WO2000049346A1 - Refrigerant supercooling circuit - Google Patents

Refrigerant supercooling circuit Download PDF

Info

Publication number
WO2000049346A1
WO2000049346A1 PCT/JP1999/004326 JP9904326W WO0049346A1 WO 2000049346 A1 WO2000049346 A1 WO 2000049346A1 JP 9904326 W JP9904326 W JP 9904326W WO 0049346 A1 WO0049346 A1 WO 0049346A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
receiver
supercooling
expansion valve
extraction line
Prior art date
Application number
PCT/JP1999/004326
Other languages
French (fr)
Japanese (ja)
Inventor
Jirou Fukudome
Ken-Ichi Minami
Masaki Inoue
Takeo Imura
Yoshikazu Oota
Kazutoshi Inayoshi
Keiji Sugimori
Original Assignee
Yanmar Diesel Engine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11038746A external-priority patent/JP2000234818A/en
Priority claimed from JP11086454A external-priority patent/JP2000283598A/en
Priority claimed from JP11086453A external-priority patent/JP2000283583A/en
Priority claimed from JP11114936A external-priority patent/JP2000304374A/en
Application filed by Yanmar Diesel Engine Co., Ltd. filed Critical Yanmar Diesel Engine Co., Ltd.
Priority to EP99937013A priority Critical patent/EP1162414B1/en
Priority to DE69931816T priority patent/DE69931816D1/en
Publication of WO2000049346A1 publication Critical patent/WO2000049346A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to a configuration of a refrigerant subcooling circuit of an air conditioning system, and in particular, relates to indoor heat exchange with one outdoor unit having a compressor driving motor, a compressor, and an outdoor heat exchanger as a unit.
  • TECHNICAL FIELD The present invention relates to a technology aimed at improving the refrigerant cycle efficiency during a cooling operation, for an air conditioning system configured to connect a plurality of indoor units each including a cooling unit.
  • a high-temperature, high-pressure gas-phase refrigerant is pumped to an outdoor heat exchanger by a compressor and cooled by the outdoor heat exchanger to be converted to a high-pressure liquid-phase refrigerant. After that, it is sent to the indoor unit, expanded inside the indoor unit, absorbs heat of vaporization from the indoor room, recovers it as a low-pressure gas-phase refrigerant, and recovers it to the compressor again.
  • a supercooling cycle That is, a cycle for exchanging heat between the high-pressure liquid-phase refrigerant and the low-pressure gas-phase refrigerant is provided in the refrigerant circuit, and the high-pressure liquid-phase refrigerant is brought into a supercooled state.
  • refrigerant is extracted from a high-pressure liquid-phase refrigerant pipe downstream of an outdoor heat exchanger.
  • the pipe is branched to expand the high-pressure liquid-phase refrigerant flowing through the extraction pipe into a low-pressure gas-phase refrigerant, and also branch the refrigerant extraction pipe from the low-pressure gas-phase refrigerant pipe downstream of the indoor heat exchanger.
  • the low-pressure gas-phase refrigerant from the extraction pipe is brought into contact with the periphery of the high-pressure liquid-phase refrigerant pipe on the downstream side of the outdoor heat exchanger so as to give a supercooling effect to the high-pressure liquid-phase refrigerant flowing in the refrigerant pipe.
  • the amount of the refrigerant flowing through the refrigerant extraction pipe is used for supercooling without any particular stocking, so that a plurality of refrigerants are required for one outdoor heat exchanger.
  • the amount of refrigerant flowing through the refrigerant circuit changes due to a change in the number of operating indoor heat exchangers, and the amount of refrigerant extracted for supercooling is not stable.
  • the supercooling effect is not stable.
  • the low-pressure gas-phase refrigerant flowing through the refrigerant extraction pipe from the downstream side of the indoor heat exchanger absorbs heat in the indoor unit and becomes hot, which is extracted from the high-pressure liquid-phase refrigerant pipe and expanded at low-temperature low-pressure gas.
  • the temperature difference from the high-pressure liquid-phase refrigerant in the high-pressure liquid-phase refrigerant pipe is reduced by mixing with the high-pressure liquid-phase refrigerant, and a sufficient supercooling effect cannot be obtained.
  • a refrigerant pipe through which an upstream high-pressure liquid-phase refrigerant flows via an expansion valve and a refrigerant pipe through which a downstream low-pressure gas-liquid refrigerant flows are placed in close proximity.
  • the high-pressure liquid-phase refrigerant is supercooled.
  • the low-pressure gas-liquid refrigerant eventually removes the heat of the high-pressure liquid-phase refrigerant and becomes high in temperature, and the cooling effect in the indoor unit is reduced.
  • the low-pressure gas-phase refrigerant absorbs heat from the outside air, and the amount of heat absorbed from the high-pressure liquid-phase refrigerant decreases. Supercooling is not promoted.
  • the present invention relates to a refrigerant supercooling circuit configured in a refrigerant circuit during cooling of an air conditioning system for cooling and heating, comprising: a first expansion valve arranged downstream of an outdoor heat exchanger; and a plurality of upstream expansion valves arranged upstream of a plurality of indoor heat exchangers.
  • Liquid-phase refrigerant is placed on the refrigerant line connecting the plurality of second expansion valves.
  • an extraction line for extracting a part of the liquid-phase refrigerant from one of the refrigerant circuits of the air conditioning system is provided, a third expansion valve is provided on the extraction line, and a third expansion valve is provided.
  • the gas-liquid mixed refrigerant from the outdoor heat exchanger By controlling the degree of opening of the first expansion valve through which air passes, a plurality of indoor heat exchangers are connected to each outdoor heat exchanger, and the number of operating indoor heat exchangers varies in various ways. Even with such an air-conditioning system, while attaining an appropriate supercooling effect, the load on the compressor and the prime mover for driving the compressor is suppressed to improve the operating efficiency.
  • the first expansion valve is controlled in accordance with the pressure of the refrigerant in the refrigerant line connecting the compressor discharge side and the directional control valve, so that the degree of opening of the first expansion valve is reduced to enhance the supercooling effect.
  • the throttle can be controlled while detecting the discharge pressure of the compressor to prevent the load on the compressor and the prime mover for driving the compressor from becoming excessive.
  • the throttle of the first expansion valve is stopped when an appropriate supercooling effect is obtained, and the throttling is further advanced. In this way, the load on the compressor and the prime mover for driving the compressor is prevented from becoming excessive, and the operating efficiency is prevented from decreasing.
  • the first expansion valve controlled in the throttle direction to obtain a supercooling effect can be controlled before and after a certain first expansion valve. Stopping the throttle at the stage when the differential pressure is detected, and further reducing the pressure can prevent the load on the compressor and the prime mover for driving the compressor from becoming excessive.
  • the extraction line is to extract the liquid-phase refrigerant from the receiver or from the outdoor heat exchanger, and to perform high-pressure vaporization by the third expansion valve and use for subcooling.
  • the liquid-phase refrigerant can be stably taken out to the extraction line.
  • a supercooling tank for storing a liquid-phase refrigerant is arranged in tandem before or after the receiver, and the extraction line takes out the liquid-phase refrigerant from the receiver or the supercooling tank.
  • the downstream portion of the third expansion valve is configured to pass through the subcooling tank. In this way, by configuring the tank as the subcooler separately from the receiver, the degree of freedom of the capacity can be secured without being restricted by the capacity of the receiver.
  • the liquid-phase refrigerant can be taken out from the receiver or the subcooling tank when the liquid-phase refrigerant is taken out to the extraction line, so that the liquid-phase refrigerant can be taken out stably.
  • the receiver or the extraction line in the subcooling tank is configured by a coiled refrigerant pipe.
  • the refrigerant pipe is disposed integrally in the receiver or the subcooling tank by the support and fixing by these rod members, and the assembly configuration of the subcooling circuit is simplified.
  • each adjacent one turn of the extraction line is connected and fixed by the coil-shaped refrigerant pipe in the receiver or the subcooling tank, and the refrigerant pipe becomes more stable and integral, and the strength is increased. .
  • a refrigerant line connecting the receiver and the plurality of second expansion valves is passed through a subcooling pipe having an expanding space, and the extraction line removes a liquid-phase refrigerant from the receiver, A portion downstream of the third expansion valve passes through the subcooling pipe.
  • the extraction line a stable liquid-phase refrigerant can be taken out from the receiver, and the structure of the supercooling pipe can be freely set without being restricted by the storage amount of the receiver, and the refrigerant in the extraction line can be extracted. And the amount of heat exchange with the liquid-phase refrigerant in the refrigerant line sent to the second expansion valve.
  • the extraction line downstream of the third expansion valve is configured to supercool the liquid-phase refrigerant to be sent to the indoor unit and then to allow the low-pressure gas-phase refrigerant to flow therethrough.
  • the high-pressure liquid-phase refrigerant is taken out from the outdoor heat exchanger, the receiver, or the supercooling tank, so the differential pressure across the third expansion valve increases, and the supercooling effect increases.
  • an auxiliary refrigerant evaporator for guiding cooling water for cooling the driving motor for the compressor is provided on the refrigerant line between the directional control valve and the suction side of the compressor, and the liquid-phase refrigerant is supercooled.
  • the extracted extraction line is connected to a refrigerant line connecting the direction switching valve and the auxiliary refrigerant evaporator.
  • the refrigerant line between the first expansion valve and the receiver has two systems, one of which has a check valve connected to the upper part of the receiver to shut off the flow of the refrigerant from the receiver.
  • the other has a check valve connected to the lower portion of the receiver to shut off the flow of the refrigerant from the first expansion valve, thereby switching the refrigerant line in cooling and heating by two check valves.
  • the operation can be easily performed by the above operation.
  • FIG. 1 is an overall view of an air conditioning system at the time of cooling including a refrigerant subcooling circuit according to the present invention
  • FIG. 2 is similarly equipped with a pressure sensor for controlling a first expansion valve, a temperature sensor, and the like.
  • FIG. 3 is a diagram showing the relationship between the opening degree of the third expansion valve and the cooling effect
  • FIG. 4 is a diagram showing the relationship between the third expansion valve and the compressor discharge pressure.
  • FIG. 5 is a diagram showing the relationship between the opening degree of the first expansion valve and the cooling effect
  • FIG. FIG. 7 is a diagram showing a relationship between discharge pressure and performance
  • FIG. 7 is a diagram showing a relationship between a first expansion valve differential pressure and a supercooling effect
  • FIG. 8 is a diagram showing a first expansion valve according to the present invention.
  • FIG. 9 is a flowchart showing a second control method of the first expansion valve according to the present invention.
  • FIG. 9 is a flowchart showing the second control method of the first expansion valve according to the present invention.
  • Fig. 11 is a flowchart showing a third control method of the first expansion valve according to the present invention.
  • Fig. 11 is a refrigerant circuit diagram of a configuration in which an extraction line is extended from an outdoor heat exchanger.
  • Fig. 2 shows an embodiment in which the receiver and the subcooling tank are separated
  • Fig. 13 shows an embodiment in which the receiver and the subcooling tank are separated and the extraction line for subcooling is taken out from the lower part of the receiver.
  • FIG. 14 is an example of another embodiment in which a receiver and a subcooling tank are separated, and FIG. 15 is a receiver.
  • Fig. 16 shows another embodiment in which the subcooling tank is separated and the extraction line for supercooling is taken out from the lower part of the receiver.
  • Fig. 16 shows an embodiment in which the subcooler is constituted by a double tube heat exchanger.
  • Fig. 17 is a partial cross-sectional side view of the subcooler
  • Fig. 18 is a plan view of the subcooler
  • Fig. 19 is the refrigerant pressure and the specific FIG. 4 is a Mollier diagram showing the relationship.
  • the refrigerant circuit of the air conditioning (cooling / heating) system shown in FIGS. 1 and 2 according to the present invention will be described.
  • the refrigerant circuit includes a compressor (a multi-compressor in this embodiment) 2, a four-way valve 3 as a directional switching valve, an outdoor heat exchanger 4 (two in this embodiment), a first expansion valve 45, a plurality of second A plurality of indoor heat exchangers 70 etc. corresponding to the expansion valve 71 and the second expansion valve 71 are provided, and a refrigerant line 20 connecting the compressor 2 discharge side and the four-way valve 3 as a refrigerant line.
  • a refrigerant line 24 connecting the corresponding indoor heat exchanger 70, and an all indoor heat exchanger 70 and the four-way valve 3. Department is obtained by constituting the refrigerant line 2 5.
  • the merging line of the refrigerant lines 23 there is a receiver, which is an evening tank for retaining the liquid-phase refrigerant.
  • An extraction line 61 for extracting the liquid-phase refrigerant in the receiver 5 is provided, and a third expansion valve 62 is interposed in the extraction line 6 1.
  • the line downstream of the tri-expansion valve 62 is passed through the receiver 5 again, and then the extraction line 61 is connected to the refrigerant line 26 as shown in FIG. 1, or as shown in FIG. Connected to the refrigerant line 25.
  • the extraction line 61 constitutes a subcooler 6 by forming, for example, a heat transfer tube 60 which is a coiled refrigerant tube in the receiver 5.
  • the supercooler 6 is arranged inside the receiver 5, but as will be described later, the subcooler 6 is configured as a unit separate from the receiver 5. It is also possible.
  • the lines from the first expansion valves 45 are merged and then connected to the receiver inflow pipe 51 connected to the upper part of the receiver 5 and to the lower part of the receiver 5 It branches into a heating return pipe 55, and a check valve 4 is interposed in the receiver inflow pipe 51, and a check valve 4 is interposed in the heating return pipe 55, respectively.
  • the check valve 46 blocks the flow of the refrigerant from the receiver 5 to the first expansion valve 45
  • the check valve 47 blocks the flow of the refrigerant from the first expansion valve 45 to the receiver 5. It is.
  • the refrigerant passing through the first expansion valve 45 passes through the check valve 46 and flows in from the upper part of the tank of the receiver 5, and in the heating cycle, the refrigerant flows from the lower part of the tank of the receiver 5.
  • the configuration is such that the refrigerant flowing out flows through the check valve 47 to the first expansion valve 45. This makes it possible to control the flow of the refrigerant in the cooling and heating cycle with a simple configuration using two check valves 46 and 47, thereby reducing costs.
  • the indoor heat exchanger 70, clean fan 72, etc. are installed in each indoor unit 7, and the other compressor 2, four-way valve 3, auxiliary heat absorber 8, accumulator 9, outdoor heat exchanger 4, receiver All 5 mag are united as outdoor units.
  • the refrigerant line 20 from the discharge side of the compressor 2 is connected to the refrigerant line 25 to the indoor unit 7 via the four-way valve 3, and the refrigerant line 26 on the suction side is connected to the outdoor heat exchanger 4 from the outdoor heat exchanger 4.
  • the refrigerant pumped from the compressor 2 flows from the indoor unit 7 to the outdoor unit.
  • the refrigerant line from the discharge side of the compressor 2 is passed through the four-way valve 3. 20 is connected to the refrigerant line 21 to the outdoor heat exchanger 4, and the refrigerant line 26 on the suction side is connected to the refrigerant line 25 from the indoor unit 7.
  • the refrigerant thus cooled flows from the outdoor unit to the indoor unit 7.
  • the first expansion valve 45 expands the refrigerant from the indoor unit 7 during heating and sends the refrigerant to the outdoor heat exchanger 4 serving as an evaporator, and the second expansion valve 71 operates during cooling. Then, the low-temperature and high-pressure liquid-phase refrigerant from the outdoor heat exchanger 4 and the receiver 5 is expanded, reduced in pressure, and sent to the indoor heat exchanger 70.
  • An engine 1 is provided as a prime mover for driving the compressor 2.
  • the cooling water which has absorbed the heat of the engine 1 and has risen in temperature, is guided to the Heil 1 and the heat is released at the Lü 1 11.
  • a cooling water circuit 10 for returning to the engine 1 is formed again to cool the engine 1.
  • an auxiliary circuit 12 leading to an auxiliary heat absorber 8 described later is connected in parallel to the cooling water circuit 10.
  • the refrigerant is compressed by a compressor (a multi-compressor in this embodiment) 2 to become high-temperature, high-pressure supersaturated steam, which passes through a refrigerant line 20, a four-way valve 3, a refrigerant line 21, and an outdoor heat exchanger 4. While passing through the cooling fins in the outdoor heat exchanger 4, is cooled by the cooling air from the cooling fan 41, is converted into a high-pressure gas-liquid phase refrigerant, and passes through the refrigerant line 22. After passing through the expansion valve 45 and passing through the refrigerant line 23, it is stored in the receiver 5 on the way, is supercooled by the supercooler 6 in the process, and is supercooled by the receiver 5. Only the high-pressure liquid-phase refrigerant is taken out, expanded by the second expansion valve 71, and sent to the indoor heat exchanger 70.
  • a compressor a multi-compressor in this embodiment
  • the refrigerant passes through the indoor pipe 75 between the refrigerant line 23 and the indoor heat exchanger 70, and passes through the return pipe 76 from the indoor heat exchanger 70, but is supercooled. Therefore, foaming during passage through the indoor pipe 75 is suppressed. Therefore, it is possible to use smaller-diameter pipes for the indoor pipe 75 and the return pipe 76, and the small diameter makes it easy to bend, thus improving the flexibility of piping. Can be done.
  • the details of the supercooler 6 arranged in the receiver 5 as shown in FIGS. 1 and 2 will be described.
  • the supercooling extraction line 61 extending from the bottom of the receiver 5 passes through the third expansion valve 62, and is again introduced into the receiver 5 from the lower portion of the receiver 5 as described above.
  • the refrigerant line 26 is connected to a portion between the four-way valve 3 and the auxiliary heat absorber 8 or, as shown in FIG. 2, to a refrigerant line 25 between the four-way valve 3 and the indoor unit 7. .
  • the outlet end of the receiver inlet pipe 51 extending from the first expansion valve 45 is connected to the upper part of the receiver 5, and the receiver outlet pipe 52 having the inlet lower end near the bottom inside the receiver 5 2 Extends upward.
  • the high-pressure liquid-phase refrigerant flowing into the receiver 5 from the receiver inflow pipe 51 flows to the inlet end of the receiver outflow pipe 52 arranged near the bottom of the receiver 5, so that it rises.
  • the refrigerant flows in a direction opposite to the flow of the refrigerant in the heat transfer tube 60, and the supercooling effect of the refrigerant flowing in the heat transfer tube 60 increases.
  • the heat transfer tube 60 may be provided along the inner peripheral surface of the receiver 5, and the outlet end of the receiver 51 and the receiver outlet tube 52 may be provided therein. As a result, the coil radius of the heat transfer tube 60 is set to the full inner radius of the receiver 5, and the heat exchange area with the liquid-phase coolant is increased, thereby also increasing the supercooling effect. .
  • FIG. 17 and 18 the support structure of the heat transfer tube 60 of the subcooler 6 will be described with reference to FIGS. 17 and 18.
  • the housing of the subcooler 6 is the receiver 5 in the embodiment of FIGS. 1 and 2, but the subcooling tank is used in the embodiments of FIGS. 12 to 15 described later. 6 3
  • the subcooler 6 may be configured as a separate unit from the receiver 5.
  • Reference numeral 6 in FIGS. 17 and 18 applies to all cases where the subcooler 6 is a separate unit from the receiver 5.
  • a heat transfer tube 60 is provided in a coil shape on the inner side of 5 b (6 b),
  • each turn 60a is fixed at a plurality of positions (three positions in this embodiment) on the circumference in plan view. Further, each turn 60a is formed by welding or using another member at a position 6Ob in plan view between the fixed pipe 5b (6b) and the fixed pipe 5b (6b). In this way, one turn 60a and 60a adjacent to each other are connected and fixed.
  • the outer peripheral end of the heat transfer tube 60 can be reliably maintained at a distance from the side wall 5 a of the receiver 5, so that a high cooling effect can be maintained, and the assembling strength is improved. As a result, the durability of the heat transfer tube 60 itself is maintained high, and an excellent cooling effect can be maintained without damage even during long-term use.
  • the member supporting the coiled heat transfer tube 60 is not limited to a pipe such as the fixed pipe 5b (6b), but may be a rod.
  • FIGS. 12 to 15 show that two evening tank-shaped tanks are arranged in a merging line in the refrigerant line 23 connecting the first expansion valve 45 and the second expansion valve 71.
  • One is used as a receiver 5 and the other is used as a subcooling tank 63 including a subcooler 6.
  • the side near the first expansion valve 45 of the two-part tank is a receiver 5
  • the side near the second expansion valve 71 is a subcooling tank 6 3.
  • the high-pressure liquid-phase or gas-liquid mixed refrigerant sent from the outdoor heat exchanger 4 through the first expansion valve 45 first flows into the receiver 5 from the receiver inflow pipe 51, and becomes a liquid-phase refrigerant. Will be stored. And from the receiver outlet pipe 52 to the tank inlet pipe After passing through 6 4, it flows into the subcooling tank 6 3 from the top of the supercooler 6. Then, the liquid-phase refrigerant is sent to the indoor unit 7 via the refrigerant line 13 from the tank outflow pipe 65 extending at the lower end to the lower part of the subcooling tank 63. .
  • an extraction line 61 for supercooling extends from the lower part of the subcooling tank 63.
  • the extraction line 61 passes through the third cooling valve 63 after passing through the third expansion valve 62, and forms the heat transfer tube 60 as described above in the supercooling tank 63.
  • the extraction line 61 is connected to a refrigerant line 25 connecting the indoor heat exchanger 70 and the four-way valve 3 as shown in FIG.
  • the extraction line 61 may be connected to a refrigerant line 26 as shown in FIG. The same applies to the following embodiments.
  • the refrigerant flowing from the evening ink inlet pipe 64 and flowing to the lower end of the evening ink outlet pipe 65 and the refrigerant flowing in the heat transfer pipe 60 are countercurrent.
  • it has achieved an excellent supercooling effect.
  • the extraction line 61 is configured not to branch off from the middle of the circuit but to extend from the lower part of the tank of the supercooling tank 63, the flow rate of the extracted refrigerant is reduced. By stabilizing the heat exchange efficiency between the coolants, the supercooling effect can be enhanced.
  • the receiver 5 near the first expansion valve 45 and the receiver 5 near the second expansion valve 71 on the merging line of the refrigerant line 23 A dual tank consisting of a subcooler tank 63 is provided, but the extraction line 61 extends from the lower part of the receiver 5 tank for supercooling. After passing through the third expansion valve 62, the extraction line 61 passes through the subcooling tank 63, and forms a heat transfer tube 60 in the subcooling tank 63.
  • the configuration is such that the extracted refrigerant is connected to a refrigerant line 25 connecting the indoor heat exchanger 70 and the four-way valve 3.
