JPH05172433A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH05172433A
JPH05172433A JP3324441A JP32444191A JPH05172433A JP H05172433 A JPH05172433 A JP H05172433A JP 3324441 A JP3324441 A JP 3324441A JP 32444191 A JP32444191 A JP 32444191A JP H05172433 A JPH05172433 A JP H05172433A
Authority
JP
Japan
Prior art keywords
indoor
control device
refrigerant
heat
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3324441A
Other languages
Japanese (ja)
Other versions
JP2616525B2 (en
Inventor
Shuichi Tani
秀一 谷
Setsu Nakamura
節 中村
Noriaki Hayashida
徳明 林田
Tomohiko Kasai
智彦 河西
Junichi Kameyama
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3324441A priority Critical patent/JP2616525B2/en
Publication of JPH05172433A publication Critical patent/JPH05172433A/en
Application granted granted Critical
Publication of JP2616525B2 publication Critical patent/JP2616525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Abstract

PURPOSE:To provide an air conditioning apparatus the workability and installing characteristics of which are favorable even if it is installed in a wide range by a method wherein one heat source machine and a plurality of indoor machines are connected to each other through a plurality of relay machines. CONSTITUTION:All six indoor machines are divided into one group of three composing elements and the other group of three composing elements. The composing element 60 comprises indoor machines B, C and D. The composing element 70 comprises of indoor machines F, G and H. A relay machine E stores in it the first branching part 10 and the second branching part 11 corresponding to the composing element 60; the second, third and fourth flow rate control devices 13, 15 and 17; the first and second heat exchanging parts 19, 16a; and the third heat exchanging parts 16b, 16c and 16d and the like. A relay machine I stores in it the first and second branch parts 50 and 51 corresponding to the composing element 70; the fifth and sixth flow rate control devices 55 and 57; and the fourth, fifth and sixth heat exchanging portions 59, 16i, 16f, 16g and 16h and the like. The relay machine I is placed between the indoor machines F, G and H and the heat source machine A and connected in parallel with the specified relay machine E. Since a plurality of relay machines E and I are placed between the heat source machine A, the indoor machines B to D, F to H, it is possible to provide an air conditioning apparatus in which a workability of connecting pipes and superior installing characteristics of the relay machines can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
装置に関するもので、特に各室内機毎に冷暖房を選択的
に、かつ一方の室内機では、冷房、他方の室内機では暖
房が同時に行うことができる空気調和装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, heating and cooling are selectively applied to each indoor unit, and The present invention relates to an air conditioner capable of simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

【0002】[0002]

【従来の技術】以下、従来例について説明する。図8は
従来の空気調和装置の冷媒系を中心とする全体構成図で
ある。また、図9、図10、図11は図8の従来例にお
ける冷暖房運転時の動作状態を示したもので、図9は冷
房又は暖房のみの運転動作状態図、図10及び図11は
冷暖房同時運転の動作を示すもので、図10は暖房主体
(暖房運転しようとしている室内機の合計容量が冷房運
転しようとしている室内機の合計容量より大きい場合)
を、図11は冷房主体(冷房運転しようとしている室内
機の合計容量が暖房運転しようとしている室内機の合計
容量より大きい場合)を示す運転動作状態図である。な
お、この従来例では熱源機1台に室内機3台を接続した
場合について説明するが、2台以上の室内機を接続した
場合でも同様である。
2. Description of the Related Art A conventional example will be described below. FIG. 8 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner. Further, FIGS. 9, 10 and 11 show operating states during cooling and heating operation in the conventional example of FIG. 8, FIG. 9 is an operating state diagram of only cooling or heating, and FIGS. 10 and 11 are simultaneous cooling and heating. FIG. 10 shows a heating operation (when the total capacity of the indoor units about to perform the heating operation is larger than the total capacity of the indoor units about to perform the cooling operation).
FIG. 11 is an operation state diagram showing cooling mainly (when the total capacity of the indoor units about to perform the cooling operation is larger than the total capacity of the indoor units about to perform the heating operation). In addition, in this conventional example, a case where three indoor units are connected to one heat source device will be described, but the same applies to a case where two or more indoor units are connected.

【0003】図8において、Aは熱源機、B、C、Dは
後述するように互いに並列接続された室内機で、それぞ
れ同じ構成となっている。Eは後述するように、第1の
分岐部、第2の流量制御装置、第2の分岐部、気液分離
装置、第1及び第2の熱交換部を内蔵した中継機であ
る。1は圧縮機、2は熱源機の冷媒流通方向を切り換え
る四方切換弁、3は熱源機側熱交換器、4はアキュムレ
ータで、上記機器1〜3と接続され熱源機Aを構成す
る。5はそれぞれ室内機B、C、Dの室内側熱交換器、
6は四方切換弁2と中継機Eを接続する太い第1の接続
配管、6b、6c、6dはそれぞれ室内機B、C、Dの
室内側熱交換器5と中継器Eを接続し、第1の接続配管
6に対応する室内機側の第1の接続配管、7は熱源機側
熱交換器3と中継機Eを接続する上記第1の接続配管6
より細い第2の接続配管、7b、7c、7dはそれぞれ
室内機B、C、Dの室内側熱交換器5と中継機Eを接続
し、第2の接続配管7に対応する室内機側の第2の接続
配管、8は室内機側の第1の接続配管6b、6c、6d
と、第1の接続配管6または、第2の接続配管7側に切
り換え可能に接続する三方切換弁、9は室内側熱交換器
5に近接して接続され、冷房時は室内側熱交換器5の出
口側の過熱度、暖房時は過冷却度により制御される第1
の流量制御装置で、室内機側の第2の接続配管7b、7
c、7dに接続される。
In FIG. 8, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, which will be described later, and have the same structure. As will be described later, E is a repeater incorporating a first branch part, a second flow rate control device, a second branch part, a gas-liquid separation device, and first and second heat exchange parts. Reference numeral 1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source device, 3 is a heat source device side heat exchanger, and 4 is an accumulator, which is connected to the above-mentioned devices 1 to 3 and constitutes a heat source device A. 5 is the indoor heat exchanger of the indoor units B, C and D,
6 is a thick first connecting pipe connecting the four-way switching valve 2 and the relay unit E, 6b, 6c and 6d connect the indoor heat exchanger 5 and the relay unit E of the indoor units B, C and D, respectively. The first connection pipe on the indoor unit side corresponding to the connection pipe 6 of No. 1, 7 is the above-mentioned first connection pipe 6 for connecting the heat exchanger 3 on the heat source unit side and the relay unit E
The thinner second connection pipes 7b, 7c, 7d connect the indoor heat exchangers 5 of the indoor units B, C, D and the relay unit E, respectively, and connect the indoor heat exchanger 5 of the indoor units B, C, D with the indoor unit side corresponding to the second connection pipe 7. Second connection pipe, 8 is first connection pipe 6b, 6c, 6d on the indoor unit side
And a three-way switching valve 9 which is switchably connected to the first connection pipe 6 or the second connection pipe 7 side, and 9 are connected close to the indoor heat exchanger 5, and the indoor heat exchanger during cooling. Controlled by the degree of superheat on the outlet side of 5 and the degree of supercooling during heating
The second connection pipes 7b, 7 on the indoor unit side in the flow control device of
c, 7d.

【0004】10は室内機側の第1の接続配管6b、6
c、6dと、第1の接続配管6または、第2の接続配管
7に切り換え可能に接続する三方切換弁8よりなる第1
の分岐部、11は室内機側の第2の接続配管7b、7
c、7dと、その会合部よりなる第2の分岐部、12は
第2の接続配管7の途中に設けられた気液分離装置で、
その気相部は、三方切換弁8のそれぞれの第1口8aに
接続され、その液相部は第2の分岐部11に接続されて
いる。13は気液分離装置12と第2の分岐部11との
間に接続する開閉自在な第2の流量制御装置、14は第
2の分岐部11と上記第1の接続配管6を結ぶ第1のバ
イパス配管、15は第1のバイパス配管14の途中に設
けられた第3の流量制御装置、16b、16c、16d
は第1のバイパス配管14の第3の流量制御装置15の
下流に設けられ、第2の分岐部11における各室内機側
の第2の接続配管7b、7c、7dとの間でそれぞれ熱
交換を行う第3の熱交換部、16aは第1のバイパス配
管14の第3の流量制御装置15の下流及び第3の熱交
換部16b、16c、16dの下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b、
7c、7dの会合部との間で熱交換を行う第2の熱交換
部、19は第1のバイパス配管14の第3の流量制御装
置15の下流及び第2の熱交換部16aの下流に設けら
れ気液分離装置12と第2の流量制御装置13とを接続
する配管との間で熱交換を行う第1の熱交換部、17は
第2の分岐部11と第1の接続配管6との間に接続する
開閉自在な第4の流量制御装置、32は熱源側熱交換器
3と第2の接続配管7との間に設けられた第3の逆止弁
であり、熱源側熱交換器3から第2の接続配管7へのみ
冷媒流通を許容する。
Reference numeral 10 is the first connecting pipes 6b, 6 on the indoor unit side.
c, 6d and a three-way switching valve 8 switchably connected to the first connecting pipe 6 or the second connecting pipe 7
And 11 are the second connection pipes 7b, 7 on the indoor unit side.
c and 7d, and a second branch portion 12 composed of the meeting portion thereof, 12 is a gas-liquid separator provided in the middle of the second connecting pipe 7,
The gas phase portion is connected to each first port 8 a of the three-way switching valve 8, and the liquid phase portion is connected to the second branch portion 11. Reference numeral 13 is a second flow rate control device which is connected between the gas-liquid separation device 12 and the second branch portion 11 and which can be opened and closed, and 14 is a first portion which connects the second branch portion 11 and the first connection pipe 6 to each other. Bypass pipe, 15 is a third flow rate control device provided in the middle of the first bypass pipe 14, 16b, 16c, 16d
Is provided downstream of the third flow rate control device 15 of the first bypass pipe 14, and heat is exchanged with the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11, respectively. The third heat exchange unit 16a for performing the above is provided in the first bypass pipe 14 downstream of the third flow rate control device 15 and downstream of the third heat exchange units 16b, 16c, 16d, and the second branch unit. The second connection pipe 7b on the indoor unit side in 11
A second heat exchanging section 19 for exchanging heat with the meeting section of 7c and 7d, 19 is provided downstream of the third flow rate controller 15 of the first bypass pipe 14 and downstream of the second heat exchanging section 16a. A first heat exchanging unit for exchanging heat between a pipe that connects the gas-liquid separating device 12 and the second flow rate control device 13, and 17 denotes a second branching unit 11 and a first connecting pipe 6 An openable and closable fourth flow rate control device, 32 is a third check valve provided between the heat source side heat exchanger 3 and the second connecting pipe 7, The refrigerant is allowed to flow only from the exchanger 3 to the second connecting pipe 7.

【0005】33は熱源機Aの四方切換弁2と第1の接
続配管6との間に設けられた第4の逆止弁であり、第1
の接続配管6から四方切換弁2へのみ冷媒流通を許容す
る。34は熱源機Aの四方切換弁2と第2の接続配管7
との間設けられた第5の逆止弁であり、四方切換弁2か
ら第2の接続配管7へのみ冷媒流通を許容する。35は
熱源側熱交換器3と第1の接続配管6との間に設けられ
た第6の逆止弁であり、第1の接続配管6から熱源側熱
交換器3へのみ冷媒流通を許容する。上記第3の逆止弁
32〜第6の逆止弁35で切換弁40を構成する。23
は第2の流量制御装置13と第1の熱交換部19を接続
する配管に取り付けた第1の温度検出器、25は上記第
1の温度検出器23と同じ配管に取り付けた第1の圧力
検出器、25は第2の分岐部11に取り付けた第2の圧
力検出器である。
Reference numeral 33 is a fourth check valve provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6, and is a first check valve.
The refrigerant is allowed to flow only from the connecting pipe 6 to the four-way switching valve 2. 34 is the four-way switching valve 2 of the heat source unit A and the second connecting pipe 7
Is a fifth check valve provided between the four-way switching valve 2 and the second connection pipe 7. Reference numeral 35 denotes a sixth check valve provided between the heat source side heat exchanger 3 and the first connection pipe 6, and allows the refrigerant to flow only from the first connection pipe 6 to the heat source side heat exchanger 3. To do. The third check valve 32 to the sixth check valve 35 constitute a switching valve 40. 23
Is a first temperature detector attached to a pipe connecting the second flow rate control device 13 and the first heat exchange unit 19, and 25 is a first pressure attached to the same pipe as the first temperature detector 23. A detector, 25 is a second pressure detector attached to the second branch portion 11.

