバイパス接続する高圧制御用バイパス路(20)を設
け、該高圧制御用バイパス路(20)に開閉弁(21)
と高圧制御用減圧機構(22)とを設けたものである。
The means taken by the invention of claim 4 is that in the invention of claim 1, 2 or 3, the discharge pipe of the compressor (1) and between the outdoor pressure reducing mechanism (4) and the indoor pressure reducing mechanism (6) are provided. A high-pressure control bypass path (20) is provided for bypass connection with the liquid pipe, and an on-off valve (21) is provided in the high-pressure control bypass path (20).
and a pressure reducing mechanism (22) for high pressure control.

【0014】請求項5の発明の講じた手段は、上記請求
項1,2又は3の発明において、主冷媒回路(10)に
、複数組の利用側熱交換器(6)及び室内減圧機構(5
)を互いに並列に配置する構成としたものである。
The means taken by the invention of claim 5 is that in the invention of claim 1, 2 or 3, the main refrigerant circuit (10) is provided with a plurality of sets of user-side heat exchangers (6) and an indoor pressure reducing mechanism ( 5
) are arranged in parallel with each other.

【0015】[0015]

【作用】以上の構成により、請求項1の発明では、冷媒
冷却用バイパス路(11A)が主冷媒回路(10)の熱
源側熱交換器(3)−室外減圧機構(4)間の液管から
分岐して設けられているので、室外減圧機構(4)によ
る減圧作用を受ける前に液冷媒の一部が冷媒冷却用バイ
パス路(11A)に分流される。つまり、冷媒の圧力損
失が低減するので、冷媒配管の小径化による圧力損失の
増大が相殺され、熱交換器(12)で熱交換される冷媒
間の温度差が十分確保される。したがって、冷凍効果の
向上や過熱運転の防止効果が確保され、冷媒配管の小径
化による冷媒充填量の低減が可能となる。
[Operation] With the above configuration, in the invention of claim 1, the refrigerant cooling bypass path (11A) is a liquid pipe between the heat source side heat exchanger (3) and the outdoor pressure reducing mechanism (4) of the main refrigerant circuit (10). Since the refrigerant is branched from the refrigerant, a part of the liquid refrigerant is diverted to the refrigerant cooling bypass path (11A) before being subjected to the decompression action by the outdoor decompression mechanism (4). In other words, since the pressure loss of the refrigerant is reduced, the increase in pressure loss due to the reduction in the diameter of the refrigerant piping is offset, and a sufficient temperature difference between the refrigerants heat exchanged in the heat exchanger (12) is ensured. Therefore, it is possible to improve the refrigeration effect and prevent overheating, and it is possible to reduce the amount of refrigerant charged by reducing the diameter of the refrigerant pipe.

【0016】請求項2の発明では、冷房運転時、熱源側
熱交換器(3)で凝縮液化された冷媒が、各分流液管(
31a),(31b),…から流出する際、条件によっ
ては、流通面積の増大によってフラッシュを生じる虞れ
があるが、冷媒冷却用バイパス路(11B)が熱源側熱
交換器(3)の分流液管(31a)から分岐しているの
で、このような条件下でも、フラッシュの影響を受ける
ことがない。したがって、請求項1の発明よりも広い条
件下で、熱交換器(12)における冷媒冷却効果が良好
に維持されることになる。
In the invention of claim 2, during cooling operation, the refrigerant condensed and liquefied in the heat source side heat exchanger (3) flows through each branch liquid pipe (
31a), (31b), etc. Depending on the conditions, there is a risk of flash occurring due to an increase in the flow area, but the refrigerant cooling bypass path (11B) is a branch of the heat source side heat exchanger (3). Since it branches off from the liquid pipe (31a), it will not be affected by flash even under such conditions. Therefore, the refrigerant cooling effect in the heat exchanger (12) is maintained satisfactorily under wider conditions than in the invention of claim 1.

【0017】請求項3の発明では、冷媒冷却用バイパス
路(11C)において、主冷媒回路(10)の液管から
冷媒をバイパスさせることなく、補助熱交換器(3a)
で凝縮液化された冷媒との熱交換により液管中の液冷媒
が冷却されるので、主冷媒回路(10)の液管における
フラッシュの影響を受けることがない。すなわち、冷房
運転中には請求項1や2の発明よりも広い条件の変化に
対しても確実に冷媒の冷却効果が維持されるとともに、
暖房運転時、各室内ユニット(A)〜(C)から流入す
る液冷媒が過度にフラッシュしているような条件下でも
、液冷媒の冷却効果が維持されることになる。
[0017] In the invention of claim 3, in the refrigerant cooling bypass path (11C), the auxiliary heat exchanger (3a) is
Since the liquid refrigerant in the liquid tube is cooled by heat exchange with the condensed and liquefied refrigerant, it is not affected by flash in the liquid tube of the main refrigerant circuit (10). That is, during cooling operation, the cooling effect of the refrigerant is reliably maintained even under wider changes in conditions than in the inventions of claims 1 and 2, and
During heating operation, the cooling effect of the liquid refrigerant is maintained even under conditions where the liquid refrigerant flowing from each of the indoor units (A) to (C) flashes excessively.