  • the flow of the refrigerant flowing from the tank inlet pipe 64 to the ink outlet pipe 65 and the flow of the refrigerant flowing through the heat transfer pipe 60 are opposite flows. Also, since the extraction line 61 extends from the bottom of the receiver 5 at the bottom of the receiver, excellent supercooling effect is obtained. Can be obtained.
  • the one closer to the first expansion valve 45 is the subcooling sink 63
  • the one closer to the second expansion valve 71 is the receiver 5. That is, the liquid-phase refrigerant sent from the indoor heat exchanger 4 via the first expansion valve 45 flows into the supercooling tank 63 from the tank inflow pipe 64. Then, it is guided to the receiver 5 through the tank outlet pipe 65 and the receiver inlet pipe 51. Then, the liquid-phase refrigerant separated and stored in the receiver 5 flows out of the receiver outlet pipe 52 and is sent to the indoor unit 7 side.
  • an extraction line 61 for supercooling is extended from the lower part of the subcooling tank 63, which is the first tank, and in Fig. 15, the lower part of the tank of the receiver 5 is installed.
  • the extraction lines 61 are extended, and after passing through the third expansion valve 62, they are passed through the subcooling tank 63 to form heat transfer tubes 60 in the subcooling tank 63. Thereafter, the extracted refrigerant is connected to a refrigerant line 25 (26) connecting the indoor heat exchanger 70 and the four-way valve 3.
  • the flow of the liquid-phase refrigerant in the supercooling tank 63 and the flow in the heat transfer tube 60 are countercurrent, and the extraction line 61 is extended from the lower part of the tank to extract the refrigerant. In that it stabilizes the flow rate of the refrigerant and improves the heat exchange efficiency between the refrigerants, and provides an excellent supercooling effect.
  • the receiver 5 as the refrigerant retention tank and the subcooling tank 6 3 as the subcooler 6 are separated from each other.
  • the degree of freedom of each volume can be increased.
  • a receiver 5 for retaining the liquid-phase refrigerant is disposed on a side near the first expansion valve 45 on the merging line in the refrigerant line 23, and a side near the second expansion valve 71.
  • the refrigerant flowing from the indoor heat exchanger 4 into the receiver 5 via the first expansion valve 45 is separated into gas and liquid, and then the liquid-phase refrigerant passes through the receiver outlet pipe 52 and the supercooling pipe 6 7
  • the refrigerant flows into the main refrigerant pipe 66 passing through the inside and is sent to the indoor unit 7.
  • An extraction line 61 extends from the lower part of the tank of the receiver 5. After passing through the third expansion valve 62, the extraction line 61 passes through the supercooling pipe 67, and the heat transfer pipe 60 passes through the supercooling pipe 67. After that, it is connected to a refrigerant line 25 connecting the indoor heat exchanger 70 and the four-way valve 3.
  • the supercooling pipe 67, the main refrigerant pipe 6 "6, and the heat transfer pipe 60 constitute a double pipe heat exchanger, and the refrigerant flowing in the main refrigerant pipe 66 and the heat transfer pipe 60 is made to flow in the opposite direction.
  • the supercooler 6 can be a multi-plate heat exchanger.
  • the receiver 5 is provided similarly to FIGS. 1 and 2.
  • a heating return pipe 55 having a check valve 47 is provided between the bottom of the heater and the first expansion valve 45.
  • the tank outlet pipe 65 and the receiver outlet pipe 52 are connected.
  • a heating return pipe 56 having a check valve that allows only the flow is provided. During heating, the refrigerant from the outdoor unit 7 passes through the heating return pipe 56 and the supercooling tank It is introduced into the receiver 5 beyond 63 and further to the first expansion valve 45 via the heating return pipe 55.
  • the above configuration is such that the supercooling extraction line 61 extends from the receiver 5 on the refrigerant line 23 or the supercooling tank 63, but as shown in FIG. 11, the outdoor heat exchanger 4 It is also conceivable to adopt a configuration in which more liquid phase refrigerant is taken out.
  • a gas-liquid separator 35 is provided in the middle of the outdoor heat exchanger 4, and the gas-liquid separator 35 is an extraction line having an on-off valve 36 and a third expansion valve 62.
  • the extraction line 61 connected to the heat transfer tube 60 via 61 is connected to the refrigerant line 26 leading to the accumulator 9.
  • the refrigerant eg, 10%
  • the refrigerant liquefied up to that point is extracted from the gas-liquid separator 35 into the extraction line 61, and the separated high-pressure liquid (R134a rich) Force ⁇ , expands in the third expansion valve 62 via the on-off valve 36, and super-cools the liquid refrigerant from the receiver inlet pipe 51 to the receiver outlet pipe 52 while passing through the heat transfer pipe 60, thereby reducing the pressure.
  • It enters the extraction line 61 downstream of the heat transfer tube 60 as a gas-phase refrigerant, and merges with the low-pressure gas-phase refrigerant in the refrigerant line 16.
  • temperature sensors 13 1 and 32 are provided on the inlet side and the outlet side (during cooling operation) of the indoor heat exchanger 70, respectively. To 1 It is electrically connected.
  • the fact that the same temperature signal is supplied from the temperature sensor 31.32 means that the liquid refrigerant passes through the outlet of the indoor heat exchanger 70, that is, the indoor heat exchanger 70. This is equivalent to the fact that the refrigerant has not sufficiently absorbed heat from the room and vaporized (cooled the room), and at this time, the second expansion valve 71 is controlled to be further throttled.
  • the temperature signal from the temperature sensor 132 is higher than the temperature signal from the temperature sensor 131, it means that the refrigerant has sufficiently absorbed heat from the room and vaporized in the indoor heat exchanger 70.
  • the opening degree of the second expansion valve 71 is increased to increase the amount of refrigerant passing therethrough, and to control the cooling effect.
  • This control has been conventionally employed as a heating degree control method, and controls so that a low-pressure gas always passes through the refrigerant line 25.
  • the second expansion valve 71 acts as a throttle only during the cooling operation shown in the figure, and is a conventional type that is fully opened during heating (during backflow).
  • the third expansion valve 62 is electrically connected to a temperature sensor 133, 34 arranged to measure a temperature difference between before and after the third expansion valve 62.
  • the same opening degree control is performed so that the gas-phase coolant always passes through the extraction line 61 downstream of the third expansion valve 62.
  • FIG. 19 In the Mollier diagram showing the relationship between the refrigerant pressure and the specific enthalpy shown in FIG. 19, the pressure increase due to the work of the compressor 2 is shown between Q 1 and Q 2.
  • the high-pressure gas-phase refrigerant Q2 pumped by the compressor 2 is cooled in the outdoor heat exchanger 4, which is a condenser, and enters a gas-liquid mixed state. (The relative enthalpy drops), and the temperature is further reduced by the supercooling degree L 1 minute by the supercooler 6 to become the refrigerant Q3 in a completely liquid state.
  • the high-pressure liquid-phase refrigerant Q 3 is reduced in pressure by the second expansion valve 71 to become a gas-liquid mixed refrigerant Q 4, which removes heat of vaporization in the indoor heat exchanger 70, which is an evaporator, and further superheats Min, the relative pressure rises, and the low-pressure gas-phase It becomes the medium Q 1.
  • the specific enthalpy rise of the refrigerant in the gas-liquid mixing region between Q4 and Q1 that is, the amount of heat exchange in the evaporator (the indoor heat exchanger 70) is reflected as the cooling capacity.
  • the position of Q3 moves to the right side of the position shown in FIG.
  • the position of Q4 is also moved to the right, and the amount of movement of the refrigerant in the gas-liquid mixing region is reduced by the amount of movement, and the cooling effect is reduced.
  • the degree of supercooling increases the degree of supercooling L 1 minute and the specific enthalpy of the gas-liquid mixed refrigerant in the indoor exchanger 70 increases, that is, the amount of heat exchange increases, and cooling The effect can be improved.
  • the relative enthalpy rise from Q 4 to Q 1 is constant, and the position of Q 4 moves to the left in the figure by 1 degree of supercooling L compared to the case without supercooling SC.
  • the position of 1 also moves to the left as compared to the case without supercooling (that is, it is closer to the left than Q2), and the compressor 2 has a refrigerant between Q1 and Q2.
  • the work of increasing the specific enthalpy of Q 1 to the set amount of Q 2 is added. That is, the discharge pressure of the compressor 2 must be increased by that much more than the amount corresponding to the original increase in the refrigerant pressure.
  • subcooling improves the cooling effect, it has the disadvantage of increasing the workload of the compressor 2 and increasing the load on the compressor and the engine.
  • the degree of supercooling also changes according to the number of operating indoor units 7 and the operating state, and the operating state of the compressor 2 must be changed each time.
  • the capacity of the compressor 2 must be set to a very large value, assuming the maximum degree of subcooling L 1 in a state where the indoor unit 7 is operated to the maximum.
  • the problem is how to increase the good supercooling effect (cooling effect) while suppressing the work (ie, discharge pressure) of the compressor 2 and ensuring operating efficiency.
  • the pressure difference between Q3 and Q4 should be reduced.
  • the opening of the third expansion valve 62 is controlled in the direction of “small” (that is, the direction of throttle), the supercooling degree SC at the inlet of the second expansion valve and the indoor heat exchange The cooling effect (cooling effect) is improved.
  • the greater the differential pressure across the third expansion valve 62 the greater the degree of supercooling SC in the outdoor heat exchanger 4. Accordingly, in order to increase the degree of supercooling SC and enhance the cooling effect, the opening degree of the third expansion valve 62 is reduced, and the start and end of the extraction line 61 are connected to the third expansion valve 6 2 It is desirable to connect to the refrigerant line so that the differential pressure across the valve increases.
  • the starting point of the extraction line 61 is connected to the receiver 5, the subcooling tank 63, or the gas-liquid separator 35 provided in the outdoor heat exchanger 4.
  • Etc. to take out the high-pressure liquid-phase refrigerant and its end is connected to the refrigerant line 26 as shown in FIG. 1 or FIG. 11, or as shown in FIG.
  • a low-pressure gas-phase refrigerant passage line such as connecting to the refrigerant line 25
  • a large differential pressure across the third expansion valve can be ensured.
  • the promotion of supercooling and the reduction of the compressor load are obtained by utilizing the first expansion valve 45 which is originally a heating expansion valve. That is, in the cooling cycle described above, since the first expansion valve 45 is disposed between the outdoor heat exchanger 4 and the receiver 5, the refrigerant flows from the outdoor heat exchanger 4 to the receiver 5 without any restriction.
  • the high-pressure liquid-phase refrigerant can be appropriately retained inside the outdoor heat exchanger 4, and the effect of sufficiently cooling the outdoor heat exchanger 4 over the entire surface can be obtained. Therefore, the cooling effect by heat exchange between the refrigerants in the subcooler 6 can be improved as compared with the case where the first expansion valve 45 is not provided.
  • the first expansion valve 45 is a throttle valve, the refrigerant line 22 is throttled during cooling operation, and the refrigerant is completely liquefied at the outlet of the outdoor heat exchanger 4. It further has a function of promoting cooling of the liquid-phase refrigerant in the receiver 5, that is, the supercooling action.
  • the first expansion valve 45 is a two-way type having a function as an expansion valve during the heating operation.
  • the first expansion valve 45 act as a throttle valve, the supercooling effect is improved (this effect is shown in FIG. 5), while the refrigerant passage is throttled. As a result, the load on the compressor 2 increases, and as a result, the operating efficiency decreases. This relationship is shown in FIG.
  • the first expansion valve 45 is adjusted in a direction to be narrowed from the reference value, the cooling efficiency is increased due to the improvement of the cooling effect described above, so that the operation efficiency is increased.
  • the throttle opening is reduced to a certain value or more, the cooling capacity continues to improve, and the operating efficiency C 0 P decreases.
  • the opening degree of the first expansion valve 45 is controlled by the following method.
  • the first control method will be described. This is done by setting the degree of supercooling in accordance with the operating conditions of various indoor units, and then setting the optimum value of the compressor discharge pressure that does not reduce operating efficiency while ensuring the degree of supercooling.
  • the opening pressure of the first expansion valve 45 is controlled while detecting the discharge pressure of the compressor as appropriate and calculating the deviation from the optimum value.
  • a pressure sensor P1 is disposed on a refrigerant line 20 connecting the compressor 2 and the four-way valve 3, and detects a discharge pressure from the compressor 2. This detected pressure value is input to the controller i 6 to control the opening of the first expansion valve 45.
  • the controller 16 sets EV 0 to the first expansion valve opening as an initial value, adjusts the opening of the first expansion valve 45, and performs the cooling cycle operation in this initial setting state. (Step S11).
  • the compressor discharge pressure Pd detected by the pressure sensor P1 is input (step S12), and the target value of the discharge pressure is calculated as a deviation ⁇ from Pd '(step S13), and the deviation ⁇ is calculated.
  • the valve opening change amount is calculated using the valve opening change amount calculation function f ⁇ ⁇ ⁇ is calculated (step SI 4), and the first expansion valve according to the valve opening change amount ⁇ ⁇ ⁇ is calculated.
  • step S15 The opening control of 45 is performed (step S15). Then, the continuation of the supercooling cycle is determined (step S16), and this control is repeated until the compressor discharge pressure reaches the target value.
  • the first expansion valve 45 is controlled in the direction in which the first expansion valve 45 is throttled in a range where the operating efficiency is increased as shown in FIG. 6, thereby improving the supercooling effect and increasing the cooling capacity. If the opening degree of the first expansion valve 45 becomes smaller and the compressor discharge pressure increases, the operating efficiency (COP) tends to decrease, so that the controller 16 has a cooling capacity.
  • the first expansion valve 45 is adjusted to an opening that is optimal to achieve both the improvement in the operating efficiency and the operating efficiency, and when the compressor discharge pressure reaches the target value, the operating efficiency is not further reduced. The stop of the opening is stopped.
  • the compressor discharge pressure related to the operating efficiency is used as a control criterion.
  • the degree of supercooling related to the cooling effect is used as the control criterion.
  • a pressure sensor P2 and a temperature sensor T1 are provided in the refrigerant line 22 between the outdoor heat exchanger 4 and the first expansion valve 45.
  • the pressure sensor P 2 detects the refrigerant pressure (condensing pressure) flowing out of the outdoor heat exchanger 4, and the temperature sensor T 1 detects the temperature of the refrigerant flowing out of the indoor heat exchanger 4, and each detected value is a controller. Entered in 16.
  • the controller 16 sets EV0 to the first expansion valve opening as an initial value (step S21).
  • the condensing pressure P c detected by the pressure sensor P 2 and the outdoor heat exchanger outlet temperature T 0 ut detected by the temperature sensor T 1 are input (step S 22), and the supercooling degree SC is calculated. Yes (step S2 3).
  • the degree of supercooling SC is calculated as a difference between the saturation temperature Tc with respect to the condensing pressure Pc and the outlet temperature T0ut.
  • the deviation ⁇ from the supercooling degree target value SC ′ is calculated (step S24), and the valve opening change amount ⁇ ⁇ ⁇ is calculated by the valve opening change amount calculation function f using the deviation ⁇ as a human power value.
  • step S 26 the opening control of the first expansion valve 45 is performed in accordance with the valve opening change amount ⁇ V (step S 26), and the continuation of the subcooling cycle is determined (step S 27 This control is repeated until the supercooling degree SC at the outdoor heat exchanger 4 outlet reaches the target value. ⁇
  • the degree of supercooling SC in the outdoor heat exchanger 4 can also be calculated using the temperature difference before and after the outdoor heat exchanger 4. That is, as shown in FIG. 2, a temperature sensor T 2 is provided on the refrigerant line 21 on the inlet side of the outdoor heat exchanger 4, and the temperature difference between the inlet and outlet of the outdoor heat exchanger 4 is detected by the temperature sensors T 1 ⁇ T
  • the supercooling degree SC may be calculated according to the formula (2).
  • the first expansion valve 45 controlled in the throttle direction has a certain opening.
  • the degree of opening is adjusted at a position where the optimal degree of supercooling is achieved to improve both cooling capacity and operating efficiency so that the operating efficiency does not decrease when the temperature is lower than the degree.
  • FIG. 7 will be described.
  • both the cooling capacity and the operating efficiency C 0 P increase.
  • the inlet pressure of the expansion valve 45 must be increased.
  • the discharge pressure of the compressor 2 must be increased, and although FIG. 3 relates to the third expansion valve 61, the same result is obtained. Therefore, the differential pressure across the first expansion valve 45 cannot be increased without limit.
  • a pressure sensor P3 is disposed in the refrigerant line 23 between the first expansion valve 45 and the receiver 5. .
  • the pressure sensor P 3 detects the pressure of the refrigerant flowing out of the outdoor heat exchanger 4 after passing through the first expansion valve 45, and the detected value is input to the controller 16. .
  • the controller 16 can calculate the pressure difference between the front and rear of the first expansion valve 45 by the pressure sensors P2 and P3. This control method will be described with reference to the flowchart of FIG. First, the controller 10 sets EVO to the first expansion valve opening as an initial value (step S31).
  • the first expansion valve differential pressure d PEV is detected from the pressures detected by the pressure sensors P 2 and P 3 (step S 32), and a deviation ⁇ of the discharge differential pressure target value from d PEV ′ is calculated.
  • Step S33 Based on this, the valve opening change amount ⁇ is calculated (Step S34), and the opening of the first expansion valve 45 according to the valve opening change amount ⁇ is calculated.
  • the degree control is performed (step S35).
  • the continuation of the supercooling cycle is determined (step S36), and this control is repeated until the differential pressure across the first expansion valve reaches the target value.
  • the method of controlling the first expansion valve 45 can use the first to third methods described above in combination. For example, both the degree of subcooling at the outlet of the outdoor heat exchanger 4 and the differential pressure across the first expansion valve 45 are detected by the controller 16, and the opening of the first expansion valve 45, which is close to the optimum value for both, is detected. By performing the degree control, more precise control becomes possible. Then, as described above, these control methods are applied to the various air conditioning systems including the supercooling circuit in each of the embodiments shown in FIGS. 1, 2, and 11 to 16, or other embodiments. You can.
  • the auxiliary circuit 12 is connected in parallel to the cooling water circuit 10 of the engine 1, and the cooling water whose temperature has increased by cooling the engine 1 passes through the motor valve 13 and the auxiliary heat absorber 8.
  • the engine is configured to exchange heat with the waste heat of the engine 1 and then return to the cooling water circuit 10 again.
  • the refrigerant that has cooled the room and vaporized in the indoor heat exchanger 70 is returned to the accumulator 9 through the refrigerant line 25, the four-way valve 3, and the refrigerant line 26.
  • Highly wet steam may be sent from 70, with auxiliary heat
  • the refrigerant is evaporated by the waste heat of the engine i absorbed by the absorber 8.
  • the auxiliary heat absorber 8 the liquid particles can be reliably removed from the refrigerant sucked into the compressor 2 together with the liquid phase separation operation of the accumulator 9.
  • a bypass circuit 80 is provided to bypass the auxiliary heat absorber 8 and reach the accumulator 9. Further, a pressure sensor 82 is provided on the inlet side of the auxiliary heat absorber 8, and an electromagnetic valve 81 is provided in the bypass circuit 80. Thus, when the pressure of the vapor refrigerant introduced into the auxiliary heat absorber 8 becomes equal to or higher than the set value, the electromagnetic valve 81 is opened to bypass the vapor refrigerant.
  • the opening degree of the third expansion valve 62 is reduced, and the refrigerant passing through the downstream heat transfer tube 60 is reduced to a low pressure by this pressure control.
  • the refrigerant passing through the heat transfer pipe 60 is The heat is absorbed and vaporized, and introduced into the auxiliary heat absorber 8 as a gas-phase refrigerant.
  • the vapor refrigerant flowing from the indoor heat exchanger 70 to the accumulator 9 evaporates and expands using the waste heat of the engine 1 in the auxiliary heat absorber 8, but the auxiliary heat absorber 8
  • the pressure of the vapor refrigerant introduced into the compressor 2 is low, the pressure of the refrigerant sucked into the compressor 2 is reduced even if the auxiliary heat absorber 8 is used, so that the load on the compressor 2 increases. Therefore, when the pressure detected by the pressure sensor 82 becomes lower than the set value, the third expansion valve 62 provided on the extraction line 61 of the subcooler 6 is opened.
  • the refrigerant in the liquid phase from the receiver 5 flows into the refrigerant line 26 via the extraction line 61 and flows into the auxiliary heat absorber 8 Will be introduced. Then, the refrigerant in the liquid phase evaporates in the auxiliary heat absorber 8, and after being increased in pressure together with the vapor refrigerant sent from the indoor heat exchanger 70, is sucked into the compressor 2.
  • the refrigerant pressure sucked into the compressor 2 can be increased by utilizing the waste heat of the extraction line 61 and the engine 1, The load on compressor 2 can be reduced.
  • the compressor 2 draws the gas-phase refrigerant returned from the indoor heat exchanger 70 and sends the compressed high-temperature and high-pressure refrigerant to the outdoor heat exchanger 4 during cooling.
  • the temperature of the high-temperature and high-pressure refrigerant becomes too high, the load on the outdoor heat exchanger 4 increases, and a sufficient condensation effect may not be obtained.
  • the vapor refrigerant returning from the indoor heat exchanger 70 evaporates using the waste heat of the engine 1 in the auxiliary heat absorber 8, but when the liquid droplets contained in the vapor refrigerant are small, However, the waste heat of the engine 1 is absorbed by the refrigerant in the gaseous state and the temperature rises. As a result, the temperature of the gas-phase refrigerant sucked into the compressor 2 also increases.
  • the temperature of the refrigerant pumped from the compressor 2 is detected by the temperature sensor T3, and when the temperature becomes higher than the set temperature, the third expansion valve 62 is opened.
  • the refrigerant in the receiver 5 is introduced into the auxiliary heat absorber 8 from the refrigerant line 26 through the extraction line 61 in a liquid state.
  • the waste heat of the engine 1 in the auxiliary heat absorber 8 is used for energy for evaporating the liquid-phase refrigerant, so that a rise in the temperature of the refrigerant sucked into the compressor 2 can be suppressed. It is. Industrial applicability
  • the refrigerant subcooling circuit of the heat pump of the present invention can be applied to all types of air conditioners, but in particular, it is an air conditioner used in buildings and factories, that is, one outdoor heat exchanger. This is an invention that exerts a great effect in an air conditioner of a type in which a number of indoor heat exchangers are connected to the heat exchanger.

