JPH074779A - Simultaneous cooling-heating type multiple air conditioner - Google Patents

Simultaneous cooling-heating type multiple air conditioner

Info

Publication number
JPH074779A
JPH074779A JP5286588A JP28658893A JPH074779A JP H074779 A JPH074779 A JP H074779A JP 5286588 A JP5286588 A JP 5286588A JP 28658893 A JP28658893 A JP 28658893A JP H074779 A JPH074779 A JP H074779A
Authority
JP
Japan
Prior art keywords
gas
liquid
cooling
pipe
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5286588A
Other languages
Japanese (ja)
Inventor
Kazumi Honma
一美 本間
Mitsuru Nakamura
満 中村
Masami Ito
政美 伊東
Takayuki Kobayashi
隆之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5286588A priority Critical patent/JPH074779A/en
Publication of JPH074779A publication Critical patent/JPH074779A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve draining of liquid from a heating unit by a method wherein a first pressure reducing valve is provided so that the pressure in a second liquid pipe becomes lower than that in a second gas pipe, and a multiple-effect separator and a supercooler are provided to send liquid refrigerant from the second liquid pipe to a cooling unit. CONSTITUTION:Time opening degree of a first pressure reducing valve 10 is regulated so that a pressure difference of liquid refrigerant separated by a gas-liquid separator l is created between a second gas pipe 4 and a second liquid pipe 5. A multiple-effect separator 11 is provided next to the gas-liquid separator 1 via the pressure reducing valve 10. Gas refrigerant is released to a first gas pipe 3 through a third pressure reducing valve 15 by the multiple- effect separator 11. On the other hand, liquid refrigerant flows through a solenoid valve 9 to a supercooler 13 where liquid refrigerant is cooled by its own liquid, and is sent to a cooling unit via the second liquid pipe 5. Thereby, lack of cooling and heating capacities can be solved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷暖同時形マルチ空気調
和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simultaneous cooling and heating type multi-air conditioner.

【0002】[0002]

【従来の技術】図9は従来の冷暖同時形マルチ空気調和
機の冷媒回路図である。この回路は、図において一点鎖
線で囲み、(I),(II),(III)の符号を付した3ブロックの
回路から成っている。中央の(I) は分流コントローラの
回路、左側の(II)は室外機の回路、右側の(III) は室内
機の回路である。
2. Description of the Related Art FIG. 9 is a refrigerant circuit diagram of a conventional cooling / heating simultaneous multi-air conditioner. This circuit is composed of three blocks of circuits surrounded by alternate long and short dash lines in the figure and denoted by reference numerals (I), (II) and (III). The center (I) is the shunt controller circuit, the left (II) is the outdoor unit circuit, and the right (III) is the indoor unit circuit.

【0003】分流コントローラ(I) 内の回路において、
1は気液分離器、2は室外機(II)と連結し、気液分離器
1に至る第1液管、3は室外器(II)と室内機(III) とを
結ぶ第1ガス管、4は気液分離器1のガス側と室内機(I
II) とを結ぶ第2ガス管、5は気液分離器1の液側と室
内機(III) とを結ぶ第2液管、6は室外用絞り、7,
8,9は電磁弁である。
In the circuit in the shunt controller (I),
1 is a gas-liquid separator, 2 is a first liquid pipe connected to the outdoor unit (II) and reaches the gas-liquid separator 1, 3 is a first gas pipe connecting the outdoor unit (II) and the indoor unit (III) 4 is the gas side of the gas-liquid separator 1 and the indoor unit (I
II) a second gas pipe connecting 5 to the second liquid pipe connecting the liquid side of the gas-liquid separator 1 to the indoor unit (III), 6 an outdoor throttle,
8 and 9 are solenoid valves.

【0004】室外機(II)内の回路において、31は圧縮
機、32は同圧縮機に連る四方切換弁、33は同四方切
換弁に連る室外熱交換器、34は前記四方切換弁に連る
アキュムレータである。
In the circuit in the outdoor unit (II), 31 is a compressor, 32 is a four-way switching valve connected to the compressor, 33 is an outdoor heat exchanger connected to the four-way switching valve, and 34 is the four-way switching valve. It is an accumulator connected to.

【0005】室内機(III) 内の回路において、図には
A,B,C,Dの4台の室内機ユニットが示され、各機
器にはそれぞれの機器を表す数字符号の後にユニットを
表す文字符号A,B,C,Dが付してある。41A〜4
1Dは室内機用絞り、42A〜42Dは室内熱交換器、
43A〜43Dおよび44A〜44Dは冷暖房切換弁で
ある。なお、以下の説明において、個々のユニットを区
別しない場合は数字符号のみで表し、文字符号(A〜
D)を付けることを省略する。次に本装置における各種
モードでの冷媒の流れを説明する。
In the circuit in the indoor unit (III), four indoor unit units A, B, C and D are shown in the drawing, and each device is represented by a numeral symbol after each device. Character codes A, B, C and D are attached. 41A ~ 4
1D is an indoor unit throttle, 42A to 42D are indoor heat exchangers,
43A to 43D and 44A to 44D are cooling / heating switching valves. In addition, in the following description, when the individual units are not distinguished, they are represented by only numerical symbols, and character symbols (A to
The addition of D) is omitted. Next, the flow of the refrigerant in various modes in this device will be described.

【0006】冷房時は室外機(II)の圧縮機31で圧縮さ
れた高温高圧のガス冷媒は、四方切換弁32を通り室外
熱交換器33に入りここで、室外ファン(図示されてい
ない)で送られる空気と熱交換し、冷却され液冷媒とな
って、分流コントローラ(I)の第1液管2から気液分離
器1に入る。この時電磁弁7,8は閉ざされており、液
冷媒は電磁弁9、第2液管5から、運転されているユニ
ットの絞り41(運転されていない絞りは全閉)で減圧
され、室内熱交換器42に入り、ここで、室内ファン
(図示されていない)によって送られる空気で加熱さ
れ、低圧のガス冷媒となり、切換弁44を通って、第1
ガス管3、四方切換弁32を経て圧縮機31へ戻る。
During cooling, the high-temperature high-pressure gas refrigerant compressed by the compressor 31 of the outdoor unit (II) passes through the four-way switching valve 32 and enters the outdoor heat exchanger 33, where an outdoor fan (not shown) is used. The heat is exchanged with the air sent by, and the liquid refrigerant is cooled and enters the gas-liquid separator 1 through the first liquid pipe 2 of the diversion controller (I). At this time, the solenoid valves 7 and 8 are closed, and the liquid refrigerant is decompressed from the solenoid valve 9 and the second liquid pipe 5 by the throttle 41 of the operating unit (the throttle not operating is fully closed), and the indoor It enters the heat exchanger 42, where it is heated by air sent by an indoor fan (not shown) to become a low-pressure gas refrigerant, which passes through a switching valve 44 to a first
It returns to the compressor 31 via the gas pipe 3 and the four-way switching valve 32.

【0007】冷房主体運転(室内機の冷房運転が暖房運
転よりも多い)では、室外機の作用は冷房と同じで第1
液管2から気液分離器1へ入った高圧の冷媒は気液分離
され、ガスは電磁弁8から第2ガス管4を経て暖房ユニ
ット(例えばAユニット)の切換弁43Aから室内熱交
換器42Aへ入り、ここで冷却され、液冷媒となり、絞
り41Aを通り冷房ユニット(例えばB,Cユニット)
へ向う。一方気液分離器1で分離された液冷媒は電磁弁
9を経て第2液管5から室内機側へ入り、暖房ユニット
から出てきた液冷媒と合流し、絞り41B,41Cで減
圧され、室内熱交換器42B,42Cで熱交換され加熱
され低圧のガス冷媒となり、切換弁44B,44Cから
第1ガス管3、四方切換弁32を経て圧縮機31へ戻
る。
In the cooling main operation (the cooling operation of the indoor unit is more than that of the heating operation), the operation of the outdoor unit is the same as that of the cooling operation.
The high-pressure refrigerant that has entered the gas-liquid separator 1 from the liquid pipe 2 is gas-liquid separated, and the gas flows from the solenoid valve 8 through the second gas pipe 4 to the switching valve 43A of the heating unit (for example, A unit) to the indoor heat exchanger. It enters into 42A, is cooled here, becomes a liquid refrigerant, passes through the throttle 41A, and is a cooling unit (for example, B, C unit).
Go to. On the other hand, the liquid refrigerant separated by the gas-liquid separator 1 enters the indoor unit side from the second liquid pipe 5 via the solenoid valve 9, merges with the liquid refrigerant discharged from the heating unit, and is decompressed by the throttles 41B and 41C. The heat is exchanged and heated in the indoor heat exchangers 42B and 42C to become a low-pressure gas refrigerant, and returns from the switching valves 44B and 44C to the compressor 31 via the first gas pipe 3 and the four-way switching valve 32.

