JPH05172430A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH05172430A
JPH05172430A JP3322935A JP32293591A JPH05172430A JP H05172430 A JPH05172430 A JP H05172430A JP 3322935 A JP3322935 A JP 3322935A JP 32293591 A JP32293591 A JP 32293591A JP H05172430 A JPH05172430 A JP H05172430A
Authority
JP
Japan
Prior art keywords
indoor
pipe
heat exchanger
heat source
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3322935A
Other languages
Japanese (ja)
Inventor
Shigeo Takada
茂生 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3322935A priority Critical patent/JPH05172430A/en
Publication of JPH05172430A publication Critical patent/JPH05172430A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide an air conditioning apparatus in which a cooling capability is prevented from being decreased by a method wherein pipings for connecting a heat source machine to an indoor machine are changed over in response to a changing-over of condensation and evaporation of a heat exchanger at the heat source machine and a piping having a larger diameter is always applied at a low pressure side. CONSTITUTION:A heat source machine A and a plurality of indoor machines B, C and D are connected by the first and second connecting pipings 6 and 7 through a relay device E. This system is further provided with a six-way transfer valve 2 for use in connecting a discharging piping of a compressor 1 with either one piping or the second connecting piping 7 of a heat exchanger 3 at the heat source machine while being changed over, connecting the other piping of the heat exchanger 3 at the heat source machine to either the second connecting piping 7 or the inlet piping of an accumulator 4 and for connecting the first connecting piping 6 to either the inlet piping of the accumulator 4 or one piping of the heat exchanger 3 at the heat source machine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
装置に関するもので、特に各室内機毎に冷暖房を選択的
に、かつ一方の室内機では冷房、他方の室内機では暖房
が同時に行うことができる空気調和機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, heating and cooling are selectively applied to each indoor unit, and The present invention relates to an air conditioner capable of simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

【0002】[0002]

【従来の技術】以下、この発明の従来技術について説明
する。図7は特開平2−118372に示された従来の
冷暖同時運転可能な空気調和装置の冷媒系を中心とする
全体構成図である。また、図8乃至図10は図7に示す
空気調和装置における冷暖房運転時の動作状態を示した
もので、図8は冷房または暖房のみの運転動作状態図、
図9及び図10は冷暖房同時運転の動作を示すもので、
図9は暖房主体(暖房運転容量が冷房運転容量より大き
い場合)を、図10は冷房主体(冷房運転容量が暖房運
転容量より大きい場合)を示す運転動作状態図である。
2. Description of the Related Art The prior art of the present invention will be described below. FIG. 7 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner capable of simultaneous cooling and heating operation disclosed in Japanese Patent Laid-Open No. 2-118372. 8 to 10 show operation states during cooling / heating operation in the air conditioner shown in FIG. 7, and FIG. 8 is an operation state diagram of only cooling or heating,
9 and 10 show the operation of the cooling and heating simultaneous operation,
FIG. 9 is an operation state diagram showing heating mainly (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 10 is an operation operation state diagram showing cooling mainly (when the cooling operation capacity is larger than the heating operation capacity).

【0003】Aは熱源機、B、C、Dは後述するように
互いに並列接続された室内機で、それぞれ同じ構成とな
っている。Eは後述するように、第1の分岐部、第2の
流量制御装置、第2の分岐部を内蔵した中継器。1は圧
縮機、2は熱源機の冷媒流通方向を切換える4方切換
弁、3は熱源機側熱交換器、4はアキュムレータで、上
記機器1〜3と接続され、熱源機Aを構成する。5は3
台の室内側熱交換器、6は熱源機Aの4方切換弁2と中
継器Eを接続する第1の接続配管、6b,6c,6dは
それぞれ室内機B,C,Dの室内側熱交換器5と中継器
Eを接続し、第1の接続配管6に対応する室内機側の第
1の接続配管、7は熱源機Aの熱源機側熱交換器3と中
継器Eを接続する第2の接続配管、7b,7c,7dは
それぞれ室内機B,C,Dの室内側熱交換器5と中継器
Eを接続し第2の接続配管7に対応する室内機側の第2
の接続配管、8は室内機側の第1の接続配管6b,6
c,6dと、第1の接続配管6または、第2の接続配管
7側に切換え可能に接続する3方切換弁、9は室内側熱
交換器5に近接して接続され、冷房時は熱交換器5の出
口側のスーパーヒート量、暖房時はサブクール量により
制御される第1の流量制御装置で、室内機側の第2の接
続配管7b,7c,7dに接続される。10は室内機側
の第1の接続配管6b,6c,6dと、第1の接続配管
6または、第2の接続配管7に切り換え可能に接続する
3方切換弁8よりなる第1の分岐部、11は室内機側の
第2の接続配管7b,7c,7dと第2の接続配管7よ
りなる第2の分岐部、13は第2の接続配管7の第1の
分岐部10と第2の分岐部11を接続する開閉自在な第
2の流量制御装置である。
A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, which will be described later, and have the same structure. As will be described later, E is a repeater having a first branch part, a second flow rate control device, and a second branch part. Reference numeral 1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source unit, 3 is a heat source unit side heat exchanger, 4 is an accumulator, which is connected to the above devices 1 to 3 and constitutes a heat source unit A. 5 is 3
Indoor heat exchanger of the table, 6 is the first connecting pipe connecting the four-way switching valve 2 of the heat source unit A and the relay E, and 6b, 6c, 6d are the indoor heat of the indoor units B, C, D, respectively. The exchanger 5 and the repeater E are connected to each other, and the indoor unit side first connection pipe corresponding to the first connection pipe 6 is connected to the heat source side heat exchanger 3 of the heat source unit A and the repeater E. The second connection pipes 7b, 7c, 7d connect the indoor heat exchanger 5 and the repeater E of the indoor units B, C, D respectively to the second indoor unit side corresponding to the second connection pipe 7.
Connecting pipe, 8 is the first connecting pipe 6b, 6 on the indoor unit side
c and 6d, a three-way switching valve 9 that is switchably connected to the first connection pipe 6 or the second connection pipe 7 side, and 9 are connected in close proximity to the indoor heat exchanger 5, and heat is generated during cooling. The first flow rate control device is controlled by the superheat amount on the outlet side of the exchanger 5 and the subcool amount during heating, and is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side. Reference numeral 10 denotes a first branch portion including a first connection pipe 6b, 6c, 6d on the indoor unit side and a three-way switching valve 8 switchably connected to the first connection pipe 6 or the second connection pipe 7. , 11 is a second branch portion formed by the second connection pipes 7b, 7c, 7d on the indoor unit side, and 13 is a first branch portion 10 of the second connection pipe 7 and a second branch portion. 2 is a second flow rate control device that connects the branch portion 11 of FIG.

