JP2598550B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2598550B2
JP2598550B2 JP2107913A JP10791390A JP2598550B2 JP 2598550 B2 JP2598550 B2 JP 2598550B2 JP 2107913 A JP2107913 A JP 2107913A JP 10791390 A JP10791390 A JP 10791390A JP 2598550 B2 JP2598550 B2 JP 2598550B2
Authority
JP
Japan
Prior art keywords
connection pipe
flow control
indoor
control device
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2107913A
Other languages
Japanese (ja)
Other versions
JPH046370A (en
Inventor
茂生 ▲高▼田
秀一 谷
節 中村
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107913A priority Critical patent/JP2598550B2/en
Priority to AU74381/91A priority patent/AU636215B2/en
Priority to ES199191303443T priority patent/ES2046853T3/en
Priority to EP91303443A priority patent/EP0453271B1/en
Priority to DE91303443T priority patent/DE69100424T2/en
Priority to US07/687,434 priority patent/US5156014A/en
Publication of JPH046370A publication Critical patent/JPH046370A/en
Application granted granted Critical
Publication of JP2598550B2 publication Critical patent/JP2598550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して複数台の室内機を接
続する多室型ヒートポンプ空気調和機に関するもので、
特に各室内機毎に冷暖房を選択的に、かつ一方の室内機
では冷房、他方の室内機では暖房が同時に行うことがで
きる空気調和装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit.
In particular, the present invention relates to an air conditioner that can selectively perform cooling and heating for each indoor unit, and perform cooling in one indoor unit and heating in the other indoor unit simultaneously.

〔従来の技術〕[Conventional technology]

従来、熱源機1台に対して複数台の室内機をガス管と
液管の2本の配管で接続し、冷暖房運転をするヒートポ
ンプ式空気調和装置は一般的であり各室内機はすべて暖
房、またはすべて冷房を行うように形成されている。
Conventionally, a heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit with two pipes of a gas pipe and a liquid pipe to perform a cooling and heating operation is generally used. Or, they are all formed to perform cooling.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の多室型ヒートポンプ式空気調和機は以上のよう
に構成されているので、すべての室内機が冷房または暖
房にしか運転しないため、冷房が必要な場所で暖房が行
われたり、逆に暖房が必要な場所で冷房が行われるよう
な問題があった。
Since the conventional multi-room heat pump air conditioner is configured as described above, all indoor units operate only for cooling or heating, so heating is performed where cooling is required, or conversely, heating is performed. However, there is a problem that air conditioning is performed in a place where it is necessary.

特に、大規模なビルに据え付けた場合、インテリア部
とペリメータ部、または一般事務室と、コンピュータル
ーム等のOA化された部屋では空調の負荷が著しく異なる
ため、特に問題となっている。
In particular, when installed in a large-scale building, there is a particular problem because the load of air conditioning is significantly different between an interior unit and a perimeter unit, or a general office room and a computer room or the like where OA is used.

この発明は、上記のような問題点を解決するためにな
されたもので、熱源機1台に対して複数台の室内機を接
続し、各室内機毎に冷暖房を選択的に、かつ一方の室内
機では冷房、他方の室内機では暖房が同時に行うことが
できるようにして、大規模なビルに据え付けた場合、イ
ンテリア部とペリメータ部、または一般事務室と、コン
ピュータルーム等のOA化された部屋で空調の負荷が著し
く異なっても、それぞれに対応できる多室型ヒートポン
プ式空気調和装置を得ることを目的とする。
The present invention has been made in order to solve the above-described problems. A plurality of indoor units are connected to one heat source unit, and cooling / heating is selectively performed for each indoor unit, and one of the indoor units is selectively operated. The indoor unit can be cooled and the other indoor unit can be heated at the same time.When installed in a large-scale building, the interior and perimeter sections, or the general office and computer room, etc. It is an object of the present invention to provide a multi-chamber heat pump type air conditioner that can cope with a significantly different air conditioning load in each room.

〔課題を解決するための手段〕[Means for solving the problem]

この発明は、圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ、等よりなる1台の熱源機と、室内
側熱交換器、第1の流量制御装置等からなる複数台の室
内機とを、第1、第2の接続配管を介して接続し、上記
複数台の室内機の上記室内側熱交換器の一方を上記第1
の接続配管または、第2の接続配管に切り換え可能に接
続してなる第1の分岐部と、上記複数台の室内機の上記
室内側熱交換器の他方に、上記第1の流量制御装置を介
して接続され、かつ第2の流量制御装置を介して上記第
2の接続配管に接続してなる第2の分岐部とを、上記第
2の流量制御装置を介して接続し、更に上記第2の分岐
部と上記第1の接続配管を第4の流量制御装置を介して
接続し、上記第1の分岐部、第2の流量制御装置、第4
の流量制御装置及び第2の分岐部を内蔵させた中継器
を、上記熱源機と上記複数台の室内機との間に介在させ
ると共に、上記第1の接続配管は上記第2の接続配管よ
り大径に構成し、上記熱源機の上記第1及び第2の接続
配管間に切り換え弁を設け、上記第1の接続配管を低圧
に、第2の接続配管を高圧に切り換え可能にした、冷暖
同時運転可能な空気調和機において、 除霜時に、上記四方切換弁を切り換えると共に、上記
第1の分岐部を閉とし、上記第1の流量制御装置を閉と
し、上記第2及び第4の流量制御装置を開とすることを
特徴とするものである。
The present invention relates to one heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, and the like, and a plurality of indoor units including an indoor side heat exchanger, a first flow control device, and the like. Are connected via first and second connection pipes, and one of the indoor-side heat exchangers of the plurality of indoor units is connected to the first heat exchanger.
The first flow control device is connected to the other of the indoor branch heat exchangers of the plurality of indoor units and the first branch portion that is switchably connected to the connection pipe or the second connection pipe. And a second branch connected to the second connection pipe via a second flow control device via the second flow control device, and further connected to the second branch portion via the second flow control device. The second branch and the first connection pipe are connected via a fourth flow control device, and the first branch, the second flow control device, and the fourth flow control device are connected to each other.
And a repeater incorporating the second branch unit is interposed between the heat source unit and the plurality of indoor units, and the first connection pipe is connected to the second connection pipe. A cooling valve configured to have a large diameter and provided with a switching valve between the first and second connection pipes of the heat source unit so that the first connection pipe can be switched to a low pressure and the second connection pipe can be switched to a high pressure. In the air conditioner that can be operated simultaneously, at the time of defrosting, the four-way switching valve is switched, the first branch is closed, the first flow control device is closed, and the second and fourth flow rates are set. The control device is opened.

〔作 用〕 この発明においては、冷暖房同時運転における暖房主
体の場合は高圧ガス冷媒を熱源機側切り換え弁、第2の
接続配管、第1の分岐部から暖房しようとしている各室
内機に導入して暖房を行い、その後冷媒は第2の分岐部
から一部は冷房しようとしている室内機に流入して冷房
を行い、第1の分岐部から第1の接続配管に流入する。
一方残りの冷媒は第4の流量制御装置を通って、冷房室
内機を通った冷媒と合流して、第1の接続配管に流入
し、熱源機に戻る。
[Operation] In the present invention, in the case of heating mainly in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced into each indoor unit to be heated from the heat source unit switching valve, the second connection pipe, and the first branch. After that, the refrigerant flows from the second branch to a part of the indoor unit which is about to be cooled, performs cooling, and flows from the first branch to the first connection pipe.
On the other hand, the remaining refrigerant passes through the fourth flow control device, merges with the refrigerant that has passed through the cooling indoor unit, flows into the first connection pipe, and returns to the heat source unit.

