JPH086980B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH086980B2
JPH086980B2 JP1014816A JP1481689A JPH086980B2 JP H086980 B2 JPH086980 B2 JP H086980B2 JP 1014816 A JP1014816 A JP 1014816A JP 1481689 A JP1481689 A JP 1481689A JP H086980 B2 JPH086980 B2 JP H086980B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
pipe
indoor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1014816A
Other languages
Japanese (ja)
Other versions
JPH02195161A (en
Inventor
嘉裕 隅田
直樹 田中
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1014816A priority Critical patent/JPH086980B2/en
Priority to KR1019890011915A priority patent/KR920008504B1/en
Priority to US07/417,207 priority patent/US4987747A/en
Priority to AU42562/89A priority patent/AU615347B2/en
Priority to EP89118584A priority patent/EP0364834B1/en
Priority to ES89118584T priority patent/ES2051338T3/en
Publication of JPH02195161A publication Critical patent/JPH02195161A/en
Publication of JPH086980B2 publication Critical patent/JPH086980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明室外機に対して複数台の室内機を接続する多
室形の空気調和装置に関するもので,特に,各室内機毎
に冷暖房を選択的に,または,同時に行なうことができ
る空気調和装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a multi-room air conditioner in which a plurality of indoor units are connected to an outdoor unit, and in particular, air conditioning is selected for each indoor unit. The present invention relates to an air conditioner that can be performed simultaneously or simultaneously.

〔従来の技術〕[Conventional technology]

従来,この種の空気調和装置として,例えば,実開昭
47−22558号公報に掲載されたものがある。
Conventionally, as an air conditioner of this type, for example,
Some are published in the 47-22558 publication.

第7図は上記公報に掲載された従来の空気調和装置の
冷媒系を中心とする全体構成図である。
FIG. 7 is an overall configuration diagram centering on the refrigerant system of the conventional air conditioner disclosed in the above publication.

図において,(1)は空気調和装置の室外機で,
(2)は圧縮機,(3)は四方弁,(4)は室外熱交換
機,(5)は逆止弁,(6)は膨張弁,(7)は受液
器,(8)はアキユムレータで,これらは前記室外機
(1)を構成する。また,(9a)〜(9c)は前記室外機
(1)に接続された各々室内機で、(10)は室内熱交換
器,(11)は逆止弁,(12)は膨張弁で,これらは前記
室内機(9a)〜(9c)を構成する。そして,(13)及び
(14)は室内機(9a)〜(9c)と室外機(1)とを接続
する第1及び第2の接続配管である。実線矢印は暖房運
転の場合の冷媒の流れを,破線矢印は冷房運転の場合の
冷媒の流れを表わす。
In the figure, (1) is the outdoor unit of the air conditioner,
(2) is a compressor, (3) is a four-way valve, (4) is an outdoor heat exchanger, (5) is a check valve, (6) is an expansion valve, (7) is a receiver, and (8) is an accumulator. Then, these constitute the outdoor unit (1). Further, (9a) to (9c) are indoor units connected to the outdoor unit (1), (10) is an indoor heat exchanger, (11) is a check valve, and (12) is an expansion valve. These constitute the indoor units (9a) to (9c). And, (13) and (14) are first and second connection pipes for connecting the indoor units (9a) to (9c) and the outdoor unit (1). The solid arrows indicate the refrigerant flow in the heating operation, and the dashed arrows indicate the refrigerant flow in the cooling operation.

上記のように構成された従来の空気調和装置は次のよ
うに動作する。
The conventional air conditioner configured as described above operates as follows.

まず,暖房運転状態において,圧縮機(2)から吐出
された高温高圧冷媒ガスは第1の接続配管(13)から各
室内機(9a)〜(9c)に流入し,室内熱交換器(10)で
室内空気と熱交換(暖房)されて凝縮液化する。各室内
機(9a)〜(9c)で液化された冷媒液は,逆止弁(11)
を通つて第2の接続配管(14)で合流し,さらに,受液
器(7)を通つて膨張弁(6)に流入し,ここで低温の
気液二相状態まで減圧され,室外熱交換器(4)に流入
する。室外熱交換器(4)に流入した冷媒は外気と熱交
換されることによつて蒸発し,ガス状態となつて再び圧
縮機(2)に吸入される循環サイクルを形成する。
First, in the heating operation state, the high-temperature high-pressure refrigerant gas discharged from the compressor (2) flows into the indoor units (9a) to (9c) through the first connecting pipe (13) and the indoor heat exchanger (10 ) Heat-exchanges with indoor air (heating) and condenses into liquid. Refrigerant liquid liquefied in each indoor unit (9a)-(9c), check valve (11)
Through the second connection pipe (14), and then through the liquid receiver (7) into the expansion valve (6), where it is decompressed to a low-temperature gas-liquid two-phase state and the outdoor heat It flows into the exchanger (4). The refrigerant flowing into the outdoor heat exchanger (4) evaporates by exchanging heat with the outside air, becomes a gas state, and is again sucked into the compressor (2) to form a circulation cycle.

一方,冷房運転状態においては,暖房運転と反対の循
環サイクルとなる。即ち,圧縮機(2)で高温高圧ガス
となつた冷媒は,室外熱交換器(4)で外気によつて熱
交換(冷却)され,凝縮液化して,受液器(7)を通り
接続配管(14)から各案内機(9a)〜(9c)に流入す
る。そして,各室内機(9a)〜(9c)に流入した冷媒液
は,膨張弁(12)によつて低温の気液二相状態まで減圧
され,室内熱交換器(10)で室内空気と熱交換(冷房)
されてガス状態となり,接続配管(13)で合流して再び
圧縮機(2)に吸入される。
On the other hand, in the cooling operation state, the circulation cycle is the opposite of the heating operation. That is, the refrigerant that has become high-temperature high-pressure gas in the compressor (2) is heat-exchanged (cooled) by the outside air in the outdoor heat exchanger (4), condensed and liquefied, and connected through the liquid receiver (7). Flows from the pipe (14) into the guide machines (9a) to (9c). The refrigerant liquid that has flowed into each of the indoor units (9a) to (9c) is decompressed by the expansion valve (12) to a low-temperature gas-liquid two-phase state, and is heated by the indoor heat exchanger (10) with the indoor air and heat. Exchange (cooling)
The gas is turned into a gas state, merges in the connecting pipe (13), and is sucked into the compressor (2) again.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の多室形の空気調和装置は,上記のように構成さ
れているので,全ての室内機(9a)〜(9c)が暖房運転
または冷房運転を行なう必要があるから,冷房が必要な
場所で暖房が行なわれたり,暖房が必要な場所で冷房が
行なわれる可能性があつた。
Since the conventional multi-room type air conditioner is configured as described above, all the indoor units (9a) to (9c) need to perform heating operation or cooling operation, so a place where cooling is required There is a possibility that heating will be performed in the area, and that cooling will be performed where heating is required.

特に,この種の多室形の空気調和装置を大規模なビル
に据付けた場合,インテリア部とペリメータ部,または
一般事務室とコンピユータルーム等のOA化された部屋で
は,空調負荷が著しく異なるために,このように事態が
予測される。また,テナントビル等のような場合では,
使用者が変わるたびに熱負荷が変わることから,予め,
全てを冷房ゾーン,暖房ゾーン等にゾーニング分けする
ことは不可能である。また,これに対応するために冷房
室内機と暖房室内機の2台を同一室に設置することは設
備費が高価となり実用的ではなかつた。
In particular, when this kind of multi-room air conditioner is installed in a large-scale building, the air-conditioning load is remarkably different between the interior section and perimeter section, or the office room such as the general office and computer room. In this way, the situation is predicted. Also, in the case of a tenant building, etc.,
Since the heat load changes each time the user changes,
It is impossible to divide everything into a cooling zone and a heating zone. In order to cope with this, it is not practical to install two units, a cooling indoor unit and a heating indoor unit, in the same room because of high equipment cost.