【0004】このように構成されたこの発明の従来例に
ついて説明する。まず、図8を用いて冷房運転のみの場
合について説明する。すなわち、同図に実線矢印で示す
ように圧縮機1より吐出された高温高圧冷媒ガスは4方
切換弁2を通り、熱源機側熱交換器3で熱交換して凝縮
液化された後、第2の接続配管7、第2の流量制御装置
13の順に通り、更に、第2の分岐部11、室内機側の
第2の接続配管7b,7c,7dを通り、各室内機B,
C,Dに流入する。そして、各室内機B,C,Dに流入
した冷媒は、第1の流量制御装置9により低圧まで減圧
されて室内側熱交換器5で、室内空気と熱交換して蒸発
しガス化され室内を冷房する。そして、このガス状態と
なった冷媒は、室内機側の第1の接続配管6b,6c,
6d、3方切換弁8、第1の分岐部10、第1の接続配
管6、熱源機の4方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房運転
をおこなう。この時、3方切換弁8の第1口8aは閉
路、第2口8b及び第3口8cは開路されている。
A conventional example of the present invention thus constructed will be described. First, the case of only the cooling operation will be described with reference to FIG. That is, as shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, is heat-exchanged in the heat source unit side heat exchanger 3, and is condensed and liquefied. 2 in order of the connection pipe 7 and the second flow control device 13, and further through the second branch portion 11 and the second connection pipes 7b, 7c, 7d on the indoor unit side, and the indoor units B,
It flows into C and D. Then, the refrigerant flowing into each of the indoor units B, C, D is decompressed to a low pressure by the first flow rate control device 9 and is heat-exchanged with the indoor air in the indoor heat exchanger 5 to be evaporated and gasified indoors. To cool down. The refrigerant in the gas state is used as the first connection pipes 6b, 6c on the indoor unit side,
6d, a three-way switching valve 8, a first branch portion 10, a first connecting pipe 6, a four-way switching valve 2 of the heat source device, an accumulator 4, and a circulation cycle that is sucked into the compressor 1 to form a cooling operation. To perform. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and the third port 8c are open.

【0005】次に図8を用いて暖房運転のみの場合につ
いて説明する。すなわち、同図に点線矢印で示すように
圧縮機1より吐出された高温高圧冷媒ガスは、4方切換
弁2を通り、第1の接続配管6、第1の分岐部10、3
方切換弁8、室内機側の第1の接続配管6b,6c,6
d、の順に通り、各室内機B,C,Dに流入し、室内空
気と熱交換して凝縮液化し、室内を暖房する。そして、
この液状態となった冷媒は、第1の流量制御装置9を通
り、室内機側の第2の接続配管7b,7c,7d、第2
の分岐部11に流入して合流し、更に第2の流量制御装
置13を通り、ここで第1の流量制御装置9、または第
2の流量制御装置13のどちらか一方で低圧の二相状態
まで減圧される。そして、低圧まで減圧された冷媒は、
第2の接続配管7を経て熱源機Aの熱源機側熱交換器3
に流入し熱交換して蒸発しガス状態となった冷媒は、熱
源機の4方切換弁2、アキュムレータ4を経て圧縮機1
に吸入される循環サイクルを構成し、暖房運転を行な
う。この時、3方切換弁8は、上述した冷房運転のみの
場合と同様に開閉されている。
Next, the case of only the heating operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 as shown by the dotted arrow in the figure, and passes through the first connecting pipe 6 and the first branch portions 10 and 3.
One-way switching valve 8, first connection pipes 6b, 6c, 6 on the indoor unit side
The air flows into the indoor units B, C, and D in the order of d, and exchanges heat with the indoor air to be condensed and liquefied to heat the room. And
The refrigerant in the liquid state passes through the first flow rate control device 9, passes through the second connection pipes 7b, 7c, 7d on the indoor unit side, and the second
Of the first flow rate control device 9 or the second flow rate control device 13 where the low pressure two-phase state is reached. Decompressed to. Then, the refrigerant decompressed to a low pressure,
The heat source unit side heat exchanger 3 of the heat source unit A via the second connection pipe 7.
The refrigerant that has flowed into the chamber and has exchanged heat and evaporated into a gas state passes through the four-way switching valve 2 of the heat source unit and the accumulator 4 and then passes through the compressor 1
It constitutes a circulation cycle that is sucked into and performs heating operation. At this time, the three-way switching valve 8 is opened and closed as in the case of only the cooling operation described above.

【0006】冷暖房同時運転における暖房主体の場合に
ついて図9を用いて説明する。すなわち、同図に点線矢
印で示すように圧縮機1より吐出された高温高圧冷媒ガ
スは、第1の接続配管6を通して中継器Eへ送られ、そ
して第1の分岐部10、3方切換弁8、室内機側の第1
の接続配管6b,6cの順に通り、暖房しようとする各
室内機B,Cに流入し、室内側熱交換器5で室内空気と
熱交換して凝縮液化され室内を暖房する。そして、この
凝縮液化した冷媒は、ほぼ全開状態の第1の流量制御装
置9を通り少し減圧されて第2の分岐部11に流入す
る。そして、この冷媒の一部は、室内機側の第1の接続
配管7dを通り冷房しようとする室内機Dに入り、第1
の流量制御装置9に入り減圧された後に、室内側熱交換
器5に入って熱交換して蒸発しガス状態となって室内を
冷房し、3方切換弁8を介して第2の接続配管7に流入
する。一方、他の冷媒は第2の分岐部11、第2の流量
制御装置13を通って第2の接続配管7に流入し、冷房
しようとする室内機Dを通った冷媒と合流して熱源機A
の熱源機側熱交換器3に流入し熱交換して蒸発しガス状
態となる。そして、その冷媒は、熱源機の4方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される循環
サイクルを構成し、暖房主体運転を行なう。この時、室
内機B,Cに接続された3方切換弁8の第1口8aは閉
路、第2口8b、第3口8cは開路されており、室内機
Dの第2口8bは閉路、第1口8a、第3口8cは回路
されている。
A case of mainly heating in the cooling / heating simultaneous operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 is sent to the repeater E through the first connecting pipe 6 as shown by the dotted arrow in the figure, and then the first branching portion 10 and the three-way switching valve. 8, the first on the indoor unit side
Through the connecting pipes 6b and 6c in order to flow into the indoor units B and C to be heated, and the indoor side heat exchanger 5 exchanges heat with the indoor air to be condensed and liquefied to heat the room. Then, the condensed and liquefied refrigerant passes through the first flow rate control device 9 in a substantially fully opened state, is slightly decompressed, and flows into the second branch portion 11. Then, a part of this refrigerant passes through the first connection pipe 7d on the indoor unit side and enters the indoor unit D that is going to be cooled,
After entering the flow rate control device 9 and being decompressed, it enters the indoor heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room, and the second connection pipe via the three-way switching valve 8. Inflow to 7. On the other hand, the other refrigerant flows into the second connection pipe 7 through the second branch portion 11 and the second flow rate control device 13, and merges with the refrigerant that has passed through the indoor unit D to be cooled, thereby forming a heat source unit. A
It flows into the heat source side heat exchanger 3 to exchange heat and evaporate into a gas state. Then, the refrigerant forms a circulation cycle in which it is sucked into the compressor 1 via the four-way switching valve 2 of the heat source device and the accumulator 4, and performs heating-main operation. At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are open, and the second port 8b of the indoor unit D is closed. , The first port 8a and the third port 8c are circuited.