また冷房主体の場合は、高圧ガスを熱源機で任意量熱
交換し二相状態として熱源機側切り換え弁、第2の接続
配管から、分離されたガス状の冷媒を第1の分岐部を介
して暖房しようとする室内機に導入して暖房を行い第2
の分岐部に流入する。一方、分離された液状の残りの冷
媒は第2の流量調整装置を通って第2の分岐部で暖房し
ようとする室内機を通った冷媒と合流して冷房しようと
する各室内機に流入して冷房を行い、その後に第1の分
岐部から第1の接続配管を通って熱源機側切り換え弁に
導かれ再び圧縮機に戻る。
In the case of cooling mainly, a high-pressure gas is heat-exchanged in an arbitrary amount by a heat source unit to make a two-phase state, and the gaseous refrigerant separated from the heat source unit side switching valve and the second connection pipe is passed through the first branch. Introduce to the indoor unit that is going to heat and heat and
Flows into the branch. On the other hand, the remaining liquid refrigerant separated passes through the second flow control device, merges with the refrigerant that has passed through the indoor unit to be heated in the second branch, and flows into each indoor unit to be cooled. After cooling, the air is guided from the first branch to the heat-source-unit switching valve through the first connection pipe, and returns to the compressor again.

更に、暖房運転のみの場合、冷媒は熱源機側切り換え
弁より第2の接続配管、第1の分岐部を通り各室内機に
導入され、暖房して第2の分岐部から第1の接続配管を
通り熱源機側切り換え弁に戻る。
Furthermore, in the case of only the heating operation, the refrigerant is introduced into each indoor unit through the second connection pipe and the first branch from the heat source unit side switching valve, heated, and heated to the first connection pipe from the second branch. And returns to the heat source device side switching valve.

そして、冷房運転のみの場合、冷媒は熱源機側切り換
え弁より第2の接続配管、第2の分岐部を通り各室内機
に導入され、冷房して第1の分岐部から第1の接続配管
を通り熱源機側切り換え弁に戻る。
In the case of only the cooling operation, the refrigerant is introduced into each indoor unit through the second connection pipe and the second branch from the heat source unit side switching valve, cooled, and cooled to the first connection pipe from the first branch. And returns to the heat source device side switching valve.

そして、冷暖房同時運転における暖房主体の場合及び
暖房運転のみの場合の除霜時に、高温高圧ガスを熱源機
で熱交換することによって除霜し、熱源機側切り換え弁
より、第2の接続配管を通り第2の流量制御装置、第4
の流量制御装置を通り、第1の接続配管を通って熱源機
側切り換え弁に戻る。
Then, at the time of defrosting in the case of mainly heating and in the case of only heating operation in the simultaneous cooling and heating operation, the defrosting is performed by exchanging heat of the high-temperature and high-pressure gas with the heat source device, and the second connection pipe is connected by the heat source device side switching valve. Second flow control device, fourth
And returns to the heat source device side switching valve through the first connection pipe.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described.

第1図はこの発明の一実施例の空気調和装置の冷媒を
中心とする全体構成図である。また、第2図乃至第4図
は第1図の一実施例における冷暖房運転時の動作状態を
示したもので、第2図は冷房または暖房のみの運転状態
図、第3図及び第4図は冷暖房同時運転の動作を示すも
ので、第3図は暖房主体(暖房運転容量が冷房運転容量
より大きい場合)を、第4図は冷房主体(冷房運転容量
が暖房運転容量より大きい場合)を示す運転動作状態図
である。そして、第5図は第1図の一実施例における除
霜運転時の動作状態図である。
FIG. 1 is an overall configuration diagram mainly showing a refrigerant of an air conditioner of one embodiment of the present invention. 2 to 4 show an operation state of the cooling / heating operation in the embodiment of FIG. 1, and FIG. 2 is an operation state diagram of only cooling or heating, and FIGS. 3 and 4. Fig. 3 shows the operation of simultaneous cooling and heating operation. Fig. 3 shows the main heating operation (when the heating operation capacity is larger than the cooling operation capacity), and Fig. 4 shows the main cooling operation (when the cooling operation capacity is larger than the heating operation capacity). It is a driving | operation operation state diagram shown. FIG. 5 is an operation state diagram at the time of the defrosting operation in the embodiment of FIG.

なお、この実施例では熱源機1台に室内機3台を接続
した場合について説明するが、2台以上の室内機を接続
した場合はすべて同様である。
In this embodiment, a case where three indoor units are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected.

第1図において、(A)は熱源機、(B)、(C)、
(D)は後述するように互いに並列接続された室内機で
それぞれ同じ構成となっている。(E)は後述するよう
に、第1の分岐部、第2の流量制御装置、第2の分岐
部、気液分離装置、熱交換部、第3の流量制御装置、第
4の流量制御装置を内蔵した中継機。
In FIG. 1, (A) is a heat source device, (B), (C),
(D) is an indoor unit connected in parallel to each other as described later, and has the same configuration. (E) shows a first branch, a second flow controller, a second branch, a gas-liquid separator, a heat exchanger, a third flow controller, and a fourth flow controller as described later. A built-in repeater.

(1)は圧縮機、(2)は熱源機の冷媒流通方向を切
り換える四方切換弁、(3)は熱源機側熱交換器、
(4)はアキュムレータで、上記機器(1)〜(3)と
接続され熱源機(A)を構成する。(5)は3台の室内
側熱交換器、(6)は熱源機(A)の四方切換弁(2)
と中継機(E)を接続する太い第1の接続配管、(6
b)、(6c)、(6d)はそれぞれ室内機(B)、
(C)、(D)の室内側熱交換器(5)と中継機(E)
を接続し、第1の接続配管(6)に対応する室内機側の
第1の接続配管、(7)は熱源機(A)の熱源機側熱交
換器(3)と中継機(E)を接続する上記第1の接続配
管より細い第2の接続配管、(7b)、(7c)、(7d)は
それぞれ室内機(B)、(C)、(D)の室内側熱交換
器(5)と中継機(E)を接続し第2の接続配管(7)
に対応する室内機側の第2の接続配管、(8)は室内機
側の第1の接続配管(6a)、(6b)、(6c)を、第1の
接続配管(6)または第2の接続配管(7)側に切り換
え可能に接続する第1の分岐部の切り換え弁分岐部であ
り、第2の接続配管との接続部である第1口に開閉弁
(8a)、第1の接続配管との接続部である第2口に開閉
弁(8b)を有する。
(1) is a compressor, (2) is a four-way switching valve for switching the refrigerant flow direction of the heat source device, (3) is a heat source device side heat exchanger,
(4) is an accumulator, which is connected to the above devices (1) to (3) to constitute a heat source unit (A). (5) is the three indoor heat exchangers, (6) is the four-way switching valve (2) of the heat source unit (A)
First connecting pipe connecting the relay and the repeater (E), (6
b), (6c) and (6d) are indoor units (B) and
(C), (D) indoor heat exchanger (5) and repeater (E)
And a first connection pipe on the indoor unit side corresponding to the first connection pipe (6), and (7) a heat source unit side heat exchanger (3) of the heat source unit (A) and a relay unit (E). (7b), (7c) and (7d), which are smaller than the first connection pipe, connect the indoor heat exchangers (B), (C) and (D), respectively. 5) and the repeater (E) to connect the second connection pipe (7)
(8) is the first connection pipe (6a), (6b), (6c) of the indoor unit corresponding to the first connection pipe (6) or the second connection pipe. A switching valve branch of a first branch which is switchably connected to the side of the first connection pipe (7), and a first port which is a connection with the second connection pipe at an opening / closing valve (8a); A second port which is a connection portion with the connection pipe has an on-off valve (8b).