【0018】請求項4の発明では、冷房運転時、低外気
時の高圧制御用バイパス路(20)を介して導入される
ホットガスが液管に混入した場合、液管では冷媒のエン
タルピが大きくなるので、その下流側から冷却用冷媒を
バイパスさせても、冷媒冷却のために必要な温度差を確
保することができない虞れが生じるが、冷媒冷却用バイ
パス路(11)が、ホットガスが導入される部位(室外
減圧機構(4)下流側)よりも上流側(室外減圧機構(
4)上流側)から分岐しているので、ホットガスが導入
されない冷媒で主冷媒回路(10)中の液冷媒が冷却さ
れることになり、運転条件の変化に拘らず安定した冷却
効果が維持される。
[0018] In the invention of claim 4, when the hot gas introduced through the high-pressure control bypass passage (20) at low outside air temperature during cooling operation mixes into the liquid pipe, the enthalpy of the refrigerant increases in the liquid pipe. Therefore, even if the cooling refrigerant is bypassed from the downstream side, there is a risk that the temperature difference necessary for cooling the refrigerant cannot be secured. Upstream side (outdoor decompression mechanism (4) downstream side) than the introduced part (outdoor decompression mechanism (4) downstream side)
4) Since the refrigerant is branched from the upstream side, the liquid refrigerant in the main refrigerant circuit (10) is cooled with refrigerant that does not introduce hot gas, and a stable cooling effect is maintained regardless of changes in operating conditions. be done.

【0019】請求項5の発明では、特にマルチ形空気調
和装置の場合、冷媒配管長が長く、しかも各室内ユニッ
トの負荷の相違等から冷媒充填量を低減すると冷媒循環
量が不足気味になることがあり、フラッシュの生じる蓋
然性が高くなるが、上記請求項1,2又は3の発明の冷
媒冷却作用が著しく得られる。
[0019] In the invention of claim 5, especially in the case of a multi-type air conditioner, the refrigerant piping length is long, and if the refrigerant charging amount is reduced due to differences in the loads of each indoor unit, the refrigerant circulation amount tends to be insufficient. Although there is a high probability of flash occurring, the refrigerant cooling effect of the invention according to claim 1, 2 or 3 can be significantly obtained.

【0020】[0020]

【実施例】以下、本発明の実施例について、図1〜図4
に基づき説明する。
[Example] The following is an example of the present invention in FIGS. 1 to 4.
The explanation will be based on.

【0021】図1は第1実施例に係る空気調和装置の冷
媒配管系統を示し、一台の室外ユニット(X)に対して
三台の室内ユニット(A)〜(C)が並列に接続された
マルチ形に構成されている。上記室外ユニット(X)に
は、吸入した冷媒を圧縮して吐出する圧縮機(1)と、
冷房運転時には図中実線のごとく、暖房運転時には図中
破線のごとく接続が切換わる四路切換弁(2)と、冷房
運転時には凝縮器として、暖房運転時には蒸発器として
機能する熱源側熱交換器(3)と、暖房運転時に冷媒を
減圧する室外減圧機構として機能する室外電動膨張弁(
4)と、液冷媒を貯溜するためのレシ―バ(5)と、上
記圧縮機(1)に吸入される冷媒中の液冷媒を除去する
アキュムレ―タ(8)とが主要機器として配置されてお
り、上記各機器は主冷媒配管(9)により直列に接続さ
れている。
FIG. 1 shows a refrigerant piping system of an air conditioner according to the first embodiment, in which three indoor units (A) to (C) are connected in parallel to one outdoor unit (X). It is configured in a multi-shape. The outdoor unit (X) includes a compressor (1) that compresses and discharges the sucked refrigerant;
A four-way switching valve (2) that switches connections as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation, and a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation. (3) and an outdoor electric expansion valve (
4), a receiver (5) for storing liquid refrigerant, and an accumulator (8) for removing liquid refrigerant from the refrigerant sucked into the compressor (1) are arranged as main equipment. The above-mentioned devices are connected in series by a main refrigerant pipe (9).

【0022】一方、上記各室内ユニット(A)〜(C)
は同一構成を有し、それぞれ冷房運転時には蒸発器とし
て、暖房運転時には凝縮器として機能する利用側熱交換
器(7)と、冷房運転時には冷媒を減圧し、暖房運転時
には冷媒流量を調節する室内減圧機構としての室内電動
膨張弁(6)とを備えており、上記各室内ユニット(A
)〜(C)の各機器(6),(7)は上記主冷媒配管(
9)の両端に設けられた液分流器(14)及びガス分流
器(15)から分岐される分岐管(9a)〜(9c)内
に介設されている。すなわち、上記各機器(1)〜(8
)は、主冷媒配管(9)及び分岐管(9a)〜(9c)
により、閉回路を形成するように順次接続され、熱移動
を生じさせるように冷媒が循環する主冷媒回路(10)
が構成されている。
On the other hand, each of the above indoor units (A) to (C)
have the same configuration, and each has a user-side heat exchanger (7) that functions as an evaporator during cooling operation and a condenser during heating operation, and an indoor heat exchanger (7) that reduces the pressure of the refrigerant during cooling operation and adjusts the refrigerant flow rate during heating operation. It is equipped with an indoor electric expansion valve (6) as a pressure reducing mechanism, and each indoor unit (A
) to (C), each device (6), (7) is connected to the main refrigerant pipe (
9) are interposed in branch pipes (9a) to (9c) branched from a liquid flow divider (14) and a gas flow divider (15) provided at both ends of the pipe. That is, each of the above devices (1) to (8
) are the main refrigerant pipe (9) and branch pipes (9a) to (9c)
The main refrigerant circuit (10) is connected in sequence to form a closed circuit, and in which the refrigerant circulates to cause heat transfer.
is configured.

