JP2009085539A - Refrigerator - Google Patents
Refrigerator Download PDFInfo
- Publication number
- JP2009085539A JP2009085539A JP2007257778A JP2007257778A JP2009085539A JP 2009085539 A JP2009085539 A JP 2009085539A JP 2007257778 A JP2007257778 A JP 2007257778A JP 2007257778 A JP2007257778 A JP 2007257778A JP 2009085539 A JP2009085539 A JP 2009085539A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- condenser
- bypass circuit
- compressor
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 62
- 238000005057 refrigeration Methods 0.000 claims description 14
- 210000001736 Capillaries Anatomy 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances   O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/05—Compression system with heat exchange between particular parts of the system
- F25B2400/052—Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
Abstract
Description
本発明は冷凍能力の向上を図った冷蔵庫に関する。 The present invention relates to a refrigerator with improved refrigeration capacity.
一般に冷蔵庫は、圧縮機、凝縮器、絞り装置、蒸発器とを有し、圧縮機から吐出された冷媒は凝縮器、絞り装置、蒸発器を通り、再び圧縮機に戻る冷凍サイクルを構成する。 Generally, a refrigerator has a compressor, a condenser, a squeezing device, and an evaporator, and the refrigerant discharged from the compressor constitutes a refrigeration cycle that passes through the condenser, the squeezing device, and the evaporator and returns to the compressor.
蒸発器は、冷媒が流れる冷媒管と空気が通過する多数のフィンとで構成され、フィンとフィンの間を通過する空気は冷媒管を流れる冷媒との間で熱交換が行なわれ冷却される。 The evaporator is composed of a refrigerant pipe through which the refrigerant flows and a large number of fins through which air passes. The air passing between the fins is cooled by heat exchange with the refrigerant flowing through the refrigerant pipe.
この冷凍サイクル時の冷媒のモリエル線図を図7に示す。 A Mollier diagram of the refrigerant during this refrigeration cycle is shown in FIG.
モリエル線図は横軸にエンタルピ(Kcal/kg),と縦軸に圧力(kg/cm2 )がとられており、飽和液線より左側領域は液体,飽和蒸気線の右側領域は気体,両者の中間領域は液体と気体が混ざり合った2相液で等温線は圧力線と平行となる。 The Mollier diagram shows enthalpy (Kcal / kg) on the horizontal axis and pressure (kg / cm 2 ) on the vertical axis. The left side of the saturated liquid line is liquid, the right side of the saturated vapor line is gas, The intermediate region is a two-phase liquid in which liquid and gas are mixed, and the isotherm is parallel to the pressure line.
この図で1→2は蒸発器による蒸発領域、2→3は圧縮機による圧縮領域、3→4は凝縮器による凝縮領域、4→1は絞り装置による絞り領域をそれぞれ示している。 In this figure, 1 → 2 indicates the evaporation region by the evaporator, 2 → 3 indicates the compression region by the compressor, 3 → 4 indicates the condensation region by the condenser, and 4 → 1 indicates the expansion region by the expansion device.
前記モリエル線図において1→2は蒸発器による蒸発領域を示すことは前記した通りであるが、1→2の領域Dは蒸発器で冷媒が蒸発する際、周囲の空気から奪う熱量を示すところから、この熱量の領域を拡大することで冷凍サイクルの冷却能力アップを図れることがわかる。 In the Mollier diagram, 1 → 2 indicates the evaporation region by the evaporator as described above, but the region D of 1 → 2 indicates the amount of heat taken from the surrounding air when the refrigerant evaporates in the evaporator. Thus, it can be seen that the cooling capacity of the refrigeration cycle can be increased by expanding the region of the heat quantity.
そこで、本発明にあっては簡単な工夫によって蒸発器の熱量の領域を拡大することができる冷蔵庫を提供することを目的とする。 Then, in this invention, it aims at providing the refrigerator which can expand the area | region of the calorie | heat amount of an evaporator by simple contrivance.
