JPH0752045B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0752045B2
JPH0752045B2 JP2107905A JP10790590A JPH0752045B2 JP H0752045 B2 JPH0752045 B2 JP H0752045B2 JP 2107905 A JP2107905 A JP 2107905A JP 10790590 A JP10790590 A JP 10790590A JP H0752045 B2 JPH0752045 B2 JP H0752045B2
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
connection pipe
pipe
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2107905A
Other languages
Japanese (ja)
Other versions
JPH046362A (en
Inventor
節 中村
秀一 谷
智彦 河西
茂生 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107905A priority Critical patent/JPH0752045B2/en
Priority to AU74381/91A priority patent/AU636215B2/en
Priority to EP91303443A priority patent/EP0453271B1/en
Priority to ES199191303443T priority patent/ES2046853T3/en
Priority to DE91303443T priority patent/DE69100424T2/en
Priority to US07/687,434 priority patent/US5156014A/en
Publication of JPH046362A publication Critical patent/JPH046362A/en
Publication of JPH0752045B2 publication Critical patent/JPH0752045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して、複数台の室内機を接
続する多室型ヒートポンプ式空気調和装置に関するもの
で、特に各室内機毎に冷暖房を選択的に、または1方の
室内機では冷房、他方の室内機では暖房が同時に行うこ
とができる空気調和装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a multi-room heat pump type air conditioner in which a plurality of indoor units are connected to one heat source device, and in particular each indoor unit. The present invention relates to an air conditioner capable of selectively performing heating / cooling for each, or simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

〔従来の技術〕[Conventional technology]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり、各室内機は全て暖
房、または、全て冷房を行こなうように形成されてい
る。
Conventionally, a heat pump type air conditioner in which a plurality of indoor units are connected to one heat source device by two pipes of a gas pipe and a liquid pipe and a cooling and heating operation is common, and all the indoor units are heated. , Or all are formed so as to perform cooling.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の多室型ヒートポンプ式空気調和装置は以上のよう
に構成されているので、全ての室内機が、暖房または冷
房にしか運転しないため、冷房が必要な場所で暖房が行
われたり、逆に暖房が必要な場所で冷房が行われる様な
問題があった 特に、大規模なビルに据え付けた場合、インテリア部と
ペリメータ部、または一般事務室と、コンピュータール
ーム等のOA化された部屋では空調の負荷が著しく異なる
ため、特に問題となっている。
Since the conventional multi-room heat pump type air conditioner is configured as described above, all indoor units operate only for heating or cooling, so heating is performed in a place where cooling is required, or vice versa. There was a problem that cooling was done in a place where heating was required, especially when installed in a large building, air conditioning in the interior part and perimeter part, or the general office room, and the office room such as the computer room This is a particular problem because the loads on the are significantly different.

この発明は、上記のような問題点を解消するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、または1方の室内
機では冷房、他方の室内機では暖房が同時に行うことが
できる様にして、大規模なビルに据え付けた場合インテ
リア部とペリメーター部、または一般事務室とコンピュ
ータールーム等のOA化された部屋で空調の負荷が著しく
異なっても、それぞれに対応できる多室型ヒートポンプ
式空気調和装置を得ることを目的とする。
The present invention has been made to solve the above problems, and a plurality of indoor units are connected to one heat source unit, and cooling or heating is selectively performed for each indoor unit, or one When it is installed in a large building, it can be used as OA for the interior section and perimeter section, or the general office room and computer room, etc. An object of the present invention is to obtain a multi-room heat pump type air conditioner capable of coping with different air-conditioning loads even if the air-conditioning loads differ significantly between rooms.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係わる空気調和装置においては、圧縮機、切
換弁、熱源機側熱交換器等よりなる1台の熱源機と、そ
れぞれ室内側熱交換器を有する複数台の室内機とを、第
1、第2の接続配管を介して接続したものにおいて、上
記複数台の室内機の室内側熱交換器の一方を上記第1の
接続配管または、第2の接続配管に切り替え可能に接続
してなる第1の分岐部と、上記複数台の室内側熱交換器
の他方に接続され、かつ上記第2の接続配管に接続して
なる第2の分岐部と、上記第2の接続配管途中に設けら
れ、ガス冷媒と液冷媒とを分離する気液分離装置と、こ
の気液分離装置と上記室内側熱交換器の他方とを接続す
る管路途中に設けられ、冷媒流量を制御する流量制御装
置と、上記第1及び第2の接続配管間に設けられ、流れ
る冷媒の方向を切換えることにより、運転時は常に、上
記熱源機と上記室内機間に介在する第1の接続配管を低
圧に、上記第2の接続配管を高圧にする接続配管切換装
置と、上記第2の分岐部と上記第1の接続配管とを連通
する第4の流量制御装置とを、設け冷暖同時運転可能に
構成したものである。
In the air conditioner according to the present invention, one heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger, and the like, and a plurality of indoor units each having an indoor side heat exchanger are provided. , Connected via a second connection pipe, one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe. A first branch part, a second branch part connected to the other of the plurality of indoor heat exchangers and connected to the second connection pipe, and provided in the middle of the second connection pipe And a gas-liquid separation device for separating the gas refrigerant and the liquid refrigerant, and a flow rate control device for controlling the refrigerant flow amount, which is provided in the middle of a pipeline connecting the gas-liquid separation device and the other of the indoor heat exchangers. And is provided between the first and second connecting pipes and cuts the direction of the flowing refrigerant. As a result, at the time of operation, the first connection pipe interposed between the heat source unit and the indoor unit is kept at a low pressure and the second connection pipe is kept at a high pressure at all times, and the second branch is provided. A fourth flow rate control device that communicates the above-mentioned part and the above-mentioned first connection pipe is provided to enable simultaneous cooling and heating operation.

また、第1の接続配管は第2の接続配管より大径に構成
する。
Further, the first connecting pipe has a larger diameter than the second connecting pipe.

〔作用〕[Action]

この発明において、冷暖房同時運転における冷房主体の
場合、圧縮機より吐出された高温高圧の冷媒ガスが熱源
機側熱交換器で任意量熱交換して気液二相の高温高圧状
態となり、第2の接続配管を介して気液分離装置に流入
する。流入した冷媒はガス冷媒と液冷媒とに分離され、
ガス冷媒のみ第1の分岐部を経由して暖房しようとする
室内機に供給されて凝縮液化され、第2の分岐部に流入
する。一方分離された液冷媒は、第2の分岐部に流入
し、暖房室内機から送出された液冷媒と合流して冷房し
ようとする室内機に供給される。このように気液分離装
置で的確にガス冷媒と液冷媒とに分離され、かつ流量制
御装置で適正に制御されて冷房或は暖房が要求される室
内機に供給されるので高効率な冷暖房同時運転を行なう
ことができる。
In the present invention, in the case of mainly cooling in the heating / cooling simultaneous operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor exchanges an arbitrary amount of heat in the heat-source-side heat exchanger to become a gas-liquid two-phase high-temperature and high-pressure state. It flows into the gas-liquid separation device through the connection pipe. The inflowing refrigerant is separated into a gas refrigerant and a liquid refrigerant,
Only the gas refrigerant is supplied to the indoor unit to be heated via the first branch portion, condensed and liquefied, and flows into the second branch portion. On the other hand, the separated liquid refrigerant flows into the second branch portion, merges with the liquid refrigerant sent from the heating indoor unit, and is supplied to the indoor unit that is going to cool. In this way, the gas-liquid separation device accurately separates the gas refrigerant and the liquid refrigerant, and the flow rate control device appropriately supplies the refrigerant to the indoor unit that requires cooling or heating. You can drive.

