JP2601052B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2601052B2
JP2601052B2 JP3107428A JP10742891A JP2601052B2 JP 2601052 B2 JP2601052 B2 JP 2601052B2 JP 3107428 A JP3107428 A JP 3107428A JP 10742891 A JP10742891 A JP 10742891A JP 2601052 B2 JP2601052 B2 JP 2601052B2
Authority
JP
Japan
Prior art keywords
control device
flow control
connection pipe
pressure
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3107428A
Other languages
Japanese (ja)
Other versions
JPH04335968A (en
Inventor
節 中村
秀一 谷
智彦 河西
徳明 林田
茂生 高田
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3107428A priority Critical patent/JP2601052B2/en
Publication of JPH04335968A publication Critical patent/JPH04335968A/en
Application granted granted Critical
Publication of JP2601052B2 publication Critical patent/JP2601052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
機に関するもので、特に各室内機毎に冷房を選択的に、
かつ一方の室内機では冷房、他方の室内機では暖房が同
時に行うことができる空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit.
Further, the present invention relates to an air conditioner capable of simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

【0002】[0002]

【従来の技術】従来、熱源機1台に対して複数台の室内
機をガス管と液管の2本の配管で接続し、冷暖房運転を
するヒートポンプ式空気調和装置は一般的であり各室内
機はすべて暖房、またはすべて冷房を行うように形成さ
れている。
2. Description of the Related Art Conventionally, a heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit by two pipes of a gas pipe and a liquid pipe to perform a cooling and heating operation is generally used. The machines are all configured to heat or all cool.

【0003】[0003]

【発明が解決しようとする課題】従来の多室型ヒートポ
ンプ式空気調和装置は以上のように構成されているので
すべての室内機が冷房または暖房にしか運転しないた
め、冷房が必要な場所で暖房が行われたり、逆に暖房が
必要な場所で冷房が行われるような問題があった。特
に、大規模なビルに据え付けた場合、インテリア部とペ
リメータ部、または一般事務室と、コンピュータルーム
等のOA化された部屋では空調の負荷が著しく異なるた
め、特に問題となっている。なお、近似技術として、特
開平1−134172号公報がある。
Since the conventional multi-chamber heat pump type air conditioner is configured as described above, all the indoor units are operated only for cooling or heating. However, there is a problem that cooling is performed in a place where heating is required. In particular, when installed in a large-scale building, there is a particular problem because the load of air conditioning is significantly different between an interior unit and a perimeter unit, or a general office room and a computer room or other OAized room. As an approximation technique, there is JP-A-1-134172.

【0004】この発明は、上記のような問題点を解決す
るためになされたもので、熱源機1台に対して複数台の
室内機を接続し、各室内機毎に冷暖房を選択的に、かつ
一方の室内機では冷房、他方の室内機では暖房が同時に
行うことができるようにして大規模なビルに据え付けた
場合、インテリア部とペリメータ部、または一般事務室
と、コンピュータルーム等のOA化された部屋で空調の
負荷が著しく異なっても、それぞれに対応できる多室型
ヒートポンプ式空気調和装置を得ることを目的とする。
また、過渡時の冷媒流動音の低下を図ることを目的とす
るものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A plurality of indoor units are connected to one heat source unit, and air conditioning is selectively performed for each indoor unit. In addition, if one indoor unit is installed in a large-scale building so that cooling can be performed simultaneously and the other indoor unit can be heated at the same time, the OA of the interior and perimeter, or the general office and computer room, etc. It is an object of the present invention to obtain a multi-chamber heat pump type air conditioner capable of coping with a significantly different air conditioning load in each of the rooms.
It is another object of the present invention to reduce the refrigerant flow noise during transition.

【0005】[0005]

【課題を解決するための手段】この発明に係わる空気調
和装置は圧縮機、切換弁、熱源機側熱交換器よりなる
1台の熱源機とそれぞれ室内側熱交換器を有する複数台
の室内機とを、第1、第2の接続配管を介して接続した
ものにおいて、上記第1、第2の接続配管間に設けら
れ、流れる冷媒の方向を切換えることにより、運転時は
常に、上記熱源機と上記室内機間に介在する上記第1の
接続配管を低圧に、上記第2の接続配管を高圧にする流
路切換弁装置と、上記複数台の室内機の室内側熱交換器
の一方を上記第1の接続配管または気液分離装置を介し
第2の接続配管に切換可能に接続する第1の分岐部
と、上記複数台の室内機の室内側熱交換器の他方を第1
の流量制御装置を介して上記第2の接続配管に接続して
なる第2の分岐部と上記第2の接続配管に設けられ、
上記気液分離装置と上記第2の分岐部間に接続される第
2の流量制御装置と、一端が第2の分岐部に接続され他
端がバイパス用流量制御装置を介して第1の接続配管に
接続されたバイパス回路と、上記第2の流量制御装置と
上記バイパス用流量制御装置との間の冷媒圧力を検出す
る第2の圧力検出手段と上記第2の流量制御装置と上記
バイパス用流量制御装置との間の冷媒温度を検出する温
度検出手段と、上記圧縮機が起動後、上記第2の圧力検
出手段の検出圧力と上記温度検出手段の検出温度から計
算される上記バイパス用流量制御装置の入口の過冷却度
が予め設定された値に達するまでの間は、上記バイパス
用流量制御装置の開度がある一定の開度以上にならない
ように上記バイパス用流量制御装置を制御する流量制御
装置制御手段を設けたものである。
An air conditioner according to the present invention comprises a plurality of indoor units each having a single heat source unit including a compressor, a switching valve, and a heat source unit side heat exchanger, and an indoor side heat exchanger. Connected to the heat source via the first and second connection pipes, and provided between the first and second connection pipes to switch the direction of the flowing refrigerant so that the heat source is always operated during operation. A flow path switching valve device that lowers the pressure of the first connection pipe and the pressure of the second connection pipe interposed between the unit and the indoor unit, and one of the indoor heat exchangers of the plurality of indoor units Through the first connection pipe or the gas-liquid separator.
A first branch portion connecting the second to switchable example the connecting pipe Te, the other indoor heat exchanger of the plurality of indoor units first
A second branch portion connected to the second connection pipe via the flow control device of the above , and provided in the second connection pipe,
The first connection through the second flow control device that will be connected between the gas-liquid separator and the second branch portion, the one end and the other end connected to the second branch portion bypass flow control device A bypass circuit connected to the pipe, a second pressure detecting means for detecting a refrigerant pressure between the second flow control device and the bypass flow control device, the second flow control device and the bypass flow control device; Temperature detecting means for detecting a refrigerant temperature between the flow rate control device and the bypass flow rate calculated from the detected pressure of the second pressure detecting means and the detected temperature of the temperature detecting means after the compressor is started. Until the degree of supercooling at the inlet of the control device reaches a preset value, the bypass flow control device is controlled so that the opening of the bypass flow control device does not exceed a certain opening. Set flow control device control means Those were.

【0006】また、除霜運転が終了して各室内機が暖房
のみの運転、または各室内機が冷暖同時運転されると共
に上記熱源機側熱交換器が蒸発器となる運転に切り換わ
った後、上記第2の圧力検出手段の検出圧力と上記温度
検出手段の検出温度から計算される上記バイパス用流量
制御装置の入口の過冷却度が予め設定された値に達する
までの間は、上記バイパス用流量制御装置の開度がある
一定の開度以上にならないように上記バイパス用流量制
御装置を制御する流量制御装置制御手段を設ける。
[0006] Further, after the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the operation is switched to an operation in which the heat exchanger on the heat source unit side becomes an evaporator. the second until the detected pressure and the inlet of the subcooling degree of the bypass flow control device, which is calculated from the detected temperature of the temperature detecting means of the pressure detecting means reaches a preset value, the bypass provided that controls the bypass flow control device flow amount control device controlling means not to exceed a certain degree with the opening of the use flow control device.

【0007】また、各室内機が冷房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後、
上記第2の圧力検出手段の検出圧力と上記温度検出手段
の検出温度から計算される上記バイパス用流量制御装置
の入口の過冷却度が予め設定された値に達するまでの間
は、上記バイパス用流量制御装置の開度がある一定の開
度以上にならないように上記バイパス用流量制御装置を
制御する流量制御装置制御手段を設ける。
[0007] In addition, from the operation in which each indoor unit only operates for cooling or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger serves as a condenser, the operation in which each indoor unit operates only for heating, or After each indoor unit is operated simultaneously with cooling and heating, and the heat source unit side heat exchanger is switched to an operation to be an evaporator,
Until the degree of supercooling at the inlet of the bypass flow control device calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means reaches a preset value, the bypass providing the bypass flow control device that controls the flow amount control device controlling means not to exceed a certain degree that the opening degree of the flow control device.

【0008】また、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が蒸発器となる運転から、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が凝縮器となる運転に切り換わった後、
上記第2の圧力検出手段の検出圧力と上記温度検出手段
の検出温度から計算される上記バイパス用流量制御装置
の入口の過冷却度が予め設定された値に達するまでの間
は、上記バイパス用流量制御装置の開度がある一定の開
度以上にならないように上記バイパス用流量制御装置を
制御する流量制御装置制御手段を設ける。
[0008] In addition, from the operation in which each indoor unit is operated only for heating or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger is an evaporator , the operation for each indoor unit is only for cooling, or After each indoor unit is operated simultaneously with cooling and heating, and after the heat source unit side heat exchanger is switched to an operation to be a condenser ,
Until the degree of supercooling at the inlet of the bypass flow control device calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means reaches a preset value, the bypass providing the bypass flow control device that controls the flow amount control device controlling means not to exceed a certain degree that the opening degree of the flow control device.

【0009】[0009]

【作用】この発明において、圧縮機起動後の過渡時に
は、高圧が充分に上昇していないので上記バイパス用
量制御装置の入口の冷媒は過冷却液とはなっておらずフ
ラッシュ状態であり、過冷却度が予め設定された値に達
するまでの間は上記バイパス用流量制御装置の開度があ
る一定開度以上にならないようにして、上記バイパス用
流量制御装置を流れる冷媒流動音を小さく抑える。
In the present invention, at the time of transition after the start of the compressor, the refrigerant at the inlet of the bypass flow control device does not become supercooled liquid and does not the state, until the subcooling degree reaches a preset value so as not to exceed a certain degree with the opening degree of the bypass flow control device, the bypass <br/> flow controller The noise of the refrigerant flowing through the air is kept low.

【0010】また、除霜運転中には高圧が低く、上記第
2の流量制御装置とバイパス用流量制御装置の間の中間
圧部分の液冷媒が低圧部分にぬけてしまうので、除霜運
転が終了して各室内機が暖房のみの運転、または各室内
機が冷暖同時運転されると共に上記熱源機側熱交換器が
蒸発器となる運転に切り換わった後の過渡時には、上記
バイパス用流量制御装置の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、過冷却度が予め設定
された値に達するまでの間は、上記バイパス用流量制御
装置の開度がある一定開度以上にならないようにして、
上記バイパス用流量制御装置を流れる冷媒流動音を小さ
く抑える。
Further, during the defrosting operation, the high pressure is low, and the liquid refrigerant in the intermediate pressure portion between the second flow control device and the bypass flow control device passes through the low pressure portion. When the operation is completed and each indoor unit is operated only for heating, or each indoor unit is simultaneously operated for cooling and heating, and during the transition after the heat source unit side heat exchanger is switched to the operation to be an evaporator,
The refrigerant at the inlet of the bypass flow control device is not in the supercooled liquid and is in a flush state, and the opening degree of the bypass flow control device is maintained until the supercooling degree reaches a preset value. So that it does not exceed a certain opening,
The refrigerant flow noise flowing through the bypass flow control device is suppressed to be small.

