JPH04359767A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH04359767A
JPH04359767A JP3132758A JP13275891A JPH04359767A JP H04359767 A JPH04359767 A JP H04359767A JP 3132758 A JP3132758 A JP 3132758A JP 13275891 A JP13275891 A JP 13275891A JP H04359767 A JPH04359767 A JP H04359767A
Authority
JP
Japan
Prior art keywords
control device
flow rate
rate control
indoor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3132758A
Other languages
Japanese (ja)
Inventor
Shigeo Takada
茂生 高田
Shuichi Tani
秀一 谷
Setsu Nakamura
中村 節
Noriaki Hayashida
林田 徳明
Tomohiko Kasai
智彦 河西
Junichi Kameyama
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3132758A priority Critical patent/JPH04359767A/en
Priority to AU16034/92A priority patent/AU649810B2/en
Priority to ES92304136T priority patent/ES2092035T3/en
Priority to US07/880,719 priority patent/US5297392A/en
Priority to DE69226381T priority patent/DE69226381T2/en
Priority to DE69212225T priority patent/DE69212225D1/en
Priority to EP95106908A priority patent/EP0676595B1/en
Priority to ES95106908T priority patent/ES2120104T3/en
Priority to EP92304136A priority patent/EP0514086B1/en
Publication of JPH04359767A publication Critical patent/JPH04359767A/en
Priority to AU59368/94A priority patent/AU660124B2/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To stably continue an operation by so setting that flows of refrigerant in first, second connecting tubes and a repeater become unidirectional even if a four-way switching valve is switched, and extending a bypass passage in the repeater at the time when a transient high pressure rises at the time of operating only room cooling. CONSTITUTION:A plurality of indoor units B-D connected in parallel with each other are connected to a heat source A having a compressor 1, a four-way switching valve 2, a heat exchanger 3, etc., through a repeater E. The repeater E connects a first branch unit 10 for connecting one of indoor side heat exchangers 5 of the plurality of units B-D to first connecting tubes 6b 6d or second connecting tubes 7b-7d, and a second branch unit 11 connected to the tubes 7b-7d through second flowrate controllers 9, 13, and connects the unit 11 to the tubes 6b-6d through a third flowrate controller 15. Here, the controller 15 so controls by opening determining means (not shown) as to increase the opening if a high pressure is transiently raised at the time of operating 'only room cooling'.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
機に関するもので、特に各室内機毎に冷暖房を選択的に
、かつ一方の室内機では冷房、他方の室内機では暖房が
同時に行うことができる空気調和機に関するものである
[Industrial Application Field] The present invention relates to a multi-room heat pump air conditioner that connects a plurality of indoor units to one heat source unit. This invention relates to an air conditioner that can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

【0002】0002

【従来の技術】以下、この発明の従来技術について説明
する。図8は特開平2−118372に示された従来の
冷暖同時運転可能な空気調和装置の冷媒系を中心とする
全体構成図である。また、図9乃至図11は図8の一実
施例における冷暖房運転時の動作状態を示したもので、
図9は冷房または暖房のみの運転動作状態図、図10及
び図11は冷暖房同時運転の動作を示すもので、図10
は暖房主体(暖房運転容量が冷房運転容量より大きい場
合)を、図11は冷房主体(冷房運転容量が暖房運転容
量より大きい場合)を示す運転動作状態図である。これ
ら図においてAは熱源機、B、C、Dは後述するように
互いに並列接続された室内機で、それぞれ同じ構成とな
っている。Eは後述するように、第1の分岐部、第2の
流量制御装置、第2の分岐部を内蔵した中継機。
BACKGROUND OF THE INVENTION The prior art of the present invention will be explained below. FIG. 8 is an overall configuration diagram centered on the refrigerant system of a conventional air conditioner capable of simultaneous cooling and heating operations disclosed in Japanese Patent Application Laid-Open No. 2-118372. Further, FIGS. 9 to 11 show operating states during cooling and heating operation in one embodiment of FIG. 8,
FIG. 9 is a diagram showing the operating state of only cooling or heating, and FIGS. 10 and 11 are diagrams showing the operation of simultaneous cooling and heating operation.
11 is an operation state diagram showing a heating-dominant mode (when the heating operating capacity is larger than the cooling operating capacity), and FIG. 11 is an operating state diagram showing a cooling-dominant mode (when the cooling operating capacity is larger than the heating operating capacity). In these figures, A is a heat source device, and B, C, and D are indoor units connected in parallel to each other as described later, and each has the same configuration. As will be described later, E is a repeater that incorporates a first branch, a second flow rate control device, and a second branch.

【0003】1は圧縮機、2は熱源機の冷媒流通方向を
切換える四方切換弁、3は熱源機側熱交換器、4はアキ
ュムレータで、上記機器1〜3と接続され、熱源機Aを
構成する。5は3台の室内側熱交換器、6は熱源機Aの
四方弁2と中継機Eを接続する第1の接続配管、6b、
6c、6dはそれぞれ室内機B、C,Dの室内側熱交換
器5と中継機Eを接続し、第1の接続配管6に対応する
室内機側の第1の接続配管、7は熱源機Aの熱源機側熱
交換器3と中継機Eを接続する第2の接続配管、7b、
7c、7dはそれぞれ室内機B、C、Dの室内側熱交換
器5と中継機Eを接続し第2の接続配管7に対応する室
内機側の第2の接続配管、8は室内機側の第1の接続配
管6d、6c、6d と、第1の接続配管6または、第
2の接続配管7側に切り替え可能に接続する三方切換弁
、9は室内側熱交換器5に近接して接続され熱交換器5
の出口側の冷房時はスーパーヒート量、暖房時はサブク
ール量により制御される第1の流量制御装置で、室内機
側の第2の接続配管7b、7c、7dに接続される。1
0は室内機側の第1の接続配管6b、6c、6dと、第
1の接続配管6または、第2の接続配管7に切り替え可
能に接続する三方切換弁8よりなる第1の分岐部、11
は室内機側の第2の接続配管7b、7c、7dと第2の
接続配管7よりなる第2の分岐部、13は第2の接続配
管7と第2の分岐部11を接続する開閉自在な第2の流
量制御装置である。
1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, 3 is a heat exchanger on the heat source machine side, and 4 is an accumulator, which are connected to the above devices 1 to 3 and constitute heat source machine A. do. 5 is the three indoor heat exchangers, 6 is the first connection pipe that connects the four-way valve 2 of the heat source device A and the relay device E, 6b,
6c and 6d connect the indoor heat exchangers 5 of the indoor units B, C, and D, respectively, and the repeater E, and the first connection pipes on the indoor unit side corresponding to the first connection pipes 6, and 7 the heat source equipment. A second connection pipe connecting the heat source machine side heat exchanger 3 of A and the relay machine E, 7b,
7c and 7d are the second connection pipes on the indoor unit side that connect the indoor heat exchangers 5 of the indoor units B, C, and D and the repeater E and correspond to the second connection pipe 7, and 8 is the indoor unit side. The first connection pipes 6d, 6c, 6d and the three-way switching valve 9 switchably connected to the first connection pipe 6 or the second connection pipe 7 side are located close to the indoor heat exchanger 5. Connected heat exchanger 5
The first flow rate control device is controlled by a superheat amount during cooling and a subcool amount during heating on the exit side of the air conditioner, and is connected to second connection pipes 7b, 7c, and 7d on the indoor unit side. 1
0 is a first branch part consisting of a three-way switching valve 8 that is switchably connected to the first connection pipes 6b, 6c, and 6d on the indoor unit side and the first connection pipe 6 or the second connection pipe 7; 11
13 is a second branch part consisting of the second connection pipes 7b, 7c, and 7d on the indoor unit side and the second connection pipe 7, and 13 is an openable/closable part that connects the second connection pipe 7 and the second branch part 11. This is a second flow rate control device.