また、接続配管切換装置の機能により第1の接続配管は
常に低圧側として使用されるが、上記第1の接続配管は
第2の接続配管より大径に構成しているので、流れる冷
媒の流動抵抗を小さく抑えることができ、冷房しようと
する室内機の蒸発圧力が高くなることがなく、冷房能力
が不足するということがない。したがって、冷暖房同時
運転における冷房主体の場合、暖房主体の場合、冷房運
転のみの場合に、冷房しようとする室内機の蒸発圧力が
上昇することがなく、冷房能力不足を来すということが
ない。
Further, the first connecting pipe is always used on the low pressure side due to the function of the connecting pipe switching device, but since the first connecting pipe has a larger diameter than the second connecting pipe, the flow of the flowing refrigerant is The resistance can be suppressed to a small value, the evaporation pressure of the indoor unit to be cooled does not increase, and the cooling capacity does not become insufficient. Therefore, in the case of the cooling mainly in the cooling / heating simultaneous operation, in the case of the heating mainly, only in the cooling operation, the evaporating pressure of the indoor unit to be cooled does not rise, and the cooling capacity is not insufficient.

また、冷暖房同時運転における暖房主体の場合、暖房し
ようとする室内機に供給された高温のガス冷媒は室内側
熱交換器で室内空気と熱交換して、凝縮液化し、室内を
暖房する。凝縮液化した冷媒は第2の分岐部に流入し、
その一部は冷房しようとする室内機に供給され、室内側
熱交換器において、蒸発気化し、室内を冷房する。蒸発
気化した冷媒は第1の分岐部を介して第1の接続配管に
流入する。一方第2の分岐部内の残り冷媒は、第4の流
量制御装置を経由して第1の接続配管に流入し、冷房し
ようとする室内機から送出された冷媒と合流して、接続
配管切換装置を通り、熱源機側熱交換器に流入する。こ
の熱源機側熱交換器で熱交換し、蒸発気化した冷媒は圧
縮機に吸入される。以上のように、暖房主体運転の冷凍
サイクルにおいて、低圧側を構成する第1の接続配管を
太く構成しているので、第1の接続配管を流れる冷媒の
流動損失を小さく抑えることができ、熱源機側熱交換器
の圧力が低下することがなく、能力が低下するようなこ
とがない。また、室内機の蒸発圧力が上昇することがな
く、冷房能力が不足するということもない。
Further, in the case of heating mainly in the simultaneous heating and cooling operation, the high temperature gas refrigerant supplied to the indoor unit to be heated exchanges heat with the indoor air in the indoor heat exchanger to be condensed and liquefied to heat the room. The condensed and liquefied refrigerant flows into the second branch portion,
A part of it is supplied to the indoor unit to be cooled, and is evaporated and vaporized in the indoor heat exchanger to cool the room. The evaporated vaporized refrigerant flows into the first connecting pipe via the first branch portion. On the other hand, the remaining refrigerant in the second branch portion flows into the first connection pipe via the fourth flow rate control device, merges with the refrigerant sent from the indoor unit to be cooled, and connects to the connection pipe switching device. Through the heat source unit side heat exchanger. The refrigerant that has undergone heat exchange in this heat source unit side heat exchanger and has been evaporated and vaporized is sucked into the compressor. As described above, in the heating-based operation refrigeration cycle, since the first connection pipe forming the low pressure side is thick, the flow loss of the refrigerant flowing through the first connection pipe can be suppressed to be small, and the heat source The pressure of the machine side heat exchanger does not decrease, and the capacity does not decrease. Further, the evaporation pressure of the indoor unit does not rise and the cooling capacity does not become insufficient.

また、接続配管切換装置により、全冷房運転、全暖房運
転、冷房主体運転、暖房主体運転のいづれの運転モード
においても、常に第1の接続配管は低圧、第2の接続配
管は高圧になるため、全冷房運転、冷房主体運転と全暖
房運転、暖房主体運転との間で運転モードを変化して
も、圧力変動が抑えられ、良好な過度特性が得られる。
In addition, the connection pipe switching device always keeps the first connection pipe at a low pressure and the second connection pipe at a high pressure in any of the operation modes of the cooling only operation, the heating only operation, the cooling main operation, and the heating main operation. Even when the operation mode is changed between the cooling only operation, the cooling main operation and the heating only operation, and the heating main operation, the pressure fluctuation is suppressed and good transient characteristics are obtained.

さらに、接続配管切換装置により圧力変動が抑えられる
ので、気液分離装置での気液分離も、常に適性にガス状
冷媒と液状冷媒が分離されるので、冷暖同時運転時にお
いても、良好な過渡特性が得られる。
Furthermore, since the pressure fluctuations are suppressed by the connection pipe switching device, the gas-liquid separation in the gas-liquid separation device is always properly separated between the gaseous refrigerant and the liquid refrigerant. The characteristics are obtained.

[実施例] 以下、この発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図乃至第4
図は第1図の一実施例における冷暖房運転時の動作状態
を示したもので、第2図は冷房または暖房のみの運転動
作状態図、第3図及び第4図は冷暖房同時運転の動作を
示すもので、第3図は暖房主体(暖房運転容量が冷房運
転容量より大きい場合)を、第4図は冷房主体(冷房運
転容量が暖房運転容量より大きい場合)を示す運転動作
状態図である。そして、第5図はこの発明の他の実施例
の空気調和装置の冷媒系を中心とする全体構成図であ
る。
FIG. 1 is an overall configuration diagram centering on the refrigerant system of the air conditioner of the first embodiment of the present invention. Also, FIGS. 2 to 4
The figure shows the operation state during the heating and cooling operation in one embodiment of FIG. 1, FIG. 2 shows the operation state diagram of only cooling or heating, and FIGS. 3 and 4 show the operation of the cooling and heating simultaneous operation. FIG. 3 is an operation state diagram showing a heating main body (when the heating operation capacity is larger than the cooling operation capacity) and FIG. 4 is a cooling main body (when the cooling operation capacity is larger than the heating operation capacity). . FIG. 5 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention.

なお、この実施例では、熱源機1台に室内機3台を接続
した場合について説明するが、2台以上の室内機を接続
した場合も同様である。
In addition, in this embodiment, a case where three indoor units are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected.

第1図において、(A)は熱源機、(B)、(C)、
(D)は後述するように互いに並列接続された室内機で
それぞれ同じ構成となっている。(E)は後述するよう
に、第1の分岐部、第2の流量制御装置、第2の分岐
部、気液分離装置、熱交換部、第3の流量制御装置、第
4の流量制御装置を内蔵した中継機。
In FIG. 1, (A) is a heat source device, (B), (C),
As will be described later, (D) is an indoor unit connected in parallel with each other and has the same configuration. (E) is, as will be described later, a first branch part, a second flow rate control device, a second branch part, a gas-liquid separation device, a heat exchange part, a third flow rate control device, and a fourth flow rate control device. Repeater with built-in.