【0006】このように構成された従来例について説明
する。まず、図9を用いて冷房運転のみの場合について
説明する。すなわち、図9に実線矢印で示すように圧縮
機1より吐出された高温高圧の冷媒ガスは四方切換弁2
を通り、熱源機側熱交換器3で熱交換して凝縮された
後、第3の逆止弁32、第2の接続配管7、気液分離装
置12、第2の流量制御装置13の順に通り、更に第2
の分岐部11、室内機側の第2の接続配管7b、7c、
7dを通り、各室内機B、C、Dに流入した冷媒は、各
室内側熱交換器5の出口の過熱度により制御される第1
の流量制御装置9により低圧まで減圧されて室内側熱交
換器5で室内空気と熱交換して蒸発しガス化され室内を
冷房する。そして、このガス状態となった冷媒は、室内
機側の第1の接続配管6b、6c、6d、三方切換弁
8、第1の分岐部10を通り、第1の接続配管6、第4
の逆止弁33、四方弁切換弁2、アキュムレータ4を経
て圧縮機1に吸入される循環サイクルを構成し、冷房運
転を行う。このとき、三方切換弁8はそれぞれの第1口
8aは閉路、第2口8b及び第3口8cは開路されてい
る。
A conventional example having such a configuration will be described. First, the case of only the cooling operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 as shown by the solid line arrow in FIG.
Through the heat source side heat exchanger 3, and after being condensed, the third check valve 32, the second connection pipe 7, the gas-liquid separation device 12, and the second flow rate control device 13 in this order. Street, then second
Branch portion 11, the second connection pipes 7b, 7c on the indoor unit side,
The refrigerant flowing through 7d into each indoor unit B, C, D is controlled by the degree of superheat at the outlet of each indoor heat exchanger 5
The flow rate control device 9 reduces the pressure to a low pressure, and the indoor heat exchanger 5 exchanges heat with the indoor air to evaporate and gasify to cool the room. Then, the refrigerant in this gas state passes through the first connection pipes 6b, 6c, 6d on the indoor unit side, the three-way switching valve 8, the first branch portion 10, and the first connection pipe 6 and the fourth connection pipe.
A circulation cycle in which the check valve 33, the four-way valve switching valve 2, and the accumulator 4 are sucked into the compressor 1 is configured to perform the cooling operation. At this time, in the three-way switching valve 8, the first port 8a is closed and the second port 8b and the third port 8c are open.

【0007】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必然的に第3の逆止弁32、第
4の逆止弁33へ冷媒は流通する。また、このサイクル
の時、第2の流量制御装置13を通過した冷媒の一部が
第1のバイパス配管14へ入り、第3の流量制御装置1
5で低圧まで減圧されて、第3の熱交換部16b、16
c、16dで各室内機側の第2の接続配管7b、7c、
7dとの間で、また第2の熱交換部16aで第2の分岐
部11の各室内機側の第2の接続配管7b、7c、7d
の会合部との間で、更に第1の熱交換部19で第2の流
量制御装置13に流入する冷媒との間で熱交換を行い蒸
発した冷媒は、第1の接続配管6へ入り、第4の逆止弁
33、四方切換弁2、アキュムレータ4を経て圧縮機1
に吸入される。一方、第1及び第2及び第3の熱交換部
19、16a、16b、16c、16dで熱交換し、冷
却され過冷却度を十分につけられた上記第2の分岐部1
1の冷媒は冷房しようとしている室内機B、C、Dへ流
入する。
At this time, since the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33. Further, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the first bypass pipe 14 and the third flow rate control device 1
The pressure is reduced to a low pressure at 5, and the third heat exchange parts 16b, 16
c and 16d, the second connection pipes 7b and 7c on the indoor unit side,
7d, and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 in the second heat exchange portion 16a.
The refrigerant that has exchanged heat with the meeting portion of the first heat exchange section 19 and the refrigerant that flows into the second flow rate control device 13 and has evaporated enters the first connection pipe 6. The compressor 1 is passed through the fourth check valve 33, the four-way switching valve 2 and the accumulator 4.
Inhaled into. On the other hand, the second branch portion 1 is heat-exchanged by the first, second, and third heat exchange portions 19, 16a, 16b, 16c, and 16d, and is cooled and sufficiently supercooled.
Refrigerant No. 1 flows into the indoor units B, C, and D that are about to be cooled.

【0008】次に、図9を用いて暖房運転のみの場合に
ついて説明する。すなわち、図9に破線矢印で示すよう
に圧縮機1より吐出された高温高圧の冷媒ガスは四方切
換弁2を通り、第5の逆止弁34、第2の接続配管7、
気液分離装置12を通り、第1の分岐部10、三方切換
弁8、室内機側の第1の接続配管6b、6c、6dを通
り、各室内機B、C、Dに流入した冷媒は、室内空気と
熱交換して凝縮液化し、室内を暖房する。そして、この
液状態となた冷媒は、各室内側熱交換器5の出口の過冷
却度により制御される第1の流量制御装置9を通り、室
内機側の第2の接続配管7b、7c、7dから第2の分
岐部11に流入して合流し、更に第4の流量制御装置1
7を通り、ここで第1の流量制御装置9又は第4の流量
制御装置17と第3の流量制御装置15のどちらか一方
で低圧の二相状態まで減圧される。そして、低圧まで減
圧された冷媒は、第1の接続配管6を経て、第6の逆止
弁35、熱源機側熱交換器3に流入した熱交換して蒸発
しガス状態となった冷媒は、四方切換弁2、アキュムレ
ータ4を経て圧縮機1に吸入される循環サイクルを構成
し、暖房運転を行う。このとき、三方切換弁8はそれぞ
れの第2口8bは閉路、第1口8a及び第3口8cは開
路されている。この時、第1の接続配管6が低圧、第2
の接続配管7が高圧のため必然的に第5の逆止弁34、
第6の逆止弁35へ冷媒は流通する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by the broken line arrow in FIG. 9, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, the second connecting pipe 7,
The refrigerant that has passed through the gas-liquid separation device 12, the first branch portion 10, the three-way switching valve 8, and the first connection pipes 6b, 6c, 6d on the indoor unit side into the indoor units B, C, D , Heat exchange with indoor air to condense and liquefy and heat the room. Then, the refrigerant in the liquid state passes through the first flow rate control device 9 controlled by the supercooling degree at the outlet of each indoor heat exchanger 5, and then the second connection pipes 7b, 7c on the indoor unit side. , 7d flow into the second branch portion 11 and join together, and further the fourth flow rate control device 1
7, where the pressure is reduced to a low-pressure two-phase state by either the first flow control device 9 or the fourth flow control device 17 and the third flow control device 15. Then, the refrigerant decompressed to a low pressure passes through the first connection pipe 6 and flows into the sixth check valve 35 and the heat source unit side heat exchanger 3 to exchange heat and evaporate to become a gas state refrigerant. , A four-way switching valve 2 and an accumulator 4 form a circulation cycle that is sucked into the compressor 1 to perform heating operation. At this time, the second port 8b of the three-way switching valve 8 is closed, and the first port 8a and the third port 8c are open. At this time, the first connecting pipe 6 is low pressure, the second
Due to the high pressure of the connecting pipe 7 of the fifth check valve 34,
The refrigerant flows to the sixth check valve 35.

【0009】冷暖房同時運転における暖房主体の場合に
ついて図10を用いて説明する。ここでは室内機B、C
の2台が暖房、室内機D1台が冷房しようとしている場
合について説明する。すなわち、図10に実線矢印で示
すように、圧縮機1より吐出された高温高圧の冷媒ガス
は四方切換弁2、第5の逆止弁34、第2の接続配管7
を通り、中継機Eへ送られ、気液分離装置12を通り、
そして第1の分岐部10、室内機B、Cに接続された三
方切換弁8、室内機側の接続配管6b、6cの順に通
り、暖房しようとしている室内機B、Cに流入した冷媒
は、室内側熱交換器5で室内空気と熱交換して凝縮液化
し、室内を暖房する。そして、この液状態となった冷媒
は、室内側熱交換器5の出口の過冷却度により制御さ
れ、ほぼ全開状態の第1の流量制御装置9を通り少し減
圧されて高圧と低圧の中間の圧力(中間圧)になり、室
内機側の第2の接続配管7b、7cから第2の分岐部1
1に流入する。そして、室内機側の第2の接続配管7d
を通り冷房しようとしている室内機Dに入り、室内側熱
交換器5の出口の過熱度により制御される第1の流量制
御装置9により減圧された後に室内側熱交換器5に入り
熱交換して蒸発しガス状態となって室内を冷房し、室内
機Dに接続された三方切換弁8を介して第1の接続配管
6に流入する。
A case of mainly heating in the cooling / heating simultaneous operation will be described with reference to FIG. Here, indoor units B and C
2 will be described as heating and one indoor unit D will be cooling. That is, as shown by the solid line arrow in FIG. 10, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is supplied to the four-way switching valve 2, the fifth check valve 34, and the second connecting pipe 7.
, Is sent to the repeater E, passes through the gas-liquid separation device 12,
Then, the refrigerant that has flowed through the first branch portion 10, the three-way switching valve 8 connected to the indoor units B and C, and the connection pipes 6b and 6c on the indoor unit side into the indoor units B and C to be heated is: The indoor heat exchanger 5 exchanges heat with indoor air to condense and liquefy, and heats the room. Then, the refrigerant in the liquid state is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, and is slightly decompressed to an intermediate pressure between high pressure and low pressure. The pressure (intermediate pressure) is reached, and the second connection pipe 1 from the second connection pipes 7b, 7c on the indoor unit side
Flow into 1. Then, the second connection pipe 7d on the indoor unit side
Enters the indoor unit D, which is going to be cooled, and enters the indoor heat exchanger 5 for heat exchange after being depressurized by the first flow rate control device 9 controlled by the superheat degree of the outlet of the indoor heat exchanger 5. It evaporates to become a gas state, cools the room, and flows into the first connection pipe 6 via the three-way switching valve 8 connected to the indoor unit D.

【0010】一方、他の冷媒は第2の接続配管7の高圧
と第2の分岐部11の中間圧の差を一定にするように制
御される開閉自在な第4の流量制御装置17を通って、
冷房しようとしている室内機Dを通った冷媒と合流して
太い第1の接続配管6に流入し、第6の逆止弁35、熱
源機側熱交換器3に流入し熱交換して蒸発しガス状態と
なった冷媒は、四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、暖房主体
運転を行う。このとき、冷房しようとしている室内機D
の室内側熱交換器5の蒸発圧力と熱源側熱交換器3の蒸
発圧力の圧力差が、太い第1の接続配管6に切り換える
ために小さくなる。このとき、室内機B、Cに接続され
た三方切換弁8はそれぞれの第2口8bは閉路、第1口
8a及び第3口8cは開路されている。また室内機Dに
接続された三方切換弁8は第2口8b及び第3口8cは
開路、第1口8aは閉路されている。
On the other hand, the other refrigerant passes through the openable / closable fourth flow rate control device 17 which is controlled so that the difference between the high pressure in the second connecting pipe 7 and the intermediate pressure in the second branch portion 11 is kept constant. hand,
It merges with the refrigerant that has passed through the indoor unit D that is going to be cooled, flows into the thick first connecting pipe 6, flows into the sixth check valve 35, and the heat source unit side heat exchanger 3 to exchange heat and evaporate. The refrigerant in a gas state constitutes a circulation cycle in which it is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4, and performs heating-main operation. At this time, the indoor unit D that is about to be cooled
The pressure difference between the evaporating pressure of the indoor heat exchanger 5 and the evaporating pressure of the heat source side heat exchanger 3 is reduced due to switching to the thick first connecting pipe 6. At this time, the second port 8b of each of the three-way switching valves 8 connected to the indoor units B and C is closed, and the first port 8a and the third port 8c are open. The three-way switching valve 8 connected to the indoor unit D has the second port 8b and the third port 8c opened, and the first port 8a closed.

【0011】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必要的に第5の逆止弁34、第
6の逆止弁35へ冷媒は流通する。また、このサイクル
の時、一部の液冷媒は各室内機側の第2の接続配管7
b、7cの合流部から第1のバイパス配管14へ入り、
第3の流量制御装置15で低圧まで減圧されて、第3の
熱交換部16b、16c、16dで各室内機側の第2の
接続配管7b、7c、7dとの間で、また第2の熱交換
部16aで第2の分岐部11の各室内機側の第2の接続
配管7b、7c、7dの会合部との間で、更に第1の熱
交換部19で第2の流量制御装置13へ流入する冷媒と
の間で熱交換を行い蒸発した冷媒は、第1の接続配管6
へ入り、第6の逆止弁35を経て熱源機側熱交換器3に
流入し熱交換して蒸発しガス状態となる。そして、この
冷媒は四方切換弁2、アキュムレータ4を経て圧縮機1
に吸入される。一方、第1及び第2及び第3の熱交換部
19、16a、16b、16c、16dで熱交換し冷却
され過冷却度を十分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機Dへ流入する。
At this time, since the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure, the refrigerant flows through the fifth check valve 34 and the sixth check valve 35 as necessary. In addition, during this cycle, some of the liquid refrigerant flows into the second connection pipe 7 on the indoor unit side.
Enter the first bypass pipe 14 from the confluence of b and 7c,
The pressure is reduced to a low pressure by the third flow control device 15, and the third heat exchange units 16b, 16c, 16d are connected to the second connection pipes 7b, 7c, 7d on the side of each indoor unit, and the second connection pipes. In the heat exchange section 16a, between the second branch section 11 and the meeting section of the second connection pipes 7b, 7c, 7d on the indoor unit side, and further in the first heat exchange section 19, the second flow rate control device. The refrigerant that has undergone heat exchange with the refrigerant flowing into 13 and has evaporated is the first connecting pipe 6
And enters the heat source unit side heat exchanger 3 through the sixth check valve 35 to exchange heat and evaporate into a gas state. Then, this refrigerant passes through the four-way switching valve 2 and the accumulator 4 and then passes through the compressor 1
Inhaled into. On the other hand, the second branch portion 11 is heat-exchanged and cooled by the first, second, and third heat exchange portions 19, 16a, 16b, 16c, and 16d to have a sufficient degree of supercooling.
Of the refrigerant flows into the indoor unit D that is about to be cooled.