【0004】このように構成されたこの発明の従来例に
ついて説明する。まず、図9を用いて冷房運転のみの場
合について説明する。すなわち、同図に実線矢印で示す
ように圧縮機1より吐出された高温高圧冷媒ガスは四方
切換弁2を通り、熱源機側熱交換器3で熱交換して凝縮
液化された後、第2の接続配管7、第2の流量制御装置
13の順に通り、更に第2の分岐部11、室内機側の第
2の接続配管7b、7c、7dを通り、各室内機B、C
、Dに流入する。そして、各室内機B、C、Dに流入し
た冷媒は、第1の流量制御装置9により定圧まで減圧さ
れて室内側熱交換器5で、室内空気と熱交換して蒸発し
ガス化され室内を冷房する。そして、このガス状態とな
った冷媒は、室内機側の第1の接続配管6b、6c、6
d、三方切換弁8、第1の分岐部10、第1の接続配管
6、熱源機の四方弁2、アキュムレータ4を経て圧縮機
1に吸入される循環サイクルを構成し、冷房運転をおこ
なう。この時、三方切換弁8の第1口8aは閉路、第2
口8b及び第3口8cは開路されている。
A conventional example of the present invention configured as described above will be explained. First, the case of only cooling operation will be described using FIG. 9. That is, as shown by the solid line arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, undergoes heat exchange in the heat exchanger 3 on the heat source side, and is condensed and liquefied. The connection pipes 7 of
, D. The refrigerant flowing into each of the indoor units B, C, and D is then reduced to a constant pressure by the first flow rate control device 9, exchanges heat with indoor air in the indoor heat exchanger 5, evaporates, and is gasified indoors. to cool down. Then, this refrigerant in a gas state is transferred to the first connection pipes 6b, 6c, 6 on the indoor unit side.
d, a circulation cycle in which the air is sucked into the compressor 1 via the three-way switching valve 8, the first branch 10, the first connecting pipe 6, the four-way valve 2 of the heat source device, and the accumulator 4 is configured to perform cooling operation. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8a is closed.
Port 8b and third port 8c are open.

【0005】次に、図9を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に圧縮機1より吐出された高温高圧冷媒ガスは、四方切
換弁2を通り、第1の接続配管6、第1の分岐部10、
三方切替弁8、室内機側の第1の接続配管6a、6c、
6d、の順に通り、各室内機B、C、Dに流入し、室内
空気と熱交換して凝縮液化し、室内を暖房する。そして
、この液状態となった冷媒は、第1の流量制御装置9を
通り、室内機側の第2の接続配管7b、7c、7d第2
の分岐部11に流入して合流し、更に第2の流量制御装
置13を通り、ここで第1の流量制御装置9、又は第2
の流量制御装置13のどちらか一方で低圧の二相状態ま
で減圧される。そして、低圧まで減圧された冷媒は、第
2の接続配管7を経て熱源機Aの熱源側機熱交換機3に
流入し熱交換して蒸発しガス状態となった冷媒は、熱源
機の四方弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、暖房運転をおこなう。こ
の時、三方切換弁8は、上述した冷房運転のみの場合と
同様に開閉されている。
Next, the case of only heating operation will be explained using FIG. That is, as shown by the dotted arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the first connecting pipe 6, the first branch part 10,
Three-way switching valve 8, first connection pipes 6a, 6c on the indoor unit side,
6d, flows into each indoor unit B, C, and D, exchanges heat with indoor air, condenses and liquefies, and heats the room. Then, the refrigerant in the liquid state passes through the first flow rate control device 9 and the second connection pipes 7b, 7c, 7d on the indoor unit side.
It flows into the branch part 11 of
The pressure is reduced to a low pressure two-phase state by either one of the flow rate control devices 13. The refrigerant, which has been reduced in pressure to a low pressure, flows into the heat source side machine heat exchanger 3 of the heat source machine A through the second connection pipe 7, exchanges heat, and evaporates, and the refrigerant that has become a gas state is transferred to the four-way valve of the heat source machine. 2. Construct a circulation cycle in which the air is sucked into the compressor 1 via the accumulator 4, and perform heating operation. At this time, the three-way switching valve 8 is opened and closed in the same manner as in the case of only the cooling operation described above.

【0006】冷暖房同時運転における暖房主体の場合に
ついて図10を用いて説明する。すなわち、同図に点線
矢印で示すように圧縮機1より吐出された高温高圧冷媒
ガスは、第1の接続配管6を通して中継機Eへ送られ、
そして第1の分岐部10、三方切換弁8 、室内機側の
第1の接続配管6b、6cの順に通り、暖房しようとす
る各室内機B、Cに流入し、室内側熱交換器5で室内空
気と熱交換して凝縮液化され室内を暖房する。そして、
この凝縮液化した冷媒は、ほぼ全開状態の第1の流量制
御装置9を通り少し減圧されて第2の分岐部11に流入
する。そして、この冷媒の一部は、室内機側の第1の接
続配管7dを通り冷房しようとする室内機Dに入り、第
1の流量制御装置9に入り減圧された後に、室内側熱交
換器5に入って熱交換して蒸発しガス状態となって室内
を冷房し、三方切換弁8を介して第2の接続配管7に流
入する。一方、他の冷媒は第2の分岐部11、第2の流
量制御装置13を通って第2の接続配管7に流入し、冷
房しようとする室内器Dを通った冷媒と合流して熱源機
Aの熱源側機熱交換器3に流入し熱交換して蒸発しガス
状態となる。そして、その冷媒は、熱源機の四方弁2、
アキュムレータ4を経て圧縮機1に吸入される循環サイ
クルを構成し、暖房主体運転をおこなう。この時、室内
機B、Cに接続された三方切換弁8の第1口8aは閉路
、第2口8b、第3口8cは開路されており、室内機D
の第2口8bは閉路、第1口8a、第3口8cは開路さ
れている。
[0006] A case in which heating is the main component in simultaneous cooling and heating operation will be explained with reference to FIG. That is, as shown by the dotted arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor 1 is sent to the relay machine E through the first connection pipe 6.
Then, it passes through the first branch 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side in this order, and flows into each indoor unit B and C to be heated. It exchanges heat with indoor air and condenses into a liquid that heats the room. and,
This condensed and liquefied refrigerant passes through the first flow rate control device 9 which is in a substantially fully open state, is slightly depressurized, and flows into the second branch portion 11 . A part of this refrigerant passes through the first connection pipe 7d on the indoor unit side and enters the indoor unit D to be cooled, enters the first flow rate control device 9, is depressurized, and then passes through the indoor heat exchanger. 5, it exchanges heat, evaporates, becomes a gas, cools the room, and flows into the second connection pipe 7 via the three-way switching valve 8. On the other hand, other refrigerants flow into the second connection pipe 7 through the second branch part 11 and the second flow rate control device 13, join with the refrigerant that has passed through the indoor unit D to be cooled, and enter the heat source unit. It flows into the heat source side mechanical heat exchanger 3 of A, exchanges heat, and evaporates into a gas state. Then, the refrigerant is transferred to the four-way valve 2 of the heat source machine.
A circulation cycle is configured in which the air is sucked into the compressor 1 via the accumulator 4, and heating-based operation is performed. At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are open, and the indoor unit D
The second port 8b is closed, and the first port 8a and third port 8c are open.