前記目的を達成するために、本発明にあっては、圧縮機から吐出された冷媒が凝縮器、絞り装置、蒸発器を通り、再び圧縮機に戻る冷凍サイクルを構成する冷媒回路と、前記凝縮器の出口側と圧縮機の吸込側とをつなぐバイパス回路とを有し、前記バイパス回路は、キャピラリチューブとそのキャピラリチューブによって低温の冷媒が流れる一部領域を備え、その低温の冷媒が流れる前記一部領域を、前記凝縮器の出口温度を下げる熱交換部としたことを特徴とする。 In order to achieve the above object, according to the present invention, the refrigerant discharged from the compressor passes through the condenser, the expansion device, and the evaporator, and constitutes a refrigeration cycle that returns to the compressor again, and the condensation A bypass circuit connecting the outlet side of the compressor and the suction side of the compressor, the bypass circuit includes a capillary tube and a partial region through which the low-temperature refrigerant flows, and the low-temperature refrigerant flows through the capillary tube. The partial area is a heat exchange part that lowers the outlet temperature of the condenser.
本発明によれば、バイパス回路の熱交換部によって凝縮器の出口温度を下げることができるため、図6に示すように凝縮領域は4→4a,蒸発領域は1a→1にそれぞれサイクルが変化することで蒸発器の冷却能力、即ち、蒸発器で周りの空気から奪う熱量はD+dとなりサイクルが拡大したd分、冷却能力の向上を図ることができる。 According to the present invention, the outlet temperature of the condenser can be lowered by the heat exchange part of the bypass circuit, so that the cycle changes from 4 to 4a in the condensation region and 1a to 1 in the evaporation region as shown in FIG. Thus, the cooling capacity of the evaporator, that is, the amount of heat taken away from the surrounding air by the evaporator becomes D + d, and the cooling capacity can be improved by d, which is the cycle expanded.
本発明を実施するにあたって、第1に前記バイパス回路の一部分を熱交換部としたその熱交換領域を、ドレン水受け皿の上方に配置することで、結露した水滴が必ずドレイン水受け皿の上に落下するようにすることが望ましい。 In practicing the present invention, firstly, the heat exchange region having a part of the bypass circuit as a heat exchanging portion is arranged above the drain water tray, so that the condensed water drops always fall on the drain water tray. It is desirable to do so.
第2に前記バイパス回路のキャピラリチューブを、密のコイル状に巻かれた形状とすることで、低コストで設置場所が小さくて済むようにすることが望ましい。 Secondly, it is desirable that the capillary tube of the bypass circuit is formed in a shape wound in a dense coil shape so that the installation location can be reduced at low cost.
第3に前記熱交換部を、バイパス回路の低温の冷媒が貯留され、その貯留液内を凝縮器から絞り装置へ向かう冷媒回路の冷媒管が貫通する冷媒貯留部によって構成することで、効率よく凝縮器の出口温度を下げることができるようにすることが望ましい。 Thirdly, the heat exchanging section is configured by a refrigerant storing section in which the low-temperature refrigerant in the bypass circuit is stored and the stored liquid passes through the refrigerant pipe of the refrigerant circuit from the condenser to the expansion device. It is desirable to be able to reduce the outlet temperature of the condenser.
第4に前記熱交換部は、凝縮器から絞り装置へ向かう冷媒回路の冷媒管と低温の冷媒が流れるバイパス回路の一部領域とを接触させた接触構造とすることで、コストを低く抑え、効率よく凝縮器の出口温度を下げることができるようにすることが望ましい。 Fourthly, the heat exchanging part has a contact structure in which the refrigerant pipe of the refrigerant circuit heading from the condenser to the expansion device and a partial region of the bypass circuit through which the low-temperature refrigerant flows, thereby reducing the cost. It is desirable to be able to lower the condenser outlet temperature efficiently.
以下、図1乃至図6の図面を参照しながら本発明の一実施形態について具体的に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
図5は本発明にかかる冷蔵庫の概要断面図を示している。 FIG. 5: has shown schematic sectional drawing of the refrigerator concerning this invention.