【0012】冷暖房同時運転における冷房主体の場合に
ついて図11を用いて説明する。ここでは、室内機B、
Cの2台が冷房、室内機D1台が暖房しようとしている
場合について説明する。すなわち、図11に実線矢印で
示すように圧縮機1より吐出された高温高圧の冷媒ガス
は四方切換弁2を通り、熱源機側熱交換器3で任意量熱
交換して気液2相の高温高圧冷媒となり、第3の逆止弁
32、第2の接続配管7より、中継機Eの気液分離装置
12へ送られる。ここで、ガス状冷媒と液状冷媒に分離
され、分離されたガス状冷媒を第1の分岐部10、三方
切換弁8、室内機側の第1の接続配管6dの順に通り、
暖房しようとしている室内機Dに流入し、室内側熱交換
器5で室内空気と熱交換して凝縮液化し、室内を暖房す
る。更に、室内側熱交換器5の出口の過冷却度により制
御されほぼ全開状態の第1の流量制御装置9を通り少し
減圧されて、高圧と低圧の中間の圧力(中間圧)とな
り、第2の分岐部11に流入する。一方、残りの液状冷
媒は高圧と中間圧の差を一定にするように制御される第
2の流量制御装置13を通って第2の分岐部11に流入
し、暖房しようとしている室内機Dを通った冷媒と合流
する。
A case of mainly cooling in the cooling / heating simultaneous operation will be described with reference to FIG. Here, the indoor unit B,
A case will be described in which two units C are cooling and one indoor unit D is about to heat. That is, as shown by the solid arrow in FIG. 11, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and exchanges an arbitrary amount of heat with the heat source side heat exchanger 3 to form a gas-liquid two-phase. The high-temperature high-pressure refrigerant is sent to the gas-liquid separation device 12 of the relay machine E through the third check valve 32 and the second connection pipe 7. Here, it is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is passed through the first branch portion 10, the three-way switching valve 8, and the first connection pipe 6d on the indoor unit side in this order.
It flows into the indoor unit D that is going to be heated, and heat-exchanges with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room. Further, it is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5 and is slightly decompressed through the first fully open flow rate control device 9, becoming an intermediate pressure between high pressure and low pressure (intermediate pressure). Flows into the branch portion 11. On the other hand, the remaining liquid refrigerant flows into the second branch portion 11 through the second flow rate control device 13 that is controlled so that the difference between the high pressure and the intermediate pressure becomes constant, and the indoor unit D that is about to be heated is It merges with the refrigerant that has passed through.

【0013】そして、第2の分岐部11、室内機側の第
2の接続配管7b、7cを通り、各室内機B、Cに流入
する。そして、この冷媒は、室内機B、Cに室内側熱交
換器5の出口の過熱度により制御される第1の流量制御
装置9により低圧まで減圧されて室内側熱交換器5で室
内空気と熱交換して蒸発しガス化され室内を冷房する。
そして、このガス状態となった冷媒は、室内機側の第1
の接続配管6b、6c、室内機B、Cに接続された三方
切換弁8、第1の分岐部10、第1の接続配管6、第4
の逆止弁33、四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房主体
運転を行う。このとき、室内機B、Cに接続された三方
切換弁8はそれぞれの第1口8aは閉路、第2口8b及
び第3口8cは開路されている。また室内機Dに接続さ
れた三方切換弁8は第1口8a及び第3口8cは開路、
第2口8bは閉路されている。
Then, it passes through the second branch portion 11 and the second connection pipes 7b and 7c on the indoor unit side and flows into the indoor units B and C. Then, this refrigerant is depressurized to a low pressure by the first flow rate control device 9 that is controlled by the superheat degree of the outlet of the indoor heat exchanger 5 in the indoor units B and C, and becomes the indoor air in the indoor heat exchanger 5. It heats and evaporates, is gasified, and cools the room.
Then, the refrigerant in the gas state is the first refrigerant on the indoor unit side.
Connection pipes 6b and 6c, the three-way switching valve 8 connected to the indoor units B and C, the first branch portion 10, the first connection pipe 6, and the fourth
The check valve 33, the four-way switching valve 2, and the accumulator 4 constitute a circulation cycle in which the air is sucked into the compressor 1 to perform the cooling main operation. At this time, the three-way switching valve 8 connected to the indoor units B and C has the first port 8a closed and the second port 8b and the third port 8c open. Further, the three-way switching valve 8 connected to the indoor unit D has the first port 8a and the third port 8c opened.
The second port 8b is closed.

【0014】このとき、第1の接続配管6が低圧、第2
の接続配管7が高圧のため必然的に第3の逆止弁32、
第4の逆止弁33へ冷媒は流通する。 また、このサイ
クルの時、一部の液冷媒は各室内機側の第2の接続配管
7b、7c、7dの会合部から第1のバイパス配管14
へ入り、第3の流量制御装置15で低圧まで減圧され
て、第3の熱交換部16b、16c、16dで各室内機
側の第2の接続配管7b、7c、7dとの間で、また第
2の熱交換部16aで第2の分岐部11の各室内機側の
第2の接続配管7b、7c、7dの会合部との間で、更
に第1の熱交換部19で第2の流量制御装置13へ流入
する冷媒との間で熱交換を行い蒸発した冷媒は、第1の
接続配管6へ入り、第4の逆止弁33、四方切換弁2、
アキュムレータ4を経て圧縮機1に吸入される。一方、
第1及び第2及び第3の熱交換部19、16a、16
b、16c、16dで熱交換し冷却され過冷却度を十分
につけられた上記第2の分岐部11の冷媒は冷房しよう
としている室内機B、Cへ流入する。
At this time, the first connecting pipe 6 is low pressure,
Due to the high pressure of the connection pipe 7 of the third check valve 32,
The refrigerant flows to the fourth check valve 33. Further, during this cycle, a part of the liquid refrigerant flows from the meeting portion of the second connection pipes 7b, 7c, 7d on the side of each indoor unit to the first bypass pipe 14
And is depressurized to a low pressure by the third flow control device 15, and is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side by the third heat exchange units 16b, 16c, 16d, and In the second heat exchange section 16 a, between the second branch section 11 and the connection section of the second connection pipes 7 b, 7 c, 7 d on the side of each indoor unit, and further in the first heat exchange section 19, the second The refrigerant that has exchanged heat with the refrigerant flowing into the flow rate control device 13 and has evaporated enters the first connection pipe 6 and the fourth check valve 33, the four-way switching valve 2,
It is sucked into the compressor 1 through the accumulator 4. on the other hand,
First, second and third heat exchange parts 19, 16a, 16
The refrigerant in the second branch portion 11 that has been heat-exchanged and cooled in b, 16c, and 16d and has a sufficient degree of subcooling flows into the indoor units B and C that are about to be cooled.

【0015】[0015]

【発明が解決しようとする課題】上記のような従来の空
気調和装置では、複数台の室内機を熱源機に接続する場
合、1台の中継機を介して行うため、接続する室内機の
設置範囲が広がると中継機から室内機までの接続配管長
が長くなり、よって総接続配管長が長くなり、このため
施工性が悪化するという問題点があった。また接続する
室内機の台数が増えても、1台の中継機に接続するた
め、接続する室内機の台数が増えると、それにつれて中
継機の形状が大形化し、中継機の設置性が悪化するとい
う問題点があった。
In the conventional air conditioner as described above, when a plurality of indoor units are connected to the heat source unit, since the operation is performed via one relay unit, the installation of the indoor units to be connected is performed. If the range is widened, the connecting pipe length from the repeater to the indoor unit becomes long, and therefore the total connecting pipe length becomes long, which causes a problem that workability is deteriorated. Further, even if the number of indoor units to be connected increases, the number of indoor units to be connected is one. Therefore, as the number of indoor units to connect increases, the size of the repeaters becomes larger and the installability of the repeaters deteriorates. There was a problem to do.

【0016】この発明は、上記のような問題点を解消す
るためになされたもので、熱源機1台に対して複数台の
室内機を多数、かつ広範囲に設置し接続する場合でも、
接続配管の施工性、及び中継機の設置性が良好な空気調
和装置を得ることを目的とする。
The present invention has been made to solve the above problems, and even when a plurality of indoor units are installed and connected in a wide range to one heat source unit,
The purpose is to obtain an air conditioner with good workability of connecting pipes and installability of a repeater.

【0017】[0017]

【課題を解決するための手段】この発明における空気調
和装置は、圧縮機、四方切換弁、熱源機側熱交換器等よ
りなる1台の熱源機と、室内側熱交換器、第1の流量制
御装置等からなる複数台の室内機とを、第1、第2の接
続配管を介して接続したものにおいて、上記室内機を1
台または複数台からなる複数の構成単位に分割し、各構
成単位毎に室内機の室内側熱交換器の一方を上記第1の
接続配管または第2の接続配管に切り換え可能に接続す
る第1の分岐部と、上記室内機の室内側熱交換器の他方
を上記第1の流量制御装置を介して第2の接続配管に接
続してなる第2の分岐部とを備え、特定の構成単位に対
応する第2の分岐部を第2の流量制御装置を介して第1
の分岐部に接続すると共に第4の流量制御装置を介して
上記第1の接続配管に接続し、かつ第3の流量制御装置
を介して第1の接続配管に接続するバイパス配管を備
え、更に上記第3の流量制御装置と第1の接続配管との
間の第1のバイパス配管と上記第2の接続配管から第1
の流量制御装置に到る配管との間で熱交換を行う熱交換
部を備え、その他の構成単位に対応する第2の分岐部を
第5の流量制御装置を介して第1の接続配管に接続する
第2のバイパス配管を備え、更に上記第5の流量制御装
置と第1の接続配管との間に第2のバイパス配管と上記
第2の接続配管から第1の流量制御装置に到る配管との
間で熱交換を行う熱交換部を備え、上記特定の構成単位
に対応する第1、第2の分岐部、第2、第3、第4の流
量制御装置、並びに上記熱交換部を内蔵させた特定の中
継機と、その他の構成単位に対応する上記第1、第2の
分岐部、第5の流量制御装置並びに上記熱交換部を内蔵
させたその他の中継機とを備えたものである。
An air conditioner according to the present invention comprises a heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, etc., an indoor side heat exchanger, and a first flow rate. In the case where a plurality of indoor units including a control device and the like are connected via first and second connection pipes, the indoor unit is
A unit or a plurality of unit units composed of a plurality of units, and one of the indoor side heat exchangers of the indoor unit is switchably connected to the first connection pipe or the second connection pipe for each unit And a second branch formed by connecting the other of the indoor heat exchangers of the indoor unit to the second connection pipe via the first flow rate control device, and a specific structural unit To the first branch via the second flow control device.
And a bypass pipe connected to the first connection pipe via the fourth flow control device and connected to the first connection pipe via the third flow control device. From the first bypass pipe between the third flow control device and the first connection pipe and the second connection pipe to the first bypass pipe
The heat exchange part for exchanging heat with the pipe reaching the flow rate control device is provided, and the second branch part corresponding to the other structural unit is connected to the first connection pipe via the fifth flow control device. A second bypass pipe to be connected is provided, and the second bypass pipe and the second connection pipe are provided between the fifth flow control device and the first connection pipe to reach the first flow control device. A heat exchange unit for exchanging heat with the pipe is provided, and the first, second branch units, second, third, and fourth flow rate control devices corresponding to the specific structural units, and the heat exchange unit. And a specific repeater having a built-in heat exchanger, and another repeater having the first and second branch parts, the fifth flow control device corresponding to the other constituent units, and the heat exchange part built therein. It is a thing.

【0018】さらに、その他の構成単位に対応する第2
の分岐部を第6の流量制御装置を介して第1の接続配管
に接続し、第6の流量制御装置を、対応するその他の中
継機に内蔵させたものである。
Further, the second corresponding to other structural units
Is connected to the first connection pipe via the sixth flow rate control device, and the sixth flow rate control device is built in the corresponding other repeater.

【0019】[0019]

【作用】上記のように構成された空気調和機において
は、複数台の室内機を熱源機に接続する場合、複数台の
中継機を介して行うため接続する室内機の設置範囲が広
い場合でも中継機から室内機までの配管長が短縮でき、
よって総接続配管長が短くなり、施工性を向上させるこ
とができる。また、接続する室内機の台数が増えても複
数台の中継機に接続するため、中継機の形状を大形化さ
せる必要がなく、中継機の設置性が悪化するという問題
を解消させることができる。
In the air conditioner configured as described above, when a plurality of indoor units are connected to the heat source unit, since the operation is performed via a plurality of repeaters, even if the installation range of the connected indoor units is wide. The piping length from the repeater to the indoor unit can be shortened,
Therefore, the total connecting pipe length is shortened and the workability can be improved. Further, even if the number of indoor units to be connected is increased, since it is connected to a plurality of repeaters, it is not necessary to enlarge the shape of the repeaters, and it is possible to solve the problem that the installability of the repeaters deteriorates. it can.

【0020】さらに室内機のその他の構成単位に対応す
る第2の分岐部と第1の接続配管とを第6の流量制御装
置を介して接続したことにより、室内機の負荷に応じて
各中継機毎に独立して流量を調整することができ、制御
特性が向上する。
Further, the second branch portion corresponding to the other constituent units of the indoor unit and the first connecting pipe are connected via the sixth flow rate control device, so that each relay is adapted to the load of the indoor unit. The flow rate can be adjusted independently for each machine, and the control characteristics are improved.