(9)は室内側熱交換器(5)に近接して接続された
室内側熱交換器(5)の出口側の冷房時はスーパーヒー
ト量、暖房時はサブクール量により制御される第1の流
量制御装置で室内機側の第2の接続配管(7b)、(7
c)、(7d)に接続される。(10)は室内機側の第1の
接続配管(6b)、(6c)、(6d)を、第1の接続配管
(6)または第2の接続配管(7)側に切り換え可能に
接続する第1の分岐部の切り換え弁部(8)よりなる第
1の分岐部、(11)は室内機側の第2の接続配管(7
b)、(7c)、(7d)と、第2の接続配管よりなる第2
の分岐部、(12)は第2の接続配管(7)の途中に設け
られた気液分離装置で、その気相部は第1の分岐部の切
り換え弁部(8)の第1口の開閉弁(8a)に接続され、
その液相部は第2の分岐部(11)に接続されている。
(13)は気液分離装置(12)と第2の分岐部(11)との
間に接続する開閉自在な第2の流量制御装置、(14)は
第2の分岐部(11)と上記第1の接続配管(6)とを結
ぶバイパス配管、(15)はバイパス配管(14)の途中に
設けられた第3の流量制御装置、(16b)、(16c)、
(16d)はバイパス配管(14)の第3の流量制御装置(1
5)の下流に設けられ、第2の分岐部(11)における各
室内機側の第2の接続配管(7b)、(7c)、(7d)の合
流部との間でそれぞれ熱交換を行う第3の熱交換部、
(16a)はバイパス配管(14)の第3の流量制御装置(1
5)の下流に設けられ、第2の分岐部(11)における各
室内機側の第2の接続配管(7b)、(7c)、(7d)の合
流部との間で熱交換を行う第2の熱交換部、(19)はバ
イパス配管(14)の上記第3の流量制御装置(15)の下
流及び第2の熱交換部(16a)の下流に設けられ気液分
離装置(12)と第2の流量制御装置(13)とを接続する
配管との間で熱交換を行う第1の熱交換部、(17)は第
2の分岐部(11)と上記第1の接続配管(6)との間に
接続する開閉自在な第4の流量制御装置である。
(9) The first control is performed by the superheat amount during cooling and the subcool amount during heating at the outlet side of the indoor heat exchanger (5) connected close to the indoor heat exchanger (5). The second connection pipe (7b), (7
c) Connected to (7d). (10) switchably connects the first connection pipes (6b), (6c) and (6d) on the indoor unit side to the first connection pipe (6) or the second connection pipe (7). The first branch portion composed of the switching valve portion (8) of the first branch portion, (11) is a second connection pipe (7) on the indoor unit side.
b), (7c), (7d) and a second connecting pipe
And (12) a gas-liquid separation device provided in the middle of the second connection pipe (7), and the gas phase portion thereof is connected to the first port of the switching valve (8) of the first branch portion. Connected to the on-off valve (8a)
The liquid phase is connected to the second branch (11).
(13) is an openable / closable second flow control device connected between the gas-liquid separation device (12) and the second branch portion (11), and (14) is the second branch portion (11) and the above-mentioned second flow control device. A bypass pipe connecting to the first connection pipe (6), (15) a third flow control device provided in the middle of the bypass pipe (14), (16b), (16c),
(16d) is the third flow control device (1) of the bypass pipe (14).
It is provided downstream of 5) and exchanges heat with the junction of the second connection pipes (7b), (7c), and (7d) on the indoor unit side in the second branch (11). A third heat exchange section,
(16a) is the third flow control device (1
5) that is provided downstream of the second branch (11) and exchanges heat with the junction of the second connection pipes (7b), (7c), and (7d) on the indoor unit side in the second branch (11). The second heat exchange unit (19) is provided downstream of the third flow control device (15) in the bypass pipe (14) and downstream of the second heat exchange unit (16a). A first heat exchange section for exchanging heat between the pipe connecting the second flow control device and the second flow control device; and (17) a second branch section (11) and the first connection pipe ( 6) A fourth flow control device which can be opened and closed and connected between the fourth flow control device.

(32)は、上記熱源機側熱交換器(3)と上記第2の
接続配管(7)との間に設けられた第3の逆止弁であ
り、上記熱源機側熱交換器(3)から上記第2の接続配
管(7)へのみ冷媒流通を許容する。(33)は上記熱源
機(A)の四方切換弁(2)と上記第1の接続配管
(6)との間に設けられた第4の逆止弁であり、上記第
1の接続配管(6)から上記四方切換弁(2)へのみ冷
媒流通を許容する。(34)は、上記熱源機(A)の四方
切換弁(2)と上記第2の接続配管(7)との間に設け
られた第5の逆止弁であり、上記四方切換弁(2)から
上記第2の接続配管(7)へのみ冷媒流通を許容する。
(35)は上記熱源機側熱交換器(3)と上記第1の接続
配管(6)との間に設けられた第6の逆止弁であり、上
記第1の接続配管(6)から上記熱源機側熱交換器
(3)へのみ冷媒流通を許容する。上記第3の逆止弁
(32)〜上記第6の逆止弁(35)で切り換え弁(40)を
構成する。
(32) is a third check valve provided between the heat source unit side heat exchanger (3) and the second connection pipe (7), and is a third check valve. ) Is allowed to flow only to the second connection pipe (7). (33) is a fourth check valve provided between the four-way switching valve (2) of the heat source unit (A) and the first connection pipe (6). From 6), the refrigerant is allowed to flow only to the four-way switching valve (2). (34) is a fifth check valve provided between the four-way switching valve (2) of the heat source unit (A) and the second connection pipe (7), and is a fifth check valve (2). ) Is allowed to flow only to the second connection pipe (7).
(35) is a sixth check valve provided between the heat source unit side heat exchanger (3) and the first connection pipe (6), and is provided from the first connection pipe (6). Refrigerant circulation is allowed only to the heat source side heat exchanger (3). The third check valve (32) to the sixth check valve (35) constitute a switching valve (40).

このように構成されたこの発明の実施例について説明
する。
An embodiment of the present invention thus configured will be described.

まず、第2図を用いて冷房運転のみの場合について説
明する。
First, the case of only the cooling operation will be described with reference to FIG.

すなわち、第2図に実線矢印で示すように圧縮器
(1)より吐出された高温高圧の冷媒ガスは四方切換弁
(2)を通り、熱源機側熱交換器(3)で熱交換して凝
縮された後、第3の逆止弁(32)、第2の接続配管
(7)、気液分離装置(12)、第2の流量制御装置(1
3)の順に通り、更に第2の分岐部(11)、室内機側の
第2の接続配管(7b)、(7c)、(7d)を通り、各室内
機(B)、(C)、(D)に流入する。そして、各室内
機(B)、(C)、(D)に流入した冷媒は、各室内側
熱交器(5)出口のスーパーヒート量により制御される
第1の流量制御装置(9)により低圧まで減圧されて室
内側熱交換器(5)で室内空気と熱交換して蒸発し、ガ
ス化され室内を冷房する。そして、このガス状態となっ
た冷媒は、室内機側の第1の接続配管(6b)、(6c)、
(6d)、第1の分岐部(10)、第1の分岐部の切り換え
弁部(8)を通り、第1の接続配管(6)、第4の逆止
弁(33)、熱源機(A)の四方切換弁(2)、アキュム
レータ(4)を経て、圧縮機(1)に吸入される循環サ
イクルを構成し、冷房運転を行う。このとき、切り換え
弁部(8)の第1口の開閉弁(8a)は閉路、第2口の開
閉弁(8b)は開路されている。また、この時冷媒は、第
1の接続配管(6)が低圧、第2の接続配管(7)が高
圧のため必然的に第3の逆止弁(32)、第4の逆止弁
(33)へ流通する。
That is, as shown by the solid arrows in FIG. 2, the high-temperature and high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2) and exchanges heat with the heat source device side heat exchanger (3). After being condensed, the third check valve (32), the second connection pipe (7), the gas-liquid separation device (12), the second flow control device (1
3), and further through the second branch portion (11), the second connection pipe (7b), (7c), (7d) on the indoor unit side, and the indoor units (B), (C), (D). The refrigerant flowing into each of the indoor units (B), (C), and (D) is supplied by the first flow control device (9) controlled by the amount of superheat at the outlet of each indoor heat exchanger (5). The pressure is reduced to a low pressure, heat exchanges with room air in the indoor heat exchanger (5), evaporates, gasifies and cools the room. The refrigerant in the gas state is supplied to the first connection pipes (6b), (6c),
(6d), passing through the first branch portion (10), the switching valve portion (8) of the first branch portion, the first connection pipe (6), the fourth check valve (33), the heat source device ( A circulation cycle is drawn into the compressor (1) through the four-way switching valve (2) and the accumulator (4) in A), and the cooling operation is performed. At this time, the first opening / closing valve (8a) of the switching valve section (8) is closed, and the second opening / closing valve (8b) is open. Also, at this time, since the first connection pipe (6) has a low pressure and the second connection pipe (7) has a high pressure, the third check valve (32) and the fourth check valve ( 33).