【0007】冷暖房同時運転における冷房主体の場合に
ついて図10を用いて説明する。すなわち、同図に実線
矢印で示すように圧縮機1より吐出された高温高圧冷媒
ガスは、熱源機側熱交換器3で任意量を熱交換して気液
二相の高温高圧状態となり第2の接続配管7により、中
継器Eへ送られる。そして、この冷媒の一部を第1の分
岐部10、3方切換弁8、室内機側の第1の接続配管6
dの順に通り、暖房しようとする室内機Dに流入し、室
内側熱交換器5で室内空気と熱交換して凝縮液化し、室
内を暖房する。更に、ほぼ全開状態の第1の流量制御装
置9を通り第2の分岐部11に流入する。一方、残りの
冷媒は第2の流量制御装置13を通って第2の分岐部1
1に流入し、暖房しようとする室内機Dを通った冷媒と
合流する。そして、第2の分岐部11、室内機側の第2
の接続配管7b,7cの順に通り、各室内機B,Cに流
入する。そして、各室内機B,Cに流入した冷媒は、第
1の流量制御装置9により低圧まで減圧されて室内側熱
交換器5に流入し、室内空気と熱交換して蒸発しガス化
され室内を冷房する。更にこのガス状態となった冷媒
は、室内機側の第1の接続配管6b,6c、3方切換弁
8、第1の分岐部10、第1の接続配管6、熱源機の4
方切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる循環サイクルを構成し、冷房主体運転を行なう。こ
の時、室内機B,C,Dに接続された3方切換弁8の第
1口8a〜8cは暖房主体運転と同様に開閉されてい
る。
A case of mainly cooling in the simultaneous heating and cooling operation will be described with reference to FIG. That is, as shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 exchanges an arbitrary amount with the heat-source-side heat exchanger 3 to become a gas-liquid two-phase high-temperature high-pressure state. It is sent to the repeater E through the connection pipe 7 of. Then, a part of this refrigerant is used for the first branch portion 10, the three-way switching valve 8, and the first connection pipe 6 on the indoor unit side.
In the order of d, the air flows into the indoor unit D to be heated, exchanges heat with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied, and heats the room. Further, it flows into the second branch portion 11 through the first flow rate control device 9 which is in a substantially fully opened state. On the other hand, the remaining refrigerant passes through the second flow rate control device 13 and the second branch 1
1, and joins the refrigerant having passed through the indoor unit D to be heated. Then, the second branch portion 11, the second indoor unit side second
Through the connecting pipes 7b and 7c in this order and flow into the indoor units B and C. Then, the refrigerant that has flowed into each of the indoor units B and C is decompressed to a low pressure by the first flow rate control device 9 and flows into the indoor heat exchanger 5, where it is heat-exchanged with the indoor air to be evaporated and gasified. To cool down. Further, the refrigerant in the gas state is used as the first connection pipes 6b and 6c on the indoor unit side, the three-way switching valve 8, the first branch portion 10, the first connection pipe 6, and the heat source unit 4
A circulation cycle in which the air is taken into the compressor 1 via the one-way switching valve 2 and the accumulator 4 constitutes a cooling-main operation. At this time, the first ports 8a to 8c of the three-way switching valve 8 connected to the indoor units B, C, and D are opened and closed as in the heating-main operation.

【0008】[0008]

【発明が解決しようとする課題】従来の2管式冷暖房同
時運転可能な空気調和装置は、以上のように構成されて
いるため、4方切換弁の切換えによって第1及び第2の
接続配管と中継器内での冷媒の流れが逆転しており、4
方切換弁の切換え毎に運転状態が急変し、系の安定に時
間を要していた。また、暖房主体運転時、第2の接続配
管の圧損が大きく、冷房室内機の能力が不足するという
問題があった。
The conventional two-pipe type air conditioner capable of simultaneous cooling and heating operation is constructed as described above, and therefore, by switching the four-way switching valve, the first and second connecting pipes are connected. The flow of refrigerant in the repeater is reversed,
The operating state changed abruptly each time the direction switching valve was switched, and it took time to stabilize the system. Further, during heating-based operation, there is a problem that the pressure loss of the second connecting pipe is large and the capacity of the cooling indoor unit is insufficient.

【0009】この発明は、上記のような問題点を解決す
るためになされたもので、4方切換弁の切換えに対して
も第1及び第2の接続配管と中継器内での冷媒の流れを
一方向にし、系の安定性を高めた冷暖同時運転可能な空
気調和装置を得ることを目的とする。また、第2の接続
配管より太い第1の接続配管を常に低圧側で用いること
により、低圧圧損を低減し、冷房室内機の能力の低下を
抑制することを目的とする。
The present invention has been made to solve the above problems, and the refrigerant flow in the first and second connecting pipes and the repeater even when the four-way switching valve is switched. The purpose of the present invention is to provide an air conditioner that allows simultaneous operation of cooling and heating with the system in one direction. Another object of the present invention is to always use the first connection pipe, which is thicker than the second connection pipe, on the low-pressure side to reduce the low-pressure pressure loss and suppress the deterioration of the capacity of the cooling indoor unit.

【0010】さらに、熱源機側熱交換器内の冷媒の流れ
も一方向にすることを目的とする。
Further, it is an object of the present invention to make the flow of the refrigerant in the heat source side heat exchanger unidirectional.

【0011】[0011]

【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機、熱源機側熱交換器、及びアキュムレー
タよりなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置からなる複数台の室内機とを、第1、第2の
接続配管を介して接続し、上記複数台の室内機の室内側
熱交換器の一方を上記第1の接続配管または第2の接続
配管に切換可能に接続する弁装置を備えた第1の分岐部
と、上記複数台の室内機の室内側熱交換器の他方に上記
第1の流量制御装置を介して接続され、かつ第2の流量
制御装置を介して上記第2の接続配管に接続してなる第
2の分岐部とを、上記第2の流量制御装置を介して接続
し、上記第1の分岐部、上記第2の分岐部、上記第2の
流量制御装置を内蔵させた中継器を、上記熱源機と上記
複数台の室内機との間に介在させたものにおいて、上記
第1の接続配管の配管径を上記第2の接続配管の配管径
より太くし、上記圧縮機の吐出配管を上記熱源機側熱交
換器の一方の配管と、上記第2の接続配管とに切換え可
能に接続すると共に、上記熱源機側熱交換器の他方の配
管を、上記第2の接続配管と、上記アキュムレータの入
口配管に切換可能に接続し、また、上記第1の接続配管
を、上記アキュムレータの入口配管と、上記熱源機側熱
交換器の一方の配管とに切換可能に接続する6方切換弁
を備えたものである。
SUMMARY OF THE INVENTION An air conditioner according to the present invention includes a heat source unit consisting of a compressor, a heat source unit side heat exchanger, and an accumulator, an indoor side heat exchanger, and a first flow rate control. A plurality of indoor units made up of devices are connected via first and second connecting pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connecting pipe or the second connecting pipe. A first branch part provided with a valve device switchably connected to the connection pipe, and the other of the indoor heat exchangers of the plurality of indoor units via the first flow control device, and A second branch portion connected to the second connection pipe via the second flow rate control device is connected via the second flow rate control device, and the first branch portion and the second Branching unit, a repeater incorporating the second flow rate control device, the heat source unit and the plurality of indoor units, In the case of being interposed therebetween, the pipe diameter of the first connecting pipe is made larger than the pipe diameter of the second connecting pipe, and the discharge pipe of the compressor is connected to one pipe of the heat source side heat exchanger. , Switchably connected to the second connection pipe, and switchably connect the other pipe of the heat source side heat exchanger to the second connection pipe and the inlet pipe of the accumulator, and , A six-way switching valve that connects the first connection pipe to the inlet pipe of the accumulator and one pipe of the heat source side heat exchanger so as to be switchable.

【0012】[0012]

【作用】この発明においては、熱源機側熱交換器を凝縮
器として用いる場合は、6方切換弁は、圧縮機の吐出配
管と熱源機側熱交換器の一方の配管とを接続すると共
に、熱源機側熱交換器の他方の配管と第2の接続配管を
接続し、また、アキュムレータの入口配管と第1の接続
配管とを接続する。
In the present invention, when the heat source side heat exchanger is used as a condenser, the six-way switching valve connects the discharge pipe of the compressor and one pipe of the heat source side heat exchanger, and The other pipe of the heat source side heat exchanger is connected to the second connection pipe, and the inlet pipe of the accumulator is connected to the first connection pipe.