【0007】冷暖房同時運転における冷房主体の場合に
ついて図11を用いて説明する。すなわち、同図に実線
矢印で示すように圧縮機1より吐出された高温高圧冷媒
ガスは、熱源機側熱交換器3で任意量を熱交換して二相
の高温高圧状態となり第2の接続配管7により、中継機
Eへ送られる。そして、この冷媒の一部を第1の分岐部
10、三方切換弁8、室内機側の第1の接続配管6dの
順に通り、暖房しようとする室内機Dに流入し、室内側
熱交換器5で室内空気と熱交換して凝縮液化し、室内を
暖房する。更に、ほぼ全開状態の第1の流量制御装置9
を通り第2の分岐部11に流入する。一方、残りの冷媒
は第2の流量制御装置13を通って第2の分岐部11に
流入し、暖房しようとする室内機Dを通った冷媒と合流
する。そして、第2の分岐部11、室内機側の第2の接
続配管7b、7cの順に通り、各室内機B、Cに流入す
る。そして、各室内機B、Cに流入した冷媒は、第1の
流量制御装置9により低圧まで減圧されて室内側熱交換
器5に流入し、室内空気と熱交換して蒸発しガス化され
室内を冷房する。 更にこのガス状態となった冷媒は、室内器側の第1の接
続配管6b、6c、三方切換弁8、第1の分岐部10、
第1の接続配管6、熱源機の四方切換弁2、アキュムレ
ータ4を経て圧縮機1に吸入される循環サイクルを構成
し、冷房主体運転をおこなう。この時、室内機B、C、
Dに接続された三方切換弁8の第1口8a〜8cは暖房
主体運転と同様に開閉されている。
[0007] A case in which cooling is the main component in simultaneous heating and cooling operation will be explained using FIG. 11. That is, as shown by the solid line arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 undergoes heat exchange in an arbitrary amount in the heat exchanger 3 on the heat source side, and becomes a two-phase high-temperature, high-pressure state, and is transferred to the second connection. It is sent to repeater E via piping 7. Then, a part of this refrigerant passes through the first branch part 10, the three-way switching valve 8, and the first connection pipe 6d on the indoor unit side in this order, flows into the indoor unit D to be heated, and enters the indoor heat exchanger. At step 5, it exchanges heat with indoor air to condense and liquefy, heating the room. Furthermore, the first flow rate control device 9 is in an almost fully open state.
and flows into the second branch 11. On the other hand, the remaining refrigerant flows into the second branch portion 11 through the second flow rate control device 13 and joins with the refrigerant that has passed through the indoor unit D to be heated. The water then passes through the second branch 11 and the second connection pipes 7b and 7c on the indoor unit side in that order, and flows into each of the indoor units B and C. The refrigerant that has flowed into each of the indoor units B and C is then reduced to a low pressure by the first flow rate control device 9 and flows into the indoor heat exchanger 5, where it exchanges heat with the indoor air, evaporates, and gasifies into the room. to cool down. Furthermore, this refrigerant in a gas state is transferred to the first connection pipes 6b, 6c on the indoor unit side, the three-way switching valve 8, the first branch part 10,
A circulation cycle is configured in which the air is sucked into the compressor 1 via the first connection pipe 6, the four-way switching valve 2 of the heat source device, and the accumulator 4, and a cooling-based operation is performed. At this time, indoor units B, C,
The first ports 8a to 8c of the three-way switching valve 8 connected to D are opened and closed in the same manner as in the heating-based operation.

【0008】[0008]

【発明が解決しようとする課題】従来の2管式冷暖同時
運転可能な空気調和装置は以上のように構成されいるた
め、四方切換弁の切換えによって第1及び第2の接続配
管と中継機内での冷媒の流れが逆転しており、四方切換
弁の切換え毎に運転状態が急変し、系の安定に時間を要
していた。また、暖房主体運転時第2の接続配管の圧損
が大きく、冷房室内機の能力が不足するという問題があ
った。
[Problems to be Solved by the Invention] Since the conventional two-pipe air conditioner capable of simultaneous cooling and heating operation is configured as described above, the connection between the first and second connecting pipes and the repeater is controlled by switching the four-way switching valve. The flow of refrigerant was reversed, and the operating conditions suddenly changed every time the four-way switching valve was switched, and it took time for the system to stabilize. Further, there was a problem in that the pressure loss of the second connecting pipe was large during heating-based operation, and the capacity of the cooling indoor unit was insufficient.

【0009】この発明は、上記のような問題点を解決す
るためになされたもので、四方切換弁の切換えに対して
も第1及び第2の接続配管と中継機内での冷媒の流れを
一方向にし、系の安定性を高めた冷暖同時運転可能な空
気調和装置を得ることを目的とする。また、第2の接続
配管より太い第1の接続配管を常に低圧側で用いること
により、低圧圧損を低減し、冷房室内機の能力の低下を
抑制することを目的とする。
[0009] This invention was made to solve the above-mentioned problems, and it is possible to unify the flow of refrigerant in the first and second connecting pipes and the repeater even when switching a four-way switching valve. The purpose is to obtain an air conditioner that can perform simultaneous cooling and heating operations with improved system stability. Further, by always using the first connection pipe, which is thicker than the second connection pipe, on the low-pressure side, it is an object of the present invention to reduce low-pressure pressure loss and suppress a decrease in the capacity of the cooling indoor unit.

【0010】また、冷房のみの運転時に運転台数変化等
により過渡的に高圧が上昇した場合に、中継器において
バイパス流路を広げることにより、運転停止することな
く運転を継続することを目的とするものである。
[0010] Another purpose is to continue operation without stopping the operation by widening the bypass flow path in the repeater when the high pressure rises transiently due to a change in the number of operating units during operation only for cooling. It is something.

【0011】[0011]