【0023】ここで、本発明の特徴として、上記主冷媒
回路(10)の熱源側熱交換器(3)−室外電動膨張弁
(4)間の液管上の一部位(点(P))と吸入ライン上
の一部位(点(S))とは冷媒冷却用バイパス路(11
A)によりバイパス接続されていて、該冷媒冷却用バイ
パス路(11A)には、冷媒の減圧を行う減圧機構とし
ての第1キャピラリチュ―ブ(13)が介設されている
。そして、該冷媒冷却用バイパス路(11A)の第1キ
ャピラリチュ―ブ(13)下流側の配管と、上記主冷媒
回路(10)のレシ―バ(5)−室内電動膨張弁(6)
間の液管とを共通の容器内に収納する熱交換器(12)
が設けられており、該熱交換器(12)において各配管
内の冷媒の間で熱交換を行うようになされている。すな
わち、冷媒冷却用バイパス路(11A)の第1キャピラ
リチュ―ブ(13)で減圧された冷媒により、主冷媒回
路(10)の液管中の液冷媒を冷却するようになされて
いる。
Here, as a feature of the present invention, a portion (point (P)) on the liquid pipe between the heat source side heat exchanger (3) and the outdoor electric expansion valve (4) of the main refrigerant circuit (10) and a part (point (S)) on the suction line is the refrigerant cooling bypass path (11
A), and a first capillary tube (13) serving as a pressure reduction mechanism for reducing the pressure of the refrigerant is interposed in the refrigerant cooling bypass path (11A). And the piping on the downstream side of the first capillary tube (13) of the refrigerant cooling bypass path (11A), and the receiver (5) of the main refrigerant circuit (10) - the indoor electric expansion valve (6).
A heat exchanger (12) that stores the liquid pipes between the two in a common container.
is provided, and heat exchange is performed between the refrigerants in each pipe in the heat exchanger (12). That is, the liquid refrigerant in the liquid pipe of the main refrigerant circuit (10) is cooled by the refrigerant whose pressure is reduced in the first capillary tube (13) of the refrigerant cooling bypass path (11A).

【0024】上記の構成を有する空気調和装置において
、冷房運転時、四路切換弁(2)の接続が図中実線側と
なり、冷媒は図中実線矢印の方向に流れる。すなわち、
圧縮機(1)に吸入された低圧のガス冷媒(■)が高圧
冷媒(■)として吐出される。さらに、熱源側熱交換器
(3)で凝縮液化され、高圧液冷媒(■)となり、室外
電動膨張弁(4)で流量調節による減圧を受けて、レシ
―バ(5)に貯溜される。そして、レシ―バ(5)から
熱交換器(12)を通過した冷媒(■)が、液分流器(
14)で各分岐管(9a)〜(9c)に分岐して各室内
ユニット(A)〜(C)に流れ、各室内電動膨張弁(6
)で減圧されて低圧液冷媒(■)となった後、利用側熱
交換器(7)で蒸発し、低圧ガス冷媒(■)となってア
キュムレ―タ(8)を経て圧縮機(1)に戻るように循
環する。一方、冷媒冷却用バイパス路(11A)では、
主冷媒回路(10)から一部の冷媒(■)が分岐して、
第1キャピラリチュ―ブ(13)で減圧を受けて低圧か
つ低温の冷媒(■)となり、熱交換器(12)を通過す
ることにより温度上昇した冷媒(■)として吸入ライン
に合流する。また、暖房運転時には、その逆の循環とな
る。
In the air conditioner having the above configuration, during cooling operation, the connection of the four-way switching valve (2) is on the solid line side in the figure, and the refrigerant flows in the direction of the solid line arrow in the figure. That is,
A low-pressure gas refrigerant (■) sucked into the compressor (1) is discharged as a high-pressure refrigerant (■). Furthermore, it is condensed and liquefied in the heat source side heat exchanger (3) to become a high-pressure liquid refrigerant (■), which is depressurized by flow rate adjustment in the outdoor electric expansion valve (4) and stored in the receiver (5). Then, the refrigerant (■) that has passed through the heat exchanger (12) from the receiver (5) is transferred to the liquid flow divider (
14), the branch pipes (9a) to (9c) flow to each indoor unit (A) to (C), and each indoor electric expansion valve (6
) to become a low-pressure liquid refrigerant (■), it is evaporated in the heat exchanger (7) on the user side, and becomes a low-pressure gas refrigerant (■), which passes through the accumulator (8) and into the compressor (1). cycle back to . On the other hand, in the refrigerant cooling bypass path (11A),
Some refrigerant (■) branches from the main refrigerant circuit (10),
The refrigerant is depressurized in the first capillary tube (13) and becomes a low-pressure and low-temperature refrigerant (■), which passes through the heat exchanger (12) and joins the suction line as a refrigerant (■) whose temperature has increased. Moreover, during heating operation, the circulation is reversed.

【0025】そのとき、上記実施例では、冷媒冷却用バ
イパス路(11A)が主冷媒回路(10)の熱源側熱交
換器(3)−室外電動膨張弁(4)間の液管から分岐し
て設けられているので、室外電動膨張弁(4)による減
圧作用を受ける前に液冷媒の一部が冷媒冷却用バイパス
路(11A)に分流されることになり、圧力損失が低減
する。すなわち、図5のモリエル線図において、冷媒冷
却用バイパス路(11A)の分岐部(点(P))の冷媒
(■)の圧力は図中点線矢印のごとく上昇している。そ
して、その後、室外減圧機構(4)や途中の配管によっ
て減圧されても(図中一点鎖線矢印参照)、上述の上昇
効果と相殺され、冷却効果が良好に維持されることにな
る。したがって、冷媒配管を小径としても、熱交換器(
12)で熱交換される冷媒間の温度差Δtが十分確保さ
れ、よって、冷凍能力の向上効果や過熱運転の防止効果
を有効に確保しながら、冷媒配管(9)の小径化による
冷媒充填量の低減を図ることができるのである。また、
同じ作用により、冷媒配管長の延長を図ることもできる
At this time, in the above embodiment, the refrigerant cooling bypass path (11A) branches from the liquid pipe between the heat source side heat exchanger (3) and the outdoor electric expansion valve (4) of the main refrigerant circuit (10). Therefore, a part of the liquid refrigerant is diverted to the refrigerant cooling bypass passage (11A) before being subjected to the pressure reducing action by the outdoor electric expansion valve (4), thereby reducing pressure loss. That is, in the Mollier diagram of FIG. 5, the pressure of the refrigerant (■) at the branch part (point (P)) of the refrigerant cooling bypass path (11A) is increasing as indicated by the dotted line arrow in the diagram. Thereafter, even if the pressure is reduced by the outdoor pressure reducing mechanism (4) or intermediate piping (see the one-dot chain arrow in the figure), the above-mentioned rising effect is offset and the cooling effect is maintained satisfactorily. Therefore, even if the refrigerant piping is small in diameter, the heat exchanger (
In step 12), a sufficient temperature difference Δt between the refrigerants to be heat exchanged is ensured, and therefore, the refrigerant filling amount is reduced by reducing the diameter of the refrigerant pipe (9) while effectively securing the effect of improving the refrigerating capacity and preventing overheating operation. Therefore, it is possible to reduce the Also,
By the same effect, it is also possible to extend the length of the refrigerant pipe.