【0013】また、熱源機側熱交換器を蒸発器として用
いる場合は、6方切換弁は、圧縮機の吐出配管と第2の
接続配管とを接続すると共に、第1の接続配管と熱源機
側熱交換器の一方の配管を接続し、また、熱源機側熱交
換器の他方の配管とアキュムレータの入口配管を接続す
る。
When the heat source side heat exchanger is used as an evaporator, the six-way switching valve connects the discharge pipe of the compressor and the second connecting pipe, and the first connecting pipe and the heat source unit. One pipe of the side heat exchanger is connected, and the other pipe of the heat source side heat exchanger is connected to the inlet pipe of the accumulator.

【0014】[0014]

【実施例】【Example】

実施例1.以下、この発明の実施例について説明する。
図1はこの発明の実施例1による空気調和装置の冷媒系
を中心とする全体構成図である。また、図2乃至図5は
図1に示す空気調和装置における冷暖房運転時の動作状
態を示したもので、図2は冷房のみの運転状態図、また
図3は暖房のみの運転動作状態図、図4及び図5は冷暖
房同時運転の動作を示すもので、図4は暖房主体(暖房
運転容量が冷房運転容量より大きい場合)を、図5は冷
房主体(冷房運転容量が暖房運転容量より大きい場合)
を示す運転動作状態図である。なお、この実施例では、
熱源機1台に室内機3台を接続した場合について説明す
るが、2台以上の室内機を接続した場合も同様である。
図1において、Aは熱源機、B,C,Dは後述するよう
に互いに並列接続された室内機でそれぞれ同じ構成とな
っている。Eは後述するように、第1の分岐部、第2の
流量制御装置、、第2の分岐部、気液分離装置、熱交換
部、第3の流量制御装置、第4の流量制御装置を内蔵し
た中継器である。1は圧縮機、2は熱源機の冷媒流通方
向を切換える6方切換弁であり、従来の4方切換弁の流
路切換部を2連持つ構造となっている。3は熱源機側熱
交換器、4はアキュムレータで、上記機器と接続さ
れ、、これらによって熱源機Aは構成される。5は3台
の室内機B,C,Dに設けられた室内側熱交換器、6は
熱源機Aの4方切換弁2と中継器Eを接続する太い第1
の接続配管、6b,6c,6dはそれぞれ室内機B,
C,Dの室内側熱交換器5と中継器Eを接続し、第1の
接続配管6に対応する室内機側の接続配管、7は熱源機
Aの熱源機側熱交換器3と中継器Eを接続し、上記第1
の接続配管6により細い第2の接続配管、7b,7c,
7dはそれぞれ室内機B,C,Dの室内側熱交換器5と
中継器Eを接続し、第2の接続配管7に対応する室内機
側の第2の接続配管、8は室内機側の第1の接続配管6
b,6c,6dと、第1の接続配管6または、第2の接
続配管7側に切換可能に接続し、かつ室内機側の第1の
接続配管6b,6c,6dと第1の接続配管6、第2の
接続配管7のいずれとも流通を閉止することの可能な3
方切換弁、9は室内側熱交換器5に近接して接続され、
冷房時は室内側熱交換器5の出口側のスーパーヒート
量、暖房時はサブクール量により制御される第1の流通
制御装置で、室内機側の第2の接続配管7b,7c,7
dに接続される。10は室内機側の第1の接続配管6
b,6c,6dと、第1の接続配管6または、第2の接
続配管7に切換可能に接続する3方切換弁8よりなる第
1の分岐部、11は室内機側の第2の接続配管7b,7
c,7dと第2の接続配管7よりなる第2の分岐部、1
2は第2の接続配管7の途中に設けられた気液分離装置
で、その気層部は3方切換弁8の第1口8aに接続さ
れ、その液層部は第2の分岐部11に接続されている。
13は、気液分離装置12と第2の分岐部11との間に
接続する開閉自在な第2の流量制御装置(ここでは電気
式膨張弁)、14は第2の分岐部11と上記第1の接続
配管6とを結ぶバイパス配管、15はバイパス配管14
の途中に設けられた第3の流通制御装置(ここでは電気
式膨張弁)、16aはバイパス配管14の途中に設けら
れた第3の流通制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b,
7c,7dの会合部との間でそれぞれ熱交換を行なう第
2の熱交換部、16b,16c,16dはそれぞれバイ
パス配管14の途中に設けられた第3の流通制御装置1
5の下流に設けられ、第2の分岐部11における各室内
機側の接続配管7b,7c,7dとの間でそれぞれ熱交
換を行なう第3の熱交換部、19は、バイパス配管14
の上記第3の流量制御装置15の下流であり、かつ第2
の熱交換部16aの下流に設けられ、気液分離装置12
と第2の流量制御装置13とを接続する配管との間で熱
交換を行なう第1の熱交換部、17は第2の分岐部11
と上記第1の接続配管6との間に接続する開閉自在な第
4の流量制御装置(ここでは電気式膨張弁)である。
Example 1. Examples of the present invention will be described below.
1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a first embodiment of the present invention. 2 to 5 show operating states during cooling and heating operation in the air conditioner shown in FIG. 1, FIG. 2 is an operating state diagram only for cooling, and FIG. 3 is an operating state diagram only for heating. 4 and 5 show the operation of the cooling and heating simultaneous operation. FIG. 4 shows heating mainly (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 5 shows cooling mainly (the cooling operation capacity is larger than the heating operation capacity). If)
FIG. 6 is a driving operation state diagram showing In this example,
A case where three indoor units are connected to one heat source unit will be described, but the same applies when two or more indoor units are connected.
In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other as described later, and have the same configuration. As will be described later, E is a first branch part, a second flow rate control device, a second branch part, a gas-liquid separation device, a heat exchange part, a third flow rate control device, and a fourth flow rate control device. It is a built-in repeater. Reference numeral 1 is a compressor, and 2 is a 6-way switching valve that switches the refrigerant flow direction of the heat source device, and has a structure in which two flow path switching portions of a conventional 4-way switching valve are provided in series. Reference numeral 3 is a heat source unit side heat exchanger, and 4 is an accumulator, which is connected to the above-mentioned equipment, and the heat source unit A is constituted by these. Reference numeral 5 is an indoor heat exchanger provided in each of the three indoor units B, C, and D, and 6 is a thick first first connecting the four-way switching valve 2 of the heat source device A and the relay E.
Connection pipes, 6b, 6c, 6d are indoor units B, respectively.
The indoor heat exchanger 5 of C and D is connected to the relay E, and the indoor unit side connecting pipe corresponding to the first connecting pipe 6 is denoted by 7 and the heat source unit side heat exchanger 3 of the heat source unit A is connected to the relay unit 7. Connect E, above first
The second connecting pipe 6 has a thinner second connecting pipe, 7b, 7c,
7d is a second connection pipe on the indoor unit side that connects the indoor heat exchanger 5 and the repeater E of the indoor units B, C, and D, and corresponds to the second connection pipe 7, and 8 is an indoor unit side. First connection pipe 6
b, 6c, 6d and the first connection pipes 6b, 6c, 6d and the first connection pipes which are switchably connected to the first connection pipe 6 or the second connection pipe 7 side and which are on the indoor unit side. It is possible to close the circulation with both 6 and the second connecting pipe 7.
The one-way switching valve, 9 is connected close to the indoor heat exchanger 5,
The first flow control device is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating, and the second connection pipes 7b, 7c, 7 on the indoor unit side.
connected to d. 10 is the first connection pipe 6 on the indoor unit side
b, 6c, 6d, and a first branch portion composed of a three-way switching valve 8 switchably connected to the first connection pipe 6 or the second connection pipe 7, 11 is a second connection on the indoor unit side Piping 7b, 7
c, 7d, a second branch portion consisting of the second connecting pipe 7, 1
2 is a gas-liquid separation device provided in the middle of the second connecting pipe 7, the gas layer portion of which is connected to the first port 8a of the three-way switching valve 8, and the liquid layer portion of which is the second branch portion 11 It is connected to the.
Reference numeral 13 denotes a second flow rate control device (here, an electric expansion valve) which is connected between the gas-liquid separation device 12 and the second branch portion 11 and which can be opened and closed, and 14 denotes the second branch portion 11 and the above-mentioned first 1 is a bypass pipe connecting to the connection pipe 6; 15 is a bypass pipe 14
A third flow control device (here, an electric expansion valve) 16a provided in the middle of the flow path, a 16a is provided downstream of the third flow control device 15 provided in the middle of the bypass pipe 14, and has a second branch portion. The second connection pipe 7b on the indoor unit side in FIG.
The second heat exchange section 16b, 16c, 16d for exchanging heat with the meeting section of 7c, 7d, and the third flow control device 1 provided in the middle of the bypass pipe 14 are provided.
5, a third heat exchanging unit 19 for exchanging heat with the connecting pipes 7b, 7c, 7d on the indoor unit side of the second branching unit 11, and the bypass pipe 14
Downstream of the third flow rate control device 15 of
Is provided downstream of the heat exchange section 16a of the
And a second flow control unit 13 for exchanging heat between a pipe connecting the second flow rate control device 13 and a second branch unit 11.
Is a fourth flow rate control device (here, an electric expansion valve) that is openable and closable and is connected between the first connection pipe 6 and the first connection pipe 6.