Abstract

A refrigerant supercooling circuit comprising a receiver (5) for retention of a liquid-phase refrigerant installed in a refrigerant line (23) connecting a first expansion valve (45) and a plurality of second expansion valves (71), an extraction line (61) for taking out the liquid-phase refrigerant in the receiver (5), a third expansion valve (62) in the extraction line, the portion of the extraction line (61) downstream of the third expansion valve (62) being passed through the receiver (5) or through a supercooling tank (63), the arrangement being such that the degree of opening of the first expansion valve (45) is controlled either according to the refrigerant pressure (P1) on a refrigerant line (20) connecting the delivery side of a compressor (2) and a four-way valve (3), or according to the degree of supercooling (SC) in the outlet of an outdoor heat exchanger (4), or according to the pressure difference across the first expansion valve (45).

Description

明 細 書 冷媒過冷却回路 , 技術分野  Description Refrigerant subcooling circuit, Technical field
本発明は、 空調システムの冷媒過冷却回路の構成に関するものであり、 特に、 圧縮機駆動用原動機、 圧縮機、 室外熱交換器をュニッ トと した 1台の室外機に対 し、 室内熱交換器によって構成される室内機が複数接続される構成の空調システ ムに関して、 冷房運転時における冷媒サイクル効率の向上を目的と した技術に関 する。 背景技術  The present invention relates to a configuration of a refrigerant subcooling circuit of an air conditioning system, and in particular, relates to indoor heat exchange with one outdoor unit having a compressor driving motor, a compressor, and an outdoor heat exchanger as a unit. TECHNICAL FIELD The present invention relates to a technology aimed at improving the refrigerant cycle efficiency during a cooling operation, for an air conditioning system configured to connect a plurality of indoor units each including a cooling unit. Background art
従来より、 空調システムにおける冷房時の冷媒回路は、 コンプレッサにより高 温高圧の気相冷媒を室外熱交換器に圧送し、 これを室外熱交換器にて冷却して高 圧液相冷媒に変換した後、 室内機へと送り、 室内機内で膨張させ、 室内より気化 熱を吸熱させて、 低圧気相冷媒と して、 再びコンプレッサに回収するように構成 されている。  Conventionally, in a cooling circuit in an air conditioning system during cooling, a high-temperature, high-pressure gas-phase refrigerant is pumped to an outdoor heat exchanger by a compressor and cooled by the outdoor heat exchanger to be converted to a high-pressure liquid-phase refrigerant. After that, it is sent to the indoor unit, expanded inside the indoor unit, absorbs heat of vaporization from the indoor room, recovers it as a low-pressure gas-phase refrigerant, and recovers it to the compressor again.
そして、 空調システムの室外熱交換器やコンプレッサのコンパク ト化の一方、 運転効率のさらなる向上が望まれている中で、 空調システムを冷房運転に用いる 場合に有効な運転効率向上の手段の一つとして、 過冷却サイクルがある。 即ち、 前記の冷媒回路内において、 高圧液相冷媒と低圧気相冷媒との間で熱交換するサ ィクルを設けて、 高圧液相冷媒を過冷却状態にするのである。  In addition to the need for more compact outdoor heat exchangers and compressors for air-conditioning systems, and further improvement in operating efficiency, one of the effective means of improving operating efficiency when using air-conditioning systems for cooling operation. There is a supercooling cycle. That is, a cycle for exchanging heat between the high-pressure liquid-phase refrigerant and the low-pressure gas-phase refrigerant is provided in the refrigerant circuit, and the high-pressure liquid-phase refrigerant is brought into a supercooled state.
従来の過冷却サイクルの構成としては、 例えば、 米国特許 5 2 2 8 3 0 1号や 5 4 6 5 5 8 7号等においては、 室外熱交換器下流側の高圧液相冷媒管より冷媒 抽出管を分岐させて、 該抽出管を流れる高圧液相冷媒を膨張して低圧気相冷媒に するとともに、 室内熱交換器下流側の低圧気相冷媒管からも冷媒抽出管を分岐さ せ、 両抽出管からの低圧気相冷媒を、 室外熱交換器下流側の高圧液相冷媒管の周 囲に接触させて、 該冷媒管内を流れる高圧液相冷媒に過冷却効果を与えるように している。 ところが、 この構成においては、 冷媒抽出管に流れる冷媒を特にス ト ッ クする ことなく、 抽出した量をそのまま過冷却に使用するのでミ 特に、 1台の室外熱交 換器に対して複数の室内熱交換器が接続される構成の空調システムにおいては、 室内熱交換器の稼動台数が変化することにより、 冷媒回路を流れる冷媒量が変化 し、 過冷却用の抽出冷媒量が安定せず、 過冷却効果も安定しない。 As a configuration of a conventional supercooling cycle, for example, in U.S. Pat.Nos. 5,228,301 and 5,465,587, refrigerant is extracted from a high-pressure liquid-phase refrigerant pipe downstream of an outdoor heat exchanger. The pipe is branched to expand the high-pressure liquid-phase refrigerant flowing through the extraction pipe into a low-pressure gas-phase refrigerant, and also branch the refrigerant extraction pipe from the low-pressure gas-phase refrigerant pipe downstream of the indoor heat exchanger. The low-pressure gas-phase refrigerant from the extraction pipe is brought into contact with the periphery of the high-pressure liquid-phase refrigerant pipe on the downstream side of the outdoor heat exchanger so as to give a supercooling effect to the high-pressure liquid-phase refrigerant flowing in the refrigerant pipe. . However, in this configuration, the amount of the refrigerant flowing through the refrigerant extraction pipe is used for supercooling without any particular stocking, so that a plurality of refrigerants are required for one outdoor heat exchanger. In an air conditioning system configured to connect an indoor heat exchanger, the amount of refrigerant flowing through the refrigerant circuit changes due to a change in the number of operating indoor heat exchangers, and the amount of refrigerant extracted for supercooling is not stable. The supercooling effect is not stable.
また、 室内熱交換器下流側からの冷媒抽出管を流れる低圧気相冷媒は室内機に おいて吸熱して高温化しており、 これが、 高圧液相冷媒管から抽出して膨張した 低温の低圧気相冷媒と混じってしまって、 高圧液相冷媒管内の高圧液相冷媒との 温度差が小さくなり、 過冷却効果が充分に得られないという問題もある。  In addition, the low-pressure gas-phase refrigerant flowing through the refrigerant extraction pipe from the downstream side of the indoor heat exchanger absorbs heat in the indoor unit and becomes hot, which is extracted from the high-pressure liquid-phase refrigerant pipe and expanded at low-temperature low-pressure gas. There is also a problem that the temperature difference from the high-pressure liquid-phase refrigerant in the high-pressure liquid-phase refrigerant pipe is reduced by mixing with the high-pressure liquid-phase refrigerant, and a sufficient supercooling effect cannot be obtained.
また、 例えば、 米国特許 5 1 7 4 1 2 3号においては、 膨張弁を介して上流側 の高圧液相冷媒が流れる冷媒管と、 下流側の低圧気液相冷媒が流れる冷媒管とを 近接させて高圧液相冷媒を過冷却する構造が開示されている。 しかし、 この構造 では結局、 低圧気液相冷媒が高圧液相冷媒の熱を奪って高温化し、 室内機におけ る冷房効果が減退する。  Also, for example, in US Pat. No. 5,174,123, a refrigerant pipe through which an upstream high-pressure liquid-phase refrigerant flows via an expansion valve and a refrigerant pipe through which a downstream low-pressure gas-liquid refrigerant flows are placed in close proximity. There is disclosed a structure in which the high-pressure liquid-phase refrigerant is supercooled. However, in this structure, the low-pressure gas-liquid refrigerant eventually removes the heat of the high-pressure liquid-phase refrigerant and becomes high in temperature, and the cooling effect in the indoor unit is reduced.
そして、 一般的な問題として、 外気温が高い時などは、 低圧気相冷媒は、 外気 から熱を吸収してしまって、 高圧液相冷媒からの熱吸収量が低下し、 高圧液相冷 媒の過冷却が促進されない。  As a general problem, when the outside air temperature is high, the low-pressure gas-phase refrigerant absorbs heat from the outside air, and the amount of heat absorbed from the high-pressure liquid-phase refrigerant decreases. Supercooling is not promoted.
そこで、 室外熱交換器の容量を大き くすることなく、 過冷却効果を促進する方 法と して、 通常、 冷房時には全開して、 室外熱交換器からの気液混合冷媒を通過 させる (暖房時には膨張弁として機能する) 室外機の膨張弁の開度を、 該気液混 合冷媒の流れを滞らせて過冷却を促進するために、 絞ることが考えられる。 とこ ろが、 このような絞り弁を設けることは、 あまりその絞り度が大きいと (つまり 開度が小さいと) 、 コンプレッサ吐出圧の増加や運転効率の低下に繫がるおそれ がある。 発明の開示  Therefore, as a method of promoting the supercooling effect without increasing the capacity of the outdoor heat exchanger, it is usually fully opened during cooling to allow the gas-liquid mixed refrigerant from the outdoor heat exchanger to pass through (heating). (It sometimes functions as an expansion valve.) It is conceivable that the opening degree of the expansion valve of the outdoor unit is reduced in order to delay the flow of the gas-liquid mixed refrigerant and promote supercooling. However, providing such a throttle valve may lead to an increase in compressor discharge pressure or a decrease in operating efficiency if the throttle degree is too large (that is, if the opening degree is small). Disclosure of the invention
本発明は、 冷暖房用空調システムの冷房時の冷媒回路に構成される冷媒過冷却 回路であって、 室外熱交換器下流側に配置した第一膨張弁と、 複数の室内熱交換 器上流側に各々配置した複数の第二膨張弁とを結ぶ冷媒ライン上に、 液相冷媒を 貯留するレシーバを設けるとともに、 該空調システムの冷媒回路のいずれかより 液相冷媒の一部を取り出す抽出ラインを設け、 該抽出ライン上に第三膨張弁を設 けて、 該第三膨張弁より下流側の該抽出ライ ンにて、 該レシーバにて貯留中の、 或いは貯留後に取り出された液相冷媒を過冷却するよう構成した冷媒過冷却回路 において、 室外熱交換器からの気液混合冷媒の通過する該第一膨張弁の開度を制 御することで、 室外熱交換器一つにつき複数の室内熱交換器を接続する構成であ つて、 室内熱交換器の稼働数が様々に変動するような空調システムであっても、 過冷却効果を適度に得る一方で、 圧縮機や圧縮機駆動用原動機の負荷を抑制し、 運転効率の向上を図るものである。 The present invention relates to a refrigerant supercooling circuit configured in a refrigerant circuit during cooling of an air conditioning system for cooling and heating, comprising: a first expansion valve arranged downstream of an outdoor heat exchanger; and a plurality of upstream expansion valves arranged upstream of a plurality of indoor heat exchangers. Liquid-phase refrigerant is placed on the refrigerant line connecting the plurality of second expansion valves In addition to providing a storage receiver, an extraction line for extracting a part of the liquid-phase refrigerant from one of the refrigerant circuits of the air conditioning system is provided, a third expansion valve is provided on the extraction line, and a third expansion valve is provided. In the refrigerant subcooling circuit configured to supercool the liquid-phase refrigerant that is stored in the receiver or after the storage in the extraction line on the downstream side, the gas-liquid mixed refrigerant from the outdoor heat exchanger By controlling the degree of opening of the first expansion valve through which air passes, a plurality of indoor heat exchangers are connected to each outdoor heat exchanger, and the number of operating indoor heat exchangers varies in various ways. Even with such an air-conditioning system, while attaining an appropriate supercooling effect, the load on the compressor and the prime mover for driving the compressor is suppressed to improve the operating efficiency.
そして、 この第一膨張弁を、 圧縮機吐出側と方向切換弁とを結ぶ冷媒ライ ン内 の冷媒圧力に応じて制御することにより、 過冷却効果を高めるのに開度を絞った 第一膨張弁を、 圧縮機の吐出圧を検出しながら絞りを制御して、 圧縮機及び圧縮 機駆動用原動機の負荷が過度にならないようにすることができる。  The first expansion valve is controlled in accordance with the pressure of the refrigerant in the refrigerant line connecting the compressor discharge side and the directional control valve, so that the degree of opening of the first expansion valve is reduced to enhance the supercooling effect. The throttle can be controlled while detecting the discharge pressure of the compressor to prevent the load on the compressor and the prime mover for driving the compressor from becoming excessive.
また、 第一膨張弁を、 室外熱交換器出口の過冷却度に応じて制御することで、 適度な過冷却効果を得た段階で第一膨張弁の絞りを停止し、 それ以上絞りを進め ないようにして、 圧縮機及び圧縮機駆動用原動機の負荷が過度になったり、 運転 効率が低下するのを防止するのである。  Also, by controlling the first expansion valve according to the degree of supercooling at the outdoor heat exchanger outlet, the throttle of the first expansion valve is stopped when an appropriate supercooling effect is obtained, and the throttling is further advanced. In this way, the load on the compressor and the prime mover for driving the compressor is prevented from becoming excessive, and the operating efficiency is prevented from decreasing.
或いは、 第一膨張弁を、 該第一膨張弁の前後差圧に応じて制御することで、 過 冷却効果を得べく絞り方向に制御した第一膨張弁を、 一定の第一膨張弁の前後差 圧を検出した段階で絞りを停止し、 それ以上絞ることによって圧縮機及び圧縮機 駆動用原動機の負荷が過度にならないようにすることができるのである。  Alternatively, by controlling the first expansion valve in accordance with the pressure difference between the front and rear of the first expansion valve, the first expansion valve controlled in the throttle direction to obtain a supercooling effect can be controlled before and after a certain first expansion valve. Stopping the throttle at the stage when the differential pressure is detected, and further reducing the pressure can prevent the load on the compressor and the prime mover for driving the compressor from becoming excessive.
第三膨張弁の下流側抽出ライ ンにより、 レシーバにて貯留中の、 或いは貯留後 に取り出された液相冷媒を過冷却する構成と しては、 第一に、 該第三膨張弁より 下流側の該抽出ラインを、 レシーバ内に通過させ、 該レシーバに貯留した液相冷 媒を過冷却するものとすることで、 他に過冷却のために液相冷媒を取り出す構成 が不要であり、 経済的である。  In the configuration in which the liquid-phase refrigerant being stored in the receiver or taken out after the storage is supercooled by the extraction line on the downstream side of the third expansion valve, first, the downstream of the third expansion valve By passing the extraction line on the side into the receiver and subcooling the liquid-phase refrigerant stored in the receiver, there is no need for another configuration for taking out the liquid-phase refrigerant for supercooling. It is economical.
なお、 この第一の構成において、 抽出ラインは、 液相冷媒をレシーバからか、 或いは室外熱交換器から取り出すものと し、 第三膨張弁にて気化して過冷却に使 用するための高圧液相冷媒を安定して抽出ラインに取り出すことができる。 第二に、 該レシーバの前後いずれかに、 液相冷媒を貯留する過冷却用タンクを タンデム状に配設し、 該抽出ラインは、 該レシーバまたは該過冷却用タ ンクより 液相冷媒を取り出して、 その該第三膨張弁より下流側部分が、 該過冷却用タンク を通過する構成とする。 このように、 過冷却器としてのタ ンクをレシーバとは別 構成とすることで、 レシーバの容量に拘束されずにその容量の自由度を確保でき る。 また、 抽出ライ ンへの液相冷媒の取出しは、 レシーバまたは過冷却用タンク から取り出すものとすることで、 液相冷媒を安定して取り出すことができる。 なお、 第一や第二の構成のように、 レシーバや過冷却用タンク内に抽出ライン を通過させる構造において、 該レシーバ或いは過冷却用タンク内の抽出ラインを コイル状の冷媒管にて構成し、 該レシーバ或いは過冷却用タ ンクの内壁に複数の 杆材を沿設し、 該杆材にて、 コイル状にした抽出ライ ンを支持するものとするこ とで、 抽出ラインの外端とレシーバ或いは過冷却用タンクの内壁との間には、 該 杆材分の隙間ができて、 外気に触れる該内壁に抽出ラインが直接当接することが なく、 これにより、 外気の影響で抽出ライン内の冷媒状態が変化しにく くなり、 過冷却効果を安定させることができる。 更に、 これらの杆材による支持固定によ り冷媒管はレシーバまたは過冷却用タンク内に一体状に配設され、 過冷却回路の 組立構成が簡単になる。 In this first configuration, the extraction line is to extract the liquid-phase refrigerant from the receiver or from the outdoor heat exchanger, and to perform high-pressure vaporization by the third expansion valve and use for subcooling. The liquid-phase refrigerant can be stably taken out to the extraction line. Secondly, a supercooling tank for storing a liquid-phase refrigerant is arranged in tandem before or after the receiver, and the extraction line takes out the liquid-phase refrigerant from the receiver or the supercooling tank. The downstream portion of the third expansion valve is configured to pass through the subcooling tank. In this way, by configuring the tank as the subcooler separately from the receiver, the degree of freedom of the capacity can be secured without being restricted by the capacity of the receiver. The liquid-phase refrigerant can be taken out from the receiver or the subcooling tank when the liquid-phase refrigerant is taken out to the extraction line, so that the liquid-phase refrigerant can be taken out stably. As in the first and second configurations, in a structure in which the extraction line passes through the receiver or the subcooling tank, the receiver or the extraction line in the subcooling tank is configured by a coiled refrigerant pipe. By installing a plurality of rods along the inner wall of the receiver or the subcooling tank, and supporting the coiled extraction line with the rods, the rod can be connected to the outer end of the extraction line. There is a gap for the rod between the receiver and the inner wall of the supercooling tank, so that the extraction line does not directly contact the inner wall that comes into contact with the outside air. This makes it difficult for the refrigerant state to change, thereby stabilizing the supercooling effect. Further, the refrigerant pipe is disposed integrally in the receiver or the subcooling tank by the support and fixing by these rod members, and the assembly configuration of the subcooling circuit is simplified.
更に、 該レシーバまたは該過冷却用タンク内のコィル状の冷媒管による抽出ラ ィンの各隣り合う一巻き同士を接続固定し、 冷媒管は一層安定した一体状のもの となり、 強度も高くなる。  Further, each adjacent one turn of the extraction line is connected and fixed by the coil-shaped refrigerant pipe in the receiver or the subcooling tank, and the refrigerant pipe becomes more stable and integral, and the strength is increased. .
第三に、 該レシーバと該複数の第二膨張弁とを結ぶ冷媒ラインを、 広がり空間 を有する過冷却管内に通過させ、 該抽出ライ ンは、 該レシーバより液相冷媒を取 り出すとともに、 その該第三膨張弁より下流側の部分が、 該過冷却管内を通過す る。 抽出ライ ンには、 レシーバより安定した液相冷媒を取り出すことができ、 ま た、 レシーバの貯留量に拘束されることなく、 過冷却管の構成を自由にして、 抽 出ライ ン内の冷媒と、 該第二膨張弁へと送られる冷媒ライン内の液相冷媒との間 の熱交換量を設定することができる。  Third, a refrigerant line connecting the receiver and the plurality of second expansion valves is passed through a subcooling pipe having an expanding space, and the extraction line removes a liquid-phase refrigerant from the receiver, A portion downstream of the third expansion valve passes through the subcooling pipe. In the extraction line, a stable liquid-phase refrigerant can be taken out from the receiver, and the structure of the supercooling pipe can be freely set without being restricted by the storage amount of the receiver, and the refrigerant in the extraction line can be extracted. And the amount of heat exchange with the liquid-phase refrigerant in the refrigerant line sent to the second expansion valve.
以上の第一乃至第三の如き過冷却回路構成において、 第三膨張弁の下流側の抽 出ライ ンは、 室内機に送る液相冷媒を過冷却した後、 低圧気相冷媒の流れる複数 の室内熱交換器と方向切換弁との間の冷媒ライ ンに接続する。 これにより、 第三 膨張弁下流で過冷却した後の気相冷媒を、 該冷媒ライン内の低圧気相冷媒に合流 させることができ、 また、 前記のように、 抽出ライ ンの第三膨張弁より上流側は 、 室外熱交換器やレシーバ、 或いは過冷却用タンクから高圧の液相冷媒を取り出 すものとしているので、 第三膨張弁の前後差圧が大きくなり、 過冷却効果が高ま る。 In the above-described first to third supercooling circuit configurations, the extraction line downstream of the third expansion valve is configured to supercool the liquid-phase refrigerant to be sent to the indoor unit and then to allow the low-pressure gas-phase refrigerant to flow therethrough. Connected to the refrigerant line between the indoor heat exchanger and the directional control valve. This allows the gaseous refrigerant after being supercooled downstream of the third expansion valve to join the low-pressure gaseous refrigerant in the refrigerant line, and as described above, the third expansion valve of the extraction line. On the upstream side, the high-pressure liquid-phase refrigerant is taken out from the outdoor heat exchanger, the receiver, or the supercooling tank, so the differential pressure across the third expansion valve increases, and the supercooling effect increases. You.