(1)は圧縮機、(2)は熱源機の冷媒流通方向を切換
える4方弁、(3)は熱源機側熱交換器、(4)はアキ
ュムレータで、上記機器(1)〜(3)と接続され、熱
源機(A)を構成する。(5)は3台の室内側熱交換
器、(6)は熱源機(A)の4方弁(2)と中継機
(E)を接続する太い第1の接続配管、(6b),(6
c),(6d)はそれぞれ室内機(B)、(C)、(D)
の室内側熱交換器(5)と中継機(E)を接続し、第1
の接続配管(6)に対応する室内機側の第1の接続配
管、(7)は熱源機(A)の熱源機側熱交換器(3)と
中継機(E)を接続する上記第1の接続配管(6)より
細い第2の接続配管、(7b),(7c),(7d)はそれぞ
れ室内機(B)、(C)、(D)の室内側熱交換器
(5)と中継機(E)を接続し第2の接続配管(7)に
対応する室内機側の第2の接続配管、(8)は室内機側
の第1の接続配管(6b),(6c),(6d)と、第1の接
続配管(6)または、第2の接続配管(7)側に切り替
え可能に接続する三方切替弁、(9)は室内側熱交換器
(5)に近接して接続され冷房時は室内側熱交換器
(5)の出口側のスーパーヒート量、暖房時はサブクー
ル量により制御される第1の流量制御装置で、室内機側
の第2の接続配管(7b),(7c),(7d)に接続され
る。(10)は室内機側の第1の接続配管(6b),(6
c),(6d)と、第1の接続配管(6)または、第2の
接続配管(7)に切り替え可能に接続する三方切替弁
(8)よりなる第1の分岐部、(11)は室内機側の第2
の接続配管(7b),(7c),(7d)と第2の接続配管
(7)よりなる第2の分岐部、(12)は第2の接続配管
(7)の途中に設けられた気液分離装置で、その気相部
は、三方切替弁(8)の第1口(8a)に接続され、その
液相部は、第2の分岐部(11)に接続されている。(1
3)は、気液分離装置(12)と第2の分岐部(11)との
間に接続する開閉自在な第2の流量制御装置、(14)
は、第2の分岐部(11)と上記第1の接続配管(6)と
を結ぶバイパス配管、(15)バイパス配管(14)の途中
に設けられた第3の流量制御装置、(16b),(16c),
(16d)はバイパス配管(14)の第3の流量制御装置(1
5)の下流に設けられ、第2の分岐部(11)における各
室内機側の第2の接続配管(7b),(7c),(7d)との
間でそれぞれ熱交換を行う第3の熱交換部、(16a)は
バイパス配管(14)の第3の流量制御装置(15)の下流
に設けられ、第2の分岐部(11)における各室内機側の
第2の接続配管(7b),(7c),(7d)の合流部との間
で熱交換を行う第2の熱交換部、(19)は、バイパス配
管(14)の上記第3の流量制御装置の下流及び第2の熱
交換部(16a)の下流に設けられ気液分離装置(12)と
第2の流量制御装置(13)とを接続する配管との間で熱
交換を行う第1の熱交換部、(17)は第2の分岐部(1
1)と上記第1の接続配管(6)との間に接続する開閉
自在な第4の流量制御装置。(32)は上記熱源機側熱交
換器(3)と上記第2の接続配管(7)との間に設けら
れた第3の逆止弁であり、上記熱源機側熱交換器(3)
から上記第2の接続配管(7)へのみ冷媒流通を許容す
る。(33)は、上記熱源機(A)の4方弁(2)と上記
第1の接続配管(6)との間に設けられた第4の逆止弁
であり、上記第1の接続配管(6)から上記4方弁
(2)へのみ冷媒流通を許容する。(34)は、上記熱源
機(A)の4方弁(2)と上記第2の接続配管(7)と
の間に設けられた第5の逆止弁であり、上記4方弁
(2)から上記第2の接続配管(7)へのみ冷媒流通を
許容する。(35)は、上記熱源機側熱交換器(3)と上
記第1の接続配管(6)との間に設けられた第6の逆止
弁であり、上記第1の接続配管(6)から上記熱源機側
熱交換器(3)へのみ冷媒流通を許容する。上記第3の
逆止弁(32)〜上記第6の逆止弁(35)で接続配管切換
装置(40)を構成する。
(1) is a compressor, (2) is a four-way valve that switches the refrigerant flow direction of the heat source unit, (3) is a heat source unit side heat exchanger, (4) is an accumulator, and the above devices (1) to (3) And a heat source unit (A). (5) is three indoor heat exchangers, (6) is a thick first connecting pipe connecting the four-way valve (2) of the heat source unit (A) and the relay unit (E), (6b), ( 6
c) and (6d) are indoor units (B), (C), (D), respectively.
The indoor heat exchanger (5) and the relay (E) are connected to
The first connection pipe on the indoor unit side corresponding to the connection pipe (6) of (1), (7) is the first connection pipe for connecting the heat source unit side heat exchanger (3) of the heat source unit (A) and the relay unit (E) The second connecting pipes (7b), (7c) and (7d), which are thinner than the connecting pipe (6) of the above, are the indoor heat exchanger (5) of the indoor units (B), (C) and (D), respectively. A second connection pipe on the indoor unit side that connects the repeater (E) and corresponds to the second connection pipe (7), (8) is the first connection pipe (6b), (6c) on the indoor unit side, (6d), a three-way switching valve that is switchably connected to the first connection pipe (6) or the second connection pipe (7) side, and (9) is close to the indoor heat exchanger (5). The first flow rate control device is controlled by the superheat amount on the outlet side of the indoor heat exchanger (5) when connected and cooling, and by the subcool amount when heating, and the second connection pipe (7b) on the indoor unit side. , (7c), Connected to (7d). (10) is the first connecting pipe (6b), (6
c), (6d) and the first branch part (11) comprising the three-way switching valve (8) switchably connected to the first connection pipe (6) or the second connection pipe (7), The second on the indoor unit side
Of the second connecting pipe (7) and the second branch portion (12) consisting of the connecting pipes (7b), (7c), (7d) and the second connecting pipe (7) are provided in the middle of the second connecting pipe (7). In the liquid separation device, the gas phase part is connected to the first port (8a) of the three-way switching valve (8), and the liquid phase part is connected to the second branch part (11). (1
3) is a second flow rate control device (14) which is connected between the gas-liquid separation device (12) and the second branch part (11) and which can be opened and closed.
Is a bypass pipe connecting the second branch portion (11) and the first connection pipe (6), (15) a third flow rate control device provided in the middle of the bypass pipe (14), (16b) , (16c),
(16d) is the third flow control device (1
5) is provided downstream of the third branch pipe (11) for performing heat exchange with the second connection pipes (7b), (7c), (7d) on the indoor unit side, respectively. The heat exchange part (16a) is provided downstream of the third flow rate control device (15) in the bypass pipe (14), and the second connection pipe (7b) on the side of each indoor unit in the second branch part (11). ), (7c), and (7d) the second heat exchange section for exchanging heat with the confluence section, (19) is located in the bypass pipe (14) downstream of the third flow rate control device and in the second section. A heat exchange part (16a) downstream of the first heat exchange part for exchanging heat between a gas-liquid separation device (12) and a pipe connecting the second flow rate control device (13), 17) is the second branch (1
An openable and closable fourth flow control device connected between 1) and the first connection pipe (6). (32) is a third check valve provided between the heat source unit side heat exchanger (3) and the second connection pipe (7), and the heat source unit side heat exchanger (3)
To allow the refrigerant to flow only to the second connecting pipe (7). (33) is a fourth check valve provided between the four-way valve (2) of the heat source unit (A) and the first connecting pipe (6), and is the first connecting pipe. The refrigerant is allowed to flow only from (6) to the four-way valve (2). (34) is a fifth check valve provided between the four-way valve (2) of the heat source unit (A) and the second connecting pipe (7), and the four-way valve (2) ) To the second connecting pipe (7) only. (35) is a sixth check valve provided between the heat source unit side heat exchanger (3) and the first connecting pipe (6), and the first connecting pipe (6) To allow the refrigerant to flow only to the heat source unit side heat exchanger (3). The third check valve (32) to the sixth check valve (35) constitute a connection pipe switching device (40).

