JP2522362B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2522362B2
JP2522362B2 JP63260762A JP26076288A JP2522362B2 JP 2522362 B2 JP2522362 B2 JP 2522362B2 JP 63260762 A JP63260762 A JP 63260762A JP 26076288 A JP26076288 A JP 26076288A JP 2522362 B2 JP2522362 B2 JP 2522362B2
Authority
JP
Japan
Prior art keywords
connection pipe
refrigerant
indoor
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63260762A
Other languages
Japanese (ja)
Other versions
JPH02106667A (en
Inventor
等 飯島
直樹 田中
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63260762A priority Critical patent/JP2522362B2/en
Priority to KR1019890011915A priority patent/KR920008504B1/en
Priority to AU42562/89A priority patent/AU615347B2/en
Priority to US07/417,207 priority patent/US4987747A/en
Priority to ES89118584T priority patent/ES2051338T3/en
Priority to EP89118584A priority patent/EP0364834B1/en
Publication of JPH02106667A publication Critical patent/JPH02106667A/en
Application granted granted Critical
Publication of JP2522362B2 publication Critical patent/JP2522362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は室外機1台に対して複数台の室内機を接続
する多室形の空気調和装置に関するもので、特に、各室
内機毎に冷暖房を選択的に、または、同時に行なうこと
ができる空気調和装置に関するものである。
TECHNICAL FIELD The present invention relates to a multi-room type air conditioner in which a plurality of indoor units are connected to one outdoor unit, and in particular, for each indoor unit. The present invention relates to an air conditioner capable of performing heating and cooling selectively or simultaneously.

[従来の技術] 従来、この種の空気調和装置として、例えば、実開昭
47−22558号公報に掲載されたものがある。
[Prior Art] Conventionally, as an air conditioner of this type, for example,
Some are published in the 47-22558 publication.

第6図は上記公報に掲載された従来の空気調和装置の
冷媒系を中心とする全体構成図である。
FIG. 6 is an overall configuration diagram centering on the refrigerant system of the conventional air conditioner disclosed in the above publication.

図において、1は空気調和装置の室外機で、2は圧縮
機、3は四方弁、4は室外熱交換器、5は逆止弁、6は
膨張弁、7は受液器、8はアキュムレータで、これらは
前記室外機1を構成する。また、9a〜9cは前記室外機1
に接続された各々室内機で、10は室内熱交換器、11は逆
止弁、12は膨張弁で、これらは前記室内機9a〜9cを構成
する。そして、13及び14は室内機9a〜9cと室外機1とを
接続する第1及び第2の接続配管である。
In the figure, 1 is an outdoor unit of an air conditioner, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a check valve, 6 is an expansion valve, 7 is a liquid receiver, and 8 is an accumulator. Then, these constitute the outdoor unit 1. Further, 9a to 9c are the outdoor units 1
Each of the indoor units is connected to the indoor unit, 10 is an indoor heat exchanger, 11 is a check valve, and 12 is an expansion valve, which constitute the indoor units 9a to 9c. Further, 13 and 14 are first and second connection pipes that connect the indoor units 9a to 9c and the outdoor unit 1.

上記のように構成された従来の空気調和装置は次のよ
うに動作する。
The conventional air conditioner configured as described above operates as follows.

まず、暖房運転状態において、圧縮機2から吐出され
た高温高圧冷媒ガスは第1の接続配管13から各室内機9a
〜9cに流入し、室内熱交換器10で室内空気と熱交換(暖
房)されて凝縮液化する。各室内機9a〜9cで液化された
冷媒液は、逆止弁11を通って第2の接続配管14で合流
し、さらに、受液器7を通って膨張弁6に流入し、ここ
で低温の気液二相状態まで減圧され、室外熱交換器4に
流入する。室外熱交換器4に流入した冷媒は外気と熱交
換されることによって蒸発し、ガス状態となって再び圧
縮機2に吸入される循環サイクルを形成する。
First, in the heating operation state, the high-temperature high-pressure refrigerant gas discharged from the compressor 2 is supplied from the first connecting pipe 13 to each indoor unit 9a.
To 9c, and the indoor heat exchanger 10 exchanges heat with the indoor air (heating) to condense and liquefy. The refrigerant liquid liquefied in each of the indoor units 9a to 9c merges in the second connection pipe 14 through the check valve 11 and further flows into the expansion valve 6 through the liquid receiver 7 where low temperature The pressure is reduced to the gas-liquid two-phase state and flows into the outdoor heat exchanger 4. The refrigerant flowing into the outdoor heat exchanger 4 evaporates by exchanging heat with the outside air, becomes a gas state, and forms a circulation cycle in which the refrigerant is sucked into the compressor 2 again.