【0026】なお、上記第1実施例では、空気調和装置
を冷暖両用としたが、冷房専用機でも、低外気時におけ
る冷媒流量調節のために熱源側熱交換器(3)出口に減
圧機構を配置することがあり、本発明はかかる場合にも
、上述のような効果を発揮することができる。
In the first embodiment, the air conditioner is used for both cooling and heating, but even in the case of a cooling-only unit, a pressure reducing mechanism is installed at the outlet of the heat exchanger (3) on the heat source side in order to adjust the refrigerant flow rate when the outside air temperature is low. Even in such a case, the present invention can exhibit the above-mentioned effects.

【0027】次に、第2実施例について図2に基づき説
明する。図2は第2実施例における空気調和装置の冷媒
配管系統を示し、主冷媒回路(10)の構成は上記第1
実施例と同様である。ここで、本実施例では、熱源側熱
交換器(3)の分流器(32)から分岐する分流液管(
31a),(31b),…のうちの一の分流液管(31
a)の一部位(点(Q))と吸入ライン上の点(S)と
の間に冷媒冷却用バイパス路(11B)が設けられてい
る。また、圧縮機(1)の吐出管と主冷媒回路(10)
の室外電動膨張弁(4)−レシ―バ(5)間の液管との
間には、高圧制御用バイパス路(20)が設けられてい
て、該高圧制御用バイパス路(20)には、バイパス路
(20)を開閉する開閉弁(21)と第2キャピラリチ
ュ―ブ(22)とが設けられている。つまり、冷房運転
中の低外気時に、ホットガスの一部を液管側にバイパス
することにより、高圧側圧力の過上昇を防止するように
している。その他の構成は上記第1実施例と同じである
Next, a second embodiment will be explained based on FIG. 2. FIG. 2 shows the refrigerant piping system of the air conditioner in the second embodiment, and the configuration of the main refrigerant circuit (10) is the same as that of the first embodiment.
This is similar to the example. Here, in this embodiment, a branch liquid pipe (
One of the branch liquid pipes (31a), (31b), ...
A refrigerant cooling bypass path (11B) is provided between a portion (point (Q)) of a) and a point (S) on the suction line. In addition, the discharge pipe of the compressor (1) and the main refrigerant circuit (10)
A high pressure control bypass path (20) is provided between the outdoor electric expansion valve (4) and the liquid pipe between the receiver (5). , an on-off valve (21) for opening and closing the bypass path (20), and a second capillary tube (22) are provided. That is, when the outside air is low during cooling operation, a portion of the hot gas is bypassed to the liquid pipe side to prevent the pressure on the high pressure side from rising excessively. The other configurations are the same as those of the first embodiment.

【0028】したがって、本第2実施例では、冷房運転
時、熱源側熱交換器(3)で凝縮液化された冷媒が、各
分流液管(31a),(31b),…から分流器(32
)出口に流れる際、条件によっては、流通面積の増大に
よってフラッシュを生じる虞れがあるが、冷媒冷却用バ
イパス路(11B)が熱源側熱交換器(3)の分流液管
(31a)から分岐しているので、このような条件下で
も、フラッシュの影響を受けることがない。すなわち、
熱交換器(12)における冷却効果が良好に維持され、
上記第1実施例の効果を維持することができる。
Therefore, in the second embodiment, during cooling operation, the refrigerant condensed and liquefied in the heat source side heat exchanger (3) is transferred from each branch liquid pipe (31a), (31b), . . .
) When flowing to the outlet, depending on the conditions, there is a possibility that a flash may occur due to an increase in the flow area. Therefore, even under such conditions, it will not be affected by flash. That is,
The cooling effect in the heat exchanger (12) is maintained well,
The effects of the first embodiment can be maintained.

【0029】特に、冷房運転時における低外気時の高圧
制御用バイパス路(20)を設けたものでは、ホットガ
スが混入した液管では冷媒のエンタルピが大きくなるの
で、その下流側から冷却用冷媒をバイパスさせても、上
記図5のような十分な温度差Δtを確保することができ
ないことになる。それに対して、上記第2実施例では、
ホットガスが導入される室外電動膨張弁(4)下流側よ
りも上流側(冷房運転時における室外電動膨張弁(4)
上流側から分岐した冷媒で主冷媒回路(10)中の液冷
媒が冷却されるので、上記のような問題は生じず、よっ
て、運転条件の変化にかかわらず安定した冷却量を確保
することができる。
In particular, in the case where a bypass passage (20) is provided for high pressure control when the outside air is low during cooling operation, the enthalpy of the refrigerant becomes large in the liquid pipe mixed with hot gas, so the cooling refrigerant is removed from the downstream side of the liquid pipe. Even if it is bypassed, it will not be possible to secure a sufficient temperature difference Δt as shown in FIG. 5 above. On the other hand, in the second embodiment,
The outdoor electric expansion valve (4) where hot gas is introduced is more upstream than the downstream side (outdoor electric expansion valve (4) during cooling operation)
Since the liquid refrigerant in the main refrigerant circuit (10) is cooled by the refrigerant branched from the upstream side, the above-mentioned problems do not occur, and therefore a stable cooling amount can be ensured regardless of changes in operating conditions. can.