このように構成されたこの発明の実施例について説明す
る。
An embodiment of the present invention configured as above will be described.

まず、第2図を用いて冷房運転のみの場合について説明
する。
First, the case of only the cooling operation will be described with reference to FIG.

すなわち、同図に実線矢印で示すように圧縮機(1)よ
り吐出された高温高圧冷媒ガスは4方弁(2)を通り、
熱源機側熱交換器(3)で熱交換して凝縮液化された
後、第3の逆止弁(32)、第2の接続配管(7)、気液
分離装置(12)、第2の流量制御装置(13)の順に通
り、更に第2の分岐部(11)、室内機側の第2の接続配
管(7b),(7c),(7d)を通り、各室内機(B)、
(C)、(D)に流入する。そして、各室内機(B)、
(C)、(D)に流入した冷媒は、各室内側熱交換器
(5)出口のスーパーヒート量により制御される第1の
流量制御装置(9)により低圧まで減圧されて室内側熱
交換器(5)で、室内空気と熱交換して蒸発しガス化さ
れ室内を冷房する。そして、このガス状態となった冷媒
は、室内機側の第1の接続配管(6b),(6c),(6d)
三方切替弁(8)、第1の分岐部(10)を通り、第1の
接続配管(6)、第4の逆止弁(33)、熱源機の4方弁
(2)、アキュムレータ(4)を経て圧縮機(1)に吸
入される循環サイクルを構成し、冷房運転をおこなう。
この時、三方物替弁(8)の第1口(8a)は閉路、第2
口(8b)及び第3口(8c)は開路されている。
That is, the high-temperature high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2) as indicated by the solid arrow in FIG.
After the heat is exchanged in the heat source side heat exchanger (3) to be condensed and liquefied, the third check valve (32), the second connection pipe (7), the gas-liquid separation device (12), and the second Each of the indoor units (B) passes through the flow rate control device (13), further passes through the second branch section (11) and the second connection pipes (7b), (7c), (7d) on the indoor unit side,
It flows into (C) and (D). And each indoor unit (B),
The refrigerant flowing into (C) and (D) is decompressed to a low pressure by the first flow rate control device (9) which is controlled by the superheat amount at the outlet of each indoor heat exchanger (5), and indoor heat exchange is performed. In the vessel (5), heat is exchanged with the room air to evaporate and gasify, and the room is cooled. Then, the refrigerant in the gas state is the first connection pipes (6b), (6c), (6d) on the indoor unit side.
It passes through the three-way switching valve (8) and the first branch part (10), the first connecting pipe (6), the fourth check valve (33), the four-way valve (2) of the heat source device, and the accumulator (4). ), The circulation cycle is drawn into the compressor (1), and the cooling operation is performed.
At this time, the first port (8a) of the three-way exchange valve (8) is closed, the second
The mouth (8b) and the third mouth (8c) are open.

またこの時、冷媒は第1の接続配管(6)が低圧、第2
の接続配管(7)が高圧のため必然的に第3の逆止弁
(32)、第4の逆止弁(33)へ流通する。また、このサ
イクル時、第2の流量制御装置(13)を通過した冷媒の
一部がバイパス配管(14)へ入り第3の流量制御装置
(15)で低圧まで減圧されて第3の熱交換部(16b),
(16c),(16d)で各室内機側の第2の接続配管(7
b),(7c),(7d)との間で、第2の熱交換部(16a)
で第2の分岐部(11)の各室内機側の第2の接続配管
(7b),(7c),(7d)の合流部との間で、更に第1の
熱交換部(19)で第2の流量制御装置(13)に流入する
冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続
配管(6)、第4の逆止弁(33)へ入り熱源機の4方弁
(2)、アキュムレータ(4)を経て圧縮機(1)に吸
入される。
At this time, the refrigerant has a low pressure in the first connecting pipe (6),
Due to the high pressure in the connecting pipe (7), the fluid flows inevitably to the third check valve (32) and the fourth check valve (33). Also, during this cycle, a part of the refrigerant that has passed through the second flow rate control device (13) enters the bypass pipe (14) and is depressurized to a low pressure by the third flow rate control device (15) to cause the third heat exchange. Part (16b),
In (16c) and (16d), the second connection pipe (7
b), (7c), (7d), the second heat exchange section (16a)
Then, between the second branch part (11) and the confluence part of the second connection pipes (7b), (7c), (7d) on each indoor unit side, and in the first heat exchange part (19). The refrigerant that has exchanged heat with the refrigerant flowing into the second flow rate control device (13) and has evaporated evaporates into the first connecting pipe (6) and the fourth check valve (33), and then flows into the heat source unit 4. It is sucked into the compressor (1) through the one-way valve (2) and the accumulator (4).

一方、第1、第2、第3の熱交換部(19)、(16a),
(16b),(16c),(16d)で熱交換し冷却されサブク
ールを充分につけられた上記第2の分岐部(11)の冷媒
は冷房しようとしている室内機(B)、(C)、(D)
へ流入する。
On the other hand, the first, second and third heat exchange parts (19), (16a),
The indoor units (B), (C), (C) that are about to cool the refrigerant in the second branch section (11) that has been sufficiently heat-exchanged and cooled in (16b), (16c), and (16d) to provide subcooling. D)
Flow into.