【0015】このように構成されたこの発明の実施例に
ついて説明する。先ず、図2を用いて冷房運転のみの場
合について説明する。すなわち、同図に実線矢印で示す
ように圧縮機1より吐出された高温高圧冷媒ガスは6方
切換弁2を通り、熱源機側熱交換器3で空気と熱交換し
て凝縮液化された後、6方切換弁2、第2の接続配管
7、気液分離装置12、第2の流量制御装置13の順に
通り、更に第2の分岐部11、室内機側の第2の接続配
管7b,7c,7dを通り、各室内機B,C,Dに流入
する。そして、各室内機B,C,Dに流入した冷媒は、
各室内側熱交換器5出口のスーパーヒート量により制御
される第1の流量制御装置9により低圧まで減圧されて
室内側熱交換器5で、室内空気と熱交換して蒸発しガス
化され室内を冷房する。そして、このガス状態となった
冷媒は、室内機側の第1の接続配管6b,6c,6d、
3方切換弁8、第1の分岐部10、第1の接続配管6、
6方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、冷房運転を行なう。この
時、3方切換弁8の第1口8aは閉路、第2口8b及び
第3口8cは開路されている。また、このサイクルの
時、第2の流量制御装置13を通過した冷媒の一部がバ
イパス配管14へ入り、第3の流量制御装置15で低圧
まで減圧されて第3の熱交換部16b,16c,16d
で第2の分岐部11の各室内機側の第2の接続配管7
b,7c,7dとの間で熱交換した後、第2の熱交換部
16aで第2の分岐部11の各室内機側の第2の接続配
管7b,7c,7dへの分岐基管部との間で熱交換す
る。更に第1の熱交換部19で第2の流量制御装置13
に流入する冷媒との間で熱交換を行い蒸発した冷媒は、
第1の接続配管6へ入り、熱源機の6方切換弁2、アキ
ュムレータ4を経て圧縮機1に吸入される。一方、第
1、第2、第3の熱交換部19、16a,16b,16
c,16dで熱交換し冷却されサブクールを充分につけ
られた上記第2の分岐部11の冷媒は冷房しようとして
いる室内機B,C,Dへ流入する。
An embodiment of the present invention thus constructed will be described. First, the case of only the cooling operation will be described with reference to FIG. That is, as shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the 6-way switching valve 2 and is heat-exchanged with air in the heat source side heat exchanger 3 to be condensed and liquefied. , The 6-way switching valve 2, the second connection pipe 7, the gas-liquid separator 12, and the second flow rate control device 13 in this order, the second branch portion 11, the second connection pipe 7b on the indoor unit side, It passes through 7c and 7d and flows into each indoor unit B, C and D. The refrigerant flowing into each indoor unit B, C, D is
The pressure is reduced to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 exchanges heat with the indoor air to evaporate and gasify. To cool down. The refrigerant in the gas state is used for the first connection pipes 6b, 6c, 6d on the indoor unit side,
Three-way switching valve 8, first branch portion 10, first connecting pipe 6,
A circulation cycle in which the compressor 1 is sucked through the 6-way switching valve 2 and the accumulator 4 constitutes a cooling operation. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and the third port 8c are open. Further, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the bypass pipe 14 and is depressurized to a low pressure by the third flow rate control device 15 so that the third heat exchange parts 16b, 16c. , 16d
The second connection pipe 7 on the indoor unit side of the second branch portion 11
After exchanging heat with b, 7c and 7d, a branch base pipe section to the second connection pipes 7b, 7c and 7d on the indoor unit side of the second branch section 11 in the second heat exchange section 16a. Exchange heat with. Furthermore, in the first heat exchange section 19, the second flow rate control device 13
The refrigerant that has undergone heat exchange with the refrigerant flowing into the
It enters the first connection pipe 6 and is sucked into the compressor 1 via the 6-way switching valve 2 of the heat source device and the accumulator 4. On the other hand, the first, second, and third heat exchange parts 19, 16a, 16b, 16
The refrigerant in the second branch portion 11 that has been heat-exchanged and cooled in c and 16d and is sufficiently subcooled flows into the indoor units B, C and D that are about to be cooled.

【0016】次に図3を用いて暖房運転のみの場合につ
いて説明する。すなわち、同図に実線矢印で示すように
圧縮機1より吐出された高温高圧冷媒ガスは、6方切換
弁2を通り、第2の接続配管7、気液分離装置12を通
り、第1の分岐部10、3方切換弁8、室内機側の第1
の接続配管6b,6c,6dの順に通り、各室内機B,
C,Dに流入し、室内空気と熱交換して凝縮液化し、室
内を暖房する。そして、この液状態となった冷媒は、各
室内側熱交換器5出口のサブクール量により制御されて
ほぼ全開状態の第1の流量制御装置9を通り、室内機側
の第2の接続配管7b,7c,7dから第2の分岐部1
1に流入して合流して、更に第4の流量制御装置17を
通る。ここで第1の流量制御装置9、または第3、第4
のの流量制御装置15、17のどちらか一方で低圧の二
相状態まで減圧される。そして、低圧まで減圧された冷
媒は、第1の接続配管6を経て6方切換弁2、熱源機側
熱交換器3に流入しここで空気と熱交換して蒸発しガス
状態となった冷媒は、6方切換弁2、アキュムレータ4
を経て圧縮機1に吸入される循環サイクルを構成し、暖
房運転を行なう。この時、3方切換弁8は、第2口8b
は閉路、第1口8a及び第3口8cは開路されている。
Next, the case of only the heating operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the six-way switching valve 2, the second connecting pipe 7, the gas-liquid separation device 12, and the first Branch portion 10, 3-way switching valve 8, first indoor unit side
The connection pipes 6b, 6c, 6d of the
It flows into C and D, exchanges heat with indoor air to condense and liquefy, and heats the room. Then, the refrigerant in the liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state, and the second connection pipe 7b on the indoor unit side. , 7c, 7d to second branch 1
1 and merges, and further passes through the fourth flow rate control device 17. Here, the first flow control device 9 or the third and fourth flow control devices
Either one of the flow rate control devices 15 and 17 is used to reduce the pressure to a low-pressure two-phase state. Then, the refrigerant decompressed to a low pressure flows into the 6-way switching valve 2 and the heat source side heat exchanger 3 through the first connecting pipe 6, where it exchanges heat with air and evaporates into a gas state. Is a 6-way switching valve 2 and accumulator 4
After that, a circulation cycle of being sucked into the compressor 1 is formed, and heating operation is performed. At this time, the three-way switching valve 8 has the second port 8b.
Is closed, and the first port 8a and the third port 8c are open.