【0030】次に、第3実施例について、図3に基づき
説明する。図3は第3実施例における空気調和装置の冷
媒配管系統を示し、本実施例では、吐出管の一部位(点
(R))と吸入ライン上の上記点(S)との間に冷媒冷
却用バイパス路(11C)が設けられている。そして、
この冷媒冷却用バイパス路(11C)には、上記熱源側
熱交換器(3)と共通の空気通路に配置される補助熱交
換器(3a)が設けられており、その下流側に上記第1
実施例におけると同様の第1キャピラリチュ―ブ(13
)及び熱交換器(12)が設けられている。
Next, a third embodiment will be explained based on FIG. 3. FIG. 3 shows a refrigerant piping system of an air conditioner according to the third embodiment. A bypass path (11C) is provided. and,
This refrigerant cooling bypass path (11C) is provided with an auxiliary heat exchanger (3a) disposed in a common air passage with the heat source side heat exchanger (3), and downstream of the auxiliary heat exchanger (3a).
The first capillary tube (13
) and a heat exchanger (12).

【0031】したがって、本第3実施例では、冷媒冷却
用バイパス路(11C)において、主冷媒回路(10)
の液管から冷媒をバイパスさせることなく、補助熱交換
器(3a)で凝縮液化された冷媒との熱交換により液管
中の液冷媒が冷却されるので、、主冷媒回路(10)の
液管におけるフラッシュの影響を受けることがない。す
なわち、運転条件の広い変化に対しても確実に冷媒の冷
却効果を維持することができる。さらに、本実施例では
、冷房運転時だけでなく、暖房運転時において、各室内
ユニット(A)〜(C)から流入する液冷媒が過度にフ
ラッシュしているような条件下でも、液冷媒を冷却して
、その比体積を低下させることができる利点がある。
Therefore, in the third embodiment, in the refrigerant cooling bypass path (11C), the main refrigerant circuit (10)
The liquid refrigerant in the liquid pipes is cooled by heat exchange with the refrigerant condensed and liquefied in the auxiliary heat exchanger (3a) without bypassing the refrigerant from the liquid pipes in the main refrigerant circuit (10). It is not affected by flash in the tube. That is, the cooling effect of the refrigerant can be reliably maintained even under wide changes in operating conditions. Furthermore, in this embodiment, the liquid refrigerant is not used not only during cooling operation but also under conditions where the liquid refrigerant flowing from each indoor unit (A) to (C) flashes excessively during heating operation. It has the advantage that it can be cooled to reduce its specific volume.

【0032】なお、本発明は、上記実施例のようなマル
チ形空気調和装置に限定されるものではないが、特にマ
ルチ形空気調和装置の場合、冷媒配管長が長く、しかも
各室内ユニットの負荷の相違等から冷媒充填量を低減す
ると冷媒循環量が不足気味になることがあり、フラッシ
ュの生じる蓋然性が高くなるが、本発明を適用すること
によって、上述のようにフラッシュの発生を有効に防止
することができ、よって、著効を発揮することができる
Note that the present invention is not limited to multi-type air conditioners as in the above embodiments, but in particular, in the case of multi-type air conditioners, the refrigerant piping length is long and the load of each indoor unit is small. If the amount of refrigerant charged is reduced due to differences in the amount of refrigerant, the amount of refrigerant circulated may become insufficient, increasing the probability of flash occurring, but by applying the present invention, the occurrence of flash can be effectively prevented as described above. Therefore, it can be highly effective.

【0033】[0033]

【発明の効果】以上説明したように、請求項1の発明に
よれば、空気調和装置の構成として、圧縮機、熱源側熱
交換器、室外減圧機構、室内減圧機構及び利用側熱交換
器を冷媒配管で順次接続して主冷媒回路を形成するとと
もに、主冷媒回路の熱源側熱交換器−室外減圧機構間の
液管と吸入ラインとを減圧機構を介して冷媒冷却用バイ
パス路でバイパス接続し、この冷媒冷却用バイパス路の
減圧機構下流側の配管を流通する冷媒と主冷媒回路の各
減圧機構間の液管を流通する冷媒との間で熱交換を行う
ための熱交換器を設けたので、室外減圧機構による減圧
作用を受ける前に液冷媒の一部を冷媒冷却用バイパス路
に分流することにより、冷媒配管の小径化による圧力損
失の増大に起因する液管でのフラッシュの発生を有効に
防止することができ、よって、冷媒冷却用バイパス路に
よる冷凍能力の向上効果や過熱運転の防止効果を維持し
ながら、冷媒配管の小径化や配管長の延長を図ることが
できる。
As explained above, according to the invention of claim 1, the configuration of the air conditioner includes a compressor, a heat source side heat exchanger, an outdoor pressure reducing mechanism, an indoor pressure reducing mechanism, and a user side heat exchanger. The main refrigerant circuit is formed by sequentially connecting refrigerant piping, and the liquid pipe between the heat source side heat exchanger of the main refrigerant circuit and the outdoor decompression mechanism and the suction line are connected via the refrigerant cooling bypass path through the decompression mechanism. A heat exchanger is provided to exchange heat between the refrigerant flowing through the piping on the downstream side of the pressure reducing mechanism in the refrigerant cooling bypass and the refrigerant flowing through the liquid pipes between the pressure reducing mechanisms in the main refrigerant circuit. Therefore, by diverting a portion of the liquid refrigerant to the refrigerant cooling bypass path before receiving the depressurization action by the outdoor depressurization mechanism, flashing in the liquid pipes due to increased pressure loss due to the smaller diameter of the refrigerant pipes can be avoided. Therefore, it is possible to reduce the diameter of the refrigerant pipe and extend the length of the refrigerant pipe while maintaining the effect of improving the refrigerating capacity and preventing the overheating operation by the refrigerant cooling bypass passage.