【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機、四方切換弁、熱源機側熱交換器、アキ
ュムレータ、等よりなる1台の熱源機と、室内側熱交換
器、第1の流量制御装置等からなる複数台の室内機とを
、第1、第2の接続配管を介して接続し、上記複数台の
室内機の上記室内側熱交換器の一方を上記第1の接続配
管または、第2の接続配管に切り換え可能に接続してな
る第1の分岐部と、上記複数台の室内機の上記室内側熱
交換器の他方に、上記第1の流量制御装置を介して接続
され、かつ第2の流量制御装置を介して上記第2の接続
配管に接続してなる第2の分岐部とを、上記第2の流量
制御装置を介して接続し、更に上記第2の分岐部と上記
第1の接続配管を第3の流量制御装置を介して接続し、
上記第1の分岐部、上記第2の流量制御装置、上記第3
の流量制御装置及び上記第2の分岐部を内蔵させた中継
器を、上記熱源機と上記複数台の室内機との間に介在さ
せると共に、上記第1の接続配管は上記第2の接続配管
より大径に構成し、上記熱源機の上記第1及び第2の接
続配管間に切り換え弁を設け、上記第1の接続配管を低
圧に、第2の接続配管を高圧に切り換え可能にした、冷
暖同時運転可能な空気調和装置において、冷房のみの運
転時に運転台数変化等により過渡的に高圧が上昇した場
合に、上記第3の流量制御装置の開度を増加させる第3
の流量制御装置の開度決定手段を設けたものである。
[Means for Solving the Problems] An air conditioner according to the present invention includes one heat source machine including a compressor, a four-way switching valve, a heat exchanger on the heat source machine side, an accumulator, etc., an indoor heat exchanger, A plurality of indoor units including a first flow rate control device, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first The first flow rate control device is connected to the first branching portion switchably connected to the connecting pipe or the second connecting pipe, and the other of the indoor heat exchangers of the plurality of indoor units. and a second branch section connected to the second connecting pipe via the second flow rate control device, and further connected to the second branch portion via the second flow rate control device, and connecting the second branch and the first connecting pipe via a third flow rate control device;
the first branch, the second flow control device, the third
A repeater incorporating a flow rate control device and the second branch part is interposed between the heat source device and the plurality of indoor units, and the first connection pipe is connected to the second connection pipe. A switching valve is provided between the first and second connecting pipes of the heat source device, so that the first connecting pipe can be switched to low pressure and the second connecting pipe can be switched to high pressure. In an air conditioner capable of simultaneous cooling and heating operation, a third control device that increases the opening degree of the third flow rate control device when high pressure transiently increases due to a change in the number of operating units during cooling only operation.
This is provided with means for determining the opening degree of the flow rate control device.

【0012】0012

【作用】この発明においては、冷房のみの運転時に過渡
的に高圧が上昇した場合に、第の流量制御装置の開度を
増加することにより、中継機内において第2の接続配管
から第2及び第3の流量制御装置を介して第1の接続配
管へ抜けるバイパス流路を広げ流路圧損を低減し、冷媒
を流れ易くすることにより、高圧を低下させる。
[Operation] In this invention, when high pressure rises transiently during cooling-only operation, by increasing the opening degree of the second flow rate control device, the second connection pipe is connected to the second and second connection pipes in the repeater. The high pressure is lowered by widening the bypass flow path leading to the first connection pipe via the flow rate control device No. 3 to reduce flow path pressure loss and make it easier for the refrigerant to flow.

【0013】[0013]

【実施例】【Example】

実施例1.以下、この発明の実施例について説明する。 図1はこの発明の一実施例による空気調和装置の冷媒系
を中心とする全体構成図である。また、図2乃至図4は
図1に示す空気調和装置における冷暖房運転時の動作状
態を示したもので、図2は冷房または暖房のみの運転状
態図、図3及び図4は冷暖房同時運転の動作を示すもの
で、図3は暖房主体(暖房運転容量が冷房運転容量より
大きい場合)を、図4は冷房主体(冷房運転容量が暖房
運転容量より大きい場合)を示す運転動作状態図である
。なお、この実施例では熱源機1台に室内機3台を接続
した場合について説明するが、2台以上の室内機を接続
した場合はすべて同様である。
Example 1. Examples of the present invention will be described below. FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to an embodiment of the present invention. In addition, Figures 2 to 4 show the operating states of the air conditioner shown in Figure 1 during cooling/heating operation. Figure 2 is an operational status diagram for cooling or heating only, and Figures 3 and 4 are for simultaneous cooling/heating operation. Fig. 3 is a diagram showing the operating state of the system mainly for heating (when the heating operating capacity is larger than the cooling operating capacity), and Fig. 4 is an operating state diagram showing mainly for cooling (when the cooling operating capacity is larger than the heating operating capacity). . In this embodiment, a case will be described in which three indoor units are connected to one heat source device, but the same applies to cases in which two or more indoor units are connected.

【0014】図1において、Aは熱源機、B、C、Dは
後述するように互いに並列接続された室内機でそれぞれ
同じ構成となっている。Eは後述するように、第1の分
岐部10、第2の流量制御装置13、第2の分岐部11
、気液分離装置12、熱交換部16a、16b,16c
,16d、19、第3の流量制御装置15、第4の流量
制御装置17を内蔵した中継機である。また、1は圧縮
機、2は熱源機の冷媒流通方向を切り換える四方切換弁
、3は熱源機側熱交換器、4はアキュムレータで、上記
四方切換弁2を介して圧縮機1と接続されている。これ
らによって熱源機Aが構成される。また、5は3台の室
内機B、C、Dに設けられた室内側熱交換器、6は熱源
機Aの四方切換弁2と中継機Eを後述する第4の逆止弁
33を介して接続する太い第1の接続配管、6b、6c
、6dはそれぞれ室内機B、C、Dの室内側熱交換器5
と中継機Eを接続し、第1の接続配管6に対応する室内
機側の第1の接続配管、7は熱源機Aの熱源機側熱交換
器3と中継機Eを後述する第3の逆止弁32を介して接
続する上記第1の接続配管より細い第2の接続配管であ
る。
In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel to each other, each having the same configuration as will be described later. E indicates the first branch 10, the second flow control device 13, and the second branch 11, as will be described later.
, gas-liquid separation device 12, heat exchange parts 16a, 16b, 16c
, 16d, 19, a repeater incorporating a third flow rate control device 15 and a fourth flow rate control device 17. Further, 1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, 3 is a heat exchanger on the heat source machine side, and 4 is an accumulator, which is connected to the compressor 1 via the four-way switching valve 2. There is. A heat source device A is configured by these. In addition, 5 is an indoor heat exchanger provided in three indoor units B, C, and D, and 6 is a four-way switching valve 2 of heat source device A and a relay device E via a fourth check valve 33, which will be described later. thick first connection piping, 6b, 6c
, 6d are indoor heat exchangers 5 of indoor units B, C, and D, respectively.
and the relay machine E, and a first connection pipe on the indoor unit side corresponding to the first connection pipe 6; This is a second connection pipe that is thinner than the first connection pipe that is connected via the check valve 32.

【0015】また、7b、7c、7dはそれぞれ室内機
B、C、Dの室内側熱交換器5と中継器Eを第1の流量
制御装置9を介して接続し、第2の接続配管7に対応す
る室内機側の第2の接続配管である。8は室内機側の第
1の接続配管6b、6c、6dを、第1の接続配管6ま
たは第2の接続配管7側に切り換え可能に接続する三方
切換弁である。9は室内側熱交換器5に近接して接続さ
れ、冷房時は室内側熱交換器5の出口側のスーパーヒー
ト量、暖房時はサブクール量により制御される第1の流
量制御装置で、室内機側の第2の接続配管7b、7c、
7dに接続される。10は室内機側の第1の接続配管6
b、6c、6dを、第1の接続配管6または、第2の接
続配管7に切換え可能に接続する三方切換弁8よりなる
第1の分岐部である。11は室内機側の第2の接続配管
7b、7c、7dと、第2の接続配管7よりなる第2の
分岐部である。12は第2の接続配管7の途中に設けら
れた気液分離装置で、その気相部は三方切換弁8の第1
口8aに接続され、その液相部は第2の分岐部11に接
続されている。13は気液分離装置12と第2の分岐部
11との間に接続する開閉自在な第2の流量制御装置(
ここでは電気式膨張弁)である。
Further, 7b, 7c, and 7d connect the indoor heat exchangers 5 of the indoor units B, C, and D and the repeater E via the first flow rate control device 9, and the second connecting pipes 7 This is the second connection pipe on the indoor unit side corresponding to the above. 8 is a three-way switching valve that connects the first connection pipes 6b, 6c, and 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7 side in a switchable manner. Reference numeral 9 denotes a first flow rate control device that is connected close to the indoor heat exchanger 5 and is controlled by the amount of super heat on the outlet side of the indoor heat exchanger 5 during cooling and by the amount of subcooling during heating. Second connection pipes 7b, 7c on the machine side,
Connected to 7d. 10 is the first connection pipe 6 on the indoor unit side
b, 6c, and 6d are connected to the first connection pipe 6 or the second connection pipe 7 in a switchable manner. Reference numeral 11 denotes a second branching section consisting of the second connection pipes 7b, 7c, and 7d on the indoor unit side and the second connection pipe 7. 12 is a gas-liquid separator installed in the middle of the second connection pipe 7, and its gas phase is connected to the first part of the three-way switching valve 8.
It is connected to the port 8a, and its liquid phase part is connected to the second branch part 11. 13 is a second flow rate control device (
Here, it is an electric expansion valve).