次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、同図に点線矢印で示すように圧縮機
(1)より吐出された高温高圧冷媒ガスは、4方弁
(2)を通り、第5の逆止弁(34)、第2の接続配管
(7)、気液分離装置(12)を通り、第1の分岐部(1
0)、三方切替弁(8)、室内機側の第1の接続配管(6
b),(6c),(6d)、の順に通り、各室内機(B)、
(C)、(D)に流入し、室内空気と熱交換して凝縮液
化し、室内を暖房する。そして、この液状態となった冷
媒は、各室内側熱交換器(5)出口のサブクール量によ
り制御される第1の流量制御装置(9)を通り、室内機
側の第2の接続配管(7b),(7c),(7d)第2の分岐
部(11)に流入して合流し、更に第4の流量制御装置
(17)を通り、ここで第1の流量制御装置(9)、又は
第4の流量制御装置(17)のどちらか一方で低圧の二相
状態まで減圧される。そして、低圧まで減圧された冷媒
は、第1の接続配管(6)を経て熱源機(A)の第6の
分岐部(35)、熱源機側熱交換器(3)に流入し熱交換
して蒸発しガス状態となり、熱源機の4方弁(2)、ア
キュムレータ(4)を経て圧縮機(1)に吸入される循
環サイクルを構成し、暖房運転をおこなう。この時、三
方切替弁(8)の第2口(8b)は閉路、第1口(8a)及
び第3口(8c)は開路されている。
Next, the case of only the heating operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2), the fifth check valve (34), and the second connecting pipe as shown by the dotted arrow in the figure. (7), passing through the gas-liquid separator (12), the first branch (1
0), three-way switching valve (8), first connection pipe (6
b), (6c), (6d), in that order, each indoor unit (B),
It flows into (C) and (D), heat-exchanges with room air, condenses into liquefaction, and heats the room. Then, the refrigerant in the liquid state passes through the first flow rate control device (9) which is controlled by the subcool amount at the outlet of each indoor heat exchanger (5), and the second connection pipe (on the indoor unit side) 7b), (7c), (7d) flow into the second branch part (11) and merge, and further pass through the fourth flow rate control device (17), where the first flow rate control device (9), Alternatively, the pressure is reduced to a low-pressure two-phase state by either the fourth flow rate control device (17). Then, the refrigerant decompressed to a low pressure flows through the first connecting pipe (6) into the sixth branch portion (35) of the heat source unit (A) and the heat source unit side heat exchanger (3) for heat exchange. And evaporates into a gas state, and constitutes a circulation cycle in which the heat source machine is sucked into the compressor (1) through the four-way valve (2) and the accumulator (4) to perform the heating operation. At this time, the second port (8b) of the three-way switching valve (8) is closed, and the first port (8a) and the third port (8c) are open.

また、冷媒はこの時、第1の接続配管(6)が低圧、第
2の接続配管(7)が高圧のため必然的に第5の逆止弁
(34)、第6の逆止弁(35)へ流通する。
At this time, the refrigerant has a low pressure in the first connecting pipe (6) and a high pressure in the second connecting pipe (7), so that the fifth check valve (34) and the sixth check valve ( 35).

冷暖房同時運転における暖房主体の場合について第3図
を用いて説明する。
The case of mainly heating in the simultaneous heating and cooling operation will be described with reference to FIG.

すなわち、同図に点線矢印で示すように圧縮機(1)よ
り吐出された高温高圧冷媒ガスは、4方弁(2)を通
り、第5の逆止弁(34)、第2の接続配管(7)を通し
て中継機(E)へ送られ、気液分離装置(12)を通り、
そして第1の分岐部(10)、三方切替弁(8)、室内機
側の第1の接続配管(6b),(6c),の順に通り、暖房
しようとする各室内機(B)、(C)、に流入し、室内
側熱交換器(5)で室内空気と熱交換して凝縮液化され
室内を暖房する。そして、この凝縮液化した冷媒は、各
室内側熱交換器(5)出口のサブクール量により制御さ
れほぼ全開状態の第1の流量制御装置(9)を通り少し
減圧されて第3の分岐部(11)に流入する。そして、こ
の冷媒の一部は、室内機側の第2の接続配管(7d)を通
り冷房しようとする室内機(D)に入り、室内側熱交換
器(5)出口のスーパーヒート量により制御される第1
の流量制御装置(9)に入り減圧された後に、室内側熱
交換器(5)に入って熱交換して蒸発しガス状態となっ
て室内を冷房し、三方切替弁(8)を介して第1の接続
配管(6)の流入する。
That is, the high-temperature high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2), the fifth check valve (34), and the second connecting pipe as shown by the dotted arrow in the figure. It is sent to the repeater (E) through (7), passes through the gas-liquid separator (12),
Then, the first branch portion (10), the three-way switching valve (8), the first connection pipes (6b), (6c) on the indoor unit side are passed in this order, and the indoor units (B), ( C), and heat-exchanges with indoor air in the indoor heat exchanger (5) to be condensed and liquefied to heat the room. Then, the condensed and liquefied refrigerant is controlled by the amount of subcool at the outlet of each indoor heat exchanger (5), passes through the first flow rate control device (9) in a substantially fully opened state, and is slightly decompressed to the third branch portion ( Inflow into 11). Then, a part of this refrigerant enters the indoor unit (D) that is going to be cooled through the second connection pipe (7d) on the indoor unit side, and is controlled by the superheat amount at the outlet of the indoor heat exchanger (5). First done
After entering the flow rate control device (9) and being decompressed, it enters the indoor heat exchanger (5) to exchange heat and evaporate into a gas state to cool the room, and through the three-way switching valve (8). Inflow of the first connecting pipe (6).

一方、他の冷媒は第2の接続配管(7)の高圧、第2の
分岐部(11)の中間圧値によって制御される開閉自在な
第4の流量制御装置(17)を通って冷房しようとする室
内機(D)を通った冷媒と合流して太い第1の接続
(6)を経て熱源機(A)の第6の逆止弁(35)、熱源
機側熱交換器(3)に流入し熱交換して蒸発しガス状態
となる。そして、その冷媒は、熱源機の4方弁(2)、
アキュムレータ(4)を経て圧縮機(1)に吸入される
循環サイクルを構成し、暖房主体運転をおこなう。この
時、冷房する室内機(D)の室内側熱交換器(5)の蒸
発圧力と熱源機側熱交換器(3)の蒸発圧力の圧力差
が、太い第1の接続配管(6)に切替えるために小さく
なる、又、この時、室内機(B)(C)に接続された三
方切替弁(8)の第2口(8b)は閉路、第1口(8a)及
び第3口(8c)は開路されており、室内機(D)の第1
口(8a)は閉路、第2口(8b)、第3口(8c)は開路さ
れている。
On the other hand, the other refrigerant will be cooled by passing through the fourth flow rate control device (17) which can be opened and closed controlled by the high pressure of the second connecting pipe (7) and the intermediate pressure value of the second branch portion (11). And the sixth check valve (35) of the heat source unit (A) and the heat exchanger (3) on the heat source unit side (3) through the thick first connection (6) with the refrigerant that has passed through the indoor unit (D) Into the gas state by heat exchange and evaporation. Then, the refrigerant is the four-way valve (2) of the heat source device,
A circulation cycle in which the air is taken into the compressor (1) through the accumulator (4) constitutes a heating-main operation. At this time, the pressure difference between the evaporating pressure of the indoor heat exchanger (5) of the indoor unit (D) to be cooled and the evaporating pressure of the heat source side heat exchanger (3) is in the thick first connection pipe (6). It becomes smaller for switching, and at this time, the second port (8b) of the three-way switching valve (8) connected to the indoor units (B) and (C) is closed, the first port (8a) and the third port ( 8c) is open circuit, the first of the indoor unit (D)
The mouth (8a) is closed, and the second mouth (8b) and the third mouth (8c) are open.