【0011】また、各室内機が冷房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後の
過渡時には、切換弁が切り換わって高圧及び中間圧が一
時的に低下し、上バイパス用流量制御装置の入口の冷
媒は過冷却液とはなっておらずフラッシュ状態であり、
過冷却度が予め設定された値に達するまでの間は、上記
バイパス用流量制御装置の開度がある一定開度以上にな
らないようにして、上記バイパス用流量制御装置を流れ
る冷媒流動音を小さく抑える。
[0011] Further, from the operation in which each indoor unit is operated only for cooling or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat exchanger on the heat source unit side is a condenser, the operation in which each indoor unit is only for heating, or the transient state after each indoor unit is the heat source apparatus side heat exchanger while being simultaneous heating and cooling operation is switched to operation as an evaporator, the high pressure and intermediate pressure temporarily decreases switched is switched valve, above The refrigerant at the inlet of the bypass flow control device is not in the supercooled liquid but is in a flush state,
Until the degree of supercooling reaches the preset value,
The flow rate of the refrigerant flowing through the bypass flow control device is suppressed to a low level so that the opening of the bypass flow control device does not exceed a certain opening.

【0012】また、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が蒸発器となる運転から、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が凝縮器となる運転に切り換わった後の
過渡時には、切り換え前の第2の接続配管を満たしてい
るガス冷媒が切り換え後に第2の分岐部に供給されるの
で、上記バイパス用流量制御装置の入口の冷媒は過冷却
液とはなっておらずフラッシュ状態であり、上記バイパ
ス用流量制御装置の開度がある一定開度以上にならない
ようにして、上記バイパス用流量制御装置を流れる冷媒
流動音を小さく抑える。
[0012] Further, from the operation in which each indoor unit is operated only for heating, or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat exchanger on the heat source unit side is an evaporator, the operation for each indoor unit is only for cooling, or At the time of transition after each indoor unit is simultaneously operated for cooling and heating and after the operation of the heat source unit side heat exchanger is switched to a condenser, the second connection pipe before switching is filled.
Since Ruga scan refrigerant is supplied to the second branch portion after switching, the refrigerant inlet of the bypass flow control device is a flash state not become the supercooled liquid, the bypass
The flow rate of the refrigerant flowing through the bypass flow rate control device is suppressed to a small level so that the opening degree of the flow rate control device does not exceed a certain opening degree.

【0013】[0013]

【実施例】実施例1. 以下、この発明の実施例について説明する。図1はこの
発明の一実施例による空気調和装置の冷媒系を中心とす
る全体構成図である。また、図2乃至図4は図1の一実
施例における冷暖房運転時の動作状態を示したもので、
図2は冷房または暖房のみの運転動作状態図、図3及び
図4は冷暖房同時運転の動作を示すもので、図3は暖房
主体(暖房運転容量が冷房運転容量より大きい場合)
を、図4は冷房主体(冷房運転容量が暖房運転容量より
大きい場合)を示す運転動作状態図、図5は除霜運転の
運転動作状態図である。そして、図8はこの発明の他の
実施例の空気調和装置の冷媒系を中心とする全体構成図
である。なお、この実施例では、熱源機1台に室内機3
台を接続した場合について説明するが、2台以上の室内
機を接続した場合も同様である。図1において、Aは熱
源機、B、C、Dは後述するように互いに並列接続され
た室内機でそれぞれ同じ構成となっている。Eは後述す
るように、第1の分岐部、第2の流量制御装置、第2の
分岐部、気液分離装置、熱交換部、バイパス用流量制御
装置としての第3、第4の流量制御装置を内蔵した中継
器である。1は圧縮機、2は熱源機の冷媒流通方向を切
換える切換弁、3は熱源機側熱交換器、4はアキュムレ
ータであり、上記機器が接続され、これらによって熱源
機A構成される。5は3台の室内機B,C,Dそれぞ
に設けられた室内側熱交換器、6は熱源機Aの切換
2と中継器Eを接続する太い第1の接続配管、6b,6
c,6dはそれぞれ室内機B,C,Dの室内側熱交換器
5と中継器Eを接続し、第1の接続配管6に対応する室
内機側の第1の接続配管、7は熱源機Aの熱源機側熱交
換器3と中継器Eを接続する上記第1の接続配管より細
い第2の接続配管、7b,7c,7dはそれぞれ室内機
B,C,Dの室内側熱交換器5と中継器Eを第1の流量
制御装置9を介して接続する室内機側の第2の接続配管
であり、第2の接続配管7に対応するものである。8は
室内機側の第1の接続配管6b,6c,6dと、第1の
接続配管6または、第2の接続配管7側に切換可能に接
続し、かつ室内機側の第1の接続配管6b,6c,6d
と第1の接続配管6、第2の接続配管7のいずれとも流
通を閉止することの可能な三方切換弁、9は室内側熱交
換器5に近接して接続され、冷房時室内側熱交換器5の
出口側のスーパーヒート量、暖房時はサブクール量によ
り制御される第1の流量制御装置で、室内機側の第2の
接続配管7b,7c,7dに接続される。10は室内機
側の第1の接続配管6b,6c,6dと、第1の接続配
管6または、第2の接続配管7に切換可能に接続する三
方切換弁8よりなる第1の分岐部、11は室内機側の第
2の接続配管7b,7c,7と第2の接続配管7より
なる第2の分岐部、12は第2の接続配管7の途中に設
けられた気液分離装置で、その気層部は三方切換弁8の
第1口8aに接続され、その液層部は第2の分岐部11
に接続されている。13は、気液分離装置12と第2の
分岐部11との間に接続する開閉自在な第2の流量制御
装置(ここでは電気式膨張弁)、14は第2の分岐部1
1と上記第1の接続配管6とを結ぶバイパス回路(この
実施例におけるバイパス配管)、15はバイパス用流量
制御装置であり、この実施例においては上記バイパス配
管14の途中に設けられた第3の流量制御装置(ここで
は電気式膨張弁)が該当する。16aはバイパス配管1
4の途中に設けられた上記第3の流量制御装置15の下
流に設けられ、第2の分岐部11における各室内機側の
第2の接続配管7b,7c,7dの会合部との間でそれ
ぞれ熱交換を行う第2の熱交換部、16b,16c,1
6dはそれぞれバイパス配管14の途中に設けられた
第3の流量制御装置15の下流に設けられ、第2の分
岐部11における各室内機側の第2の接続配管7b,7
c,7dとの間でそれぞれ熱交換を行う第3の熱交換
部、19は、バイパス配管14の上記第3の流量制御装
置15の下流及び第2の熱交換部16aの下流に設けら
れ気液分離装置12と第2の流量制御装置13とを接続
する配管との間で熱交換を行う第1の熱交換部、17
また、第2の分岐部11と上記第1の接続配管6との間
に接続する開閉自在なバイパス用流量制御装置であり、
この実施例における第4の流量制御装置(ここでは電気
式膨張弁)、32は、上記熱源機側熱交換器3と上記第
2の接続配管7との間に設けられた第3の逆止弁であ
り、上記熱源機側熱交換器3から上記第2の接続配管7
へのみ冷媒流通を許容する。33は、上記熱源機Aの
弁2と上記第1の接続配管6との間に設けられた第4
の逆止弁であり、上記第1の接続配管6から上記切換
2へのみ冷媒流通を許容する。34は、上記熱源機Aの
切換弁2と上記第2の接続配管7との間に設けられた第
5の逆止弁であり、上記切換弁2から上記第2の接続配
管7へのみ冷媒流通を許容する。35は、上記熱源機側
熱交換器3と上記第1の接続配管6との間に設けられた
第6の逆止弁であり、上記第1の接続配管6から上記熱
源機側熱交換器3へのみ冷媒流通を許容する。上記第
3、第4、第5、第6の逆止弁32,33,34,35
流路切換弁装置40を構成する。49は上記流路切換
弁装置40と上記第2の接続配管7との間と上記流路切
換弁装置40と上記第1の接続配管6との間を接続する
熱源機側バイパス路、48は上記熱源機側バイパス路4
9の配管途中に設けられ上記熱源機側バイパス路49の
開閉を制御する第6の電磁開閉弁、25は上記第1の分
岐部10と第2の流量制御装置13の間に設けられた第
1の圧力検出手段、26は上記第2の流量制御装置13
と第3及び第4の流量制御装置15、17との間に設け
られた第2の圧力検出手段、27は第3の流量制御装置
15の入口部分に設けられた温度検出手段である。
[Embodiment 1] Hereinafter, embodiments of the present invention will be described. FIG. 1 is an overall configuration diagram mainly showing a refrigerant system of an air conditioner according to an embodiment of the present invention. FIGS. 2 to 4 show the operation states during the cooling / heating operation in the embodiment of FIG.
FIG. 2 shows an operation state diagram of only cooling or heating, and FIGS. 3 and 4 show an operation of simultaneous cooling and heating operation. FIG. 3 mainly shows heating (when the heating operation capacity is larger than the cooling operation capacity).
FIG. 4 is an operation state diagram showing a cooling main body (when the cooling operation capacity is larger than the heating operation capacity), and FIG. 5 is an operation state diagram of the defrosting operation. FIG. 8 is an overall configuration diagram mainly showing a refrigerant system of an air conditioner according to another embodiment of the present invention. In this embodiment, the indoor unit 3 is connected to one heat source unit.
The case where two or more indoor units are connected will be described, but the same applies to a case where two or more indoor units are connected. In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel to each other as described later, and have the same configuration. E is a first branch, a second flow controller, a second branch, a gas-liquid separator, a heat exchanger, and a third and fourth flow controllers as bypass flow controllers, as described later. It is a repeater with a built-in device. 1 compressor, 2 changeover valve for switching a refrigerant flow direction of the heat source machines, 3 heat source apparatus side heat exchanger, 4 is an accumulator, the device is connected, the heat source unit A is configured by these. 5 three indoor units B, C, D it
Indoor heat exchanger provided in the Le, 6 thick first connection pipe connecting the repeater E a switching valve 2 of the heat source unit A, 6b, 6
c and 6d respectively connect the indoor side heat exchangers 5 of the indoor units B, C and D and the relay E, and a first connection pipe on the indoor unit side corresponding to the first connection pipe 6, and 7 is a heat source unit. A second connection pipe, 7b, 7c, 7d, which is thinner than the first connection pipe connecting the heat source unit side heat exchanger 3 of A and the repeater E, is an indoor heat exchanger of the indoor units B, C, D, respectively. Connection pipe on the indoor unit side connecting the relay 5 and the relay E via the first flow control device 9
And corresponds to the second connection pipe 7. 8 is switchably connected to the first connection pipe 6b, 6c, 6d on the indoor unit side and the first connection pipe 6 or the second connection pipe 7 side, and the first connection pipe on the indoor unit side. 6b, 6c, 6d
A three-way switching valve 9 capable of closing the flow to any one of the first connection pipe 6 and the second connection pipe 7 is connected in close proximity to the indoor heat exchanger 5, and the indoor heat exchange during cooling is performed. The first flow control device is controlled by the superheat amount on the outlet side of the unit 5 and the subcool amount during heating, and is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side. Reference numeral 10 denotes a first branch portion including a first connection pipe 6b, 6c, 6d on the indoor unit side and a three-way switching valve 8 switchably connected to the first connection pipe 6 or the second connection pipe 7. 11 and the second connection pipe 7b of the indoor unit side, 7c, 7 d and a second branch portion made of the second connection pipe 7, 12 gas-liquid separator provided in the middle of the second connecting pipe 7 The gas layer is connected to the first port 8a of the three-way switching valve 8, and the liquid layer is connected to the second branch 11
It is connected to the. Reference numeral 13 denotes an openable and closable second flow control device (here, an electric expansion valve) connected between the gas-liquid separation device 12 and the second branch portion 11, and reference numeral 14 denotes a second branch portion 1.
1 and the first connection pipe 6 by a bypass circuit (this
Bypass pipe) in Examples 15 bypass flow
In this embodiment, a third flow control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14 corresponds to a control device . 16a is the bypass pipe 1
The provided 4 of course it provided downstream of the third flow controller 15, of the indoor unit side in the second branch portion 11 and the second connection pipe 7b, 7c, between the meeting part of 7d A second heat exchange section for performing heat exchange, 16b, 16c, 1
6d On provided in the middle of the bypass pipe 14, respectively
Serial third provided downstream of the flow control device 15, of the indoor unit side in the second branch portion 11 and the second connection pipe 7b, 7
A third heat exchanging unit 19 for exchanging heat with c and 7d is provided downstream of the third flow control device 15 in the bypass pipe 14 and downstream of the second heat exchanging unit 16a. The first heat exchange section 17 for exchanging heat between the pipe connecting the liquid separation device 12 and the second flow control device 13 is also provided.
Further, it is an openable / closable bypass flow control device connected between the second branch portion 11 and the first connection pipe 6 ,
A fourth flow control device (here, an electric expansion valve) 32 in this embodiment is provided with a third check provided between the heat source unit side heat exchanger 3 and the second connection pipe 7. A valve from the heat source unit side heat exchanger 3 to the second connection pipe 7
Only the refrigerant flow is allowed. 33 is a cutoff of the heat source unit A.
Conversion valve 2 and the fourth provided between the first connection pipe 6
A check valve, allowing only the refrigerant flow into the switching valve 2 from the first connection pipe 6. 34 is the heat source device A
A fifth check valve which is provided between the changeover valve 2 and the second connection pipe 7, allowing only the refrigerant flow into the second connection pipe 7 from the switching valve 2. Reference numeral 35 denotes a sixth check valve provided between the heat source unit side heat exchanger 3 and the first connection pipe 6, and a sixth check valve 35 is provided from the first connection pipe 6 to the heat source unit side heat exchanger. Only the refrigerant flow to 3 is allowed. The third, fourth, fifth, and sixth check valves 32, 33, 34, 35
Constitutes the flow path switching valve device 40. 49 is the flow path switching
During the above channel switching of the valve device 40 and the second connection pipe 7
The heat-source-unit-side bypass passage 48 that connects between the valve-changing device 40 and the first connection pipe 6.
A sixth solenoid on-off valve, which is provided in the middle of the pipe 9 and controls the opening and closing of the heat-source-unit-side bypass 49, a 25 The first pressure detecting means 26 is connected to the second flow control device 13.
Second pressure detecting means 27 provided between the first and third and fourth flow control devices 15 and 17 is a temperature detecting means provided at the inlet of the third flow control device 15.