【0021】[0021]

【実施例】【Example】

実施例1.以下、この発明の実施例について説明する。
図1はこの発明の一実施例による空気調和装置の冷媒系
を中心とする全体構成図である。また図2、図3、図4
は図1に示す空気調和装置における冷暖房運転時の動作
状態を示したもので、図2は冷房又は暖房のみの運転動
作状態図、図3及び図4は冷暖房同時運転の動作を示す
もので、図3は暖房主体(暖房運転しようとしている室
内機の合計容量が冷房運転しようとしている室内機の合
計容量より大きい場合)を、図4は冷房主体(冷房運転
しようとしている室内機の合計容量が暖房運転しようと
している室内機の合計容量より大きい場合)を示す運転
動作状態図である。そして、図5はこの発明の他の実施
例の空気調和装置の冷媒系を中心とする全体構成図であ
る。また、図6はこの発明の他の実施例の空気調和装置
の冷媒系を中心とする全体構成図である。さらに、図7
はこの発明の他の実施例の空気調和装置の冷媒系を中心
とする全体構成図である。なお、この実施例では熱源機
1台に室内機6台、中継機2台を接続した場合について
説明するが、2台以上の室内機、及び2台以上の中継機
を接続した場合でも同様である。
Example 1. Examples of the present invention will be described below.
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. In addition, FIG. 2, FIG. 3, and FIG.
Shows an operation state during cooling / heating operation in the air conditioner shown in FIG. 1, FIG. 2 shows an operation state diagram of only cooling or heating, and FIGS. 3 and 4 show an operation of cooling / heating simultaneous operation. 3 shows heating mainly (when the total capacity of the indoor units trying to perform heating is larger than the total capacity of the indoor units trying to perform cooling), and FIG. 4 shows cooling mainly (total capacity of the indoor units trying to perform cooling operation is It is a driving | operation operation | movement state diagram which shows (when it is larger than the total capacity of the indoor unit which is going to perform heating operation). FIG. 5 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention. FIG. 6 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention. Furthermore, FIG.
FIG. 3 is an overall configuration diagram centering on a refrigerant system of an air conditioner of another embodiment of the present invention. In this embodiment, one heat source unit is connected to six indoor units and two relay units. However, the same is true when two or more indoor units and two or more relay units are connected. is there.

【0022】図1〜図5において、A〜D、1〜40は
上記従来装置と同様のものである。この実施例では全室
内機6台を3台、3台の構成単位に分割しており、60
は、室内機B、C、Dで構成された特定の構成単位、7
0は、室内機F、G、Hで構成されたその他の構成単位
である。Eは特定の中継機で、上記従来装置と同様のも
のであり、特定の構成単位60に対応する第1の分岐部
10、第2の分岐部11、第2の流量制御装置13、第
3の流量制御装置15、第4の流量制御装置17及び第
1の熱交換部19、第2の熱交換部16a、第3の熱交
換部16b、16c、16d等を内蔵するものである。
Iは後述するように、その他の構成単位70に対応する
第1の分岐部50、第2の分岐部51、第5の流量制御
装置55、第6の流量制御装置57、第4、第5及び第
6の熱交換部59、16i、16f、16g、16h等
を内蔵したその他の中継機であり、室内機F、G、Hと
熱源機Aの間に介在し、特定の中継機Eとは並列に接続
されている。
1 to 5, A to D and 1 to 40 are the same as those in the conventional device. In this embodiment, all 6 indoor units are divided into 3 units and 3 units.
Is a specific structural unit composed of the indoor units B, C and D, 7
Reference numeral 0 is another structural unit including the indoor units F, G, and H. E is a specific repeater, which is the same as the above-mentioned conventional device, and corresponds to the specific structural unit 60, that is, the first branch unit 10, the second branch unit 11, the second flow rate control device 13, and the third flow unit. The flow rate control device 15, the fourth flow rate control device 17, the first heat exchange section 19, the second heat exchange section 16a, the third heat exchange sections 16b, 16c, 16d, etc. are built in.
I is the 1st branch part 50 corresponding to the other structural unit 70, the 2nd branch part 51, the 5th flow control device 55, the 6th flow control device 57, 4th, 5th so that it may mention later. And a sixth heat exchanging section 59, 16i, 16f, 16g, 16h, and the like, which is a relay device that is interposed between the indoor units F, G, and H and the heat source device A, and has a specific relay device E. Are connected in parallel.

【0023】6f、6g、6hはそれぞれ室内機F、
G、Hの室内機側熱交換器5とその他の中継機Iを接続
し、第1の接続配管6に対応する室内機側の第1の接続
配管、7f、7g、7hはそれぞれ室内機F、G、Hの
室内側熱交換器5とその他の中継機Iを接続し、第2の
接続配管7に対応する室内機側の第2の接続配管、8は
室内機側の第1の接続配管6f、6g、6hと、第1の
接続配管6または、特定の中継機Eの気液分離装置12
の気相部を介して第2の接続配管7側に切り換え可能に
接続する三方切換弁、9は室内側熱交換器5に近接して
接続され冷房時は室内側熱交換器5の出口側の過熱度、
暖房時は過冷却度により制御される第1の流量制御装置
で、室内機側の第2の接続配管7f、7g、7hに接続
される。
6f, 6g, and 6h are indoor units F and
The indoor unit side heat exchangers G and H are connected to the other repeaters I, and the indoor unit side first connecting pipes corresponding to the first connecting pipe 6 are 7f, 7g, and 7h, respectively. , G and H indoor side heat exchangers 5 and other relays I are connected to each other, the indoor unit side second connecting pipes corresponding to the second connecting pipes 7 and 8 are indoor unit side first connecting pipes. The pipes 6f, 6g, 6h and the first connecting pipe 6 or the gas-liquid separation device 12 of the specific relay device E.
A three-way switching valve that is switchably connected to the second connection pipe 7 side via the gas phase part of the, 9 is connected close to the indoor heat exchanger 5, and is an outlet side of the indoor heat exchanger 5 during cooling. Degree of superheat,
During heating, the first flow rate control device is controlled by the degree of supercooling, and is connected to the second connection pipes 7f, 7g, 7h on the indoor unit side.

【0024】50は室内機側の第1の接続配管6f、6
g、6hと、第1の接続配管6または、特定の中継機E
の気液分離装置12の気相部を介して第2の接続配管7
に切り換え可能に接続する三方切換弁8よりなる第1の
分岐部、51は室内機側の第2の接続配管7f、7g、
7hと、その会合部よりなる第2の分岐部で、この第2
の分岐部51は特定の中継機Eの気液分離装置2の液相
部と第2の流量制御装置13を介して第2の接続配管7
に接続されている。54は第2の分岐部51と上記第1
の接続配管6とを結ぶ第2のバイパス配管、55は第2
のバイパス配管54の途中に設けられた第5の流量制御
装置、16f、16g、16hは第2のバイパス配管5
4の第5の流量制御装置55の下流に設けられ、第2の
分岐部51における各室内機側の第2の接続配管7f、
7g、7hとの間でそれぞれ熱交換を行う第6の熱交換
部、16iは第2のバイパス配管54の第5の流量制御
装置55の下流及び第6の熱交換部16f、16g、1
6h下流に設けられ、第2の分岐部51における各室内
機側の第2の接続配管7f、7g、7hの会合部との間
で熱交換を行う第5の熱交換部、59は第2のバイパス
配管54の第5の流量制御装置55の下流及び第5の熱
交換部16iの下流に設けられ第2の流量制御装置13
と第2の分岐部51とを接続する配管との間で熱交換を
行う第4の熱交換部、57は第2の分岐部51と第1の
接続配管6との間に接続する開閉自在な第6の流量制御
装置である。
Reference numeral 50 denotes the first connecting pipes 6f, 6 on the indoor unit side.
g, 6h and the first connection pipe 6 or a specific relay E
Second connecting pipe 7 through the gas phase part of the gas-liquid separator 12 of
A first branch portion consisting of a three-way switching valve 8 switchably connected to the indoor unit side second connection pipes 7f, 7g on the indoor unit side;
The second branch consisting of 7h and its meeting point
The branch portion 51 of the second connecting pipe 7 is connected to the liquid phase portion of the gas-liquid separation device 2 of the specific relay device E and the second flow rate control device 13.
It is connected to the. 54 is the second branch portion 51 and the first
The second bypass pipe connecting the connection pipe 6 of the
The fifth flow rate control device 16f, 16g, 16h provided in the middle of the bypass pipe 54 of the second bypass pipe 5
4 is provided downstream of the fifth flow rate control device 55, and the second connection pipe 7f on the side of each indoor unit in the second branch portion 51,
A sixth heat exchanging section 16i for exchanging heat with 7g and 7h, 16i is downstream of the fifth flow rate control device 55 of the second bypass pipe 54 and the sixth heat exchanging sections 16f, 16g, 1
A fifth heat exchange unit, which is provided downstream of 6h, and which performs heat exchange with the meeting portion of the second connection pipes 7f, 7g, 7h on the side of each indoor unit in the second branch unit 51, 59 is the second The second flow rate control device 13 provided downstream of the fifth flow rate control device 55 of the bypass pipe 54 and in the downstream of the fifth heat exchange unit 16i.
And a second heat exchange section for exchanging heat with the pipe connecting the second branch section 51, 57 is openable and closable connected between the second branch section 51 and the first connecting pipe 6. It is a sixth flow control device.

【0025】このように構成されたこの発明の実施例に
ついて説明する。まず、図2を用いて冷房運転のみの場
合について説明する。すなわち、図2に実線矢印で示す
ように圧縮機1より吐出された高温高圧の冷媒ガスは四
方切換弁2を通り、熱源機側熱交換器3で熱交換して凝
縮された後、第3の逆止弁32、第2の接続配管7、気
液分離装置12、第2の流量制御装置13の順に通り、
ここで第2の分岐部11へ流入する冷媒とその他の中継
機Iへ流入する冷媒とにわかれる。第2の分岐部11へ
流入した冷媒は、室内機側の第2の接続配管7b、7
c、7dを通り、各室内機B、C、Dに流入し、各室内
側熱交換器5の出口の過熱度により制御される第1の流
量制御装置9により低圧まで減圧されて室内側熱交換器
5で室内空気と熱交換して蒸発しガス化され室内を冷房
する。そして、このガス状態となった冷媒は、室内機側
の第1の接続配管6b、6c、6d、三方切換弁8、第
1の分岐部10を通り、第1の接続配管6、第4の逆止
弁33、四方切換弁2 アキュムレータ4を経て圧縮機
1に吸入される循環サイクルを構成し、冷房運転を行
う。このとき、三方切換弁8はそれぞれの第1口8aは
閉路、第2口8b及び第3口8cは開路されている。
An embodiment of the present invention thus constructed will be described. First, the case of only the cooling operation will be described with reference to FIG. That is, as shown by the solid line arrow in FIG. 2, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, undergoes heat exchange in the heat source side heat exchanger 3 and is condensed, and then the third Of the check valve 32, the second connection pipe 7, the gas-liquid separation device 12, and the second flow rate control device 13 in this order,
Here, it is divided into the refrigerant flowing into the second branch portion 11 and the refrigerant flowing into the other relays I. The refrigerant that has flowed into the second branch portion 11 is the second connection pipes 7b, 7 on the indoor unit side.
After passing through c and 7d into the indoor units B, C and D, the first flow rate control device 9 controlled by the degree of superheat at the outlet of each indoor heat exchanger 5 reduces the pressure to a low pressure and heats the indoor heat. The exchanger 5 exchanges heat with the indoor air, evaporates and gasifies, and cools the room. Then, the refrigerant in the gas state passes through the first connection pipes 6b, 6c, 6d on the indoor unit side, the three-way switching valve 8, and the first branch portion 10, and passes through the first connection pipe 6 and the fourth connection pipe. The check valve 33, the four-way switching valve 2, and the accumulator 4 constitute a circulation cycle of being sucked into the compressor 1 to perform a cooling operation. At this time, in the three-way switching valve 8, the first port 8a is closed and the second port 8b and the third port 8c are open.

【0026】この時、第1の接続配管6が低圧、第2の
接続配管7が高圧のため必然的に第3の逆止弁32、第
4の逆止弁33へ冷媒は流通する。また、このサイクル
の時、第2の流量制御装置13を通過した冷媒の一部が
第1のバイパス配管14へ入り、第3の流量制御装置1
5で低圧まで減圧されて、第3の熱交換部16b、16
c、16dで各室内機側の第2の接続配管7b、7c、
7dとの間で、第2の熱交換部16aで第2の分岐部1
1の各室内機側の第2の接続配管7b、7c、7dの会
合部との間で、更に第1の熱交換部19で第2の流量制
御装置13に流入する冷媒との間で熱交換を行い蒸発し
た冷媒は、第1の接続配管6へ入り、第4の逆止弁3
3、四方切換弁2、アキュムレータ4を経て圧縮機1に
吸入される。一方、第1及び第2及び第3の熱交換器1
9、16a、16b、16c、16dで熱交換し、冷却
され過冷却度を十分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機B、C、Dへ流入
する。
At this time, since the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33. Further, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the first bypass pipe 14 and the third flow rate control device 1
The pressure is reduced to a low pressure at 5, and the third heat exchange parts 16b, 16
c and 16d, the second connection pipes 7b and 7c on the indoor unit side,
7d, the second branch portion 1 in the second heat exchange portion 16a.
Heat between the second connection pipes 7b, 7c, 7d on the side of each indoor unit and the refrigerant flowing into the second flow rate control device 13 at the first heat exchange unit 19. The refrigerant that has been exchanged and evaporated enters the first connection pipe 6 and the fourth check valve 3
3, the four-way switching valve 2, and the accumulator 4 are sucked into the compressor 1. On the other hand, the first, second and third heat exchangers 1
The second branch portion 11 is heat-exchanged at 9, 16a, 16b, 16c, 16d and cooled to have a sufficient degree of supercooling.
Refrigerant flows into the indoor units B, C, and D that are about to be cooled.

【0027】一方、その他の中継機Iへ流入した冷媒
は、第2の分岐部51、室内機側の第2の接続配管7
f、7g、7hを通り、各室内機F、G、Hに流入し、
各室内側熱交換器5の出口の過熱度により制御される第
1の流量制御装置9により低圧まで減圧されて室内側熱
交換器5で室内空気と熱交換して蒸発しガス化され室内
を冷房する。そして、このガス状態となった冷媒は、室
内機側の第1の接続配管6f、6g、6h、三方切換弁
8、第3の分岐部50を通り、第1の接続配管6、第4
の逆止弁33、四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房運転
を行う。このとき、三方切換弁8はそれぞれの第1口8
aは閉路、第2口8b及び第3口8cは開路されてい
る。
On the other hand, the refrigerant that has flowed into the other repeater I is connected to the second branch portion 51 and the second connection pipe 7 on the indoor unit side.
f, 7g, 7h, and flow into each indoor unit F, G, H,
The first flow rate control device 9 controlled by the degree of superheat at the outlet of each indoor heat exchanger 5 reduces the pressure to a low pressure, heat-exchanges with the indoor air in the indoor heat exchanger 5, evaporates and gasifies the interior of the room. To cool. Then, the refrigerant in the gas state passes through the first connection pipes 6f, 6g, 6h on the indoor unit side, the three-way switching valve 8, the third branch portion 50, and then the first connection pipe 6 and the fourth connection pipe 4
The check valve 33, the four-way switching valve 2, and the accumulator 4 constitute a circulation cycle that is sucked into the compressor 1 to perform the cooling operation. At this time, the three-way switching valve 8 has the respective first port 8
A is closed, and the second port 8b and the third port 8c are open.