一方、冷房運転状態においては、暖房運転と反対の循
環サイクルとなる。即ち、圧縮機2で高温高圧ガスとな
った冷媒は、室外熱交換器4で外気によって熱交換(冷
却)され、凝縮液化して、受液器7を通り接続配管14か
ら各室内機9a〜9cに流入する。そして、各室内機9a〜9c
に流入した冷媒液は、膨張弁12によって低温の気液二相
状態まで減圧され、室内熱交換器10で室内空気と熱交換
(冷房)されてガス状態となり、接続配管13で合流して
再び圧縮機2に吸入される。
On the other hand, in the cooling operation state, the circulation cycle is the opposite of the heating operation. That is, the refrigerant that has become the high-temperature high-pressure gas in the compressor 2 is heat-exchanged (cooled) by the outside air in the outdoor heat exchanger 4, condensed and liquefied, passes through the liquid receiver 7, and is connected to each indoor unit 9a through the connection pipe 14. Flow into 9c. And each indoor unit 9a-9c
The refrigerant liquid that has flown into is decompressed by the expansion valve 12 to a low-temperature gas-liquid two-phase state, is heat-exchanged (cooled) with the indoor air in the indoor heat exchanger 10, becomes a gas state, and joins again in the connection pipe 13 and is again formed. It is sucked into the compressor 2.

[発明が解決しようとする課題] 従来の多室形の空気調和装置は、上記のように構成さ
れているので、全ての室内機9a〜9cが暖房運転または冷
房運転を行なう必要があるから、冷房が必要な場所で暖
房が行なわれたり、暖房が必要な場所で冷房が行なわれ
る可能性があった。
[Problems to be Solved by the Invention] Since the conventional multi-room air conditioner is configured as described above, since all the indoor units 9a to 9c need to perform heating operation or cooling operation, There was a possibility that heating would be performed in a place where cooling was necessary, or cooling might be performed in a place where heating was required.

特に、この種の多室形の空気調和装置を大規模なビル
に据付けた場合、インテリア部とペリメータ部、または
一般事務室とコンピュータルーム等のOA化された部屋で
は、空調負荷が著しく異なるために、このような事態が
予測される。また、テナントビル等のような場合では、
借用者が変わるたびに熱負荷が変わることから、予め、
冷房ゾーン、暖房ゾーン等にゾーニング分けすることは
不可能である。また、これに対応するために冷房室内機
と暖房室内機の2台を同一室に設置することは設備費が
高価となり実用的ではなかった。
In particular, when installing this type of multi-room air conditioner in a large building, the air-conditioning load is significantly different in the interior and perimeter sections, or in office rooms such as general offices and computer rooms. This situation is expected. In addition, in cases such as tenant buildings,
Since the heat load changes each time the borrower changes,
It is impossible to divide into zones such as cooling zone and heating zone. Further, it is not practical to install two cooling indoor units and two heating indoor units in the same room to cope with this, because the equipment cost is high.

そこで、この発明は1台の室外機に複数台の室内機を
接続しても、各室内機が設置された空間の冷暖房要求に
対応して、各室内機毎に冷暖房運転を選択的にまたは同
時にできる空気調和装置の提供を課題とするものであ
る。
Therefore, according to the present invention, even if a plurality of indoor units are connected to one outdoor unit, the cooling or heating operation is selectively or individually performed for each indoor unit in response to a cooling and heating request of a space in which each indoor unit is installed. It is an object to provide an air conditioner that can be simultaneously performed.

[課題を解決するための手段] この発明にかかる空気調和装置は、1台の室外機と複
数台の室内機とを接続する第1の接続配管または第2の
接続配管の途中に気液分離装置を設け、この第1の接続
配管または第2の接続配管に複数台の室内機の個々の一
方を切替え可能に接続し、他の一方を第3の接続配管で
流量制御装置を介して第1の接続配管または第2の接続
配管のいずれかに設けた気液分離装置に接続したもので
ある。
[Means for Solving the Problems] An air conditioner according to the present invention is a gas-liquid separation device in the middle of a first connection pipe or a second connection pipe that connects one outdoor unit and a plurality of indoor units. A device is provided, and one of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe, and the other one is connected to the first connection pipe via the flow control device via the third connection pipe. It is connected to a gas-liquid separation device provided in either the first connecting pipe or the second connecting pipe.

[作用] この発明の空気調和装置においては、暖房主体の冷暖
房同時運転の場合は、高圧ガス冷媒を第2または第1の
接続配管から暖房運転状態にある各室内機に導入して暖
房を行なう。暖房を行なった冷媒は第3の接続配管から
一部は冷房運転状態にある室内機に流入して熱交換(冷
房)して第1または第2の接続配管に流入する。一方、
他の冷媒は第3の接続配管の流量制御装置を通って第1
または第2の接続配管に流入し、冷房運転状態にある室
内機を通った冷媒と合流して室外機に戻る。
[Operation] In the air conditioner of the present invention, in the case of heating-based simultaneous heating and cooling operation, high-pressure gas refrigerant is introduced from the second or first connection pipe to each indoor unit in the heating operation state to perform heating. . A part of the heated refrigerant flows into the indoor unit in the cooling operation state from the third connection pipe, exchanges heat (cooling), and then flows into the first or second connection pipe. on the other hand,
The other refrigerant passes through the flow rate control device of the third connecting pipe to the first
Alternatively, it flows into the second connection pipe, merges with the refrigerant that has passed through the indoor unit in the cooling operation state, and returns to the outdoor unit.