或いは、 圧縮機駆動用原動機を冷却するための冷却水を導く冷媒補助蒸発器を 、 方向切換弁と圧縮機吸入側との間の冷媒ライ ン上に配設し、 該液相冷媒を過冷 却した後の抽出ラインを、 該方向切換弁と該冷媒補助蒸発器とを結ぶ冷媒ライン に接続する。 この場合、 前記の如き効果に加え、 補助熱吸収器に導入される蒸気 冷媒の圧力が低くても、 抽出ラインと原動機の廃熱を利用して圧縮機に吸入され る冷媒圧力を高めることができ、 圧縮機の負荷軽減を図ることができる。 また、 補助熱吸収器における原動機の廃熱は、 この液相冷媒を蒸発させるエネルギーに 利用されるため、 圧縮機に吸入される冷媒の温度上昇を抑えることができるので ある。  Alternatively, an auxiliary refrigerant evaporator for guiding cooling water for cooling the driving motor for the compressor is provided on the refrigerant line between the directional control valve and the suction side of the compressor, and the liquid-phase refrigerant is supercooled. The extracted extraction line is connected to a refrigerant line connecting the direction switching valve and the auxiliary refrigerant evaporator. In this case, in addition to the effects described above, even if the pressure of the vapor refrigerant introduced into the auxiliary heat absorber is low, it is possible to increase the pressure of the refrigerant sucked into the compressor using the waste heat of the extraction line and the prime mover. The load on the compressor can be reduced. In addition, since the waste heat of the prime mover in the auxiliary heat absorber is used for energy for evaporating the liquid-phase refrigerant, a rise in the temperature of the refrigerant drawn into the compressor can be suppressed.
そして、 第一膨張弁とレシーバとの間の冷媒ライ ンは二系統と し、 一方は該レ シ一バの上部に接続されて、 該レシーバからの冷媒流れを遮断する逆止弁を有し 、 他方は該レシーバの下部に接続されて、 該第一膨張弁からの冷媒流れを遮断す る逆止弁を有するものとすることで、 冷暖房における冷媒ライ ンの切換を、 逆止 弁二個の操作にて簡単に行うことができる。  The refrigerant line between the first expansion valve and the receiver has two systems, one of which has a check valve connected to the upper part of the receiver to shut off the flow of the refrigerant from the receiver. The other has a check valve connected to the lower portion of the receiver to shut off the flow of the refrigerant from the first expansion valve, thereby switching the refrigerant line in cooling and heating by two check valves. The operation can be easily performed by the above operation.
本発明の以上の、 そして、 その他の目的、 特徴、 効果は、 以下の添付の図面を 基にした詳細な説明において、 より明白になるであろう。 図面の簡単な説明  The above and other objects, features and advantages of the present invention will become more apparent in the following detailed description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る冷媒過冷却回路を含む冷房時の空調システムの全体図 であり、 第 2図は、 同じく、 第一膨張弁制御用の圧力センサ、 温度センサ等を具 備した場合の応用実施例の全体図であり、 第 3図は、 第三膨張弁の開度と冷却効 果の関係を示す図であり、 第 4図は、 第三膨張弁とコンプレッサ吐出圧力の関係 を示す図であり、 第 5図は、 第一膨張弁開度と冷却効果の関係を示す図、 第 6図 は、 吐出圧力と性能の関係を示す図であり、 第 7図は、 第一膨張弁差圧と過冷却 効果の関係を示す図であり、 第 8図は、 本発明に係る第一膨張弁の第一の制御方 法を示すフローチャー トであり、 第 9図は、 本発明に係る第一膨張弁の第二の制 御方法を示すフローチヤ一卜であり、 第 1 0図は、 本発明に係る第一膨張弁の第 三の制御方法を示すフローチヤ一 卜であり、 第 1 1図は、 抽出ライ ンを室外熱交 換器より延設した構成の冷媒回路図であり、 第 1 2図は、 レシーバと過冷却用タ ンクを分離した実施例図であり、 第 1 3図は、 レシーバと過冷却用タンクを分離 し、 レシーバ下部から過冷却用の抽出ライ ンを取出した実施例図であり、 第 1 4 図は、 レシーバと過冷却用タンクを分離した別実施例図であり、 第 1 5図は、 レ シ一バと過冷却用夕ンクを分離し、 レシーバ下部から過冷却用の抽出ラインを取 出した別実施例図であり、 第 1 6図は、 は二重管熱交換器により過冷却器を構成 した実施例図であり、 第 1 7図は、 過冷却器の側面一部断面図であり、 第 1 8図 は、 過冷却器の平面図であり、 第 1 9図は、 冷媒圧力と比ェンタルビの関係を示 すモリエル線図である。 発明を実施するための最良の形態 FIG. 1 is an overall view of an air conditioning system at the time of cooling including a refrigerant subcooling circuit according to the present invention, and FIG. 2 is similarly equipped with a pressure sensor for controlling a first expansion valve, a temperature sensor, and the like. FIG. 3 is a diagram showing the relationship between the opening degree of the third expansion valve and the cooling effect, and FIG. 4 is a diagram showing the relationship between the third expansion valve and the compressor discharge pressure. FIG. 5 is a diagram showing the relationship between the opening degree of the first expansion valve and the cooling effect, and FIG. FIG. 7 is a diagram showing a relationship between discharge pressure and performance, FIG. 7 is a diagram showing a relationship between a first expansion valve differential pressure and a supercooling effect, and FIG. 8 is a diagram showing a first expansion valve according to the present invention. FIG. 9 is a flowchart showing a second control method of the first expansion valve according to the present invention. FIG. 9 is a flowchart showing the second control method of the first expansion valve according to the present invention. Fig. 11 is a flowchart showing a third control method of the first expansion valve according to the present invention. Fig. 11 is a refrigerant circuit diagram of a configuration in which an extraction line is extended from an outdoor heat exchanger. Fig. 2 shows an embodiment in which the receiver and the subcooling tank are separated, and Fig. 13 shows an embodiment in which the receiver and the subcooling tank are separated and the extraction line for subcooling is taken out from the lower part of the receiver. FIG. 14 is an example of another embodiment in which a receiver and a subcooling tank are separated, and FIG. 15 is a receiver. Fig. 16 shows another embodiment in which the subcooling tank is separated and the extraction line for supercooling is taken out from the lower part of the receiver.Fig. 16 shows an embodiment in which the subcooler is constituted by a double tube heat exchanger. Fig. 17 is a partial cross-sectional side view of the subcooler, Fig. 18 is a plan view of the subcooler, and Fig. 19 is the refrigerant pressure and the specific FIG. 4 is a Mollier diagram showing the relationship. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る第 1図及び第 2図に示す空調 (冷暖房) システムの冷媒回路につ いて説明する。 該冷媒回路は、 コンプレッサ (本実施例ではマルチコンプレッサ ) 2、 方向切換弁である四方弁 3、 室外熱交換器 4 (本実施例では二台) 、 第一 膨張弁 4 5、 複数の第二膨張弁 7 1、 第二膨張弁 7 1のそれぞれに対応した複数 の室内熱交換器 7 0等を設け、 冷媒ライ ンと してコンプレッサ 2吐出側と四方弁 3とを結ぶ冷媒ライン 2 0、 四方弁 3 とコンプレッサ 2吸入側とを結ぶ冷媒ラィ ン 2 6、 四方弁 3 と室外熱交換器 4 とを結ぶ冷媒ライ ン 2 1、 各室外熱交換器 4 とその下流側にそれぞれ配置した第一膨張弁 4 5とを結ぶ冷媒ライ ン 2 2、 全第 一膨張弁 4 5から合流して全第二膨張弁 7 1へと分岐される冷媒ライ ン 2 3、 各 第二膨張弁 7 1 とそれぞれに対応する室内熱交換器 7 0とを結ぶ冷媒ライ ン 2 4 、 そして全室内熱交換器 7 0と四方弁 3 とを結ぶ冷媒ライン 2 5を構成したもの である。  The refrigerant circuit of the air conditioning (cooling / heating) system shown in FIGS. 1 and 2 according to the present invention will be described. The refrigerant circuit includes a compressor (a multi-compressor in this embodiment) 2, a four-way valve 3 as a directional switching valve, an outdoor heat exchanger 4 (two in this embodiment), a first expansion valve 45, a plurality of second A plurality of indoor heat exchangers 70 etc. corresponding to the expansion valve 71 and the second expansion valve 71 are provided, and a refrigerant line 20 connecting the compressor 2 discharge side and the four-way valve 3 as a refrigerant line. A refrigerant line 26 that connects the four-way valve 3 to the compressor 2 suction side, a refrigerant line 21 that connects the four-way valve 3 to the outdoor heat exchanger 4, and a refrigerant line 26 that is arranged on each outdoor heat exchanger 4 and downstream thereof. Refrigerant line 22 that connects to one expansion valve 45, Refrigerant line 23 that joins from all first expansion valves 45 and branches to all second expansion valves 71, and each second expansion valve 7 1 And a refrigerant line 24 connecting the corresponding indoor heat exchanger 70, and an all indoor heat exchanger 70 and the four-way valve 3. Department is obtained by constituting the refrigerant line 2 5.
冷媒ライン 2 3の合流ラィ ンには、 液相冷媒を滞留させる夕ンクであるレシ一 バ 5を介装しており、 該レシーバ 5の夕ンク内の液相冷媒を抽出する抽出ライン 6 1を設け、 該抽出ライン 6 1 に第三膨張弁 6 2を介装-し、 該第三膨張弁 6 2よ り下流のラインを再びレシーバ 5内に通過させ、 その後、 該抽出ライン 6 1を、 第 1図のように冷媒ライン 2 6に接続するか、 或いは、 第 2図のように冷媒ライ ン 2 5 に接続する構成としている。 この抽出ライ ン 6 1 は、 レシーバ 5内にて、 例えば、 コイル状の冷媒管である伝熱管 6 0を形成することにより、 過冷却器 6 を構成している。 なお、 第 1図及び第 2図においては、 レシーバ 5内に過冷却器 6を配置する構成と しているが、 後述するように、 過冷却器 6を、 レシーバ 5 と は別ュニッ トとして構成することも可能である。 In the merging line of the refrigerant lines 23, there is a receiver, which is an evening tank for retaining the liquid-phase refrigerant. An extraction line 61 for extracting the liquid-phase refrigerant in the receiver 5 is provided, and a third expansion valve 62 is interposed in the extraction line 6 1. The line downstream of the tri-expansion valve 62 is passed through the receiver 5 again, and then the extraction line 61 is connected to the refrigerant line 26 as shown in FIG. 1, or as shown in FIG. Connected to the refrigerant line 25. The extraction line 61 constitutes a subcooler 6 by forming, for example, a heat transfer tube 60 which is a coiled refrigerant tube in the receiver 5. In FIGS. 1 and 2, the supercooler 6 is arranged inside the receiver 5, but as will be described later, the subcooler 6 is configured as a unit separate from the receiver 5. It is also possible.
なお、 該冷媒ライ ン 2 3において、 各第一膨張弁 4 5からのライ ンは合流して から、 レシーバ 5の上部に接続されるレシーバ流入管 5 1 と、 レシーバ 5の下部 に接続される暖房用戻り管 5 5 とに分岐しており、 レシーバ流入管 5 1 には逆止 弁 4 がヽ 暖房用戻り管 5 5には逆止弁 4 Ί が、 それぞれ介装されている。 逆止 弁 4 6は、 レシーバ 5から第一膨張弁 4 5への冷媒の流れを遮断し、 逆止弁 4 7 は、 第一膨張弁 4 5からレシーバ 5への冷媒の流れを遮断するものである。 このように、 冷却サイクル時においては、 第一膨張弁 4 5を通過する冷媒が逆 止弁 4 6を通過してレシーバ 5のタンク上部から流入し、 暖房サイクル時にはレ シーバ 5のタ ンク下部から流出する冷媒が逆止弁 4 7を通過して第一膨張弁 4 5 へと流れるよう構成しているのである。 これにより 2つの逆止弁 4 6 · 4 7を利 用したシンプルな構成で冷暖房サイクルの冷媒の流れを制御可能となり、 低コス ト化を可能としている。  In the refrigerant line 23, the lines from the first expansion valves 45 are merged and then connected to the receiver inflow pipe 51 connected to the upper part of the receiver 5 and to the lower part of the receiver 5 It branches into a heating return pipe 55, and a check valve 4 is interposed in the receiver inflow pipe 51, and a check valve 4 is interposed in the heating return pipe 55, respectively. The check valve 46 blocks the flow of the refrigerant from the receiver 5 to the first expansion valve 45, and the check valve 47 blocks the flow of the refrigerant from the first expansion valve 45 to the receiver 5. It is. Thus, in the cooling cycle, the refrigerant passing through the first expansion valve 45 passes through the check valve 46 and flows in from the upper part of the tank of the receiver 5, and in the heating cycle, the refrigerant flows from the lower part of the tank of the receiver 5. The configuration is such that the refrigerant flowing out flows through the check valve 47 to the first expansion valve 45. This makes it possible to control the flow of the refrigerant in the cooling and heating cycle with a simple configuration using two check valves 46 and 47, thereby reducing costs.
室内熱交換器 7 0、 ク一ラファ ン 7 2等は、 各室内機 7に内設され、 その他の コンプレッサ 2、 四方弁 3、 補助熱吸収器 8、 アキュムレータ 9、 室外熱交換器 4、 レシーバ 5等は全て、 室外機としてュニッ 卜化されている。  The indoor heat exchanger 70, clean fan 72, etc. are installed in each indoor unit 7, and the other compressor 2, four-way valve 3, auxiliary heat absorber 8, accumulator 9, outdoor heat exchanger 4, receiver All 5 mag are united as outdoor units.
四方弁 3を介して、 暖房時にはコンプレッサ 2の吐出側からの冷媒ライ ン 2 0 が室内機 7への冷媒ライン 2 5へと接続され、 吸入側の冷媒ライン 2 6が室外熱 交換器 4からの冷媒ライ ン 2 1 と接続されるものであり、 コンプレッサ 2より圧 送された冷媒は、 室内機 7から室外機へと流れる。 そして、 冷房時には、 第 1図 や第 2図等の如く、 四方弁 3を介して、 コンプレッサ 2の吐出側からの冷媒ライ ン 2 0が室外熱交換器 4への冷媒ライ ン 2 1へと接続され、 吸入側の冷媒ライン 2 6が室内機 7からの冷媒ライン 2 5に接続されるものであり、 コンプレッサ 2 より圧送された冷媒は、 室外機から室内機 7へと流れる。 During heating, the refrigerant line 20 from the discharge side of the compressor 2 is connected to the refrigerant line 25 to the indoor unit 7 via the four-way valve 3, and the refrigerant line 26 on the suction side is connected to the outdoor heat exchanger 4 from the outdoor heat exchanger 4. The refrigerant pumped from the compressor 2 flows from the indoor unit 7 to the outdoor unit. At the time of cooling, as shown in FIGS. 1 and 2, the refrigerant line from the discharge side of the compressor 2 is passed through the four-way valve 3. 20 is connected to the refrigerant line 21 to the outdoor heat exchanger 4, and the refrigerant line 26 on the suction side is connected to the refrigerant line 25 from the indoor unit 7. The refrigerant thus cooled flows from the outdoor unit to the indoor unit 7.
第一膨張弁 4 5は、 暖房時において、 室内機 7からの冷媒を膨張させて、 蒸発 器となる室外熱交換器 4へと送り込むものであり、 第二膨張弁 7 1 は、 冷房時に おいて、 室外熱交換器 4及びレシーバ 5からの低温高圧の液相冷媒を膨張し、 低 圧化して室内熱交換器 7 0へと送り込むのである。  The first expansion valve 45 expands the refrigerant from the indoor unit 7 during heating and sends the refrigerant to the outdoor heat exchanger 4 serving as an evaporator, and the second expansion valve 71 operates during cooling. Then, the low-temperature and high-pressure liquid-phase refrigerant from the outdoor heat exchanger 4 and the receiver 5 is expanded, reduced in pressure, and sent to the indoor heat exchanger 70.
なお、 コンプレッサ 2駆動用の原動機としてエンジン 1 を設けており、 ェンジ ン 1の熱を吸収して温度上昇した冷却水をラジェ一夕 1 1 に案内し、 ラジェ一夕 1 1 において放熱した後、 再びエンジン 1へ戻す冷却水回路 1 0を構成して、 該 エンジン 1 の冷却を行うようにしている。 また、 冷却水回路 1 0 には後述する補 助熱吸収器 8へと至る捕助回路 1 2が並列接続されている。  An engine 1 is provided as a prime mover for driving the compressor 2.The cooling water, which has absorbed the heat of the engine 1 and has risen in temperature, is guided to the Lage 1 and the heat is released at the Lage 1 11. A cooling water circuit 10 for returning to the engine 1 is formed again to cool the engine 1. Further, an auxiliary circuit 12 leading to an auxiliary heat absorber 8 described later is connected in parallel to the cooling water circuit 10.
このような空調システムにおいて、 冷房時の冷媒循環サイクルについて説明す る。  A description will be given of a refrigerant circulation cycle during cooling in such an air conditioning system.
冷媒は、 コンプレッサ (本実施例においてはマルチコンプレッサ) 2により圧 縮されて、 高温高圧過飽和蒸気となり、 冷媒ライ ン 2 0、 四方弁 3、 冷媒ライン 2 1を経由して、 室外熱交換器 4に圧送され、 該室外熱交換器 4において、 冷却 フィ ンを通過する間に、 冷却ファ ン 4 1からの冷却風により冷却され、 高圧気液 相冷媒に変換されて、 冷媒ライン 2 2から第一膨張弁 4 5を通過し、 冷媒ライ ン 2 3を経由し、 その途中、 レシーバ 5内にて貯留され、 その過程で過冷却器 6に より過冷却され、 該レシーバ 5より過冷却状態の高圧液相冷媒のみが取り出され て、 第二膨張弁 7 1 にて膨張され、 室内熱交換器 7 0へと送られる。  The refrigerant is compressed by a compressor (a multi-compressor in this embodiment) 2 to become high-temperature, high-pressure supersaturated steam, which passes through a refrigerant line 20, a four-way valve 3, a refrigerant line 21, and an outdoor heat exchanger 4. While passing through the cooling fins in the outdoor heat exchanger 4, is cooled by the cooling air from the cooling fan 41, is converted into a high-pressure gas-liquid phase refrigerant, and passes through the refrigerant line 22. After passing through the expansion valve 45 and passing through the refrigerant line 23, it is stored in the receiver 5 on the way, is supercooled by the supercooler 6 in the process, and is supercooled by the receiver 5. Only the high-pressure liquid-phase refrigerant is taken out, expanded by the second expansion valve 71, and sent to the indoor heat exchanger 70.
冷媒は、 冷媒ライン 2 3から室内熱交換器 7 0までの間、 室内用パイプ 7 5を 通過し、 また、 室内熱交換器 7 0からは戻り配管 7 6を通過するが、 過冷却され ているため、 室内用パイプ 7 5の通過時における発泡が抑制される。 従って、 室 内用パイプ 7 5及び戻り配管 7 6には、 従来よりも小径のパイプを使用すること が可能となり、 小径である為に曲げも簡単であり、 配管の自由度を向上させるこ とが出来るのである。  The refrigerant passes through the indoor pipe 75 between the refrigerant line 23 and the indoor heat exchanger 70, and passes through the return pipe 76 from the indoor heat exchanger 70, but is supercooled. Therefore, foaming during passage through the indoor pipe 75 is suppressed. Therefore, it is possible to use smaller-diameter pipes for the indoor pipe 75 and the return pipe 76, and the small diameter makes it easy to bend, thus improving the flexibility of piping. Can be done.
冷媒ライン 2 3、 第二膨張弁 7 1、 冷媒ライン 2 4を通過した冷媒は、 室内熱 交換器 7 0において、 室内空気から熱を吸収して蒸発し、 室内空気を冷却する。 更に、 クーラファ ン 7 2の送風により室内に冷房効果を—もたらすのである。 そし て、 室内熱交換器 7 0において気化した冷媒が冷媒ライン 2 5、 四方弁 3を経由 した後、 補助熱吸収器 8、 アキュムレータ 9等を介してコンプレッサ 2に戻る。 第 1図及び第 2図の如く レシ一バ 5内に配置した過冷却器 6の詳細について説 明する。 該レシーバ 5の底部より延設した過冷却用の抽出ライ ン 6 1 は、 第三膨 張弁 6 2を経た後、 前記の如く、 再びレシーバ 5の下部より該レシーバ 5内に導 入され、 該レシーバ 5内にてコイル状の伝熱管 6 0 と して上方に延設され、 該レ シ一バ 5の上部を経て該レシーバ 5の外方に延出された後、 第 1図の如く、 冷媒 ライ ン 2 6における四方弁 3 と補助熱吸収器 8 との間の部分か、 或いは、 第 2図 の如く、 四方弁 3と室内器 7 との間の冷媒ライン 2 5に接続される。 こう して、 該レシーバ 5より液相冷媒の一部が抽出ライン 6 1 にて取り出され、 第三膨張弁 6 2 にて膨張されて低温化され、 伝熱管 6 0を流れる過程でレシーバ 5内の液相 冷媒を過冷却する。 The refrigerant that has passed through the refrigerant line 23, the second expansion valve 71, and the refrigerant line 24 In the exchanger 70, the heat is absorbed and evaporated from the room air to cool the room air. Furthermore, the cooling fan 72 provides a cooling effect in the room. Then, the refrigerant vaporized in the indoor heat exchanger 70 passes through the refrigerant line 25 and the four-way valve 3, and then returns to the compressor 2 via the auxiliary heat absorber 8, the accumulator 9, and the like. The details of the supercooler 6 arranged in the receiver 5 as shown in FIGS. 1 and 2 will be described. The supercooling extraction line 61 extending from the bottom of the receiver 5 passes through the third expansion valve 62, and is again introduced into the receiver 5 from the lower portion of the receiver 5 as described above. After extending upward as a coiled heat transfer tube 60 inside the receiver 5 and extending outside the receiver 5 through the upper part of the receiver 5, as shown in FIG. The refrigerant line 26 is connected to a portion between the four-way valve 3 and the auxiliary heat absorber 8 or, as shown in FIG. 2, to a refrigerant line 25 between the four-way valve 3 and the indoor unit 7. . In this way, a part of the liquid-phase refrigerant is taken out of the receiver 5 in the extraction line 61, expanded in the third expansion valve 62, cooled down, and in the process of flowing through the heat transfer tube 60 inside the receiver 5. Sub-cools the liquid-phase refrigerant.
第一膨張弁 4 5より延設されるレシーバ流入管 5 1 の出口端は、 レシーバ 5の 上部に接続され、 レシーバ 5内において、 その底部付近に入口下端を配するレシ —バ流出管 5 2を上方に延設している。  The outlet end of the receiver inlet pipe 51 extending from the first expansion valve 45 is connected to the upper part of the receiver 5, and the receiver outlet pipe 52 having the inlet lower end near the bottom inside the receiver 5 2 Extends upward.