【0008】暖房時は四方切換弁32が切換り、高温高
圧のガス冷媒は第1ガス管3から、運転されている暖房
ユニットの切換弁44を経て室内熱交換器42に入り、
ここで、熱交換して液冷媒となり、絞り41を通り室外
絞り6で減圧され第2ガス管4から電磁弁7、第1液管
2を経て室外熱交換器33に入り、ここで熱交換して低
圧のガス冷媒となって四方切換弁32を経て圧縮機31
へ戻る。
During heating, the four-way switching valve 32 switches, and the high-temperature high-pressure gas refrigerant enters the indoor heat exchanger 42 from the first gas pipe 3 through the switching valve 44 of the operating heating unit.
Here, heat is exchanged to become a liquid refrigerant, which is decompressed by the outdoor throttle 6 through the throttle 41, enters the outdoor heat exchanger 33 from the second gas pipe 4 through the electromagnetic valve 7 and the first liquid pipe 2, and exchanges heat there. Then, it becomes a low-pressure gas refrigerant and passes through the four-way switching valve 32 and the compressor 31.
Return to.

【0009】暖房主体運転では、室外機の作用は暖房と
同じである。高温高圧のガス冷媒は、暖房運転している
ユニット(例えばA,B,C)の切換弁44A,B,C
から室内熱交換器42A,B,Cに入り、ここで熱交換
して冷却され高圧の液冷媒となり、絞り41A,B,C
より一方は冷房運転しているユニットの絞り41Dで減
圧され室内熱交換器42Dで加熱され低圧のガス冷媒と
なって切換弁43Dを経て第2ガス管4に入る。他の液
冷媒は第2液管5から室外用絞り6を経て減圧され、第
2ガス管4で冷房ユニットからきた冷媒と合流し、第1
液管2から室外機(II)へ行き圧縮機31へもどってい
く。
In heating-based operation, the operation of the outdoor unit is the same as that of heating. The high-temperature and high-pressure gas refrigerant is used as a switching valve 44A, B, C of a unit (for example, A, B, C) that is in heating operation.
To the indoor heat exchangers 42A, B, C, where they exchange heat to be cooled and become high-pressure liquid refrigerant, and the throttles 41A, B, C
The other one is decompressed by the throttle 41D of the unit that is performing the cooling operation, heated by the indoor heat exchanger 42D, becomes a low-pressure gas refrigerant, and enters the second gas pipe 4 through the switching valve 43D. The other liquid refrigerant is decompressed from the second liquid pipe 5 through the outdoor throttle 6, merges with the refrigerant coming from the cooling unit in the second gas pipe 4, and
The liquid pipe 2 goes to the outdoor unit (II) and returns to the compressor 31.

【0010】[0010]

【発明が解決しようとする課題】従来の技術において
は、冷房時及び冷房主体時は、ガス冷媒が液冷媒に混合
し、冷房ユニットへ液冷媒が充分に供給されない。又、
室内機が上部にある時は、ヘッド差で冷房ユニットへ液
冷媒が供給できない等によって冷房能力不足が生じる。
In the prior art, the gas refrigerant mixes with the liquid refrigerant during cooling or during cooling, and the liquid refrigerant is not sufficiently supplied to the cooling unit. or,
When the indoor unit is on the upper side, the cooling capacity is insufficient due to the fact that the liquid refrigerant cannot be supplied to the cooling unit due to the head difference.

【0011】また、冷暖同時運転の時は高圧のガスライ
ン(第2ガス管4)の圧力と液ライン(第2液管5)の
圧力差が小さく、暖房ユニットの液冷媒が液ライン側へ
流れにくくなり暖房ユニットの熱交換器に冷媒が溜り込
んで暖房能力不足となることがある。
Further, during the simultaneous cooling and heating operation, the pressure difference between the high-pressure gas line (second gas pipe 4) and the liquid line (second liquid pipe 5) is small, and the liquid refrigerant of the heating unit goes to the liquid line side. It may become difficult to flow and the refrigerant may accumulate in the heat exchanger of the heating unit, resulting in insufficient heating capacity.

【0012】本発明は上記従来技術の欠点を解消し、冷
房時及び冷房主体時に、ガス冷媒が液冷媒に混合しない
ようにし、また、ヘッド差があっても、冷房ユニットへ
充分な液冷媒を供給するようにして、冷房能力不足を解
消しようとするものである。
The present invention solves the above-mentioned drawbacks of the prior art, prevents the gas refrigerant from mixing with the liquid refrigerant during cooling and during the main cooling operation, and even if there is a head difference, sufficient liquid refrigerant is supplied to the cooling unit. By supplying the air conditioner, the cooling capacity shortage is solved.

【0013】また、冷暖同時運転時において、暖房ユニ
ットの液冷媒が液ライン側へ流れやすくなるようにし
て、暖房能力不足を解消しようとするものである。
Further, it is intended to solve the shortage of heating capacity by making it easier for the liquid refrigerant of the heating unit to flow to the liquid line side during the simultaneous cooling and heating operation.

【0014】従来の技術においては、冷房主体運転、暖
房主体運転と切換るたびに、第1ガス管3では内部流体
が高温高圧ガスから低温低圧ガスに切換る。配管が長い
場合は、冷房主体から暖房主体に切換った時、熱を配管
に吸収されるので、暖房ユニットの立上りが悪くなる。
In the conventional technique, the internal fluid is switched from the high temperature high pressure gas to the low temperature low pressure gas in the first gas pipe 3 every time the cooling main operation and the heating main operation are switched. If the piping is long, heat is absorbed by the piping when switching from the cooling type to the heating type, so that the heating unit does not rise well.

【0015】本発明は上記従来技術の欠点を解決し、配
管が長くても、冷房主体から暖房主体に切換った時、暖
房ユニットが速かに立上るようにしようとするものであ
る。
The present invention solves the above-mentioned drawbacks of the prior art and intends to make the heating unit start up quickly when the cooling main body is switched to the heating main body even if the piping is long.

【0016】従来の技術においては、冷暖同時運転時に
は液ラインとガスラインの圧力が同等となると暖房ユニ
ットからの液の排出が悪くなり暖房能力不足となる。
In the prior art, when the pressures of the liquid line and the gas line become equal during the simultaneous cooling and heating operation, the discharge of the liquid from the heating unit becomes poor and the heating capacity becomes insufficient.

【0017】また、暖房時や暖房主体運転時吸入過熱度
コントロールを行なうと冷房過多時には暖房ユニットに
冷媒が溜り込んで圧力が上昇したりする。
Further, when the intake superheat degree control is performed during heating or during heating-main operation, the refrigerant accumulates in the heating unit and the pressure rises when the cooling is excessive.

【0018】本発明は上記従来技術の欠点を解消し、冷
暖同時運転時に、暖房ユニットからの液の排出が良くな
るようにして、暖房能力不足を解消しようとするもので
ある。
The present invention solves the above-mentioned drawbacks of the prior art and solves the shortage of heating capacity by improving the discharge of liquid from the heating unit during simultaneous cooling and heating operations.

【0019】また、暖房時や暖房主体運転時において、
吸入過熱度コントロールを行っても、暖房ユニットの圧
力が上昇しないようにしようとするものである。
Further, during heating or during heating-main operation,
Even if the suction superheat control is performed, the pressure of the heating unit is prevented from rising.

【0020】[0020]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、圧縮機、四方切換弁、及び室外熱交
換器を有する1台の室外機と、それぞれ室内熱交換器を
有する複数台の室内機と、気液分離器を有し室外機と室
内機との間に設けられて複数の室内機に冷媒を分流する
分流ユニットとを備え、前記室外機と分流ユニットと
を、第1のガス管と、気液分離器に連なる第1の液管と
で接続し、同分流ユニットと複数台の室内機とを、前記
第1のガス管と、前記気液分離器の気相域に連なる第2
のガス管とに対し、各室内熱交換器の一端をそれぞれ冷
暖房切換弁を介して接続すると共に、気液分離器の液相
域に連なる第2の液管に対し、各室内熱交換器の他端を
室内用絞りを介して接続した、冷房運転、暖房運転、及
び冷暖房同時運転が可能な冷暖同時形マルチ空気調和機
において、次の特徴を有する冷暖同時形マルチ空気調和
機に関するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and has one outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger, and an indoor heat exchanger. A plurality of indoor units, and a flow dividing unit for dividing the refrigerant into a plurality of indoor units provided between the outdoor unit and the indoor unit having a gas-liquid separator, the outdoor unit and the flow dividing unit, A first gas pipe and a first liquid pipe connected to the gas-liquid separator are connected to each other, and the same diversion unit and a plurality of indoor units are connected to the first gas pipe and the gas of the gas-liquid separator. The second that continues to the phase
Of the indoor heat exchanger is connected to one end of each indoor heat exchanger via the cooling / heating switching valve, and the second liquid pipe connected to the liquid phase region of the gas-liquid separator is connected to each of the indoor heat exchangers. A cooling / heating simultaneous multi-air conditioner having the following characteristics in a cooling / heating simultaneous multi-air conditioner in which the other end is connected through an indoor throttle and capable of cooling operation, heating operation, and simultaneous cooling / heating operation. .