【0014】このように構成されたこの発明の実施例に
ついて説明する。まず、図2を用いて冷房運転のみの場
合について説明する。すなわち、同図に実線矢印で示す
ように圧縮機1より吐出された高温高圧冷媒ガスは切換
弁2を通り、熱源機側熱交換器3で空気と熱交換して凝
縮液化された後、第3の逆止弁32、第2の接続配管
7、気液分離装置12、第2の流量制御装置13の順に
通り、更に第2の分岐部11、室内機側の第2の接続配
管7b,7c,7dを通り、各室内機B,C,Dに流入
する。そして、各室内機B,C,Dに流入した冷媒は、
各室内側熱交換器5出口のスーパーヒート量により制御
される第1の流量制御装置9により低圧まで減圧されて
室内側熱交換器5で、室内空気と熱交換して蒸発しガス
化され室内を冷房する。そして、このガス状態となった
冷媒は、室内機側の第1の接続配管6b,6c,6d、
三方切換弁8、第1の分岐部10、第1の接続配管6、
第4の逆止弁33、熱源機の切換弁2、アキュムレータ
4を経て圧縮機1に吸入される循環サイクルを構成し、
冷房運転をおこなう。この時、三方切換弁8の第1口8
aは閉路、第2口8b及び第3口8cは開路されてい
る。この時、第1の接続配管6が低圧、第2の接続配管
7が高圧のため必然的に第3の逆止弁32、第4の逆止
弁33へ流通する。また、このサイクルの時、第2の流
量制御装置13を通過した冷媒の一部がバイパス配管1
4へ入り第3の流量制御装置15で低圧まで減圧されて
第3の熱交換部16b,16c,16dで第2の分岐部
11の各室内機側の第2の接続配管7b,7c,7dと
の間で、第2の熱交換部16aで第2の分岐部11の各
室内機側の第2の接続配管7b,7c,7dの会合部と
の間で、更に第1の熱交換部19で第2の流量制御装置
13に流入する冷媒との間で熱交換を行い蒸発した冷媒
は、第1の接続配管6、第4の逆止弁33へ入り熱源機
切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる。一方、第1、第2、第3の熱交換部19,16
a,16b,16c,16dで熱交換し冷却されサブク
ールを充分につけられた上記第2の分岐部11の冷媒は
冷房しようとしている室内機B,C,Dへ流入する。
An embodiment of the present invention configured as described above will be described. First, the case of only the cooling operation will be described with reference to FIG. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the switching valve 2 and exchanges heat with air in the heat source unit-side heat exchanger 3 to be condensed and liquefied as indicated by solid arrows in FIG. After that, the third check valve 32, the second connection pipe 7, the gas-liquid separation device 12, the second flow control device 13, and the second branch portion 11, the second unit on the indoor unit side in this order. It flows into each indoor unit B, C, D through the connection piping 7b, 7c, 7d. Then, the refrigerant flowing into each of the indoor units B, C, D is
The pressure is reduced to a low pressure by the first flow control device 9 controlled by the amount of superheat at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 exchanges heat with indoor air to evaporate and gasify. Cool. The gaseous refrigerant is supplied to the first connection pipes 6b, 6c, 6d on the indoor unit side,
Three-way switching valve 8, first branch portion 10, first connection pipe 6,
The fourth check valve 33, switching valve 2 of the heat source machine, a circulation cycle is drawn into the compressor 1 through the accumulator 4 constitutes,
Perform cooling operation. At this time, the first port 8 of the three-way switching valve 8
a is closed, and the second port 8b and the third port 8c are open. At this time, since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure, the first connection pipe 6 necessarily flows to the third check valve 32 and the fourth check valve 33. In this cycle, a part of the refrigerant that has passed through the second flow control device 13
4, the pressure is reduced to a low pressure by the third flow control device 15, and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 in the third heat exchange sections 16b, 16c, 16d. Between the second heat exchange section 16a and the associated section of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and further, the first heat exchange section. 19 the evaporated refrigerant exchanges heat with the refrigerant flowing into the second flow controller 13, the first connection pipe 6, the heat source apparatus of the switching valve 2 enters the fourth check valve 33, the accumulator 4 and is sucked into the compressor 1. On the other hand, the first, second, and third heat exchange units 19, 16
The refrigerant in the second branch portion 11, which has been cooled by heat exchange at a, 16b, 16c, and 16d and is sufficiently subcooled, flows into the indoor units B, C, and D to be cooled.

【0015】次に、図2を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に圧縮機1より吐出された高温高圧冷媒ガスは、切換
2を通り、第5の逆止弁34、第の接続配管7、気液
分離装置12を通り、第1の分岐部10、三方切換弁
8、室内機側の第1の接続配管6b,6c,6dの順に
通り、各室内機B,C,Dに流入し、室内空気と熱交換
して凝縮液化し、室内を暖房する。そして、この液状態
となった冷媒は、各室内側熱交換器5出口のサブクール
量により制御されてほぼ全開状態の第1の流量制御装置
9を通り、室内機側の第2の接続配管7b,7c,7d
から第2の分岐部11に流入して合流し、更に上記第4
の流量制御装置17を通る。ここで、第1の流量制御装
置9、又は第3、第4の流量制御装置15,17のどち
らか一方で低圧の気液二相状態まで減圧される。そし
て、低圧まで減圧された冷媒は、第1の接続配管6を経
て熱源機Aの第6の逆止弁35、熱源機側熱交換器3に
流入しここで空気と熱交換して蒸発しガス状態となった
冷媒は、熱源機の切換弁2、アキュムレータ4を経て圧
縮機1に吸入される循環サイクルを構成し、暖房運転を
おこなう。この時、三方切換弁8は、第2口8bは閉
路、第1口8a及び第3口8cは開路されている。ま
た、冷媒はこの時、第1の接続配管6が低圧、第2の接
続配管7が高圧のため必然的に第5の逆止弁34、第6
の逆止弁35へ流通する。
Next, the case of only the heating operation will be described with reference to FIG. That is, high-temperature high-pressure refrigerant gas discharged from the compressor 1 as indicated by the dotted arrow in the figure passes through the switching valve 2, the fifth check valve 34, the second connection pipe 7, the gas-liquid separator 12 Through the first branch portion 10, the three-way switching valve 8, and the first connection pipes 6b, 6c, 6d on the indoor unit side, flow into the indoor units B, C, D, and exchange heat with the indoor air. To condense and liquefy and heat the room. Then, the refrigerant in the liquid state is controlled by the subcooling amount at the outlet of each indoor side heat exchanger 5, passes through the first flow control device 9 which is almost fully opened, and the second connection pipe 7b on the indoor unit side. , 7c, 7d
And flows into the second branch portion 11 to merge therewith .
Through the flow control device 17. Here, the pressure is reduced to a low-pressure gas-liquid two-phase state by one of the first flow control device 9 and the third and fourth flow control devices 15 and 17. Then, the refrigerant decompressed to a low pressure flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 through the first connection pipe 6, where it exchanges heat with air and evaporates. refrigerant becomes gas state, switching valve 2 of the heat source machines, the accumulator 4 constitutes a circulation cycle is drawn into the compressor 1 through the performs heating operation. At this time, in the three-way switching valve 8, the second port 8b is closed, and the first port 8a and the third port 8c are open. At this time, since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure at this time, the fifth check valve 34 and the sixth
To the check valve 35.