冷蔵庫1は、庫内温度の異なる冷蔵室3と冷凍室5とに仕切られると共に前面はそれぞれの開閉扉7、9となっている。 The refrigerator 1 is partitioned into a refrigerator compartment 3 and a freezer compartment 5 having different interior temperatures, and the front faces are the open / close doors 7 and 9, respectively.
冷凍室5の後部には蒸発器11が配置され、蒸発器11において熱交換された冷気はファン13によって直接冷凍室内へ吹出される一方、切替弁15によって取入れ量が制御された冷気はダクト17を介して冷蔵室3へ吹出されることで庫内冷却が行なわれるようになっている。 An evaporator 11 is disposed at the rear of the freezer compartment 5, and the cool air heat-exchanged in the evaporator 11 is blown directly into the freezer compartment by the fan 13, while the cool air whose intake amount is controlled by the switching valve 15 is duct 17. The inside is cooled by being blown out to the refrigerator compartment 3 via the.
蒸発器11は図1に示す如く、冷媒回路19によって圧縮機21、凝縮器23、絞り装置25と連通し、圧縮機21から吐出された冷媒は凝縮器23、絞り装置25、蒸発器11を通り、再び圧縮機21に戻る冷凍サイクルを構成する。 As shown in FIG. 1, the evaporator 11 communicates with the compressor 21, the condenser 23, and the expansion device 25 by the refrigerant circuit 19, and the refrigerant discharged from the compressor 21 passes through the condenser 23, the expansion device 25, and the evaporator 11. Thus, a refrigeration cycle returning to the compressor 21 is configured.
一方、冷凍サイクルを構成する冷媒回路19には前記凝縮器23の出口側と圧縮機21の吸込側とをつなぐバイパス回路27が設けられている。 On the other hand, the refrigerant circuit 19 constituting the refrigeration cycle is provided with a bypass circuit 27 that connects the outlet side of the condenser 23 and the suction side of the compressor 21.
バイパス回路27は、キャピラリチューブ29、31と熱交換部33とを有し、前記熱交換部33の熱交換部領域は図5に示す如くドレイン水受け皿35の上方に配置された構造となっている。 The bypass circuit 27 has capillary tubes 29 and 31 and a heat exchanging portion 33, and the heat exchanging region of the heat exchanging portion 33 is arranged above the drain water receiving tray 35 as shown in FIG. Yes.
したがって、熱交換部33において発生した結露等の水滴は必ずドレイン水受け皿35の上に落下することで、周囲を水で濡らすことなく確実に排水処理が行えるようになっている。 Therefore, water droplets such as dew condensation generated in the heat exchanging section 33 always fall on the drain water receiving tray 35, so that the drainage treatment can be performed reliably without getting the surroundings wet with water.
キャピラリチューブ29,31は、前記熱交換部33を挟んでその上流側と下流側とに配置され冷媒が細いチューブ内を通過する時、その抵抗によって圧力が急激に下がることで下流側領域において低温低圧の冷媒とする。 The capillary tubes 29 and 31 are arranged on the upstream side and the downstream side of the heat exchanging unit 33, and when the refrigerant passes through the thin tube, the pressure rapidly decreases due to the resistance, so that the temperature is low in the downstream region. Use a low-pressure refrigerant.
キャピラリチューブは図4に示す如く密のコイル状に巻かれた形状となっていて、絞り装置となる膨張弁に比べて大幅にコストを抑えることができるようにすると共に冷蔵庫1の機械室37内に設置するときに、大きな占有スペースを必要とせず、しかも設計値に基づいた長さが確保されるようになっている。 As shown in FIG. 4, the capillary tube has a shape wound in a dense coil shape, so that the cost can be significantly reduced as compared with an expansion valve serving as a throttling device, and in the machine room 37 of the refrigerator 1. When installed in the housing, a large occupation space is not required, and a length based on the design value is secured.
一方、バイパス回路27に設けられた熱交換部33は上流側となるキャピラリチューブ29によって低温低圧の冷媒が流れる領域に設けられている。 On the other hand, the heat exchanging portion 33 provided in the bypass circuit 27 is provided in the region where the low-temperature and low-pressure refrigerant flows by the capillary tube 29 on the upstream side.