【0021】(1)前記分流ユニット内の第2の液管上
に、気液分離器との間に第1減圧弁を介在させて多効分
離器を設け、同第2の液管の前記多効分離器より室内機
側に、同管から分岐した一部の液冷媒を第2減圧弁を経
て減圧して冷却源とした過冷却器を設けると共に、同過
冷却器からのガス冷媒及び前記多効分離器から第3減圧
弁を経たガス冷媒を前記第1のガス管に導く第3のガス
管を設けてなること。
(1) A multi-effect separator is provided on the second liquid pipe in the flow dividing unit with a first pressure reducing valve interposed between the second liquid pipe and the gas-liquid separator. A subcooler is provided on the indoor unit side of the multi-effect separator as a cooling source by decompressing a part of the liquid refrigerant branched from the pipe through a second pressure reducing valve, and a gas refrigerant from the subcooler and A third gas pipe is provided for guiding the gas refrigerant, which has passed through the third pressure reducing valve, from the multi-effect separator to the first gas pipe.

【0022】(2)前記室外機内に、前記第1のガス管
及び第1の液管に対して常に一方向に冷媒を流通させる
切換手段を設けたこと。
(2) The outdoor unit is provided with a switching means for constantly circulating the refrigerant in one direction with respect to the first gas pipe and the first liquid pipe.

【0023】(3)前記分流ユニット内の第2のガス管
に第1圧力センサを、第2の液管に第2圧力センサ及び
温度センサを設け、冷房運転時及び冷房主体運転時に、
前記第1、第2圧力センサにより検出した圧力の差が一
定となるよう第1減圧弁を制御すると共に、第2圧力セ
ンサ及び温度センサの検出値から過冷却度を検出し、同
過冷却度が一定となるよう前記第3減圧弁を制御し、暖
房運転時及び暖房主体運転時に、前記過冷却度が一定と
なるよう、前記第2減圧弁を制御するコントローラを設
けたこと。
(3) A first pressure sensor is provided in the second gas pipe in the flow dividing unit, and a second pressure sensor and a temperature sensor are provided in the second liquid pipe, so that during the cooling operation and the cooling main operation,
The first pressure reducing valve is controlled so that the pressure difference detected by the first and second pressure sensors becomes constant, and the degree of supercooling is detected from the detection values of the second pressure sensor and the temperature sensor. A controller is provided to control the third pressure reducing valve so as to be constant, and to control the second pressure reducing valve so that the degree of subcooling is constant during heating operation and heating-main operation.

【0024】(4)前記分流ユニット内の第2の液管上
に、前記気液分離器との間に、暖房及び暖房主体運転時
に閉、冷房及び冷房主体運転時は開で一定の抵抗を有す
る電磁弁を介在させて、第2気液分離器を設け、同第2
の液管の前記第2気液分離器より室内機側に、同管から
分岐した一部の液冷媒を第2減圧弁を経て減圧して冷却
源とした過冷却器を設けると共に、同過冷却器からのガ
ス冷媒及び前記第2気液分離器から第3減圧弁を経たガ
ス冷媒を前記第1のガス管に導く第3のガス管を設け、
さらに、前記分流ユニット内の第2のガス管に第1圧力
センサを、第2の液管に第2圧力センサ及び温度センサ
を設け、冷房運転時及び冷房主体運転時に、前記第1、
第2圧力センサにより検出した圧力の差が一定となるよ
う第3減圧弁を制御し、また、第2圧力センサ及び温度
センサの検出値から過冷却度を検出し、同過冷却度が一
定となるよう前記第2減圧弁を制御するコントローラを
設けたこと。
(4) On the second liquid pipe in the flow dividing unit, between the gas-liquid separator and the gas-liquid separator, a fixed resistance is set when the heating and heating main operations are performed, and when the cooling and cooling main operations are performed, the resistance is open. A second gas-liquid separator is provided with the solenoid valve having
A subcooler that serves as a cooling source for decompressing a part of the liquid refrigerant branched from the second gas vapor-liquid separator of the liquid pipe of the second pipe through the second pressure reducing valve is provided on the indoor unit side of the second gas separator. A third gas pipe is provided for guiding the gas refrigerant from the cooler and the gas refrigerant that has passed through the third pressure reducing valve from the second gas-liquid separator to the first gas pipe,
Furthermore, a first pressure sensor is provided in the second gas pipe in the flow dividing unit, a second pressure sensor and a temperature sensor are provided in the second liquid pipe, and the first,
The third pressure reducing valve is controlled so that the pressure difference detected by the second pressure sensor becomes constant, and the degree of supercooling is detected from the detection values of the second pressure sensor and the temperature sensor. A controller for controlling the second pressure reducing valve is provided.

【0025】[0025]

【作用】上記(1)項の手段を具えている発明において
は、気液分離器で分離された液冷媒(一部ガスを含むこ
とがある。)は第1減圧弁を通ることにより、第2ガス
管と第2液管との間に圧力差を生ずる。この第1減圧弁
は上記両管に一定の圧力差が生ずる様開度調整される。
少し減圧された液冷媒は多効分離器に入りガス分を低圧
に逃がすことにより乾き度が小さくなる。つまり、ガス
分の少ない液となり更に過冷却器を通ることにより冷却
され、過冷却された完全な液となって冷房ユニットへ供
給される。
In the invention including the means of the above item (1), the liquid refrigerant (which may contain a part of gas) separated by the gas-liquid separator passes through the first pressure reducing valve, A pressure difference is generated between the two gas pipes and the second liquid pipe. The opening of the first pressure reducing valve is adjusted so that a constant pressure difference is produced between the two pipes.
The liquid refrigerant slightly depressurized enters the multi-effect separator, and the gas content is released to a low pressure to reduce the dryness. In other words, it becomes a liquid with a small gas content and is further cooled by passing through the supercooler, and becomes a supercooled complete liquid and is supplied to the cooling unit.

【0026】上記(2)項の手段を具えている発明にお
いては、室外機に第2の四方切換弁を設けることにより
第1液管内は常に高圧のガス、二相、液の流れで、常に
室外機より分流コントローラ側へ流れ、第1ガス管内は
常に低圧の二相、ガスの冷媒で流れは分流コントローラ
から室外機側の流れとなる。
In the invention including the means of the above item (2), by providing the second four-way switching valve in the outdoor unit, there is always a high-pressure gas, two-phase, liquid flow in the first liquid pipe, Flowing from the outdoor unit to the branch controller side, the first gas pipe is always a low-pressure two-phase gas refrigerant flow from the branch controller to the outdoor unit side.

【0027】上記(3)項の手段を具えている発明にお
いては、冷房時及び冷房主体運転時には気液分離器と多
効分離器との間に第1減圧弁を設け、第2ガス管と第2
液管とに取付けた圧力センサの圧力を入力し圧力差が一
定になる様コントロールする。又、第2液管に取付けら
れた圧力センサ、温度センサの圧力及び温度を入力し、
過冷却度が一定になる様に第3減圧弁をコントロールす
る。又、暖房時及び暖房主体運転時には第2液管に取付
けられた圧力センサ及び温度センサからの圧力及び温度
を入力し、過冷却度が一定になる様に第2減圧弁をコン
トロールする。
In the invention including the means of the above item (3), the first pressure reducing valve is provided between the gas-liquid separator and the multi-effect separator during the cooling operation and the cooling main operation, and the second gas pipe is provided. Second
The pressure of the pressure sensor attached to the liquid pipe is input to control so that the pressure difference becomes constant. Also, input the pressure and temperature of the pressure sensor and temperature sensor attached to the second liquid pipe,
The third pressure reducing valve is controlled so that the degree of supercooling becomes constant. Further, during heating and during heating-main operation, pressure and temperature are input from a pressure sensor and a temperature sensor attached to the second liquid pipe, and the second pressure reducing valve is controlled so that the degree of supercooling becomes constant.

【0028】上記(4)項に記載の発明においては、冷
房および冷房主体運転時には、第2ガス管と第2液管の
圧力差が一定となるよう第3減圧弁を制御すると共に、
過冷却度が一定となるよう第2減圧弁を制御するので、
冷・暖同時運転時に暖房ユニットの液排出が良好とな
る。また、暖房および暖房主体運転時には過冷却度が一
定になるよう第2減圧弁を制御するので、安定した暖房
能力を得ることができる。
In the invention described in the above item (4), the third pressure reducing valve is controlled so that the pressure difference between the second gas pipe and the second liquid pipe becomes constant during the cooling operation and the cooling main operation.
Since the second pressure reducing valve is controlled so that the degree of supercooling becomes constant,
Good liquid drainage from the heating unit during simultaneous cold and warm operation. In addition, since the second pressure reducing valve is controlled so that the degree of subcooling is constant during heating and heating-main operation, stable heating capacity can be obtained.