さらに、このサイクルの時、第2の流量制御装置(1
3)を通過した冷媒の一部がバイパス配管(14)へ入
り、第3の流量制御装置(15)で低圧まで減圧されて、
第3の熱交換部(16b)、(16c)、(16d)で各室内機
側の第2の接続配管(7b)、(7c)、(7d)との間で、
第2の熱交換部(16a)で第2の分岐部(11)の各室内
機側の第2の接続配管(7b)、(7c)、(7d)の合流部
との間で、更に第1の熱交換部(19)で第2の流量制御
装置(13)に流入する冷媒との間で熱交換を行い蒸発し
た冷媒は、第1の接続配管(6)、第4の逆止弁(33)
へ入り四方切換弁(2)、アキュムレータ(4)を経て
圧縮機(1)に吸入される。一方、第1及び第2及び第
3の熱交換部(19)、(16a)、(16b)、(16c)、(1
6d)で熱交換し冷却されサブクールを充分につけられた
上記第2の分岐部(11)の冷媒は冷房しようとしている
室内機(B)、(C)、(D)へ流入する。
Furthermore, during this cycle, the second flow control device (1
Part of the refrigerant that has passed through 3) enters the bypass pipe (14) and is reduced to a low pressure by the third flow control device (15).
In the third heat exchange sections (16b), (16c) and (16d), between the second connection pipes (7b), (7c) and (7d) on the indoor unit side,
In the second heat exchange section (16a), between the second connection pipes (7b), (7c), and (7d) of the second branch section (11) on the side of each indoor unit, The refrigerant that has exchanged heat with the refrigerant flowing into the second flow control device (13) in the first heat exchange section (19) and evaporates is supplied to the first connection pipe (6) and the fourth check valve. (33)
And is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4). On the other hand, the first, second and third heat exchange sections (19), (16a), (16b), (16c), (1)
The refrigerant in the second branch portion (11), which has been cooled by the heat exchange in 6d) and sufficiently attached to the subcooler, flows into the indoor units (B), (C), and (D) to be cooled.

次に、第2図を用いて暖房運転のみの場合について説
明する。すなわち、第2図に点線矢印で示すように圧縮
機(1)より吐出された高温高圧の冷媒ガスは四方切換
弁(2)を通り、第5の逆止弁(34)、第2の接続配管
(7)、気液分離装置(12)を通り、第1の分岐部(1
0)、第1の分岐部の切り換え弁部(8)、室内機側の
第1の接続配管(6b)、(6c)、(6d)の順に通り、各
室内機(B)、(C)、(D)に流入し、室内空気と熱
交換して凝縮液化し、室内を暖房する。そして、この液
状態となった冷媒は、各室内側熱交換器(5)出口のサ
ブクール量により制御される第1の流量制御装置(9)
を通り、室内機側の第2の接続配管(7b)、(7c)、
(7d)から第2の分岐部(11)に流入して合流し、更に
第4の流量制御装置(17)を通り、ここで第1の流量制
御装置(9)または第4の流量制御装置(17)で低圧の
二相状態まで減圧される。そして、低圧まで減圧された
冷媒は、第1の接続配管(6)を経て、第6の逆止弁
(35)から、熱源機側熱交換器(3)に流入し熱交換し
て蒸発しガス状態となり、四方切換弁(2)、アキュム
レータ(4)を経て圧縮機(1)に吸入される循環サイ
クルを構成し、暖房運転を行う。このとき、第1の分岐
部の切り換え弁部(8)の開閉弁(8a)は開路、(8b)
は閉路されている。また、この時冷媒は、第1の接続配
管(6)が低圧、第2の接続配管(7)が高圧のため必
然的に第5の逆止弁(34)、第6の逆止弁(35)へ流通
する。
Next, a case of only the heating operation will be described with reference to FIG. That is, as shown by a dotted arrow in FIG. 2, the high-temperature and high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2), passes through the fifth check valve (34) and the second connection. After passing through the pipe (7) and the gas-liquid separator (12), the first branch (1
0), the switching valve section (8) of the first branch, and the first connection pipes (6b), (6c), and (6d) on the indoor unit side in the order of each indoor unit (B), (C). , (D), exchanges heat with room air to condense and liquefy, and heats the room. Then, the refrigerant in this liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger (5), and the first flow control device (9)
Through the second connection pipe (7b), (7c),
From (7d) flows into the second branch (11) and merges there and further through the fourth flow control device (17), where the first flow control device (9) or the fourth flow control device In (17), the pressure is reduced to a low pressure two-phase state. Then, the refrigerant decompressed to a low pressure passes through the first connection pipe (6), flows into the heat source unit side heat exchanger (3) from the sixth check valve (35), exchanges heat, and evaporates. A gas state is established, and a circulation cycle is drawn through the four-way switching valve (2) and the accumulator (4) to the compressor (1) to perform a heating operation. At this time, the open / close valve (8a) of the switching valve section (8) of the first branch section is open, and (8b)
Is closed. Also, at this time, the first connection pipe (6) has a low pressure and the second connection pipe (7) has a high pressure, so that the fifth check valve (34) and the sixth check valve ( Distribute to 35).

冷暖同時運転における暖房主体の場合について第3図
を用いて説明する。ここでは室内機(B)、(C)の2
台が暖房、室内機(D)1台が冷房しようとしている場
合について説明する。
The case of heating mainly in simultaneous cooling and heating operation will be described with reference to FIG. Here, indoor units (B) and (C)
A case in which the unit is heating and one indoor unit (D) is going to cool will be described.

すなわち、第3図に実線矢印で示すように圧縮機
(1)より吐出された高温高圧冷媒ガスは四方切換弁
(2)、第5の逆止弁(34)、第2の接続配管(7)を
通り、中継機(E)へ送られ、気液分離装置(12)を通
り、そして第1の分岐部(10)、第1の分岐部の切り換
え弁部(8)、室内機側の第1の接続配管(6b)、(6
c)の順に通り、暖房しようとしている室内機(B)、
(C)に流入し、室内側熱交換器(5)で室内空気と熱
交換して凝縮液化され、室内を暖房する。そして、この
液状態となった冷媒は、各室内側熱交換器(5)出口の
サブクール量により制御されほぼ全開状態の第1の流量
制御装置(9)を通り少し減圧されて第2の分岐部(1
1)に流入する。そして、この冷媒の一部は、室内機側
の第2の接続配管(7d)を通り、冷房しようとしている
室内機(D)に入り、室内側熱交換器(5)出口のスー
パーヒート量により制御される第1の流量制御装置
(9)に入り減圧された後に、室内側熱交換器(5)に
入って熱交換して蒸発しガス状態となって室内を冷房
し、第1の分岐部の切り換え弁部(8)を介して第1の
接続配管(6)に流入する。
That is, as shown by the solid arrows in FIG. 3, the high-temperature and high-pressure refrigerant gas discharged from the compressor (1) is supplied to the four-way switching valve (2), the fifth check valve (34), and the second connection pipe (7). ), Is sent to the repeater (E), passes through the gas-liquid separator (12), and is divided into the first branch portion (10), the switching valve portion (8) of the first branch portion, and the indoor unit side. The first connection pipe (6b), (6
Follow the order of c), indoor unit (B) to be heated,
(C), heat exchanges with the indoor air in the indoor heat exchanger (5), condensed and liquefied, and heats the room. The refrigerant in the liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger (5), passes through the first flow control device (9) which is almost fully opened, and is slightly depressurized to the second branch. Department (1
1). Then, a part of the refrigerant passes through the second connection pipe (7d) on the indoor unit side, enters the indoor unit (D) to be cooled, and depends on the amount of superheat at the outlet of the indoor heat exchanger (5). After entering the controlled first flow control device (9) and being decompressed, it enters the indoor heat exchanger (5) to exchange heat and evaporate to a gaseous state to cool the room, and to perform the first branch. It flows into the first connection pipe (6) via the switching valve section (8) of the section.