【0028】また、このサイクルの時、第2の流量制御
装置13からその他の中継機Iに流入した冷媒の一部が
第2のバイパス配管54へ入り、第5の流量制御装置5
5で低圧まで減圧されて、第6の熱交換部16f、16
g、16hで各室内機側の第2の接続配管7f、7g、
7hの会合部との間で、また第5の熱交換部16iで第
2の分岐部51の各室内機側の第2の接続配管7f、7
g、7hの会合部との間で、更に第4の熱交換部59で
第2の分岐部51に流入する冷媒との間で熱交換を行い
蒸発した冷媒は、第1の接続配管6へ入り、第4の逆止
弁33、四方切換弁2、アキュムレータ4を経て圧縮機
1に吸入される。一方、第4及び第5及び第6の熱交換
部59、16i、16f、16g、16hで熱交換し、
冷却され過冷却度を十分につけられた上記第2の分岐部
51の冷媒は冷房しようとしている室内機F、G、Hへ
流入する。
Further, during this cycle, a part of the refrigerant flowing from the second flow rate control device 13 into the other repeater I enters the second bypass pipe 54, and the fifth flow rate control device 5
The pressure is reduced to a low pressure at 5, and the sixth heat exchange units 16f, 16
g and 16h, the second connection pipes 7f and 7g on the side of each indoor unit,
The second connecting pipes 7f, 7 on the indoor unit side of the second branch section 51 in the fifth heat exchanging section 16i.
The refrigerant that has exchanged heat with the meeting portion of g and 7h and further with the refrigerant that flows into the second branch portion 51 in the fourth heat exchange portion 59 is evaporated to the first connection pipe 6. It enters and is sucked into the compressor 1 via the fourth check valve 33, the four-way switching valve 2 and the accumulator 4. On the other hand, heat is exchanged at the fourth, fifth and sixth heat exchange parts 59, 16i, 16f, 16g and 16h,
The refrigerant in the second branch portion 51 that has been cooled and has a sufficient degree of supercooling flows into the indoor units F, G, and H that are about to be cooled.

【0029】次に、図2を用いて暖房運転のみの場合の
みの場合について説明する。すなわち、図2に破線矢印
で示すように圧縮機1より吐出された高温高圧の冷媒ガ
スは四方切換弁2を通り、第5の逆止弁34、第2の接
続配管7、気液分離装置12を通り、ここで第1の分岐
部10とその他の中継機Iに流入する冷媒とにわかれ
る。第1の分岐部10に流入した冷媒は、三方切換弁
8、室内機側の第1の接続配管6b、6c、6dを通
り、各室内機B、C、Dに流入し、室内空気と熱交換し
て凝縮液化し、室内を暖房する。そして、この液状態と
なった冷媒は、各室内側熱交換器5の出口の過冷却度に
より制御される第1の流量制御装置9を通り、室内機側
の第2の接続配管7b、7c、7dから第2の分岐部1
1に流入して合流し、更に第4の流量制御装置17を通
り、ここで第1の流量制御装置9又は第4の流量制御装
置17と第3の流量制御装置15のどちらか一方で低圧
の二相状態まで減圧される。そして、低圧まで減圧され
た冷媒は、第1の接続配管6を経て、第6の逆止弁3
5、熱源機側熱交換器3に流入し熱交換して蒸発しガス
状態となった冷媒は、四方切換弁2、アキュムレータ4
を経て圧縮機1に吸入される循環サイクルを構成し、暖
房運転を行う。このとき、三方切換弁8はそれぞれの第
2口8bは閉路、第1口8a及び第3口8cは開路され
ている。この時、第1の接続配管6が低圧、第2の接続
配管7が高圧のため必然的に第5の逆止弁34、第6の
逆止弁35へ冷媒は流通する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by the broken line arrow in FIG. 2, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, the second connecting pipe 7, the gas-liquid separation device. The refrigerant flows through the first branch portion 10 and the other relay device I through the first branch portion 12 and the second branch portion 12. The refrigerant that has flowed into the first branch portion 10 passes through the three-way switching valve 8 and the first connection pipes 6b, 6c, and 6d on the indoor unit side, and then flows into the indoor units B, C, and D, and the indoor air and heat Replace it to liquefy and heat the room. Then, the refrigerant in the liquid state passes through the first flow rate control device 9 controlled by the degree of supercooling at the outlet of each indoor heat exchanger 5, and then the second connection pipes 7b, 7c on the indoor unit side. , 7d to second branch 1
1 and merges, and further passes through the fourth flow control device 17, where either the first flow control device 9 or the fourth flow control device 17 and the third flow control device 15 have a low pressure. The pressure is reduced to the two-phase state. Then, the refrigerant decompressed to a low pressure passes through the first connection pipe 6 and the sixth check valve 3
5, the refrigerant that has flowed into the heat exchanger 3 on the heat source side, exchanged heat, evaporated, and turned into a gas state is the four-way switching valve 2 and the accumulator 4.
After that, a circulation cycle of being sucked into the compressor 1 is constituted, and heating operation is performed. At this time, the second port 8b of the three-way switching valve 8 is closed, and the first port 8a and the third port 8c are open. At this time, since the first connecting pipe 6 is low in pressure and the second connecting pipe 7 is high in pressure, the refrigerant inevitably flows through the fifth check valve 34 and the sixth check valve 35.

【0030】一方、その他の中継機Iに流入した冷媒
は、第1の分岐部50、三方切換弁8、室内機側の第1
の接続配管6f、6g、6hを通り、各室内機F、G、
Hに流入し、室内空気と熱交換して凝縮液化し、室内を
暖房する。そして、この液状態となった冷媒は、各室内
側熱交換器5の出口の過冷却度により制御される第1の
流量制御装置9を通り、室内機側の第2の接続配管7
f、7g、7hから第2の分岐部51に流入して合流
し、更に第6の流量制御装置57又は特定の中継機Eに
流入して第4の流量制御装置17を通り、ここで第1の
流量制御装置9又は第4の流量制御装置17と第6の流
量制御装置57のどちらか一方で低圧の二相状態まで減
圧される。そして、低圧まで減圧された冷媒は、第1の
接続配管6を経て、第6の逆止弁35、熱源機側熱交換
器3に流入して熱交換して蒸発しガス状態となった冷媒
は、四方切換弁2、アキュムレータ4を経て圧縮機1に
吸入される循環サイクルを構成し、暖房運転を行う。こ
のとき、三方切換弁8はそれぞれの第2口8bは閉路、
第1口8a及び第3口8cは開路されている。
On the other hand, the refrigerant that has flowed into the other repeater I is divided into the first branch portion 50, the three-way switching valve 8 and the first indoor unit side.
Through the connection pipes 6f, 6g, and 6h of each indoor unit F, G,
It flows into H and exchanges heat with indoor air to condense and liquefy and heat the room. Then, the refrigerant in the liquid state passes through the first flow rate control device 9 controlled by the degree of supercooling at the outlet of each indoor heat exchanger 5, and the second connection pipe 7 on the indoor unit side.
From f, 7g, and 7h, they flow into the second branch portion 51 and merge, and further flow into the sixth flow control device 57 or a specific relay device E and pass through the fourth flow control device 17, where Either one of the first flow rate control device 9 or the fourth flow rate control device 17 and the sixth flow rate control device 57 reduces the pressure to a low-pressure two-phase state. Then, the refrigerant decompressed to a low pressure flows into the sixth check valve 35 and the heat source unit side heat exchanger 3 through the first connecting pipe 6 to exchange heat and evaporate to become a gas state refrigerant. Configures a circulation cycle in which the compressor 1 is sucked through the four-way switching valve 2 and the accumulator 4 to perform heating operation. At this time, the second ports 8b of the three-way switching valves 8 are closed,
The first port 8a and the third port 8c are open.

【0031】冷暖房同時運転における暖房主体の場合に
ついて図3を用いて説明する。ここでは室内機B、C、
D、Fの4台が暖房、室内機G、H2台が冷房しようと
している場合について説明する。すなわち、図3に実線
矢印で示すように圧縮機1より吐出された高温高圧の冷
媒ガスは四方切換弁2、第5の逆止弁34、第2の接続
配管7を通り、特定の中継機Eへ送られ、気液分離装置
12を通り、ここで第1の分岐部10へ流入する冷媒と
その他の中継機Iへ流入する冷媒とにわかれる。第1の
分岐部10へ流入した冷媒は、室内機B、C、Dに接続
された三方切換弁8、室内機側の第1の接続配管6b、
6c、6dの順に通り、暖房しようとしている室内機
B、C、Dに流入し、室内側熱交換器5で室内空気と熱
交換して凝縮液化し、室内を暖房する。そして、この液
状態となった冷媒は、室内側熱交換器5の出口の過冷却
度により制御され、ほぼ全開状態の第1の流量制御装置
9を通り少し減圧されて高圧と低圧の中間の圧力(中間
圧)になり、室内機側の第2の接続配管7b、7c、7
dから第2の分岐部11に流入する。一方、その他の中
継機Iに流入した冷媒は、第1の分岐部50、室内機F
に接続された三方切換弁8、室内機側の第1の接続配管
6fの順に通り、暖房しようとしている室内機Fに流入
し、室内側熱交換器5で室内空気と熱交換して凝縮液か
し、室内を暖房する。そして、この液状態となった冷媒
は、室内側熱交換器5の出口の過冷却度により制御さ
れ、ほぼ全開状態の第1の流量制御装置9を通り、少し
減圧されて高圧と低圧の中間の圧力(中間圧)になり、
室内機側の第2の接続配管7fから第2の分岐部51に
流入する。
A case of mainly heating in the simultaneous heating and cooling operation will be described with reference to FIG. Here, the indoor units B, C,
A case where four D and F units are about to heat and two indoor units G and H are about to cool will be described. That is, as shown by the solid line arrow in FIG. 3, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, and the second connecting pipe 7, and then the specific relay device. The refrigerant is sent to E, passes through the gas-liquid separation device 12, and is divided into the refrigerant flowing into the first branching portion 10 and the refrigerant flowing into other relays I here. The refrigerant that has flowed into the first branch portion 10 has a three-way switching valve 8 connected to the indoor units B, C, and D, a first connection pipe 6b on the indoor unit side,
6c and 6d are sequentially passed to the indoor units B, C and D which are going to be heated, and the indoor heat exchanger 5 exchanges heat with the indoor air to condense and liquefy, thereby heating the room. Then, the refrigerant in the liquid state is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, and is slightly decompressed to an intermediate pressure between high pressure and low pressure. The pressure becomes an intermediate pressure, and the second connection pipes 7b, 7c, 7 on the indoor unit side are provided.
It flows into the 2nd branch part 11 from d. On the other hand, the refrigerant that has flowed into the other repeaters I is the first branch portion 50 and the indoor unit F.
The three-way switching valve 8 connected to the indoor unit and the first connection pipe 6f on the indoor unit side flow in this order into the indoor unit F that is about to be heated, and the indoor heat exchanger 5 exchanges heat with the indoor air to condense liquid. However, the room is heated. Then, the refrigerant in the liquid state is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, and is slightly decompressed to an intermediate pressure between high pressure and low pressure. Pressure (intermediate pressure)
The second connection pipe 7f on the indoor unit side flows into the second branch portion 51.

【0032】冷房しようとしている室内機G、Hへの冷
媒の流れは、第2の分岐部51から室内機側の第2の接
続配管7g、7hを通り、室内側熱交換器5の出口の過
熱度により制御される第1の流量制御装置9により減圧
された後に室内側熱交換器5に入り熱交換して蒸発しガ
ス状態となって室内を冷房し、室内機G、Hに接続され
た三方切換弁8を介して第1の接続配管6に流入する。
冷房しようとしている室内機G、Hの冷房負荷の大きさ
に応じて、室内機G、Hに流入する冷媒流量は決まる。
よって、第2の分岐部51から室内機G、Hに流入する
冷媒流量が室内機Fから第2の分岐部51に流入する冷
媒流量より多い場合は、室内機B、C、Dから第2の分
岐部11に流入した冷媒の一部が、第2の分岐部51に
流入して、室内機Fから第2の分岐部51に流入した冷
媒と合流して室内機G、Hへ流入する。一方、室内機
B、C、Dから第2の分岐部11に流入した他の冷媒
は、第2の接続配管7の高圧と第2の分岐部11及び第
2の分岐部51の中間圧との差を一定にするように制御
される開閉自在な第4の流量制御装置17又は第6の流
量制御装置57を通って、冷房しようとしている室内機
G、Hを通った冷媒と合流して太い第1の接続配管6に
流入し、第6の逆止弁35、熱源機側熱交換器3に流入
し熱交換して蒸発しガス状態となった冷媒は、四方切換
弁2、アキュムレータ4を経て圧縮機1に吸入される循
環サイクルを構成し、暖房主体運転を行う。
The flow of the refrigerant to the indoor units G and H to be cooled passes from the second branch portion 51 through the second connection pipes 7g and 7h on the indoor unit side to the outlet of the indoor heat exchanger 5. After the pressure is reduced by the first flow rate control device 9 controlled by the degree of superheat, it enters the indoor heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room and connect it to the indoor units G and H. And flows into the first connecting pipe 6 via the three-way switching valve 8.
The flow rate of the refrigerant flowing into the indoor units G and H is determined according to the cooling load of the indoor units G and H that are going to be cooled.
Therefore, when the flow rate of the refrigerant flowing from the second branch portion 51 to the indoor units G and H is higher than the flow rate of the refrigerant flowing from the indoor unit F to the second branch portion 51, the indoor units B, C, and D Part of the refrigerant that has flowed into the branch portion 11 flows into the second branch portion 51, merges with the refrigerant that has flowed into the second branch portion 51 from the indoor unit F, and flows into the indoor units G and H. .. On the other hand, the other refrigerants flowing from the indoor units B, C, and D into the second branch section 11 are the high pressure of the second connection pipe 7 and the intermediate pressure of the second branch section 11 and the second branch section 51. Through the fourth flow rate control device 17 or the sixth flow rate control device 57 that can be opened / closed and is controlled so as to make the difference between them constant, and join the refrigerant that has passed through the indoor units G and H to be cooled. The refrigerant that has flowed into the thick first connection pipe 6 and has flowed into the sixth check valve 35 and the heat exchanger 3 on the heat source unit side to exchange heat and evaporate into a gas state is the four-way switching valve 2 and the accumulator 4. After that, a circulation cycle of being sucked into the compressor 1 is configured, and heating-based operation is performed.