図2と図3は熱交換部33の第1、第2の実施形態を示したものである。 2 and 3 show the first and second embodiments of the heat exchanging section 33. FIG.
図2の熱交換部33は、バイパス回路27の低温の冷媒が貯留され、その貯留液内を凝縮器27から絞り装置25へ向かう冷媒回路19の冷媒管19aが貫通する冷媒貯留部39によって構成したものである。 The heat exchanging unit 33 in FIG. 2 includes a refrigerant storage unit 39 in which the low-temperature refrigerant in the bypass circuit 27 is stored, and the refrigerant pipe 19a of the refrigerant circuit 19 that goes from the condenser 27 to the expansion device 25 passes through the stored liquid. It is a thing.
具体的には、冷媒貯留部39の一方に、切断したバイパス回路29の一端29aを、他方にバイパス回路29の他方29bをそれぞれ接続し、内部に低温低圧の冷媒が貯まるようにすると共に、その冷媒貯留部39の内部を凝縮器23から絞り装置25へ向かう冷媒回路19の冷媒管19aを貫通させた手段としてある。 Specifically, one end 29a of the bypass circuit 29 is connected to one side of the refrigerant storage section 39, and the other side 29b of the bypass circuit 29 is connected to the other side so that low-temperature and low-pressure refrigerant can be stored therein, and The inside of the refrigerant reservoir 39 is a means that penetrates the refrigerant pipe 19 a of the refrigerant circuit 19 that goes from the condenser 23 to the expansion device 25.
これにより、凝縮器23からの冷媒は冷媒貯留部39内を通過するときに貯留液との間で熱交換が行なわれ、凝縮器23の出口温度、即ち、図6において冷媒温度(4→4a)を下げることが可能となっている。 Thereby, when the refrigerant from the condenser 23 passes through the refrigerant reservoir 39, heat exchange is performed between the refrigerant and the stored liquid, and the outlet temperature of the condenser 23, that is, the refrigerant temperature (4 → 4a) in FIG. ) Can be lowered.
図3の前記熱交換部33は、凝縮器23から絞り装置25へ向かう冷媒回路19の冷媒管19aと低温の冷媒が流れるバイパス回路27の一部領域とをハンダ付け等の手段によって平行に接触させた接触構造としたものである。 The heat exchanging unit 33 in FIG. 3 contacts the refrigerant pipe 19a of the refrigerant circuit 19 from the condenser 23 toward the expansion device 25 in parallel with a partial region of the bypass circuit 27 through which a low-temperature refrigerant flows by means such as soldering. This is a contact structure.
これにより、凝縮器23からの冷媒はバイパス回路27の一部領域となる接触領域を通過する時に熱交換が行なわれ、凝縮器23の出口温度、即ち図6において冷媒温度(4→4a)を下げることが可能となっている。 Thus, heat exchange is performed when the refrigerant from the condenser 23 passes through a contact region which is a partial region of the bypass circuit 27, and the outlet temperature of the condenser 23, that is, the refrigerant temperature (4 → 4a) in FIG. It is possible to lower.
この時の冷凍サイクルのモリエル線図を図6に示す。 The Mollier diagram of the refrigeration cycle at this time is shown in FIG.
このモリエル線図によれば、標準の1→2→3→4→1に戻る冷凍サイクルに対して、本発明にあっては1a→2→3→4a→1aに戻る冷凍サイクルを構成し、蒸発領域1→2が1a→2となり、d領域分拡大したサイクルが得られるようになる。 According to this Mollier diagram, in the present invention, a refrigeration cycle returning to 1a → 2 → 3 → 4a → 1a is constituted in contrast to the standard 1 → 2 → 3 → 4 → 1 refrigeration cycle. The evaporation area 1 → 2 becomes 1a → 2, and a cycle enlarged by the d area can be obtained.