そこで,この発明は室外機に複数台の室内機を接続し
ても,室内機が設置された空間の冷暖房要求に対応し
て、室内機毎に冷暖房運転を選択的にまたは同時にでき
る空気調和装置の提供を目的とするものである。
Therefore, the present invention is an air conditioner that can selectively or simultaneously perform cooling / heating operation for each indoor unit in response to a cooling / heating requirement of a space in which the indoor unit is installed, even if a plurality of indoor units are connected to the outdoor unit. The purpose is to provide.

〔課題を解決するための手段〕[Means for solving the problem]

この発明の空気調和装置は,複数台の室内機の一方を
室外機と接続する第1または第2の接続配管に切替可能
に接続し,上記室外機の室外熱交換器に接続する第1の
接続配管の途中に気液分離器と,上記複数台の室内機の
他方と上記気液分離器とを流量制御器を介して接続する
第3の接続配管と,上記気液分離器と第2の接続配管を
接続し,途中に管路開閉器,及び第3の接続配管との間
で熱交換を行う熱交換部を配設したバイパス配管と,並
びに上記複数台の各室内機の運転モードにより上記管路
開閉器の開閉を制御する制御器とを設けたものである。
In the air conditioner of the present invention, one of the plurality of indoor units is switchably connected to the first or second connection pipe connecting to the outdoor unit, and the first heat exchanger is connected to the outdoor heat exchanger of the outdoor unit. A gas-liquid separator in the middle of the connection pipe, a third connection pipe connecting the other of the plurality of indoor units and the gas-liquid separator via a flow controller, the gas-liquid separator and the second Of the indoor switch of the above plurality of indoor units, and the bypass pipe connecting the connecting pipes of the above, a pipe switch and a heat exchange section for exchanging heat with the third connecting pipe And a controller for controlling the opening and closing of the pipeline switch.

また、室内機に第1の制御制御器を設けた空気調和装
置においては、第3の接続配管は上記複数台の室内機の
他方の第1の流量制御器と気液分離器とを接続し、途中
に第2の流量制御器を配設しており、制御器で各室内機
の運転モードと第1、第2の流量制御器間における接続
配管の冷媒状態により第2の流量制御器の開度を調節す
るとともに上記管路開閉器の開閉を制御するように構成
している。
Further, in the air conditioner in which the first control controller is provided in the indoor unit, the third connection pipe connects the other first flow rate controller of the plurality of indoor units to the gas-liquid separator. , A second flow rate controller is disposed in the middle of the second flow rate controller depending on the operation mode of each indoor unit and the refrigerant state of the connecting pipe between the first and second flow rate controllers. The opening degree is adjusted and the opening / closing of the pipeline switch is controlled.

〔作用〕[Action]

冷暖同時運転における冷房主体運転の場合、あるいは
冷房運転のみの場合は、管路開閉器を開路し、バイパス
配管に液冷媒を供給して熱交換部を機能させ、第3の接
続配管から冷房運転状態にある室内機に供給する冷媒を
冷却する。冷暖同時運転における暖房主体運転あるいは
暖房運転の場合は、道路開閉器を閉路することにより、
高温ガス冷媒がバイパス配管を経由して室内機を側路す
るのを防止する。
In the case of the cooling main operation in the cooling / heating simultaneous operation, or in the case of only the cooling operation, the conduit switch is opened, the liquid refrigerant is supplied to the bypass pipe to cause the heat exchange part to function, and the cooling operation is performed from the third connection pipe. The refrigerant supplied to the indoor unit in the state is cooled. In the case of heating-main operation or heating operation in simultaneous cooling and heating operation, by closing the road switch,
Prevent the hot gas refrigerant from bypassing the indoor unit via the bypass pipe.

冷暖同時運転における暖房主体の場合は,制御器に
は,第1の流量制御器から第2の流量制御器にかけての
第3の接続配管の冷媒状態が入力され,この入力された
冷媒状態が所定範囲の値となるように第2の流量制御器
の開度を調節する。さらに,この暖房主体の場合は,管
路開閉器を全閉とするよう制御する。
In the case of mainly heating in the cooling / heating simultaneous operation, the refrigerant state of the third connection pipe from the first flow rate controller to the second flow rate controller is input to the controller, and the input refrigerant state is predetermined. The opening degree of the second flow rate controller is adjusted so that the value is within the range. Furthermore, in the case of mainly heating, the pipe line switch is controlled to be fully closed.

冷房主体の冷暖房同時運転の場合は,制御器には,第
1の流量制御器から第2の流量制御器にかけての第3の
接続配管の冷媒状態が入力され,この入力された冷媒状
態が所定範囲の値となるように第2の流量制御器の開度
を調整する。さらにこの冷房主体の場合は,管路開閉器
を全開とするよう制御する。
In the case of simultaneous cooling and heating operation mainly by cooling, the refrigerant state of the third connection pipe from the first flow rate controller to the second flow rate controller is input to the controller, and the input refrigerant state is predetermined. The opening degree of the second flow rate controller is adjusted so that the value is within the range. Furthermore, in the case of mainly cooling, the line switch is controlled to be fully opened.

暖房運転のみの場合,制御器は,第2の流量制御器を
全開とし,管路開閉器を全閉とするよう制御する。
In the case of only the heating operation, the controller controls so that the second flow rate controller is fully opened and the pipeline switch is fully closed.

また,冷房運転のみの場合は制御器は,第2の流量制
御器を全開とし,管路開閉器を全開とするよう制御す
る。
In the case of only the cooling operation, the controller controls the second flow rate controller to be fully opened and the pipeline switch to be fully opened.

〔実施例〕〔Example〕

以下,この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図はこの発明の一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。また,第2図ないし第
4図は第1図を実施例における冷暖房運転時の動作状態
を示したもので,第2図は冷房または暖房のみの運転動
作状態を示す冷媒循環図,第3図及び第4図は各々冷暖
房同時運転の動作を示すもので,第3図は暖房主体(暖
房運転容量が冷房運転容量より大きい場合)の,第4図
は冷房主体(冷房運転容量が暖房運転容量より大きい場
合)の運転動作状態を示す冷媒循環図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. Further, FIGS. 2 to 4 show the operation state of FIG. 1 during the cooling and heating operation in the embodiment, and FIG. 2 is a refrigerant circulation diagram showing the operation operation state of only cooling or heating, and FIG. Fig. 4 and Fig. 4 show the operation of the cooling and heating simultaneous operation, respectively. Fig. 3 is mainly for heating (when the heating operation capacity is larger than the cooling operation capacity), and Fig. 4 is for cooling mainly (the cooling operation capacity is the heating operation capacity). It is a refrigerant circulation diagram showing a driving operation state of (when larger than).

また第5図は制御器の制御フローを示すフローチャー
トである。そして,第6図はこの発明の他の実施例の空
気調和装置の冷媒系を中心とする全体構成図である。図
中,従来例と同一符号及び同一記号は従来例と同一また
は相当部分を示すものであるので,ここでは重複する説
明を省略する。
FIG. 5 is a flowchart showing the control flow of the controller. FIG. 6 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention. In the figure, the same reference numerals and symbols as those of the conventional example indicate the same or corresponding portions as those of the conventional example, and therefore, duplicated description will be omitted here.