【0016】14は第2の分岐部11と上記第1の接続
配管6とを結ぶバイパス配管、15はバイパス配管14
の途中に設けられた第3の流量制御装置(ここでは電気
式膨張弁)、16aはバイパス配管14の途中に設けら
れた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b、
7c、7dの会合部との間でそれぞれ熱交換を行う第2
の熱交換部である。16b、16c、16dはそれぞれ
バイパス配管14の途中に設けられた第3の流量制御装
置15の下流に設けられ、第2の分岐部11における各
室内機側の第2の接続配管7b、7c、7dとの間でそ
れぞれ熱交換を行う第3の熱交換部である。19はバイ
パス配管14の上記第3の流量制御装置15の下流およ
び第2の熱交換部16aの下流に設けられ、気液分離装
置12と第2の流量制御装置13とを接続する配管との
間で熱交換を行う第1の熱交換部、17は第2の分岐部
11と上記第1の接続配管6との間に接続する開閉自在
な第4の流量制御装置(ここでは電気式膨張弁)である
14 is a bypass pipe connecting the second branch 11 and the first connection pipe 6; 15 is a bypass pipe 14;
A third flow rate control device (here, an electric expansion valve) 16a is provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and a third flow rate control device 16a is provided in the middle of the bypass pipe 14. a second connection pipe 7b on each indoor unit side in 11;
The second part exchanges heat with the meeting parts 7c and 7d, respectively.
This is the heat exchange section. 16b, 16c, and 16d are respectively provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and are connected to the second connecting pipes 7b, 7c, and 16d on each indoor unit side in the second branch portion 11, respectively. This is a third heat exchange section that performs heat exchange with each other. Reference numeral 19 is provided in the bypass pipe 14 downstream of the third flow rate control device 15 and downstream of the second heat exchange section 16a, and is connected to the pipe connecting the gas-liquid separation device 12 and the second flow rate control device 13. A first heat exchange section 17 performs heat exchange between the second branch section 11 and the first connection pipe 6, and a fourth flow rate control device (here, an electric expansion valve).

【0017】一方、32は上記熱源機側熱交換器3と上
記第2の接続配管7との間に設けられた第3の逆止弁で
あり、上記熱源機側熱交換器3から上記第2の接続配管
7へのみ冷媒流通を許容する。33は上記熱源機Aの四
方切換弁2と上記第1の接続配管6との間に設けられた
第4の逆止弁であり、上記第1の接続配管6から上記四
方切換弁2へのみ冷媒流通を許容する。34は上記熱源
機Aの四方切換弁2と上記第2の接続配管7との間に設
けられた第5の逆止弁であり、上記四方切換弁2から上
記第2の接続配管7へのみ冷媒流通を許容する。35は
上記熱源機側熱交換器3と上記第1の接続配管6との間
に設けられた第6の逆止弁であり、上記第1の接続配管
6から上記熱源機側熱交換器3へのみ冷媒流通を許容す
る。上記第3、第4、第5、第6の逆止弁32、33、
34、35で切換弁40を構成する。
On the other hand, 32 is a third check valve provided between the heat exchanger 3 on the heat source equipment side and the second connection pipe 7, and 32 is a third check valve provided between the heat exchanger 3 on the heat source equipment side and the second connection pipe 7. Refrigerant flow is allowed only to the connecting pipe 7 of No. 2. 33 is a fourth check valve provided between the four-way switching valve 2 of the heat source device A and the first connecting pipe 6, and only from the first connecting pipe 6 to the four-way switching valve 2 Allow refrigerant flow. 34 is a fifth check valve provided between the four-way switching valve 2 of the heat source device A and the second connecting pipe 7, and only from the four-way switching valve 2 to the second connecting pipe 7 Allow refrigerant flow. 35 is a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 6, and 35 is a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 6; Allow refrigerant flow only to the third, fourth, fifth, and sixth check valves 32, 33;
34 and 35 constitute a switching valve 40.

【0018】25は上記第1の分岐部10と第2の流量
制御装置13との間に設けられた第1の圧力検出手段、
26は上記第2の流量制御装置13と第4の流量制御装
置17との間に設けられた第2の圧力検出手段、27は
上記第1の接続配管6に設けられた第3の圧力検出手段
である。28は上記バイパス配管6の上記第1の熱交換
部19より下流に設けられたバイパス配管出口温度検出
手段である。また、50は上記四方切換弁2と上記アキ
ュムレータ4とを接続する配管途中に設けられた低圧飽
和温度検出手段、18は上記圧縮機1と上記四方切換弁
2とを接続する配管途中に設けられた第4の圧力検出手
段である。
25 is a first pressure detection means provided between the first branch section 10 and the second flow rate control device 13;
26 is a second pressure detection means provided between the second flow rate control device 13 and the fourth flow rate control device 17, and 27 is a third pressure detection device provided in the first connection pipe 6. It is a means. Reference numeral 28 denotes bypass pipe outlet temperature detection means provided downstream of the first heat exchange section 19 of the bypass pipe 6. Further, 50 is a low pressure saturation temperature detection means provided in the middle of the pipe connecting the four-way switching valve 2 and the accumulator 4, and 18 is a low pressure saturation temperature detection means provided in the middle of the pipe connecting the compressor 1 and the four-way switching valve 2. This is a fourth pressure detection means.

【0019】次に動作について説明する。まず、図2を
用いて冷房運転のみの場合について説明する。同図に実
線矢印で示すように低圧飽和温度検出手段50の検出温
度が所定値になるように容量制御される圧縮機1より吐
出された高温高圧冷媒ガスは四方切換弁2を通り、熱源
機側熱交換器3で空気と熱交換して凝縮された後、第3
の逆止弁32、第2の接続配管7、気液分離装置12、
第2の流量制御装置13の順に通り、更に第2の分岐部
11、室内機側の第2の接続配管7b、7c、7dを通
り、各室内機B、C、Dに流入する。各室内機B、C、
Dに流入した冷媒は、各室内側熱交換器5の出口のスー
パーヒート量により制御される第1の流量制御装置9に
より低圧まで減圧されて室内側熱交換器5で室内空気と
熱交換して蒸発しガス化され室内を冷房する。
Next, the operation will be explained. First, the case of only cooling operation will be described using FIG. 2. As shown by the solid line arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the temperature detected by the low-pressure saturation temperature detection means 50 becomes a predetermined value passes through the four-way switching valve 2 and passes through the heat source After being condensed by exchanging heat with air in the side heat exchanger 3, the third
check valve 32, second connection pipe 7, gas-liquid separation device 12,
It passes through the second flow rate control device 13 in this order, then passes through the second branch 11 and the second connection pipes 7b, 7c, and 7d on the indoor unit side, and flows into each of the indoor units B, C, and D. Each indoor unit B, C,
The refrigerant flowing into D is reduced in pressure to a low pressure by the first flow control device 9, which is controlled by the amount of superheat at the outlet of each indoor heat exchanger 5, and is then heat exchanged with indoor air in the indoor heat exchanger 5. It evaporates and becomes gas, cooling the room.