このように構成された本発明によれば、圧縮機から吐出された冷媒は凝縮器、絞り装置、蒸発器を通り、再び圧縮機に戻る冷凍サイクルを構成する。この時図6に示す如く冷媒は1a→2→3→4a→1a→2となる冷凍サイクルを構成する。 According to the present invention configured as described above, the refrigerant discharged from the compressor constitutes a refrigeration cycle that passes through the condenser, the expansion device, and the evaporator and returns to the compressor again. At this time, as shown in FIG. 6, the refrigerant constitutes a refrigeration cycle of 1a → 2 → 3 → 4a → 1a → 2.
この冷凍サイクル時において、凝縮器23の出口温度は熱交換部33によって冷却された4→4aとなるため、蒸発器11の冷却能力、即ち、蒸発器で周りの空気から奪う熱量はD+dとなり、サイクルが拡大したd分、冷却能力が向上するようになる。 In this refrigeration cycle, the outlet temperature of the condenser 23 becomes 4 → 4a cooled by the heat exchanging unit 33, so the cooling capacity of the evaporator 11, that is, the amount of heat taken away from the surrounding air by the evaporator becomes D + d, The cooling capacity is improved by d, which is the cycle expanded.
1 冷蔵庫
3 冷蔵室
5 冷凍室
11 蒸発器
19 冷媒回路
19a 冷媒管
21 圧縮機
23 凝縮器
25 絞り装置
27 バイパス回路
29、31 キャピラリチューブ
33 熱交換部
35 ドレイン水受け皿
39 冷媒貯留部
DESCRIPTION OF SYMBOLS 1 Refrigerator 3 Refrigerating room 5 Freezer room 11 Evaporator 19 Refrigerant circuit 19a Refrigerant pipe 21 Compressor 23 Condenser 25 Throttle device 27 Bypass circuit 29, 31 Capillary tube 33 Heat exchange part 35 Drain water receiving tray 39 Refrigerant storage part
Claims (5)
前記バイパス回路は、キャピラリチューブとそのキャピラリチューブによって低温の冷媒が流れる一部領域を備え、その低温の冷媒が流れる前記一部領域を、前記凝縮器の出口温度を下げる熱交換部としたことを特徴とする冷蔵庫。 A refrigerant circuit constituting a refrigeration cycle in which refrigerant discharged from the compressor passes through the condenser, expansion device, and evaporator and returns to the compressor again, and a bypass circuit that connects the outlet side of the condenser and the suction side of the compressor And
The bypass circuit includes a capillary tube and a partial region through which the low-temperature refrigerant flows, and the partial region through which the low-temperature refrigerant flows serves as a heat exchange unit that lowers the outlet temperature of the condenser. Features a refrigerator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007257778A JP2009085539A (en) | 2007-10-01 | 2007-10-01 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007257778A JP2009085539A (en) | 2007-10-01 | 2007-10-01 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009085539A true JP2009085539A (en) | 2009-04-23 |
Family
ID=40659194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007257778A Pending JP2009085539A (en) | 2007-10-01 | 2007-10-01 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009085539A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3210890A1 (en) * | 2016-02-24 | 2017-08-30 | Airbus-Safran Launchers GmbH | Cooling of fuel for an engine |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149558A (en) * | 1980-04-18 | 1981-11-19 | Sanyo Electric Co | Refrigerating plant |
JPH04324067A (en) * | 1991-01-30 | 1992-11-13 | Daikin Ind Ltd | Air conditioner |
JPH08193771A (en) * | 1995-01-17 | 1996-07-30 | Hitachi Ltd | Freezing cycle |
JPH0960989A (en) * | 1995-08-22 | 1997-03-04 | Sanyo Electric Co Ltd | Refrigerating device |
JP2002156161A (en) * | 2000-11-16 | 2002-05-31 | Mitsubishi Heavy Ind Ltd | Air conditioner |
JP2003056923A (en) * | 2002-07-10 | 2003-02-26 | Sanyo Electric Co Ltd | Refrigerant circuit |
JP2005069566A (en) * | 2003-08-25 | 2005-03-17 | Daikin Ind Ltd | Freezer |