一方、他の冷媒は第2の接続配管(7)の高圧、第2
の分岐部(11)の中間圧値によって制御される開閉自在
な第4の流量制御装置(17)を通って、冷房しようとす
る室内機(D)を通った冷媒と合流して、太い第1の接
続配管(6)を経て熱源機(A)の第6の逆止弁(3
5)、熱源機側熱交換器(3)に流入し熱交換して蒸発
しガス状態となる。そして、その冷媒は、熱源機の四方
切換弁(2)、アキュムレータ(4)を経て圧縮機
(1)に吸入される循環サイクルを構成し、暖房主体運
転を行う。この時、冷房する室内機(D)の室内側熱交
換器(5)の蒸発圧力と熱源機側熱交換器(3)の蒸発
圧力の圧力差が、太い第1の接続配管(6)に切り換え
るために小さくなる。また、この時、室内機(B)、
(C)に接続された第1の分岐部の切り換え弁部(8)
の第2口の開閉弁(8b)は閉路、第1口の開閉弁(8a)
は開路されており、室内機(D)に接続された第1の分
岐部の切り換え弁部(8)の第1口の開閉弁(8a)は閉
路、第2口の開閉弁(8b)は開路されている。さらに、
この時冷媒は、第1の接続配管(6)が低圧、第2の接
続配管(7)が高圧のため必然的に第5の逆止弁(3
4)、第6の逆止弁(35)へ流通する。
On the other hand, the other refrigerant has a high pressure in the second connection pipe (7),
Through a fourth open / close flow control device (17) controlled by the intermediate pressure value of the branching portion (11), and with the refrigerant passing through the indoor unit (D) to be cooled, Through the first connection pipe (6), the sixth check valve (3) of the heat source unit (A)
5), it flows into the heat source unit side heat exchanger (3), exchanges heat and evaporates to a gaseous state. Then, the refrigerant constitutes a circulation cycle in which the refrigerant is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4) of the heat source unit, and performs the heating main operation. At this time, the pressure difference between the evaporation pressure of the indoor-side heat exchanger (5) of the indoor unit (D) to be cooled and the evaporation pressure of the heat-source-unit-side heat exchanger (3) is increased by the thick first connection pipe (6). It becomes smaller to switch. At this time, the indoor unit (B),
Switching valve section (8) of the first branch section connected to (C)
The second opening / closing valve (8b) is closed, and the first opening / closing valve (8a)
Is open, the first opening / closing valve (8a) of the switching valve section (8) of the first branch connected to the indoor unit (D) is closed, and the second opening / closing valve (8b) is closed. It is open. further,
At this time, since the first connection pipe (6) has a low pressure and the second connection pipe (7) has a high pressure, the fifth check valve (3)
4), flowing to the sixth check valve (35).

また、このサイクル時、一部の液冷媒は第2の分岐部
(11)の各室内機側の第2の接続配管(7b)、(7c)、
(7d)の合流部からバイパス配管(14)へ入り、第3の
流量制御装置(15)で低圧まで減圧されて第3の熱交換
部(16b)、(16c)、(16d)で各室内機側の第2の接
続配管(7b)、(7c)、(7d)との間で、第2の熱交換
部(16a)で第2の分岐部(11)の各室内機側の第2の
接続配管(7b)、(7c)、(7d)の合流部との間で熱交
換を行い、蒸発した冷媒は、第1の接続配管(6)へ入
り、熱源機(A)の第6の逆止弁(35)、熱源機側熱交
換器(3)に流入し熱交換して蒸発し、ガス状態とな
る。そして、この冷媒は熱源機(A)の四方切換弁
(2)、アキュムレータ(4)を経て圧縮機(1)に吸
入される。一方、第2、第3の熱交換部、(16a)、(1
6b)、(16c)、(16d)で熱交換し冷却されサブクール
を充分につけられた上記第2の分岐部(11)の冷媒は冷
房しようとしている室内機(D)へ流入する。
In this cycle, a part of the liquid refrigerant is supplied to the second connection pipes (7b), (7c), and (7b) of each indoor unit of the second branch (11).
It enters the bypass pipe (14) from the junction of (7d), is decompressed to a low pressure by the third flow control device (15), and is cooled by the third heat exchange units (16b), (16c), and (16d) to each room. A second heat exchange section (16a) is provided between the second connection pipes (7b), (7c) and (7d) on the indoor unit side of the second branch section (11) on the indoor unit side. Heat is exchanged between the junctions of the connection pipes (7b), (7c) and (7d), and the evaporated refrigerant enters the first connection pipe (6) and the sixth refrigerant of the heat source device (A) Flows into the heat source device side heat exchanger (3), exchanges heat and evaporates to a gas state. Then, the refrigerant is sucked into the compressor (1) through the four-way switching valve (2) and the accumulator (4) of the heat source device (A). On the other hand, the second and third heat exchange sections (16a), (1
The refrigerant in the second branch portion (11), which has been cooled by heat exchange in (6b), (16c), and (16d) and sufficiently subcooled, flows into the indoor unit (D) to be cooled.

冷暖房同時運転における冷房主体の場合について第4
図を用いて説明する。ここでは、室内機(B)、(C)
の2台が冷房、室内機(D)1台が暖房しようとしてい
る場合について説明する。
About the case of cooling mainly in simultaneous cooling and heating operation
This will be described with reference to the drawings. Here, indoor units (B), (C)
A case will be described in which two units are going to be cooled and one indoor unit (D) is going to heat.

すなわち、第4図に実線矢印で示すように圧縮機
(1)より吐出された高温高圧冷媒ガスは、熱源機側熱
交換器(3)で任意量熱交換して二相の高温高圧ガスと
なり、第3の逆止弁(32)、第2の接続配管(7)を通
り、中継機(E)の気液分離装置(12)へ送られる。そ
して、ここで、ガス状冷媒と液状冷媒に分離され、分離
されたガス状冷媒は第1の分岐部(10)、第1の分岐部
の切り換え弁部(8)、室内機側の第1の接続配管(6
d)の順に通り、暖房しようとしている室内機(D)に
流入し、室内側熱交換器(5)で室内空気と熱交換して
凝縮液化し、室内を暖房する。更に、室内側熱交換器
(5)出口のサブクール量により制御されほぼ全開状態
の第1の流量制御装置(9)を通り少し減圧されて、第
2の分岐部(11)に流入する。一方、気液分離装置(1
2)で分離された残りの液状冷媒は第2の接続配管
(7)の高圧、第2の分岐部(11)の中間圧値によって
制御される開閉自在な第2の流量制御装置(13)を通っ
て第2の分岐部(11)に流入し、暖房しようとしている
室内機(D)を通った冷媒と合流する。そして、第2の
分岐部(11)、室内機側の第2の接続配管(7b)、(7
c)の順に通り、各室内機(B)、(C)に流入する。
そして、各室内機(B)、(C)に流入した冷媒は、室
内機側熱交換機(5)出口のスーパーヒート量により制
御される第1の流量制御装置(9)により低圧まで減圧
されて室内側熱交換器(5)に流入し、室内空気と熱交
換して蒸発しガス化され室内を冷房する。更に、このガ
ス状態となった冷媒は、室内機側の第1の接続配管(6
b)、(6c)、第1の分岐部の切り換え弁部(8)、第
1の分岐部(10)を通り、第1の接続配管(6)、第4
の逆止弁(33)、熱源機(A)の四方切換弁(2)、ア
キュムレータ(4)を経て圧縮機(1)に吸入される循
環サイクルを構成し、冷房主体運転を行う。この時、室
内機(B)、(C)に接続された第1の分岐部の切り換
え弁部(8)の第2口の開閉弁(8b)は開路、第1口の
開閉弁(8a)は閉路されており、室内機(D)に接続さ
れた第1の分岐部の切り換え弁部(8)の第1口の開閉
弁(8a)は開路、第2口の開閉弁(8b)は閉路されてい
る。また、この時冷媒は、第1の接続配管(6)が低
圧、第2の接続配管(7)が高圧のため、必然的に第3
の逆止弁(32)、第4の逆止弁(33)へ流通する。
That is, as shown by the solid arrows in FIG. 4, the high-temperature and high-pressure refrigerant gas discharged from the compressor (1) exchanges an arbitrary amount of heat in the heat source unit side heat exchanger (3) to become a two-phase high-temperature and high-pressure gas. , Through the third check valve (32) and the second connection pipe (7), to the gas-liquid separator (12) of the repeater (E). Here, the gaseous refrigerant and the liquid refrigerant are separated, and the separated gaseous refrigerant is supplied to the first branch section (10), the switching valve section (8) of the first branch section, and the first branch section (10) on the indoor unit side. Connection piping (6
The air flows into the indoor unit (D) to be heated according to the order of d), and is condensed and liquefied by exchanging heat with the indoor air in the indoor heat exchanger (5) to heat the room. Further, the pressure is slightly reduced through the first flow control device (9) which is controlled by the subcool amount at the outlet of the indoor heat exchanger (5) and is almost fully open, and flows into the second branch portion (11). On the other hand, the gas-liquid separator (1
The remaining liquid refrigerant separated in 2) is an openable / closable second flow control device (13) controlled by the high pressure of the second connection pipe (7) and the intermediate pressure value of the second branch (11). And flows into the second branch portion (11), and merges with the refrigerant that has passed through the indoor unit (D) to be heated. Then, the second branch portion (11), the second connection pipe (7b) on the indoor unit side, and (7
The air flows into the indoor units (B) and (C) in the order of c).
The refrigerant flowing into each of the indoor units (B) and (C) is decompressed to a low pressure by the first flow control device (9) controlled by the amount of superheat at the outlet of the indoor unit-side heat exchanger (5). It flows into the indoor heat exchanger (5), exchanges heat with indoor air, evaporates and gasifies, and cools the indoor. Further, the refrigerant in this gas state is supplied to the first connection pipe (6
b), (6c), the first connection pipe (6) passing through the switching valve section (8) of the first branch section, the first branch section (10), and the fourth connection pipe (6).
Of the compressor (1) through the check valve (33), the four-way switching valve (2) of the heat source unit (A), and the accumulator (4), and performs cooling-main operation. At this time, the second opening / closing valve (8b) of the switching valve section (8) of the first branch connected to the indoor units (B) and (C) is open, and the first opening / closing valve (8a). Is closed, the first opening / closing valve (8a) of the switching valve unit (8) of the first branch unit connected to the indoor unit (D) is open, and the second opening / closing valve (8b) is open. It is closed. At this time, since the first connection pipe (6) has a low pressure and the second connection pipe (7) has a high pressure, the refrigerant is inevitably the third connection pipe.
Flows through the check valve (32) and the fourth check valve (33).