【0033】また、第2の分岐部51から室内機G、H
に流入する冷媒流量が室内機Fから第2の分岐部51に
流入する冷媒流量より少ない場合は、室内機Fから第2
の分岐部51に流入した冷媒の一部が第2の分岐部51
から室内機G、Hへ流入する。一方、室内機Fから第2
の分岐部51に流入した他の冷媒は、室内機B、C、D
から第2の分岐部11に流入した冷媒と共に、第2の接
続配管7の高圧と第2の分岐部11及び第2の分岐部5
1の中間圧との差を一定にするように制御される開閉自
在な第4の流量制御装置17又は第6の流量制御装置5
7を通って、冷房しようとしている室内機G、Hを通っ
た冷媒と合流して太い第1の接続配管6に流入し、第6
の逆止弁35、熱源機側熱交換器3に流入し熱交換して
蒸発しガス状態となった冷媒は、四方切換弁2、アキュ
ムレータ4を経て圧縮機1に吸入される循環サイクルを
構成し、暖房主体運転を行う。
Further, from the second branch portion 51 to the indoor units G, H
If the flow rate of the refrigerant flowing into the indoor unit F is less than the flow rate of the refrigerant flowing into the second branch portion 51 from the indoor unit F,
A part of the refrigerant flowing into the branch portion 51 of the second branch portion 51
To the indoor units G and H. On the other hand, from the indoor unit F to the second
The other refrigerants flowing into the branch portion 51 of the indoor units B, C, D
Together with the refrigerant flowing into the second branch portion 11 from the high pressure of the second connection pipe 7 and the second branch portion 11 and the second branch portion 5.
The fourth flow rate control device 17 or the sixth flow rate control device 5 which can be opened and closed and is controlled so that the difference from the intermediate pressure of 1 is constant.
7, the refrigerant that has passed through the indoor units G and H, which are going to be cooled, merges and flows into the thick first connection pipe 6,
The check valve 35, the heat source side heat exchanger 3, the heat exchanged and evaporated refrigerant, which has become a gas state, is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4 to form a circulation cycle. Then, the heating-based operation is performed.

【0034】このとき、冷房しようとしている室内機
G、Hの室内側熱交換器5の蒸発圧力と熱源側熱交換器
3の蒸発圧力の圧力差が、太い第1の接続配管6に切り
換えるために小さくなる。このとき、室内機B、C、
D、Fに接続された三方切換弁8はそれぞれの第2口8
bは閉路、第1口8a及び第3口8cは開路されてい
る。また室内機G、Hに接続された三方切換弁8は第2
口8b及び第3口8cは開路、第1口8aは閉路されて
いる。この時、第1の接続配管6が低圧、第2の接続配
管7が高圧のため必然的に第5の逆止弁34、第6の逆
止弁35へ冷媒は流通する。
At this time, the pressure difference between the evaporation pressure of the indoor heat exchanger 5 and the evaporation pressure of the heat source side heat exchanger 3 of the indoor units G and H to be cooled is switched to the thick first connecting pipe 6. Becomes smaller. At this time, the indoor units B, C,
The three-way switching valve 8 connected to D and F has the respective second port 8
b is closed, and the first port 8a and the third port 8c are open. The three-way switching valve 8 connected to the indoor units G and H is the second
The mouth 8b and the third mouth 8c are open, and the first mouth 8a is closed. At this time, since the first connecting pipe 6 is low in pressure and the second connecting pipe 7 is high in pressure, the refrigerant inevitably flows through the fifth check valve 34 and the sixth check valve 35.

【0035】また、このサイクルの時、一部の液冷媒は
各室内機側の第2の接続配管7b、7c、7dの会合部
から第1のバイパス配管14へ、又は各室内機側の第2
の接続配管7f、7g、7hの会合部から第2のバイパ
ス配管54へ入る。第1のバイパス配管14へ入った冷
媒は、第3の流量制御装置15で低圧まで減圧されて、
第3の熱交換部16b、16c、16dで各室内機側の
第2の接続配管7b、7c、7dとの間で、また第2の
熱交換部16aで第2の分岐部11の各室内機側の第2
の接続配管7b、7c、7dの会合部との間で、更に第
1の熱交換部19で第2の流量制御装置13へ流入する
冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続
配管6へ入り、第6の逆止弁35を経て、熱源機側熱交
換器3に流入し熱交換して蒸発しガス状態となる。そし
て、この冷媒は四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される。また、第2のバイパス配管54
へ入った冷媒は、第5の流量制御装置55で低圧まで減
圧されて、第6の熱交換部16f、16g、16hで各
室内機側の第2の接続配管7f、7g、7hとの間でま
た、第5の熱交換部16iで第2の分岐部51の各室内
機側の第2の接続配管7f、7g、7hの会合部との間
で、さらに第4の熱交換部59で特定の中継機Eから第
2の分岐部51へ流入する冷媒との間で熱交換を行い蒸
発した冷媒は、第1の接続配管6へ入り、第6の逆止弁
35を経て、熱源機側熱交換器3に流入し熱交換して蒸
発しガス状態となる。そして、この冷媒は四方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される。一
方、第1及び第2及び第3及び第4及び第5及び第6の
熱交換部19、16a、16b、16c、16d、5
9、16i、16f、16g、16hで熱交換し冷却さ
れ過冷却度を十分につけられた冷媒は冷房しようとして
いる室内機G、Hへ流入する。また、第4及び第6の流
量制御装置17、57をそれぞれ特定の中継機E及びそ
の他の中継機Iに設けたことにより、それぞれ接続され
た室内機B、C、D、Fの負荷に応じて、それぞれ特定
の中継器E及びその他の中継器Iごとに独立して、流量
を調節することが可能となる。
Further, during this cycle, some of the liquid refrigerant flows from the meeting portion of the second connecting pipes 7b, 7c, 7d on the indoor unit side to the first bypass pipe 14 or on the indoor unit side. Two
It enters into the second bypass pipe 54 from the meeting portion of the connecting pipes 7f, 7g, and 7h. The refrigerant that has entered the first bypass pipe 14 is decompressed to a low pressure by the third flow control device 15,
In the third heat exchange section 16b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the side of each indoor unit, and in the second heat exchange section 16a, in each room of the second branch section 11. Second on the machine side
Of the refrigerant that has undergone heat exchange with the connecting portions of the connecting pipes 7b, 7c, 7d, and further with the refrigerant flowing into the second flow rate control device 13 in the first heat exchange portion 19, It enters the connecting pipe 6 of No. 1 and passes through the sixth check valve 35, flows into the heat source unit side heat exchanger 3, exchanges heat and is vaporized into a gas state. Then, this refrigerant is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. In addition, the second bypass pipe 54
The refrigerant that has entered is depressurized to a low pressure by the fifth flow rate control device 55, and is discharged between the second connection pipes 7f, 7g, and 7h on the indoor unit side in the sixth heat exchange units 16f, 16g, and 16h. Further, in the fifth heat exchange unit 16i, between the second connection pipes 7f, 7g, and 7h on the side of each indoor unit of the second branch unit 51, and the fourth heat exchange unit 59. The refrigerant that has exchanged heat with the refrigerant flowing into the second branch portion 51 from the specific relay machine E and has evaporated enters the first connection pipe 6, passes through the sixth check valve 35, and then passes through the heat source unit. It flows into the side heat exchanger 3, exchanges heat and evaporates to become a gas state. Then, this refrigerant is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. On the other hand, the first and second and third and fourth and fifth and sixth heat exchange parts 19, 16a, 16b, 16c, 16d, 5
The refrigerant that has been heat-exchanged and cooled at 9, 16i, 16f, 16g, and 16h and has a sufficient degree of supercooling flows into the indoor units G and H that are about to be cooled. Further, by providing the fourth and sixth flow rate control devices 17 and 57 in the specific relay device E and the other relay device I, respectively, the load of the indoor units B, C, D, and F connected respectively can be adjusted. Thus, the flow rate can be adjusted independently for each specific relay E and other relay I.

【0036】ここでは室内機B、C、D、Fの4台が暖
房、室内機G、H2台が冷房しようとしている場合、即
ち冷房しようとしている室内機がすべてその他の中継機
Iに接続された場合の暖房主体について説明したが、冷
房しようとしている室内機がすべて特定の中継機Eに接
続された場合、及び冷房しようとしている室内機が特定
及びその他の中継機E、Iにそれぞれ接続されている場
合の暖房主体についても同様の作用効果が得られる。
Here, when four indoor units B, C, D, and F are to be heated and two indoor units G and H are to be cooled, that is, all the indoor units to be cooled are connected to the other repeater I. Although the heating main body in the case of being heated was explained, when all the indoor units to be cooled are connected to the specific relay unit E, and when the indoor units to be cooled are connected to the specific and other relay units E and I, respectively. The same effect can be obtained for the heating main body.

【0037】冷暖房同時運転における冷房主体の場合に
ついて図4を用いて説明する。ここでは、室内機B、
C、D、Fの4台が冷房、室内機G、H2台が暖房しよ
うとしている場合について説明する。すなわち、図4に
実線矢印で示すように圧縮機1より吐出された高温高圧
の冷媒ガスは四方切換弁2を通り、熱源機側熱交換器3
で任意量熱交換して気液2相の高温高圧の冷媒となり、
第3の逆止弁32、第2の接続配管7より、特定の中継
機Eの気液分離装置12へ送られる。ここで、ガス状冷
媒と液状冷媒に分離され、分離されたガス状冷媒を第1
の分岐部50、三方切換弁8、室内機側の第1の接続配
管6g、6hの順に通り、暖房しようとしている室内機
G、Hに流入し、室内側熱交換器5で室内空気と熱交換
して凝縮液化し、室内を暖房する。更に、室内側熱交換
器5の出口の過冷却度により制御されほぼ全開状態の第
1の流量制御装置9を通り少し減圧されて、高圧と低圧
の中間の圧力(中間圧)となり、第2の分岐部51に流
入する。一方、残りの液状冷媒は高圧と中間圧の差を一
定にするように制御される第2の流量制御装置13を通
って第2の分岐部11及び第2の分岐部51に流入す
る。
The case of mainly cooling in the simultaneous heating and cooling operation will be described with reference to FIG. Here, the indoor unit B,
A case will be described in which four units C, D, and F are cooling, and two indoor units G and H are about to heat. That is, as shown by the solid arrow in FIG. 4, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and the heat source side heat exchanger 3
And exchanges an arbitrary amount of heat into a gas-liquid two-phase high-temperature high-pressure refrigerant,
It is sent from the third check valve 32 and the second connecting pipe 7 to the gas-liquid separation device 12 of the specific relay machine E. Here, the gaseous refrigerant and the liquid refrigerant are separated, and the separated gaseous refrigerant is
Through the branch portion 50, the three-way switching valve 8 and the first connection pipes 6g, 6h on the indoor unit side into the indoor units G, H that are about to be heated, and the indoor heat exchanger 5 heats the indoor air and heat. Replace it to liquefy and heat the room. Further, it is controlled by the degree of supercooling at the outlet of the indoor heat exchanger 5 and is slightly decompressed through the first fully open flow rate control device 9, becoming an intermediate pressure between high pressure and low pressure (intermediate pressure). Flows into the branch portion 51 of. On the other hand, the remaining liquid refrigerant flows into the second branch section 11 and the second branch section 51 through the second flow rate control device 13 which is controlled so as to keep the difference between the high pressure and the intermediate pressure constant.