【0016】冷暖房同時運転におる暖房主体の場合につ
いて図3を用いて説明する。すなわち、同図に点線矢印
で示すように圧縮機1より吐出された高温高圧冷媒ガス
は、第5の逆止弁34、第2の接続配管7を通して中継
器Eへ送られ、気液分離装置12を通り、そして第1の
分岐部10、三方切換弁8、室内機側の第1の接続配管
6b,6cの順に通り、暖房しようとする各室内機B,
Cに流入し、室内側熱交換器5で室内空気と熱交換して
凝縮液化され室内を暖房する。そして、この凝縮液化し
た冷媒は、各室内側熱交換器B,C出口のサブクール量
により制御されほぼ全開状態の第1の流量制御装置9を
通り少し減圧されて第2の分岐部11に流入する。そし
て、この冷媒の一部は、室内機側の第2の接続配管7d
を通り冷房しようとする室内機Dに入り、室内側熱交換
器D出口のスーパーヒート量により制御される第1の流
量制御装置9に入り減圧された後に、室内側熱交換器5
に入って熱交換して蒸発しガス状態となって室内を冷房
し、三方切換弁8を介して第1の接続配管6に流入す
る。一方、他の冷媒は第1の圧力検出手段25の検出圧
力、第2の圧力検出手段26の検出圧力の圧力差が所定
範囲となるように制御される第4の流量制御装置17を
通って、冷房しようとする室内機Dを通った冷媒と合流
して太い第1の接続配管6を経て熱源機Aの第6の逆止
弁35、熱源機側熱交換器3に流入しここで空気と熱交
換して蒸発しガス状態となる。そして、その冷媒は、熱
源機の切換弁2、アキュムレータ4を経て圧縮機1に吸
入される循環サイクルを構成し、暖房主体運転をおこな
う。この時、冷房する室内機Dの室内側熱交換器5の蒸
発圧力と熱源機側熱交換器3の圧力差が、太い第1の接
続配管6に切換えるために小さくなる。又、この時、室
内機B,Cに接続された三方切換弁8の第2口8bは閉
路、第1口8a及び第3口8cは開路されており、室内
機Dの第1口8aは閉路、第2口8b、第3口8cは開
路されている。また、冷媒はこの時、第1の接続配管6
が低圧、第2の接続配管7が高圧のため必然的に第5の
逆止弁34、第6の逆止弁35へ流通する。また、この
サイクルの時、一部の液冷媒は第2の分岐部11の各室
内機側の第2の接続配管7b,7c,7dの会合部から
バイパス配管14へ入り第3の流量制御装置15で低圧
まで減圧されて第3の熱交換部16b,16c,16d
で第2の分岐部11の各室内機側の第2の接続配管7
b,7c,7dとの間で、第2の熱交換部16aで第2
の分岐部11の各室内機側の第2の接続配管7b,7
c,7dの会合部との間で熱交換を行い蒸発した冷媒
は、第1の接続配管6、第6の逆止弁35へ入り熱源機
切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる。一方、第2、第3の熱交換部16a,16b,1
6c,16dで熱交換し冷却されサブクールを充分につ
けられた上記第2の分岐部11の冷媒は冷房しようとし
ている室内機Dへ流入する。
Referring to FIG. 3, a description will be given of a case in which heating and cooling are simultaneously performed in the simultaneous cooling and heating operation. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is sent to the repeater E through the fifth check valve 34 and the second connection pipe 7 as shown by a dotted arrow in FIG. 12 and then through the first branch 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side in the order of each of the indoor units B to be heated.
C, and heat exchanges with indoor air in the indoor heat exchanger 5 to condense and liquefy and heat the room. Then, the condensed and liquefied refrigerant is controlled by the subcooling amounts at the outlets of the indoor side heat exchangers B and C, passes through the first flow control device 9 which is almost fully opened, and is slightly depressurized and flows into the second branch portion 11. I do. A part of the refrigerant is supplied to the second connection pipe 7d on the indoor unit side.
After entering the indoor unit D to be cooled through the air conditioner and entering the first flow control device 9 controlled by the superheat amount at the outlet of the indoor heat exchanger D, the pressure is reduced, and then the indoor heat exchanger 5
After entering, heat exchange to evaporate to a gas state to cool the room and flow into the first connection pipe 6 via the three-way switching valve 8. On the other hand, the other refrigerant passes through a fourth flow control device 17 which is controlled so that the pressure difference between the detected pressure of the first pressure detecting means 25 and the detected pressure of the second pressure detecting means 26 is within a predetermined range. The refrigerant flows into the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 through the thick first connection pipe 6 through the thick first connection pipe 6 after being cooled by the indoor unit D to be cooled. And evaporate to a gaseous state. Then, the refrigerant switching valve 2 of the heat source machines, the accumulator 4 constitutes a circulation cycle is drawn into the compressor 1 through the, perform the heating dominant operation. At this time, the difference between the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure of the heat source unit side heat exchanger 3 is reduced to switch to the thick first connection pipe 6. At this time, the second port 8b of the three-way switching valve 8 connected to the indoor units B and C is closed, the first port 8a and the third port 8c are open, and the first port 8a of the indoor unit D is closed. The circuit is closed, and the second port 8b and the third port 8c are open. At this time, the refrigerant is supplied to the first connection pipe 6
Flows through the fifth check valve 34 and the sixth check valve 35 inevitably because the pressure is low and the second connection pipe 7 is high pressure. In this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the junction of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and enters the third flow control device. The pressure is reduced to a low pressure at 15 and the third heat exchange units 16b, 16c, 16d
And the second connection pipe 7 on each indoor unit side of the second branch portion 11
b, 7c, 7d, the second heat exchange section 16a
Connection pipes 7b, 7 on each indoor unit side of the branch portion 11
c, the refrigerant evaporated by thermal exchange with the meeting part of 7d, the first connection pipe 6, the sixth check valve of the heat source unit enters the 35 switching valve 2, the compressor 1 through the accumulator 4 Inhaled. On the other hand, the second and third heat exchange units 16a, 16b, 1
The refrigerant in the second branch portion 11, which has been cooled by the heat exchange at 6c and 16d and has been sufficiently subcooled, flows into the indoor unit D to be cooled.

【0017】冷暖房同時における冷房主体の場合につい
て図4を用いて説明する。すなわち、同図に実線矢印で
示すように圧縮機1より吐出された冷媒ガスは、熱源機
側熱交換器3に流入しここで空気と熱交換して気液二相
の高温高圧状態となる。その後この二相の高温高圧状態
の冷媒は第3の逆止弁32、第2の接続配管7を経て、
中継器Eの気液分離装置12へ送られる。そして、ここ
で、ガス状冷媒と液状冷媒に分離され、分離されたガス
状冷媒を第1の分岐部10、三方切換弁8、室内機側の
第1の接続配管6dの順に通り、暖房しようとする室内
機Dに流入し、室内側熱交換器5で室内空気と熱交換し
て凝縮液化し、室内を暖房する。更に、室内側熱交換器
5出口のサブクール量により制御されほぼ全開状態の第
1の流量制御装置9を通り少し減圧されて第2の分岐部
11に流入する。一方、残りの液状冷媒は第1の圧力検
出手段25の検出圧力、第2の圧力検出手段26の検出
圧力によって制御される第2の流量制御装置13を通っ
て第2の分岐部11に流入し、暖房しようとする室内機
Dを通った冷媒と合流する。そして、第2の分岐部1
1、室内機側の第2の接続配管7b,7cの順に通り、
各室内機B,Cに流入する。そして、各室内機B,Cに
流入した冷媒は、室内側熱交換器B,C出口のスーパー
ヒート量により制御される第1の流量制御装置9により
低圧まで減圧されて室内空気と熱交換して蒸発しガス化
され室内を冷房する。更に、このガス状態となった冷媒
は、室内機側の第1の接続配管6b,6c,三方切換弁
8、第1の分岐部10を通り、第1の接続配管6、第4
の逆止弁33、熱源機の切換弁2、アキュムレータ4を
経て圧縮機1に吸入される循環サイクルを構成し、冷房
主体運転をおこなう。又、この時、室内機B,Cに接続
された三方切換弁8の第1口8aは閉路、第2口8b及
び第3口8cは開路されており、室内機Dの第2口8b
は閉路、第1口8a、第3口8cは開路されている。ま
た、冷媒はこの時、第1の接続配管6が低圧、第2の接
続配管7が高圧のため必然的に第3の逆止弁32、第4
の逆止弁33へ流通する。また、このサイクルの時、一
部の液冷媒は第2の分岐部11の各室内機側の第2の接
続配管7b,7c,7dの会合部からバイパス配管14
へ入り第3の流量制御装置15で低圧まで減圧されて第
3の熱交換部16b,16c,16dで第2の分岐部1
1の各室内機側の第2の接続配管7b,7c,7dとの
間で、第2の熱交換部16aで第2の分岐部11の各室
内機側の第2の接続配管7b,7c,7dの会合部との
間で、更に第1の熱交換部19で第2の流量制御装置1
3に流入する冷媒との間で熱交換を行い蒸発した冷媒
は、第1の接続配管6、第4の逆止弁33へ入り熱源機
切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる。一方、第1、第2、第3の熱交換部19,16
a,16b,16c,16dで熱交換し冷却されサブク
ールを充分につけられた上記第2の分岐部11の冷媒は
冷房しようとしている室内機B,Cへ流入する。
Referring to FIG. 4, a description will be given of a case where cooling and heating are mainly performed at the same time. That is, the refrigerant gas discharged from the compressor 1 flows into the heat source device side heat exchanger 3 and exchanges heat with the air there, as shown by the solid line arrow in FIG. . After that, the two-phase high-temperature high-pressure refrigerant passes through the third check valve 32 and the second connection pipe 7,
It is sent to the gas-liquid separator 12 of the repeater E. Then, here, the gaseous refrigerant and the liquid refrigerant are separated, and the separated gaseous refrigerant is heated in the order of the first branch portion 10, the three-way switching valve 8, and the first connection pipe 6d on the indoor unit side. And heat exchanges with the indoor air in the indoor heat exchanger 5 to condense and liquefy and heat the room. Further, the pressure is slightly reduced through the first flow control device 9 which is controlled by the subcooling amount at the outlet of the indoor heat exchanger 5 and is almost fully open, and flows into the second branch portion 11. On the other hand, the remaining liquid refrigerant flows into the second branch portion 11 through the second flow control device 13 controlled by the pressure detected by the first pressure detecting means 25 and the pressure detected by the second pressure detecting means 26. Then, the refrigerant merges with the refrigerant that has passed through the indoor unit D to be heated. And the second branch 1
1. Follow the order of the second connection pipes 7b and 7c on the indoor unit side,
It flows into each of the indoor units B and C. The refrigerant flowing into each of the indoor units B and C is decompressed to a low pressure by the first flow control device 9 controlled by the amount of superheat at the outlet of the indoor heat exchangers B and C, and exchanges heat with the indoor air. It evaporates and is gasified to cool the room. Further, the refrigerant in this gaseous state passes through the first connection pipes 6b and 6c, the three-way switching valve 8, and the first branch portion 10 on the indoor unit side, and passes through the first connection pipe 6 and the fourth connection pipe 4.
The check valve 33, the switching valve 2 of the heat source machine, via the accumulator 4 constitutes a circulation cycle is sucked into the compressor 1 performs the cooling main operation. At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are open, and the second port 8b of the indoor unit D is opened.
Is closed, and the first port 8a and the third port 8c are open. At this time, since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure at this time, the third check valve 32 and the fourth
To the check valve 33. In this cycle, a part of the liquid refrigerant flows from the junction of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11 to the bypass pipe 14
Then, the pressure is reduced to a low pressure by the third flow control device 15, and the second branch 1 is formed by the third heat exchange units 16b, 16c, and 16d.
The second connection pipes 7b, 7c, 7d on the side of each indoor unit of the second branch unit 11 in the second heat exchange unit 16a between the second connection pipes 7b, 7c, 7d on the side of each indoor unit of FIG. , 7d, and further in the first heat exchange section 19, the second flow control device 1
The refrigerant evaporated by thermal exchange with the refrigerant flowing into the 3, the first connection pipe 6, switching valve 2 of the heat source machine enters the fourth check valve 33, sucked into the compressor 1 through the accumulator 4 Is done. On the other hand, the first, second, and third heat exchange units 19, 16
The refrigerant in the second branch portion 11, which has been cooled by the heat exchange at a, 16b, 16c, and 16d and sufficiently subcooled, flows into the indoor units B and C to be cooled.