【0029】[0029]

【実施例】図1は本発明の第1実施例に係る分流コント
ローラの冷媒回路図である。図において、10は気液分
離器1に連る第2液管5に新に設けられた第1減圧弁、
11は同管上に設けられた多効分離器、12は第2液管
5と第1ガス管3とを連絡する第3ガス管、13は同ガ
ス管12と第2液管5との間に設けられた過冷却器、1
4は第3ガス管12が第2液管5から分岐した部分に設
けられている第2減圧弁、15は多効分離器11から第
3ガス管12に連絡する管上に設けられた第3減圧弁で
ある。上記以外の部分の構成は従来技術(図7)と同じ
であるから説明を省略する。
FIG. 1 is a refrigerant circuit diagram of a shunt controller according to a first embodiment of the present invention. In the figure, 10 is a first pressure reducing valve newly provided in the second liquid pipe 5 connected to the gas-liquid separator 1.
11 is a multi-effect separator provided on the pipe, 12 is a third gas pipe that connects the second liquid pipe 5 and the first gas pipe 3, and 13 is the same gas pipe 12 and the second liquid pipe 5. Supercooler provided between, 1
4 is a second pressure reducing valve provided at a portion where the third gas pipe 12 is branched from the second liquid pipe 5, and 15 is a second pressure reducing valve provided on the pipe connecting the multi-effect separator 11 to the third gas pipe 12. 3 pressure reducing valve. The configuration other than the above is the same as that of the conventional technique (FIG. 7), and thus the description thereof is omitted.

【0030】本装置において、冷房のみの時(電磁弁
7,8は閉)は冷媒は気液分離器1から第1減圧弁10
へ入るが、冷房だけであるので絞りは全開である。多効
分離器11でガス冷媒を第3減圧弁15より第1ガス管
3へ逃がす。液冷媒は電磁弁9を経て、過冷却器13で
自分の液で冷却され、第2液管5を経て冷房ユニットへ
送られる。液冷媒を第2減圧弁14を介して第1ガス管
3へ流すことにより前記の液冷媒を冷やす。
In this apparatus, when only the cooling is performed (the solenoid valves 7 and 8 are closed), the refrigerant flows from the gas-liquid separator 1 to the first pressure reducing valve 10
However, since it is only for cooling, the throttle is fully open. In the multi-effect separator 11, the gas refrigerant is allowed to escape from the third pressure reducing valve 15 to the first gas pipe 3. The liquid refrigerant is cooled by its own liquid in the subcooler 13 via the solenoid valve 9, and is sent to the cooling unit via the second liquid pipe 5. By flowing the liquid refrigerant into the first gas pipe 3 via the second pressure reducing valve 14, the liquid refrigerant is cooled.

【0031】冷房主体時(電磁弁7のみ閉)には気液分
離器1で気液分離されたガス冷媒は第2ガス管4から暖
房ユニットへ供給される。一方、液冷媒は第1減圧弁で
ある圧力だけ減圧される。そのため高圧のガスライン
(第2ガス管4)と第2液管5との間に圧力差がありこ
の圧力差が一定となる様第1減圧弁10は制御される。
その後の液冷媒の流れは冷房の時と同じである。
When the cooling is mainly performed (only the solenoid valve 7 is closed), the gas refrigerant separated in the gas-liquid separator 1 is supplied from the second gas pipe 4 to the heating unit. On the other hand, the liquid refrigerant is depressurized by the pressure of the first pressure reducing valve. Therefore, there is a pressure difference between the high-pressure gas line (second gas pipe 4) and the second liquid pipe 5, and the first pressure reducing valve 10 is controlled so that this pressure difference becomes constant.
The flow of the liquid refrigerant thereafter is the same as that during cooling.

【0032】図2は本発明の第2実施例に係る冷媒回路
図である。本実施例は、さきに述べた第1実施例(ある
いは図7の従来技術)において室内機に含まれていた冷
暖房切換弁43,44を、第1実施例(図1)の分流コ
ントローラ内に移したものである。したがって本実施例
の作用は実質的に第1実施例と同じであるから説明を省
略する。
FIG. 2 is a refrigerant circuit diagram according to the second embodiment of the present invention. In the present embodiment, the cooling / heating switching valves 43 and 44 included in the indoor unit in the first embodiment (or the prior art of FIG. 7) described above are installed in the shunt controller of the first embodiment (FIG. 1). It was transferred. Therefore, the operation of this embodiment is substantially the same as that of the first embodiment, and the description thereof will be omitted.

【0033】上記第1および第2実施例は、手段の項
(1)の発明に係わるものであり、気液分離器1で分離
された液冷媒は第1減圧弁10を通ることにより高圧ガ
スライン(第2ガス管4)と第2液管5との間に一定の
圧力差を生じ、又、ガス分の少ない液冷媒は過冷却する
ことにより完全な液冷媒となるので、冷暖房能力を高め
ることができる。
The above-mentioned first and second embodiments relate to the invention of the item (1) of the means, in which the liquid refrigerant separated by the gas-liquid separator 1 passes through the first pressure reducing valve 10 to form a high pressure gas. A constant pressure difference is generated between the line (second gas pipe 4) and the second liquid pipe 5, and the liquid refrigerant with a small gas content is supercooled to become a complete liquid refrigerant, so that the cooling and heating capacity is improved. Can be increased.

【0034】図3は本発明の第3実施例に係る分流コン
トローラ(I) と室外機(II)の冷媒系統図である。この回
路が従来技術(図7)と異る点は、従来技術の分流コン
トローラ(I) における電磁弁7および8と、電磁弁7が
設けられていた配管を廃止し、その代りに室外機(II)に
第2四方切換弁35を設け、さらに分流コントローラに
おいて、室外用絞り6が設けられている配管の接続を変
更し、第2液管5と第1ガス管3とを結ぶようにした点
である。なお本実施例では四方切換弁が2個設けられる
ことになるので、従来から設けられていた四方切換弁3
2を本実施例では第1四方切換弁と称する。上記以外の
部分は従来技術と同じであるから構成の説明を省略す
る。
FIG. 3 is a refrigerant system diagram of the flow dividing controller (I) and the outdoor unit (II) according to the third embodiment of the present invention. This circuit differs from the prior art (Fig. 7) in that the solenoid valves 7 and 8 of the conventional shunt controller (I) and the piping provided with the solenoid valve 7 are eliminated, and instead of the outdoor unit ( II) is provided with a second four-way switching valve 35, and further, in the flow dividing controller, the connection of the pipe provided with the outdoor throttle 6 is changed so that the second liquid pipe 5 and the first gas pipe 3 are connected. It is a point. Since two four-way switching valves are provided in this embodiment, the four-way switching valve 3 which has been conventionally provided is used.
2 is referred to as a first four-way switching valve in this embodiment. The parts other than the above are the same as those of the conventional technique, and therefore the description of the configuration is omitted.

【0035】本実施例において、冷房のみで運転される
時は、冷媒は、圧縮機31、第1四方切換弁32、第2
四方切換弁35、第1液管2、気液分離器1、電磁弁
9、室内用絞り41、室内熱交換器42、切換弁44、
第1ガス管3、第2四方切換弁35、および第1四方切
換弁32を経て圧縮機31へ戻る。
In this embodiment, when operating only in cooling, the refrigerant is the compressor 31, the first four-way switching valve 32, the second
Four-way switching valve 35, first liquid pipe 2, gas-liquid separator 1, solenoid valve 9, indoor throttle 41, indoor heat exchanger 42, switching valve 44,
Returning to the compressor 31 via the first gas pipe 3, the second four-way switching valve 35, and the first four-way switching valve 32.

【0036】冷房主体運転の時は、冷媒は、圧縮機3
1、第1四方切換弁32、室外熱交換器33、第2四方
切換弁35、および第1液管2を経て気液分離器1へ入
り、そこでガスと液とに分離される。ガスは暖房ユニッ
トの切換弁43を経て暖房ユニットの室内熱交換器42
へ入る。液は電磁弁9、冷房ユニットの室内用絞り4
1、冷房ユニットの切換弁44、第1ガス管3、第2四
方切換弁35、第1四方切換弁32を経て圧縮機31へ
戻る。
During the cooling main operation, the refrigerant is the compressor 3
1, the first four-way switching valve 32, the outdoor heat exchanger 33, the second four-way switching valve 35, and the first liquid pipe 2 to enter the gas-liquid separator 1, where they are separated into gas and liquid. The gas passes through the switching valve 43 of the heating unit and the indoor heat exchanger 42 of the heating unit.
Enter Liquid is solenoid valve 9 and indoor throttle 4 of cooling unit
1, the cooling unit switching valve 44, the first gas pipe 3, the second four-way switching valve 35, and the first four-way switching valve 32, and then returns to the compressor 31.