更に、このサイクル時、一部の液冷媒は第2の分岐部
(11)の各室内機側の第2の接続配管(7b)、(7c)、
(7d)の合流部からバイパス配管(14)へ入り、第3の
流量制御装置(15)で低圧まで減圧されて第3の熱交換
部(16b)、(16c)、(16d)で各室内機側の第2の接
続配管(7b)、(7c)、(7d)との間で、第2の熱交換
部(16a)で第2の分岐部(11)の各室内機側の第2の
接続配管(7b)、(7c)、(7d)の合流部との間で、更
に第1の熱交換部(19)で第2の流量制御装置(13)へ
流入する冷媒との間で熱交換を行い蒸発した冷媒は、第
1の接続配管(6)へ入り、熱源機(A)の第4の逆止
弁(33)、熱源機(A)の四方切換弁(2)、アキュム
レータ(4)を経て圧縮機(1)に吸入される。一方、
第1、第2、第3の熱交換部(19)、(16a)、(16
b)、(16c)、(16d)で熱交換し冷却されサブクール
を充分につけられた上記第2の分岐部(11)の冷媒は冷
房しようとしている室内機(B)、(C)へ流入する。
Further, during this cycle, a part of the liquid refrigerant is supplied to the second connection pipes (7b), (7c), and (7c) of each indoor unit of the second branch (11).
It enters the bypass pipe (14) from the junction of (7d), is decompressed to a low pressure by the third flow control device (15), and is cooled by the third heat exchange units (16b), (16c), and (16d) to each room. A second heat exchange section (16a) is provided between the second connection pipes (7b), (7c) and (7d) on the indoor unit side of the second branch section (11) on the indoor unit side. Between the connection pipes (7b), (7c), and (7d), and between the first heat exchange section (19) and the refrigerant flowing into the second flow control device (13). The refrigerant that has undergone heat exchange and evaporates enters the first connection pipe (6), where the fourth check valve (33) of the heat source unit (A), the four-way switching valve (2) of the heat source unit (A), and the accumulator After passing through (4), it is sucked into the compressor (1). on the other hand,
The first, second, and third heat exchange sections (19), (16a), (16)
The refrigerant in the second branch portion (11), which has been cooled by the heat exchange in (b), (16c) and (16d) and sufficiently subcooled, flows into the indoor units (B) and (C) to be cooled. .

次に、上記一実施例の除霜運転の場合について第5図
を用いて説明する。
Next, the case of the defrosting operation of the above embodiment will be described with reference to FIG.

すなわち、第5図に実線矢印で示すように圧縮機
(1)より吐出された高温高圧冷媒ガスは、熱源機側熱
交換器(3)で放熱して熱源機側熱交換器に付着した霜
を溶かしながら冷却凝縮された後、第3の逆止弁(3
2)、第2の接続配管(7)、気液分離装置(12)、第
2の流量制御装置(13)、第4の流量制御装置(17)の
順に通り、第1の接続配管(6)へ入り、第4の逆止弁
(33)、熱源機(A)の四方切換弁(2)、アキュムレ
ータ(4)を経て圧縮機(1)に吸入される。この時冷
媒は、第1の接続配管(6)が低圧、第2の接続配管
(7)が高圧のため必然的に第3の逆止弁(32)、第4
の逆止弁(33)へ流通する。
That is, as shown by the solid arrow in FIG. 5, the high-temperature and high-pressure refrigerant gas discharged from the compressor (1) radiates heat in the heat source unit side heat exchanger (3) and adheres to the heat source unit side heat exchanger. After cooling and condensing while melting the third check valve (3
2), the second connection pipe (7), the gas-liquid separation device (12), the second flow control device (13), and the fourth flow control device (17) in this order. ), And is sucked into the compressor (1) through the fourth check valve (33), the four-way switching valve (2) of the heat source unit (A), and the accumulator (4). At this time, since the first connection pipe (6) has a low pressure and the second connection pipe (7) has a high pressure, the third check valve (32) and the fourth
To the check valve (33).

また、この時、第1の分岐部の切り換え弁部(8)の
第1口の開閉弁(8a)及び第2口の開閉弁(8b)は共に
閉路されている。さらに、各室内機の第1の流量制御装
置(9)はすべて閉止されている。これらにより、各室
内側熱交換器(5)及び室内機側の第1の接続配管(6
b)、(6c)、(6d)には冷媒は流通しないため、室内
機蒸発温度の低下による室内の冷風感及び室内機の氷結
がない。また、室内機側の第1の接続配管(6b)、(6
c)、(6d)が冷媒により冷却されないので、除霜運転
から復帰後の暖房運転の立ち上がりが早い。
At this time, the first opening / closing valve (8a) and the second opening / closing valve (8b) of the switching valve portion (8) of the first branch are both closed. Further, the first flow control devices (9) of all the indoor units are all closed. Thus, each indoor heat exchanger (5) and the first connection pipe (6
Since the refrigerant does not flow through b), (6c) and (6d), there is no feeling of cool air in the room and no freezing of the indoor unit due to a decrease in the indoor unit evaporation temperature. Also, the first connection pipes (6b), (6
c) and (6d) are not cooled by the refrigerant, so that the heating operation starts quickly after returning from the defrost operation.

以下第6図、第7図を用いて説明する。 This will be described below with reference to FIGS. 6 and 7.

第6図は上記一実施例の除霜運転時の制御についての
構成図である。
FIG. 6 is a configuration diagram of the control during the defrosting operation of the embodiment.