【0038】冷房しようとしている室内機B、C、Dへ
の冷媒の流れは、第2の分岐部11、室内機側の第2の
接続配管7b、7c、7dを取り、各室内機B、C、D
に流入する。そして、この冷媒は、室内機B、C、Dの
室内側熱交換器5の出口の過熱度により制御される第1
の流量制御装置9により低圧まで減圧されて室内側熱交
換器5で室内空気と熱交換して蒸発しガス化され室内を
冷房する。そして、このガス状態となった冷媒は、室内
機側の第1の接続配管6b、6c、6d、室内機B、
C、Dに接続された三方切換弁8、第1の分岐部10を
へて、第1の接続配管6へ流入する。また、冷房しよう
としている室内機Fへの冷媒の流れは、第2の分岐部5
1、室内機側の第2の接続配管7fを通り、室内機Fに
流入する。そして、この冷媒は、室内機Fの室内側熱交
換器5の出口の過熱度により制御される第1の流量制御
装置9により低圧まで減圧されて室内側熱交換器5で室
内空気と熱交換して蒸発ガス化され室内を冷房する。そ
して、このガス状態となった冷媒は、室内機側の第1の
接続配管6f、室内機Fに接続された三方切換弁8、第
1の分岐部50をへて、第1の接続配管6へ流入する。
第1の接続配管6にて、特定の中継機Eからの冷媒とそ
の他の中継機Iから冷媒が合流し、第4の逆子弁33、
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、冷房主体運転を行う。
The flow of the refrigerant to the indoor units B, C, D to be cooled is taken from the second branch portion 11 and the second connection pipes 7b, 7c, 7d on the indoor unit side, and the indoor units B, C, D
Flow into. And this refrigerant is controlled by the degree of superheat at the outlet of the indoor heat exchanger 5 of the indoor units B, C, D.
The flow rate control device 9 reduces the pressure to a low pressure, and the indoor heat exchanger 5 exchanges heat with the indoor air to evaporate and gasify to cool the room. The refrigerant in the gas state is supplied to the indoor unit-side first connection pipes 6b, 6c, 6d, the indoor unit B,
The three-way switching valve 8 connected to C and D and the first branch portion 10 flow into the first connecting pipe 6. In addition, the flow of the refrigerant to the indoor unit F, which is about to be cooled, is the second branch portion 5
1, through the second connection pipe 7f on the indoor unit side, and flows into the indoor unit F. Then, this refrigerant is decompressed to a low pressure by the first flow rate control device 9 which is controlled by the superheat degree of the outlet of the indoor heat exchanger 5 of the indoor unit F, and exchanges heat with the indoor air in the indoor heat exchanger 5. Then, the inside of the room is cooled by being vaporized and gasified. Then, the refrigerant in the gas state passes through the first connection pipe 6f on the indoor unit side, the three-way switching valve 8 connected to the indoor unit F, and the first branch portion 50 to pass through the first connection pipe 6 Flow into.
In the first connection pipe 6, the refrigerant from the specific relay device E and the refrigerant from the other relay device I merge, and the fourth reverse valve 33,
A circulation cycle in which the compressor 1 is sucked through the four-way switching valve 2 and the accumulator 4 constitutes a cooling main operation.

【0039】冷房しようとしている室内機B、C、D、
Fの冷房負荷の大きさに応じて、室内機B、C、D、F
に流入する冷房流量は決まる。よって、室内機G、Hか
ら第2の分岐部51に流入する冷媒流量が第2の分岐部
51から室内機Fへ流入する冷媒流量より多い場合は、
室内機G、Hから第2の分岐部51に流入した冷媒の一
部は、第2の分岐部51から室内機Fへ流入し、他の冷
媒は第2の分岐部51から特定の中継機Eへ流入し、第
2の流量制御装置13と通った冷媒と合流し、第21の
分岐部11から室内機B、C、Dへ流入する。また、室
内機G、Hから第2の分岐部51に流入する冷媒流量が
第2の分岐部51から室内機Fへ流入する冷媒流量より
少ない場合は、第2の流量制御装置13を通った冷媒の
一部がその他の中継機Iに流入し、第2の分岐部51に
て室内機G、Hから流入した冷媒と合流して、第2の分
岐部51から室内機Fへ流入する。第2の流量制御装置
13を通った残りの冷媒は、第2の分岐部11から、室
内機B、C、Dへ流入する。
Indoor units B, C, D which are about to be cooled
Indoor units B, C, D, and F depending on the cooling load of F.
The cooling flow rate flowing into is determined. Therefore, when the refrigerant flow rate flowing from the indoor units G and H into the second branch section 51 is higher than the refrigerant flow rate flowing into the indoor unit F from the second branch section 51,
A part of the refrigerant flowing from the indoor units G and H to the second branch portion 51 flows into the indoor unit F from the second branch portion 51, and the other refrigerant flows from the second branch portion 51 to the specific relay device. It flows into E, merges with the refrigerant that has passed through the second flow rate control device 13, and flows into the indoor units B, C, and D from the 21st branch section 11. When the flow rate of the refrigerant flowing from the indoor units G and H to the second branch section 51 is smaller than the flow rate of the refrigerant flowing from the second branch section 51 to the indoor unit F, the second flow rate control device 13 is passed. Part of the refrigerant flows into the other repeater I, merges with the refrigerant flowing from the indoor units G and H at the second branch section 51, and flows into the indoor unit F from the second branch section 51. The remaining refrigerant that has passed through the second flow rate control device 13 flows into the indoor units B, C, and D from the second branch section 11.

【0040】このとき、室内機B、C、D、Fに接続さ
れた三方切換弁8はそれぞれの第1口8aは閉路、第2
口8b及び第3口8cは開路されている。、また室内機
G、Hに接続された三方切換弁8は第1口8a及び第3
口8cは開路、第2口8bは閉路されている。このと
き、第1の接続配管6が低圧、第2の接続配管7が高圧
のため必然的に第3の逆止弁32、第4の逆止弁33へ
冷媒は流通する。
At this time, the three-way switching valve 8 connected to the indoor units B, C, D and F has the first port 8a closed and the second port
The mouth 8b and the third mouth 8c are opened. The three-way switching valve 8 connected to the indoor units G and H has the first port 8a and the third port 8a.
The mouth 8c is open and the second mouth 8b is closed. At this time, since the first connecting pipe 6 is low pressure and the second connecting pipe 7 is high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33.

【0041】また、このサイクルの時、一部の液冷媒は
各室内機側の第2の接続配管7b、7c、7dの会合部
から第1のバイパス配管14へ、又は各室内機側の第2
の接続配管7f、7g、7hの会合部から第2のバイパ
ス配管54へ入る。第1のバイパス配管14へ入った冷
媒は、第3の流量制御装置15で低圧まで減圧されて、
第3の熱交換部16b、16c、16dで各室内機側の
第2の接続配管7b、7c、7dとの間で、また第2の
熱交換部16aで第2の分岐部11の各室内機側の第2
の接続配管7b、7c、7dの会合部との間で、更に第
1の熱交換部19で第2の流量制御装置13へ流入する
冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続
配管6へ入り、第4の逆止弁33、四方切換弁2、アキ
ュムレータ4を経て圧縮機1に吸入される。また、第2
のバイパス配管54へ入った冷媒は、第5の流量制御装
置55で低圧まで減圧されて、第6の熱交換部16f、
16g、16hで各室内機側の第2の接続配管7f、7
g、7hとの間で、また第5の熱交換部16iで第2の
分岐部51の各室内機側の第2の接続配管7f、7g、
7hの会合部との間で、更に第4の熱交換部59で特定
の中継機Eから第2の分岐部51へ流入する冷媒との間
で熱交換を行い蒸発した冷媒は、第1の接続配管6へ入
り、第4の逆止弁33を経て四方切換弁2、アキュムレ
ータ4を経て圧縮機1に吸入される。一方、第1及び第
2及び第3及び第4及び第5及び第6の熱交換部19、
16a、16b、16c、16d、59、16i、16
f、16g、16hで熱交換し冷却され過冷却度を十分
につけられた冷媒は冷房しようとしている室内機B、
C、D、Fへ流入する。このように第1のバイパス配管
14と第3の流量制御装置15、第2のバイパス配管5
4と第5の流量制御装置55を、それぞれ特定及びその
他の中継機E、Iに設けたことにより、それぞれ接続さ
れた室内機B、C、D、Fの負荷に応じて、それぞれ特
定及びその他の中継器E、Iごとに独立して、過冷却度
を第3又は第5の流量制御装置15、55にて調節する
ことが可能となる。
During this cycle, a part of the liquid refrigerant flows from the connecting portion of the second connecting pipes 7b, 7c, 7d on the side of each indoor unit to the first bypass pipe 14 or on the side of each indoor unit. Two
It enters into the second bypass pipe 54 from the meeting portion of the connecting pipes 7f, 7g, and 7h. The refrigerant that has entered the first bypass pipe 14 is decompressed to a low pressure by the third flow control device 15,
In the third heat exchange section 16b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the side of each indoor unit, and in the second heat exchange section 16a, in each room of the second branch section 11. Second on the machine side
Of the refrigerant that has undergone heat exchange with the connecting portions of the connecting pipes 7b, 7c, 7d, and further with the refrigerant flowing into the second flow rate control device 13 in the first heat exchange portion 19, It enters the connecting pipe 6 of No. 1 and is sucked into the compressor 1 via the fourth check valve 33, the four-way switching valve 2 and the accumulator 4. Also, the second
The refrigerant that has entered the bypass pipe 54 is depressurized to a low pressure by the fifth flow control device 55, and the sixth heat exchange unit 16f,
The second connection pipes 7f, 7 on the indoor unit side at 16g, 16h
g, 7h, and the second connection pipes 7f, 7g on the indoor unit side of the second branch section 51 in the fifth heat exchange section 16i,
The refrigerant that has undergone heat exchange with the refrigerant that flows into the second branch portion 51 from the specific relay E in the fourth heat exchange portion 59 with the association portion of 7h is the first refrigerant. It enters the connection pipe 6, and is sucked into the compressor 1 via the fourth check valve 33, the four-way switching valve 2 and the accumulator 4. On the other hand, the first and second and third and fourth and fifth and sixth heat exchange parts 19,
16a, 16b, 16c, 16d, 59, 16i, 16
The indoor unit B that is about to cool the refrigerant that has undergone heat exchange at f, 16g, and 16h and is cooled to a sufficient degree of supercooling
It flows into C, D, and F. In this way, the first bypass pipe 14, the third flow control device 15, and the second bypass pipe 5
Since the fourth and fifth flow rate control devices 55 are provided in the specific and other repeaters E and I, respectively, the specific and other types can be specified according to the loads of the indoor units B, C, D, and F that are respectively connected. The degree of supercooling can be adjusted by the third or fifth flow control devices 15 and 55 independently for each of the repeaters E and I.

【0042】ここでは室内機B、C、D、Fの4台が冷
房、室内機G、H2台が暖房しようとしている場合、即
ち暖房しようとしている室内機がすべて第2の中継機I
に接続された場合の冷房主体について説明したが、暖房
しようとしている室内機がすべて第1の中継機Eに接続
された場合、及び暖房しようとしている室内機が第1及
び第2の中継機E、Iにそれぞれ接続された場合の冷房
主体についても同様の作用効果が得られる。
Here, when four indoor units B, C, D, and F are to be cooled, and two indoor units G and H are to be heated, that is, all the indoor units to be heated are the second repeater I.
The description has been given of the cooling main body when connected to the indoor unit E, but when all the indoor units to be heated are connected to the first relay unit E and the indoor units to be heated are the first and second relay units E. , I are also connected to the cooling main body, the same effect can be obtained.

【0043】実施例2.なお、上記実施例では、その他
の中継機Iに第6の流量制御装置57を設けて第2の分
岐部51と第1の接続配管6とを接続したが、図5に示
すようにその他の中継機Iに第6の流量制御装置57を
設けずに、特定の中継機Eの第4の流量制御装置17を
介して第2の分岐部51を第1の接続配管6に接続して
も、上記実施例と同様な作用効果が得られる。また、こ
れにより、流量制御装置の個数を減少させることができ
る。
Example 2. In addition, in the said Example, the 6th flow control apparatus 57 was provided in the other repeater I, and the 2nd branch part 51 and the 1st connection piping 6 were connected, but as shown in FIG. Even if the second branch portion 51 is connected to the first connection pipe 6 via the fourth flow rate control device 17 of the specific relay device E without providing the sixth flow rate control device 57 in the relay device I. The same effect as the above embodiment can be obtained. Further, this can reduce the number of flow rate control devices.

【0044】実施例3.及び4.なお、上記実施例1及
び2では三方切換弁8を設けて室内機側の第1の接続配
管6b、6c、6d、6f、6g、6hと、第1の接続
配管6又は第2の接続配管7に切り換え可能に接続して
いるが、図6、及び図7に示すように2つの電磁開閉弁
30、31等の開閉弁を設けて上述したように切り換え
可能に接続しても上記実施例と同様な作用効果が得られ
る。
Example 3. And 4. In the first and second embodiments, the three-way switching valve 8 is provided and the first connection pipes 6b, 6c, 6d, 6f, 6g, 6h on the indoor unit side and the first connection pipe 6 or the second connection pipe are provided. 7 is switchably connected, but as shown in FIGS. 6 and 7, two solenoid on-off valves 30, 31 and other on-off valves are provided to switchably connect as described above. The same action and effect can be obtained.