このような構成において、 レシーバ流入管 5 1からレシーバ 5内に流入する高 圧液相冷媒は、 レシーバ 5の底部付近に配置したレシーバ流出管 5 2の入口端へ と流動するので、 上昇向きの伝熱管 6 0内の冷媒の流れに対して対向流となり、 該伝熱管 6 0内を流れる冷媒による過冷却効果が増大する。  In such a configuration, the high-pressure liquid-phase refrigerant flowing into the receiver 5 from the receiver inflow pipe 51 flows to the inlet end of the receiver outflow pipe 52 arranged near the bottom of the receiver 5, so that it rises. The refrigerant flows in a direction opposite to the flow of the refrigerant in the heat transfer tube 60, and the supercooling effect of the refrigerant flowing in the heat transfer tube 60 increases.
なお、 該伝熱管 6 0を、 レシーバ 5の内周面に沿って配管し、 その内部にレシ —バ 5 1の出口端と、 レシーバ流出管 5 2とを配設するようにしてもよい。 これ により、 伝熱管 6 0のコイル半径がレシーバ 5の内周半径一杯に取られ、 液相冷 媒との熱交換面積も大きくなり、 このことによつても、 過冷却効果を増すことが できる。  The heat transfer tube 60 may be provided along the inner peripheral surface of the receiver 5, and the outlet end of the receiver 51 and the receiver outlet tube 52 may be provided therein. As a result, the coil radius of the heat transfer tube 60 is set to the full inner radius of the receiver 5, and the heat exchange area with the liquid-phase coolant is increased, thereby also increasing the supercooling effect. .
ここで、 過冷却器 6の伝熱管 6 0の支持構造について、 第 1 7図及び第 1 8図 より説明する。 ここで、 過冷却器 6の筐体は、 第 1図及び第 2図の実施例ではレ シーバ 5であるが、 後記の第 1 2図乃至第 1 5図の実施例では、 過冷却用タンク 6 3 となる。 このように、 過冷却器 6をレシ一バ 5と別ュニッ 卜に構成する場合 がある。 第 1 7図及び第 1 8図における符号 6は、 過冷却器 6をレシ一バ 5とは 別ュニッ トとするあらゆる場合に適用する。 Here, the support structure of the heat transfer tube 60 of the subcooler 6 will be described with reference to FIGS. 17 and 18. FIG. Here, the housing of the subcooler 6 is the receiver 5 in the embodiment of FIGS. 1 and 2, but the subcooling tank is used in the embodiments of FIGS. 12 to 15 described later. 6 3 Thus, the subcooler 6 may be configured as a separate unit from the receiver 5. Reference numeral 6 in FIGS. 17 and 18 applies to all cases where the subcooler 6 is a separate unit from the receiver 5.
レシーバ 5の側壁 5 a (若しく は過冷却器 6の側壁 6 a、 以下同じ) の内壁面 に沿って、 複数 (本実施例においては 3本) の固定パイプ 5 b ( 6 b ) 、 レシ —バ 5 (過冷却器 6 ) の軸芯と平行に配設固定されている。 そして該固定パイプ Along the inner wall of the side wall 5a of the receiver 5 (or the side wall 6a of the subcooler 6, the same applies hereinafter), a plurality (three in this embodiment) of fixed pipes 5b (6b), —Installed and fixed parallel to the axis of bar 5 (supercooler 6). And the fixed pipe
5 b ( 6 b ) の内方側に伝熱管 6 0がコイル状に配管されており、 その各一巻きA heat transfer tube 60 is provided in a coil shape on the inner side of 5 b (6 b),
6 0 aが固定パイプ 5 b ( 6 b ) に接触する毎に、 該固定パイプ 5 b ( 6 b ) に 溶接、 或いは他の部材を用いて接続固定されている。 その結果、 各一巻き 6 0 a が平面視で円周上複数箇所 (本実施例においては 3箇所) にて固定されている。 更に、 各一巻き 6 0 aは、 固定パイプ 5 b ( 6 b ) と固定パイプ 5 b ( 6 b ) との間の平面視 6 O b位置にて、 溶接、 或いは他の部材を用いる等の方法で、 上 下に隣り合う一巻き 6 0 a · 6 0 a同士が接続固定されている。 Each time 60a comes into contact with the fixed pipe 5b (6b), it is connected and fixed to the fixed pipe 5b (6b) by welding or using another member. As a result, each turn 60a is fixed at a plurality of positions (three positions in this embodiment) on the circumference in plan view. Further, each turn 60a is formed by welding or using another member at a position 6Ob in plan view between the fixed pipe 5b (6b) and the fixed pipe 5b (6b). In this way, one turn 60a and 60a adjacent to each other are connected and fixed.
このような構成とすることで、 伝熱管 6 0の外周端が、 レシーバ 5の側壁 5 a と確実に距離を保てるため、 冷却効果を高く維持することが可能であり、 また、 組立強度が向上して耐久性にも優れ、 伝熱管 6 0自体の強度も高く維持され、 長 期の使用においても損傷することなく優れた冷却効果を維持できるのである。 なお、 コイル状伝熱管 6 0を支持する部材は、 固定パイプ 5 b ( 6 b ) の如き パイプに限らず、 棒材とすることも可能である。  With such a configuration, the outer peripheral end of the heat transfer tube 60 can be reliably maintained at a distance from the side wall 5 a of the receiver 5, so that a high cooling effect can be maintained, and the assembling strength is improved. As a result, the durability of the heat transfer tube 60 itself is maintained high, and an excellent cooling effect can be maintained without damage even during long-term use. The member supporting the coiled heat transfer tube 60 is not limited to a pipe such as the fixed pipe 5b (6b), but may be a rod.
次に、 過冷却器 6をレシーバ 5 とは別ュニッ トと した場合の様々な実施態様に ついて説明する。 まず、 第 1 2図乃至第 1 5図は、 第一膨張弁 4 5 と第二膨張弁 7 1 とを結ぶ冷媒ライン 2 3中の合流ラインに、 夕ンデム状の二連のタンクを配 設し、 一方をレシーバ 5 として、 もう一方を、 過冷却器 6を内包した過冷却用タ ンク 6 3として適用するものである。  Next, various embodiments in which the subcooler 6 is a separate unit from the receiver 5 will be described. First, FIGS. 12 to 15 show that two evening tank-shaped tanks are arranged in a merging line in the refrigerant line 23 connecting the first expansion valve 45 and the second expansion valve 71. One is used as a receiver 5 and the other is used as a subcooling tank 63 including a subcooler 6.
第 1 2図では、 該 2連構成のタンクのうち、 第一膨張弁 4 5に近い側をレシ一 バ 5とし、 第二膨張弁 7 1 に近い側を過冷却用夕ンク 6 3 としている。  In FIG. 12, the side near the first expansion valve 45 of the two-part tank is a receiver 5, and the side near the second expansion valve 71 is a subcooling tank 6 3. .
この構成において、 室外熱交換器 4から第一膨張弁 4 5を経て送られる高圧の 液相または気液混合冷媒は、 まず、 レシーバ流入管 5 1 より レシーバ 5内に流入 し、 液相冷媒として貯留される。 そして、 レシーバ流出管 5 2からタンク流入管 6 4を経て過冷却器 6の上部から過冷却用夕ンク 6 3に流入する。 そして、 下端 を過冷却用夕ンク 6 3内の下部に延設したタンク流出管— 6 5より、 前記冷媒ライ ン 1 3を経由して液相冷媒が室内機 7側へと送られるのである。 In this configuration, the high-pressure liquid-phase or gas-liquid mixed refrigerant sent from the outdoor heat exchanger 4 through the first expansion valve 45 first flows into the receiver 5 from the receiver inflow pipe 51, and becomes a liquid-phase refrigerant. Will be stored. And from the receiver outlet pipe 52 to the tank inlet pipe After passing through 6 4, it flows into the subcooling tank 6 3 from the top of the supercooler 6. Then, the liquid-phase refrigerant is sent to the indoor unit 7 via the refrigerant line 13 from the tank outflow pipe 65 extending at the lower end to the lower part of the subcooling tank 63. .
一方、 過冷却用夕ンク 6 3の下部からは過冷却用の抽出ライン 6 1を延設して いる。 抽出ライ ン 6 1 は第三膨張弁 6 2を介した後、 再び該過冷却用夕ンク 6 3 内を通過させ、 過冷却用タンク 6 3内にて、 前記の如き伝熱管 6 0を形成し、 そ の後、 抽出ライ ン 6 1を、 第 2図の如く、 室内熱交換器 7 0 と四方弁 3とを結ぶ 冷媒ライン 2 5に接続される。 なお、 該抽出ライン 6 1 は、 第 1図の如く、 冷媒 ライ ン 2 6に接続してもよい。 以下の各実施例においても同様である。  On the other hand, an extraction line 61 for supercooling extends from the lower part of the subcooling tank 63. The extraction line 61 passes through the third cooling valve 63 after passing through the third expansion valve 62, and forms the heat transfer tube 60 as described above in the supercooling tank 63. After that, the extraction line 61 is connected to a refrigerant line 25 connecting the indoor heat exchanger 70 and the four-way valve 3 as shown in FIG. The extraction line 61 may be connected to a refrigerant line 26 as shown in FIG. The same applies to the following embodiments.
過冷却用タンク 6 3内において、 夕ンク流入管 6 4から流入して夕ンク流出管 6 5の下端部へと流れる冷媒と、 伝熱管 6 0内を流れる冷媒とが対向流となって おり、 優れた過冷却効果を実現しているのである。 そして、 本発明の構成におい ては、 抽出ライン 6 1が、 回路途中からの分岐ではなく、 過冷却用夕ンク 6 3の タンク下部から延設するよう構成しているので、 抽出冷媒の流量を安定させ、 冷 媒間同士の熱交換効率を改善し、 この点においても過冷却効果を高めることがで きる。 このことは、 特に室外熱交換器 4 と室内熱交換器 7 0との台数関係が 1対 多の関係にある本発明に係る冷媒回路においては、 室内熱交換器 7 0の稼動台数 の変化によっても安定した抽出冷媒の供給が可能であるので、 十分な過冷却効果 を安定して維持することが可能となるのである。  In the subcooling tank 63, the refrigerant flowing from the evening ink inlet pipe 64 and flowing to the lower end of the evening ink outlet pipe 65 and the refrigerant flowing in the heat transfer pipe 60 are countercurrent. However, it has achieved an excellent supercooling effect. In the configuration of the present invention, since the extraction line 61 is configured not to branch off from the middle of the circuit but to extend from the lower part of the tank of the supercooling tank 63, the flow rate of the extracted refrigerant is reduced. By stabilizing the heat exchange efficiency between the coolants, the supercooling effect can be enhanced. This is especially true in the refrigerant circuit according to the present invention in which the number of the outdoor heat exchangers 4 and the number of the indoor heat exchangers 70 are in a one-to-many relationship, due to the change in the number of operating indoor heat exchangers 70. Therefore, it is possible to stably maintain a sufficient supercooling effect because the supply of the extracted refrigerant is stable.
第 1 3図の実施例では、 第 1 2図同様に、 冷媒ライン 2 3の合流ライン上に、 第一膨張弁 4 5に近い側のレシーバ 5 と、 第二膨張弁 7 1 に近い側の過冷却器用 タンク 6 3よりなるニ連タンクを配設しているが、 抽出ライン 6 1を、 レシーバ 5のタンク下部から過冷却用の延設させている。 該抽出ライ ン 6 1 は、 第三膨張 弁 6 2を介した後、 過冷却用タンク 6 3内を通過させ、 過冷却用タンク 6 3内に おいて伝熱管 6 0を形成し、 その後、 抽出冷媒を室内熱交換器 7 0 と四方弁 3と を結ぶ冷媒ライン 2 5に接続する構成と している。 この構成においても、 過冷却 用タンク 6 3内にて、 タンク流入管 6 4から夕ンク流出管 6 5へと至る冷媒の流 れと、 伝熱管 6 0を流れる冷媒の流れが対向流であり、 また、 抽出ライ ン 6 1を レシーバ 5の夕ンク下部から延設するよう構成しているので、 優れた過冷却効果 を得ることができる。 In the embodiment of FIG. 13, similarly to FIG. 12, the receiver 5 near the first expansion valve 45 and the receiver 5 near the second expansion valve 71 on the merging line of the refrigerant line 23 A dual tank consisting of a subcooler tank 63 is provided, but the extraction line 61 extends from the lower part of the receiver 5 tank for supercooling. After passing through the third expansion valve 62, the extraction line 61 passes through the subcooling tank 63, and forms a heat transfer tube 60 in the subcooling tank 63. The configuration is such that the extracted refrigerant is connected to a refrigerant line 25 connecting the indoor heat exchanger 70 and the four-way valve 3. Also in this configuration, in the subcooling tank 63, the flow of the refrigerant flowing from the tank inlet pipe 64 to the ink outlet pipe 65 and the flow of the refrigerant flowing through the heat transfer pipe 60 are opposite flows. Also, since the extraction line 61 extends from the bottom of the receiver 5 at the bottom of the receiver, excellent supercooling effect is obtained. Can be obtained.
第 1 4図及び第 1 5図では、 第一膨張弁 4 5に近い方を過冷却用夕ンク 6 3 と しており、 第二膨張弁 7 1 に近い方をレシーバ 5と している。 即ち、 室内熱交換 器 4から第一膨張弁 4 5を介して送られる液相冷媒は、 タンク流入管 6 4より過 冷却タンク 6 3に流入する。 そして、 タンク流出管 6 5、 レシーバ流入管 5 1 を 経てレシーバ 5へと案内されるのである。 そしてレシーバ 5において分離貯留さ れた液相冷媒がレシーバ流出管 5 2から流出し、 室内機 7側へと送られるのであ る。  In FIGS. 14 and 15, the one closer to the first expansion valve 45 is the subcooling sink 63, and the one closer to the second expansion valve 71 is the receiver 5. That is, the liquid-phase refrigerant sent from the indoor heat exchanger 4 via the first expansion valve 45 flows into the supercooling tank 63 from the tank inflow pipe 64. Then, it is guided to the receiver 5 through the tank outlet pipe 65 and the receiver inlet pipe 51. Then, the liquid-phase refrigerant separated and stored in the receiver 5 flows out of the receiver outlet pipe 52 and is sent to the indoor unit 7 side.
そして、 第 1 4図においては、 第一夕ンクである過冷却用夕ンク 6 3の下部よ り過冷却用の抽出ライン 6 1を延設し、 第 1 5図では、 レシーバ 5のタンク下部 より抽出ライ ン 6 1を延設し、 それぞれ、 第三膨張弁 6 2を介した後、 過冷却用 タンク 6 3内を通過させ、 過冷却用タンク 6 3内において伝熱管 6 0を形成し、 その後、 抽出冷媒を室内熱交換器 7 0 と四方弁 3とを結ぶ冷媒ライン 2 5 ( 2 6 ) に接続される。 いずれも、 過冷却用タンク 6 3内における液相冷媒の流れと、 伝熱管 6 0内の流れとが対向流であり、 また、 抽出ライ ン 6 1がタンク下部より 延設されて、 抽出冷媒の流量を安定させ、 冷媒間同士の熱交換効率を改善する点 で共通しており、 優れた過冷却効果を得ることができる。  In Fig. 14, an extraction line 61 for supercooling is extended from the lower part of the subcooling tank 63, which is the first tank, and in Fig. 15, the lower part of the tank of the receiver 5 is installed. The extraction lines 61 are extended, and after passing through the third expansion valve 62, they are passed through the subcooling tank 63 to form heat transfer tubes 60 in the subcooling tank 63. Thereafter, the extracted refrigerant is connected to a refrigerant line 25 (26) connecting the indoor heat exchanger 70 and the four-way valve 3. In each case, the flow of the liquid-phase refrigerant in the supercooling tank 63 and the flow in the heat transfer tube 60 are countercurrent, and the extraction line 61 is extended from the lower part of the tank to extract the refrigerant. In that it stabilizes the flow rate of the refrigerant and improves the heat exchange efficiency between the refrigerants, and provides an excellent supercooling effect.
また、 以上の第 1 2図乃至第 1 5図の実施例では、 冷媒滞留タ ンクであるレシ ーバ 5 と、 過冷却器 6 としての過冷却用夕ンク 6 3 とを分離することで、 それぞ れの容積の許容自由度を高めることができるのである。  Further, in the embodiments of FIGS. 12 to 15 described above, the receiver 5 as the refrigerant retention tank and the subcooling tank 6 3 as the subcooler 6 are separated from each other. The degree of freedom of each volume can be increased.
次に、 第 1 6図により、 二重管熱交換器を用いた過冷却器 6の実施例を説明す る。 本実施例においては、 冷媒ライン 2 3中の合流ライン上の、 第一膨張弁 4 5 に近い側に、 液相冷媒を滞留させるレシーバ 5を配設し、 第二膨張弁 7 1 に近い 側には、 広がり空間を有する過冷却管 6 7を配設している。 この構成において、 室内熱交換器 4から第一膨張弁 4 5を介してレシーバ 5に流入する冷媒は、 気液 分離された後、 液相冷媒がレシーバ流出管 5 2を経て過冷却管 6 7内を通過する 主冷媒管 6 6内に流入し、 室内機 7へと送られる。 また、 レシーバ 5のタ ンク下 部からは抽出ライン 6 1を延設させている。 抽出ライン 6 1 は、 第三膨張弁 6 2 を介した後、 過冷却管 6 7内を通過させ、 過冷却管 6 7内において伝熱管 6 0を 形成し、 その後、 室内熱交換器 7 0と四方弁 3 とを結ぶ冷媒ライ ン 2 5に接続さ せているのである。 つまり、 過冷却管 6 7、 主冷媒管 6 "6、 伝熱管 6 0 により二 重管熱交換器を構成し、 主冷媒管 6 6 と伝熱管 6 0内を流れる冷媒を対向流とす ることで、 過冷却効果が得られるのである。 なお、 この過冷却器 6 としては多板 式熱交換器を採用することも可能である。 Next, an embodiment of the supercooler 6 using the double tube heat exchanger will be described with reference to FIG. In the present embodiment, a receiver 5 for retaining the liquid-phase refrigerant is disposed on a side near the first expansion valve 45 on the merging line in the refrigerant line 23, and a side near the second expansion valve 71. Is provided with a supercooling pipe 67 having an extended space. In this configuration, the refrigerant flowing from the indoor heat exchanger 4 into the receiver 5 via the first expansion valve 45 is separated into gas and liquid, and then the liquid-phase refrigerant passes through the receiver outlet pipe 52 and the supercooling pipe 6 7 The refrigerant flows into the main refrigerant pipe 66 passing through the inside and is sent to the indoor unit 7. An extraction line 61 extends from the lower part of the tank of the receiver 5. After passing through the third expansion valve 62, the extraction line 61 passes through the supercooling pipe 67, and the heat transfer pipe 60 passes through the supercooling pipe 67. After that, it is connected to a refrigerant line 25 connecting the indoor heat exchanger 70 and the four-way valve 3. In other words, the supercooling pipe 67, the main refrigerant pipe 6 "6, and the heat transfer pipe 60 constitute a double pipe heat exchanger, and the refrigerant flowing in the main refrigerant pipe 66 and the heat transfer pipe 60 is made to flow in the opposite direction. The supercooler 6 can be a multi-plate heat exchanger.
以上のように過冷却器 6をレシーバ 5 とは別ュニッ トと して設けた第 1 2図乃 至第 1 6図の実施例においても、 第 1図及び第 2図と同様に、 レシーバ 5の底部 と第一膨張弁 4 5との間に、 逆止弁 4 7を有する暖房用戻り管 5 5が配管されて いる。 なお、 第 1 2図及び第 1 3図に示す実施例においては、 タ ンク流出管 6 5 とレシーバ流出管 5 2との間に、 該タンク流出管 6 5から該レシーバ流出管 5 2 への流れのみを許容する逆止弁を有する暖房用戻り管 5 6を設けており、 暖房時 には、 室外機 7からの冷媒が、 暖房用戻り管 5 6を通過することにより、 過冷却 用タンク 6 3を超えてレシーバ 5内に導入され、 更に暖房用戻り管 5 5を経て第 一膨張弁 4 5へと導入されるようにしている。  As described above, in the embodiment of FIGS. 12 to 16 in which the subcooler 6 is provided as a unit separate from the receiver 5, the receiver 5 is provided similarly to FIGS. 1 and 2. A heating return pipe 55 having a check valve 47 is provided between the bottom of the heater and the first expansion valve 45. In the embodiment shown in FIGS. 12 and 13, between the tank outlet pipe 65 and the receiver outlet pipe 52, the tank outlet pipe 65 and the receiver outlet pipe 52 are connected. A heating return pipe 56 having a check valve that allows only the flow is provided. During heating, the refrigerant from the outdoor unit 7 passes through the heating return pipe 56 and the supercooling tank It is introduced into the receiver 5 beyond 63 and further to the first expansion valve 45 via the heating return pipe 55.
以上は、 過冷却用の抽出ライン 6 1を冷媒ライン 2 3上のレシ一バ 5或いは過 冷却用タンク 6 3より延設した構成であるが、 第 1 1図の如く、 室外熱交換器 4 より液相冷媒を取り出す構成とすることも考えられる。  The above configuration is such that the supercooling extraction line 61 extends from the receiver 5 on the refrigerant line 23 or the supercooling tank 63, but as shown in FIG. 11, the outdoor heat exchanger 4 It is also conceivable to adopt a configuration in which more liquid phase refrigerant is taken out.
第 1 1図において、 室外熱交換器 4の途中には気液分離器 3 5が設けられ、 該 気液分離器 3 5は、 開閉弁 3 6 と第三膨張弁 6 2を有する抽出ライ ン 6 1を経て 伝熱管 6 0に接続され、 伝熱管 6 0の下流側の抽出ライ ン 6 1 は、 アキュムレ一 夕 9へと至る冷媒ライン 2 6に接続している。  In FIG. 11, a gas-liquid separator 35 is provided in the middle of the outdoor heat exchanger 4, and the gas-liquid separator 35 is an extraction line having an on-off valve 36 and a third expansion valve 62. The extraction line 61 connected to the heat transfer tube 60 via 61 is connected to the refrigerant line 26 leading to the accumulator 9.
このような構成において、 気液分離器 3 5より、 それまでに液化した冷媒 (例 えば 1 0 % ) が抽出ライン 6 1 に抽出され、 この分離高圧液 (R 1 3 4 a リ ッチ ) 力 <、 開閉弁 3 6を経て第三膨張弁 6 2内で膨張し、 伝熱管 6 0を通過する間に レシーバ流入管 5 1からレシーバ流出管 5 2へ至る液冷媒を過冷却し、 低圧気相 冷媒と して伝熱管 6 0下流の抽出ライン 6 1 に入り、 冷媒ライン 1 6内の低圧気 相冷媒と合流するのである。  In such a configuration, the refrigerant (eg, 10%) liquefied up to that point is extracted from the gas-liquid separator 35 into the extraction line 61, and the separated high-pressure liquid (R134a rich) Force <, expands in the third expansion valve 62 via the on-off valve 36, and super-cools the liquid refrigerant from the receiver inlet pipe 51 to the receiver outlet pipe 52 while passing through the heat transfer pipe 60, thereby reducing the pressure. It enters the extraction line 61 downstream of the heat transfer tube 60 as a gas-phase refrigerant, and merges with the low-pressure gas-phase refrigerant in the refrigerant line 16.
また、 第 1 1図の実施例においては、 室内熱交換器 7 0の入口側と出口側 (冷 房運転時) にそれぞれ温度センサ一 3 1 · 3 2が設けられて、 第二膨張弁 7 1 に 電気的に接続されている。 In the embodiment shown in FIG. 11, temperature sensors 13 1 and 32 are provided on the inlet side and the outlet side (during cooling operation) of the indoor heat exchanger 70, respectively. To 1 It is electrically connected.