【0017】冷暖房同時運転における暖房主体の場合に
ついて図4を用いて説明する。すなわち、同図に実線線
矢印で示すように圧縮機1より吐出された高温高圧冷媒
ガスは、6方切換弁2、第2の接続配管7を通して中継
器Eへ送られ、気液分離装置12を通り、そして第1の
分岐部10、3方切換弁8、室内機側の第1の接続配管
6b,6cの順に通り、暖房しようとする各室内機B,
Cに流入し、室内側熱交換器5で室内空気と熱交換して
凝縮液化され室内を暖房する。そして、この凝縮液化し
た冷媒は、各室内側熱交換器B,C出口のサブクール量
により制御されほぼ全開状態の第1の流量制御装置9を
通り少し減圧されて第2の分岐部11に流入する。そし
て、この冷媒の一部は、室内機側の第2の接続配管7d
を通り、第1の流量制御装置9を介して減圧され、冷房
しようとする室内機Dに入り、室内空気と熱交換して気
化する。そしてこのガス冷媒は室内側熱交換器D出口の
スーパーヒート量により第1の流量制御装置9を介して
制御され、室内を冷房し、3方切換弁8を経由して第1
の接続配管6に流入する。一方、他の冷媒は第4の流量
制御装置17を通って、冷房しようとする室内機Dを通
った冷媒と合流して太い第1の接続配管6を経て6方切
換弁2、熱源機側熱交換器3に流入しここで空気と熱交
換して蒸発しガス状態となる。そして、その冷媒は、6
方切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる循環サイクルを構成し、暖房主体運転を行なう。こ
の時、冷房する室内機Dの室内側熱交換器5の蒸発圧力
と熱源機側熱交換器3の圧力差が、太い第1の接続配管
6に切換えるために小さくなる。又、この時、室内機
B,Cに接続された3方切換弁8の第2口8bは閉路、
第1口8a及び第3口8cは開路されており、室内機D
の第1口8aは閉路、第2口8b、第3口8cは回路さ
れている。また、このサイクルの時、一部の液冷媒は第
2の分岐部11の各室内機側の第2の接続配管7b,7
cの合流部からバイパス配管14へ入り、第3の流量制
御装置15で低圧まで減圧されて第3の熱交換部16
b,16c,16dで第2の分岐部11の各室内機側の
第2の接続配管7b,7c,7dとの間で熱交換し、更
に第2の熱交換部16aで第2の分岐部11の各室内機
側第2の接続配管7b,7cの合流部との間で熱交換を
行い蒸発した冷媒は、第1の接続配管6へ入り熱源機の
6方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される。一方、第2、第3の熱交換部16a,16b,
16c,16dで熱交換し冷却されサブクールを充分に
つけられた上記第2の分岐部11の冷媒は冷房しようと
している室内機Dへ流入する。
A case of mainly heating in the simultaneous heating and cooling operation will be described with reference to FIG. That is, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 is sent to the relay device E through the six-way switching valve 2 and the second connecting pipe 7 as shown by the solid line arrow in the figure, and the gas-liquid separation device 12 Through the first branch portion 10, the three-way switching valve 8, and the first connection pipes 6b, 6c on the indoor unit side in this order, and each indoor unit B to be heated,
It flows into C, heat-exchanges with the indoor air in the indoor heat exchanger 5, is condensed and liquefied, and heats the room. Then, the condensed and liquefied refrigerant is controlled by the subcool amounts at the outlets of the indoor heat exchangers B and C, passes through the first flow rate control device 9 in a substantially fully opened state, is slightly decompressed, and flows into the second branch portion 11. To do. And a part of this refrigerant is the second connection pipe 7d on the indoor unit side.
After passing through the first flow rate control device 9, the pressure is reduced, and the air enters the indoor unit D to be cooled and heat-exchanges with the indoor air to be vaporized. Then, this gas refrigerant is controlled by the superheat amount at the outlet of the indoor heat exchanger D via the first flow rate control device 9, cools the room, and passes through the three-way switching valve 8 to the first
Flowing into the connecting pipe 6. On the other hand, the other refrigerant flows through the fourth flow rate control device 17, merges with the refrigerant that has passed through the indoor unit D to be cooled, and passes through the thick first connection pipe 6 to the 6-way switching valve 2 and the heat source unit side. It flows into the heat exchanger 3 where it exchanges heat with air and evaporates to become a gas state. And the refrigerant is 6
A circulation cycle in which the compressor 1 is sucked through the one-way switching valve 2 and the accumulator 4 constitutes a heating-main operation. At this time, the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure difference of the heat source unit side heat exchanger 3 are reduced because of switching to the thick first connecting pipe 6. At this time, the second port 8b of the three-way switching valve 8 connected to the indoor units B and C is closed,
The first port 8a and the third port 8c are opened, and the indoor unit D
The first port 8a is closed, and the second port 8b and the third port 8c are circuited. In addition, during this cycle, part of the liquid refrigerant is the second connection pipes 7b, 7 on the indoor unit side of the second branch portion 11
It enters into the bypass pipe 14 from the confluence part of c and is decompressed to a low pressure by the third flow rate control device 15, and the third heat exchange part 16
b, 16c and 16d, heat is exchanged with the second connection pipes 7b, 7c and 7d on the indoor unit side of the second branch portion 11, and the second branch portion is further connected to the second heat exchange portion 16a. The refrigerant that has performed heat exchange with the confluent portions of the second connection pipes 7b and 7c on the indoor unit side of 11 enters the first connection pipe 6 and enters the 6-way switching valve 2 and the accumulator 4 of the heat source device. After that, it is sucked into the compressor 1. On the other hand, the second and third heat exchange parts 16a, 16b,
The refrigerant in the second branch portion 11 that has been heat-exchanged and cooled in 16c and 16d and is sufficiently subcooled flows into the indoor unit D that is about to be cooled.