なお,この実施例についても,従来例と同様に,室外
機1台に室内機3台を接続した場合について説明する
が,4台以上の室内機を接続する場合も基本的に同様であ
る。また,空気調和装置の室外機(1)は,圧縮機
(2),四方弁(3),室外熱交換器(4),アキュム
レータ(8)等で構成されている。
Also in this embodiment, similar to the conventional example, a case where one outdoor unit and three indoor units are connected will be described, but basically the same applies when four or more indoor units are connected. The outdoor unit (1) of the air conditioner is composed of a compressor (2), a four-way valve (3), an outdoor heat exchanger (4), an accumulator (8) and the like.

図において,(19)は室外熱交換器(4)に接続する
第1の接続配管(13)の途中に設けた気液分離器であ
り,冷媒を気体と液体とに分離する機能を有する。(2
0)は室内熱交換器(10)の一方を第1の接続配管(1
3)と第2接続配管(14)とに切替可能に接続する三方
切替弁,(21)は室内熱交換器(10)の他方に接続され
た第1の流量制御器である第1の電気式膨張弁である。
この三方切替弁(20),室内熱交換器(10),及び第1
の電気式膨張弁(21)で各室内機(9a)〜(9c)が構成
されている。また,(22)は各室内機(9a)〜(9c)の
第1の電気式膨張弁(21)側と第1の接続配管(13)の
気液分離器(19)の下部とを接続する第3の接続配管,
(23)は第3の接続配管(22)に設けた第2の流量制御
器である電気式膨張弁である。(24)は管路開閉器とし
て機能する電磁弁,(25)は第3の流量制御器として機
能する毛細管,(26)は第3の接続配管(22)の気液分
離器(19)と第2の電気式膨張弁(23)との間で熱交換
を行なう熱交換部,この場合は二重管式熱交換器,(2
7)は気液分離器(19)の高さ方向のほぼ中央部から分
岐し第2の接続配管(14)に接続するバイパス配管であ
る。このバイパス配管(27)の途中に上記の電磁弁(2
4)と毛細管(25)と熱交換部(26)が設けてある。
In the figure, (19) is a gas-liquid separator provided in the middle of the first connection pipe (13) connected to the outdoor heat exchanger (4) and has a function of separating the refrigerant into a gas and a liquid. (2
0) is one of the indoor heat exchanger (10) and the first connecting pipe (1
A three-way switching valve that is switchably connected to 3) and the second connection pipe (14), and (21) is a first flow rate controller that is connected to the other of the indoor heat exchanger (10) Type expansion valve.
The three-way switching valve (20), the indoor heat exchanger (10), and the first
The indoor units (9a) to (9c) are configured by the electric expansion valve (21). Further, (22) connects the first electric expansion valve (21) side of each indoor unit (9a) to (9c) and the lower part of the gas-liquid separator (19) of the first connecting pipe (13). Third connecting pipe to
(23) is an electric expansion valve that is a second flow rate controller provided in the third connection pipe (22). (24) is a solenoid valve that functions as a line switch, (25) is a capillary tube that functions as a third flow rate controller, (26) is a gas-liquid separator (19) of the third connecting pipe (22). A heat exchange section for exchanging heat with the second electric expansion valve (23), in this case a double pipe heat exchanger, (2
Reference numeral 7) is a bypass pipe that branches from a substantially central portion in the height direction of the gas-liquid separator (19) and is connected to the second connection pipe (14). In the middle of this bypass pipe (27), the solenoid valve (2
4), a capillary tube (25) and a heat exchange section (26) are provided.

(30a)〜(30c)はそれぞれ各室内機(9a)〜(9c)
の運転モード信号を制御器(33)へ出力する室内機運転
制御器である。また(31),(32)は第3の接続配管
(22)の第1の電気式膨張弁(21)から第2の電気式膨
張弁(23)にかけての配管に設けられたサーミスタ等か
らなる温度センサと電気式圧力変換器等の圧力センサで
ある。制御器(33)は,室内機運転制御器(30a)〜(3
0c)と温度センサ(31)および圧力センサ(32)からの
信号が入力され,第2の電気式膨張弁(23)に弁開度を
調節する信号を出力するとともに電磁弁(24)にその開
閉を指示する信号を出力する。
(30a) ~ (30c) are each indoor unit (9a) ~ (9c)
Is an indoor unit operation controller that outputs the operation mode signal of 1. to the controller (33). Further, (31) and (32) are composed of a thermistor or the like provided in the pipe of the third connecting pipe (22) from the first electric expansion valve (21) to the second electric expansion valve (23). A pressure sensor such as a temperature sensor and an electric pressure transducer. The controller (33) includes indoor unit operation controllers (30a) to (3
0c), a signal from the temperature sensor (31) and a signal from the pressure sensor (32) are input, a signal for adjusting the valve opening is output to the second electric expansion valve (23), and the electromagnetic valve (24) outputs the signal. It outputs a signal that instructs opening and closing.

また,第5図中のXV2は第2の電気式膨張弁(23)の
現在の開度指令値,XV2 は新しい開度指令値であり,Δ
XV2はこの変化量を示している。SCは第3の接続配管(2
2)の温度センサ(31)と圧力センサ(32)が設けられ
た部分の冷媒過冷却度を示し,SCHはこの制御目標過冷却
度の上限値,SCLは下限値を示している。
Further, X V2 in FIG. 5 is the current opening command value of the second electric expansion valve (23), X V2 * is the new opening command value, and Δ V2
X V2 shows this amount of change. SC is the third connecting pipe (2
2) shows the degree of refrigerant supercooling in the part where the temperature sensor (31) and pressure sensor (32) are provided, SC H is the upper limit value of this control target supercooling degree, and SC L is the lower limit value.

このように構成されたこの発明の実施例の空気調和装
置の動作について説明する。
The operation of the air conditioner of the embodiment of the present invention thus configured will be described.

まず,第2図を用いて暖房運転のみの場合について説
明する。
First, the case of only the heating operation will be described with reference to FIG.

圧縮機(2)より吐出された高温高圧冷媒ガスは,第
2の接続配管(14)により室外から室内側に導かれ,各
室内機(9a)〜(9c)の各々の三方切換弁(20)を介し
て室内熱交換器(10)に流入し,熱交換(暖房)した冷
媒は凝縮液化される。このとき各室内機(9a)〜(9c)
へ流入する冷媒流量は,第1の電気式膨張弁(21)によ
り室内熱交換器(10)の出口の冷媒状態が若干過冷却し
た液となるように制御される。この液状態となつた冷媒
はこの第1の電気式膨張弁(21)により低圧まで減圧さ
れた後に第3の接続配管(22)に流入して合流する。
The high-temperature high-pressure refrigerant gas discharged from the compressor (2) is guided from the outdoor to the indoor side by the second connecting pipe (14), and the three-way switching valve (20) of each indoor unit (9a) to (9c). ), Flows into the indoor heat exchanger (10), and the heat-exchanged (heating) refrigerant is condensed and liquefied. At this time, each indoor unit (9a) ~ (9c)
The flow rate of the refrigerant flowing in is controlled by the first electric expansion valve (21) so that the refrigerant state at the outlet of the indoor heat exchanger (10) becomes a slightly supercooled liquid. The refrigerant in the liquid state is decompressed to a low pressure by the first electric expansion valve (21) and then flows into the third connecting pipe (22) and joins.