【0037】暖房のみの運転、および暖房主体の運転の
時には第1四方切換弁32、および第2四方切換弁35
が切換えられる。
During the heating only operation or the heating-only operation, the first four-way switching valve 32 and the second four-way switching valve 35 are used.
Can be switched.

【0038】暖房運転の時は、冷房は、圧縮機31、第
1四方切換弁32、第2四方切換弁35、第1液管2、
気液分離器1、暖房運転ユニットの切換弁43、暖房運
転の室内熱交換器42、室内用絞り41、室外用絞り
6、第1ガス管3、第2四方切換弁35、室外熱交換器
33、および第1四方切換弁32を経て圧縮機31へ戻
る。
During heating operation, cooling is performed by the compressor 31, the first four-way switching valve 32, the second four-way switching valve 35, the first liquid pipe 2,
Gas-liquid separator 1, switching valve 43 for heating operation unit, indoor heat exchanger 42 for heating operation, indoor throttle 41, outdoor throttle 6, first gas pipe 3, second four-way switching valve 35, outdoor heat exchanger It returns to the compressor 31 through 33 and the 1st four-way switching valve 32.

【0039】暖房主体運転の時、冷媒は、圧縮機31、
第1四方切換弁32、第2四方切換弁35、第1液管
2、気液分離器1、暖房運転ユニットの切換弁43、暖
房運転ユニットの室内熱交換器42、暖房運転ユニット
の室内用絞り41、冷房運転ユニットの室内用絞り4
1、冷房運転ユニットの室内熱交換器42、冷房運転ユ
ニットの切換弁44、第1ガス管3、第2四方切換弁3
5、室外熱交換器33、および第1四方切換弁32を経
て圧縮機31へ戻る。冷媒の一部は上記暖房運転ユニッ
トの室内用絞り41の出口側から分岐し、室外用絞り6
を経て第1ガス管3へ合流する。
During the heating-based operation, the refrigerant is the compressor 31,
First four-way switching valve 32, second four-way switching valve 35, first liquid pipe 2, gas-liquid separator 1, switching valve 43 of heating operation unit, indoor heat exchanger 42 of heating operation unit, indoor operation of heating operation unit Throttle 41, indoor throttle 4 of the cooling operation unit
1, the indoor heat exchanger 42 of the cooling operation unit, the switching valve 44 of the cooling operation unit, the first gas pipe 3, the second four-way switching valve 3
5, the outdoor heat exchanger 33, and the first four-way switching valve 32 are returned to the compressor 31. A part of the refrigerant branches from the outlet side of the indoor throttle 41 of the heating operation unit, and the outdoor throttle 6
And join the first gas pipe 3.

【0040】上記各運転モードにおける各切換弁のO
N,OFF状態は表1の通りである。
O of each switching valve in each of the above operation modes
Table 1 shows the N and OFF states.

【0041】[0041]

【表1】 [Table 1]

【0042】図3は本発明の第4実施例に係る室外機(I
I)の冷媒回路図である。この実施例は、前記第3実施例
における第2四方切換弁35を4個の電磁弁36a〜3
6dに換えたものであり、図示以外の部分の構成は第3
実施例と同じである。この電磁弁のON,OFFは表2
に基いて行われる。これらの電磁弁の制御によって、前
述の四方切換弁と同様な作用をなすことができる。
FIG. 3 shows an outdoor unit (I) according to a fourth embodiment of the present invention.
It is a refrigerant circuit diagram of I). In this embodiment, the second four-way switching valve 35 in the third embodiment is replaced by four solenoid valves 36a-3.
6d, and the configuration of the parts other than those shown in the figure is the third
Same as the embodiment. Table 2 shows the ON / OFF of this solenoid valve.
It is based on. By controlling these solenoid valves, the same operation as the above-described four-way switching valve can be performed.

【0043】[0043]

【表2】 [Table 2]

【0044】以上述べた第3および第4実施例は、手段
の項(2)の発明に係わるものであり、室外機に第2四
方切換弁、あるいは4個の電磁弁を設けたことにより、
第1液管2内は常に高圧のガス、二相、液の流れで常に
室外機より分流コントローラ側へ流れ、第1ガス管3内
は常に低圧の二相、ガスの冷媒で、流れは分流コントロ
ーラから室外機側の流れとなる。即ち、室外機側で冷媒
の流れを切換えて、配管2および配管3をそれぞれ高
圧、低圧の専用ラインとし、配管内の冷媒の流れを常に
一方向としてある。したがって、配管が長くても、冷房
主体から暖房主体に切換った時、暖房ユニットを速かに
立上げることができる。
The third and fourth embodiments described above relate to the invention of the item (2) of the means, and by providing the outdoor unit with the second four-way switching valve or four electromagnetic valves,
High pressure gas, two-phase and liquid flows in the first liquid pipe 2 always flows from the outdoor unit to the diversion controller side, and in the first gas pipe 3 is always low-pressure two-phase, gas refrigerant and the flow is divided. The flow is from the controller to the outdoor unit side. That is, the flow of the refrigerant is switched on the outdoor unit side so that the pipes 2 and 3 are dedicated lines for high pressure and low pressure, respectively, and the flow of the refrigerant in the pipe is always unidirectional. Therefore, even if the piping is long, the heating unit can be quickly started up when switching from the cooling type to the heating type.

【0045】図5は本発明の第5実施例に係る分流コン
トローラ(I) の系統図である。本実施例は前記第1実施
例を更に改良したものである。本実施例は第1実施例
(図1)に比して電磁弁7とその配管が廃止されてい
る。また室外用絞り6とその配管も廃止されている。そ
の代りに、第2ガス管4に第1圧力センサ16、第2液
管5に第2圧力センサ17と温度センサ18が設けら
れ、第1圧力センサ16、第2圧力センサ17、温度セ
ンサ18からの信号に基いて第1減圧弁10、第2減圧
弁14、第3減圧弁15の開閉を制御するコントローラ
100が設けられている。
FIG. 5 is a system diagram of a shunt controller (I) according to a fifth embodiment of the present invention. This embodiment is a further improvement of the first embodiment. In this embodiment, the solenoid valve 7 and its piping are eliminated as compared with the first embodiment (FIG. 1). Also, the outdoor throttle 6 and its piping have been eliminated. Instead, the second gas pipe 4 is provided with the first pressure sensor 16, and the second liquid pipe 5 is provided with the second pressure sensor 17 and the temperature sensor 18, and the first pressure sensor 16, the second pressure sensor 17, and the temperature sensor 18 are provided. A controller 100 that controls opening and closing of the first pressure reducing valve 10, the second pressure reducing valve 14, and the third pressure reducing valve 15 based on a signal from

【0046】図6は本実施例の制御ブロック図である。
本実施例の制御をこのブロック図に基いて述べる。10
1において運転モードを入力する。冷房運転、冷房主体
運転、暖房運転、暖房主体運転のいずれかをチェックす
る。冷房及び冷房主体運転であれば、102で第1圧力
センサ16と第2圧力センサ17の圧力を入力し、差を
求める。103にはその設定値が入力されている。10
4にて圧力差と設定値を比較し、105で第1減圧弁1
0の開度を決め、106でその開度を出力する。圧力差
を検知すると同時に107で第2圧力センサ17の圧力
と温度センサ18の温度を入力し、過冷却度を求める。
108にはその設定値が入力されている。109でこれ
らを比較し、110で第3減圧弁15の開度を決定し、
111でその開度を出力する。101の運転モード入力
が暖房及び暖房主体運転であったら、107の過冷却度
検知手段で第2圧力センサ17の圧力と温度センサ18
の温度を入力し、過冷却度を求める。108にはその設
定値が入力されており、過冷却度と設定値とを109の
比較手段で比較し、112で第2減圧弁14の開度を決
定し、113でその開度を出力する。
FIG. 6 is a control block diagram of this embodiment.
The control of this embodiment will be described based on this block diagram. 10
In 1, input the operation mode. Check either cooling operation, cooling operation, heating operation, or heating operation. In the case of cooling or cooling-main operation, the pressures of the first pressure sensor 16 and the second pressure sensor 17 are input at 102 to obtain the difference. The set value is input to 103. 10
The pressure difference and the set value are compared at 4 and at 105 the first pressure reducing valve 1
The opening of 0 is determined, and the opening is output at 106. At the same time when the pressure difference is detected, the pressure of the second pressure sensor 17 and the temperature of the temperature sensor 18 are input at 107 to obtain the degree of supercooling.
The set value is input to 108. These are compared in 109, the opening of the third pressure reducing valve 15 is determined in 110,
The opening is output at 111. When the operation mode input of 101 is heating and heating-main operation, the pressure of the second pressure sensor 17 and the temperature sensor 18 are detected by the supercooling degree detecting means 107.
Enter the temperature of and calculate the degree of supercooling. The set value is input to 108, the degree of supercooling and the set value are compared by the comparison means 109, 112 determines the opening of the second pressure reducing valve 14, and 113 outputs the opening. .