【0018】冷暖房同時運転における冷房主体の場合に
ついて図5を用いて説明する。すなわち、同図に実線矢
印で示すように圧縮機1より吐出された冷媒ガスは、6
方切換弁2を通り、熱源機側熱交換器3に流入しここで
空気と熱交換して二相の高温高圧状態となる。その後こ
の気液二相の高温高圧状態の冷媒は6方切換弁2、第2
の接続配管7を経て、中継器Eの気液分離装置12へ送
られる。そして、ここでガス状冷媒と液状冷媒に分離さ
れ、分離されたガス状冷媒を第1の分岐部10、3方切
換弁8、室内機側の第1の接続配管6dの順に通り、暖
房しようとする室内機Dに流入し、室内側熱交換器5で
室内空気と熱交換して凝縮液化し、室内を暖房する。更
に、室内側熱交換器5出口のサブクール量により制御さ
れほぼ全開状態の第1の流量制御装置9を通り少し減圧
されて第2の分岐部11に流入する。一方、残りの液状
冷媒は第2の流量制御装置13を通って第2の分岐部1
1に流入し、暖房しようとする室内機Dを通った冷媒と
合流する。そして、第2の分岐部11、室内機側の第2
の接続配管7b,7cの順に通り、各室内機B,Cに流
入する。そして、各室内機B,Cに流入した冷媒は、室
内側熱交換器B,C出口のスーパーヒート量により制御
される第1の流量制御装置9により低圧まで減圧されて
室内空気と熱交換して蒸発しガス化され室内を冷房す
る。更に、このガス状態となった冷媒は、室内機側の第
1の接続配管6b,6c、3方切換弁8、第1の分岐部
10を通り、第1の接続配管6、6方切換弁2、アキュ
ムレータ4を経て圧縮機1に吸入される循環サイクルを
構成し、冷房主体運転を行なう。又、この時、室内機
B,Cに接続された3方切換弁8の第1口8aは閉路、
第2口8b及び第3口8cは開路されており、室内機D
の第2口8bは閉路、第1口8a及び第3口8cは開路
されている。また、このサイクルの時、一部の液冷媒は
第2の分岐部11の室内機側の第2の接続配管7b,7
c,7dの会合部からバイパス配管14へ入り、第3の
流量制御装置15で低圧まで減圧されて第3の熱交換部
16b,16c,16dで第2の分岐部11の各室内機
側の第2の接続配管7b,7c,7dとの間で、熱交換
し、更に第2の熱交換部16aで第2の分岐部11の各
室内機側の第2の接続配管7b,7c,7dの会合部と
の間で、更に第1の熱交換部19で第2の流量制御装置
13に流入する冷媒との間で熱交換を行い蒸発した冷媒
は、第1の接続配管6、6方切換弁2、アキュムレータ
4を経て圧縮機1に吸入される。一方、第1、第2、第
3の熱交換部19、16a,16b,16cで熱交換し
冷却されサブクールを充分つけられた上記第2の分岐部
11の冷媒は冷房しようとしている室内機B,Cへ流入
する。
A case of mainly cooling in the simultaneous heating and cooling operation will be described with reference to FIG. That is, the refrigerant gas discharged from the compressor 1 as shown by the solid line arrow in FIG.
It passes through the one-way switching valve 2 and flows into the heat exchanger 3 on the heat source side, where it exchanges heat with the air and becomes a two-phase high-temperature high-pressure state. After that, the gas-liquid two-phase high-temperature and high-pressure refrigerant is transferred to the six-way switching valve 2, the second
It is sent to the gas-liquid separation device 12 of the repeater E via the connection pipe 7 of. Then, here, it is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is passed through the first branch portion 10, the three-way switching valve 8, and the first connection pipe 6d on the indoor unit side in this order to heat the refrigerant. The indoor side heat exchanger 5 exchanges heat with the indoor air to condense and liquefy and heat the room. Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger 5 and slightly depressurized through the first flow rate control device 9 in a substantially fully opened state, and then flows into the second branch portion 11. On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 and the second branch portion 1
1, and joins the refrigerant having passed through the indoor unit D to be heated. Then, the second branch portion 11, the second indoor unit side second
Through the connecting pipes 7b and 7c in this order and flow into the indoor units B and C. Then, the refrigerant flowing into each indoor unit B, C is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlets of the indoor heat exchangers B, C, and exchanges heat with the indoor air. It is vaporized and gasified to cool the room. Further, the refrigerant in the gas state passes through the first connection pipes 6b and 6c on the indoor unit side, the three-way switching valve 8 and the first branch portion 10, and passes through the first connection pipes 6 and 6-way switching valve. 2. A circulation cycle in which the air is sucked into the compressor 1 via the accumulator 4 is configured to perform the cooling-main operation. At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed,
The second port 8b and the third port 8c are opened, and the indoor unit D
The second port 8b is closed, and the first port 8a and the third port 8c are open. In addition, during this cycle, a part of the liquid refrigerant flows into the second connecting pipes 7b, 7 on the indoor unit side of the second branch portion 11.
It enters into the bypass pipe 14 from the meeting portion of c and 7d, is depressurized to a low pressure by the third flow rate control device 15, and is connected to each indoor unit side of the second branch portion 11 by the third heat exchange portions 16b, 16c and 16d. Heat is exchanged with the second connection pipes 7b, 7c, 7d, and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 are further exchanged by the second heat exchange portion 16a. The refrigerant that has undergone heat exchange with the first heat exchange section 19 and the refrigerant flowing into the second flow rate control device 13 and has evaporated is the first connection pipes 6, 6 It is sucked into the compressor 1 through the switching valve 2 and the accumulator 4. On the other hand, the refrigerant in the second branch portion 11 which is heat-exchanged and cooled in the first, second, and third heat exchange portions 19, 16a, 16b, and 16c and is sufficiently subcooled is about to be cooled by the indoor unit B. , C.

【0019】実施例2.なお、上記実施例では3方切換
弁8を設けて室内機側の第1の接続配管6b,6c,6
dと、第1の接続配管6または、第2の接続配管7に切
換可能に接続しているが、図6に示すように2つの電磁
弁30、31等の開閉弁を設けて上述したように切換可
能に接続しても同様な作用効果を奏す。
Example 2. In the above embodiment, the three-way switching valve 8 is provided and the first connection pipes 6b, 6c, 6 on the indoor unit side are provided.
d and the first connection pipe 6 or the second connection pipe 7 are switchably connected to each other. However, as shown in FIG. 6, two solenoid valves 30, 31 and other on-off valves are provided, as described above. Even if it is switchably connected, the same operational effect can be obtained.

【0020】[0020]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0021】6方切換弁を切り換えることにより、熱源
機側熱交換器の凝縮・蒸発の切り換えと同時に、第1・
第2の接続配管の切り換えも行なえ、第2の接続配管に
比して配管径の太い第1の接続配管と常時低圧で使用で
き、低圧側の圧損を低下し、室内側熱交換器の冷房能力
の低下を抑制できる。
By switching the six-way switching valve, at the same time as switching between condensation and evaporation of the heat source side heat exchanger,
The second connection pipe can also be switched, and can be used at a low pressure all the time with the first connection pipe having a larger diameter than the second connection pipe, reducing the pressure loss on the low pressure side and cooling the indoor heat exchanger. It is possible to suppress a decrease in ability.

【0022】6方切換弁の切り換えに対して、第1・第
2の接続配管、中継器E、各室内機B,C,Dでの冷媒
の流れの方向が変わらないことにより、特に冷房主体運
転と暖房主体運転の運転状態の切換え時に過渡的な室内
機での能力低下を抑制できる。
Since the direction of the flow of the refrigerant in the first and second connecting pipes, the repeater E, and the indoor units B, C, and D does not change with respect to the switching of the 6-way switching valve, the cooling system is mainly used. It is possible to suppress a transient decrease in capacity of the indoor unit when switching between the operating state of the operation and the heating-based operation.