制御器(33)は,各室内機運転モード信号を室内機運
転制御器(30a)〜(30c)より取り込み,すべての案内
機(9a)〜(9c)が暖房運転であることを検知すると,
第5図の制御フローチヤートに示すように暖房運転モー
ドでは,電磁弁(24)を全閉にし,さらに第2の電気式
膨張弁(23)を全開にする。したがつて,室内熱交換器
(10)で凝縮液化した冷媒は,第2の電気式膨張弁(2
3)を通り,第1の接続配管(13)を経て,室外機
(1)の室外熱交換器(4)に流入し,そこで熱交換し
てガス状態となつて再び圧縮機(2)に吸入される。こ
のようにして循環サイクルを構成し,暖房運転を行な
う。
When the controller (33) takes in each indoor unit operation mode signal from the indoor unit operation controllers (30a) to (30c) and detects that all the guide units (9a) to (9c) are in heating operation,
As shown in the control flow chart of FIG. 5, in the heating operation mode, the solenoid valve (24) is fully closed and the second electric expansion valve (23) is fully opened. Therefore, the refrigerant condensed and liquefied in the indoor heat exchanger (10) becomes the second electric expansion valve (2
After passing through 3), passing through the first connecting pipe (13), it flows into the outdoor heat exchanger (4) of the outdoor unit (1), exchanges heat there, becomes a gas state, and returns to the compressor (2) again. Inhaled. In this way, the circulation cycle is configured and heating operation is performed.

つぎに,同じく第2図を用いて冷房運転のみの場合に
ついて説明する。
Next, the case of only the cooling operation will be described with reference to FIG.

圧縮機(2)より吐出された高温高圧冷媒ガスは,室
外熱交換器(4)で熱交換され凝縮液化された後,第1
の接続配管(13)から気液分離器(19)を介して、第3
の接続配管(22)に流れ,第2の電気式膨張弁(23)を
経て,各室内機(9a)〜(9c)に流入する。このとき制
御機(33)は室内機運転モード信号を室内機運転制御器
(30a)〜(30c)より取り込み,すべての室内機(9a)
〜(9c)が冷房運転である冷房運転モードであることを
検知すると,第5図の制御フローチヤートに示すように
第2の電気式膨張弁(23)を全開にしている。
The high-temperature high-pressure refrigerant gas discharged from the compressor (2) is heat-exchanged in the outdoor heat exchanger (4) to be condensed and liquefied, and then the first
From the connecting pipe (13) of the third through the gas-liquid separator (19)
Through the second electric expansion valve (23) and then into the indoor units (9a) to (9c). At this time, the controller (33) takes in the indoor unit operation mode signal from the indoor unit operation controllers (30a) to (30c), and all indoor units (9a)
When (9c) is detected to be in the cooling operation mode which is the cooling operation, the second electric expansion valve (23) is fully opened as shown in the control flow chart of FIG.

各室内機(9a)〜(9c)に流入した冷媒は第1の電気
式膨張弁(21)により低圧まで減圧され室内熱交換器
(10)に流入し,室内空気と熱交換(冷房)して蒸発し
ガス化される。そして,このガス状態となつた冷媒は三
方切換弁(20)を介して,第2の接続配管(14)を経て
再び圧縮機(2)に吸入される循環サイクルを構成し,
冷房運転を行なう。
The refrigerant flowing into each indoor unit (9a) to (9c) is decompressed to a low pressure by the first electric expansion valve (21), flows into the indoor heat exchanger (10), and exchanges heat (cools) with the indoor air. Are evaporated and gasified. Then, the refrigerant in the gas state constitutes a circulation cycle in which the refrigerant is sucked into the compressor (2) again via the three-way switching valve (20), the second connecting pipe (14),
Perform cooling operation.

またこのとき,制御器(33)は第5図のフローチヤー
トに示すように電磁弁(24)を全開にしているので,気
液分離器(19)を通過した冷媒液の一部は,バイパス配
管(27)に流入する。バイパス配管(27)に流入した冷
媒液は毛細管(25)により低圧まで減圧後に,第3の接
続配管(22)と熱交換部(26)で熱交換(第3の接続配
管(22)の冷媒を冷却)してガス化され第2の接続配管
(14)に流入する。また,第3の接続配管(22)に流入
した冷媒液は熱交換部(26)でバイパス配管(27)を流
れる冷媒により冷却され,若干過冷却された状態となつ
て第2の電気式膨張弁(23)を経て各室内機(9a)〜
(9c)に流入する。
At this time, the controller (33) fully opens the solenoid valve (24) as shown in the flow chart of FIG. 5, so that a part of the refrigerant liquid passing through the gas-liquid separator (19) is bypassed. It flows into the pipe (27). The refrigerant liquid that has flowed into the bypass pipe (27) is decompressed to a low pressure by the capillary pipe (25), and then heat-exchanged between the third connection pipe (22) and the heat exchange section (26) (refrigerant of the third connection pipe (22)). Is cooled) and gasified into the second connecting pipe (14). Further, the refrigerant liquid flowing into the third connecting pipe (22) is cooled by the refrigerant flowing through the bypass pipe (27) in the heat exchanging part (26) and is in a state of being slightly supercooled, resulting in the second electric expansion. Each indoor unit (9a) through valve (23)
Flow into (9c).

つぎに冷暖房同時運転における暖房主体運転の場合に
ついて第3図および第5図を用いて説明する。
Next, the case of heating-main operation in simultaneous cooling and heating operation will be described with reference to FIGS. 3 and 5.

まず,圧縮機(2)より吐出された冷媒は,第2の接
続配管(14)より各暖房室内機(9b),(9c)に三方切
替弁(20)を介して流入し,室内熱交換器(10)で熱交
換(暖房)し,冷媒を凝縮液化する。この場合,各室内
機(9b),(9c)への冷媒流量は室内熱交換器(10)出
口冷媒状態が若干過冷却した液となるよう第1の電気式
膨張弁(21)によつて制御される。そして,凝縮液化し
た冷媒は第1の電気式膨張弁(21)によつて若干圧力が
低下し中間圧となつて第3の接続配管(22)に流入す
る。この第3の接続配管(22)に流入した冷媒の一部は
冷房室内機(9a)に入り第1の電気式膨張式(21)によ
つてさらに低圧まで減圧された後に室内熱交換器(10)
に入り熱交換(冷房)し,蒸発して若干過熱したガス状
態となつて三方弁(20)を介して第1の接続配管(13)
に流入する。一方他の冷媒液は,第2の電気式膨張弁
(23)で低圧まで減圧された後に第3の接続配管(22)
から第1の接続配管(13)に流入し,冷房室内機(9a)
からの冷媒と合流して室外熱交換器(4)で熱交換しガ
ス状態となつて再び圧縮機(2)に吸入される循環サイ
クルを構成し暖房主体運転を行なう。
First, the refrigerant discharged from the compressor (2) flows into the heating indoor units (9b) and (9c) from the second connection pipe (14) through the three-way switching valve (20), and the indoor heat exchange is performed. Heat is exchanged (heating) in the vessel (10) to condense and liquefy the refrigerant. In this case, the flow rate of the refrigerant to each indoor unit (9b), (9c) is controlled by the first electric expansion valve (21) so that the refrigerant state at the outlet of the indoor heat exchanger (10) becomes a slightly supercooled liquid. Controlled. Then, the condensed and liquefied refrigerant is slightly reduced in pressure by the first electric expansion valve (21), becomes intermediate pressure, and flows into the third connection pipe (22). A part of the refrigerant flowing into the third connecting pipe (22) enters the cooling indoor unit (9a) and is further depressurized to a low pressure by the first electric expansion type (21), and then the indoor heat exchanger ( Ten)
The first connection pipe (13) is supplied through the three-way valve (20) after entering and exchanging heat (cooling) and evaporating to a slightly overheated gas state.
Flow into. On the other hand, the other refrigerant liquid is decompressed to a low pressure by the second electric expansion valve (23) and then the third connection pipe (22).
Flows into the first connecting pipe (13) from the cooling indoor unit (9a)
A cooling cycle is formed in which the refrigerant merges with the refrigerant from and is exchanged with the outdoor heat exchanger (4) to be in a gas state and is again sucked into the compressor (2) to perform a heating main operation.