この構成において、 温度センサ一 3 1 . 3 2から同一溘度信号が供給されるこ とは、 室内熱交換器 7 0の出口を液冷媒が通過していること、 即ち室内熱交換器 7 0内で冷媒が室内から充分熱を吸収して気化 (室内を冷房) していないことに 相当するから、 この時、 第二膨張弁 7 1がより絞られるよう制御される。 一方、 温度センサ一 3 2からの温度信号が温度センサ一 3 1からの温度信号より高い場 合は、 室内熱交換器 7 0内で冷媒が室内から充分熱を吸収して気化したことを意 味しており、 差が所定値より大き過ぎる場合は第二膨張弁 7 1の開度を増して通 過冷媒量を増し、 冷房効果を高めるように制御する。 この制御は加熱度制御方式 として従来から採用されており、 冷媒ライン 2 5に常時低圧ガスが通過するよう に制御している。 又、 第二膨張弁 7 1 は図示の冷房運転時のみに絞りと して作用 し、 暖房時 (逆流時) には全開する従来型のものである。  In this configuration, the fact that the same temperature signal is supplied from the temperature sensor 31.32 means that the liquid refrigerant passes through the outlet of the indoor heat exchanger 70, that is, the indoor heat exchanger 70. This is equivalent to the fact that the refrigerant has not sufficiently absorbed heat from the room and vaporized (cooled the room), and at this time, the second expansion valve 71 is controlled to be further throttled. On the other hand, if the temperature signal from the temperature sensor 132 is higher than the temperature signal from the temperature sensor 131, it means that the refrigerant has sufficiently absorbed heat from the room and vaporized in the indoor heat exchanger 70. If the difference is too large than a predetermined value, the opening degree of the second expansion valve 71 is increased to increase the amount of refrigerant passing therethrough, and to control the cooling effect. This control has been conventionally employed as a heating degree control method, and controls so that a low-pressure gas always passes through the refrigerant line 25. The second expansion valve 71 acts as a throttle only during the cooling operation shown in the figure, and is a conventional type that is fully opened during heating (during backflow).
更に、 第三膨張弁 6 2に、 その前後温度差を測定すべく配設した温度センサ一 3 3 · 3 4が電気的に接続されており、 冷房時において前記の第二膨張弁 7 1 と 同様の開度制御を行って、 第三膨張弁 6 2の下流の抽出ライ ン 6 1 に常時気相冷 媒が通るようにしている。  Further, the third expansion valve 62 is electrically connected to a temperature sensor 133, 34 arranged to measure a temperature difference between before and after the third expansion valve 62. The same opening degree control is performed so that the gas-phase coolant always passes through the extraction line 61 downstream of the third expansion valve 62.
以上は、 過冷却器 6及び過冷却回路の構成に関する様々な実施例であるが、 本 発明は、 後述の如き第一膨張弁 4 5の開度制御を、 以上の各実施例それぞれに応 用してなるものである。  The above are various embodiments related to the configuration of the subcooler 6 and the subcooling circuit. In the present invention, the opening degree control of the first expansion valve 45 as described later is applied to each of the above embodiments. It is made.
ここで、 冷房運転時における過冷却の目的と、 過冷却により生じる問題点につ いて、 第 1 9図等より説明する。 第 1 9図に示す冷媒圧力と比ェンタルビとの関 係を示すモリエル線図において、 Q 1 →Q 2間はコンプレッサ 2の仕事による圧 力上昇を示す。 コンプレッサ 2にて圧送された高圧気相冷媒 Q 2は、 凝縮器であ る室外熱交換器 4において冷却されて、 気液混合状態となり、 最大限で略、 気液 混合領域と液相領域との境界まで冷却され (比ェンタルビが下がり) 、 更に、 過 冷却器 6による過冷却度 L 1分、 低温化されて、 完全な液相状態の冷媒 Q 3とな る。 そして、 高圧液相冷媒 Q 3は第二膨張弁 7 1 によって低圧化されて、 気液混 合冷媒 Q 4 となり、 蒸発器である室内熱交換器 7 0 にて気化熱を奪い、 更に過熱 度分、 比ェンタルビが上昇して、 コンプレッサ 2に吸入される状態の低圧気相冷 媒 Q 1 となる。 Here, the purpose of the supercooling during the cooling operation and the problems caused by the supercooling will be described with reference to FIG. 19 and the like. In the Mollier diagram showing the relationship between the refrigerant pressure and the specific enthalpy shown in FIG. 19, the pressure increase due to the work of the compressor 2 is shown between Q 1 and Q 2. The high-pressure gas-phase refrigerant Q2 pumped by the compressor 2 is cooled in the outdoor heat exchanger 4, which is a condenser, and enters a gas-liquid mixed state. (The relative enthalpy drops), and the temperature is further reduced by the supercooling degree L 1 minute by the supercooler 6 to become the refrigerant Q3 in a completely liquid state. Then, the high-pressure liquid-phase refrigerant Q 3 is reduced in pressure by the second expansion valve 71 to become a gas-liquid mixed refrigerant Q 4, which removes heat of vaporization in the indoor heat exchanger 70, which is an evaporator, and further superheats Min, the relative pressure rises, and the low-pressure gas-phase It becomes the medium Q 1.
この中で、 Q 4→Q 1間における、 気液混合領域内の冷媒の比ェンタルピ上昇 分、 即ち、 蒸発器 (室内熱交換器 7 0 ) での熱交換量が冷房能力として反映され る。 ここで、 過冷却器 6による過冷却効果がなかった場合、 第 1 9図において、 Q 3の位置は、 図示位置より右側の、 気液混合領域と液相領域との境界まで移動 し、 その分、 Q 4の位置も右側に移動して、 その移動量だけ、 気液混合領域内の 冷媒の比ェンタルピ上昇量は少なくなり、 冷房効果が減退する。 逆に言えば、 過 冷却 (S C ) によって、 その過冷却度 L 1分、 室内交換器 7 0における気液混合 冷媒の比ェンタルピ上昇度が増大し、 即ち、 熱交換量が増大して、 冷房効果を向 上させることができるのである。  In this, the specific enthalpy rise of the refrigerant in the gas-liquid mixing region between Q4 and Q1, that is, the amount of heat exchange in the evaporator (the indoor heat exchanger 70) is reflected as the cooling capacity. Here, if the subcooler 6 does not have the supercooling effect, in FIG. 19, the position of Q3 moves to the right side of the position shown in FIG. The position of Q4 is also moved to the right, and the amount of movement of the refrigerant in the gas-liquid mixing region is reduced by the amount of movement, and the cooling effect is reduced. Conversely, the degree of supercooling (SC) increases the degree of supercooling L 1 minute and the specific enthalpy of the gas-liquid mixed refrigerant in the indoor exchanger 70 increases, that is, the amount of heat exchange increases, and cooling The effect can be improved.
ところが、 Q 4→Q 1の比ェンタルピ上昇度は一定であり、 Q 4位置が、 過冷 却 S Cのない場合に比して、 過冷却度 L 1分だけ図において左側に移動する分、 Q 1の位置も、 過冷却のない場合に比べて、 左側に移動しており (即ち、 Q 2よ りも左側に寄っている。 ) 、 コンプレッサ 2には、 Q 1→Q 2間において、 冷媒 圧力を上昇させる上に、 Q 1の有する比ェンタルピを、 Q 2の設定量まで上昇さ せる仕事が加わる。 即ち、 その分だけ、 コンプレッサ 2の吐出圧力を、 元来の冷 媒圧力上昇に見合う分よりも増大させなければならない。 このように、 過冷却は 冷房効果を向上させる一方で、 コンプレッサ 2の仕事量を増大させ、 コンプレツ サ及びェンジンの負荷を増大させてしまうという短所がある。  However, the relative enthalpy rise from Q 4 to Q 1 is constant, and the position of Q 4 moves to the left in the figure by 1 degree of supercooling L compared to the case without supercooling SC. The position of 1 also moves to the left as compared to the case without supercooling (that is, it is closer to the left than Q2), and the compressor 2 has a refrigerant between Q1 and Q2. In addition to increasing the pressure, the work of increasing the specific enthalpy of Q 1 to the set amount of Q 2 is added. That is, the discharge pressure of the compressor 2 must be increased by that much more than the amount corresponding to the original increase in the refrigerant pressure. Thus, while subcooling improves the cooling effect, it has the disadvantage of increasing the workload of the compressor 2 and increasing the load on the compressor and the engine.
そして、 本実施例のように室内機 7を多く設けた空調システムにおいては、 室 内機 7の運転台数や運転状況に応じて過冷却度も変化し、 その都度コンプレッサ 2の運転状況を変えなければならない。 その一方で、 最大限に室内機 7が運転さ れる状況における最大限の過冷却度 L 1 を想定して、 コンプレッサ 2の容量を非 常に大きく設定しなければならない。  In the air conditioning system provided with a large number of indoor units 7 as in the present embodiment, the degree of supercooling also changes according to the number of operating indoor units 7 and the operating state, and the operating state of the compressor 2 must be changed each time. Must. On the other hand, the capacity of the compressor 2 must be set to a very large value, assuming the maximum degree of subcooling L 1 in a state where the indoor unit 7 is operated to the maximum.
従って、 問題は、 いかにコンプレッサ 2の仕事 (即ち吐出圧力) を抑えて運転 効率を確保しながら良好な過冷却効果 (冷房効果) を高めるかにある。 コンプレ ッサ 2の吐出圧力を低減するには、 第 1 9図で言えば、 Q 3→Q 4間の圧力差を 縮めればよい。 そのためには、 冷媒回路内において絞り弁として働く弁の開度を ある程度大きくすることが考えられるが、 この開度が、 過冷却効果を損なわない 程度で調節することが重要であり、 また、 冷房サイクル効率 C O P、 即ち、 運転 効率を低減しないことも要求される。 ― Therefore, the problem is how to increase the good supercooling effect (cooling effect) while suppressing the work (ie, discharge pressure) of the compressor 2 and ensuring operating efficiency. In order to reduce the discharge pressure of the compressor 2, in FIG. 19, the pressure difference between Q3 and Q4 should be reduced. To achieve this, it is conceivable to increase the opening of the valve that functions as a throttle valve in the refrigerant circuit to some extent, but this opening does not impair the supercooling effect. It is important to adjust the cooling level, and it is also required that the cooling cycle efficiency COP, that is, the operating efficiency, is not reduced. ―
ここで、 第 3図より、 第三膨張弁 6 2の開度を 「小」 の方向 (つまり絞る方向 ) に制御すれば、 第二膨張弁入口の過冷却度 S C、 及び、 室内熱交換の冷却効果 (冷房効果) は向上する。 第三膨張弁 6 2の前後差圧が大きくなればなるほど、 室外熱交換器 4における過冷却度 S Cは向上する。 従って、 過冷却度 S Cを上昇 させ、 冷房効果を高める点では、 第三膨張弁 6 2の開度を絞った上で、 抽出ライ ン 6 1の始端と終端を、 該第三膨張弁 6 2の弁前後の差圧が大きく なるように、 冷媒ライ ンに接続するのが望ま しい。 この視点により、 以上に述べた過冷却回路 においては、 抽出ライン 6 1の始端は、 レシーバ 5、 過冷却用夕ンク 6 3、 或い は室外熱交換器 4に設けた気液分離器 3 5等に接続して、 高圧の液相冷媒を取り 出すものとしており、 また、 その終端は、 第 1図や第 1 1図の如く、 冷媒ライン 2 6に接続するか、 或いは第 2図の如く、 冷媒ライ ン 2 5に接続する等、 低圧の 気相冷媒の通過ラインに接続し、 第三膨張弁の弁前後差圧を大きく確保できるよ うにしているのである。  Here, from FIG. 3, if the opening of the third expansion valve 62 is controlled in the direction of “small” (that is, the direction of throttle), the supercooling degree SC at the inlet of the second expansion valve and the indoor heat exchange The cooling effect (cooling effect) is improved. The greater the differential pressure across the third expansion valve 62, the greater the degree of supercooling SC in the outdoor heat exchanger 4. Accordingly, in order to increase the degree of supercooling SC and enhance the cooling effect, the opening degree of the third expansion valve 62 is reduced, and the start and end of the extraction line 61 are connected to the third expansion valve 6 2 It is desirable to connect to the refrigerant line so that the differential pressure across the valve increases. From this viewpoint, in the above-described subcooling circuit, the starting point of the extraction line 61 is connected to the receiver 5, the subcooling tank 63, or the gas-liquid separator 35 provided in the outdoor heat exchanger 4. Etc. to take out the high-pressure liquid-phase refrigerant, and its end is connected to the refrigerant line 26 as shown in FIG. 1 or FIG. 11, or as shown in FIG. By connecting to a low-pressure gas-phase refrigerant passage line such as connecting to the refrigerant line 25, a large differential pressure across the third expansion valve can be ensured.
しかし、 このようにして過冷却効果を十分確保できるように、 抽出ライン 6 1 の配設位置及び第三膨張弁 6 2の開度を設定した場合に、 前記の第 4図の如く、 第三膨張弁 6 2の前後差圧が大きいと、 コンプレッサ吐出圧力が大きくなり、 ェ ンジン負荷も高く なる。  However, when the arrangement position of the extraction line 61 and the opening degree of the third expansion valve 62 are set so that the supercooling effect can be sufficiently secured in this way, as shown in FIG. If the differential pressure across the expansion valve 62 is large, the compressor discharge pressure will increase, and the engine load will also increase.
そこで、 本発明では、 本来、 暖房用の膨張弁となる第一膨張弁 4 5を利用して 過冷却の促進と、 コンプレッサ負荷の低減とを得るものである。 即ち、 上述した 冷房サイクルにおいては、 室外熱交換器 4 とレシーバ 5の間に第一膨張弁 4 5が 配置されていることにより、 室外熱交換器 4から冷媒が無制限にレシ一バ 5へ流 出するのに抵抗を与えることとなり、 室外熱交換器 4の内部において、 高圧液相 冷媒を適度に滞留させることができ、 室外熱交換器 4の冷却効果を全面にわたり 十分に作用させる効果が得られ、 第一膨張弁 4 5の無い場合より、 過冷却器 6で の冷媒間同士の熱交換による冷却効果を向上させることが出来るのである。 つまり、 第一膨張弁 4 5を絞り弁として作用させることにより、 冷房運転時に は冷媒ライ ン 2 2を絞り、 室外熱交換器 4出口で冷媒を完全に液化させることに より レシーバ 5内での液相冷媒の冷却、 即ち過冷却作用を促進させる機能を備え ているのである。 勿論、 第一膨張弁 4 5は暖房運転時には膨張弁としての機能を 備える双方向型と している。 Therefore, in the present invention, the promotion of supercooling and the reduction of the compressor load are obtained by utilizing the first expansion valve 45 which is originally a heating expansion valve. That is, in the cooling cycle described above, since the first expansion valve 45 is disposed between the outdoor heat exchanger 4 and the receiver 5, the refrigerant flows from the outdoor heat exchanger 4 to the receiver 5 without any restriction. The high-pressure liquid-phase refrigerant can be appropriately retained inside the outdoor heat exchanger 4, and the effect of sufficiently cooling the outdoor heat exchanger 4 over the entire surface can be obtained. Therefore, the cooling effect by heat exchange between the refrigerants in the subcooler 6 can be improved as compared with the case where the first expansion valve 45 is not provided. In other words, by operating the first expansion valve 45 as a throttle valve, the refrigerant line 22 is throttled during cooling operation, and the refrigerant is completely liquefied at the outlet of the outdoor heat exchanger 4. It further has a function of promoting cooling of the liquid-phase refrigerant in the receiver 5, that is, the supercooling action. Of course, the first expansion valve 45 is a two-way type having a function as an expansion valve during the heating operation.
ところが、 該第一膨張弁 4 5を絞.り弁として作用させることにより、 過冷却効 果が向上する一方 (この効果を第 5図に示す。 ) 、 逆に冷媒通路を絞ることにな るため、 コンプレッサ 2の負荷が大きくなり、 結果的には運転効率を低下させる こととなる。 この関係を第 6図で示す。 第一膨張弁 4 5を基準値から絞る方向へ 調節すると、 前述した冷却効果の向上により、 冷房能力が上昇するため運転効率 が上昇する。 ところが、 絞り開度をある値以上に絞った場合には、 冷房能力は引 続き向上していくカ^ 運転効率 C 0 Pが減退する。  However, by making the first expansion valve 45 act as a throttle valve, the supercooling effect is improved (this effect is shown in FIG. 5), while the refrigerant passage is throttled. As a result, the load on the compressor 2 increases, and as a result, the operating efficiency decreases. This relationship is shown in FIG. When the first expansion valve 45 is adjusted in a direction to be narrowed from the reference value, the cooling efficiency is increased due to the improvement of the cooling effect described above, so that the operation efficiency is increased. However, when the throttle opening is reduced to a certain value or more, the cooling capacity continues to improve, and the operating efficiency C 0 P decreases.
そこで、 本発明においては、 過冷却効果を得る一方で、 運転効率 C O Pを確保 し、 更には、 コンプレッサ負荷を低減するという、 二律背反する双方の要求の実 現を可能とする最適化制御を行い、 運転効率を向上させるため、 以下に示す方法 により該第一膨張弁 4 5の開度制御を行う。  Therefore, in the present invention, while obtaining the supercooling effect, the operating efficiency COP is ensured, and furthermore, the optimization control is performed, which enables the realization of both conflicting requirements of reducing the compressor load, In order to improve the operation efficiency, the opening degree of the first expansion valve 45 is controlled by the following method.
まず、 第一の制御方法について説明する。 これは、 様々な室内機の運転状況に 即して過冷却度を設定した上で、 その過冷却度を確保しつつ、 運転効率を低減さ せないコンプレッサ吐出圧力の最適値を設定しておき、 適時コンプレッサの吐出 圧力を検出して、 該最適値との偏差を演算しながら、 第一膨張弁 4 5の開度制御 を行う ものである。  First, the first control method will be described. This is done by setting the degree of supercooling in accordance with the operating conditions of various indoor units, and then setting the optimum value of the compressor discharge pressure that does not reduce operating efficiency while ensuring the degree of supercooling. The opening pressure of the first expansion valve 45 is controlled while detecting the discharge pressure of the compressor as appropriate and calculating the deviation from the optimum value.
即ち、 第 2図に示す如く、 コンプレッサ 2 と四方弁 3とを結ぶ冷媒ライ ン 2 0 上には圧力センサ P 1が配置され、 コンプレッサ 2からの吐出圧力を検出する。 この圧力検出値を、 コン トローラ i 6 に入力し、 第一膨張弁 4 5の開度制御を行 う ものである。  That is, as shown in FIG. 2, a pressure sensor P1 is disposed on a refrigerant line 20 connecting the compressor 2 and the four-way valve 3, and detects a discharge pressure from the compressor 2. This detected pressure value is input to the controller i 6 to control the opening of the first expansion valve 45.
この制御方法について、 第 8図のフローチャー トを用いて説明する。 まず、 コ ン トロ一ラ 1 6は、 初期値として第一膨張弁開度に E V 0をセッ ト し、 第一膨張 弁 4 5の開度調整を行い、 この初期設定状態で冷房サイクル運転を行う (ステツ プ S 1 1 ) 。 次に、 圧力センサ P 1 の検出したコンプレッサ吐出圧力 P dを入力 し (ステップ S 1 2 ) 、 吐出圧目標値を P d ' との偏差 εを算出して (ステップ S 1 3 ) 、 偏差 εを入力値とする弁開度変更量演算関数 f により、 弁開度変更量 Δ Μ νを演算し (ステップ S I 4 ) 、 該弁開度変更量 Δ Μ νに応じた第一膨張弁This control method will be described with reference to the flowchart of FIG. First, the controller 16 sets EV 0 to the first expansion valve opening as an initial value, adjusts the opening of the first expansion valve 45, and performs the cooling cycle operation in this initial setting state. (Step S11). Next, the compressor discharge pressure Pd detected by the pressure sensor P1 is input (step S12), and the target value of the discharge pressure is calculated as a deviation ε from Pd '(step S13), and the deviation ε is calculated. The valve opening change amount is calculated using the valve opening change amount calculation function f Δ Μ ν is calculated (step SI 4), and the first expansion valve according to the valve opening change amount Δ ν ν is calculated.
4 5の開度制御を行う (ステップ S 1 5 ) 。 そして、 過冷却サイクルの継続判定 を行い (ステップ S 1 6 ) 、 コンプレッサ吐出圧力が目標値に達するまで本制御 を繰り返すのである。 The opening control of 45 is performed (step S15). Then, the continuation of the supercooling cycle is determined (step S16), and this control is repeated until the compressor discharge pressure reaches the target value.
この制御方法により、 第一膨張弁 4 5は、 第 6図で示す運転効率が上昇する範 囲においては絞る方向に制御されて、 過冷却効果を向上させ、 冷房能力を上昇さ せる。 そして、 第一膨張弁 4 5の開度がさらに小さ く なつて、 コンプレッサ吐出 圧力が増大していく と、 運転効率 (C O P ) が減少に向かうため、 ここでコン 卜 ローラ 1 6は、 冷房能力の向上と運転効率の向上との両方を実現するのに最適な 開度に、 第一膨張弁 4 5を調整し、 該コンプレッサ吐出圧力が目標値に達したら それ以上運転効率を低下させないよう、 開度の絞りを停止するのである。  With this control method, the first expansion valve 45 is controlled in the direction in which the first expansion valve 45 is throttled in a range where the operating efficiency is increased as shown in FIG. 6, thereby improving the supercooling effect and increasing the cooling capacity. If the opening degree of the first expansion valve 45 becomes smaller and the compressor discharge pressure increases, the operating efficiency (COP) tends to decrease, so that the controller 16 has a cooling capacity. The first expansion valve 45 is adjusted to an opening that is optimal to achieve both the improvement in the operating efficiency and the operating efficiency, and when the compressor discharge pressure reaches the target value, the operating efficiency is not further reduced. The stop of the opening is stopped.