除霜運転の開始制御は、圧縮機連続運転時間積算手段
(21)による圧縮機の連続運転時間信号と、配管温度検
出器(20)により検出した熱源機側熱交換器温度の信号
より配管温度連続低温時間積算手段(22)による所定温
度以下運転の連続時間信号より、除霜運転開始判定手段
(23)で除霜運転の開始を判定し、制御手段(26)にて
四方切換弁(2)、第1の流量制御装置(9)、第2の
流量制御装置(13)、第4の流量制御装置(17)、およ
び第1の分岐部の第1口の開閉弁(8a)、第2口の開閉
弁(8b)の開度または開閉を決定し制御することによっ
て実現される。
The start control of the defrosting operation is performed based on the continuous operation time signal of the compressor by the compressor continuous operation time integrating means (21) and the heat source side heat exchanger temperature signal detected by the pipe temperature detector (20). The defrosting operation start determining means (23) determines the start of the defrosting operation from the continuous time signal of the operation at a predetermined temperature or less by the continuous low temperature time integrating means (22), and the control means (26) controls the four-way switching valve (2). ), A first flow control device (9), a second flow control device (13), a fourth flow control device (17), and a first opening / closing valve (8a) of a first branch portion, This is realized by determining and controlling the opening or opening / closing of the two-way on-off valve (8b).

除霜運転の終了制御は、除霜運転開始判定手段(23)
にて除霜運転開始と判定され除霜運転開始後、除霜運転
時間積算手段(24)により積算された除霜運転時間信号
と、配管温度検出器(21)により検出した熱源機側熱交
換器温度の信号により、除霜運転終了判定手段(25)で
除霜運転の終了を判定し、制御手段(26)にて四方切換
弁(2)、第1の流量制御装置(9)、第2の流量制御
装置(13)、第4の流量制御装置(17)、および第1の
分岐部の第1口の開閉弁(8a)、第2口の開閉弁(8b)
の開度または開閉を決定し制御することによって実現さ
れる。
The defrosting operation end control includes a defrosting operation start determining means (23)
It is determined that the defrosting operation is started, and after the defrosting operation is started, the defrosting operation time signal integrated by the defrosting operation time integration means (24) and the heat source side heat exchange detected by the pipe temperature detector (21). The end of the defrosting operation is determined by the defrosting operation end determining means (25) based on the signal of the unit temperature, and the four-way switching valve (2), the first flow control device (9), and the Flow control device (13), fourth flow control device (17), first opening / closing valve (8a), second opening / closing valve (8b) of the first branch portion
It is realized by determining and controlling the opening degree or opening / closing of.

第7図は、上記一実施例の除霜運転時の制御について
のフローチャートである。
FIG. 7 is a flowchart of the control during the defrosting operation of the embodiment.

ステップ(27)及びステップ(28)にて圧縮機連続運
転時間と配管温度連続低温時間の判定を行い、共に所定
時間以上であった場合にステップ(29)以下の除霜運転
制御にはいる。ステップ(29)では、四方切換弁(2)
を熱源機側熱交換器を凝縮器とするように切り替える。
ステップ(29)では、第1の流量制御装置(9)を全閉
とする。ステップ(31)では、第2の流量制御装置(1
3)を全開とする。ステップ(41)では、第4の流量制
御装置(17)を全開とする。ステップ(42)では、第1
の分岐部の第1口の開閉弁(8a)、第2口の開閉弁(8
b)を共に閉とする。
In steps (27) and (28), the continuous compressor operation time and the continuous pipe temperature low temperature period are determined, and if both are equal to or longer than a predetermined time, the defrosting operation control in step (29) and subsequent steps is started. In step (29), the four-way switching valve (2)
Is switched so that the heat exchanger on the heat source unit side is a condenser.
In step (29), the first flow control device (9) is fully closed. In step (31), the second flow control device (1
3) is fully opened. In step (41), the fourth flow control device (17) is fully opened. In step (42), the first
The first opening / closing valve (8a) and the second opening / closing valve (8a)
b) is closed.

除霜運転に入った後は、ステップ(43)及びステップ
(44)にて除霜運転時間と配管温度の判定を行い、除霜
運転時間が所定時間以上続いた場合または配管温度が所
定温度以上になった場合にステップ(36)以下の除霜運
転終了制御にはいる。ステップ(36)では、四方切換弁
(2)を除霜運転前の状態に戻す。ステップ(37)で
は、第1の流量制御装置(9)を除霜運転前の状態に戻
す。ステップ(38)では、第2の流量制御装置(13)を
除霜運転前の状態に戻す。ステップ(39)では、第4の
流量制御装置(17)を除霜運転前の状態に戻す。ステッ
プ(45)では、第1の分岐部の第1口の開閉弁(8a)、
第2口の開閉弁(8b)をそれぞれ除霜運転前の状態に戻
す。
After the defrosting operation is started, the defrosting operation time and the pipe temperature are determined in steps (43) and (44). If the defrosting operation time has continued for a predetermined time or longer, or the pipe temperature has exceeded the predetermined temperature. When it becomes, the control enters the defrosting operation end control of step (36) and subsequent steps. In step (36), the four-way switching valve (2) is returned to the state before the defrosting operation. In step (37), the first flow control device (9) is returned to the state before the defrosting operation. In step (38), the second flow control device (13) is returned to the state before the defrosting operation. In step (39), the fourth flow control device (17) is returned to the state before the defrosting operation. In the step (45), the on-off valve (8a) of the first port of the first branch portion,
The second opening / closing valve (8b) is returned to the state before the defrosting operation.

〔発明の効果〕〔The invention's effect〕

以上説明した通り、この発明の空気調和装置は、圧縮
機、四方切換弁、熱源機側熱交換器、アキュムレータ、
等よりなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置等からなる複数台の室内機とを、第1、第2
の接続配管を介して接続し、上記複数台の室内機の上記
室内側熱交換器の一方を上記第1の接続配管または、第
2の接続配管に切り換え可能に接続してなる第1の分岐
部と、上記複数台の室内機の上記室内側熱交換器の他方
に、上記第1の流量制御装置を介して接続され、かつ第
2の流量制御装置を介して上記第2の接続配管に接続し
てなる第2の分岐部とを、上記第2の流量制御装置を介
して接続し、更に上記第2の分岐部と上記第1の接続配
管を第4の流量制御装置を介して接続し、上記第1の分
岐部、第2の流量制御装置、第4の流量制御装置及び第
2の分岐部を内蔵させた中継器を、上記熱源機と上記複
数台の室内機との間に介在させると共に、上記第1の接
続配管は上記第2の接続配管より大径に構成し、上記熱
源機の上記第1及び第2の接続配管間に切り換え弁を設
け、上記第1の接続配管を低圧に、第2の接続配管を高
圧に切り換え可能にしたものである。
As described above, the air conditioner of the present invention includes a compressor, a four-way switching valve, a heat source device side heat exchanger, an accumulator,
And a plurality of indoor units including an indoor heat exchanger, a first flow control device, and the like.
And a first branch in which one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe. And the other of the indoor-side heat exchangers of the plurality of indoor units are connected to the second connection pipe via the first flow control device, and to the second connection pipe via the second flow control device. The connected second branch is connected via the second flow control device, and the second branch and the first connection pipe are connected via a fourth flow control device. And, a repeater incorporating the first branch, the second flow controller, the fourth flow controller and the second branch is disposed between the heat source unit and the plurality of indoor units. The first connection pipe is configured to have a larger diameter than the second connection pipe while being interposed, and the first and second connection pipes of the heat source device are configured to have a larger diameter. The switching valve is provided between the second connection pipe, the low pressure the first connection pipe, in which the switchable second connecting pipe to the high pressure.

そして、除霜時には、上記四方切換弁を切り換えると
共に、上記第1の分岐部を閉とし、上記第1の流量制御
装置を閉とし、上記第2及び第4の流量制御装置を開と
することにより、室内機蒸発温度の低下による室内の冷
風感及び室内機の氷結がなく、除霜運転を行うことがで
きる。
When defrosting, the four-way switching valve is switched, the first branch is closed, the first flow control device is closed, and the second and fourth flow control devices are opened. Accordingly, the defrosting operation can be performed without a feeling of cool air in the room due to a decrease in the evaporation temperature of the indoor unit and freezing of the indoor unit.