【0034】請求項2の発明によれば、上記請求項1の
発明の構成における冷媒冷却用バイパス路を熱源側熱交
換器の分流液管から分岐させるようにしたので、熱源側
熱交換器で凝縮液化された冷媒が各分流液管から流出す
る際に生じるフラッシュの影響を受けることなく主冷媒
回路の液管中の冷媒を冷却することができ、よって、請
求項1の発明よりも広い条件下で、熱交換器における冷
媒冷却効果を良好に維持することができる。
According to the invention of claim 2, since the refrigerant cooling bypass path in the structure of the invention of claim 1 is branched from the branch liquid pipe of the heat exchanger on the heat source side, The refrigerant in the liquid pipes of the main refrigerant circuit can be cooled without being affected by the flash that occurs when the condensed and liquefied refrigerant flows out from each branch liquid pipe, and therefore, the conditions are broader than the invention of claim 1. Under this condition, the refrigerant cooling effect in the heat exchanger can be maintained well.

【0035】請求項3の発明によれば、上記請求項1の
発明の構成における冷媒冷却用バイパス路を吐出管から
分岐させ、さらにこのバイパス路に熱源側熱交換器の補
助熱交換器を介設するようにしたので、主冷媒回路の液
管におけるフラッシュの影響を受けることなく、補助熱
交換器で凝縮液化された液冷媒で液管中の液冷媒を冷却
することができ、よって、冷房運転中には請求項1や2
の発明よりも広い条件の変化に対しても確実に冷媒の冷
却効果を維持しうるとともに、暖房運転時にも、各室内
の利用側熱交換器から流入する液冷媒の状態如何に拘ら
ず、液冷媒の冷却効果を維持することができる。
According to the third aspect of the present invention, the refrigerant cooling bypass path in the configuration of the first aspect of the invention is branched from the discharge pipe, and the bypass path is further connected to the auxiliary heat exchanger of the heat exchanger on the heat source side. As a result, the liquid refrigerant in the liquid pipes can be cooled with the liquid refrigerant condensed and liquefied in the auxiliary heat exchanger without being affected by flash in the liquid pipes of the main refrigerant circuit. Claim 1 or 2 while driving
It is possible to reliably maintain the cooling effect of the refrigerant even under a wider range of conditions than the invention of the invention, and even during heating operation, the liquid refrigerant is maintained regardless of the state of the liquid refrigerant flowing from the user-side heat exchanger in each room. The cooling effect of the refrigerant can be maintained.

【0036】請求項4の発明によれば、上記請求項1,
2又は3の発明において、圧縮機の吐出管と室外減圧機
構−室内減圧機構間の液管とを開閉弁及び高圧制御用減
圧機構を介して高圧制御用バイパス路によりバイパス接
続するようにしたので、冷房運転中における低外気時、
高圧制御用バイパス路を介して導入されるホットガスの
混入による冷媒のエンタルピの増大の影響を受けること
なく、冷媒冷却のために必要な温度差を確保することが
でき、よって、運転条件の変化に拘らず安定した冷却効
果が維持される。
According to the invention of claim 4, the above-mentioned claim 1,
In the invention of 2 or 3, the discharge pipe of the compressor and the liquid pipe between the outdoor pressure reducing mechanism and the indoor pressure reducing mechanism are bypass-connected by the high pressure control bypass path via the on-off valve and the high pressure control pressure reducing mechanism. , when the outside air temperature is low during cooling operation,
It is possible to secure the temperature difference necessary for cooling the refrigerant without being affected by the increase in enthalpy of the refrigerant due to the mixing of hot gas introduced via the high-pressure control bypass path, and therefore changes in operating conditions Regardless of the temperature, a stable cooling effect is maintained.

【0037】請求項5の発明では、上記請求項1,2,
又は3の発明において、室内減圧機構及び利用側熱交換
器の複数組を主冷媒回路に並列に配置したので、冷媒配
管長が長く、冷媒充填量の低減に応じて冷媒循環量が不
足気味に陥り易い空気調和装置においても、フラッシュ
の発生を防止することができ、よって、上記各発明の著
効を発揮することができる。
[0037] In the invention of claim 5, the above-mentioned claims 1, 2,
Or in invention 3, since multiple sets of indoor pressure reduction mechanisms and user-side heat exchangers are arranged in parallel in the main refrigerant circuit, the refrigerant piping length is long, and the refrigerant circulation amount tends to be insufficient as the refrigerant filling amount decreases. Even in air conditioners that are prone to failure, the occurrence of flash can be prevented, and the above-mentioned inventions can therefore exhibit significant effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 1 is a refrigerant piping system diagram of an air conditioner according to a first embodiment.

【図2】第2実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 2 is a refrigerant piping system diagram of an air conditioner according to a second embodiment.

【図3】第3実施例に係る空気調和装置の冷媒配管系統
図である。
FIG. 3 is a refrigerant piping system diagram of an air conditioner according to a third embodiment.