冷房主体の冷暖房同時運転の場合は、高圧ガスを室外
熱交換器で任意量熱交換し二相状態にして第1または第
2の接続配管から気液分離装置に流入する。そして、こ
の気液分離装置で気体と液体とに分離し、気体状の冷媒
ガスを暖房運転状態にある室内機に導入して暖房を行な
い第3の接続配管に流入する。一方の他の液体状の液冷
媒は第3の接続配管に導入し、流量制御装置を介して暖
房運転状態にある室内機からの冷媒と合流して冷房運転
状態にある各室内機に流入する。冷房運転状態にある室
内機に流入した冷媒は熱交換(冷房)を行ない熱交換後
に第2または第1の接続配管を通って室外機側に導びか
れて再び圧縮機に戻る。
In the case of simultaneous cooling and heating operation mainly for cooling, high-pressure gas is heat-exchanged by an outdoor heat exchanger in an arbitrary amount to be in a two-phase state and flow into the gas-liquid separation device from the first or second connecting pipe. Then, the gas-liquid separation device separates the gas and the liquid, introduces the gaseous refrigerant gas into the indoor unit in the heating operation state, performs heating, and flows into the third connection pipe. On the other hand, the other liquid liquid refrigerant is introduced into the third connection pipe, merges with the refrigerant from the indoor unit in the heating operation state through the flow rate control device, and flows into each indoor unit in the cooling operation state. . The refrigerant that has flowed into the indoor unit in the cooling operation state performs heat exchange (cooling), and after heat exchange, is guided to the outdoor unit side through the second or first connection pipe and returns to the compressor again.

暖房運転のみの場合、冷媒は室外機より第2または第
1の接続配管を通り各室内機に導入される。そして、熱
交換(暖房)して第3の接続配管を通り室外機に戻る。
In the case of only the heating operation, the refrigerant is introduced into each indoor unit from the outdoor unit through the second or first connection pipe. Then, heat is exchanged (heated) and returns to the outdoor unit through the third connecting pipe.

また、冷房運転のみの場合は第1または第2の接続配
管、第3の接続配管を経て各室内機に導入されて熱交換
(冷房)される。そして、この熱交換した冷媒は第2ま
たは第1の接続配管により室外機に戻る。
Further, in the case of only the cooling operation, the heat is exchanged (cooled) by being introduced into each indoor unit through the first or second connecting pipe and the third connecting pipe. Then, the heat-exchanged refrigerant returns to the outdoor unit through the second or first connection pipe.

冷房主体の冷暖房同時運転の場合は、高圧ガスを室外
熱交換器で任意量熱交換し二相状態にして第1の接続配
管から気液分離装置に流入する。そして、この気液分離
装置で気体と液体とに分離し、気体状の冷媒ガスを暖房
運転状態にある室内機に導入して暖房を行ない第3の接
続配管に流入する。一方の他の液体状の液冷媒は第3の
接続配管に導入し、レシーバ及び流量制御装置を介して
暖房運転状態にある室内機からの冷媒と合流して冷房運
転状態にある各室内機に流入する。冷房運転状態にある
室内機に流入した冷媒は熱交換(冷房)を行ない熱交換
後に第2の接続配管を通って室外機側に導びかれて再び
圧縮機に戻る。
In the case of simultaneous cooling and heating operation mainly for cooling, the high-pressure gas is heat-exchanged in an arbitrary amount by the outdoor heat exchanger to be in a two-phase state and flow into the gas-liquid separation device from the first connecting pipe. Then, the gas-liquid separation device separates the gas and the liquid, introduces the gaseous refrigerant gas into the indoor unit in the heating operation state, performs heating, and flows into the third connection pipe. On the other hand, the other liquid liquid refrigerant is introduced into the third connection pipe, and merges with the refrigerant from the indoor unit in the heating operation state via the receiver and the flow rate control device to each indoor unit in the cooling operation state. Inflow. The refrigerant that has flowed into the indoor unit in the cooling operation state performs heat exchange (cooling), and after heat exchange, is guided to the outdoor unit side through the second connecting pipe and returns to the compressor again.

暖房運転のみの場合、冷媒は室外機より第2の接続配
管を通り各室内機に導入される。そして、熱交換(暖
房)して第3の接続配管を通り室外機に戻る。
In the case of only the heating operation, the refrigerant is introduced into each indoor unit from the outdoor unit through the second connecting pipe. Then, heat is exchanged (heated) and returns to the outdoor unit through the third connecting pipe.

また、冷房運転のみの場合は第1の接続配管、第3の
接続配管を経て各室内機に導入されて熱交換(冷房)さ
れる。そして、この熱交換した冷媒は第2の接続配管に
より室外機に戻る。
In the case of only the cooling operation, the heat is exchanged (cooled) by being introduced into each indoor unit through the first connecting pipe and the third connecting pipe. Then, the heat-exchanged refrigerant returns to the outdoor unit through the second connection pipe.

[実施例] 以下、この発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

第1図はこの発明の一実施例を空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図乃至第4
図は第1図の実施例における冷暖房運転時の動作状態を
示したもので、第2図は冷房または暖房のみの運転動作
状態を示す冷媒循環図、第3図及び第4図は各々冷暖房
同時運転の動作を示すもので、第3図は暖房主体(暖房
運転容量が冷房運転容量より大きい場合)の、第4図は
冷房主体(冷房運転容量が暖房運転容量より大きい場
合)の運転動作状態を示す冷媒循環図である。そして、
第5図はこの発明の他の実施例の空気調和装置の冷媒系
を中心とする全体構成図である。図中、従来例と同一符
号及び同一記号は従来例と同一または相当部分を示すも
のであるので、ここでは重複する説明を省略する。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. Also, FIGS. 2 to 4
The figure shows the operating state during the heating and cooling operation in the embodiment of FIG. 1, FIG. 2 is a refrigerant circulation diagram showing the operating state of only cooling or heating, and FIGS. Fig. 3 shows the operation of operation, and Fig. 3 shows the operation state of heating (when the heating operation capacity is larger than the cooling operation capacity) and Fig. 4 shows the operation operation of the cooling mainly (when the cooling operation capacity is larger than the heating operation capacity). It is a refrigerant circulation diagram showing. And
FIG. 5 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention. In the figure, the same reference numerals and symbols as those of the conventional example indicate the same or corresponding portions as those of the conventional example, and therefore, duplicated description will be omitted here.