【0047】本第5実施例は、手段の項(3)の発明に
係わるものであり、冷暖同時運転時、暖房時及び暖房主
体運転時には暖房ユニットの液排出を良好にするために
ガス配管と液配管とに圧力差をつける弁を配設してある
ので、過冷却度を制御することにより安定した暖房能力
を得ることができる。
The fifth embodiment is related to the invention of the means (3), and in order to improve the liquid discharge of the heating unit during the simultaneous cooling / heating operation, the heating operation and the heating-main operation, a gas pipe is connected. Since a valve for providing a pressure difference to the liquid pipe is provided, stable heating capacity can be obtained by controlling the degree of supercooling.

【0048】図7は本発明の第6実施例に係る分流コン
トローラ(I)と室外機(II)の系統図である。室外機
(II)の回路は図3に示したものと同じであるから説明
を省略する。本実施例の分流コントローラ(I)は、図
5に示した第5実施例を改良したものである。図8にお
いて、19は図5の第1減圧弁10に替えて設けられて
いる電磁弁である。この電磁弁19は暖房および暖房主
体運転時は閉、冷房および冷房主体運転時は開となり、
かつ一定の抵抗を有するものである。20は図5の多効
分離器11に替えて設けられている第2気液分離器、2
00は図5のコントローラ100に替えて設けられてい
るコントローラである。このコントローラ200は図5
とは異り、電磁弁8にも接続されている。上記以外の部
分は図5と同じである。なお、本実施例においては、第
5実施例(図5)に設けられていた第1減圧弁が除去さ
れその代りに電磁弁19が設けられていることによっ
て、「第1」という番号の減圧弁は存在しなくなるが、
第2減圧弁14、第3減圧弁15における番号「第
2」,「第3」は、第5実施例との対比のために名称の
一部としてそのまま残しておく。
FIG. 7 is a system diagram of the diversion controller (I) and the outdoor unit (II) according to the sixth embodiment of the present invention. The circuit of the outdoor unit (II) is the same as that shown in FIG. The diversion controller (I) of this embodiment is an improvement of the fifth embodiment shown in FIG. In FIG. 8, reference numeral 19 is an electromagnetic valve provided in place of the first pressure reducing valve 10 in FIG. This solenoid valve 19 is closed during heating and heating-main operation, and is open during cooling and cooling-main operation,
It also has a certain resistance. 20 is a second gas-liquid separator provided in place of the multi-effect separator 11 of FIG.
Reference numeral 00 is a controller provided in place of the controller 100 of FIG. This controller 200 is shown in FIG.
Unlike the above, it is also connected to the solenoid valve 8. The parts other than the above are the same as those in FIG. In the present embodiment, the first pressure reducing valve provided in the fifth embodiment (FIG. 5) is removed and the solenoid valve 19 is provided instead of the first pressure reducing valve, so that the pressure reducing number “first” is provided. The valve no longer exists,
The numbers “second” and “third” in the second pressure reducing valve 14 and the third pressure reducing valve 15 are left as they are as part of the names for comparison with the fifth embodiment.

【0049】図8は本実施例の制御ブロック図である。
本実施例の制御をこのブロック図に基いて述べる。20
1にて運転モードを入力する。こゝで冷房運転、冷房主
体運転、暖房運転、暖房主体運転のいずれかをチェック
する。202では電磁弁の開閉を決める。冷房運転のみ
であれば電磁弁8を閉、電磁弁19を開、冷房主体運転
であれば電磁弁8,19共に開、暖房運転および暖房主
体運転であれば電磁弁8を開、電磁弁19を閉と決め、
203にてそれを出力する。
FIG. 8 is a control block diagram of this embodiment.
The control of this embodiment will be described based on this block diagram. 20
Input the operation mode at 1. Check the cooling operation, cooling operation, heating operation, or heating operation here. At 202, the opening / closing of the solenoid valve is determined. The solenoid valve 8 is closed and the solenoid valve 19 is opened only in the cooling operation, the solenoid valves 8 and 19 are both opened in the cooling main operation, and the solenoid valve 8 is opened in the heating operation and the heating main operation. Decided to close,
It is output at 203.

【0050】冷房及び冷房主体運転であれば204で第
1圧力センサ16と第2圧力センサ17の圧力を入力
し、差を求める。205にはその設定値が入力されてい
る。206にて圧力差と設定値を比較し、207で第3
減圧弁15の開度を決め、208でその開度を出力す
る。圧力差を検知するのと同時に、209で第2圧力セ
ンサ17と温度センサ18の検出値を入力し過冷却度を
求める。210にはその設定値が入力されている。21
1でこれらを比較し、212で第2減圧弁14の開度を
決定し、213でその開度を出力する。
In the case of cooling and cooling-main operation, at 204, the pressures of the first pressure sensor 16 and the second pressure sensor 17 are input to obtain the difference. The set value is input to 205. At 206, the pressure difference and the set value are compared, and at 207, the third
The opening of the pressure reducing valve 15 is determined, and the opening is output at 208. At the same time as detecting the pressure difference, the detection values of the second pressure sensor 17 and the temperature sensor 18 are input at 209 to obtain the degree of supercooling. The set value is input to 210. 21
These are compared in 1 and the opening of the second pressure reducing valve 14 is determined in 212, and the opening is output in 213.

【0051】201の運転モード入力が暖房及び暖房主
体運転であったら、209の過冷却度検知手段で第2圧
力センサ17、温度センサ18の値を入力し、過冷却度
を求める。210にはその設定値が入力されており、過
冷却度と設定値とを211の比較手段で比較し、212
で第2減圧弁14の開度を決定し、213でその開度を
出力する。
When the operation mode input of 201 is heating or heating-main operation, the values of the second pressure sensor 17 and the temperature sensor 18 are input by the supercooling degree detecting means 209 to obtain the supercooling degree. The set value is input to 210, and the degree of supercooling and the set value are compared by the comparing means 211, and 212
Determines the opening of the second pressure reducing valve 14, and outputs the opening in 213.

【0052】本実施例は手段の項(4)の発明に係るも
のであり、冷房および冷房主体運転時には、第2ガス管
4と第2液管5の圧力差が一定となるよう第3減圧弁1
5を制御すると共に、第2液管5における過冷却度が一
定になるように第2減圧弁14を制御し、また暖房およ
び暖房主体運転時には第2液管5における過冷却度が一
定になるよう第2減圧弁14を制御するものである。こ
のようにすることによって冷・暖同時運転時に暖房ユニ
ットへ液排出が良好になり、また、暖房および暖房主体
運転時に安定した暖房能力を得ることができる。
The present embodiment relates to the invention of the item (4) of the means, and the third pressure reducing operation is performed so that the pressure difference between the second gas pipe 4 and the second liquid pipe 5 becomes constant during the cooling operation and the cooling main operation. Valve 1
5, the second pressure reducing valve 14 is controlled so that the degree of supercooling in the second liquid pipe 5 becomes constant, and the degree of supercooling in the second liquid pipe 5 becomes constant during heating and heating main operation. Thus, the second pressure reducing valve 14 is controlled. By doing so, the liquid can be well discharged to the heating unit during the simultaneous cold / warm operation, and a stable heating capacity can be obtained during the heating and the heating main operation.

【0053】[0053]

【発明の効果】手段の項(1)に記載の発明において
は、第2液管の圧力が第2ガス管の圧力より必ず低くな
るように、第1減圧弁を設け、さらに第2液管から冷房
ユニットへ液冷媒を十分に送るために多効分離器と過冷
却器を設けてあるので、冷房能力不足、および暖房能力
不足を解消することができる。
In the invention described in the paragraph (1) of the means, the first pressure reducing valve is provided so that the pressure of the second liquid pipe is always lower than the pressure of the second gas pipe, and the second liquid pipe is further provided. Since a multi-effect separator and a supercooler are provided in order to sufficiently send the liquid refrigerant from the cooling unit to the cooling unit, insufficient cooling capacity and insufficient heating capacity can be eliminated.

【0054】手段の項(2)に記載の発明においては、
第1液管および第1ガス管を、それぞれ高圧、低圧の専
用ラインとし、それらの配管内の冷媒の流れを常に同一
方向とするよう室外機に第2四方切換弁等の切換手段を
設けてあるので、運転モード切換時に暖房ユニットを速
かに立上げることができる。
In the invention described in item (2) of the means,
The first liquid pipe and the first gas pipe are respectively dedicated lines for high pressure and low pressure, and a switching means such as a second four-way switching valve is provided in the outdoor unit so that the flow of the refrigerant in these pipes is always in the same direction. Therefore, the heating unit can be started up quickly when the operation mode is switched.