【図4】従来の技術における空気調和装置の冷媒配管系
統図である。
FIG. 4 is a refrigerant piping system diagram of an air conditioner according to the prior art.

【図5】空気調和装置における冷媒状態の変化を示すモ
リエル線図である。
FIG. 5 is a Mollier diagram showing changes in the refrigerant state in the air conditioner.

【符号の説明】[Explanation of symbols]

1    圧縮機 3    熱源側熱交換器 4    室外電動膨張弁(室外減圧機構)6    
室内電動膨張弁(室内減圧機構)7    利用側熱交
換器 9    冷媒配管 10  主冷媒回路 11  冷媒冷却用バイパス路 12  熱交換器 13  第1キャピラリチュ―ブ(減圧機構)20  
高圧制御用バイパス路 21  開閉弁 22  高圧制御用減圧機構 31a  分流液管
1 Compressor 3 Heat source side heat exchanger 4 Outdoor electric expansion valve (outdoor pressure reduction mechanism) 6
Indoor electric expansion valve (indoor pressure reducing mechanism) 7 Usage side heat exchanger 9 Refrigerant piping 10 Main refrigerant circuit 11 Refrigerant cooling bypass path 12 Heat exchanger 13 First capillary tube (pressure reducing mechanism) 20
Bypass path 21 for high pressure control On-off valve 22 Pressure reducing mechanism 31a for high pressure control Diversion liquid pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機(1)、熱源側熱交換器(3)
、室外減圧機構(4)、室内減圧機構(6)及び利用側
熱交換器(7)を冷媒配管(9)で順次接続してなる主
冷媒回路(10)を備えた空気調和装置であって、上記
主冷媒回路(10)の熱源側熱交換器(3)−室外減圧
機構(4)間の液管と吸入ラインとをバイパス接続する
冷媒冷却用バイパス路(11A)と、該冷媒冷却用バイ
パス路(11A)に介設された減圧機構(13)と、上
記冷媒冷却用バイパス路(11A)の減圧機構(13)
下流側の配管を流通する冷媒と上記主冷媒回路(10)
の各減圧機構(4),(5)間の液管を流通する冷媒と
の間で熱交換を行うための熱交換器(12)とを備えた
ことを特徴とする空気調和装置。
[Claim 1] Compressor (1), heat source side heat exchanger (3)
, an air conditioner comprising a main refrigerant circuit (10) in which an outdoor pressure reducing mechanism (4), an indoor pressure reducing mechanism (6) and a user-side heat exchanger (7) are sequentially connected by a refrigerant pipe (9). , a refrigerant cooling bypass passage (11A) that bypass-connects the suction line and the liquid pipe between the heat source side heat exchanger (3) and the outdoor pressure reducing mechanism (4) of the main refrigerant circuit (10); A pressure reduction mechanism (13) interposed in the bypass path (11A) and a pressure reduction mechanism (13) in the refrigerant cooling bypass path (11A).
Refrigerant flowing through the downstream piping and the main refrigerant circuit (10)
An air conditioner comprising: a heat exchanger (12) for exchanging heat with a refrigerant flowing through liquid pipes between the pressure reducing mechanisms (4) and (5).
【請求項2】  圧縮機(1)、熱源側熱交換器(3)
、室外減圧機構(4)、室内減圧機構(6)及び利用側
熱交換器(7)を冷媒配管(9)で順次接続してなる主
冷媒回路(10)を備えた空気調和装置であって、上記
熱源側熱交換器(3)の分流液管(31a)と吸入ライ
ンとをバイパス接続する冷媒冷却用バイパス路(11B
)と、該冷媒冷却用バイパス路(11B)に介設された
減圧機構(13)と、上記冷媒冷却用バイパス路(11
B)の減圧機構(13)下流側の配管を流通する冷媒と
上記主冷媒回路(10)の各減圧機構(4),(5)間
の液管を流通する冷媒との間で熱交換を行うための熱交
換器(12)とを備えたことを特徴とする空気調和装置
[Claim 2] Compressor (1), heat source side heat exchanger (3)
, an air conditioner comprising a main refrigerant circuit (10) in which an outdoor pressure reducing mechanism (4), an indoor pressure reducing mechanism (6) and a user-side heat exchanger (7) are sequentially connected by a refrigerant pipe (9). , a refrigerant cooling bypass path (11B) that bypass-connects the branch liquid pipe (31a) of the heat source side heat exchanger (3) and the suction line.
), a pressure reducing mechanism (13) interposed in the refrigerant cooling bypass path (11B), and the refrigerant cooling bypass path (11B).
Heat exchange is performed between the refrigerant flowing through the piping on the downstream side of the pressure reducing mechanism (13) in B) and the refrigerant flowing through the liquid pipes between the pressure reducing mechanisms (4) and (5) of the main refrigerant circuit (10). An air conditioner characterized by comprising a heat exchanger (12) for carrying out.
【請求項3】  圧縮機(1)、熱源側熱交換器(3)
、室外減圧機構(4)、室内減圧機構(6)及び利用側
熱交換器(7)を冷媒配管(9)で順次接続してなる主
冷媒回路(10)を備えた空気調和装置であって、上記
圧縮機(1)の吐出管と吸入ラインとをバイパス接続す
る冷媒冷却用バイパス路(11C)と、該冷媒冷却用バ
イパス路(11C)に介設された上記熱源側熱交換器(
3)の補助熱交換器(3a)と、上記冷媒冷却用バイパ
ス路(11C)の上記補助熱交換器(3a)下流側に介
設された減圧機構(13)と、上記冷媒冷却用バイパス
路(11)の減圧機構(13)下流側の配管を流通する
冷媒と上記主冷媒回路(10)の各減圧機構(4),(
5)間の液管を流通する冷媒との間で熱交換を行うため
の熱交換器(12)とを備えたことを特徴とする空気調
和装置。
[Claim 3] Compressor (1), heat source side heat exchanger (3)
, an air conditioner comprising a main refrigerant circuit (10) in which an outdoor pressure reducing mechanism (4), an indoor pressure reducing mechanism (6) and a user-side heat exchanger (7) are sequentially connected by a refrigerant pipe (9). , a refrigerant cooling bypass passage (11C) that bypass-connects the discharge pipe and suction line of the compressor (1), and the heat source side heat exchanger (
3) the auxiliary heat exchanger (3a), the pressure reduction mechanism (13) interposed on the downstream side of the auxiliary heat exchanger (3a) of the refrigerant cooling bypass path (11C), and the refrigerant cooling bypass path (11) Pressure reducing mechanism (13) The refrigerant flowing through the downstream piping and each pressure reducing mechanism (4), (
5) A heat exchanger (12) for exchanging heat with a refrigerant flowing through a liquid pipe between the air conditioners.
【請求項4】  請求項1,2又は3記載の空気調和装
置において、圧縮機(1)の吐出管と室外減圧機構(4
)−室内減圧機構(6)間の液管とをバイパス接続する
高圧制御用バイパス路(20)が設けられ、該高圧制御
用バイパス路(20)には、開閉弁(21)と高圧制御
用減圧機構(22)とが設けられていることを特徴とす
る空気調和装置。
4. The air conditioner according to claim 1, 2 or 3, wherein the discharge pipe of the compressor (1) and the outdoor pressure reducing mechanism (4
) and the indoor pressure reducing mechanism (6), a high pressure control bypass path (20) is provided, and the high pressure control bypass path (20) has an on-off valve (21) and a high pressure control An air conditioner characterized by being provided with a pressure reducing mechanism (22).
【請求項5】  請求項1,2又は3記載の空気調和装
置において、主冷媒回路(10)において、複数組の利
用側熱交換器(6)及び室内減圧機構(5)が互いに並
列に配置されていることを特徴とする空気調和装置。
5. The air conditioner according to claim 1, 2 or 3, wherein in the main refrigerant circuit (10), a plurality of sets of user-side heat exchangers (6) and indoor pressure reducing mechanisms (5) are arranged in parallel with each other. An air conditioner characterized by:
JP3009596A 1991-01-30 1991-01-30 Air conditioner Expired - Lifetime JP2800428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3009596A JP2800428B2 (en) 1991-01-30 1991-01-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3009596A JP2800428B2 (en) 1991-01-30 1991-01-30 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04324067A true JPH04324067A (en) 1992-11-13
JP2800428B2 JP2800428B2 (en) 1998-09-21