【0018】次に、図5を用いて除霜運転の場合につい
て説明する。第6の電磁開閉弁48、第2の流量制御装
置13、第3の流量制御装置15が開となっているの
で、除霜運転開始直後は同図に破線矢印で示すように第
2の接続配管7を満たしていた高温高圧のガス冷媒は大
部分が熱源機側バイパス路49を通って低圧側に流れ、
第4の逆止弁33、切換弁2をへてアキュムレータ4に
流入し、わずかな残りが気液分離装置12、第2の流量
制御装置13、第3の流量制御装置15を通って低圧に
減圧され、第1の接続配管6、第4の逆止弁33、切換
弁2を経てアキュムレータ4に流入する。また、第2の
接続配管7のガス冷媒が低圧側に抜けた後には実線矢印
で示すように圧縮機1より吐出された高温高圧冷媒ガス
切換弁2を通り、熱源機側熱交換器3で霜と熱交換し
て凝縮液化された後、第3の逆止弁32を通って大部分
は熱源機側バイパス路49を経て低圧まで減圧され、わ
ずかな残りの冷媒は第2の接続配管7、気液分離装置1
2の順に通り、第2の流量制御装置13または第3の流
量制御装置15で低圧まで減圧され第1の接続配管6を
経て熱源機に流入する。熱源機側バイパス路49を経た
冷媒と中継器Eを経た冷媒は第4の逆止弁33の入口部
で合流後、第4の逆止弁33、切換弁2、アキュムレー
タ4を通過して圧縮機1に流入する。このように循環サ
イクルを形成するので、除霜運転開始前に第2の接続配
管7を満たしていた冷媒の熱量、第2の接続配管7の熱
量、中継器Eの熱量を採熱して早く、確実に熱源機側熱
交換器3に着霜した霜をとかす事ができる。また、除霜
運転開始直後には第2の接続配管7を満たしていた高温
高圧のガス冷媒は大部分が熱源機側バイパス路49を通
って低圧側に流れ、第2の流量制御装置13、第3の流
量制御装置15を通る冷媒は少ないので高温高圧のガス
冷媒が第2の流量制御装置13、第3の流量制御装置
5を通って抜ける音は小さい。また熱源機側熱交換器3
で霜と熱交換して凝縮液化された冷媒は大部分が熱源機
側バイパス路49を経て低圧まで減圧されるので第2の
流量制御装置13または第3の流量制御装置15で低圧
まで減圧される冷媒は少なく、かつ第2、第3の流量制
御装置13,15に流入する冷媒は第1、第2の熱交換
部19,16aで充分冷却されて液冷媒となっているの
で第2、第3の流量制御装置13,15を通過する冷媒
音は小さい。
Next, the case of the defrosting operation will be described with reference to FIG. Since the sixth solenoid on-off valve 48, the second flow control device 13 , and the third flow control device 15 are open, the second connection is performed immediately after the start of the defrosting operation, as indicated by the broken line arrow in FIG. Most of the high-temperature and high-pressure gas refrigerant that has filled the pipe 7 flows to the low-pressure side through the heat source device-side bypass passage 49,
The fourth check valve 33, flows into the accumulator 4 fart switching valve 2, a slight remaining gas-liquid separator 12, the second flow controller 13, to a low pressure through a third flow controller 15 The pressure is reduced, and flows into the accumulator 4 via the first connection pipe 6, the fourth check valve 33, and the switching valve 2. Also, high-temperature high-pressure refrigerant gas after the gas refrigerant in the second connection pipe 7 has passed through the low pressure side is discharged from the compressor 1 as shown by the solid line arrows through the switching valve 2, the heat source unit side heat exchanger 3 After being condensed and liquefied by heat exchange with frost, most of the refrigerant is reduced to a low pressure through the third non-return valve 32 through the heat source device side bypass passage 49, and a small amount of the remaining refrigerant is supplied to the second connection pipe. 7. Gas-liquid separation device 1
As in the order of 2, the pressure is reduced to a low pressure by the second flow control device 13 or the third flow control device 15 and flows into the heat source device via the first connection pipe 6. After the refrigerant and the refrigerant which has flowed through the heat source apparatus side bypass passage 49 through the repeater E is merged at the inlet portion of the fourth check valve 33, compressed through fourth check valve 33, switching valve 2, an accumulator 4 Flows into the machine 1. Since the circulation cycle is formed in this manner, the amount of heat of the refrigerant that has filled the second connection pipe 7 before the start of the defrosting operation, the amount of heat of the second connection pipe 7, and the amount of heat of the repeater E are quickly collected. The frost that has formed on the heat source device side heat exchanger 3 can be reliably melted. In addition, immediately after the start of the defrosting operation, most of the high-temperature and high-pressure gas refrigerant that has filled the second connection pipe 7 flows to the low-pressure side through the heat-source-unit-side bypass passage 49, and the second flow control device 13 , Third flow
Since a small amount of refrigerant passes through the amount control device 15, the high-temperature and high-pressure gas refrigerant is supplied to the second flow control device 13 and the third flow control device 1
The sound passing through 5 is small. In addition, the heat exchanger side heat exchanger 3
Most of the refrigerant condensed and liquefied by exchanging heat with the frost is reduced to a low pressure through the heat source device side bypass passage 49, and thus reduced to a low pressure by the second flow control device 13 or the third flow control device 15. And the refrigerant flowing into the second and third flow control devices 13 and 15 is sufficiently cooled by the first and second heat exchangers 19 and 16a to become a liquid refrigerant. The noise of the refrigerant passing through the third flow control devices 13 and 15 is small.

【0019】次に、圧縮機1起動後の過渡時の第3の流
量制御装置15の制御内容について説明する。圧縮機1
起動後の過渡時には、高圧が充分に上昇していないので
第3の流量制御装置15の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、第3の流量制御装置
15の開度がある一定開度以上になると第3の流量制御
装置15を通過する冷媒の流動音が大きくなる。そこ
で、流動音を小さく抑えるために以下に説明するように
第3の流量制御装置15を制御する。図6は過渡時の第
3の流量制御装置15の制御内容を示すブロック図であ
る。41は、過渡時流量制御装置制御手段である。図7
は過渡時の第3の流量制御装置15の動作を示すフロー
チャートである。ステップ50で第2の圧力検出手段2
6の検出圧力と温度検出手段27の検出温度から第3の
流量制御装置15の入口部分のサブクールSCを計算す
る。次に、ステップ51で計算したサブクールSCが予
め設定された値SC0よりも大きいか否かを判定する。
SC≧SC0ならば上記バイパス回路14から第1の接
続配管6への冷媒流入管部14aの過熱度が所定の値と
なる様に上記第3の流入制御装置15の開度Sを制御す
る。SC<SC0ならばステップ52へ進み、ここで第
3の流量制御装置15の開度Sがある一定の開度S0よ
りも大きいか否かを判定して、S≦S0ならばステップ
50に戻る。一方、S>S0ならばステップ53でS=
S0としてステップ50に戻る。このように、第3の流
量制御装置15の入口で冷媒がフラッシュ状態の時には
開度を制限して冷媒流動音を低減し、第3の流量制御装
置15の入口でサブクールが充分にとれて冷媒流動音が
小さくなってから開度の制限を解除しているので低騒音
化が図れる。
Next, control contents of the third flow control device 15 during a transition after the compressor 1 is started will be described. Compressor 1
At the time of transition after startup, the refrigerant at the inlet of the third flow control device 15 is in a flush state without being supercooled liquid because the high pressure has not sufficiently risen. When the degree exceeds a certain opening degree, the flow noise of the refrigerant passing through the third flow control device 15 increases. Therefore, the third flow control device 15 is controlled as described below to suppress the flow noise. FIG. 6 is a block diagram showing the control contents of the third flow control device 15 during a transition. 41 is a transient flow control device control means. FIG.
5 is a flowchart showing the operation of the third flow control device 15 during a transition. In step 50, the second pressure detecting means 2
The subcool SC at the inlet of the third flow control device 15 is calculated from the detected pressure 6 and the temperature detected by the temperature detecting means 27. Next, it is determined whether or not the subcool SC calculated in step 51 is larger than a preset value SC0.
If SC ≧ SC0, the opening degree S of the third inflow control device 15 is controlled so that the degree of superheat of the refrigerant inflow pipe portion 14a from the bypass circuit 14 to the first connection pipe 6 becomes a predetermined value. If SC <SC0, the process proceeds to step 52, where it is determined whether the opening S of the third flow control device 15 is larger than a certain opening S0, and if S ≦ S0, the process returns to step 50. . On the other hand, if S> S0, then at step 53 S =
The process returns to step 50 as S0. As described above, when the refrigerant is in a flush state at the entrance of the third flow control device 15, the opening is restricted to reduce the refrigerant flow noise, and the sub-cool is sufficiently taken at the entrance of the third flow control device 15 and the refrigerant is removed. Since the restriction on the opening degree is released after the flowing sound becomes smaller, noise can be reduced.

【0020】実施例2.次に、除霜運転が終了して各室
内機が暖房のみの運転、または各室内機が冷暖同時運転
されると共に熱源機側熱交換器3が蒸発器となる運転に
切り換わった後の過渡時の第3の流量制御装置15の制
御内容について説明する。除霜運転中には高圧が低く、
第2の流量制御装置13と第3の流量制御装置15の間
の中間圧部分の液冷媒が低圧部分にぬけてしまうので、
除霜運転が終了して各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に熱源機側熱交換器
3が蒸発器となる運転に切り換わった後の過渡時には、
第3の流量制御装置15の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、第3の流量制御装置
15の開度がある一定開度以上になると第3の流量制御
装置15を通過する冷媒の流動音が大きくなる。そこ
で、流動音を小さく抑えるために第3の流量制御装置1
5の入口で冷媒がフラッシュ状態の時には開度を制限し
て、第3の流量制御装置15の入口でサブクールが充分
にとれて冷媒流動音が小さくなってから開度の制限を解
除する。具体的な第3の流量制御装置15の制御内容に
ついては圧縮機1起動後の過渡時と同じなのでここでは
省略する。
Embodiment 2 FIG. Next, a transition after the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is simultaneously operated for cooling and heating and is switched to an operation in which the heat source unit side heat exchanger 3 becomes an evaporator. The control contents of the third flow control device 15 at this time will be described. During defrosting operation, high pressure is low,
Since the liquid refrigerant in the intermediate pressure portion between the second flow control device 13 and the third flow control device 15 passes through the low pressure portion,
During the transition after the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is simultaneously operated for cooling and heating and after the heat source unit side heat exchanger 3 is switched to the operation of becoming an evaporator,
The refrigerant at the inlet of the third flow control device 15 is not in a supercooled liquid state but is in a flush state, and when the opening of the third flow control device 15 exceeds a certain opening, the third flow control device The flow noise of the refrigerant passing through 15 increases. Therefore, in order to reduce the flow noise, the third flow control device 1
When the refrigerant is in a flush state at the entrance of the fifth flow controller, the opening is restricted, and the restriction of the opening is released after the subcool is sufficiently taken at the entrance of the third flow control device 15 and the refrigerant flow noise is reduced. The specific control contents of the third flow control device 15 are the same as those at the time of transition after the start of the compressor 1, and thus the description thereof is omitted here.