【0045】[0045]

【発明の効果】この発明に係る空気調和装置は、圧縮
機、四方切換弁、熱源機側熱交換器等よりなる1台の熱
源機と、室内側熱交換器、第1の流量制御装置等からな
る複数台の室内機とを、第1、第2の接続配管を介して
接続したものにおいて、上記室内機を1台または複数台
からなる複数の構成単位に分割し、各構成単位毎に室内
機の室内側熱交換器の一方を上記第1の接続配管または
第2の接続配管に切り換え可能に接続する第1の分岐部
と、上記室内機の室内側熱交換器の他方を上記第1の流
量制御装置を介して第2の接続配管に接続してなる第2
の分岐部とを備え、特定の構成単位に対応する第2の分
岐部を第2の流量制御装置を介して第1の分岐部に接続
すると共に第4の流量制御装置を介して上記第1の接続
配管に接続し、かつ第3の流量制御装置を介して第1の
接続配管に接続するバイパス配管を備え、更に上記第3
の流量制御装置と第1の接続配管との間の第1のバイパ
ス配管と上記第2の接続配管から第1の流量制御装置に
到る配管との間で熱交換を行う熱交換部を備え、上記特
定の構成単位に対応する上記等その他の構成単位に対応
する第2の分岐部を第5の流量制御装置を介して第1の
接続配管に接続する第2のバイパス配管を備え、更に上
記第5の流量制御装置と第1の接続配管との間に第2の
バイパス配管と上記第2の接続配管から第1の流量制御
装置に到る配管との間で熱交換を行う熱交換部を備え、
第1、第2の分岐部、第2、第3、第4の流量制御装
置、並びに上記熱交換部を内蔵させた特定の中継機と、
その他の構成単位に対応する上記第1、第2の分岐部、
第5の流量制御装置並びに上記熱交換部を内蔵させたそ
の他の中継機とを備えたことにより熱源機1台に対して
複数台の室内機を多数、かつ広範囲に設置し接続する場
合でも、熱源機と室内機の間に複数台の中継機を介在さ
せられるので、接続配管の施工性、及び中継機の設置性
が良好な空気調和装置を得ることができる。
The air conditioner according to the present invention includes one heat source device including a compressor, a four-way switching valve, a heat source device side heat exchanger, etc., an indoor side heat exchanger, a first flow rate control device, etc. In which a plurality of indoor units consisting of are connected via first and second connection pipes, the indoor unit is divided into a plurality of constituent units consisting of one or a plurality of units, and each constituent unit is divided into A first branch portion that connects one of the indoor heat exchanger of the indoor unit to the first connection pipe or the second connection pipe in a switchable manner, and the other of the indoor heat exchanger of the indoor unit is the The second which is connected to the second connecting pipe via the first flow control device
And a second branch portion corresponding to a specific structural unit, the second branch portion being connected to the first branch portion via the second flow rate control device, and the first flow rate control device via the fourth flow rate control device. And a bypass pipe connected to the first connection pipe through the third flow control device, and further to the third pipe.
A first bypass pipe between the flow rate control device and the first connection pipe, and a heat exchange section for performing heat exchange between the second connection pipe and the pipe reaching the first flow control device. A second bypass pipe connecting the second branch portion corresponding to the above-mentioned other structural unit corresponding to the above-mentioned specific structural unit to the first connecting pipe via the fifth flow rate control device, and Heat exchange for performing heat exchange between the second bypass pipe and the pipe from the second connection pipe to the first flow control device between the fifth flow control device and the first connection pipe. Section,
A first and a second branching section, a second, a third, and a fourth flow rate control device, and a specific repeater incorporating the heat exchange section,
The first and second branch portions corresponding to other structural units,
Even when a plurality of indoor units are installed in a large number and widely connected to one heat source device by providing the fifth flow rate control device and other repeaters incorporating the heat exchange unit, Since a plurality of relays can be interposed between the heat source unit and the indoor unit, it is possible to obtain an air conditioner with good workability of connection pipes and installability of the relays.

【0046】更に室内機のその他の構成単位に対応する
第2の分岐部と第1の接続配管を第6の流量制御装置を
介して接続したことで接続された室内機の負荷に応じて
特定の中継機及びその他の中継機ごとに独立して、流量
を調整することができ、制御性が向上する。また、熱源
機1台に対して複数台の室内機を多数、かつ広範囲に設
置し接続する場合でも、熱源機と室内機の間に複数台の
中継機を介在させられるので、接続配管の施工性、及び
中継機の設置性が良好な空気調和装置を得ることができ
る。
Further, the second branch portion corresponding to the other constituent units of the indoor unit and the first connecting pipe are connected via the sixth flow rate control device, and thus the specification is made according to the load of the connected indoor unit. The flow rate can be adjusted independently for each repeater and other repeaters, and the controllability is improved. In addition, even if a large number of indoor units are installed in a large area with respect to one heat source unit and are connected in a wide range, since multiple relay units can be interposed between the heat source unit and the indoor units, connection pipe construction It is possible to obtain an air-conditioning apparatus having good performance and installability of a repeater.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus showing Embodiment 1 of the present invention.

【図2】図1に示す空気調和装置の冷房又は暖房のみの
運転動作状態図である。
FIG. 2 is a diagram showing an operation state of only the cooling or the heating of the air conditioner shown in FIG.

【図3】図1に示す空気調和装置の暖房主体の運転動作
状態図である。
[Fig. 3] Fig. 3 is a diagram showing the operating state of the heating-based main body of the air-conditioning apparatus shown in Fig. 1.

【図4】図1に示す空気調和装置の冷房主体の運転動作
状態図である。
[Fig. 4] Fig. 4 is a diagram showing the operating state of the cooling device of the air conditioner shown in Fig. 1.

【図5】この発明の他の実施例を示す空気調和装置の冷
媒系を中心とする全体構成図である。
FIG. 5 is an overall configuration diagram centering on a refrigerant system of an air conditioner showing another embodiment of the present invention.

【図6】この発明の他の実施例を示す空気調和装置の冷
媒系を中心とする全体構成図である。
FIG. 6 is an overall configuration diagram centering on a refrigerant system of an air conditioner showing another embodiment of the present invention.

【図7】この発明の他の実施例を示す空気調和装置の冷
媒系を中心とする全体構成図である。
FIG. 7 is an overall configuration diagram centering on a refrigerant system of an air conditioner showing another embodiment of the present invention.

【図8】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 8 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner.

【図9】図8に示す空気調和装置の冷房又は暖房のみの
運転動作状態図である。
9 is a diagram showing the operation state of only the cooling or heating of the air conditioner shown in FIG.

【図10】図8に示す空気調和装置の暖房主体の運転動
作状態図である。
[Fig. 10] Fig. 10 is a diagram showing the operation state of the heating main body of the air-conditioning apparatus shown in Fig. 8.

【図11】図8に示す空気調和装置の冷房主体の運転動
作状態図である。
[Fig. 11] Fig. 11 is a diagram showing the operating state of the cooling device of the air-conditioning apparatus shown in Fig. 8.

【符号の説明】[Explanation of symbols]

A 熱源機 B、C、D、F、G、H 室内機 E 特定の中継機 I その他の中継機 1 圧縮機 2 四方切換弁 3 熱源機側熱交換器 5 室内側熱交換器 6 第1の接続配管 7 第2の接続配管 9 第1の流量制御装置 10、50 第1の分岐部 11、51 第2の分岐部 13 第2の流量制御装置 14 第1のバイパス配管 15 第3の流量制御装置 16a 第2の熱交換部 16b、16c、16d 第3の熱交換部 16f、16g、16h 第6の熱交換部 16i 第5の熱交換部 17 第4の流量制御装置 19 第1の熱交換部 54 第2のバイパス配管 55 第5の流量制御装置 57 第6の流量制御装置 59 第4の熱交換部 60 特定の構成単位 70 その他の構成単位 A heat source unit B, C, D, F, G, H indoor unit E specific relay unit I other relay unit 1 compressor 2 four-way switching valve 3 heat source unit side heat exchanger 5 indoor side heat exchanger 6 first Connection pipe 7 Second connection pipe 9 First flow control device 10, 50 First branch part 11, 51 Second branch part 13 Second flow control device 14 First bypass pipe 15 Third flow control device Device 16a Second heat exchange part 16b, 16c, 16d Third heat exchange part 16f, 16g, 16h Sixth heat exchange part 16i Fifth heat exchange part 17 Fourth flow rate control device 19 First heat exchange Part 54 Second bypass pipe 55 Fifth flow control device 57 Sixth flow control device 59 Fourth heat exchange part 60 Specific structural unit 70 Other structural unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 亀山 純一 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohiko Kasai 6-566 Tehira, Wakayama City Wakayama Works, Mitsubishi Electric Corporation (72) Inventor Junichi Kameyama 6-566 Tehira, Wakayama Mitsubishi Electric Company Co., Ltd. Wakayama Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方切換弁、熱源機側熱交換器
等よりなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置等からなる複数台の室内機とを、第1、第2
の接続配管を介して接続したものにおいて、上記室内機
を1台または複数台からなる複数の構成単位に分割し、
各構成単位毎に室内機の室内側熱交換器の一方を上記第
1の接続配管または第2の接続配管に切り換え可能に接
続する第1の分岐部と、上記室内機の室内側熱交換器の
他方を上記第1の流量制御装置を介して第2の接続配管
に接続してなる第2の分岐部とを備え、特定の構成単位
に対応する第2の分岐部を第2の流量制御装置を介して
第1の分岐部に接続すると共に第4の流量制御装置を介
して上記第1の接続配管に接続し、かつ第3の流量制御
装置を介して第1の接続配管に接続するバイパス配管を
備え、更に上記第3の流量制御装置と第1の接続配管と
の間の第1のバイパス配管と上記第2の接続配管から第
1の流量制御装置に到る配管との間で熱交換を行う熱交
換部を備え、その他の構成単位に対応する第2の分岐部
を第5の流量制御装置を介して第1の接続配管に接続す
る第2のバイパス配管を備え、更に上記第5の流量制御
装置と第1の接続配管との間に第2のバイパス配管と上
記第2の接続配管から第1の流量制御装置に到る配管と
の間で熱交換を行う熱交換部を備え、上記特定の構成単
位に対応する第1、第2の分岐部、第2、第3、第4の
流量制御装置、並びに上記熱交換部を内蔵させた特定の
中継機と、その他の構成単位に対応する上記第1、第2
の分岐部、第5の流量制御装置並びに上記熱交換部を内
蔵させたその他の中継機とを備えたことを特徴とする空
気調和装置。
1. A heat source unit comprising a compressor, a four-way switching valve, a heat source unit side heat exchanger and the like, and a plurality of indoor units comprising an indoor side heat exchanger, a first flow rate control device and the like. , First, second
In which the indoor unit is divided into a plurality of structural units consisting of one or a plurality of units,
A first branching portion that connects one of the indoor heat exchangers of the indoor unit to each of the structural units so as to be switchable to the first connection pipe or the second connection pipe, and the indoor heat exchanger of the indoor unit And a second branch portion formed by connecting the other of the two to the second connecting pipe via the first flow control device, and the second branch portion corresponding to a specific structural unit is provided with the second flow control. Connected to the first branch portion via the device, connected to the first connection pipe via the fourth flow control device, and connected to the first connection pipe via the third flow control device. A first bypass pipe between the third flow control device and the first connection pipe, and a pipe from the second connection pipe to the first flow control device. It is equipped with a heat exchanging section for exchanging heat, and the second branching section corresponding to other constituent units is provided with a fifth flow rate control. A second bypass pipe connected to the first connection pipe via a storage device, and further, a second bypass pipe and the second connection pipe between the fifth flow rate control device and the first connection pipe. From the first to the first flow rate control device, a heat exchanging unit for exchanging heat between the pipe and the first flow control device is provided, and the first and second branching units, the second, third, and fourth units correspond to the specific structural units. Flow control device, a specific repeater having the heat exchange section built-in, and the first and second corresponding to other constituent units.
An air conditioner comprising: a branch part, a fifth flow rate control device, and another repeater having the heat exchange part built therein.
【請求項2】 その他の構成単位に対応する第2の分岐
部を第6の流量制御装置を介して第1の接続配管に接続
し、第6の流量制御装置を、対応するその他の中継器に
内蔵させたことを特徴とする請求項第1項記載の空気調
和装置。
2. A second branch part corresponding to another structural unit is connected to a first connecting pipe via a sixth flow control device, and the sixth flow control device is connected to a corresponding other repeater. The air conditioner according to claim 1, wherein the air conditioner is incorporated in the air conditioner.
JP3324441A 1991-12-09 1991-12-09 Air conditioner Expired - Lifetime JP2616525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324441A JP2616525B2 (en) 1991-12-09 1991-12-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324441A JP2616525B2 (en) 1991-12-09 1991-12-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH05172433A true JPH05172433A (en) 1993-07-09
JP2616525B2 JP2616525B2 (en) 1997-06-04

Family

ID=18165850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324441A Expired - Lifetime JP2616525B2 (en) 1991-12-09 1991-12-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2616525B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097864A (en) * 2001-09-26 2003-04-03 Mitsubishi Electric Corp Air conditioner
JP5323202B2 (en) * 2009-10-29 2013-10-23 三菱電機株式会社 Air conditioner
WO2017179166A1 (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Air-conditioning device
EP2508819A4 (en) * 2009-11-30 2018-10-17 Mitsubishi Electric Corporation Air-conditioning device
WO2019053872A1 (en) * 2017-09-15 2019-03-21 三菱電機株式会社 Air-conditioning apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125868A (en) * 1989-10-06 1991-05-29 Mitsubishi Electric Corp Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125868A (en) * 1989-10-06 1991-05-29 Mitsubishi Electric Corp Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097864A (en) * 2001-09-26 2003-04-03 Mitsubishi Electric Corp Air conditioner
JP5323202B2 (en) * 2009-10-29 2013-10-23 三菱電機株式会社 Air conditioner
EP2508819A4 (en) * 2009-11-30 2018-10-17 Mitsubishi Electric Corporation Air-conditioning device
WO2017179166A1 (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Air-conditioning device
WO2019053872A1 (en) * 2017-09-15 2019-03-21 三菱電機株式会社 Air-conditioning apparatus
GB2579961A (en) * 2017-09-15 2020-07-08 Mitsubishi Electric Corp Air-conditioning apparatus
GB2579961B (en) * 2017-09-15 2021-07-14 Mitsubishi Electric Corp Air-conditioning apparatus
US11802725B2 (en) 2017-09-15 2023-10-31 Mitsubishi Electric Corporation Air-conditioning apparatus

Also Published As

Publication number Publication date
JP2616525B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH02118372A (en) Air-conditioning device
JP2616523B2 (en) Air conditioner
JPH05172433A (en) Air conditioning apparatus
JP2944507B2 (en) Air conditioner
JP2616524B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2503669B2 (en) Air conditioner
JPH10325641A (en) Refrigerating device
JP2003279174A (en) Air conditioning device
JPH0754218B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JP3092214B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JPH0752045B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JPH07104075B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15