なお、この実施例についても、従来例と同様に、室外
機1台に室内機3台を接続した場合について説明する
が、4台以上の室内機を接続する場合も基本的に同様で
ある。
Also in this embodiment, as in the conventional example, a case where one outdoor unit and three indoor units are connected will be described, but the same is basically true when four or more indoor units are connected.

図において、19は第1の接続配管13の途中に設けた気
液分離器であり、冷媒を気体と液体とに分離する気液分
離装置としての機能を有する。20は室内熱交換器10の一
方を第1の接続配管13と第2の接続配管14とに切替可能
に接続する三方切替弁、21は室内熱交換器10の他の一方
に接続された第1の流量制御装置である第1の電気式膨
張弁である。この三方切替弁20、室内熱交換器10、及び
第1の電気式膨張弁21で各室内機9a〜9cが構成されてい
る。また、22は各室内機9a〜9cの第1の電気式膨張弁21
側と第1の接続配管13の気液分離器19とを接続する第3
の接続配管、23は第3の接続配管22の途中に設けたレシ
ーバ、24は第3の接続配管22に設けた第2の流量制御装
置である電気式膨張弁である。25は四方弁3と室外熱交
換器4とを接続する配管に設けた第1の温度センサ、26
は室外熱交換器4のほぼ中間部に位置する伝熱管に設け
た第2の温度センサである。
In the figure, 19 is a gas-liquid separator provided in the middle of the first connection pipe 13, and has a function as a gas-liquid separator for separating the refrigerant into a gas and a liquid. Reference numeral 20 is a three-way switching valve that connects one of the indoor heat exchanger 10 to the first connecting pipe 13 and the second connecting pipe 14 in a switchable manner, and 21 is a first connecting pipe connected to the other one of the indoor heat exchanger 10. It is the 1st electric expansion valve which is the 1st flow control device. The three-way switching valve 20, the indoor heat exchanger 10, and the first electric expansion valve 21 constitute each indoor unit 9a-9c. Further, 22 is the first electric expansion valve 21 of each indoor unit 9a-9c.
Third side connecting the side and the gas-liquid separator 19 of the first connection pipe 13
Is a receiver provided in the middle of the third connection pipe 22, and 24 is an electric expansion valve that is a second flow rate control device provided in the third connection pipe 22. 25 is a first temperature sensor provided in a pipe connecting the four-way valve 3 and the outdoor heat exchanger 4, 26
Is a second temperature sensor provided in the heat transfer tube located in the substantially middle part of the outdoor heat exchanger 4.

このように構成されたこの発明の実施例の空気調和装
置の動作について説明する。
The operation of the air conditioner of the embodiment of the present invention thus configured will be described.

まず、第2図を用いて暖房運転のみの場合について説
明する。
First, the case of only the heating operation will be described with reference to FIG.

圧縮機2より吐出された高温高圧冷媒ガスは、第2の
接続配管14により室外から室内側に導かれ、各室内機9a
〜9cの各々の三方切替弁20を介して室内熱交換器10に流
入し、熱交換(暖房)した後に凝縮液化される。そし
て、この液状態となった冷媒は、第1の電気式膨張弁21
を通り、第3の接続配管22に流入し、合流してレシーバ
23に流入する。このレシーバ23に流入した冷媒は、さら
に、第2の流量制御装置である電気式膨張弁24により低
圧まで減圧される。そして、低圧まで減圧された冷媒は
気液分離器19を介して第1の接続配管13を経て、室外機
1の室外熱交換器4に流入し、そこで熱交換してガス状
態となって再び圧縮機2に吸入される。このようにし
て、循環サイクルを構成し、暖房運転を行なう。
The high-temperature high-pressure refrigerant gas discharged from the compressor 2 is guided from the outdoor side to the indoor side by the second connecting pipe 14, and is discharged to each indoor unit 9a.
~ 9c through the three-way switching valve 20 to flow into the indoor heat exchanger 10, after heat exchange (heating), it is condensed and liquefied. The refrigerant in the liquid state is used as the first electric expansion valve 21.
Through the third connecting pipe 22 and join to form a receiver
Inflow to 23. The refrigerant flowing into the receiver 23 is further decompressed to a low pressure by the electric expansion valve 24 which is the second flow rate control device. Then, the refrigerant depressurized to a low pressure flows through the gas-liquid separator 19 and the first connection pipe 13 into the outdoor heat exchanger 4 of the outdoor unit 1, where it exchanges heat and becomes a gas state again. It is sucked into the compressor 2. In this way, the circulation cycle is configured and the heating operation is performed.

つぎに、同じく第2図を用いて冷房運転のみの場合に
ついて説明する。
Next, the case of only the cooling operation will be described with reference to FIG.