次に、 第二の制御方法について説明する。 前記の第一制御方法では、 運転効率 に係わるコンプレッサ吐出圧力を制御の基準としていたが、 本方法では、 冷房効 果に係わる過冷却度を制御の基準とする。  Next, a second control method will be described. In the first control method, the compressor discharge pressure related to the operating efficiency is used as a control criterion. In the present method, the degree of supercooling related to the cooling effect is used as the control criterion.
即ち、 第 2図に示すように、 室外熱交換器 4 と第一膨張弁 4 5との間の冷媒ラ イン 2 2には、 圧力センサ P 2及び温度センサ T 1が配設されている。 圧力セン サ P 2は、 室外熱交換器 4から流出する冷媒圧力 (凝縮圧力) を、 温度センサ T 1 は、 室内熱交換器 4から流出する冷媒温度を検出し、 それぞれの検出値がコン トローラ 1 6に入力される。  That is, as shown in FIG. 2, a pressure sensor P2 and a temperature sensor T1 are provided in the refrigerant line 22 between the outdoor heat exchanger 4 and the first expansion valve 45. The pressure sensor P 2 detects the refrigerant pressure (condensing pressure) flowing out of the outdoor heat exchanger 4, and the temperature sensor T 1 detects the temperature of the refrigerant flowing out of the indoor heat exchanger 4, and each detected value is a controller. Entered in 16.
この制御方法について、 第 9図のフローチャー トを用いて説明する。 まず、 コ ン トロ一ラ 1 6は、 初期値として第一膨張弁開度に E V 0をセッ トする (ステツ プ S 2 1 ) 。 次に、 前記圧力センサ P 2の検出した凝縮圧力 P c、 及び温度セン サ T 1の検出した室外熱交換器出口温度 T 0 u tを入力し (ステップ S 2 2 ) 、 過冷却度 S Cを演算する (ステップ S 2 3 ) 。 過冷却度 S Cは、 凝縮圧力 P cに 対する飽和温度 T cと出口温度 T 0 u tの差分として演算される。 こう して、 過 冷却度目標値 S C ' との偏差 εを演算し (ステップ S 2 4 ) 、 偏差 εを人力値と する弁開度変更量演算関数 f により、 弁開度変更量 Δ Μ νを演算する (ステップ This control method will be described with reference to the flowchart of FIG. First, the controller 16 sets EV0 to the first expansion valve opening as an initial value (step S21). Next, the condensing pressure P c detected by the pressure sensor P 2 and the outdoor heat exchanger outlet temperature T 0 ut detected by the temperature sensor T 1 are input (step S 22), and the supercooling degree SC is calculated. Yes (step S2 3). The degree of supercooling SC is calculated as a difference between the saturation temperature Tc with respect to the condensing pressure Pc and the outlet temperature T0ut. In this way, the deviation ε from the supercooling degree target value SC ′ is calculated (step S24), and the valve opening change amount Δ Μ ν is calculated by the valve opening change amount calculation function f using the deviation ε as a human power value. (Step
5 2 5 ) 。 そして、 該弁開度変更量 Δ Μ Vに応じた第一膨張弁 4 5の開度制御を 行い (ステップ S 2 6 ) 、 過冷却サイクルの継続判定を行って (ステップ S 2 7 ) 、 室外熱交換器 4出口の過冷却度 S Cが目標値に達するまで本制御を繰り返す のである。 ― 5 2 5). Then, the opening control of the first expansion valve 45 is performed in accordance with the valve opening change amount ΔΜV (step S 26), and the continuation of the subcooling cycle is determined (step S 27 This control is repeated until the supercooling degree SC at the outdoor heat exchanger 4 outlet reaches the target value. ―
室外熱交換器 4における過冷却度 S Cは、 室外熱交換器 4の前後温度差を用い て演算することも可能である。 つまり、 第 2図で示すように、 室外熱交換機 4の 入口側の冷媒ライ ン 2 1 に温度センサ T 2を配設し、 室外熱交換器 4の出入口温 度差を温度センサ T 1 · T 2により求めて過冷却度 S Cを算出するようにしても よい。  The degree of supercooling SC in the outdoor heat exchanger 4 can also be calculated using the temperature difference before and after the outdoor heat exchanger 4. That is, as shown in FIG. 2, a temperature sensor T 2 is provided on the refrigerant line 21 on the inlet side of the outdoor heat exchanger 4, and the temperature difference between the inlet and outlet of the outdoor heat exchanger 4 is detected by the temperature sensors T 1 · T The supercooling degree SC may be calculated according to the formula (2).
このような制御を行うことで、 過冷却効果を向上させて冷房能力を上昇させる ベく、 絞り方向に制御した第一膨張弁 4 5力 <、 第 6図に示すように、 ある一定の 開度より小さくなることで運転効率が小さく なってしまわないように、 冷房能力 と運転効率の双方の向上を実現する最適な過冷却度となる位置で開度が調整され るのである。  By performing such a control, the supercooling effect is improved and the cooling capacity is increased. In particular, as shown in FIG. 6, the first expansion valve 45 controlled in the throttle direction has a certain opening. The degree of opening is adjusted at a position where the optimal degree of supercooling is achieved to improve both cooling capacity and operating efficiency so that the operating efficiency does not decrease when the temperature is lower than the degree.
次に、 第三の制御方法について説明する。 これは、 第一膨張弁 4 5の前後差圧 に基準値を設定して、 過冷却効果を確保しながらコンプレッサ吐出圧力が一定以 上に高くならないよう、 該第一膨張弁 4 5の開度を調節するものである。  Next, a third control method will be described. This is done by setting a reference value for the differential pressure across the first expansion valve 45 to prevent the compressor discharge pressure from rising above a certain level while ensuring a supercooling effect. Is to adjust.
ここで、 第 7図について説明する。 第一膨張弁 4 5の前後差圧が大きくなれば なるほど、 冷房能力、 運転効率 C 0 Pはともに上昇する。 ところ力 <、 第一膨張弁 4 5の前後差圧を大きく していく為には、 第一膨張弁 4 5の出口側圧力が小さ く なれば運転効率 C 0 Pが低下するため、 第一膨張弁 4 5の入口側圧力を大きく し なければならない。 そのためには、 コンプレッサ 2の吐出圧力を増大させなけれ ばならず、 第 3図は第三膨張弁 6 1 に関するものではあるが、 同様の結果が現れ る。 従って、 やはり第一膨張弁 4 5の前後差圧を無制限に大きくすることはでき ない。  Here, FIG. 7 will be described. As the differential pressure across the first expansion valve 45 increases, both the cooling capacity and the operating efficiency C 0 P increase. However, in order to increase the pressure difference before and after the first expansion valve 45, if the outlet pressure of the first expansion valve 45 decreases, the operating efficiency C 0 P decreases. The inlet pressure of the expansion valve 45 must be increased. For that purpose, the discharge pressure of the compressor 2 must be increased, and although FIG. 3 relates to the third expansion valve 61, the same result is obtained. Therefore, the differential pressure across the first expansion valve 45 cannot be increased without limit.
そこで、 第 2図に示すように、 圧力センサ P 2に加えて、 第一膨張弁 4 5とレ シ一バ 5との間の冷媒ライン 2 3には圧力センサ P 3が配設されている。 圧力セ ンサ P 3は、 室外熱交換器 4を流出した冷媒が第一膨張弁 4 5を通過した後の圧 力を検出するものであり、 この検出値が、 コン トローラ 1 6に入力される。 つま り、 コントローラ 1 6は圧力センサ P 2 · Ρ 3により第一膨張弁 4 5の前後圧力 差を演算可能としているのである。 この制御方法について、 図 1 0のフローチャー トを用いて説明する。 まず、 コ ン トローラ 1 0は、 初期値と して第一膨張弁開度に E V Oをセッ 卜する (ステツ プ S 3 1 ) 。 次に、 前記圧力センサ P 2 · P 3の検出した圧力から第一膨張弁差 圧 d P E Vを検出し (ステップ S 3 2 ) 、 吐出差圧目標値を d P E V ' との偏差 εを演算し (ステツプ S 3 3 ) 、 これに基づき、 弁開度変更量 Δ Μ νを演算して (ステップ S 3 4 ) 、 該弁開度変更量 Δ Μ νに応じた第一膨張弁 4 5の開度制御 を行う (ステップ S 3 5 ) 。 そして、 過冷却サイクルの継続判定を行い (ステツ プ S 3 6 ) 、 第一膨張弁前後差圧が目標値に達するまで本制御を繰り返すのであ る。 Therefore, as shown in FIG. 2, in addition to the pressure sensor P2, a pressure sensor P3 is disposed in the refrigerant line 23 between the first expansion valve 45 and the receiver 5. . The pressure sensor P 3 detects the pressure of the refrigerant flowing out of the outdoor heat exchanger 4 after passing through the first expansion valve 45, and the detected value is input to the controller 16. . In other words, the controller 16 can calculate the pressure difference between the front and rear of the first expansion valve 45 by the pressure sensors P2 and P3. This control method will be described with reference to the flowchart of FIG. First, the controller 10 sets EVO to the first expansion valve opening as an initial value (step S31). Next, the first expansion valve differential pressure d PEV is detected from the pressures detected by the pressure sensors P 2 and P 3 (step S 32), and a deviation ε of the discharge differential pressure target value from d PEV ′ is calculated. (Step S33) Based on this, the valve opening change amount ΔΜν is calculated (Step S34), and the opening of the first expansion valve 45 according to the valve opening change amount ΔΜν is calculated. The degree control is performed (step S35). Then, the continuation of the supercooling cycle is determined (step S36), and this control is repeated until the differential pressure across the first expansion valve reaches the target value.
以上の制御方法により、 第一膨張弁 4 5の前後差圧をもとに、 冷房能力を確保 する一方、 コンプレッサ負荷が一定以上高くならないように、 第一膨張弁 4 5の 開度を最適に調節するのである。  With the above control method, based on the differential pressure across the first expansion valve 45, the cooling capacity is ensured, while the opening of the first expansion valve 45 is optimized so that the compressor load does not become higher than a certain level. Adjust.
本発明に係る第一膨張弁 4 5の制御方法は、 上述した第一から第三までの方法 を併用することも可能である。 例えば、 室外熱交換器 4の出口過冷却度と第一膨 張弁 4 5の前後差圧の両方をコン 卜ローラ 1 6で検出し、 双方の最適値に近い第 一膨張弁 4 5の開度制御を行うことで、 より精度の高い制御が可能となる。 そして、 前記の如く、 これらの制御方法を、 第 1図、 第 2図、 第 1 1図乃至第 1 6図の各実施例、 或いはそれ以外の過冷却回路を含む様々な空調システムに適 用できるのである。  The method of controlling the first expansion valve 45 according to the present invention can use the first to third methods described above in combination. For example, both the degree of subcooling at the outlet of the outdoor heat exchanger 4 and the differential pressure across the first expansion valve 45 are detected by the controller 16, and the opening of the first expansion valve 45, which is close to the optimum value for both, is detected. By performing the degree control, more precise control becomes possible. Then, as described above, these control methods are applied to the various air conditioning systems including the supercooling circuit in each of the embodiments shown in FIGS. 1, 2, and 11 to 16, or other embodiments. You can.
最後に、 第 1図の実施例では、 前記の如く、 第三膨張弁 6 2より下流の、 レシ —バ 5を通過させた抽出ライン 6 1力 <、 冷媒ライン 2 6の、 四方弁 3と該補助熱 吸収器 8との間の部分に接続されているが、 この意義について説明しておく。 前述の如く、 ェンジン 1の冷却水回路 1 0には補助回路 1 2が並列接続されて おり、 エンジン 1を冷却して温度上昇した冷却水がモータ弁 1 3を経由して補助 熱吸収器 8 に送られ、 エンジン 1 の廃熱を熱交換した後、 再び冷却水回路 1 0 に 戻るよう構成されている。  Finally, in the embodiment of FIG. 1, as described above, the four-way valve 3 of the refrigerant line 26 and the extraction line 6 1 <that is passed through the receiver 5 downstream of the third expansion valve 62 It is connected to the portion between the auxiliary heat absorber 8 and its significance will be described. As described above, the auxiliary circuit 12 is connected in parallel to the cooling water circuit 10 of the engine 1, and the cooling water whose temperature has increased by cooling the engine 1 passes through the motor valve 13 and the auxiliary heat absorber 8. The engine is configured to exchange heat with the waste heat of the engine 1 and then return to the cooling water circuit 10 again.
一方、 室内熱交換器 7 0において室内を冷却して気化した冷媒は、 冷媒ライ ン 2 5、 四方弁 3、 冷媒ライ ン 2 6を通ってアキュムレータ 9へと戻されるが、 室 内熱交換器 7 0から湿り度の大きい蒸気が送られる場合があり、 この際、 補助熱 吸収器 8が吸収したエンジン i の廃熱にて、 冷媒を蒸発させる。 この補助熱吸収 器 8による蒸発作用により、 アキュムレータ 9の液相分離作用と併せて、 コンプ レッサ 2に吸入される冷媒から液粒を確実に取り除く ことができる。 On the other hand, the refrigerant that has cooled the room and vaporized in the indoor heat exchanger 70 is returned to the accumulator 9 through the refrigerant line 25, the four-way valve 3, and the refrigerant line 26. Highly wet steam may be sent from 70, with auxiliary heat The refrigerant is evaporated by the waste heat of the engine i absorbed by the absorber 8. By the evaporation effect of the auxiliary heat absorber 8, the liquid particles can be reliably removed from the refrigerant sucked into the compressor 2 together with the liquid phase separation operation of the accumulator 9.
しかし、 室内熱交換器 7 0から補助熱吸収器 8へと送られる蒸気冷媒の圧力が 高い場合には、 補助熱吸収器 8で冷媒が堰止められることになるので、 室内機 7 からの冷媒の戻り量が少なくなり、 その結果、 循環冷媒量不足が発生する。 そこ で、 第 1図の実施例では、 補助熱吸収器 8を迂回してアキュムレータ 9へ至るバ ィパス回路 8 0を設けている。 また、 補助熱吸収器 8の入口側には、 圧力センサ 8 2が配設されており、 バイパス回路 8 0には、 電磁バルブ 8 1が介装されてい る。 これにより、 補助熱吸収器 8に導入される蒸気冷媒の圧力が設定以上の値に なった場合には、 電磁バルブ 8 1を開放して蒸気冷媒を迂回させるよう構成して いるのである。  However, when the pressure of the vapor refrigerant sent from the indoor heat exchanger 70 to the auxiliary heat absorber 8 is high, the refrigerant is blocked by the auxiliary heat absorber 8, so that the refrigerant from the indoor unit 7 As a result, the amount of circulating refrigerant is insufficient. Therefore, in the embodiment shown in FIG. 1, a bypass circuit 80 is provided to bypass the auxiliary heat absorber 8 and reach the accumulator 9. Further, a pressure sensor 82 is provided on the inlet side of the auxiliary heat absorber 8, and an electromagnetic valve 81 is provided in the bypass circuit 80. Thus, when the pressure of the vapor refrigerant introduced into the auxiliary heat absorber 8 becomes equal to or higher than the set value, the electromagnetic valve 81 is opened to bypass the vapor refrigerant.
このような中で、 通常の冷房運転における過冷却サイクルにおいては、 第三膨 張弁 6 2の開度を絞り、 この圧力制御にてその下流の伝熱管 6 0を通過する冷媒 を低圧にして気化しやすいようにするものであり、 過冷却器 6にて、 レシーバ流 入管 5 1からレシーバ流入管 5 2へと至る冷媒を過冷却することにより、 伝熱管 6 0内を通過する冷媒は、 熱を吸収して気化し、 気相冷媒として補助熱吸収器 8 へと導入される。  Under such circumstances, in the supercooling cycle in the normal cooling operation, the opening degree of the third expansion valve 62 is reduced, and the refrigerant passing through the downstream heat transfer tube 60 is reduced to a low pressure by this pressure control. By supercooling the refrigerant flowing from the receiver inlet pipe 51 to the receiver inlet pipe 52 in the subcooler 6, the refrigerant passing through the heat transfer pipe 60 is The heat is absorbed and vaporized, and introduced into the auxiliary heat absorber 8 as a gas-phase refrigerant.
そして、 この第三膨張弁 6 2の開度を大きく開放することにより、 伝熱管 6 0 下流の抽出ライン 6 1に冷媒を液相状態で戻すことが出来る。 この作用は以下に おいて 2つの効果を発揮する。  By opening the degree of opening of the third expansion valve 62 largely, the refrigerant can be returned to the extraction line 61 downstream of the heat transfer tube 60 in a liquid state. This action has two effects in the following.
ます、 第一の効果について説明する。 前述の如く、 室内熱交換器 7 0からアキ ュムレータ 9側へと流れる蒸気冷媒は、 補助熱吸収器 8でエンジン 1の廃熱を利 用して蒸発 ·膨張するが、 捕助熱吸収器 8に導入される蒸気冷媒の圧力が低い場 合には、 補助熱吸収器 8を利用してもコンプレッサ 2に吸入される冷媒圧力が低 下するため、 コンプレッサ 2の負荷が大きくなる。 そこで、 圧力センサ 8 2によ り検出した圧力が設定以下となった場合には、 過冷却器 6の抽出ライ ン 6 1 に設 けられた第三膨張弁 6 2を開放する。 これにより、 レシーバ 5から液相状態の冷 媒が、 抽出ライ ン 6 1を経由して、 冷媒ライ ン 2 6 に流入され、 補助熱吸収器 8 に導入される。 そして、 この液相状態の冷媒が補助熱吸収器 8において蒸発し、 室内熱交換器 7 0から送られる蒸気冷媒と併せて圧力を高めた上で、 コンプレツ サ 2に吸入されるのである。 First, the first effect will be described. As described above, the vapor refrigerant flowing from the indoor heat exchanger 70 to the accumulator 9 evaporates and expands using the waste heat of the engine 1 in the auxiliary heat absorber 8, but the auxiliary heat absorber 8 When the pressure of the vapor refrigerant introduced into the compressor 2 is low, the pressure of the refrigerant sucked into the compressor 2 is reduced even if the auxiliary heat absorber 8 is used, so that the load on the compressor 2 increases. Therefore, when the pressure detected by the pressure sensor 82 becomes lower than the set value, the third expansion valve 62 provided on the extraction line 61 of the subcooler 6 is opened. As a result, the refrigerant in the liquid phase from the receiver 5 flows into the refrigerant line 26 via the extraction line 61 and flows into the auxiliary heat absorber 8 Will be introduced. Then, the refrigerant in the liquid phase evaporates in the auxiliary heat absorber 8, and after being increased in pressure together with the vapor refrigerant sent from the indoor heat exchanger 70, is sucked into the compressor 2.
つまり、 補助熱吸収器 8に導入される蒸気冷媒の圧力が低くても、 抽出ライ ン 6 1 とエンジン 1の廃熱を利用してコンプレッサ 2に吸入される冷媒圧力を高め ることができ、 コンプレッサ 2の負荷軽減が図れるのである。  That is, even if the pressure of the vapor refrigerant introduced into the auxiliary heat absorber 8 is low, the refrigerant pressure sucked into the compressor 2 can be increased by utilizing the waste heat of the extraction line 61 and the engine 1, The load on compressor 2 can be reduced.
次に、 第二の効果について説明する。 前述の如く、 コンプレッサ 2は、 冷房時 において、 室内熱交換器 7 0から戻された気相冷媒を吸入し、 圧縮した高温高圧 の冷媒を室外熱交換器 4へ圧送する。 ところが、 この高温高圧の冷媒の温度が高 くなりすぎると、 室外熱交換器 4における負荷が増大し、 凝縮効果が充分に得ら れない場合がある。 また、 前述の如く、 室内熱交換器 7 0から戻る蒸気冷媒は、 補助熱吸収器 8においてエンジン 1の廃熱を利用して蒸発するが、 蒸気冷媒に含 まれる液粒が少ない場合には、 エンジン 1の廃熱を気相伏態の冷媒が吸収し、 温 度上昇することとなる。 これによりコンプレッサ 2に吸入される気相冷媒の温度 も高くなる。  Next, the second effect will be described. As described above, the compressor 2 draws the gas-phase refrigerant returned from the indoor heat exchanger 70 and sends the compressed high-temperature and high-pressure refrigerant to the outdoor heat exchanger 4 during cooling. However, if the temperature of the high-temperature and high-pressure refrigerant becomes too high, the load on the outdoor heat exchanger 4 increases, and a sufficient condensation effect may not be obtained. Further, as described above, the vapor refrigerant returning from the indoor heat exchanger 70 evaporates using the waste heat of the engine 1 in the auxiliary heat absorber 8, but when the liquid droplets contained in the vapor refrigerant are small, However, the waste heat of the engine 1 is absorbed by the refrigerant in the gaseous state and the temperature rises. As a result, the temperature of the gas-phase refrigerant sucked into the compressor 2 also increases.
そこで、 コンプレッサ 2から圧送される冷媒の温度を、 温度センサ T 3におい て検出し、 その温度が設定以上に高く なつた場合には、 第三膨張弁 6 2を開放す るのである。 これにより レシーバ 5内の冷媒が液相状態で抽出ライン 6 1を経て 冷媒ライン 2 6より補助熱吸収器 8へと導入される。 このようにして、 補助熱吸 収器 8におけるエンジン 1の廃熱は、 この液相冷媒を蒸発させるエネルギーに利 用されるため、 コンプレッサ 2に吸入される冷媒の温度上昇を抑えることができ るのである。 産業上の利用可能性  Therefore, the temperature of the refrigerant pumped from the compressor 2 is detected by the temperature sensor T3, and when the temperature becomes higher than the set temperature, the third expansion valve 62 is opened. Thereby, the refrigerant in the receiver 5 is introduced into the auxiliary heat absorber 8 from the refrigerant line 26 through the extraction line 61 in a liquid state. In this way, the waste heat of the engine 1 in the auxiliary heat absorber 8 is used for energy for evaporating the liquid-phase refrigerant, so that a rise in the temperature of the refrigerant sucked into the compressor 2 can be suppressed. It is. Industrial applicability
本発明のヒートポンプの冷媒過冷却回路は、 あらゆるタイプのェアーコンディ ショナ一に対して適用可能であるが、 特に、 ビル、 工場等で使用されるエア一コ ンディ ショナ一、 つまり 1台の室外熱交換器に対して多数の室内熱交換器が接続 されるタイプのエア一コンディ ショナ一において、 大きな効力を発揮する発明で ある。  The refrigerant subcooling circuit of the heat pump of the present invention can be applied to all types of air conditioners, but in particular, it is an air conditioner used in buildings and factories, that is, one outdoor heat exchanger. This is an invention that exerts a great effect in an air conditioner of a type in which a number of indoor heat exchangers are connected to the heat exchanger.