【0021】実施例3. 次に、各室内機が冷房のみの運転、または各室内機が冷
暖同時運転されると共に熱源機側熱交換器3が凝縮器と
なる運転から、各室内機が暖房のみの運転、または各室
内機が冷暖同時運転されると熱源機側熱交換器3が蒸発
器となる運転に切り換わった後の過渡時の第3の流量制
御装置15の制御内容について説明する。各室内機が冷
房のみの運転、または各室内機が冷暖同時運転されると
共に熱源機側熱交換器3が凝縮器となる運転から、各室
内機が暖房のみの運転、または各室内機が冷暖同時運転
されると共に熱源機側熱交換器3が蒸発器となる運転に
切り換わった後の過渡時には、切換弁2が切り換わって
高圧及び中間圧が一時的に低下し、中間圧部分の液冷媒
が蒸発して低圧部分にぬけてしまうので、第3の流量制
御装置15の入口の冷媒は過冷却液とはなっておらずフ
ラッシュ状態であり、第3の流量制御装置15の開度が
ある一定開度以上になると第3の流量制御装置15を通
過する冷媒の流動音が大きくなる。そこで、流動音を小
さく抑えるために第3の流量制御装置15の入口で冷媒
がフラッシュ状態の時には開度を制限して、第3の流量
制御装置15の入口でサブクールが充分にとれて冷媒流
動音が小さくなってから開度の制限を解除する。具体的
な第3の流量制御装置15の制御内容については圧縮機
1起動後の過渡時と同じなのでここでは省略する。
Embodiment 3 FIG. Next, from the operation in which each indoor unit operates only for cooling or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger 3 becomes a condenser, the operation in which each indoor unit operates only for heating, or the operation in each indoor unit The control contents of the third flow control device 15 during a transition after the heat-source-unit-side heat exchanger 3 is switched to the operation to be the evaporator when the units are simultaneously operated for cooling and heating will be described. From the operation in which each indoor unit is operated only for cooling or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger 3 is a condenser, the operation for each indoor unit is only for heating, or each indoor unit is cooled or heated. the transient state after the heat source apparatus side heat exchanger 3 is switched to operation as an evaporator together with the simultaneous operation, a high pressure and the intermediate pressure is cut behalf changeover valve 2 is temporarily reduced, the liquid in the intermediate pressure portion Since the refrigerant evaporates and passes through the low-pressure portion, the refrigerant at the inlet of the third flow control device 15 is not in the supercooled liquid but is in a flush state, and the opening degree of the third flow control device 15 is reduced. When the opening exceeds a certain degree, the flow noise of the refrigerant passing through the third flow control device 15 increases. Therefore, in order to suppress the flow noise, when the refrigerant is in a flush state at the entrance of the third flow control device 15, the opening degree is limited, and the sub flow is sufficiently taken at the entrance of the third flow control device 15 and the refrigerant flow is reduced. Release the restriction on the opening after the sound becomes low. The specific control contents of the third flow control device 15 are the same as those at the time of transition after the start of the compressor 1, and thus the description thereof is omitted here.

【0022】実施例4.次に、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に熱源機
側熱交換器3が蒸発器となる運転から、各室内機が冷房
のみの運転、または各室内機が冷暖同時運転されると共
に熱源機側熱交換器3が凝縮器となる運転に切り換わっ
た後の過渡時の第3の流量制御装置15の制御内容につ
いて説明する。各室内機が暖房のみの運転、または各室
内機が冷暖同時運転されると共に上記熱源機側熱交換器
が蒸発器となる運転から、各室内機が冷房のみの運転、
または各室内機が冷暖同時運転されると共に熱源機側熱
交換器が凝縮器3となる運転に切り換わった後の過渡時
には、切り換え前の第2の接続配管7を満たしている過
熱ガス冷媒が切り換え後に中継器Eに供給されるので、
第3の流量制御装置15の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、第3の流量制御装置
15の開度がある一定開度以上になると第3の流量制御
装置15を通過する冷媒の流動音が大きくなる。そこ
で、流動音を小さく抑えるために第3の流量制御装置1
5の入口で冷媒がフラッシュ状態の時には開度を制限し
て、第3の流量制御装置15の入口でサブクールが充分
にとれて冷媒流動音が小さくなってから開度の制限を解
除する。具体的な第3の流量制御装置15の制御内容に
ついては圧縮機1起動後の過渡時と同じなのでここでは
省略する。
Embodiment 4 FIG. Next, from the operation in which each indoor unit is operated only for heating or the operation in which each indoor unit is simultaneously operated for cooling and heating and the heat source unit side heat exchanger 3 is an evaporator, the operation for each indoor unit is only for cooling, or each indoor unit is operated only for cooling. The control contents of the third flow control device 15 during a transition after the operation of the heat exchanger and the heat exchanger at the same time and the heat source unit side heat exchanger 3 is switched to the operation of the condenser will be described. From the operation in which each indoor unit is operated only for heating or the operation in which each indoor unit is simultaneously operated for cooling and heating and the heat source unit side heat exchanger is an evaporator, the operation for each indoor unit is only for cooling,
Alternatively, at the time of the transition after the indoor units are simultaneously operated for cooling and heating and the operation is switched to the operation in which the heat source unit side heat exchanger becomes the condenser 3, the superheated gas refrigerant filling the second connection pipe 7 before switching is used. Since it is supplied to the repeater E after switching,
The refrigerant at the inlet of the third flow control device 15 is not in a supercooled liquid state but is in a flush state, and when the opening of the third flow control device 15 exceeds a certain opening, the third flow control device The flow noise of the refrigerant passing through 15 increases. Therefore, in order to reduce the flow noise, the third flow control device 1
When the refrigerant is in a flush state at the entrance of the fifth flow controller, the opening is restricted, and the restriction of the opening is released after the subcool is sufficiently taken at the entrance of the third flow control device 15 and the refrigerant flow noise is reduced. The specific control contents of the third flow control device 15 are the same as those at the time of transition after the start of the compressor 1, and thus the description thereof is omitted here.

【0023】実施例5.なお、上記実施例では三方切換
弁8を設けて室内機側の第1の接続配管6b,6c,6
dと、第1の接続配管6または、第2の接続配管7に切
換可能に接続しているが、第8図に示すように2つの電
磁弁30,31等の開閉弁を設けて上述したように切換
可能に接続しても同様な作用効果を奏す。
Embodiment 5 FIG. In the above embodiment, the three-way switching valve 8 is provided to provide the first connection pipes 6b, 6c, 6 on the indoor unit side.
and d is connected to the first connection pipe 6 or the second connection pipe 7 so as to be switchable. As shown in FIG. 8, two solenoid valves 30 and 31 are provided to open and close the valve. The same operation and effect can be obtained even if the connection is made switchable.

【0024】[0024]

【発明の効果】以上説明したとおり、この発明の空気調
和装置は、圧縮機、切換弁、熱源機側熱交換器よりなる
1台の熱源機と、それぞれ室内側熱交換器を有する複数
台の室内機とを、第1、第2の接続配管を介して接続し
たものにおいて上記第1、第2の接続配管間に設けら
れ、流れる冷媒の方向を切換えることにより、運転時は
常に、上記熱源機と上記室内機間に介在する上記第1の
接続配管を低圧に、上記第2の接続配管を高圧にする流
路切換弁装置と、上記複数台の室内機の室内側熱交換器
の一方を上記第1の接続配管または気液分離装置を介し
第2の接続配管に切換可能に接続する第1の分岐部
と、上記複数台の室内機の室内側熱交換器の他方を第1
の流量制御装置を介して上記第2の接続配管に接続して
なる第2の分岐部と上記第2の接続配管に設けられ、
上記気液分離装置と上記第2の分岐部間に接続される第
2の流量制御装置と、一端が第2の分岐部に接続され他
端がバイパス用流量制御装置を介して第1の接続配管に
接続されたバイパス回路と、上記第2の流量制御装置と
上記バイパス用流量制御装置の間の冷媒圧力を検出する
第2の圧力検出手段と、上記第2の流量制御装置と上記
バイパス用流量制御装置との間の冷媒温度を検出する温
度検出手段と、上記圧縮機起動後、上記第2の圧力検出
手段の検出圧力と上記温度検出手段の検出温度から計算
される上記バイパス用流量制御装置の入口の過冷却度が
予め設定された値に達するまで、上記バイパス用流量制
御装置の開度がある一定の開度以上にならないように上
記バイパス用流量制御装置を制御する流量制御装置制御
手段を備えたので、圧縮機起動後、高圧が充分に上昇せ
ず、その結果バイパス用流量制御装置の入口の冷媒は過
冷却液とはならずにフラッシュ状態であっても、上記バ
イパス用流量制御装置を流れる冷媒流動音を小さく抑え
ることができ低騒音化がはかれる。
As described above, the air conditioner of the present invention has a single heat source unit including a compressor, a switching valve, and a heat source side heat exchanger, and a plurality of indoor units each having an indoor side heat exchanger. the indoor unit, the first, that is connected via a second connection pipe, the first, is provided between the second connection pipe, by switching the direction of refrigerant flow, always during operation, the A flow path switching valve device for lowering the pressure of the first connection pipe and a high pressure of the second connection pipe interposed between the heat source unit and the indoor unit, and an indoor heat exchanger of the plurality of indoor units. One through the first connection pipe or the gas-liquid separation device
A first branch portion connecting the second to switchable example the connecting pipe Te, the other indoor heat exchanger of the plurality of indoor units first
A second branch portion connected to the second connection pipe via the flow control device of the above , and provided in the second connection pipe,
The first connection through the second flow control device that will be connected between the gas-liquid separator and the second branch portion, the one end and the other end connected to the second branch portion bypass flow control device A bypass circuit connected to the pipe, a second pressure detecting means for detecting a refrigerant pressure between the second flow control device and the bypass flow control device, the second flow control device and the bypass flow control device; Temperature detecting means for detecting a refrigerant temperature between the flow rate control device and the bypass flow rate control calculated from the detected pressure of the second pressure detecting means and the detected temperature of the temperature detecting means after the start of the compressor. Flow control device control for controlling the bypass flow control device so that the opening of the bypass flow control device does not exceed a predetermined opening until the degree of subcooling at the inlet of the device reaches a preset value. Because we have the means After the compressor is started, the high pressure does not rise sufficiently, so that the refrigerant at the inlet of the bypass flow control device does not become a supercooled liquid but is in a flush state even though the refrigerant flows through the bypass flow control device. Sound can be suppressed to a low level and noise can be reduced.

【0025】また、除霜運転が終了して各室内機が暖房
のみの運転、または各室内機が冷暖同時運転されると共
に上記熱源機側熱交換器が蒸発器となる運転に切り換わ
った後上記第2の圧力検出手段の検出圧力と上記温度
検出手段の検出温度から計算される上記バイパス用流量
制御装置の入口の過冷却度が予め設定された値に達する
まで、上記バイパス用流量制御装置の開度がある一定の
開度以上にならないように上記バイパス用流量制御装置
を制御する流量制御装置制御手段を備えたので、除霜運
転中には高圧が低く、第2の流量制御装置とバイパス用
流量制御装置の間の中間圧部分の液冷媒が低圧部分にぬ
けてしまって、除霜運転が終了して各室内機が暖房のみ
の運転、または各室内機が冷暖同時運転されると共に上
記熱源機側熱交換器が蒸発器となる運転に切り換わった
、バイパス用流量制御装置の入口の冷媒は過冷却液と
はならずにフラッシュ状態であっても、上記バイパス用
流量制御装置を流れる冷媒流動音を小さく抑えることが
き低騒音化がはかれる。
Further, after the defrosting operation is completed, each indoor unit is operated only for heating, or after each indoor unit is operated simultaneously for cooling and heating and the operation is switched to the operation in which the heat exchanger on the heat source unit side becomes an evaporator. the until the detected pressure and the inlet of the subcooling degree of the temperature detecting means detecting the bypass flow control device which is calculated from the temperature of the second pressure detecting means reaches a predetermined value, the flow control the bypass since with the flow that controls the bypass flow control device quantity control unit control means so as not to exceed a certain degree with the opening of the device, high pressure low during the defrosting operation, the second flow rate controller and the intermediate pressure portion of the liquid refrigerant between the bypass <br/> flow control equipment is gone missing the low pressure portion, the operation of each indoor unit defrosting operation is finished heating only, or the indoor The heat source side side heat After exchanger is switched to operation as an evaporator, also the inlet of the refrigerant of the bypass flow control device is a flash state does not become supercooled liquid, the bypass <br/> flow controller noise reduction can be achieved to suppress the refrigerant flow noise flowing you to <br/>.