圧縮機2より吐出された高温高圧冷媒ガスは、室外熱
交換器4で熱交換され凝縮液化された後、第1の接続配
管13から気液分離器19を介して、第3の接続配管22に流
れ、全開状態の第2の電気式膨張弁24を経てレシーバ23
に流入する。その後、各室内機9a〜9cに流入し、第1の
電気式膨張弁21により低圧まで減圧され室内熱交換器10
に流入し、室内空気と熱交換(冷房)して蒸発しガス化
される。そして、このガス状態となった冷媒は三方切替
弁20を介して、第2の接続配管14を経て再び圧縮機2に
吸入される循環サイクルを構成し、冷房運転を行なう。
The high-temperature high-pressure refrigerant gas discharged from the compressor 2 is heat-exchanged in the outdoor heat exchanger 4 to be condensed and liquefied, and then from the first connection pipe 13 via the gas-liquid separator 19 to the third connection pipe 22. To the receiver 23 via the second electric expansion valve 24 in the fully opened state.
Flows into. Then, it flows into each of the indoor units 9a to 9c, and is depressurized to a low pressure by the first electric expansion valve 21, and the indoor heat exchanger 10
And is exchanged with the indoor air (cooling) to be evaporated and gasified. Then, the refrigerant in the gas state forms a circulation cycle in which the refrigerant is sucked into the compressor 2 again via the three-way switching valve 20 and the second connecting pipe 14 to perform the cooling operation.

つぎに、暖房主体の冷暖房同時運転について第3図を
用いて説明する。
Next, the heating-based simultaneous cooling and heating operation will be described with reference to FIG.

まず、圧縮機2より吐出された冷媒は、第2の接続配
管14から暖房運転状態にある各室内機9b,9cに三方切替
弁20を介して流入し、室内熱交換器10で熱交換(暖房)
し、冷媒を凝縮液化する。そして、この凝縮液化した冷
媒は第1の電気式膨張弁21で若干過冷却状態となるよう
に通過流量が制御され第3の接続配管22に流入する。こ
の冷媒の一部は冷房運転状態にある室内機9aに入り、第
1の膨張弁21によって減圧された後に、室内熱交換器10
に入って熱交換(冷房)され、蒸発してガス状態となっ
て三方切替弁20を介して第1の接続配管13に流入する。
First, the refrigerant discharged from the compressor 2 flows from the second connection pipe 14 into the indoor units 9b, 9c in the heating operation state via the three-way switching valve 20, and the heat exchange in the indoor heat exchanger 10 ( heating)
Then, the refrigerant is condensed and liquefied. Then, the flow rate of the condensed and liquefied refrigerant is controlled by the first electric expansion valve 21 so as to be in a slightly supercooled state, and flows into the third connection pipe 22. Part of this refrigerant enters the indoor unit 9a in the cooling operation state, is decompressed by the first expansion valve 21, and then the indoor heat exchanger 10
After entering, heat is exchanged (cooling), vaporizes and becomes a gas state, and flows into the first connecting pipe 13 via the three-way switching valve 20.

一方、他の冷媒液はレシーバ23に流入後、第2の電気
式膨張弁24で低圧まで減圧された後に、第3の接続配管
22から気液分離器19に流入する。ここで、冷房運転状態
にある室内機9aからの冷媒と合流して第1の接続配管13
を経て室外熱交換器4に流入し、熱交換され蒸発してガ
ス状態となって再び圧縮機2に戻る循環サイクルを形成
して暖房主体運転を行なう。なお、第2の電気式膨張弁
24の通過流量は室外熱交換器4に設けた第1及び第2の
温度センサ25,26により、冷媒の過熱度を検知して所定
の過熱度となるように制御される。
On the other hand, after the other refrigerant liquid flows into the receiver 23, the pressure is reduced to a low pressure by the second electric expansion valve 24, and then the third connecting pipe.
It flows from 22 to the gas-liquid separator 19. Here, the first connection pipe 13 is formed by merging with the refrigerant from the indoor unit 9a in the cooling operation state.
After that, the heating main operation is performed by forming a circulation cycle of flowing into the outdoor heat exchanger 4, being heat-exchanged and evaporated to be in a gas state and returning to the compressor 2 again. The second electric expansion valve
The passing flow rate of 24 is controlled by the first and second temperature sensors 25 and 26 provided in the outdoor heat exchanger 4 so that the degree of superheat of the refrigerant is detected and a predetermined degree of superheat is obtained.

また、冷房主体の冷暖房同時運転の場合、第4図に示
すように圧縮機2より吐出された冷媒は室外熱交換器4
に流入し、任意の量だけ熱交換され気液二相の高温高圧
状態となり、第1の接続配管13の気液分離器19に流入す
る。そして、ここで気体と液体に分離された後、室内側
に送られる。気液分離器19で分離された気体状の冷媒ガ
スは暖房運転状態にある室内機9aに三方切替弁20を介し
て導入され、室内熱交換器10で熱交換(暖房)して凝縮
液化され、第1の電気式膨張弁21より第3の接続配管22
に流入する。
Further, in the simultaneous cooling and heating operation mainly for cooling, the refrigerant discharged from the compressor 2 is the outdoor heat exchanger 4 as shown in FIG.
Flow into the gas-liquid separator 19 of the first connecting pipe 13 after heat exchange by an arbitrary amount into a gas-liquid two-phase high-temperature high-pressure state. Then, after being separated into gas and liquid here, they are sent to the inside of the room. The gaseous refrigerant gas separated by the gas-liquid separator 19 is introduced into the indoor unit 9a in the heating operation state via the three-way switching valve 20, and heat-exchanged (heating) in the indoor heat exchanger 10 to be condensed and liquefied. , The third connecting pipe 22 from the first electric expansion valve 21
Flows into.