この時冷媒は、第1の接続配管(6)が低圧、第2の接
続配管(7)が高圧のため必然的に第5の逆止弁(3
4)、第6の逆止弁(35)へ流通する。また、このサイ
クル時、一部の液冷媒は第2の分岐部(11)の各室内機
側の第2の接続配管(7b),(7c),(7d)の合流部か
らバイパス配管(14)へ入り第3の流量制御装置(15)
で低圧まで減圧されて第3の熱交換部(16b),(16
c),(16d)で各室内機側の第2の接続配管(7b),
(7c),(7d)との間で、第2の熱交換部(16a)で第
2の分岐部(11)の各室内機側の第2の接続配管(7
b),(7c),(7d)の合流部との間で熱交換を行い蒸
発した冷媒は、第1の接続配管(6)へ入り、熱源機
(A)の第6の逆止弁(35)、熱源機側熱交換器(3)
に流入し熱交換して蒸発しガス状態となる。そして、そ
の冷媒は、熱源機の4方弁(2)、アキュムレータ
(4)を経て圧縮機(1)に吸入される。
At this time, since the refrigerant has a low pressure in the first connecting pipe (6) and a high pressure in the second connecting pipe (7), the refrigerant inevitably has the fifth check valve (3).
4) and flows to the sixth check valve (35). Further, during this cycle, a part of the liquid refrigerant flows from the merging portion of the second connection pipes (7b), (7c), (7d) on the indoor unit side of the second branch portion (11) to the bypass pipe (14 ) 3rd flow controller (15)
The pressure is reduced to low pressure by the third heat exchange section (16b), (16
In c) and (16d), the second connecting pipe (7b) on each indoor unit side,
Between the (7c) and (7d), the second heat exchange section (16a) is connected to the second connection pipe (7) of the second branch section (11) on the indoor unit side.
The refrigerant that has exchanged heat with the merging portions of b), (7c) and (7d) and has evaporated enters the first connection pipe (6) and enters the sixth check valve () of the heat source unit (A). 35), heat source side heat exchanger (3)
Into the gas state by heat exchange and evaporation. Then, the refrigerant is sucked into the compressor (1) through the four-way valve (2) of the heat source device and the accumulator (4).

一方、第2、第3の熱交換部(16a),(16b),(16
c),(16d)で熱交換し冷却されサブクールを充分につ
けられた上記第2の分岐部(11)の冷媒は冷房しようと
している室内機(D)へ流入する。
On the other hand, the second and third heat exchange parts (16a), (16b), (16
The refrigerant in the second branch portion (11), which has been heat-exchanged and cooled in c) and (16d) and is sufficiently subcooled, flows into the indoor unit (D) that is about to be cooled.

冷暖房同時運転における冷房主体の場合について第4図
を用いて説明する。すなわち、同図に実線矢印で示すよ
うに圧縮機(1)より吐出された高温高圧冷媒ガスは、
熱源機側熱交換器(3)で任意量を熱交換して二相の高
温高圧状態となり、第3の逆止弁(32)、第2の接続配
管(7)、中継機(E)の気液分離装置(12)へ送られ
る。そして、ここで、ガス状冷媒と液状冷媒に分離さ
れ、分離されたガス状冷媒を第1の分岐部(10)、三方
切替弁(8)、室内機側の第1の接続配管(6d)、の順
に通り、暖房しようとする室内機(D)に流入し、室内
側熱交換器(5)で室内空気と熱交換して凝縮液化し、
室内を暖房する。更に、室内側熱交換器(5)出口のサ
ブクール量により制御されほぼ全開状態の第1の流量制
御装置(9)を通り少し減圧されて第2の分岐部(1
1)、に流入する。一方、残りの液状冷媒は第2の接続
配管(7)の高圧、第2の分岐部(11)の中間圧値によ
って制御される開閉自在な第2の流量制御装置(13)を
通って第2の分岐部(11)に流入し、暖房しようとする
室内機(D)を通った冷媒と合流する。そして、第2の
分岐部(11)、室内機側の第2の接続配管(7b)(7c)
の順に通り、各室内機(B)、(C)に流入する。そし
て、各室内機(B)、(C)に流入した冷媒は、室内側
熱交換器(5)出口のスーパーヒート量により制御され
る第1の流量制御装置(9)により低圧まで減圧されて
室内側熱交換器(5)に流入し、室内空気と熱交換して
蒸発しガス化され室内を冷房する。更に、このガス状態
となった冷媒は、室内機側の第1の接続配管(6b),
(6c),三方切替弁(8)、第1の分岐部(10)を通
り、第1の接続配管(6)、第4の逆止弁(33)、熱源
機の4方弁(2)、アキュムレータ(4)を経て圧縮機
(1)に吸入される循環サイクルを構成し、冷房主体運
転をおこなう。またこの時、室内機(B)(C)に接続
された三方切替弁(8)の第1口(8a)は閉路、第2口
(8b)及び第3口(8c)は開路されており、室内機
(D)の第2口(8b)は閉路、第1口(8a)、第3口
(8c)は開路されている。
A case of mainly cooling in the cooling / heating simultaneous operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor (1) as indicated by the solid arrow in the figure is
An arbitrary amount of heat is exchanged in the heat source unit side heat exchanger (3) to form a two-phase high temperature and high pressure state, and the third check valve (32), the second connection pipe (7), and the relay unit (E) It is sent to the gas-liquid separator (12). And, here, the gaseous refrigerant is separated into the gaseous refrigerant and the liquid refrigerant, and the separated gaseous refrigerant is divided into the first branch portion (10), the three-way switching valve (8), and the first connection pipe (6d) on the indoor unit side. , In order to flow into the indoor unit (D) to be heated and exchange heat with the indoor air in the indoor heat exchanger (5) to condense and liquefy,
Heat the room. Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger (5) and is slightly decompressed through the first flow rate control device (9) which is in a fully open state, and then the second branch portion (1
1), flow into. On the other hand, the remaining liquid refrigerant passes through the second flow control device (13) which can be opened and closed and is controlled by the high pressure of the second connecting pipe (7) and the intermediate pressure value of the second branching part (11). The refrigerant flows into the second branch (11) and joins the refrigerant having passed through the indoor unit (D) to be heated. The second branch portion (11) and the second connection pipes (7b) (7c) on the indoor unit side
In the order of, and flows into each of the indoor units (B) and (C). Then, the refrigerant flowing into each indoor unit (B), (C) is decompressed to a low pressure by the first flow rate control device (9) controlled by the superheat amount at the outlet of the indoor heat exchanger (5). It flows into the indoor heat exchanger (5), exchanges heat with the indoor air, evaporates and is gasified, and cools the room. Further, the refrigerant in the gas state is the first connection pipe (6b) on the indoor unit side,
(6c), three-way switching valve (8), first branch part (10), first connecting pipe (6), fourth check valve (33), four-way valve (2) of heat source unit A circulation cycle in which the air is sucked into the compressor (1) through the accumulator (4) to perform a cooling main operation. At this time, the first port (8a) of the three-way switching valve (8) connected to the indoor units (B) and (C) is closed, and the second port (8b) and the third port (8c) are open. The second opening (8b) of the indoor unit (D) is closed, and the first opening (8a) and the third opening (8c) are open.