【0020】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、三方切換弁8、第1
の分岐部10、第1の接続配管6、第4の逆止弁33、
熱源機Aの四方切換弁2、アキュムレータ4を経て圧縮
機1に吸入される循環サイクルを構成し、冷房運転を行
う。この時、三方切換弁8の第1口8aは閉路、第2口
8bと第3口8cは開路されている。また、冷媒はこの
時、第1の接続配管6が低圧、第2の接続配管7が高圧
のため必然的に第3の逆止弁32、第4の逆止弁33へ
流通する。また、このサイクルの時、第2の流量制御装
置13を通過した冷媒の一部がバイパス配管14へ入り
、第3の圧力検出手段27の検出圧力の飽和温度とバイ
パス配管出口温度検出手段28の検出温度により演算さ
れるバイパス配管出口スーパーヒート量により制御され
る。第3の流量制御装置15で低圧まで減圧されて第3
の熱交換部16b、16c、16dで第2の分岐部11
の各室内機側の第2の接続配管7b、7c、7dとの間
で、また第2の熱交換部16aで第2の分岐部11の各
室内機側の第2の接続配管7b、7c、7dの会合部と
の間で、更に第1の熱交換部19で第2の流量制御装置
13に流入する冷媒との間で、熱交換を行い蒸発した冷
媒は、第1の接続配管6、第4の逆止弁33へ入り、熱
源機Aの四方切換弁2、アキュムレータ4を経て圧縮機
1に吸入される。
The refrigerant in the gas state is transferred to the first connection pipes 6b, 6c, 6d on the indoor unit side, the three-way switching valve 8, and the first
branch part 10, first connection pipe 6, fourth check valve 33,
A circulation cycle is configured in which air is sucked into the compressor 1 through the four-way switching valve 2 and accumulator 4 of the heat source device A, and cooling operation is performed. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and third port 8c are opened. Further, at this time, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 is under low pressure and the second connection pipe 7 is under high pressure. Also, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the bypass pipe 14, and the saturation temperature of the detected pressure of the third pressure detection means 27 and the bypass pipe outlet temperature detection means 28 are detected. It is controlled by the bypass piping outlet superheat amount calculated based on the detected temperature. The pressure is reduced to low pressure by the third flow rate control device 15, and the third
The heat exchange parts 16b, 16c, 16d of the second branch part 11
and the second connection pipes 7b, 7c, 7d on each indoor unit side of the second branch part 11 at the second heat exchange part 16a. , 7d, and the refrigerant flowing into the second flow rate control device 13 in the first heat exchange section 19, the evaporated refrigerant is transferred to the first connection pipe 6. , enters the fourth check valve 33, passes through the four-way switching valve 2 of the heat source device A, the accumulator 4, and is sucked into the compressor 1.

【0021】一方、第1、第2、第3の熱交換部19、
16a、16b、16c、16dで熱交換し冷却され、
サブクールを充分につけられた上記第2の分岐部11の
冷媒は冷房しようとしている室内機B、C、Dへ流入す
る。
On the other hand, the first, second and third heat exchange sections 19,
16a, 16b, 16c, and 16d exchange heat and are cooled,
The refrigerant in the second branch section 11 that has been sufficiently subcooled flows into the indoor units B, C, and D that are to be cooled.

【0022】次に、図2を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に、第4の圧力検出手段18の検出圧力が所定値になる
ように容量制御される圧縮機1より吐出された高温高圧
冷媒ガスは、四方切換弁2を通り、第5の逆止弁34、
第2の接続配管7、気液分離装置12を通り、第1の分
岐部10、三方切換弁8、室内機側の第1の接続配管6
b、6c、6dの順に通り、各室内機B、C、Dに流入
し、室内空気と熱交換して凝縮液化し、室内を暖房する
Next, the case of only heating operation will be explained using FIG. That is, as shown by the dotted line arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the detected pressure of the fourth pressure detection means 18 becomes a predetermined value is transferred to the four-way switching valve 2. through a fifth check valve 34;
The second connection pipe 7 passes through the gas-liquid separator 12, the first branch 10, the three-way switching valve 8, and the first connection pipe 6 on the indoor unit side.
b, 6c, and 6d, and flows into each indoor unit B, C, and D, where it exchanges heat with indoor air, condenses and liquefies, and heats the room.

【0023】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b、7c、7dから第2の分岐部11に流入
して合流し、更に第4の流量制御装置17を通る。ここ
で、第1の流量制御装置9または第3、第4の流量制御
装置15、17のどちらか一方で低圧の気液二相状態ま
で減圧される。 低圧まで減圧された冷媒は、第1の接続配管6を経て熱
源機Aの第6の逆止弁35、熱源機側熱交換器3に流入
し、空気と熱交換して蒸発しガス状態となり、熱源機A
の四方切換弁2、アキュムレータ4を経て圧縮機1に吸
入される循環サイクルを構成し、暖房運転を行う。この
時、三方切換弁8は第2口8bは閉路、第1口8aと第
3口8cは開路されている。また、冷媒は、この時、第
1の接続配管6が低圧、第2の接続配管7が高圧のため
必然的に第5の逆止弁34、第6の逆止弁35へ流通す
る。
The refrigerant in the liquid state is controlled by the subcooling amount at the outlet of each indoor heat exchanger 5, passes through the first flow rate control device 9 that is almost fully open, and then passes through the second connection on the indoor unit side. The water flows into the second branch 11 from the pipes 7b, 7c, and 7d, joins together, and further passes through the fourth flow rate control device 17. Here, either the first flow rate control device 9 or the third and fourth flow rate control devices 15 and 17 is depressurized to a low pressure gas-liquid two-phase state. The refrigerant whose pressure has been reduced to a low pressure flows into the sixth check valve 35 of the heat source device A and the heat exchanger 3 on the heat source device side through the first connection pipe 6, exchanges heat with air, evaporates, and becomes a gas. , heat source machine A
A circulation cycle is constructed in which air is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4, and heating operation is performed. At this time, the second port 8b of the three-way switching valve 8 is closed, and the first port 8a and third port 8c are opened. Further, at this time, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 is under low pressure and the second connection pipe 7 is under high pressure.