【0055】手段の項(3)に記載の発明においては、
暖房ユニットの液排出を良好にするよう、第1減圧弁を
制御して第2ガス配管と第2液配管とに圧力差を設け、
さらに過冷却度を一定に保つために第3減圧弁を制御す
るので、暖房能力不足を解消することができる。また暖
房運転時および暖房主体運転時に前記過冷却度が一定と
なるよう第2減圧弁を制御するので、暖房ユニットの圧
力上昇を防止することができる。
In the invention described in the section (3) of the means,
The first pressure reducing valve is controlled to provide a pressure difference between the second gas pipe and the second liquid pipe in order to improve the liquid discharge from the heating unit,
Further, since the third pressure reducing valve is controlled in order to keep the degree of supercooling constant, it is possible to eliminate the insufficient heating capacity. Further, during the heating operation and the heating-main operation, the second pressure reducing valve is controlled so that the degree of subcooling becomes constant, so that the pressure increase in the heating unit can be prevented.

【0056】手段の項(4)に記載の発明においては、
冷房および冷房主体運転時には、第2ガス管と第2液管
の圧力差が一定となるよう第3減圧弁を制御すると共
に、過冷却度が一定となるよう第2減圧弁を制御するの
で、冷・暖同時運転時に暖房ユニットの液排出が良好と
なる。また暖房および暖房主体運転時には過冷却度が一
定になるよう第2減圧弁を制御するので、安定した暖房
能力を得ることができる。
In the invention described in item (4) of the means,
During cooling and cooling-main operation, the third pressure reducing valve is controlled so that the pressure difference between the second gas pipe and the second liquid pipe becomes constant, and the second pressure reducing valve is controlled so that the degree of subcooling becomes constant. Good liquid drainage from the heating unit during simultaneous cold and warm operation. In addition, since the second pressure reducing valve is controlled so that the degree of subcooling is constant during heating and heating-main operation, stable heating capacity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る冷媒回路図。FIG. 1 is a refrigerant circuit diagram according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る冷媒回路図。FIG. 2 is a refrigerant circuit diagram according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る冷媒回路図。FIG. 3 is a refrigerant circuit diagram according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係る冷媒回路図。FIG. 4 is a refrigerant circuit diagram according to a fourth embodiment of the present invention.

【図5】本発明の第5実施例に係る冷媒回路図。FIG. 5 is a refrigerant circuit diagram according to a fifth embodiment of the present invention.

【図6】上記第5実施例に係る制御ブロック図。FIG. 6 is a control block diagram according to the fifth embodiment.

【図7】本発明の第6実施例に係る冷媒回路図。FIG. 7 is a refrigerant circuit diagram according to a sixth embodiment of the present invention.

【図8】上記第6実施例に係る制御ブロック図。FIG. 8 is a control block diagram according to the sixth embodiment.

【図9】従来の冷暖同時形マルチ空気調和機。FIG. 9 is a conventional simultaneous cooling and heating type multi-air conditioner.

【符号の説明】[Explanation of symbols]

1 気液分離器 2 第1液管 3 第1ガス管 4 第2ガス管 5 第2液管 6 室外用絞り 7 電磁弁 8 電磁弁 9 電磁弁 10 第1減圧弁 11 多効分離器 12 第3ガス管 13 過冷却器 14 第2減圧弁 15 第3減圧弁 16 第1圧力センサ 17 第2圧力センサ 18 温度センサ 19 電磁弁 20 第2気液分離器 31 圧縮機 32 四方切換弁、第1四方切換弁 33 室外熱交換器 34 アキュムレータ 35 第2四方切換弁 36a〜36d 電磁弁 41A〜41D 室内用絞り 42A〜42D 室内熱交換器 43A〜43D 冷暖切換弁 44A〜44D 冷暖切換弁 100 コントローラ 200 コントローラ 1 gas-liquid separator 2 1st liquid pipe 3 1st gas pipe 4 2nd gas pipe 5 2nd liquid pipe 6 outdoor throttle 7 solenoid valve 8 solenoid valve 9 solenoid valve 10 first pressure reducing valve 11 multi-effect separator 12 second 3 gas pipe 13 supercooler 14 second pressure reducing valve 15 third pressure reducing valve 16 first pressure sensor 17 second pressure sensor 18 temperature sensor 19 solenoid valve 20 second gas-liquid separator 31 compressor 32 four-way switching valve, first Four-way switching valve 33 Outdoor heat exchanger 34 Accumulator 35 Second four-way switching valve 36a to 36d Electromagnetic valve 41A to 41D Indoor throttle 42A to 42D Indoor heat exchanger 43A to 43D Cooling / heating switching valve 44A to 44D Cooling / heating switching valve 100 Controller 200 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 政美 愛知県西春日井郡西枇杷島町字旭町3丁目 1番地 三菱重工業株式会社エアコン製作 所内 (72)発明者 小林 隆之 愛知県西春日井郡西枇杷島町字旭町3丁目 1番地 三菱重工業株式会社エアコン製作 所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masami Ito, Nishi-Biwajima-cho, Nishi-Kasugai-gun, Aichi Prefecture, Asahi-cho, 3-chome, Air-conditioning Plant, Mitsubishi Heavy Industries (72) Inventor Takayuki Kobayashi Nishi-Bashijima-cho, Nishi-Kasugai-gun, Aichi Prefecture Asahi-cho 3-chome Mitsubishi Heavy Industries, Ltd. Air Conditioning Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方切換弁、及び室外熱交換器
を有する1台の室外機と、それぞれ室内熱交換器を有す
る複数台の室内機と、気液分離器を有し室外機と室内機
との間に設けられて複数の室内機に冷媒を分流する分流
ユニットとを備え、前記室外機と分流ユニットとを、第
1のガス管と、気液分離器に連なる第1の液管とで接続
し、同分流ユニットと複数台の室内機とを、前記第1の
ガス管と、前記気液分離器の気相域に連なる第2のガス
管とに対し、各室内熱交換器の一端をそれぞれ冷暖房切
換弁を介して接続すると共に、気液分離器の液相域に連
なる第2の液管に対し、各室内熱交換器の他端を室内用
絞りを介して接続した、冷房運転、暖房運転、及び冷暖
房同時運転が可能な冷暖同時形マルチ空気調和機におい
て、前記分流ユニット内の第2の液管上に、気液分離器
との間に第1減圧弁を介在させて多効分離器を設け、同
第2の液管の前記多効分離器より室内機側に、同管から
分岐した一部の液冷媒を第2減圧弁を経て減圧して冷却
源とした過冷却器を設けると共に、同過冷却器からのガ
ス冷媒及び前記多効分離器から第3減圧弁を経たガス冷
媒を前記第1のガス管に導く第3のガス管を設けてなる
ことを特徴とする冷暖同時形マルチ空気調和機。
1. An outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, and an outdoor unit having a gas-liquid separator. A first liquid pipe connecting the outdoor unit and the flow dividing unit to the first gas pipe and the gas-liquid separator. Each of the indoor heat exchanges is performed by connecting the same diversion unit and a plurality of indoor units to the first gas pipe and the second gas pipe connected to the gas phase region of the gas-liquid separator by connecting the pipes to each other. One end of each unit was connected via a heating / cooling switching valve, and the other end of each indoor heat exchanger was connected to a second liquid pipe connected to the liquid phase region of the gas-liquid separator via an indoor throttle. In the simultaneous cooling and heating multi-type air conditioner capable of performing cooling operation, cooling operation, heating operation and simultaneous cooling and heating operation, A multi-effect separator is provided on the second liquid pipe in the chamber by interposing a first pressure reducing valve between the gas-liquid separator and the multi-effect separator of the second liquid pipe, which is closer to the indoor unit than the multi-effect separator. Is provided with a subcooler which is used as a cooling source by decompressing a part of the liquid refrigerant branched from the same pipe through a second pressure reducing valve, and the gas refrigerant from the subcooler and the third effect separator from the multi-effect separator are provided. A simultaneous cooling and heating multi-air conditioner comprising a third gas pipe for guiding the gas refrigerant that has passed through a pressure reducing valve to the first gas pipe.
【請求項2】 前記室外機内に、前記第1のガス管及び
第1の液管に対して常に一方向に冷媒を流通させる切換
手段を設けたことを特徴とする請求項1に記載の冷暖同
時形マルチ空気調和機。
2. The heating / cooling device according to claim 1, further comprising switching means for constantly circulating the refrigerant in one direction with respect to the first gas pipe and the first liquid pipe in the outdoor unit. Simultaneous multi air conditioner.
【請求項3】 前記分流ユニット内の第2のガス管に第
1圧力センサを、第2の液管に第2圧力センサ及び温度
センサを設け、冷房運転時及び冷房主体運転時に、前記
第1、第2圧力センサにより検出した圧力の差が一定と
なるよう第1減圧弁を制御すると共に、第2圧力センサ
及び温度センサの検出値から過冷却度を検出し、同過冷
却度が一定となるよう前記第3減圧弁を制御し、暖房運
転時及び暖房主体運転時に、前記過冷却度が一定となる
よう、前記第2減圧弁を制御するコントローラを設けた
ことを特徴とする請求項1に記載の冷暖同時形マルチ空
気調和機。
3. A first pressure sensor is provided in a second gas pipe in the flow dividing unit, a second pressure sensor and a temperature sensor are provided in a second liquid pipe, and the first pressure sensor is provided in a cooling operation and a cooling main operation. , The first pressure reducing valve is controlled so that the pressure difference detected by the second pressure sensor becomes constant, and the degree of supercooling is detected from the detection values of the second pressure sensor and the temperature sensor. The controller for controlling the third pressure reducing valve to control the second pressure reducing valve so that the degree of subcooling is constant during heating operation and heating main operation. Simultaneous cooling and heating type multi-air conditioner.
【請求項4】 圧縮機、四方切換弁、及び室外熱交換器
を有する1台の室外機と、それぞれ室内熱交換器を有す
る複数台の室内機と、気液分離器を有し室外機と室内機
との間に設けられて複数の室内機に冷媒を分流する分流
ユニットとを備え、前記室外機と分流ユニットとを、第
1のガス管と、気液分離器に連なる第1の液管とで接続
し、同分流ユニットと複数台の室内機とを、前記第1の
ガス管と、前記気液分離器の気相域に連なる第2のガス
管とに対し、各室内熱交換器の一端をそれぞれ冷暖房切
換弁を介して接続すると共に、気液分離器の液相域に連
なる第2の液管に対し、各室内熱交換器の他端を室内用
絞りを介して接続した、冷房運転、暖房運転、及び冷暖
房同時運転が可能な冷暖同時形マルチ空気調和機におい
て、前記分流ユニット内の第2の液管上に、前記気液分
離器との間に、暖房及び暖房主体運転時に閉、冷房及び
冷房主体運転時は開で一定の抵抗を有する電磁弁を介在
させて、第2気液分離器を設け、同第2の液管の前記第
2気液分離器より室内機側に、同管から分岐した一部の
液冷媒を第2減圧弁を経て減圧して冷却源とした過冷却
器を設けると共に、同過冷却器からのガス冷媒及び前記
第2気液分離器から第3減圧弁を経たガス冷媒を前記第
1のガス管に導く第3のガス管を設け、さらに、前記分
流ユニット内の第2のガス管に第1圧力センサを、第2
の液管に第2圧力センサ及び温度センサを設け、冷房運
転時及び冷房主体運転時に、前記第1、第2圧力センサ
により検出した圧力の差が一定となるよう第3減圧弁を
制御し、また、第2圧力センサ及び温度センサの検出値
から過冷却度を検出し、同過冷却度が一定となるよう前
記第2減圧弁を制御するコントローラを設けたことを特
徴とする冷暖同時形マルチ空気調和機。
4. An outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, and an outdoor unit having a gas-liquid separator. A first liquid pipe connecting the outdoor unit and the flow dividing unit to the first gas pipe and the gas-liquid separator. Each of the indoor heat exchanges is performed by connecting the same diversion unit and a plurality of indoor units to the first gas pipe and the second gas pipe connected to the gas phase region of the gas-liquid separator by connecting the pipes to each other. One end of each unit was connected via a heating / cooling switching valve, and the other end of each indoor heat exchanger was connected to a second liquid pipe connected to the liquid phase region of the gas-liquid separator via an indoor throttle. In the simultaneous cooling and heating multi-type air conditioner capable of performing cooling operation, cooling operation, heating operation and simultaneous cooling and heating operation, On the second liquid pipe in the container, between the gas-liquid separator and a solenoid valve having a constant resistance, which is closed during heating and heating-main operation and open during cooling and cooling-main operation, is interposed. A second gas-liquid separator is provided, and a part of the liquid refrigerant branched from the second liquid pipe on the indoor unit side of the second gas pipe is decompressed through a second pressure reducing valve to be cooled. And a third gas pipe for guiding the gas refrigerant from the subcooler and the gas refrigerant from the second gas-liquid separator through the third pressure reducing valve to the first gas pipe. And a first pressure sensor in the second gas pipe in the flow dividing unit, and a second pressure sensor in the second gas pipe.
A second pressure sensor and a temperature sensor are provided in the liquid pipe, and the third pressure reducing valve is controlled so that the difference between the pressures detected by the first and second pressure sensors becomes constant during the cooling operation and the cooling main operation, Further, a simultaneous cooling and heating multi-type multi-function device is provided, which is provided with a controller for detecting the degree of supercooling from the detected values of the second pressure sensor and the temperature sensor and controlling the second pressure reducing valve so that the degree of supercooling is constant. Air conditioner.
JP5286588A 1993-04-20 1993-11-16 Simultaneous cooling-heating type multiple air conditioner Withdrawn JPH074779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5286588A JPH074779A (en) 1993-04-20 1993-11-16 Simultaneous cooling-heating type multiple air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9282393 1993-04-20
JP5-92823 1993-04-20
JP5286588A JPH074779A (en) 1993-04-20 1993-11-16 Simultaneous cooling-heating type multiple air conditioner