この運転時の第2の電気式膨張弁(21)の動作につい
て第5図を用いて詳しく説明する。
The operation of the second electric expansion valve (21) during this operation will be described in detail with reference to FIG.

制御器(33)には室内機運転制御器(30a)〜(30c)
から各室内機運転モード信号と第3の接続配管(22)に
設けられた温度センサ(31)と圧力センサ(32)との信
号が入力される。この入力信号から冷暖房同時運転の暖
房主体モードであることを検知すると,電磁弁(24)を
全閉にするとともに温度センサ(31)と圧力センサ(3
2)の信号からこれらセンサの設けられた第3の接続配
管(22)を流れる冷媒液の過冷却度SCを演算する。そし
てさらにこのSCが制御過冷却度SCL〜SCHの範囲内にある
か否かを比較し,この範囲内にある場合は現在と第2の
電気式膨張弁(23)への弁開度指令値XV2をそのまま新
しい弁開度指令値XV2 として第2電気式膨張弁(23)
に出力する。
The indoor unit operation controllers (30a) to (30c) are included in the controller (33).
From the indoor unit operation mode signal and the signals of the temperature sensor (31) and the pressure sensor (32) provided in the third connecting pipe (22) are input. When it is detected from this input signal that it is in the heating main mode of simultaneous cooling and heating operation, the solenoid valve (24) is fully closed and the temperature sensor (31) and the pressure sensor (3
From the signal of 2), the supercooling degree SC of the refrigerant liquid flowing through the third connecting pipe (22) provided with these sensors is calculated. And further the SC compares whether within the control supercooling degree SC L to SC H, the valve opening degree to the current and the second electric expansion valve when within this range (23) The second electric expansion valve (23) with the command value X V2 as it is as the new valve opening command value X V2 *
Output to.

また,SCが制御過冷却度の上限値SCHより大きい場合は
現在の弁開度指令値XV2に弁開度変化量ΔXV2を加えた弁
開度を,またSCが制御過冷却度の下限値SCLより小さい
場合はXV2からΔXV2を差し引いた弁開度を新しい弁開度
指令値XV2 として第2の電気式膨張弁(23)に出力す
る。以上のようにして第2の電気式膨張弁(23)の開度
を調節し第3の接続配管(22)の温度センサ(31)と圧
力センサ(32)とが設けられた部分の冷媒液の過冷却度
を所定値の範囲内に保つ。尚,この制御過冷却度は,暖
房運転室内機(9b),(9c)に対応した第1の電気式膨
張弁(21)の制御過冷却度より若干小さめの値に設定さ
れる。
If SC is greater than the upper limit value SC H of the controlled supercooling degree, the valve opening degree obtained by adding the valve opening change amount ΔX V2 to the current valve opening command value X V2, and SC is the controlled supercooling degree If the lower limit value SC L smaller than outputs the new valve opening command value opening degree minus the [Delta] X V2 from X V2 X V2 * as a second electric expansion valve (23). The opening of the second electric expansion valve (23) is adjusted as described above, and the refrigerant liquid in the portion where the temperature sensor (31) and the pressure sensor (32) of the third connection pipe (22) are provided. Keep the degree of supercooling within a predetermined range. The controlled supercooling degree is set to a value slightly smaller than the controlled supercooling degree of the first electric expansion valve (21) corresponding to the heating operation indoor units (9b) and (9c).

さらに,冷暖房同時運転における冷房主体運転の場合
について第4図および第5図を用いて説明する。第4図
に示すように圧縮機(2)より吐出された冷媒は室外熱
交換器(4)に流入し,任意の量だけ熱交換して気液二
相の高温高圧状態となり,第1の接続配管(13)の気液
分離器(19)に流入する。そしてここで気体と液体に分
離された後,室内側に送られる。気液分離器(19)で分
離された気体状の冷媒ガスは暖房運転状態にある室内機
(9a)に三方切替弁(20)を介して導入され,室内熱交
換器(10)で熱交換(暖房)して凝縮液化され,第1の
電気式膨張弁(21)により中間圧まで減圧後に第3の接
続配管(22)に流入する。
Further, the case of the cooling main operation in the cooling / heating simultaneous operation will be described with reference to FIGS. 4 and 5. As shown in FIG. 4, the refrigerant discharged from the compressor (2) flows into the outdoor heat exchanger (4) and exchanges heat by an arbitrary amount to become a gas-liquid two-phase high-temperature high-pressure state. It flows into the gas-liquid separator (19) of the connection pipe (13). Then, after being separated into gas and liquid here, it is sent to the inside of the room. The gaseous refrigerant gas separated in the gas-liquid separator (19) is introduced into the indoor unit (9a) in the heating operation state via the three-way switching valve (20), and heat is exchanged in the indoor heat exchanger (10). It is heated (condensed) to be condensed and liquefied, and after being depressurized to an intermediate pressure by the first electric expansion valve (21), it flows into the third connection pipe (22).

この時,暖房室内機(9a)に流入する冷媒流量は室内
熱交換器(10)出口の冷媒状態が若干過冷却した液とな
るよう第1の電気式膨張弁(21)の弁開度を調節して制
御される。
At this time, the flow rate of the refrigerant flowing into the heating indoor unit (9a) is controlled so that the refrigerant state at the outlet of the indoor heat exchanger (10) becomes a liquid that is slightly supercooled. It is regulated and controlled.

一方,気液分離器(19)で分離された液体状の冷媒液
はバイパス配管(27)と第3の接続配管(22)に流入す
る。バイパス配管(27)に流入した冷媒液は毛細管(2
5)により低圧まで減圧後に,第3の接続配管(22)と
熱交換部(26)で熱交換(第3の接続配管(22)の冷媒
を冷却)してガス化され第2の接続配管(14)に流入す
る。また,第3の接続配管(22)に流入して冷媒液は熱
交換部(25)でバイパス配管(27)を流れる冷媒により
冷却され,若干過冷却された状態となつて第2の電気式
膨張弁(23)により流量を調節され、かつ中間圧力まで
減圧後に,暖房室内機(9a)からの冷媒と合流する。そ
して,この冷媒液は第3の接続配管(22)から各冷房室
内機(9b),(9c)に第1の電気式膨張弁(21)によつ
て低圧状態まで減圧後に室内熱交換器(10)に流入し,
熱交換(冷房)して蒸発する。
On the other hand, the liquid refrigerant liquid separated by the gas-liquid separator (19) flows into the bypass pipe (27) and the third connecting pipe (22). Refrigerant liquid flowing into the bypass pipe (27) is
After depressurizing to a low pressure by 5), the third connection pipe (22) and the heat exchange section (26) exchange heat (cool the refrigerant in the third connection pipe (22)) to be gasified, and then the second connection pipe. It flows into (14). Further, the refrigerant liquid flowing into the third connecting pipe (22) is cooled by the refrigerant flowing through the bypass pipe (27) in the heat exchanging portion (25), and is in a state of being slightly supercooled. The flow rate is adjusted by the expansion valve (23), and after being reduced to an intermediate pressure, it joins the refrigerant from the heating indoor unit (9a). Then, this refrigerant liquid is depressurized from the third connection pipe (22) to each cooling indoor unit (9b), (9c) by the first electric expansion valve (21) to a low pressure state, and then the indoor heat exchanger ( 10),
Evaporate by exchanging heat (cooling).