また、冷媒はこの時、第1の接続配管(6)が低圧、第
2の接続配管(7)が高圧のため必然的に第3の逆止弁
(32)、第4の逆止弁(33)へ流通する。また、このサ
イクル時、一部の液冷媒は第2の分岐部(11)の各室内
機側の第2の接続配管(7b),(7c)(7d)の合流部か
らバイパス配管(14)へ入り第3の流量制御装置(15)
で低圧まで減圧圧されて第3の熱交換部(16b),(16
c),(16d)で各室内機側の第2の接続配管(7b),
(7c),(7d)との間で、第2の熱交換部(16a)で第
2の分岐部(11)の各室内機側の第2の接続配管(7
b),(7c),(7d)の合流部との間で、更に第1の熱
交換部(19)で第2の流量制御装置(13)へ流入する冷
媒との間で熱交換を行い蒸発した冷媒は、第1の接続配
管(6)へ入り、熱源機(A)の第4の逆止弁(33)、
熱源機の4方弁(2)、アキュムレータ(4)を経て圧
縮機(1)に吸入される。一方、第1、第2、第3の熱
交換部(19)、(16a),(16b),(16c),(16d)で
熱交換し冷却されサブクールを充分につけられた上記第
2の分岐部(11)の冷媒は冷房しようとしている室内機
(B)、(C)へ流入する。なお、上記実施例では三方
切替弁(8)を設けて室内機側の第1の接続配管(6
b),(6c),(6d)と、第1の接続配管(6)また
は、第2の接続配管(7)に切り替え可能に接続してい
るが、第5図に示すように2つの電磁弁(30)、(31)
等の開閉弁を設けて上述したように切り替え可能に接続
しても同様な作用効果を奏す。
At this time, the refrigerant has a low pressure in the first connecting pipe (6) and a high pressure in the second connecting pipe (7), so that the third check valve (32) and the fourth check valve ( 33). Further, during this cycle, a part of the liquid refrigerant flows from the confluence of the second connection pipes (7b), (7c) and (7d) on the indoor unit side of the second branch portion (11) to the bypass pipe (14). Enter the third flow controller (15)
Is reduced to a low pressure by the third heat exchange section (16b), (16
In c) and (16d), the second connecting pipe (7b) on each indoor unit side,
Between the (7c) and (7d), the second heat exchange section (16a) is connected to the second connection pipe (7) of the second branch section (11) on the indoor unit side.
b), (7c), (7d) and the confluence section, and further heat exchange with the refrigerant flowing into the second flow rate control device (13) in the first heat exchange section (19). The evaporated refrigerant enters the first connecting pipe (6), and the fourth check valve (33) of the heat source unit (A),
It is sucked into the compressor (1) through the four-way valve (2) of the heat source machine and the accumulator (4). On the other hand, the above-mentioned second branch which has been sufficiently cooled by exchanging heat with the first, second and third heat exchange parts (19), (16a), (16b), (16c) and (16d) The refrigerant in the section (11) flows into the indoor units (B) and (C) that are about to be cooled. In the above embodiment, the three-way switching valve (8) is provided and the first connection pipe (6
b), (6c), (6d) and the first connecting pipe (6) or the second connecting pipe (7) are switchably connected, but as shown in FIG. Valves (30), (31)
Even if an on-off valve such as the above is provided and the switchable connection is performed as described above, the same operational effect is obtained.

〔発明の効果〕〔The invention's effect〕

以上説明したとおり、この発明の空気調和装置は、圧縮
機、切換弁、熱源機側熱交換器等よりなる1台の熱源機
と、それぞれ室内側熱交換器を有する複数台の室内機と
を、第1、第2の接続配管を介して接続したものにおい
て、上記複数台の室内機の室内側熱交換器の一方を上記
第1の接続配管または、第2の接続配管に切り替え可能
に接続してなる第1の分岐部と、上記複数台の室内側熱
交換器の他方に接続され、かつ上記第2の接続配管に接
続してなる上記第2の接続配管途中に設けられ、ガス冷
媒と液冷媒とを分離する気液分離装置と、この気液分離
装置と上記室内側熱交換器の他方とを接続する管路途中
に設けられ、冷媒流量を制御する流量制御装置と、熱源
機内の上記第1及び第2の接続配管間に設けられ、流れ
る冷媒の方向を切換えることにより、運転時は常に、上
記熱源機と上記室内機間に介在する第1の接続配管を低
圧に、上記第2の接続配管を高圧にする接続配管切換装
置と、上記第2の分岐部と上記第1の接続配管とを連通
する第4の流量制御装置とを設けた構成としたので、複
数台の室内機を選択的に、かつ冷房運転と暖房運転とを
同時に行なうことができるとともに、冷暖房同時運転に
おける冷房主体の場合に、気液分離装置により第2の接
続配管から流入する二相の高温高圧の冷媒をガス状冷媒
と液状冷媒に分離し、分離されたガス状冷媒のみを暖房
機に、残りの液状冷媒を冷房機に適性に分離でき、高効
率な冷暖房同時運転ができる。
As described above, the air conditioner of the present invention includes one heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger, and the like, and a plurality of indoor units each having an indoor side heat exchanger. , Connected via the first and second connection pipes, one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe. And a second branch pipe that is connected to the other of the plurality of indoor heat exchangers and that is connected to the second connection pipe. A gas-liquid separation device for separating the liquid refrigerant and a liquid refrigerant, and a flow rate control device for controlling the refrigerant flow rate, which is provided in the middle of the pipeline connecting the gas-liquid separation device and the other of the indoor heat exchangers, and the heat source unit Is provided between the first and second connection pipes, and cuts the direction of the flowing refrigerant. As a result, at the time of operation, the first connection pipe interposed between the heat source unit and the indoor unit is kept at a low pressure and the second connection pipe is kept at a high pressure at all times, and the second branch is provided. Since the fourth flow rate control device that communicates the above section with the first connection pipe is provided, it is possible to selectively perform a plurality of indoor units and simultaneously perform the cooling operation and the heating operation. At the same time, in the case of mainly cooling in the heating and cooling simultaneous operation, the gas-liquid separator separates the two-phase high-temperature high-pressure refrigerant flowing from the second connecting pipe into a gaseous refrigerant and a liquid refrigerant, and only the separated gaseous refrigerant Can be appropriately separated into a heating machine and the remaining liquid refrigerant into a cooling machine, and highly efficient simultaneous cooling and heating operation can be performed.

また、接続配管切換装置により、全冷房運転、全暖房運
転、冷房主体運転、暖房主体運転のいづれの運転モード
においても、常に第1の接続配管は低圧、第2の接続配
管は高圧になるため、全冷房運転、冷房主体運転と全暖
房運転、暖房主体運転との間で運転モードを変化して
も、圧力変動が抑えられ、良好な過度特性が得られる。
In addition, the connection pipe switching device always keeps the first connection pipe at a low pressure and the second connection pipe at a high pressure in any of the operation modes of the cooling only operation, the heating only operation, the cooling main operation, and the heating main operation. Even when the operation mode is changed between the cooling only operation, the cooling main operation and the heating only operation, and the heating main operation, the pressure fluctuation is suppressed and good transient characteristics are obtained.

さらに、接続配管切換装置により圧力変動が抑えられる
ので、気液分離装置での気液分離も、常に適性にガス状
冷媒と液状冷媒が分離されるので、冷暖同時運転時おい
ても、良好な過渡特性が得られる。
Further, since the pressure fluctuation is suppressed by the connecting pipe switching device, the gas-liquid separation in the gas-liquid separation device is always adequately separated between the gaseous refrigerant and the liquid refrigerant, so that even during the simultaneous cooling and heating operation, it is preferable. Transient characteristics can be obtained.

また、第1の接続配管を第2の接続配管により大径に構
成し、太い方の接続配管を常に低圧側に使用することが
できる構成としているので冷暖房同時運転における冷房
主体の場合、暖房主体の場合、及び室内機が全て冷房運
転を行なう場合に室内側熱交換器の蒸発圧力が高くなる
ことがなく、冷房能力が不足するということがない。
Further, since the first connecting pipe is configured to have a large diameter by the second connecting pipe and the thicker connecting pipe can be always used for the low pressure side, in the case of the cooling mainly in the cooling / heating simultaneous operation, the heating main In this case, and when all the indoor units perform the cooling operation, the evaporation pressure of the indoor heat exchanger does not increase, and the cooling capacity does not become insufficient.