Publications (1)

Publication Number Publication Date
JPH074779A true JPH074779A (en) 1995-01-10

Family

ID=26434201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5286588A Withdrawn JPH074779A (en) 1993-04-20 1993-11-16 Simultaneous cooling-heating type multiple air conditioner

Country Status (1)

Country Link
JP (1) JPH074779A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049346A1 (en) * 1999-02-17 2000-08-24 Yanmar Diesel Engine Co., Ltd. Refrigerant supercooling circuit
US6883345B2 (en) 2002-06-12 2005-04-26 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
US7124595B2 (en) 2003-01-16 2006-10-24 Lg Electronics Inc. Multi-type air conditioner with plurality of distributor able to be shutoff
JP2011257020A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Air conditioner
JP2014043993A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
WO2014054091A1 (en) * 2012-10-01 2014-04-10 三菱電機株式会社 Air conditioning device
EP3199878A4 (en) * 2014-09-26 2018-03-21 Gree Electric Appliances, Inc. of Zhuhai Variable refrigerant volume system and control method thereof
EP3172495A4 (en) * 2014-10-21 2018-04-04 GD Midea Heating & Ventilating Equipment Co., Ltd. Multi-split air-conditioner and outdoor unit system thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049346A1 (en) * 1999-02-17 2000-08-24 Yanmar Diesel Engine Co., Ltd. Refrigerant supercooling circuit
US6883345B2 (en) 2002-06-12 2005-04-26 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
US7124595B2 (en) 2003-01-16 2006-10-24 Lg Electronics Inc. Multi-type air conditioner with plurality of distributor able to be shutoff
JP2011257020A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Air conditioner
JP2014043993A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
WO2014054091A1 (en) * 2012-10-01 2014-04-10 三菱電機株式会社 Air conditioning device
JP5759080B2 (en) * 2012-10-01 2015-08-05 三菱電機株式会社 Air conditioner
EP3199878A4 (en) * 2014-09-26 2018-03-21 Gree Electric Appliances, Inc. of Zhuhai Variable refrigerant volume system and control method thereof
US10317118B2 (en) 2014-09-26 2019-06-11 Gree Electric Appliances, Inc. Of Zhuhai Variable refrigerant volume system and control method thereof
EP3172495A4 (en) * 2014-10-21 2018-04-04 GD Midea Heating & Ventilating Equipment Co., Ltd. Multi-split air-conditioner and outdoor unit system thereof
US10253992B2 (en) 2014-10-21 2019-04-09 Gd Midea Heating & Ventilating Equipment Co., Ltd. Multi-split air-conditioner and outdoor unit system thereof

Similar Documents

Publication Publication Date Title
AU656063B2 (en) Air-conditioning system
AU660124B2 (en) Air conditioning apparatus
EP1816416B1 (en) Air conditioner
US6883346B2 (en) Freezer
KR930005666B1 (en) Air conditioner and operating method
CN103635754A (en) Air conditioner
US6817205B1 (en) Dual reversing valves for economized heat pump
JP2007139265A (en) Operation control method and program for multiple type air conditioner
JP2017150678A (en) Air conditioner
JPH074779A (en) Simultaneous cooling-heating type multiple air conditioner
WO2021065678A1 (en) Air conditioner
KR19990081638A (en) Multi type air conditioner and control method
CN107560213A (en) Air-conditioning system and air-conditioning
JP2522361B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
KR20080075581A (en) Control method for air conditioning system
JP2757584B2 (en) Air conditioner
JP2522371B2 (en) Air conditioner
JP4090238B2 (en) Air conditioner and outdoor heat exchanger switching control method of air conditioner
JP2601052B2 (en) Air conditioner
WO2022113166A1 (en) Refrigeration cycle device
JP3092212B2 (en) Air conditioner
JPH0252964A (en) Multiroom type refrigerating circuit
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JPS592832B2 (en) Heat recovery air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130