【0024】次に冷暖同時運転における暖房主体の場合
について図3を用いて説明する。同図に点線矢印で示す
ように第4の圧力検出手段18の検出圧力が所定値にな
るように容量制御される圧縮機1より吐出された高温高
圧冷媒ガスは、四方切換弁2を経て第5の逆止弁34、
第2の接続配管7を通して中継機Eへ送られ、気液分離
装置12を通り、第1の分岐部10、三方切換弁8、室
内機側の第1の接続配管6b、6cの順に通り、暖房し
ようとしている各室内機B、Cに流入し、室内側熱交換
器5で室内空気と熱交換して凝縮液化され、室内を暖房
する。この凝縮液化した冷媒は、各室内側熱交換器5の
出口のサブクール量により制御されほぼ全開状態の第1
の流量制御装置9を通り、少し減圧されて第2の分岐部
11に流入する。
Next, a case in which heating is the main component in simultaneous cooling and heating operation will be explained using FIG. 3. As shown by the dotted arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the detected pressure of the fourth pressure detection means 18 becomes a predetermined value passes through the four-way switching valve 2. 5 check valve 34,
It is sent to the relay machine E through the second connection pipe 7, passes through the gas-liquid separation device 12, passes through the first branch part 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side in this order, It flows into each of the indoor units B and C that are attempting to heat the room, exchanges heat with indoor air in the indoor heat exchanger 5, and is condensed and liquefied to heat the room. This condensed and liquefied refrigerant is controlled by the amount of subcooling at the outlet of each indoor heat exchanger 5, and the first
The water passes through the flow rate control device 9, is slightly depressurized, and flows into the second branch 11.

【0025】この冷媒の一部は、室内機側の第2の接続
配管7dを通り、冷房しようとする室内機Dに入り、室
内側熱交換器5の出口スーパーヒート量により制御され
る第1の流量制御装置9に入り、減圧された後に、室内
側熱交換器5に入って熱交換して蒸発しガス状態となっ
て室内を冷房し、第1の接続配管6dを経て三方切換弁
8を介して第1の接続配管6に流入する。一方、他の冷
媒は第1の圧力検出手段25の検出圧力、第2の圧力検
出手段26の検出圧力の圧力差が所定範囲となるように
制御される第4の流量制御装置17を通って、冷房しよ
うとする室内機Dを通った冷媒と合流して太い第1の接
続配管6を経て、熱源機Aの第6の逆止弁35、熱源機
側熱交換器3に流入し、空気と熱交換して蒸発しガス状
態となる。
A part of this refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and enters the first indoor unit D, which is controlled by the amount of superheat at the outlet of the indoor heat exchanger 5. After entering the flow control device 9 and being depressurized, it enters the indoor heat exchanger 5 where it exchanges heat and evaporates into a gas state to cool the room, and then passes through the first connection pipe 6d to the three-way switching valve 8. It flows into the first connecting pipe 6 through the. On the other hand, other refrigerants pass through a fourth flow rate control device 17 that is controlled so that the pressure difference between the pressure detected by the first pressure detection means 25 and the pressure detected by the second pressure detection means 26 is within a predetermined range. , joins with the refrigerant that has passed through the indoor unit D to be cooled, passes through the thick first connection pipe 6, flows into the sixth check valve 35 of the heat source unit A, and the heat exchanger 3 on the heat source unit side, and the air It exchanges heat with and evaporates, becoming a gas.

【0026】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5の蒸発圧力と熱源機側熱交換
器3の圧力差が、太い第1の接続配管6に切り換えるた
めに小さくなる。また、この時、室内機B、Cに接続さ
れた三方切換弁8の第2口8bは閉路、第1口8aと第
3口8c開路されており、室内機Dの第1口8aは閉路
、第2口8bと第3口8cは開路されている。また、冷
媒はこの時、第1の接続配管6が低圧、第2の接続配管
7が高圧のため必然的に第5の逆止弁34、第6の逆止
弁35へ流通する。
This refrigerant constitutes a circulation cycle in which the heat source unit A is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4, thereby performing heating-based operation. At this time, the difference in pressure between the evaporation pressure of the indoor heat exchanger 5 of the indoor unit D to be cooled and the pressure of the heat source device side heat exchanger 3 becomes small because the connection is switched to the thick first connection pipe 6. Also, at this time, the second port 8b of the three-way switching valve 8 connected to the indoor units B and C is closed, the first port 8a and the third port 8c are open, and the first port 8a of the indoor unit D is closed. , the second port 8b and the third port 8c are open circuited. Further, at this time, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 is under low pressure and the second connection pipe 7 is under high pressure.

【0027】このサイクル時、一部の液冷媒は第2の分
岐部11の各室内機側の第2の接続配管7b、7c、7
dの会合部からバイパス配管14へ入り、第3の流量制
御装置15で低圧まで減圧されて、第3の熱交換部16
b、16c、16dで第2の分岐部11の各室内機側の
第2の接続配管7b、7c、7dとの間で、また第2の
熱交換部16aで第2の分岐部11の各室内機側の第2
の接続配管7b、7c、7dの会合部との間で、更に第
1の熱交換部19で第2の流量制御装置13から流入す
る冷媒との間で熱交換を行い、蒸発した冷媒は、第1の
接続配管6、第6の逆止弁35を経由し、熱源機側熱交
換器3へ入り、空気と熱交換して蒸発気化した後、熱源
機Aの四方切換弁2、アキュムレータ4を経て圧縮機1
に吸入される。一方第1、第2、第3の熱交換部19、
16a、16b、16c、16dで熱交換し、冷却され
、サブクールを充分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機Dへ流入する。
During this cycle, some of the liquid refrigerant flows through the second connecting pipes 7b, 7c, 7 on the indoor unit side of the second branch 11.
It enters the bypass piping 14 from the junction of d, is reduced to a low pressure by the third flow rate control device 15, and is transferred to the third heat exchange section 16.
b, 16c, and 16d between the second connecting pipes 7b, 7c, and 7d on each indoor unit side of the second branch part 11, and between each of the second branch parts 11 in the second heat exchange part 16a. No. 2 on the indoor unit side
The evaporated refrigerant exchanges heat with the refrigerant flowing in from the second flow rate control device 13 in the first heat exchange section 19 and with the meeting portion of the connecting pipes 7b, 7c, and 7d. It enters the heat source machine side heat exchanger 3 via the first connection pipe 6 and the sixth check valve 35, and after exchanging heat with air and evaporating it, the four-way switching valve 2 of the heat source machine A and the accumulator 4 through compressor 1
is inhaled. On the other hand, the first, second, and third heat exchange parts 19,
The second branch part 11 is cooled by heat exchange with 16a, 16b, 16c, and 16d, and is sufficiently subcooled.
The refrigerant flows into the indoor unit D that is being cooled.

【0028】次に、冷暖房同時運転における冷房主体の
場合について図4を用いて説明する。同図に実線矢印で
示すように、低圧飽和温度検出手段50の検出温度が所
定値になるように容量制御される圧縮機1より吐出され
た高温高圧冷媒ガスは、四方切換弁2を経て熱源機側熱
交換器3に流入し、空気と熱交換して気液二相の高温高
圧状態となる。その後、この二相の高温高圧状態の冷媒
は第3の逆止弁32、第2の接続配管7を経て、中継機
Eの気液分離装置12へ送られる。ここで、ガス状冷媒
と液状冷媒に分離され、分離されたガス状冷媒は第1の
分岐部10、三方切換弁8、室内機側の第1の接続配管
6dの順に通り、暖房しようとする室内機Dに流入し、
室内側熱交換器5で室内空気と熱交換して凝縮液化し、
室内を暖房する。更に、室内側熱交換器5の出口のサブ
クール量により制御され、ほぼ全開状態の第1の流量制
御装置9を通り、少し減圧されて、第2の分岐部11に
流入する。
Next, a case in which cooling is the main component in simultaneous heating and cooling operation will be described with reference to FIG. As shown by the solid line arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the temperature detected by the low-pressure saturation temperature detection means 50 becomes a predetermined value is passed through the four-way switching valve 2 to the heat source. It flows into the machine-side heat exchanger 3 and exchanges heat with air, resulting in a gas-liquid two-phase high-temperature, high-pressure state. Thereafter, this two-phase high-temperature, high-pressure refrigerant is sent to the gas-liquid separation device 12 of the relay machine E via the third check valve 32 and the second connection pipe 7. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant passes through the first branch part 10, the three-way switching valve 8, and the first connecting pipe 6d on the indoor unit side in this order, and attempts to heat the room. Flows into indoor unit D,
It is condensed and liquefied by exchanging heat with indoor air in the indoor heat exchanger 5,
Heat the room. Furthermore, it is controlled by the subcooling amount at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 which is in an almost fully open state, and is slightly depressurized before flowing into the second branch section 11.