このとき,冷房室内機(9b),(9c)に流入する冷媒
流量は,室内熱交換器(10)の出口冷媒状態が若干過熱
したガスとなるように第1の電気式膨張弁(21)の弁開
度を調節して制御される。そして冷房室内機(9b),
(9c)で蒸発しガスとなつた冷媒は三方弁(20)を介し
て第2の接続配管(14)に流入し再び圧縮機(2)に吸
入される循環サイクルを構成して冷房主体運転を行な
う。この運転時の第2の電気式膨張弁(23)の動作につ
いて暖房主体運転時同様に第5図を用いて詳しく説明す
る。
At this time, the flow rate of the refrigerant flowing into the cooling indoor units (9b), (9c) is adjusted so that the refrigerant state at the outlet of the indoor heat exchanger (10) becomes a slightly overheated gas. It is controlled by adjusting the valve opening degree. And the air conditioner indoor unit (9b),
The refrigerant that has evaporated to gas in (9c) flows into the second connecting pipe (14) through the three-way valve (20) and is again sucked into the compressor (2) to form a circulation cycle to perform the cooling main operation. Do. The operation of the second electric expansion valve (23) during this operation will be described in detail with reference to FIG.

制御器(33)には室内機運転制御器(30a)〜(30c)
から各室内機運転モード信号と第3の接続配管(22)に
設けられた温度センサ(31)と圧力センサ(32)との信
号が入力される。制御器(33)は,これらの入力信号か
ら,冷暖房同時運転の冷房主体モードであることを検知
すると,電磁弁(24)を全開にするとともに温度センサ
(31)と圧力センサ(32)の信号から,これらのセンサ
の設けられた第3の接続配管(22)を流れる冷媒液を過
冷却度SCを演算する。そしてこのSCが制御目標過冷却度
SCL〜SCHの範囲内にあるか否かを比較し,この範囲内に
ある場合は,現在の第2の電気式膨張弁(23)への弁開
度指令値XV2をそのまま新しい弁開度指令値XV2 として
第2の電気式膨張弁(23)へ出力する。
The indoor unit operation controllers (30a) to (30c) are included in the controller (33).
From the indoor unit operation mode signal and the signals of the temperature sensor (31) and the pressure sensor (32) provided in the third connecting pipe (22) are input. When the controller (33) detects from these input signals that the cooling / heating simultaneous operation is in the cooling main mode, the controller (33) fully opens the solenoid valve (24) and outputs signals from the temperature sensor (31) and the pressure sensor (32). From this, the degree of supercooling SC of the refrigerant liquid flowing through the third connection pipe (22) provided with these sensors is calculated. And this SC is the control target supercooling degree
SC L to SC H compares whether is in the range of, if it is in this range, the current second as new valve the valve opening degree command value X V2 of the electric expansion valve (23) The opening command value X V2 * is output to the second electric expansion valve (23).

またSCが制御目標過冷却度の上限値SCHより大きい場
合は,現在の弁開度指令値XV2に弁開度変化量ΔXV2を差
し引いた弁開度を,またSCが制御目標過冷却度の下限値
SCLより小さい場合はXV2にΔXV2を加えた弁開度を新し
い弁開度指令XV2 として第2の電気式膨張弁(23)へ
出力する。
If SC is greater than the upper limit value SC H of the control target supercooling degree, the valve opening degree obtained by subtracting the valve opening change amount ΔX V2 from the current valve opening command value X V2, and SC is the control target supercooling degree. Lower limit of degree
SC If L is smaller than outputs to the second electric expansion valve opening degree plus [Delta] X V2 to X V2 as new valve opening command X V2 * (23).

以上のように第2の電気式膨張弁(23)の弁開度は第
3の接続配管(22)の温度センサ(31)と圧力センサ
(32)とが設けられた部分の冷媒液の過冷却度を所定の
範囲内に保つように制御される。
As described above, the opening degree of the second electric expansion valve (23) depends on the flow rate of the refrigerant liquid in the portion of the third connecting pipe (22) where the temperature sensor (31) and the pressure sensor (32) are provided. The cooling degree is controlled so as to be kept within a predetermined range.

上記のように,この実施例の空気調和装置の冷暖房同
時運転時の冷房主体モードにおいては,第3の接続配管
(22)を流れる冷媒とバイパス配管(27)を流れる冷媒
との熱交換により,気液分離器(19)で分離された第3
の接続配管(22)を通る冷媒液を過冷却状態にし,さら
に第2の電気式膨張式(23)により第2の電気式膨張弁
(23)と第1の電気式膨張弁(21)の間の冷媒を過冷却
状態となるように制御している。したがつて,気液分離
器(19)から各室内機(9a)〜(9c)までの第3の接続
配管(22)の経路が長くなり圧力損失等がある場合であ
つても,冷媒が気液二相状態となることはない。このた
め,冷房運転状態にある室内機(9b),(9c)の第1の
電気式膨張弁(21)の入口付近の冷媒状態を第3の接続
配管(22)の長さ如何に拘らず,常に,液体状態とする
ことができる。この結果、第1の電気式膨張弁(21)の
流量制御性がよく,効率のよい冷暖房同時運転ができ
る。 なお,上記実施例では,第3の接続配管(22)の
過冷却度を検知する温度センサ(31)と圧力センサ(3
2)を第2の電気式膨張弁(23)と第1の電気式膨張弁
(21)の間にそれぞれ1つずつ設けたが,特にこれに限
る必要はなく,第6図に示すように,各室内機ごとにそ
れぞれ1つずつ設け,過冷却度のもつとも小さいものを
所定の範囲内に過冷却度に保つように第2の電気式膨張
弁(23)の弁開度を制御し,各室内機の接続配管(22)
の長さや、高低差に拘らず,冷房運転状態にある室内機
の第1の電気式膨張弁(21)の入口付近の冷媒を常に液
状態とすることができる。
As described above, in the cooling main mode at the time of simultaneous cooling and heating operation of the air conditioner of this embodiment, heat exchange between the refrigerant flowing through the third connection pipe (22) and the refrigerant flowing through the bypass pipe (27) causes Third separated by gas-liquid separator (19)
The refrigerant liquid passing through the connection pipe (22) of the above is put into a supercooled state, and the second electric expansion valve (23) and the first electric expansion valve (21) The refrigerant in between is controlled to be in a supercooled state. Therefore, even if the path of the third connecting pipe (22) from the gas-liquid separator (19) to each indoor unit (9a) to (9c) becomes long and there is a pressure loss, etc. It does not become a gas-liquid two-phase state. Therefore, the refrigerant state near the inlet of the first electric expansion valve (21) of the indoor units (9b) and (9c) in the cooling operation state is irrespective of the length of the third connecting pipe (22). , Can always be in liquid state. As a result, the flow rate controllability of the first electric expansion valve (21) is good, and efficient cooling / heating simultaneous operation can be performed. In the above embodiment, the temperature sensor (31) and the pressure sensor (3) that detect the degree of subcooling of the third connecting pipe (22).
2) is provided between the second electric expansion valve (23) and the first electric expansion valve (21), respectively, but it is not particularly limited to this, and as shown in FIG. , One for each indoor unit, and controls the valve opening of the second electric expansion valve (23) so as to maintain the supercooling degree with a small degree of supercooling within a predetermined range, Connection piping for each indoor unit (22)
The refrigerant in the vicinity of the inlet of the first electric expansion valve (21) of the indoor unit that is in the cooling operation state can always be in the liquid state regardless of the length and the height difference.