【0026】また、各室内機が冷房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後
上記第2の圧力検出手段の検出圧力と上記温度検出手段
の検出温度から計算される上記バイパス用流量制御装置
の入口の過冷却度が予め設定された値に達するまで、上
バイパス用流量制御装置の開度がある一定の開度以上
にならないように上記バイパス用流量制御装置を制御す
る流量制御装置制御手段を備えたので、切換弁を切り換
えることにより、各室内機が冷房のみの運転、または各
室内機が冷暖同時運転されると共に上記熱源機側熱交換
器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後
高圧及び中間圧が一時的に低下し、中間圧部分の液冷媒
が蒸発して、バイパス用流量制御装置の入口の冷媒は過
冷却液とはならずにフラッシュ状態であっても、上記
イパス用流量制御装置を流れる冷媒流動音を小さく抑え
ることができ低騒音化がはかれる。
The operation of each indoor unit only for cooling, or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger is a condenser, the operation for each indoor unit only for heating, or After each indoor unit is operated simultaneously with cooling and heating, and the heat source unit side heat exchanger is switched to an operation to be an evaporator ,
Until the detected pressure value to the inlet of the subcooling degree is set in advance of the bypass flow control device, which is calculated from the detected temperature of the temperature detecting means of the second pressure detecting means, the bypass flow control device The bypass flow control device is controlled so that the opening of the bypass does not exceed a certain opening.
Since with the that flow amount control device controlling means, switch the switching valve
Thus, from the operation in which each indoor unit operates only for cooling, or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger serves as a condenser, the operation in which each indoor unit operates only for heating, or After the indoor unit is operated simultaneously with cooling and heating, and the heat source unit side heat exchanger is switched to an operation to be an evaporator ,
Reduced pressure and the intermediate pressure temporarily, an intermediate pressure portion of the liquid refrigerant evaporates, also the inlet of the refrigerant of the bypass flow control device is a flash state without becoming the supercooled liquid, the Ba
Bypass flow control device Ki out possible to reduce the refrigerant flow noise through the noise reduction can be achieved.

【0027】また、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が蒸発器となる運転から、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が凝縮器となる運転に切り換わった後
上記第2の圧力検出手段の検出圧力と上記温度検出手段
の検出温度から計算される上記バイパス用流量制御装置
の入口の過冷却度が予め設定された値に達するまで、上
バイパス用流量制御装置の開度がある一定の開度以上
にならないように上記バイパス用流量制御装置を制御す
る流量制御装置制御手段を備えたので、各室内機が暖房
のみの運転、または各室内機が冷暖同時運転されると共
に上記熱源機側熱交換器が蒸発器となる運転から、各室
内機が冷房のみの運転、または各室内機が冷暖同時運転
されると共に上記熱源機側熱交換器が凝縮器となる運転
に切り換わった後切り換え前の第2の接続配管を満た
しているガス冷媒が切り換え後に第2の分岐部に供給さ
れるので、バイパス用流量制御装置の入口の冷媒は過冷
却液とはならずにフラッシュ状態であっても、上記バイ
パス用流量制御装置を流れる冷媒流動音を小さく抑える
ことができ低騒音化がはかれる。
[0027] Further, from the operation in which each indoor unit is operated only for heating or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat exchanger on the heat source unit side is an evaporator, the operation for each indoor unit is only for cooling, or After each indoor unit is operated simultaneously with cooling and heating, and after the heat source unit side heat exchanger is switched to an operation to be a condenser ,
Until the detected pressure value to the inlet of the subcooling degree is set in advance of the bypass flow control device, which is calculated from the detected temperature of the temperature detecting means of the second pressure detecting means, the bypass flow control device The bypass flow control device is controlled so that the opening of the bypass does not exceed a certain opening.
Since with the that flow amount control device controlling means, the heat source apparatus side heat exchanger from the operation as an evaporator together with the operation of the indoor unit is heated only, or the indoor units are cooling and heating simultaneous operation, the indoor units after There was switched to the operation in which the heat source apparatus side heat exchanger becomes the condenser with the operation of the cooling only, or the indoor units are cooling and heating simultaneous operation, Ruga scan meet the second connecting pipe prior to switching the refrigerant is supplied to the second branch portion after switching, also the inlet of the refrigerant of the bypass flow control device is a flash state without becoming the supercooled liquid, the Bi
Ki out possible to reduce the refrigerant flow noise flowing path for flow controller noise reduction can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 1 of the present invention.