一方、気液分離器19で分離された液体状の液冷媒は、
第3の接続配管22の第2の電気式膨張弁24を通りレシー
バ23に流入する。このとき、第3の接続配管22を通る冷
媒流量は気液分離器19に設けた液面検知器(一般に公知
のフロートスイッチ等)の信号により、気液分離器19内
の冷媒液面が所定の範囲内にあるように制御される。す
なわち、液面が所定の範囲よりも高い場合には、第2の
電気式膨張弁24の開度を開く方向に、また、液面が所定
の範囲よりも低い場合には、第2の電気式膨張弁24の開
度を閉じる方向に制御される。したがって、第3の接続
配管22には液体状の液冷媒のみが常時流れるように制御
される。このレシーバ23からの冷媒は暖房状態にある室
内機9aからの冷媒と合流し、第3の接続配管22から冷房
運転状態にある各室内機9b,9cに流入する。そして、第
1の電気式膨張弁21によって低圧状態まで減圧された後
に室内熱交換器10で熱交換(冷房)して蒸発する。この
ガス状態となった冷媒は三方切替弁20を介して第2の接
続配管14に流入し、再び圧縮機2に戻る循環サイクルを
形成して冷房主体運転を行なう。
On the other hand, the liquid liquid refrigerant separated by the gas-liquid separator 19 is
It flows into the receiver 23 through the second electric expansion valve 24 of the third connection pipe 22. At this time, the flow rate of the refrigerant passing through the third connecting pipe 22 is determined by the signal of the liquid level detector (generally known float switch etc.) provided in the gas-liquid separator 19 so that the refrigerant liquid level in the gas-liquid separator 19 is predetermined. Is controlled to be within the range of. That is, when the liquid level is higher than the predetermined range, the opening degree of the second electric expansion valve 24 is opened, and when the liquid level is lower than the predetermined range, the second electric expansion valve 24 is opened. The opening degree of the expansion valve 24 is controlled to be closed. Therefore, it is controlled so that only the liquid refrigerant in the liquid state always flows through the third connecting pipe 22. The refrigerant from the receiver 23 merges with the refrigerant from the indoor unit 9a in the heating state, and flows from the third connecting pipe 22 into the indoor units 9b, 9c in the cooling operation state. Then, after the pressure is reduced to a low pressure state by the first electric expansion valve 21, heat is exchanged (cooled) in the indoor heat exchanger 10 and evaporated. The refrigerant in the gas state flows into the second connection pipe 14 via the three-way switching valve 20 and forms a circulation cycle in which the refrigerant returns to the compressor 2 again to perform the cooling-main operation.

なお、この実施例では第3の接続配管22にレシーバ23
を設けるとともに、第1及び第2の流量制御装置である
電気式膨張弁21,24とにより、蒸発器または凝縮器とし
て機能する室外熱交換器4及び室内熱交換器10の冷媒の
過熱度と過冷却度を各々制御している。したがって、冷
房若くは暖房運転のみの場合、または、冷暖房同時運転
の場合の室内機9b〜9cの運転台数の変化や、或いは、空
気条件の変化等による冷媒量の変動をレシーバ23で調整
することができる。
In this embodiment, the receiver 23 is connected to the third connecting pipe 22.
And the electric expansion valves 21 and 24 which are the first and second flow rate control devices, and the superheat degree of the refrigerant of the outdoor heat exchanger 4 and the indoor heat exchanger 10 functioning as an evaporator or a condenser. Each supercooling degree is controlled. Therefore, in the case of only cooling or heating operation, or a change in the number of operating indoor units 9b ~ 9c in the case of simultaneous cooling and heating operation, or, the receiver 23 to adjust the fluctuation of the refrigerant amount due to changes in the air conditions. You can