JP2005164103A (en) * | 2003-12-01 | 2005-06-23 | Matsushita Electric Ind Co Ltd | Refrigerating cycle device and its control method |
JP2005282869A (en) * | 2004-03-26 | 2005-10-13 | Mitsubishi Heavy Ind Ltd | Combination type refrigeration cycle equipment and its operating method |
JP2006090563A (en) * | 2004-09-21 | 2006-04-06 | Hitachi Ltd | Refrigerating device |
JP2007139225A (en) * | 2005-11-15 | 2007-06-07 | Hitachi Ltd | Refrigerating device |
-
2007
- 2007-10-01 JP JP2007257778A patent/JP2009085539A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149558A (en) * | 1980-04-18 | 1981-11-19 | Sanyo Electric Co | Refrigerating plant |
JPH04324067A (en) * | 1991-01-30 | 1992-11-13 | Daikin Ind Ltd | Air conditioner |
JPH08193771A (en) * | 1995-01-17 | 1996-07-30 | Hitachi Ltd | Freezing cycle |
JPH0960989A (en) * | 1995-08-22 | 1997-03-04 | Sanyo Electric Co Ltd | Refrigerating device |
JP2002156161A (en) * | 2000-11-16 | 2002-05-31 | Mitsubishi Heavy Ind Ltd | Air conditioner |
JP2003056923A (en) * | 2002-07-10 | 2003-02-26 | Sanyo Electric Co Ltd | Refrigerant circuit |
JP2005069566A (en) * | 2003-08-25 | 2005-03-17 | Daikin Ind Ltd | Freezer |
JP2005164103A (en) * | 2003-12-01 | 2005-06-23 | Matsushita Electric Ind Co Ltd | Refrigerating cycle device and its control method |
JP2005282869A (en) * | 2004-03-26 | 2005-10-13 | Mitsubishi Heavy Ind Ltd | Combination type refrigeration cycle equipment and its operating method |
JP2006090563A (en) * | 2004-09-21 | 2006-04-06 | Hitachi Ltd | Refrigerating device |
JP2007139225A (en) * | 2005-11-15 | 2007-06-07 | Hitachi Ltd | Refrigerating device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3210890A1 (en) * | 2016-02-24 | 2017-08-30 | Airbus-Safran Launchers GmbH | Cooling of fuel for an engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008533426A (en) | Heat transfer by condensate in a transcritical carbon dioxide refrigeration system | |
US8408022B2 (en) | Hybrid cascade vapor compression refrigeration system | |
JP2006194578A (en) | Refrigerator | |
US9714787B2 (en) | Refrigerator | |
WO2005040701A1 (en) | Cooling device and refrigerator using the same | |
JP2007001485A (en) | Refrigerating cycle device for vehicle | |
JP5962033B2 (en) | Heat exchanger and air conditioner equipped with the same | |
KR100791963B1 (en) | A Package Airconditioner | |
JP2005337577A5 (en) | ||
JP2009085539A (en) | Refrigerator | |
JP2009180493A (en) | Heating auxiliary unit and air conditioner | |
JP2017053589A (en) | refrigerator | |
JP2009024884A (en) | Refrigerating cycle device and cold insulation cabinet | |
JP2012237518A (en) | Air conditioner | |
JP2003148846A (en) | Refrigerator | |
JP5796588B2 (en) | Open showcase | |
KR100750969B1 (en) | A Package Airconditioner | |
JP4895707B2 (en) | refrigerator | |
JP3879621B2 (en) | Freezer refrigerator | |
JP2006132804A (en) | Refrigerating cycle and heat exchanger | |
JP4341492B2 (en) | Refrigerant cooling circuit | |
JP5020159B2 (en) | Heat exchanger, refrigerator and air conditioner | |
KR100556760B1 (en) | Refrigerator with dual condenser | |
JPWO2019106755A1 (en) | Air conditioner | |
KR0176887B1 (en) | Evaporating apparatus of refrigeration cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111011 |
|
A521 | Written amendment |
Effective date: 20111212 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120321 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20120518 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20120619 Free format text: JAPANESE INTERMEDIATE CODE: A02 |