【図2】この発明の実施例1による空気調和装置の冷
房、または暖房のみの運転状態を説明するための冷媒回
路図である。
FIG. 2 is a refrigerant circuit diagram for explaining an operation state of only cooling or heating of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図3】この発明の実施例1による空気調和装置の、暖
房主体の運転状態を説明するための冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram for explaining an operation state mainly of heating of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図4】この発明の実施例1による空気調和装置の、冷
房主体の運転状態を説明するための冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram for explaining an operation state mainly for cooling of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図5】この発明の実施例1による空気調和装置の、除
霜運転の運転状態を説明するための冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram for describing an operation state of a defrosting operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図6】この発明の実施例1による空気調和装置の、過
渡時の第3の流量制御装置の制御内容を説明するための
ブロック図である。
FIG. 6 is a block diagram for explaining control contents of a third flow control device during a transition of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図7】この発明の実施例1による空気調和装置の、過
渡時の第3の流量制御装置の制御内容を説明するための
フローチャートである。
FIG. 7 is a flow chart for explaining control contents of a third flow control device in a transient state of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図8】この発明の実施例2による空気調和装置の、冷
媒系を中心とする全体構成図である。
FIG. 8 is an overall structural view of an air conditioner according to Embodiment 2 of the present invention, centering on a refrigerant system.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 切換弁、3 熱源機側熱交換器、4
アキュムレータ、5室内側熱交換器、6,6b,6c,
6d 第1の接続配管、7,7b,7c,7d 第2の
接続配管、8 弁装置、9 第1の流量制御装置、10
第1の分岐部、11 第2の分岐部、12 気液分離
装置、13 第2の流量制御装置、14 バイパス配
管、15 バイパス用流量制御装置、16a,16b,
16c,16d,19 熱交換部、17 バイパス用
量制御装置、32,33,34,35 第3、第4、第
5、第6の逆止弁、40 流路切換弁装置、41
制御装置制御手段、25 第1の圧力検出手段、26
第2の圧力検出手段、27温度検出手段、A 熱源機、
B,C,D 室内機、E 中継器。
1 compressor, 2 switching valve, 3 heat exchanger side heat exchanger, 4
Accumulator, 5 indoor heat exchanger, 6, 6b, 6c,
6d first connection pipe, 7, 7b, 7c, 7d second connection pipe, 8 valve device, 9 first flow control device, 10
1st branch section, 11 2nd branch section, 12 gas-liquid separation device, 13 2nd flow control device, 14 bypass piping, 15 bypass flow control device, 16a, 16b,
16c, 16d, 19 heat exchange section, 17 bypass flow control device, 32, 33, 34, 35 third, fourth, fifth, sixth check valves, 40 flow path switching valve device , 41 flow amount control device controlling means, 25 first pressure detecting means, 26
Second pressure detecting means, 27 temperature detecting means, A heat source device,
B, C, D indoor unit, E repeater.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 徳明 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 高田 茂生 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 亀山 純一 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tokuaki Hayashida 6-66, Tehira, Wakayama-shi Mitsubishi Electric Corporation Wakayama Works (72) Inventor Shigeo Takada 6-5-66, Tehira, Wakayama-shi Mitsubishi Electric Inside Wakayama Works, Ltd. (72) Inventor Junichi Kameyama 6-66, Teira, Wakayama City Mitsubishi Electric Wakayama Works, Ltd.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、切換弁、熱源機側熱交換器より
なる1台の熱源機と、それぞれ室内側熱交換器を有する
複数台の室内機とを、第1、第2の接続配管を介して接
続したものにおいて、上記第1、第2の接続配管間に設
けられ、流れる冷媒の方向を切換えることにより、運転
時は常に、上記熱源機と上記室内機間に介在する上記第
1の接続配管を低圧に、上記第2の接続配管を高圧にす
る流路切換弁装置と、上記複数台の室内機の室内側熱交
換器の一方を上記第1の接続配管、または気液分離装置
を介して第2の接続配管に切換可能に接続する第1の
分岐部と、上記複数台の室内機の室内側熱交換器の他方
を第1の流量制御装置を介して上記第2の接続配管に接
続してなる第2の分岐部と、上記第2の接続配管に設け
られ、上記気液分離装置と上記第2の分岐部間に接続さ
る第2の流量制御装置と、一端が上記第2の分岐部に
接続され他端がバイパス用流量制御装置を介して上記
第1の接続配管に接続されたバイパス回路と、上記第2
の流量制御装置とバイパス用流量制御装置間の冷媒圧力
を検出する第2の圧力検出手段と、上記第2の流量制御
装置と上記バイパス用流量制御装置間の冷媒温度を検出
する温度検出手段と、上記圧縮機が起動後、上記第2の
圧力検出手段により検出された検出圧力と、上記温度検
出手段により検出された検出温度から計算される上記バ
イパス用流量制御装置流入側冷媒の過冷却度が予め設定
された値に達するまでの間は、上記バイパス用流量制御
装置の開度が一定の開度以上にならないように制御する
流量制御装置制御手段とを備えたことを特徴とする空気
調和装置。
1. A first and a second connection pipe for connecting one heat source unit comprising a compressor, a switching valve and a heat source unit side heat exchanger and a plurality of indoor units each having an indoor side heat exchanger. Connected between the first and second connection pipes, and by switching the direction of the flowing refrigerant, the first operation interposed between the heat source unit and the indoor unit is always performed during operation. A flow path switching valve device for setting the pressure of the connection pipe to low pressure and the pressure of the second connection pipe to high pressure; and connecting the one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or gas-liquid separation. apparatus
A first branch portion connecting the second connecting pipe to the switching e capable through, the plurality of indoor units of the indoor side heat exchanger while the first flow control device the second via A second branch connected to the connection pipe; and a second branch provided in the second connection pipe and connected between the gas-liquid separator and the second branch.
A second flow control device that Re, one end is connected to the second branch portion, and a bypass circuit connected to the first connection pipe and the other end through the bypass flow control device, the second
The flow control device and the second pressure detecting means for detecting the refrigerant pressure between the bypass flow control device, said second flow control device and the upper Symbol temperature detection means for detecting the refrigerant temperature between the bypass flow control device And after the compressor is started, supercooling of the refrigerant on the inflow side of the bypass flow control device calculated from the detected pressure detected by the second pressure detecting means and the detected temperature detected by the temperature detecting means. Air flow control means for controlling the opening degree of the bypass flow control apparatus so that the opening degree does not exceed a predetermined opening degree until the degree reaches a preset value. Harmony equipment.
【請求項2】 圧縮機、切換弁、熱源機側熱交換器より
なる1台の熱源機と、それぞれ室内側熱交換器を有する
複数台の室内機とを第1、第2の接続配管を介して接
続したものにおいて、上記第1、第2の接続配管間に設
けられ、流れる冷媒の方向を切換えることにより、運転
時は常に、上記熱源機と上記室内機間に介在する上記第
1の接続配管を低圧に、上記第2の接続配管を高圧にす
る流路切換弁装置と、上記複数台の室内機の室内側熱交
換器の一方を上記第1の接続配管、または気液分離装置
を介して第2の接続配管に切換え可能に接続する第1の
分岐部と、上記複数台の室内機の室内側熱交換器の他方
を第1の流量制御装置を介して上記第2の接続配管に接
続してなる第2の分岐部と、上記第2の接続配管に設け
られ、上記気液分離装置と上記第2の分岐部間に接続さ
る第2の流量制御装置と、一端が上記第2の分岐部に
接続され、他端がバイパス用流量制御装置を介して上記
第1の接続配管に接続されたバイパス回路と、上記第2
の流量制御装置とバイパス用流量制御装置間の冷媒圧力
を検出する第2の圧力検出手段と、上記第2の流量制御
装置と上記バイパス用流量制御装置間の冷媒温度を検出
する温度検出手段と、除霜運転が終了して各室内機が暖
房のみの運転、または各室内機が冷暖同時運転されると
共に上記熱源機側熱交換器が蒸発器となる運転に切り換
わった後、上記第2の圧力検出手段の検出圧力と上記温
度検出手段の検出温度から計算される上記バイパス用流
量制御装置入口の過冷却度が予め設定された値に達する
までの間は、上記バイパス用流量制御装置の開度がある
一定の開度以上にならないように制御する流量制御装置
制御手段を備えたことを特徴とする空気調和装置。
2. A compressor, a switching valve, one heat source equipment consisting of heat source apparatus side heat exchanger, and a plurality of indoor units having a indoor heat exchanger, respectively, first, second connection pipe Connected between the first and second connection pipes, and by switching the direction of the flowing refrigerant, the first operation interposed between the heat source unit and the indoor unit is always performed during operation. A flow path switching valve device for setting the pressure of the connection pipe to low pressure and the pressure of the second connection pipe to high pressure; and connecting the one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or gas-liquid separation. apparatus
A first branch portion that is switchably connected to a second connection pipe via a second connection pipe, and the other of the indoor heat exchangers of the plurality of indoor units is connected to the second connection pipe via a first flow control device. A second branch connected to a pipe, and a second branch provided in the second connection pipe and connected between the gas-liquid separator and the second branch.
A second flow control device that Re, one end is connected to the second branch portion, and a bypass circuit connected to the first connection pipe and the other end through the bypass flow control device, the second
Pressure detecting means for detecting the refrigerant pressure between the flow control device and the bypass flow control device, and temperature detecting means for detecting the refrigerant temperature between the second flow control device and the bypass flow control device. After the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is simultaneously operated for cooling and heating and the operation is switched to the operation in which the heat source unit side heat exchanger becomes an evaporator, Until the degree of supercooling at the inlet of the bypass flow control device calculated from the pressure detected by the pressure detection means and the temperature detected by the temperature detection device reaches a preset value, the bypass flow control device An air conditioner comprising a flow control device control means for controlling the opening so as not to exceed a certain opening.
【請求項3】 圧縮機、切換弁、熱源機側熱交換器より
なる1台の熱源機と、それぞれ室内側熱交換器を有する
複数台の室内機とを、第1、第2の接続配管を介して接
続したものにおいて、上記第1、第2の接続配管間に設
けられ、流れる冷媒の方向を切換えることにより、運転
時は常に、上記熱源機と上記室内機間に介在する上記第
1の接続配管を低圧に、上記第2の接続配管を高圧にす
る流路切換弁装置と、上記複数台の室内機の室内側熱交
換器の一方を上記第1の接続配管、または気液分離装置
を介して第2の接続配管に切換え可能に接続する第1の
分岐部と、上記複数台の室内機の室内側熱交換器の他方
を第1の流量制御装置を介して上記第2の接続配管に接
続してなる第2の分岐部と、上記第2の接続配管に設け
られ、上記気液分離装置と上記第2の分岐部間に接続さ
る第2の流量制御装置と、一端が上記第2の分岐部に
接続され、他端がバイパス用流量制御装置を介して上記
第1の接続配管に接続されたバイパス回路と、上記第2
の流量制御装置とバイパス用流量制御装置間の冷媒圧力
を検出する第2の圧力検出手段と、上記第2の流量制御
装置と上記バイパス用流量制御装置間の冷媒温度を検出
する温度検出手段と、各室内機が冷房のみの運転、また
は各室内機が冷暖同時運転されると共に上記熱源機側熱
交換器が凝縮器となる運転から、各室内機が暖房のみの
運転、または各室内機が冷暖同時運転されると共に上記
熱源機側熱交換器が蒸発器となる運転に切り換わった
後、上記第2の圧力検出手段の検出圧力と上記温度検出
手段の検出温度から計算される上記バイパス用流量制御
装置の入口の過冷却度が予め設定された値に達するまで
の間は、上記バイパス用流量制御装置の開度がある一定
の開度以上にならないように上記バイパス用流量制御装
置を制御する流量制御装置制御手段を備えたことを特徴
とする空気調和装置。
3. A first and a second connection pipe for connecting one heat source unit comprising a compressor, a switching valve and a heat source unit side heat exchanger and a plurality of indoor units each having an indoor side heat exchanger. Connected between the first and second connection pipes, and by switching the direction of the flowing refrigerant, the first operation interposed between the heat source unit and the indoor unit is always performed during operation. A flow path switching valve device for setting the pressure of the connection pipe to low pressure and the pressure of the second connection pipe to high pressure; and connecting the one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or gas-liquid separation. apparatus
A first branch portion that is switchably connected to a second connection pipe via a second connection pipe, and the other of the indoor heat exchangers of the plurality of indoor units is connected to the second connection pipe via a first flow control device. A second branch connected to a pipe, and a second branch provided in the second connection pipe and connected between the gas-liquid separator and the second branch.
A second flow control device that Re, one end is connected to the second branch portion, and a bypass circuit connected to the first connection pipe and the other end through the bypass flow control device, the second
The flow control device and the second pressure detecting means for detecting the refrigerant pressure between bypass flow control device, the second flow controller and the temperature detection means for detecting the refrigerant temperature between the bypass flow control device From the operation in which each indoor unit is operated only for cooling or the operation in which each indoor unit is simultaneously operated for cooling and heating and the heat source unit side heat exchanger is a condenser, the operation for each indoor unit is only for heating, or each indoor unit is Are operated simultaneously with cooling and heating, and the operation is switched to an operation in which the heat source device side heat exchanger becomes an evaporator. Then, the bypass calculated from the detection pressure of the second pressure detection means and the detection temperature of the temperature detection means Until the degree of supercooling at the inlet of the flow control device reaches a preset value, the bypass flow control device is controlled so that the opening of the bypass flow control device does not exceed a certain opening. Controlled flow rate control An air conditioning apparatus characterized by comprising a device control means.
【請求項4】 圧縮機、切換弁、熱源機側熱交換器より
なる1台の熱源機と、それぞれ室内側熱交換器を有する
複数台の室内機とを、第1、第2の接続配管を介して接
続したものにおいて、上記第1、第2の接続配管間に設
けられ、流れる冷媒の方向を切換えることにより、運転
時は常に、上記熱源機と上記室内機間に介在する上記第
1の接続配管を低圧に、上記第2の接続配管を高圧にす
る流路切換弁装置と、上記複数台の室内機の室内側熱交
換器の一方を上記第1の接続配管、または気液分離装置
を介して第2の接続配管に切換え可能に接続する第1の
分岐部と、上記複数台の室内機の室内側熱交換器の他方
を第1の流量制御装置を介して上記第2の接続配管に接
続してなる第2の分岐部と、上記第2の接続配管に設け
られ、上記気液分離装置と上記第2の分岐部間に接続さ
る第2の流量制御装置と、一端が上記第2の分岐部に
接続され、他端がバイパス用流量制御装置を介して上記
第1の接続配管に接続されたバイパス回路と、上記第2
の流量制御装置とバイパス用流量制御装置間の冷媒圧力
を検出する第2の圧力検出手段と、上記第2の流量制御
装置と上記バイパス用流量制御装置間の冷媒温度を検出
する温度検出手段と、各室内機が暖房のみの運転、また
は各室内機が冷暖同時運転されると共に上記熱源機側熱
交換器が蒸発器となる運転から、各室内機が冷房のみの
運転、または各室内機が冷暖同時運転されると共に上記
熱源機側熱交換器が凝縮器となる運転に切り換わった
後、上記第2の圧力検出手段の検出圧力と上記温度検出
手段の検出温度から計算される上記バイパス用流量制御
装置の入口の過冷却度が予め設定された値に達するまで
の間は、上記バイパス用流量制御装置の開度がある一定
の開度以上にならないように上記バイパス用流量制御装
置を制御する流量制御装置制御手段とを備えたことを特
徴とする空気調和装置。
4. A first and a second connection pipe for connecting one heat source unit comprising a compressor, a switching valve and a heat source unit side heat exchanger and a plurality of indoor units each having an indoor side heat exchanger. Connected between the first and second connection pipes, and by switching the direction of the flowing refrigerant, the first operation interposed between the heat source unit and the indoor unit is always performed during operation. A flow path switching valve device for setting the pressure of the connection pipe to low pressure and the pressure of the second connection pipe to high pressure; and connecting the one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or gas-liquid separation. apparatus
A first branch portion that is switchably connected to a second connection pipe via a second connection pipe, and the other of the indoor heat exchangers of the plurality of indoor units is connected to the second connection pipe via a first flow control device. A second branch connected to a pipe, and a second branch provided in the second connection pipe and connected between the gas-liquid separator and the second branch.
A second flow control device that Re, one end is connected to the second branch portion, and a bypass circuit connected to the first connection pipe and the other end through the bypass flow control device, the second
Pressure detecting means for detecting the refrigerant pressure between the flow control device and the bypass flow control device, and temperature detecting means for detecting the refrigerant temperature between the second flow control device and the bypass flow control device. From the operation in which each indoor unit is operated only for heating, or the operation in which each indoor unit is simultaneously operated for cooling and heating and the operation in which the heat source unit side heat exchanger is an evaporator, the operation for each indoor unit is only for cooling, or each indoor unit is operated for cooling only After the cooling / heating operation is performed simultaneously and the operation is switched to the operation in which the heat source device side heat exchanger becomes a condenser, the bypass for the bypass calculated from the detected pressure of the second pressure detecting means and the detected temperature of the temperature detecting means is used. Until the degree of supercooling at the inlet of the flow control device reaches a preset value, the bypass flow control device is controlled so that the opening of the bypass flow control device does not exceed a certain opening. Flow rate system An air conditioning apparatus characterized by comprising a device control means.
JP3107428A 1991-05-13 1991-05-13 Air conditioner Expired - Lifetime JP2601052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107428A JP2601052B2 (en) 1991-05-13 1991-05-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107428A JP2601052B2 (en) 1991-05-13 1991-05-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04335968A JPH04335968A (en) 1992-11-24
JP2601052B2 true JP2601052B2 (en) 1997-04-16

Family

ID=14458899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107428A Expired - Lifetime JP2601052B2 (en) 1991-05-13 1991-05-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2601052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519171A (en) * 2011-12-31 2012-06-27 广东欧科空调制冷有限公司 Multi-functional multi-connected air conditioning unit
KR20180045797A (en) * 2016-10-25 2018-05-04 삼성전자주식회사 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168681A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519171A (en) * 2011-12-31 2012-06-27 广东欧科空调制冷有限公司 Multi-functional multi-connected air conditioning unit
KR20180045797A (en) * 2016-10-25 2018-05-04 삼성전자주식회사 Air conditioner
KR102465854B1 (en) * 2016-10-25 2022-11-11 삼성전자주식회사 Air conditioner

Also Published As

Publication number Publication date
JPH04335968A (en) 1992-11-24

Similar Documents

Publication Publication Date Title
AU656063B2 (en) Air-conditioning system
JPH0754217B2 (en) Air conditioner
JP2875507B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JPH046372A (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JP2003279174A (en) Air conditioning device
JPH0765825B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner
JPH05172432A (en) Air conditioning apparatus
JP2508310B2 (en) Air conditioner and air conditioner control method
JPH0754218B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15