また、室内機側の第1の接続配管が冷媒により冷却さ
れないので、除霜運転から復帰後の暖房運転の立ち上が
りが早い。
In addition, since the first connection pipe on the indoor unit side is not cooled by the refrigerant, the heating operation starts quickly after returning from the defrosting operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例の空気調和装置の冷媒を中
心とする全体構成図である。また、第2図、第3図、第
4図は第1図の一実施例における冷暖房運転時の動作状
態を示したもので、第2図は冷房または暖房のみの運転
状態図、第3図及び第4図は冷暖房同時運転の動作を示
す図で、第3図は暖房主体(暖房運転容量が冷房運転容
量より大きい場合)を、第4図は冷房主体(冷房運転容
量が暖房運転容量より大きい場合)を示す運転動作状態
図である。そして、第5図は第1図の一実施例における
除霜運転時の動作状態図である。さらに、第6図は第1
図の一実施例における除霜運転に対する制御の構成図、
第7図はその制御フローチャートである。 図において、(A)は熱源機、(B)、(C)、(D)
は同じ構成となっている室内機、(E)は中継機、
(1)は圧縮機、(2)は四方切換弁、(3)は熱源機
側熱交換器、(4)はアキュムレータ、(5)は室内側
熱交換器、(6)は第1の接続配管、(6b)、(6c)、
(6d)は室内機側の第2の接続配管、(7b)、(7c)、
(7d)は室内機側の第2の接続配管、(8)は第1の分
岐部の切り換え弁部、(8a)は第1口の開閉弁、(8b)
は第2口の開閉弁、(9)は第1の流量制御装置、(1
0)は第1の分岐部、(11)は第2の分岐部、(12)は
気液分離装置、(13)は第2の流量制御装置、(14)は
バイパス配管、(15)は第3の流量制御装置、(16
a)、(16b)、(16c)、(16d)は第2及び第3の熱交
換部、(19)は第1の熱交換部、(17)は第4の流量制
御装置、(32)は第3の逆止弁、(33)は第4の逆止
弁、(34)は第5の逆止弁、(35)は第6の逆止弁、
(40)は熱源機側切り換え弁である。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is an overall configuration diagram mainly showing a refrigerant of an air conditioner of one embodiment of the present invention. FIGS. 2, 3, and 4 show operating states during the cooling / heating operation in the embodiment of FIG. 1. FIG. 2 is an operating state diagram of only cooling or heating, and FIG. And FIG. 4 is a diagram showing an operation of simultaneous cooling and heating operation. FIG. 3 shows a heating main body (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 4 shows a cooling main body (the cooling operation capacity is larger than the heating operation capacity). FIG. 6 is a driving operation state diagram showing a case where the distance is large. FIG. 5 is an operation state diagram at the time of the defrosting operation in the embodiment of FIG. Further, FIG.
Configuration diagram of the control for the defrosting operation in one embodiment of FIG.
FIG. 7 is a control flowchart. In the figure, (A) is a heat source device, (B), (C), (D)
Is an indoor unit having the same configuration, (E) is a repeater,
(1) is a compressor, (2) is a four-way switching valve, (3) is a heat source side heat exchanger, (4) is an accumulator, (5) is an indoor side heat exchanger, and (6) is a first connection. Plumbing, (6b), (6c),
(6d) is the second connection pipe on the indoor unit side, (7b), (7c),
(7d) is the second connection pipe on the indoor unit side, (8) is the switching valve section of the first branch, (8a) is the opening / closing valve of the first port, (8b)
Is the second opening / closing valve, (9) is the first flow control device, (1)
0) is a first branch, (11) is a second branch, (12) is a gas-liquid separator, (13) is a second flow controller, (14) is a bypass pipe, and (15) is a bypass pipe. Third flow control device, (16
(a), (16b), (16c), (16d) are the second and third heat exchange units, (19) is the first heat exchange unit, (17) is the fourth flow control device, (32) Is a third check valve, (33) is a fourth check valve, (34) is a fifth check valve, (35) is a sixth check valve,
(40) is a heat source device side switching valve. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、四方切換弁、熱源側熱交換器、等
よりなる1台の熱源機と、室内側熱交換器、第1の流量
制御装置等からなる複数台の室内機と、蒸気熱源機と複
数台の室内機とを接続する第1、第2の接続配管と、上
記複数台の室内機の上記室内側熱交換器の一方を上記第
1の接続配管または、第2の接続配管に切り換え可能に
接続してなる第1の分岐部と、上記複数台の室内機の上
記室内側熱交換器の他方に、上記第1の流量制御装置を
介して接続され、かつ第2の流量制御装置を介して上記
第2の接続配管に、第4の流量制御装置を介して上記第
1の接続配管にそれぞれ接続してなる第2の分岐部と、
上記第1、第2の接続配管の熱源側に設けられ、上記第
1の接続配管が低圧と、第2の接続配管が高圧となるよ
う上記熱源機に切り換え接続する切り換え弁とを備えた
冷暖同時運転可能な空気調和機において、除霜時に、上
記四方切換弁を切り換えると共に、上記第1の分岐部及
び上記第1の流量制御装置を閉とし、上記第2及び第4
の流量制御装置を開とすることを特徴とする空気調和
機。
1. A single heat source unit comprising a compressor, a four-way switching valve, a heat source side heat exchanger, etc., and a plurality of indoor units comprising an indoor side heat exchanger, a first flow control device, etc. First and second connection pipes for connecting a steam heat source unit and a plurality of indoor units, and one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or the second connection pipe. A first branch portion switchably connected to a connection pipe and the other of the indoor side heat exchangers of the plurality of indoor units connected via the first flow control device; A second branch connected to the first connection pipe via a fourth flow control apparatus, and a second branch portion connected to the second connection pipe via a flow control apparatus.
A cooling / heating device provided on the heat source side of the first and second connection pipes, and provided with a switching valve for switching and connecting to the heat source device so that the first connection pipe has a low pressure and the second connection pipe has a high pressure. In the air conditioner capable of operating simultaneously, the four-way switching valve is switched at the time of defrosting, the first branch portion and the first flow control device are closed, and the second and fourth flow control devices are closed.
An air conditioner characterized by opening a flow control device.
【請求項2】第1の接続配管は第2の接続配管より大径
に構成したことを特徴とする請求項1記載の空気調和
機。
2. The air conditioner according to claim 1, wherein the first connection pipe has a larger diameter than the second connection pipe.
JP2107913A 1990-04-23 1990-04-23 Air conditioner Expired - Lifetime JP2598550B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2107913A JP2598550B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU74381/91A AU636215B2 (en) 1990-04-23 1991-04-15 Air conditioning apparatus
ES199191303443T ES2046853T3 (en) 1990-04-23 1991-04-17 AIR CONDITIONER.
EP91303443A EP0453271B1 (en) 1990-04-23 1991-04-17 Air conditioning apparatus
DE91303443T DE69100424T2 (en) 1990-04-23 1991-04-17 Air conditioner.
US07/687,434 US5156014A (en) 1990-04-23 1991-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107913A JP2598550B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046370A JPH046370A (en) 1992-01-10
JP2598550B2 true JP2598550B2 (en) 1997-04-09

Family

ID=14471232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107913A Expired - Lifetime JP2598550B2 (en) 1990-04-23 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2598550B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112818A (en) * 2008-10-29 2011-06-29 三菱电机株式会社 Air conditioner
JP7305081B1 (en) 2022-10-14 2023-07-07 三菱電機株式会社 air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5473581B2 (en) * 2009-12-15 2014-04-16 三菱電機株式会社 Air conditioner
EP2792968B1 (en) * 2011-12-16 2020-04-15 Mitsubishi Electric Corporation Air conditioning device
CN110186153A (en) * 2019-07-11 2019-08-30 芜湖美智空调设备有限公司 Air conditioner and its progress control method, operating control device and computer readable storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112818A (en) * 2008-10-29 2011-06-29 三菱电机株式会社 Air conditioner
CN102112818B (en) * 2008-10-29 2013-09-04 三菱电机株式会社 Air conditioner
JP5312471B2 (en) * 2008-10-29 2013-10-09 三菱電機株式会社 Air conditioner
US8752397B2 (en) 2008-10-29 2014-06-17 Mitsubishi Electric Corporation Air-conditioning apparatus
US9115931B2 (en) 2008-10-29 2015-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP7305081B1 (en) 2022-10-14 2023-07-07 三菱電機株式会社 air conditioner
WO2024079874A1 (en) * 2022-10-14 2024-04-18 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH046370A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
JPH0743187B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH086980B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JP2508310B2 (en) Air conditioner and air conditioner control method
JPH07104075B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14