また,上記実施例では,制御器(33)に室内機運転制
御器(33a)〜(33c)から冷暖いずれかの室内機運転モ
ード信号と温度センサ(31),圧力センサ(32)から冷
媒温度信号と圧力信号とを入力するよう構成している
が,特にこのように構成される必要はなく,上記の各信
号が入力されれば良いものである。さらに上記実施例で
は,複数の室内機がすべて同一容量の場合で説明した
が,容量の異なる室内機が複数設置されている場合は,
さらに各室内機の運転モードとして制御器(33)に各室
内機が冷暖いずれの運転状態であるかの室内機運転モー
ド信号とともに各室内機の容量信号を入力し,室内機の
トータル冷暖運転容量を検知し,これにより運転モード
を検知するか,または室外機の運転モード信号を入力し
運転モードを検知することにより正確に運転モードがわ
かり最適な制御が行なえるという効果がある。
Further, in the above-described embodiment, the controller (33) outputs the indoor unit operation mode signal indicating whether the indoor unit operation controller (33a) to (33c) is heating or cooling, the temperature sensor (31), and the pressure sensor (32) to the refrigerant temperature. Although the signal and the pressure signal are configured to be input, there is no particular need for such a configuration and it is sufficient that the above signals are input. Further, in the above embodiment, the case where a plurality of indoor units have the same capacity has been described, but when a plurality of indoor units having different capacities are installed,
Further, as the operation mode of each indoor unit, the capacity signal of each indoor unit is input to the controller (33) together with the indoor unit operation mode signal indicating whether each indoor unit is in the heating / cooling operating state, and the total cooling / heating operating capacity of the indoor unit is input. Is detected and the operating mode is detected based on this, or the operating mode is detected by inputting the operating mode signal of the outdoor unit, so that the operating mode can be accurately known and optimal control can be performed.

さらに上記実施例では第3の流量制御器として流量固
定の毛細管(25)を用いた場合について示したが,第1,
第2の流量制御器(21),(23)と同様,電気式膨張式
等を用いてもよく,その場合,その弁開度は制御器(3
3)によつて制御される。
Further, in the above embodiment, the case where the capillary tube (25) having a fixed flow rate is used as the third flow rate controller has been described.
Similarly to the second flow rate controllers (21) and (23), an electric expansion type or the like may be used, and in that case, the valve opening degree is set to the controller (3
3) controlled by.

さらにまた,室内機の切替弁(20),第1の電気式膨
張弁(21)等は室内機本体内に設けられていても室内機
本体外に設けられていてもよい。
Furthermore, the switching valve (20) of the indoor unit, the first electric expansion valve (21), etc. may be provided inside the indoor unit main body or outside the indoor unit main body.

〔発明の効果〕〔The invention's effect〕

以上のように,この発明によれば圧縮機,切換弁及び
室外熱交換器からなる室外機と、室内熱交換器からなる
複数台の室内機とを第1及び第2の接続配管を介して並
列に接続してなる空気調和装置において,上記複数台の
室内機の一方を第1または第2の接続配管に切換可能に
接続し,上記室外熱交換器に接続する第1の接続配管の
途中に気液分離器と,上記複数台の室内機の他方と上記
気液分離器とを流量制御器を介して接続する第3の接続
配管と,上記気液分離器と第2の接続配管を接続し,途
中に管路開閉器,及び第3の接続配管との間で熱交換を
行う熱交換部を配設したバイパス配管と,並びに上記複
数台の各室内機の運転モードにより上記管路開閉器の開
閉を制御する制御器とを設けることにより,並列に接続
された複数台の室内機の冷房運転と暖房運転とを同時に
または選択的に行なうことができ,しかも,冷媒の流量
及び気液状態を適正に制御できるので,室内機が設置さ
れている空間の冷暖房要求に対応した最適な冷暖房運転
ができ,効率の高い運転が行なえる。さらに室内期間を
接続する第3の接続配管の追加だけで,室内外機間を接
続する長い接続配管も従来の2本で良く設置工事性も良
く,費用も安いというメリットがある。
As described above, according to the present invention, the outdoor unit including the compressor, the switching valve, and the outdoor heat exchanger, and the plurality of indoor units including the indoor heat exchanger are connected via the first and second connection pipes. In an air conditioner that is connected in parallel, one of the plurality of indoor units is switchably connected to the first or second connection pipe, and the middle of the first connection pipe that is connected to the outdoor heat exchanger A gas-liquid separator, a third connecting pipe for connecting the other of the plurality of indoor units and the gas-liquid separator via a flow controller, and the gas-liquid separator and the second connecting pipe. Bypass pipes that are connected to each other and have a heat exchanger that exchanges heat with the pipe switch and the third connecting pipe on the way, and the pipeline depending on the operation mode of each of the plurality of indoor units. By installing a controller that controls the opening and closing of switches, it is possible to connect multiple rooms in parallel. Since the cooling operation and the heating operation can be performed simultaneously or selectively and the flow rate of the refrigerant and the gas-liquid state can be appropriately controlled, it is optimal for the cooling and heating requirements of the space where the indoor unit is installed. Air conditioning operation can be performed, and highly efficient operation can be performed. Furthermore, by simply adding the third connecting pipe for connecting the indoor period, the long connecting pipe for connecting the indoor unit and the outdoor unit can be two conventional ones, and the installation workability is good, and the cost is low.