【0023】6方切換弁を用いることにより、熱源機側
熱交換器の凝縮・蒸発の切り換えと、第1・第2の接続
配管の接続切り換えが、1つの機能部品で達成できる。
By using the 6-way switching valve, switching of condensation / evaporation of the heat source side heat exchanger and connection switching of the first and second connecting pipes can be achieved by one functional component.

【0024】6方切換弁を用いることにより、熱源機側
熱交換器の凝縮・蒸発の切り換えにより、熱源機側熱交
換器の冷媒の流れ方向が変化しないため、二重管構造等
の水−冷媒熱交換器と熱源機側熱交換器として用いた場
合に水と冷媒の流れを常に対向流とし、熱交換効率を上
げることができる。
By using the 6-way switching valve, the flow direction of the refrigerant in the heat exchanger on the heat source side does not change due to the switching of condensation / evaporation on the heat exchanger on the heat source side. When used as a refrigerant heat exchanger and a heat source unit side heat exchanger, the flow of water and the refrigerant are always opposed to each other, and heat exchange efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例1による空気調和装置の冷房
のみの運転動作状態図である。
FIG. 2 is a diagram showing an operation state of only the cooling of the air conditioner according to the first embodiment of the present invention.

【図3】この発明の実施例1による空気調和装置の暖房
のみの運転動作状態図である。
[Fig. 3] Fig. 3 is a diagram showing the operation state of only the heating of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図4】この発明の実施例1による空気調和装置の暖房
主体の運転動作状態図である。
[Fig. 4] Fig. 4 is a diagram showing the operation state of the heating main body of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図5】この発明の実施例1による空気調和装置の冷房
主体の運転動作状態図である。
[Fig. 5] Fig. 5 is a diagram showing the operation state mainly of cooling of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図6】この発明の実施例2による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 6 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a second embodiment of the present invention.

【図7】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 7 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner.

【図8】図7に示す空気調和装置の冷房、または暖房の
みの運転動作状態図である。
8 is a diagram showing an operation state of only the cooling or the heating of the air conditioner shown in FIG.

【図9】図7に示す空気調和装置における暖房主体の運
転動作状態図である。
[Fig. 9] Fig. 9 is a diagram showing the operation state of the heating main body in the air-conditioning apparatus shown in Fig. 7.

【図10】図7に示す空気調和装置における冷房主体の
運転動作状態図である。
[Fig. 10] Fig. 10 is a diagram showing the operation state of mainly the cooling in the air-conditioning apparatus shown in Fig. 7.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 6方切換弁 3 熱源機側熱交換器 4 アキュムレータ 5 室内側熱交換器 6 第1の接続配管 7 第2の接続配管 9 第1の流量制御装置 10 第1の分岐部 11 第2の分岐部 13 第2の流量制御装置 15 第3の流量制御装置 A 熱源機 B,C,D 室内機 E 中継器 1 Compressor 2 6-way switching valve 3 Heat source machine side heat exchanger 4 Accumulator 5 Indoor side heat exchanger 6 1st connection piping 7 2nd connection piping 9 1st flow control device 10 1st branch part 11 1st Branch portion 2 13 Second flow rate control device 15 Third flow rate control device A Heat source unit B, C, D Indoor unit E Repeater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源機側熱交換器、及びアキュ
ムレータよりなる1台の熱源機と、室内側熱交換器、第
1の流量制御装置からなる複数台の室内機とを、第1、
第2の接続配管を介して接続し、上記複数台の室内機の
室内側熱交換器の一方を上記第1の接続配管または第2
の接続配管に切換可能に接続する弁装置を備えた第1の
分岐部と上記複数台の室内機の室内側熱交換器の他方に
上記第1の流量制御装置を介して接続され、かつ第2の
流量制御装置を介して上記第2の接続配管に接続してな
る第2の分岐部とを、上記第2の流量制御装置を介して
接続し、上記第1の分岐部、上記第2の分岐部、上記第
2の流量制御装置を内蔵させた中継器を、上記熱源機と
上記複数台の室内機との間に介在させたものにおいて、
上記第1の接続配管の配管径を上記第2の接続配管の配
管径より太くし、上記圧縮機の吐出配管を上記熱源機側
熱交換器の一方の配管と、上記第2の接続配管とに切換
え可能に接続すると共に、上記熱源機側熱交換器の他方
の配管を、上記第2の接続配管と、上記アキュムレータ
の入口配管とに接続可能に接続し、また、上記第1の接
続配管を、上記アキュムレータの入口配管と、上記熱源
機側熱交換器の一方の配管とに接続可能に接続する6方
切換弁を備えたことを特徴とする空気調和装置。
1. A heat source unit comprising a compressor, a heat source unit side heat exchanger, and an accumulator, and a plurality of indoor units comprising an indoor side heat exchanger and a first flow rate control device. ,
The indoor heat exchangers of the plurality of indoor units are connected to each other via a second connection pipe, and one of the indoor heat exchangers is connected to the first connection pipe or the second connection pipe.
Connected to the other one of the indoor side heat exchangers of the plurality of indoor units via the first flow rate control device, and A second branch portion connected to the second connection pipe via the second flow rate control device is connected via the second flow rate control device, and the first branch portion and the second And a relay unit having the second flow rate control device built-in between the heat source unit and the plurality of indoor units.
The pipe diameter of the first connecting pipe is made larger than the pipe diameter of the second connecting pipe, and the discharge pipe of the compressor is one pipe of the heat source side heat exchanger, and the second connecting pipe. And the other pipe of the heat-source-unit-side heat exchanger are connectable to the second connection pipe and the inlet pipe of the accumulator, and the first connection pipe. Is provided with a 6-way switching valve that is connected to the inlet pipe of the accumulator and one pipe of the heat source side heat exchanger.
JP3322935A 1991-12-06 1991-12-06 Air conditioning apparatus Pending JPH05172430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3322935A JPH05172430A (en) 1991-12-06 1991-12-06 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3322935A JPH05172430A (en) 1991-12-06 1991-12-06 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH05172430A true JPH05172430A (en) 1993-07-09

Family

ID=18149278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3322935A Pending JPH05172430A (en) 1991-12-06 1991-12-06 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH05172430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371921A1 (en) * 2002-06-12 2003-12-17 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
JP2004219045A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner
US20170191680A1 (en) * 2015-06-01 2017-07-06 Gd Midea Heating & Ventilating Equipment Co., Ltd. Air-conditioning outdoor unit and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371921A1 (en) * 2002-06-12 2003-12-17 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
US6883345B2 (en) 2002-06-12 2005-04-26 Lg Electronics Inc. Multi-type air conditioner and method for operating the same
JP2004219045A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner
US20170191680A1 (en) * 2015-06-01 2017-07-06 Gd Midea Heating & Ventilating Equipment Co., Ltd. Air-conditioning outdoor unit and air conditioner

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH02118372A (en) Air-conditioning device
JP2944507B2 (en) Air conditioner
JP4273588B2 (en) Air conditioner refrigerant circuit
JP2004324947A (en) Air conditioning system
JPH05172430A (en) Air conditioning apparatus
JP2616523B2 (en) Air conditioner
JP2616525B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2616524B2 (en) Air conditioner
JP2503669B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH04359767A (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH04363564A (en) Air conditioner
JP3092212B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JPH06137710A (en) Multi-chamber simultaneous cooling and heating type air conditioner
JP3092214B2 (en) Air conditioner
JPH04110573A (en) Air conditioner