また、上記実施例では三方切替弁20を設けて第1の接
続配管13と第2の接続配管14とを切替可能に接続した
が、第5図に示すように2つの電磁弁30,31等の開閉弁
を設けて切替可能に接続してもよい。さらに、上記実施
例では室内機9a〜9cに第1の流量制御装置である電気式
膨張弁21を設けたものについて説明したが、第5図に示
すように温度式膨張弁12、毛細管32、逆止弁11等により
構成し、室内機が冷房の場合は温度式膨張弁12で低圧ま
で減圧するようにし、暖房の場合は室内熱交換器10から
毛細管32、逆止弁11を通り、第3の接続配管22に冷媒が
流入するようにしてもよい。そして、上記実施例では第
3の接続配管22に第2の電気式膨張弁24を設けたが、こ
れと同等の動作を行なうものであればよく、第5図に示
すように、例えば、電気式流量調整弁33(例えば、ボー
ルバルブ)等の開閉弁であってもよい。このほか、上記
実施例では室外熱交換器4のほぼ中間部の伝熱管に温度
センサを設けたものについて説明したが、室外熱交換器
4の第1の接続配管13との接続部でもよく、また、温度
センサを四方弁3から室外熱交換器4の第1の接続配管
13の接続部にかけての管路に設置してもよい。
Further, in the above embodiment, the three-way switching valve 20 is provided and the first connecting pipe 13 and the second connecting pipe 14 are switchably connected. However, as shown in FIG. 5, two solenoid valves 30, 31, etc. An on-off valve may be provided to switchably connect. Further, in the above embodiment, the indoor unit 9a to 9c is described as being provided with the electric expansion valve 21 which is the first flow control device, but as shown in FIG. 5, the temperature expansion valve 12, the capillary tube 32, If the indoor unit is air-cooled, the temperature expansion valve 12 is used to reduce the pressure to a low pressure, and in the case of heating, the indoor heat exchanger 10 is passed through the capillary tube 32 and the check valve 11, The refrigerant may flow into the third connecting pipe 22. Further, in the above embodiment, the second electric expansion valve 24 is provided in the third connection pipe 22, but any operation equivalent to this may be performed, and as shown in FIG. It may be an on-off valve such as a flow control valve 33 (for example, a ball valve). In addition, in the above-described embodiment, a description has been given of the heat transfer pipe provided with the temperature sensor in the substantially middle portion of the outdoor heat exchanger 4, but the connection portion with the first connection pipe 13 of the outdoor heat exchanger 4 may also be used. In addition, the temperature sensor is connected from the four-way valve 3 to the first connection pipe of the outdoor heat exchanger 4.
You may install in the pipe line which goes to 13 connection parts.

ところで、上記の各実施例では室内機9a〜9cを三方切
替弁20、室内熱交換器10、及び第1の電気式膨張弁21等
により構成したものについて説明したが、室内熱交換器
10のみを室内機9a〜9cとし、この室内機9a〜9cの空気条
件により三方切替弁20及び第1の電気式膨張弁21を制御
してもよい。また、上記実施例では室外熱交換器4及び
室内熱交換器10を空気と冷媒とで熱交換するものについ
て述べたが、どちらか一方が水と冷媒または両熱交換器
が水と冷媒とで熱交換するものであってもよい。
By the way, in each of the above-described embodiments, the indoor units 9a to 9c are described as being constituted by the three-way switching valve 20, the indoor heat exchanger 10, the first electric expansion valve 21, and the like.
Only 10 may be the indoor units 9a to 9c, and the three-way switching valve 20 and the first electric expansion valve 21 may be controlled by the air conditions of the indoor units 9a to 9c. In the above embodiment, the outdoor heat exchanger 4 and the indoor heat exchanger 10 exchange heat with air and a refrigerant. However, one of them is water and a refrigerant or both heat exchangers are water and a refrigerant. It may be heat-exchanged.

[発明の効果] 以上説明したとおり、この発明の空気調和装置は、1
台の室外機と複数台の室内機とを並列に接続する第1の
接続配管または第2の接続配管の途中に気液分離装置を
設け、各々流量制御装置を接続した室内熱交換器の一方
を第1の接続配管と第2の接続配管とに切換可能に接続
し、室内熱交換器のもう一方を第3の接続配管で流量制
御装置を介して第1の接続配管または第2の接続配管の
どちらかに設けた気液分離装置に接続したことにより、
並列に接続された複数台の各室内機の冷房運転と暖房運
転とを同時にまたは選択的に行なうことができ、しか
も、冷媒の流量及び気液状態を適正に制御できるので、
各室内機が設置されている空間の冷暖房要求に対応いた
冷暖房運転ができ、利用範囲が拡大する。
[Advantages of the Invention] As described above, the air conditioner of the present invention is
One of the indoor heat exchangers in which a gas-liquid separation device is provided in the middle of the first connection pipe or the second connection pipe that connects the outdoor unit of one unit and the plurality of indoor units in parallel, and each of which is connected to the flow rate control unit Is connected to the first connection pipe and the second connection pipe in a switchable manner, and the other of the indoor heat exchangers is connected to the third connection pipe via the flow control device to form the first connection pipe or the second connection pipe. By connecting to the gas-liquid separation device provided in either of the piping,
Since the cooling operation and the heating operation of each of the plurality of indoor units connected in parallel can be performed simultaneously or selectively, and moreover, the flow rate of the refrigerant and the gas-liquid state can be appropriately controlled,
Cooling and heating operations that meet the cooling and heating requirements of the space where each indoor unit is installed can be performed, expanding the range of use.