室内機は第1の流量制御器を備えたものとし、第3の
接続配管で室内機の他方の第1の流量制御器と気液分離
器とを接続し、その管路途中に第2の流量制御器を配設
し、制御器で各室内機の運転モードと第1、第2の流量
制御器間における接続配管の冷媒状態により第2の流量
制御器の開度を調節するとともに上記管路開閉器の開閉
を制御するようにしたので、各室内機が設置されている
空間の冷暖房要求に対応した、より最適な冷暖房運転が
でき、より効率の高い運転が行える。
It is assumed that the indoor unit is provided with a first flow rate controller, the other first flow rate controller of the indoor unit and the gas-liquid separator are connected by a third connecting pipe, and a second line is provided in the middle of the line. A flow rate controller is provided, and the controller adjusts the opening degree of the second flow rate controller according to the operation mode of each indoor unit and the refrigerant state of the connecting pipe between the first and second flow rate controllers. Since the opening / closing of the road switch is controlled, more optimal cooling / heating operation can be performed and more efficient operation can be performed in response to the cooling / heating requirement of the space where each indoor unit is installed.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の空気調和装置の冷媒系を
中心とする全体構成図,第2図は第1図で示した実施例
の冷房または暖房のみの運転動作状態図,第3図は第1
図で示した実施例の暖房運転容量が冷房運転容量より大
きい場合を示す運転動作状態図、第4図は第1図で示し
た実施例の冷房運転容量が暖房運転容量より大きい場合
を示す運転動作状態図,第5図は第1図で示した実施例
の制御器の制御フローを示すフローチヤート,第6図は
この発明の他の実施例の空気調和装置の冷媒系を中心と
する全体構成図,第7図は従来の空気調和装置の冷媒系
を中心とする全体構成図である。 図において,(1):室外機,(2):圧縮機,
(3):四方弁,(4):室外熱交換器,(8):アキ
ュムレータ,(9a)〜(9c):室内機,(10):室内熱
交換器,(13):第1の接続配管,(14):第2の接続
配管,(19):気液分離器,(21):第1の流量制御器
である第1の電気式膨張弁,(22):第3の接続配管,
(23):第2の流量制御器である第2の電気式膨張弁,
(24):管路開閉器である電磁弁,(25):第3の流量
制御器である毛細管,(26):熱交換部,(27):バイ
パス配管,(30a)〜(30c):室内機運転制御器,(3
1):温度センサ,(32):圧力センサ,(33):制御
器,XV2,XV2 :第2の電気式膨張弁の現在と新しい弁開
度指令値, ΔXV2:弁開度指令値の変化量,SC:第1の流量制御装置か
ら第2の流量制御装置にかけての第3の接続配管の冷媒
過冷却度,SCL,SCH:制御目標過冷却度の下限値と上限値
である。 なお,図中,同一符号及び同一記号は,同一または相
当部分を示す。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner of one embodiment of the present invention, FIG. 2 is an operation state diagram of only the cooling or heating of the embodiment shown in FIG. 1, and FIG. The figure is first
The operation operation state diagram showing the case where the heating operation capacity of the embodiment shown in the figure is larger than the cooling operation capacity, and FIG. 4 is the operation showing the case where the cooling operation capacity of the embodiment shown in FIG. 1 is larger than the heating operation capacity. FIG. 5 is an operation state diagram, FIG. 5 is a flow chart showing a control flow of the controller of the embodiment shown in FIG. 1, and FIG. 6 is a whole focusing on a refrigerant system of an air conditioner of another embodiment of the present invention. FIG. 7 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner. In the figure, (1): outdoor unit, (2): compressor,
(3): Four-way valve, (4): Outdoor heat exchanger, (8): Accumulator, (9a) to (9c): Indoor unit, (10): Indoor heat exchanger, (13): First connection Piping, (14): Second connection piping, (19): Gas-liquid separator, (21): First electric expansion valve that is the first flow rate controller, (22): Third connection piping ,
(23): A second electric expansion valve which is a second flow rate controller,
(24): Solenoid valve that is a line switch, (25): Capillary tube that is a third flow rate controller, (26): Heat exchange section, (27): Bypass piping, (30a) to (30c): Indoor unit operation controller, (3
1): Temperature sensor, (32): Pressure sensor, (33): Controller, X V2 , X V2 * : Current and new valve opening command value of the second electric expansion valve, ΔX V2 : Valve opening the amount of change in the command value, SC: refrigerant supercooling degree of the third connection pipe from the first flow control device toward the second flow controller, SC L, SC H: lower limit and upper limit of the control target degree of supercooling It is a value. In the drawings, the same reference numerals and symbols indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、切換弁及び室外熱交換器からなる
室外機と、室内熱交換器からなる複数台の室内機とを第
1及び第2の接続配管を介して並列に接続してなる空気
調和装置において、上記複数台の室内機の一方を第1ま
たは第2の接続配管に切替可能に接続し、上記室外熱交
換器に接続する第1の接続配管の途中に気液分離器と、
上記複数台の室内機の他方と上記気液分離器とを流量制
御器を介して接続する第3の接続配管と、上記気液分離
器と第2の接続配管を接続し、途中に管路開閉器、及び
第3の接続配管との間で熱交換を行う熱交換機部を配設
したバイパス配管と、並びに上記複数台の各室内機の運
転モードにより上記管路開閉器の開閉を制御する制御器
とを設けたことを特徴とする空気調和装置。
1. An outdoor unit comprising a compressor, a switching valve and an outdoor heat exchanger, and a plurality of indoor units comprising an indoor heat exchanger are connected in parallel via first and second connecting pipes. In the air conditioner, the one of the plurality of indoor units is switchably connected to the first or second connection pipe, and the gas-liquid separator is provided in the middle of the first connection pipe connected to the outdoor heat exchanger. When,
A third connecting pipe for connecting the other of the plurality of indoor units and the gas-liquid separator via a flow rate controller, the gas-liquid separator and the second connecting pipe are connected, and a pipeline is provided on the way. The opening and closing of the pipeline switch is controlled by the switch and the bypass pipe in which a heat exchanger unit for exchanging heat with the third connecting pipe is arranged, and the operation mode of each of the plurality of indoor units. An air conditioner provided with a controller.
【請求項2】圧縮機、切換弁及び室外熱交換器からなる
室外機と、室内熱交換器及び第1の流量制御器からなる
複数台の室内機とを第1及び第2の接続配管を介して並
列に接続してなる空気調和装置において、上記複数台の
室内機の一方を第1または第2の接続配管に切替可能に
接続し、上記室外熱交換器を接続する第1の接続配管の
途中に気液分離器と、上記複数台の室内機の他方の第1
の流量制御器と上記気液分離器とを接続し、途中に第2
の流量制御器を配設した第3の接続配管と、上記気液分
離器と第2の接続配管を接続し、途中に管路開閉器、及
び第3の接続配管との間で熱交換を行う熱交換部を配設
したバイパス配管と、並びに上記複数台の各室内機の運
転モードと第1、第2の流量制御器間における接続配管
の冷媒状態により第2の流量制御器の開度を調節すると
ともに上記管路開閉器の開閉を制御する制御器とを設け
たことを特徴とする空気調和装置。
2. An outdoor unit consisting of a compressor, a switching valve and an outdoor heat exchanger, and a plurality of indoor units consisting of an indoor heat exchanger and a first flow rate controller with first and second connecting pipes. In the air conditioner connected in parallel via the first connection pipe, which connects one of the plurality of indoor units to the first or second connection pipe in a switchable manner and connects the outdoor heat exchanger. In the middle of the process, the gas-liquid separator and the other first unit of the plurality of indoor units
Connect the flow rate controller of the
The third connection pipe in which the flow controller of No. 3 is arranged, the gas-liquid separator and the second connection pipe are connected, and heat exchange is performed between the pipe switch and the third connection pipe on the way. The degree of opening of the second flow rate controller depending on the bypass pipe in which the heat exchange section is arranged, the operation mode of each of the plurality of indoor units, and the refrigerant state of the connection pipe between the first and second flow rate controllers. And an controller for controlling the opening and closing of the pipeline switch.
JP1014816A 1988-10-17 1989-01-24 Air conditioner Expired - Lifetime JPH086980B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1014816A JPH086980B2 (en) 1989-01-24 1989-01-24 Air conditioner
KR1019890011915A KR920008504B1 (en) 1988-10-17 1989-08-22 Air conditioner
US07/417,207 US4987747A (en) 1988-10-17 1989-10-04 Air conditioning device
AU42562/89A AU615347B2 (en) 1988-10-17 1989-10-04 Air conditioning device
EP89118584A EP0364834B1 (en) 1988-10-17 1989-10-06 Air conditioning device
ES89118584T ES2051338T3 (en) 1988-10-17 1989-10-06 AIR CONDITIONING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014816A JPH086980B2 (en) 1989-01-24 1989-01-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02195161A JPH02195161A (en) 1990-08-01
JPH086980B2 true JPH086980B2 (en) 1996-01-29

Family

ID=11871565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014816A Expired - Lifetime JPH086980B2 (en) 1988-10-17 1989-01-24 Air conditioner

Country Status (1)

Country Link
JP (1) JPH086980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096378A3 (en) * 2009-02-18 2010-12-09 Emerson Climate Technologies, Inc. Condensing unit having fluid injection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875665B2 (en) * 1991-01-10 1999-03-31 三菱電機株式会社 Air conditioner
CN102563789A (en) * 2012-02-01 2012-07-11 美的集团有限公司 Multi-split heat pump air conditioning system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096378A3 (en) * 2009-02-18 2010-12-09 Emerson Climate Technologies, Inc. Condensing unit having fluid injection

Also Published As

Publication number Publication date
JPH02195161A (en) 1990-08-01

Similar Documents

Publication Publication Date Title
KR100437805B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
AU656064B2 (en) Air-conditioning system
KR920008504B1 (en) Air conditioner
JPS6334459A (en) Air conditioner
JP2974179B2 (en) Multi-room air conditioner
JP6628911B1 (en) Refrigeration cycle device
JP4785508B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP5279768B2 (en) Air conditioner
JPH086980B2 (en) Air conditioner
JP2522363B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2522371B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP2525927B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPH0765825B2 (en) Air conditioner
JP2522362B2 (en) Air conditioner
JP2508310B2 (en) Air conditioner and air conditioner control method
JP2508311B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
JPH04110573A (en) Air conditioner