Claims

請 求 の 範 囲 The scope of the claims
1 . 冷暖房用空調システムの冷房時の冷媒回路に構成される冷媒過冷却回路であ つて、 室外熱交換器下流側に配置した第一膨張弁と、 複数の室内熱交換器上流側 に各々配置した複数の第二膨張弁とを結ぶ冷媒ライ ン上に、 液相冷媒貯留用レシ —バを設けるとともに、 該空調システムの冷媒回路のいずれかより液相冷媒のー 部を取り出す抽出ライ ンを設け、 該抽出ライ ン上に第三膨張弁を設けて、 該第三 膨張弁より下流側の該抽出ライ ンにて、 該レシーバにて貯留中の、 或いは貯留後 に取り出された液相冷媒を過冷却するよう構成した冷媒過冷却回路において、 該 第一膨張弁の開度を、 圧縮機吐出側と方向切換弁とを結ぶ冷媒ライン内の冷媒圧 力に応じて制御することを特徴とする冷媒過冷却回路。 1. Refrigerant subcooling circuit that constitutes the refrigerant circuit for cooling in the air conditioning system for cooling and heating, with the first expansion valve arranged downstream of the outdoor heat exchanger and the upstream expansion valves of multiple indoor heat exchangers. A liquid-phase refrigerant storage receiver is provided on the refrigerant line connecting the plurality of second expansion valves, and an extraction line for extracting a part of the liquid-phase refrigerant from one of the refrigerant circuits of the air conditioning system. A third expansion valve provided on the extraction line, and a liquid-phase refrigerant taken out of the receiver at or after storage in the receiver at the extraction line downstream of the third expansion valve. Wherein the degree of opening of the first expansion valve is controlled according to the refrigerant pressure in a refrigerant line connecting a compressor discharge side and a direction switching valve. Refrigerant supercooling circuit.
2 . 前記第三膨張弁より下流側の該抽出ライ ンは、 前記レシーバ内を通過するこ とを特徴とする請求の範囲第 1項記載の冷媒過冷却回路。  2. The refrigerant subcooling circuit according to claim 1, wherein the extraction line downstream of the third expansion valve passes through the receiver.
3 . 前記抽出ライ ンは、 前記室外熱交換器より液相冷媒を取り出すことを特徴と する請求の範囲第 2項記載の冷媒過冷却回路。.  3. The refrigerant supercooling circuit according to claim 2, wherein the extraction line takes out a liquid-phase refrigerant from the outdoor heat exchanger. .
4 . 前記抽出ライ ンは、 前記レシーバより液相冷媒を取り出すことを特徴とする 請求の範囲第 2項記載の冷媒過冷却回路。  4. The refrigerant supercooling circuit according to claim 2, wherein the extraction line takes out a liquid-phase refrigerant from the receiver.
5 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成さ れ、 該タンク内壁に固定した複数のパイプにより支持されることを特徴とする請 求の範囲第 2項記載の冷媒過冷却回路。  5. The claim according to claim 2, wherein the extraction line is formed of a coiled refrigerant pipe in the receiver, and is supported by a plurality of pipes fixed to the tank inner wall. Refrigerant subcooling circuit.
6 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成さ れ、 該冷媒管の各隣り合う一巻き同士を接続固定したことを特徵とする請求の範 囲第 2項記載の冷媒過冷却回路。  6. The extraction line according to claim 2, wherein the extraction line is configured by a coiled refrigerant pipe in the receiver, and each adjacent one turn of the refrigerant pipe is connected and fixed. Refrigerant supercooling circuit.
7 . 前記レシーバの前後いずれかに、 液相冷媒を貯留する過冷却用タ ンクをタ ン デム状に配設し、 前記抽出ラインは、 該レシーバまたは該過冷却用タンクより液 相冷媒を取り出して、 その前記第三膨張弁より下流側部分が、 該過冷却用タ ンク を通過することを特徴とする請求の範囲第 1項記載の冷媒過冷却回路。  7. A tank for supercooling for storing the liquid-phase refrigerant is arranged in tandem in front of or behind the receiver, and the extraction line takes out the liquid-phase refrigerant from the receiver or the tank for supercooling. 2. The refrigerant supercooling circuit according to claim 1, wherein a portion downstream of the third expansion valve passes through the subcooling tank.
8 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成さ れ、 該タンク内壁に沿設した複数のパイブにより支持されることを特徴とする請 求の範囲第 7項記載の冷媒過冷却回路。 8. The extraction line is constituted by a coil-shaped refrigerant pipe in the receiver, and is supported by a plurality of pipes arranged along the inner wall of the tank. 8. The refrigerant subcooling circuit according to claim 7, wherein
9 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成さ れ、 該冷媒管の各隣り合う一巻き同士を接続固定したことを特徴とする請求の範 囲第 7項記載の冷媒過冷却回路。  9. The extraction line according to claim 7, wherein the extraction line is formed of a coil-shaped refrigerant pipe in the receiver, and each adjacent one turn of the refrigerant pipe is connected and fixed. Refrigerant supercooling circuit.
1 0 . 前記レシーバと前記複数の第二膨張弁とを結ぶ冷媒ライ ンを、 広がり空間 を有する過冷却管内に通過させ、 前記抽出ライ ンは、 該レシーバより液相冷媒を 取り出すとともに、 その前記第三膨張弁より下流側の部分が、 該過冷却管内を通 過することを特徴とする請求の範囲第 1項記載の冷媒過冷却回路。  10. A refrigerant line connecting the receiver and the plurality of second expansion valves is passed through a supercooling pipe having an expanding space, and the extraction line removes a liquid-phase refrigerant from the receiver, and 2. The refrigerant subcooling circuit according to claim 1, wherein a portion downstream of the third expansion valve passes through the subcooling pipe.
1 1 . 前記の第一膨張弁とレシーバとの間の冷媒ライ ンを二系統と し、 一方は該 レシーバの上部に接続されて、 該レシ一バからの冷媒流れを遮断する逆止弁を有 し、 他方は該レシーバの下部に接続されて、 該第一膨張弁からの冷媒流れを遮断 する逆止弁を有することを特徴とする請求の範囲第 1項記載の冷媒過冷却回路。 11. The refrigerant line between the first expansion valve and the receiver is divided into two systems, one of which is connected to the upper part of the receiver and has a check valve that shuts off the flow of the refrigerant from the receiver. 2. The refrigerant supercooling circuit according to claim 1, wherein the other has a check valve connected to a lower portion of the receiver to shut off a flow of the refrigerant from the first expansion valve.
1 2 . 前記第三膨張弁の下流側の前記抽出ライ ンは、 前記レシーバ内に貯留中の 或いは貯留後に取り出された液相冷媒を過冷却した後、 該複数の室内熱交換器と 方向切換弁とを結ぶ冷媒ラインに接続されることを特徴とする請求の範囲第 1項 記載の冷媒過冷却回路。 12. The extraction line downstream of the third expansion valve, after supercooling the liquid-phase refrigerant stored in the receiver or taken out after storage, switches direction with the plurality of indoor heat exchangers. The refrigerant supercooling circuit according to claim 1, wherein the refrigerant subcooling circuit is connected to a refrigerant line connecting the valve and the valve.
1 3 . 圧縮機駆動用原動機を冷却するための冷却水を導く冷媒補助蒸発器を、 方 向切換弁と圧縮機吸入側との間の冷媒ライン上に配設し、 前記第三膨張弁の下流 側の前記抽出ライ ンは、 前記レシーバ内に貯留中の、 或いは貯留後に取り出され た液相冷媒を過冷却した後、 該方向切換弁と該冷媒補助蒸発器とを結ぶ冷媒ラィ ンに接続されることを特徴とする請求の範囲第 1項記載の冷媒過冷却回路。 13. An auxiliary refrigerant evaporator that guides cooling water for cooling the compressor driving prime mover is provided on the refrigerant line between the direction switching valve and the compressor suction side. The downstream extraction line is connected to a refrigerant line connecting the direction switching valve and the auxiliary refrigerant evaporator after supercooling the liquid-phase refrigerant stored in the receiver or taken out after the storage. 2. The refrigerant supercooling circuit according to claim 1, wherein
1 4 . 冷暖房用空調システムの冷房時の冷媒回路に構成される冷媒過冷却回路で あって、 室外熱交換器下流側に配置した第一膨張弁と、 複数の室内熱交換器上流 側に各々配置した複数の第二膨張弁とを結ぶ冷媒ライン上に、 液相冷媒貯留用レ シーバを設けるとともに、 該空調システムの冷媒回路のいずれかより液相冷媒の 一部を取り出す抽出ライ ンを設け、 該抽出ライ ン上に第三膨張弁を設けて、 該第 三膨張弁より下流側の該抽出ラインにて、 該レシーバにて貯留中の、 或いは貯留 後に取り出された液相冷媒を過冷却するよう構成した冷媒過冷却回路において、 該第一膨張弁の開度を、 該室外熱交換器出口の過冷却度に応じて制御することを 特徴とする冷媒過冷却回路。 14. A refrigerant supercooling circuit that is included in the refrigerant circuit of the air-conditioning system for cooling and cooling, and includes a first expansion valve disposed downstream of the outdoor heat exchanger and a plurality of upstream heat exchangers upstream of the plurality of indoor heat exchangers. A liquid-phase refrigerant storage receiver is provided on the refrigerant line that connects the arranged multiple second expansion valves, and an extraction line is provided to extract a part of the liquid-phase refrigerant from one of the refrigerant circuits of the air conditioning system. A third expansion valve is provided on the extraction line, and in the extraction line downstream of the third expansion valve, the liquid-phase refrigerant being stored in the receiver or taken out after the storage is supercooled. In the refrigerant supercooling circuit configured to perform, the opening degree of the first expansion valve is controlled according to the degree of supercooling at the outlet of the outdoor heat exchanger. Characteristic refrigerant supercooling circuit.
1 5 . 前記第三膨張弁より下流側の該抽出ライ ンは、 前記レシーバ内を通過する ことを特徴とする請求の範囲第 1 4項記載の冷媒過冷却回路。  15. The refrigerant subcooling circuit according to claim 14, wherein the extraction line downstream of the third expansion valve passes through the receiver.
1 6 . 前記抽出ライ ンは、 前記室外熱交換器より液相冷媒を取り出すことを特徴 とする請求の範囲第 1 5項記載の冷媒過冷却回路。  16. The refrigerant supercooling circuit according to claim 15, wherein the extraction line takes out a liquid-phase refrigerant from the outdoor heat exchanger.
1 7 . 前記抽出ライ ンは、 前記レシーバより液相冷媒を取り出すことを特徴とす る請求の範囲第 1 5項記載の冷媒過冷却回路。  17. The refrigerant subcooling circuit according to claim 15, wherein the extraction line takes out a liquid-phase refrigerant from the receiver.
1 8 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該タンク内壁に沿設した複数のパイプにより支持されることを特徴とする 請求の範囲第 1 5項記載の冷媒過冷却回路。  18. The extraction line according to claim 15, wherein the extraction line is formed of a coiled refrigerant pipe in the receiver, and is supported by a plurality of pipes arranged along the tank inner wall. Refrigerant supercooling circuit.
1 9 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該冷媒管の各隣り合う一巻き同士を接続固定したことを特徴とする請求の 範囲第 1 5項記載の冷媒過冷却回路。  19. The extraction line according to claim 15, wherein the extraction line is formed of a coiled refrigerant pipe in the receiver, and adjacent one turns of the refrigerant pipe are connected and fixed. Refrigerant supercooling circuit.
2 0 . 前記レシーバの前後いずれかに、 液相冷媒を貯留する過冷却用タ ンクを夕 ンデム状に配設し、 前記抽出ラインは、 該レシーバまたは該過冷却用タンクより 液相冷媒を取り出して、 その前記第三膨張弁より下流側部分が、 該過冷却用タ ン クを通過することを特徴とする請求の範囲第 1 4項記載の冷媒過冷却回路。  20. A supercooling tank for storing the liquid-phase refrigerant is arranged in the evening before or after the receiver, and the extraction line takes out the liquid-phase refrigerant from the receiver or the supercooling tank. 15. The refrigerant subcooling circuit according to claim 14, wherein a downstream portion of the third expansion valve passes through the subcooling tank.
2 1 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該タンク内壁に固定した複数のパイプにより支持されることを特徴とする 請求の範囲第 2 0項記載の冷媒過冷却回路。 21. The extraction line according to claim 20, wherein the extraction line is constituted by a coiled refrigerant pipe in the receiver, and is supported by a plurality of pipes fixed to the tank inner wall. Refrigerant subcooling circuit.
2 2 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該冷媒管の各隣り合う一巻き同士を接続固定したことを特徴とする請求の 範囲第 2 0項記載の冷媒過冷却回路。  22. The method according to claim 20, wherein the extraction line is formed of a coiled refrigerant pipe in the receiver, and adjacent one turns of the refrigerant pipe are connected and fixed. Refrigerant supercooling circuit.
2 3 . 前記レシーバと前記複数の第二膨張弁とを結ぶ冷媒ライ ンを、 広がり空間 を有する過冷却管内に通過させ、 前記抽出ライ ンは、 該レシーバより液相冷媒を 取り出すとともに、 その前記第三膨張弁より下流側の部分が、 該過冷却管内を通 過することを特徴とする請求の範囲第 1 4項記載の冷媒過冷却回路。  23. A refrigerant line connecting the receiver and the plurality of second expansion valves is passed through a supercooling pipe having an expanded space, and the extraction line takes out a liquid-phase refrigerant from the receiver and 15. The refrigerant supercooling circuit according to claim 14, wherein a portion downstream of the third expansion valve passes through the inside of the supercooling pipe.
2 4 . 前記の第一膨張弁とレシーバとの間の冷媒ラインを二系統と し、 一方は、 該レシーバの上部に接続されて、 該レシーバからの冷媒流れを遮断する逆止弁を 有し、 他方は、 該レシーバの下部に接続されて、 該第一膨張弁からの冷媒流れを 遮断する逆止弁を有することを特徴とする請求の範囲第- 1 4項記載の冷媒過冷却 回路。 24. The refrigerant line between the first expansion valve and the receiver is divided into two lines, one of which is connected to the upper part of the receiver and has a check valve for shutting off the flow of the refrigerant from the receiver. 15. The refrigerant subcooling according to claim 14, wherein the other has a check valve connected to a lower portion of the receiver to shut off a refrigerant flow from the first expansion valve. circuit.
2 5 . 前記第三膨張弁の下流側の前記抽出ライ ンは、 前記レシーバ内に貯留中の 或いは貯留後に取り出された液相冷媒を過冷却した後、 該複数の室内熱交換器と 方向切換弁とを結ぶ冷媒ラインに接続されることを特徴とする請求の範囲第 1 4 項記載の冷媒過冷却回路。  25. The extraction line on the downstream side of the third expansion valve, after supercooling the liquid-phase refrigerant stored in the receiver or taken out after storage, switches direction with the plurality of indoor heat exchangers. The refrigerant supercooling circuit according to claim 14, wherein the refrigerant supercooling circuit is connected to a refrigerant line connecting the valve and the valve.
2 6 . 圧縮機駆動用原動機を冷却するための冷却水を導く冷媒補助蒸発器を、 方 向切換弁と圧縮機吸入側との間の冷媒ライン上に配設し、 前記第三膨張弁の下流 側の前記抽出ラインは、 前記レシーバ内に貯留中の、 或いは貯留後に取り出され た液相冷媒を過冷却した後、 該方向切換弁と該冷媒補助蒸発器とを結ぶ冷媒ラィ ンに接続されることを特徴とする請求の範囲第 1 4項記載の冷媒過冷却回路。  26. An auxiliary refrigerant evaporator that guides cooling water for cooling the compressor driving prime mover is disposed on the refrigerant line between the direction switching valve and the compressor suction side. The downstream extraction line is connected to a refrigerant line connecting the directional control valve and the refrigerant auxiliary evaporator after supercooling the liquid-phase refrigerant stored in the receiver or taken out after storage. 15. The refrigerant supercooling circuit according to claim 14, wherein:
2 7 . 冷暖房用空調システムの冷房時の冷媒回路に構成される冷媒過冷却回路で あって、 室外熱交換器下流側に配置した第一膨張弁と、 複数の室内熱交換器上流 側に各々配置した複数の第二膨張弁とを結ぶ冷媒ライン上に、 液相冷媒貯留用レ シ一バを設けるとともに、 該空調システムの冷媒回路のいずれかより液相冷媒の 一部を取り出す抽出ライ ンを設け、 該抽出ライ ン上に第三膨張弁を設けて、 該第 三膨張弁より下流側の該抽出ライ ンにて、 該レシーバにて貯留中の、 或いは貯留 後に取り出された液相冷媒を過冷却するよう構成した冷媒過冷却回路において、 該第一膨張弁の開度を、 該第一膨張弁の前後差圧に応じて制御することを特徴と する冷媒過冷却回路。 27. A refrigerant subcooling circuit that is included in the refrigerant circuit during cooling of the air conditioning system for cooling and heating, and includes a first expansion valve disposed downstream of the outdoor heat exchanger and a plurality of upstream valves disposed upstream of the plurality of indoor heat exchangers. A liquid-phase refrigerant storage receiver is provided on the refrigerant line connecting the plurality of arranged second expansion valves, and an extraction line for extracting a part of the liquid-phase refrigerant from one of the refrigerant circuits of the air conditioning system. A third expansion valve is provided on the extraction line, and a liquid-phase refrigerant taken out of the extraction line downstream from the third expansion valve in the receiver or after being stored in the receiver. A refrigerant supercooling circuit configured to supercool refrigerant, wherein an opening degree of the first expansion valve is controlled according to a pressure difference between the front and rear of the first expansion valve.
2 8 . 前記第三膨張弁より下流側の該抽出ラインは、 前記レシーバ内を通過する ことを特徴とする請求の範囲第 2 7項記載の冷媒過冷却回路。  28. The refrigerant subcooling circuit according to claim 27, wherein the extraction line downstream of the third expansion valve passes through the inside of the receiver.
2 9 . 前記抽出ライ ンは、 前記室外熱交換器より液相冷媒を取り出すことを特徴 とする請求の範囲第 2 8項記載の冷媒過冷却回路。  29. The refrigerant supercooling circuit according to claim 28, wherein the extraction line takes out a liquid-phase refrigerant from the outdoor heat exchanger.
3 0 . 前記抽出ライ ンは、 前記レシーバより液相冷媒を取り出すことを特徴とす る請求の範囲第 2 8項記載の冷媒過冷却回路。  30. The refrigerant subcooling circuit according to claim 28, wherein said extraction line takes out a liquid-phase refrigerant from said receiver.
3 1 . 前記抽出ライ ンは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該タンク内壁に沿設した複数のパイブにより支持されることを特徴とする 請求の範囲第 2 8項記載の冷媒過冷却回路。 31. The extraction line is constituted by a coiled refrigerant pipe in the receiver, and is supported by a plurality of pipes arranged along the inner wall of the tank. A refrigerant supercooling circuit according to claim 28.
3 2 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該冷媒管の各隣り合う一巻き同士を接続固定したことを特徴とする請求の 範囲第 2 8項記載の冷媒過冷却回路。  32. The extraction line according to claim 28, wherein the extraction line is formed of a coil-shaped refrigerant pipe in the receiver, and one adjacent turn of the refrigerant pipe is connected and fixed. Refrigerant supercooling circuit.
3 3 . 前記レシーバの前後いずれかに、 液相冷媒を貯留する過冷却用タンクを夕 ンデム状に配設し、 前記抽出ラインは、 該レシーバまたは該過冷却用タンクより 液相冷媒を取り出して、 その前記第三膨張弁より下流側部分が、 該過冷却用タン クを通過することを特徴とする請求の範囲第 2 7項記載の冷媒過冷却回路。  33. A supercooling tank for storing a liquid-phase refrigerant is arranged in the evening before or after the receiver, and the extraction line takes out the liquid-phase refrigerant from the receiver or the supercooling tank. 28. The refrigerant subcooling circuit according to claim 27, wherein the downstream portion of the third expansion valve passes through the subcooling tank.
3 4 . 前記抽出ラインは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該タンク内壁に固定した複数のパ 2イプにより支持されることを特徴とする 34. The extraction line is constituted by a coiled refrigerant pipe in the receiver, and is supported by a plurality of pipes fixed to the inner wall of the tank.
7  7
請求の範囲第 3 3項記載の冷媒過冷却回路。 The refrigerant supercooling circuit according to claim 33.
3 5 . 前記抽出ライ ンは、 前記レシーバ内において、 コイル状の冷媒管にて構成 され、 該冷媒管の各隣り合う一巻き同士を接続固定したことを特徴とする請求の 範囲第 3 3項記載の冷媒過冷却回路。  35. The method according to claim 33, wherein the extraction line is formed of a coil-shaped refrigerant pipe in the receiver, and adjacent one turn of the refrigerant pipe is connected and fixed. A refrigerant supercooling circuit as described in the above.
3 6 . 前記レシーバと前記複数の第二膨張弁とを結ぶ冷媒ラインを、 広がり空間 を有する過冷却管内に通過させ、 前記抽出ライ ンは、 該レシーバより液相冷媒を 取り出すとともに、 その前記第三膨張弁より下流側の部分が、 該過冷却管内を通 過することを特徵とする請求の範囲第 2 7項記載の冷媒過冷却回路。  36. A refrigerant line connecting the receiver and the plurality of second expansion valves is passed through a supercooling pipe having an expanding space, and the extraction line takes out a liquid-phase refrigerant from the receiver and 28. The refrigerant subcooling circuit according to claim 27, wherein a portion downstream of the three expansion valve passes through the subcooling pipe.
3 7 . 前記の第一膨張弁とレシーバとの間の冷媒ライ ンを二系統とし、 一方は、 該レシーバの上部に接続されて、 該レシーバからの冷媒流れを遮断する逆止弁を 有し、 他方は、 該レシーバの下部に接続されて、 該第一膨張弁からの冷媒流れを 遮断する逆止弁を有することを特徴とする請求の範囲第 2 7項記載の冷媒過冷却 回路。  37. The refrigerant line between the first expansion valve and the receiver is divided into two systems, and one has a check valve connected to the upper part of the receiver to shut off the flow of the refrigerant from the receiver. 28. The refrigerant supercooling circuit according to claim 27, wherein the other has a check valve connected to a lower portion of said receiver to shut off a refrigerant flow from said first expansion valve.
3 8 . 前記第三膨張弁の下流側の前記抽出ライ ンは、 前記レシーバ内に貯留中の 或いは貯留後に取り出された液相冷媒を過冷却した後、 該複数の室内熱交換器と 方向切換弁とを結ぶ冷媒ラインに接続されることを特徴とする請求の範囲第 2 7 項記載の冷媒過冷却回路。  38. The extraction line on the downstream side of the third expansion valve, after supercooling the liquid-phase refrigerant stored in the receiver or taken out after storage, switches the direction with the indoor heat exchangers. 28. The refrigerant supercooling circuit according to claim 27, wherein the refrigerant supercooling circuit is connected to a refrigerant line connecting the valve.
3 9 . 圧縮機駆動用原動機を冷却するための冷却水を導く冷媒捕助蒸発器を、 方 向切換弁と圧縮機吸入側との間の冷媒ライン上に配設し、 前記第三膨張弁の下流 側の前記抽出ライ ンは、 前記レシーバ内に貯留中の、 或いは貯留後に取り出され た液相冷媒を過冷却した後、 該方向切換弁と該冷媒補助蒸発器とを結ぶ冷媒ライ ンに接続されることを特徴とする請求の範囲第 2 7項記載の冷媒過冷却回路。 3. 9. A refrigerant trap evaporator for guiding cooling water for cooling the compressor driving motor is disposed on a refrigerant line between the direction switching valve and the compressor suction side, and the third expansion valve is provided. Downstream of The extraction line on the side is connected to a refrigerant line connecting the directional control valve and the refrigerant auxiliary evaporator after supercooling the liquid-phase refrigerant stored in the receiver or taken out after the storage. 28. The refrigerant supercooling circuit according to claim 27, wherein:
PCT/JP1999/004326 1999-02-17 1999-08-09 Refrigerant supercooling circuit WO2000049346A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99937013A EP1162414B1 (en) 1999-02-17 1999-08-09 Refrigerant supercooling circuit
DE69931816T DE69931816D1 (en) 1999-02-17 1999-08-09 CIRCUIT WITH REFRIGERANT COOLING

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP11/38746 1999-02-17
JP11038746A JP2000234818A (en) 1999-02-17 1999-02-17 Refrigerant supercooling mechanism of air conditioner
JP11086454A JP2000283598A (en) 1999-03-29 1999-03-29 Method for controlling engine heat pump
JP11/86454 1999-03-29
JP11086453A JP2000283583A (en) 1999-03-29 1999-03-29 Heat pump
JP11/86453 1999-03-29
JP11/114936 1999-04-22
JP11114936A JP2000304374A (en) 1999-04-22 1999-04-22 Engine heat pump

Publications (1)

Publication Number Publication Date
WO2000049346A1 true WO2000049346A1 (en) 2000-08-24

Family

ID=27460653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004326 WO2000049346A1 (en) 1999-02-17 1999-08-09 Refrigerant supercooling circuit

Country Status (6)

Country Link
EP (1) EP1162414B1 (en)
AT (1) ATE329213T1 (en)
DE (1) DE69931816D1 (en)
ES (1) ES2265187T3 (en)
PT (1) PT1162414E (en)
WO (1) WO2000049346A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050104A1 (en) * 2003-11-21 2005-06-02 Mayekawa Mfg.Co.,Ltd. Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooing unit incorporating that production system
EP2075518A2 (en) * 2007-12-26 2009-07-01 Sanyo Electric Co., Ltd. Air conditioner
WO2015110632A1 (en) * 2014-01-27 2015-07-30 Bitzer Kühlmaschinenbau Gmbh Refrigeration plant
CN108286512A (en) * 2018-04-18 2018-07-17 格力电器(芜湖)有限公司 Humidity control system and its double-stage compressor making-up air device and control method
CN113915806A (en) * 2021-10-20 2022-01-11 广东美的制冷设备有限公司 Refrigerant sound reduction control system, method, air conditioner and computer readable medium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504498B1 (en) 2003-01-13 2005-08-03 엘지전자 주식회사 Air conditioner
FR2864212A1 (en) * 2003-12-19 2005-06-24 Armines Ass Pour La Rech Et Le Thermodynamic system for heating and cooling of e.g. territory building, has separator separating vapor and liquid phases after partial mixture evaporation, and expansion valve to release pressurized liquid in supercooling heat exchanger
KR100539570B1 (en) * 2004-01-27 2005-12-29 엘지전자 주식회사 multi airconditioner
DE102004038640A1 (en) 2004-08-09 2006-02-23 Linde Kältetechnik GmbH & Co. KG Refrigeration circuit and method for operating a refrigeration cycle
KR20070050046A (en) 2004-08-09 2007-05-14 캐리어 코포레이션 Co2 refrigeration circuit with sub-cooling of the liquid refrigerant against the receiver flash gas and method for operating the same
KR100623515B1 (en) * 2004-11-24 2006-09-19 주식회사 대우일렉트로닉스 Heat pump having extraction heat exchanger
EP1662213A1 (en) * 2004-11-24 2006-05-31 Daewoo Electronics Corporation Cooling system with economiser circuit
WO2006091190A1 (en) * 2005-02-18 2006-08-31 Carrier Corporation Refrigeration circuit with improved liquid/vapour receiver
JP5149663B2 (en) * 2008-03-24 2013-02-20 ヤンマー株式会社 Engine driven heat pump
WO2011138806A1 (en) * 2010-05-06 2011-11-10 Brema Ice Makers S.P.A. Ice forming apparatus and method, with fluid distributor to evaporators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134445A (en) * 1989-10-19 1991-06-07 Mitsubishi Electric Corp Air conditioner
JPH04324067A (en) * 1991-01-30 1992-11-13 Daikin Ind Ltd Air conditioner
JPH0510618A (en) * 1991-07-03 1993-01-19 Aisin Seiki Co Ltd Multi-chamber air conditioner
JPH074779A (en) * 1993-04-20 1995-01-10 Mitsubishi Heavy Ind Ltd Simultaneous cooling-heating type multiple air conditioner
JPH0719641A (en) * 1993-06-29 1995-01-20 Mitsubishi Electric Corp Air conditioning apparatus
JPH10288407A (en) * 1997-04-16 1998-10-27 Yanmar Diesel Engine Co Ltd Supercooling cycle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420749A (en) * 1990-05-15 1992-01-24 Mitsubishi Electric Corp Air conditioner
US5228301A (en) * 1992-07-27 1993-07-20 Thermo King Corporation Methods and apparatus for operating a refrigeration system
US5704219A (en) * 1995-08-01 1998-01-06 Nippondenso Co., Ltd. Air conditioning apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134445A (en) * 1989-10-19 1991-06-07 Mitsubishi Electric Corp Air conditioner
JPH04324067A (en) * 1991-01-30 1992-11-13 Daikin Ind Ltd Air conditioner
JPH0510618A (en) * 1991-07-03 1993-01-19 Aisin Seiki Co Ltd Multi-chamber air conditioner
JPH074779A (en) * 1993-04-20 1995-01-10 Mitsubishi Heavy Ind Ltd Simultaneous cooling-heating type multiple air conditioner
JPH0719641A (en) * 1993-06-29 1995-01-20 Mitsubishi Electric Corp Air conditioning apparatus
JPH10288407A (en) * 1997-04-16 1998-10-27 Yanmar Diesel Engine Co Ltd Supercooling cycle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050104A1 (en) * 2003-11-21 2005-06-02 Mayekawa Mfg.Co.,Ltd. Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooing unit incorporating that production system
US7992397B2 (en) 2003-11-21 2011-08-09 Mayekawa Mfg. Co., Ltd. Ammonia/CO2 refrigeration system, CO2 brine production system for use therein, and ammonia cooling unit incorporating that production system
EP2075518A2 (en) * 2007-12-26 2009-07-01 Sanyo Electric Co., Ltd. Air conditioner
WO2015110632A1 (en) * 2014-01-27 2015-07-30 Bitzer Kühlmaschinenbau Gmbh Refrigeration plant
CN108286512A (en) * 2018-04-18 2018-07-17 格力电器(芜湖)有限公司 Humidity control system and its double-stage compressor making-up air device and control method
CN108286512B (en) * 2018-04-18 2024-02-09 格力电器(芜湖)有限公司 Temperature regulating system, and two-stage compressor air supplementing device and control method thereof
CN113915806A (en) * 2021-10-20 2022-01-11 广东美的制冷设备有限公司 Refrigerant sound reduction control system, method, air conditioner and computer readable medium

Also Published As

Publication number Publication date
EP1162414A1 (en) 2001-12-12
EP1162414A4 (en) 2002-10-02
ATE329213T1 (en) 2006-06-15
PT1162414E (en) 2006-09-29
ES2265187T3 (en) 2007-02-01
EP1162414B1 (en) 2006-06-07
DE69931816D1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4459776B2 (en) Heat pump device and outdoor unit of heat pump device
JP4604909B2 (en) Ejector type cycle
CN102844630B (en) Air conditioning and hot-water supply composite system
US7104084B2 (en) Heat pump and structure of extraction heat exchanger thereof
JP6909889B2 (en) Heat pump system for electric vehicles and its control method
WO2000049346A1 (en) Refrigerant supercooling circuit
JP4804396B2 (en) Refrigeration air conditioner
WO2015125743A1 (en) Air-conditioning device
KR20180104416A (en) Air conditioning system
EP2729742B1 (en) Refrigeration circuit and heating and cooling system
CN103930744B (en) Double-wall-tube heat exchanger and comprise the aircondition of this Double-wall-tube heat exchanger
JP4407012B2 (en) Refrigeration equipment
JP4462436B2 (en) Refrigeration equipment
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP5855284B2 (en) Air conditioner
JP2009222255A (en) Vapor compression refrigerating cycle
KR100803145B1 (en) Air conditioner
JP5005011B2 (en) Air conditioner
JP2011007482A (en) Air conditioner
JP5310488B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JPH10176869A (en) Refrigeration cycle device
JP3728592B2 (en) Air conditioner
KR100562836B1 (en) Heat pump cycle
JP7065681B2 (en) Air conditioner
KR101418155B1 (en) An air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999937013

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999937013

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999937013

Country of ref document: EP