また暖房主体の場合に、熱源機側熱交換器の蒸発圧力が
低下することがなく、能力が低下することもない。
In the case of mainly heating, the evaporation pressure of the heat source side heat exchanger does not decrease, and the capacity does not decrease.

【図面の簡単な説明】 第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。第2図は第1図で示し
た一実施例の冷房または暖房のみの運転動作状態図、第
3図は第1図で示した一実施例の暖房主体(暖房運転容
量が冷房運転容量より大きい場合)の運転動作状態図、
第4図は第1図で示した一実施例の冷房主体(冷房運転
容量が暖房運転容量より大きい場合)を示す運転動作状
態図、第5図はこの発明の他の実施例の空気調和装置の
冷媒系を中心とする全体構成図である。 図において、A;熱源機、B、C、D室内機で同じ構成と
なっている。E;中継機、1;圧縮機、2;切換弁、3;熱源機
側熱交換器、4;アキュムレータ、5;室内側熱交換器、6;
第1の接続配管、6b,6c,6d;室内機側の第1の接続配
管、7;第2の接続配管、7b,7c,7d;室内機側の第2の接
続配管、8;三方切替弁、9;第1の流量制御装置、10;第
1の分岐部、11;第2の分岐部、12;気液分離装置、13;
第2の流量制御装置、14;バイパス配管、15;第3の流量
制御装置、16;熱交換器、16a;第2の熱交換部、16b,16
c,16d;第3の熱交換部、17;第4の流量制御装置、18;
、19;第1の熱交換部、30、31;電磁弁等の開閉
弁、32;第3の逆止弁、33;第4の逆止弁、34;第5の逆
止弁、35;第6の逆止弁、40;接続配管切換装置である。 なお、図中、同一符号及び同一記号は、同一または相当
部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner of a first embodiment of the present invention. FIG. 2 is a diagram showing the operation operation state of only the cooling or heating of the embodiment shown in FIG. 1, and FIG. 3 is the heating main body of the embodiment shown in FIG. 1 (the heating operation capacity is larger than the cooling operation capacity. Case) operation status diagram,
FIG. 4 is an operation state diagram showing the cooling main body (when the cooling operation capacity is larger than the heating operation capacity) of the embodiment shown in FIG. 1, and FIG. 5 is an air conditioner of another embodiment of the present invention. 2 is an overall configuration diagram centering on the refrigerant system of FIG. In the figure, A: heat source unit and B, C, and D indoor units have the same configuration. E: Repeater, 1; Compressor, 2; Switching valve, 3; Heat source side heat exchanger, 4; Accumulator, 5; Indoor side heat exchanger, 6;
First connection pipe, 6b, 6c, 6d; First connection pipe on the indoor unit side, 7; Second connection pipe, 7b, 7c, 7d; Second connection pipe on the indoor unit side, 8; Three-way switching Valve, 9; first flow controller, 10; first branch, 11; second branch, 12; gas-liquid separator, 13;
2nd flow control device, 14; bypass piping, 15; 3rd flow control device, 16; heat exchanger, 16a; 2nd heat exchange part, 16b, 16
c, 16d; third heat exchange section, 17; fourth flow rate control device, 18;
, 19; first heat exchange part, 30, 31; open / close valve such as solenoid valve, 32; third check valve, 33; fourth check valve, 34; fifth check valve, 35; A sixth check valve, 40; a connection pipe switching device. In the drawings, the same reference numerals and symbols indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、切換弁、熱源機側熱交換器等より
なる1台の熱源機と、それぞれ室内側熱交換器を有する
複数台の室内機とを、第1、第2の接続配管を介して接
続したものにおいて、上記複数台の室内機の室内側熱交
換器の一方を上記第1の接続配管または、第2の接続配
管に切り替え可能に接続してなる第1の分岐部と、上記
複数台の室内側熱交換器の他方に接続され、かつ上記第
2の接続配管に接続してなる第2の分岐部と、上記第2
の接続配管途中に設けられ、ガス冷媒と液冷媒とを分離
する気液分離装置と、この気液分離装置と上記室内側熱
交換器の他方とを接続する管路途中に設けられ、冷媒流
量を制御する流量制御装置と、上記第1及び第2の接続
配管間に設けられ、流れる冷媒の方向を切換ることによ
り、運転時は常に、上記熱源機と上記室内機間に介在す
る第1の接続配管を低圧に、上記第2の接続配管を高圧
にする上記熱源機内に設置した接続配管切換装置と、上
記第2の分岐部と上記第1の接続配管とを連通する第4
の流量制御装置とを備え、冷暖房同時運転可能に構成し
たことを特徴とする空気調和装置。
1. A first and second connection of a heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger and the like, and a plurality of indoor units each having an indoor side heat exchanger. A first branching unit connected via a pipe, wherein one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe. A second branch part connected to the other of the plurality of indoor heat exchangers and connected to the second connection pipe; and the second branch part.
A gas-liquid separation device that is provided in the middle of the connection pipe for separating the gas refrigerant and the liquid refrigerant, and a pipe line that connects the gas-liquid separation device and the other of the indoor heat exchangers, and the refrigerant flow rate. Is provided between the first and second connection pipes for controlling the flow rate, and switches the direction of the flowing refrigerant, so that the first source is always present between the heat source unit and the indoor unit during operation. A connection pipe switching device installed in the heat source unit for making the connection pipe of low pressure and the second connection pipe of high pressure communicate with the second branch portion and the first connection pipe.
The air conditioner, which is configured to be capable of simultaneous cooling and heating operation.
【請求項2】第1の接続配管は、第2の接続配管より大
径に構成したことを特徴とする請求項第1項記載の空気
調和装置。
2. The air conditioner according to claim 1, wherein the first connecting pipe has a diameter larger than that of the second connecting pipe.
JP2107905A 1990-04-23 1990-04-23 Air conditioner Expired - Lifetime JPH0752045B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2107905A JPH0752045B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU74381/91A AU636215B2 (en) 1990-04-23 1991-04-15 Air conditioning apparatus
EP91303443A EP0453271B1 (en) 1990-04-23 1991-04-17 Air conditioning apparatus
ES199191303443T ES2046853T3 (en) 1990-04-23 1991-04-17 AIR CONDITIONER.
DE91303443T DE69100424T2 (en) 1990-04-23 1991-04-17 Air conditioner.
US07/687,434 US5156014A (en) 1990-04-23 1991-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107905A JPH0752045B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046362A JPH046362A (en) 1992-01-10
JPH0752045B2 true JPH0752045B2 (en) 1995-06-05

Family

ID=14471039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107905A Expired - Lifetime JPH0752045B2 (en) 1990-04-23 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0752045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040889A1 (en) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040889A1 (en) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation Air conditioner
JPWO2009040889A1 (en) * 2007-09-26 2011-01-13 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH046362A (en) 1992-01-10

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH0743187B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JPH08291952A (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2503669B2 (en) Air conditioner
JPH05172431A (en) Air conditioning apparatus
JPH0752045B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JPH05172433A (en) Air conditioning apparatus
JPH0752044B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JPH05322348A (en) Air conditioner
JPH04110573A (en) Air conditioner
JP2800472B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 15

EXPY Cancellation because of completion of term