また、室内機間を接続する第3の接続配管の追加だけ
で、室内外機間を接続する長い接続配管も従来の2本で
良く設置工事性も良く、費用も安いというメリットがあ
る。
Further, by simply adding the third connecting pipe for connecting the indoor units, the long connecting pipe for connecting the indoor unit and the outdoor unit can be two conventional ones, and the installation workability is good, and the cost is low.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図、第2図は第1図の空気調和装
置の冷房または暖房のみの運転動作状態を示す冷媒循環
図、第3図は第1図の空気調和装置の暖房主体の運転動
作状態を示す冷媒循環図、第4図は第1図の空気調和装
置の冷房主体の運転動作状態を示す冷媒循環図、第5図
はこの発明の他の実施例の空気調和装置の冷媒系を中心
とする全体構成図、第6図は従来の空気調和装置の冷媒
系を中心とする全体構成図である。 図において、 1:室外機、2:圧縮機 3:四方弁、4:室外熱交換器 8:アキュムレータ、9a〜9c:室内機 10:室内熱交換器、13:第1の接続配管 14:第2の接続配管、19:気液分離器 21:第1の流量制御装置である電気式膨張弁 22:第3の接続配管、23:レシーバ 24:第2の流量制御装置である電気式膨張弁 33:電気式流量調整弁 である。 なお、図中、同一符号及び同一記号は、同一または相当
部分を示す。
FIG. 1 is an overall configuration diagram centering on the refrigerant system of the air conditioner of the first embodiment of the present invention, and FIG. 2 is a refrigerant circulation showing the operating state of only cooling or heating of the air conditioner of FIG. Fig. 3 is a refrigerant circulation diagram showing the operation state of the heating-based main body of the air conditioner of Fig. 1, and Fig. 4 is a refrigerant circulation diagram showing the operating state of the cooling-main body of the air conditioner of Fig. 1. FIG. 5 is an overall block diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention, and FIG. 6 is an overall block diagram centering on the refrigerant system of the conventional air conditioner. In the figure, 1: outdoor unit, 2: compressor 3: four-way valve, 4: outdoor heat exchanger 8: accumulator, 9a to 9c: indoor unit 10: indoor heat exchanger, 13: first connection pipe 14: first 2 connection pipe, 19: gas-liquid separator 21: first expansion control device that is an electric expansion valve 22: third connection pipe, 23: receiver 24: second expansion device that is an electric expansion valve 33: Electric flow control valve. In the drawings, the same reference numerals and symbols indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、切換弁、室外熱交換器等を有する
1台の室外機と、各々流量制御装置を接続した室内熱交
換器を有する複数台の室内機と、前記室外機と室内機間
を第1の接続配管及び第2の接続配管を介して並列接続
してなる空気調和装置において、 上記第1の接続配管または第2の接続配管の途中に気液
分離装置を設け、上記複数台の室内機の一方を前記第1
の接続配管または第2の接続配管に切替可能に接続し、
他の一方を第3の接続配管で流量制御装置を介して前記
第1の接続配管または第2の接続配管のいずれかに設け
た気液分離装置に接続したことを特徴とする空気調和装
置。
1. An outdoor unit having a compressor, a switching valve, an outdoor heat exchanger, etc., and a plurality of indoor units having an indoor heat exchanger to which a flow rate control device is connected, respectively, the outdoor unit and the indoor unit. In an air conditioner in which machines are connected in parallel via a first connection pipe and a second connection pipe, a gas-liquid separator is provided in the middle of the first connection pipe or the second connection pipe, One of a plurality of indoor units is the first
Connectable to the connection pipe of or the second connection pipe,
An air conditioner characterized in that the other one is connected to a gas-liquid separation device provided in either the first connection pipe or the second connection pipe via a flow control device through a third connection pipe.
JP63260762A 1988-10-17 1988-10-17 Air conditioner Expired - Lifetime JP2522362B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63260762A JP2522362B2 (en) 1988-10-17 1988-10-17 Air conditioner
KR1019890011915A KR920008504B1 (en) 1988-10-17 1989-08-22 Air conditioner
AU42562/89A AU615347B2 (en) 1988-10-17 1989-10-04 Air conditioning device
US07/417,207 US4987747A (en) 1988-10-17 1989-10-04 Air conditioning device
ES89118584T ES2051338T3 (en) 1988-10-17 1989-10-06 AIR CONDITIONING DEVICE.
EP89118584A EP0364834B1 (en) 1988-10-17 1989-10-06 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63260762A JP2522362B2 (en) 1988-10-17 1988-10-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02106667A JPH02106667A (en) 1990-04-18
JP2522362B2 true JP2522362B2 (en) 1996-08-07

Family

ID=17352377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63260762A Expired - Lifetime JP2522362B2 (en) 1988-10-17 1988-10-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP2522362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447204B1 (en) * 2002-08-22 2004-09-04 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same

Also Published As

Publication number Publication date
JPH02106667A (en) 1990-04-18

Similar Documents

Publication Publication Date Title
KR100437805B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
EP0676595B1 (en) Air conditioning apparatus
US4862705A (en) Air conditioner
EP1921400B1 (en) Simultaneous cooling-heating multiple type air conditioner
EP1391660A1 (en) Multi-unit air conditioner and method for controlling operation of outdoor unit fan thereof
JPH0754217B2 (en) Air conditioner
EP1391664A2 (en) Multi-unit air conditioner and method for controlling operation of outdoor unit fan thereof
JP3781046B2 (en) Air conditioner
JP4785508B2 (en) Air conditioner
JP4269306B2 (en) Multi-room air conditioner
JP2522363B2 (en) Air conditioner
JP2522362B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
KR100480702B1 (en) Multi-type air conditioner for cooling/heating the same time
JP2010261713A (en) Air conditioner
JP2522371B2 (en) Air conditioner
JP2698117B2 (en) Air conditioner
CN112082200B (en) Indoor unit set, multi-connected air conditioning system and supercooling degree control method thereof
JP2601052B2 (en) Air conditioner
JPH0252964A (en) Multiroom type refrigerating circuit
JPH05172433A (en) Air conditioning apparatus
JP2757584B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JPH086980B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13