Family

ID=11724708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3009596A Expired - Lifetime JP2800428B2 (en) 1991-01-30 1991-01-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP2800428B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049346A1 (en) * 1999-02-17 2000-08-24 Yanmar Diesel Engine Co., Ltd. Refrigerant supercooling circuit
JP2005121362A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Controller and method for controlling refrigerant temperature for air conditioner
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
JP2009085539A (en) * 2007-10-01 2009-04-23 Toshiba Corp Refrigerator
JP2015111047A (en) * 2015-03-27 2015-06-18 三菱電機株式会社 Refrigerating machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230694U (en) * 1985-08-08 1987-02-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230694U (en) * 1985-08-08 1987-02-24

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049346A1 (en) * 1999-02-17 2000-08-24 Yanmar Diesel Engine Co., Ltd. Refrigerant supercooling circuit
EP1162414A1 (en) * 1999-02-17 2001-12-12 Yanmar Diesel Engine Co. Ltd. Refrigerant supercooling circuit
EP1162414A4 (en) * 1999-02-17 2002-10-02 Yanmar Diesel Engine Co Refrigerant supercooling circuit
JP2005121362A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Controller and method for controlling refrigerant temperature for air conditioner
JP4704728B2 (en) * 2003-10-16 2011-06-22 エルジー エレクトロニクス インコーポレイティド Refrigerant temperature control device and control method for air conditioner
JP2008002742A (en) * 2006-06-21 2008-01-10 Daikin Ind Ltd Refrigerating device
US8166771B2 (en) 2006-06-21 2012-05-01 Daikin Industries, Ltd. Refrigeration system
JP2009085539A (en) * 2007-10-01 2009-04-23 Toshiba Corp Refrigerator
JP2015111047A (en) * 2015-03-27 2015-06-18 三菱電機株式会社 Refrigerating machine

Also Published As

Publication number Publication date
JP2800428B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
EP1659348B1 (en) Freezing apparatus
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
JP3352469B2 (en) Air conditioner
JP2001056159A (en) Air conditioner
US7171825B2 (en) Refrigeration equipment
JP2804527B2 (en) Air conditioner
WO2016189739A1 (en) Air conditioning device
JPH04324067A (en) Air conditioner
JP3719296B2 (en) Refrigeration cycle equipment
JPH04340046A (en) Operation control device of air conditioner
JPH10220893A (en) Heat pump device
JPH1114177A (en) Air conditioner
KR100526204B1 (en) A refrigerator
JP2877552B2 (en) Air conditioner
JP3511161B2 (en) Air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH10325641A (en) Refrigerating device
JP2005042980A (en) Heat accumulating type air conditioner
JP3451505B2 (en) Refrigerant circuit
JPH04263742A (en) Refrigerator
JP3791019B2 (en) Air conditioner
JP3268967B2 (en) Air conditioner
JP4372247B2 (en) Air conditioner
JP2682157B2 (en) Air conditioner
JPH04257661A (en) Two stage compression refrigerating cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100710

Year of fee payment: 12