【0029】一方、残りの液状冷媒は第1の圧力検出手
段25の検出圧力、第2の圧力検出手段26の検出圧力
によって制御される第2の流量制御装置13を通って、
第2の分岐部11に流入し、暖房しようとする室内機D
を通った冷媒と合流する。第2の分岐部11、室内機側
の第2の接続配管7b、7cの順に通り、各室内機B、
Cに流入する。 各室内機B、Cに流入した冷媒は、室内機側熱交換器5
の出口のスーパーヒート量により制御される第1の流量
制御装置9により低圧まで減圧された後に、室内側熱交
換器5に流入し、室内空気と熱交換して蒸発しガス化さ
れ、室内を冷房する。更に、このガス状態となった冷媒
は、室内機側の第1の接続配管6b、6c、三方切換弁
8、第1の分岐部10を通り、第1の接続配管6、第4
の逆止弁33、熱源機Aの四方切換弁2、アキュムレー
タ4を経て圧縮機1に吸入される循環サイクルを構成し
、冷房主体運転を行う。また、この時、室内機B、Cに
接続された三方切換弁8の第1口8aは閉路、第2口8
bと第3口8cは開路されており、室内機Dの第2口8
bは閉路、第1口8aと第3口8cは開路されている。 冷媒はこの時、第1の接続配管6が低圧、第2の接続配
管7が高圧のため、必然的に第3の逆止弁32、第4の
逆止弁33へ流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 controlled by the pressure detected by the first pressure detection means 25 and the pressure detected by the second pressure detection means 26.
Indoor unit D that flows into the second branch part 11 and attempts to heat
It merges with the refrigerant that has passed through. It passes through the second branch part 11 and the second connection pipes 7b and 7c on the indoor unit side in this order, and each indoor unit B,
Flows into C. The refrigerant that has flowed into each indoor unit B and C is transferred to the indoor unit heat exchanger 5
After the pressure is reduced to a low pressure by the first flow rate control device 9 controlled by the amount of superheat at the outlet of the Cool down. Furthermore, the refrigerant in the gas state passes through the first connection pipes 6b and 6c on the indoor unit side, the three-way switching valve 8, and the first branch part 10, and then passes through the first connection pipe 6 and the fourth connection pipe.
A circulation cycle is configured in which air is sucked into the compressor 1 through the check valve 33 of the heat source device A, the four-way switching valve 2 of the heat source device A, and the accumulator 4, and air-conditioning-based operation is performed. Also, at this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, and the second port 8a is closed.
b and the third port 8c are open, and the second port 8 of the indoor unit D
b is a closed circuit, and the first port 8a and the third port 8c are open circuits. At this time, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 is under low pressure and the second connection pipe 7 is under high pressure.

【0030】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部からバイパス配管14へ入り、第3の流量
制御装置15で低圧まで減圧されて、第3の熱交換部1
6b、16c、16dで第2の分岐部11の各室内機側
の第2の接続配管7b、7c、7dとの間で、また第2
の熱交換器部16aで第2の分岐部11の各室内機側の
第2の接続配管7b、7c、7dの会合部との間で、更
に第1の熱交換部19で第2の流量制御装置13に流入
する冷媒との間で熱交換を行い、蒸発した冷媒は第1の
接続配管6第4の逆止弁33へ入り、熱源機Aの四方切
換弁2、アキュムレータ4を経て圧縮機1に吸入される
。一方、第1、第2、第3の熱交換部19、16a、1
6b、16c、16dで熱交換し冷却されサブクールを
充分につけられた上記第2の分岐部11の冷媒は冷房し
ようとしている室内機B、Cへ流入する。
During this cycle, some of the liquid refrigerant flows through the second connecting pipes 7b, 7c, and 7c on the indoor unit side of the second branch 11.
7d enters the bypass pipe 14 from the meeting part, and is reduced to a low pressure by the third flow rate control device 15, and then transferred to the third heat exchange section 1.
6b, 16c, 16d between the second connecting pipes 7b, 7c, 7d on each indoor unit side of the second branch part 11, and the second
between the heat exchanger section 16a and the meeting section of the second connection pipes 7b, 7c, and 7d on each indoor unit side of the second branch section 11, and the second flow rate at the first heat exchange section 19. Heat exchange is performed with the refrigerant flowing into the control device 13, and the evaporated refrigerant enters the first connection pipe 6 and the fourth check valve 33, passes through the four-way switching valve 2 of the heat source device A and the accumulator 4, and is compressed. Inhaled into machine 1. On the other hand, the first, second and third heat exchange parts 19, 16a, 1
The refrigerant in the second branch section 11, which has been cooled by heat exchange in 6b, 16c, and 16d and has been sufficiently subcooled, flows into the indoor units B and C that are to be cooled.

【0031】次に、冷房運転のみの場合の、過渡的な高
圧上昇抑制制御について、図5乃至図6で説明する。図
5は実施例1の高圧上昇抑制制御のブロック図、図6は
上記実施例1の高圧上昇抑制制御のフローチャートであ
る。図5において、61は第3の流量制御装置15の開
度制御を周期的に行うために、前回制御を行ってからの
時間を計時する第1の計時手段であり、圧縮機1の運転
開始または第3の流量制御装置15の開度制御を行う毎
にクリアされる。62は第3の圧力検出手段27の検出
圧力とバイパス配管出口温度検出手段28の検出温度か
らバイパス配管出口スーパーヒート量を演算するバイパ
ス配管出口スーパーヒート量演算手段である。63は上
記バイパス配管出口スーパーヒート量演算手段62の出
力と第1の圧力検出手段25の検出圧力により第3の流
量制御装置15の開度を決定する開度決定手段である。 64は前回高圧上昇抑制制御を行ってからの時間を計時
する第2の計時手段であり、圧縮機1の運転開始または
高圧上昇抑制制御によりクリアされる。
Next, transient high pressure rise suppression control in the case of only cooling operation will be explained with reference to FIGS. 5 and 6. FIG. 5 is a block diagram of the high pressure rise suppression control according to the first embodiment, and FIG. 6 is a flowchart of the high pressure rise suppression control according to the first embodiment. In FIG. 5, reference numeral 61 denotes a first timer for measuring the time elapsed since the last control in order to periodically control the opening of the third flow rate control device 15, and 61 is a first timer that measures the time since the last control was performed, and the compressor 1 starts operating. Alternatively, it is cleared every time the opening degree control of the third flow rate control device 15 is performed. Reference numeral 62 denotes a bypass pipe outlet superheat amount calculating means for calculating the bypass pipe outlet superheat amount from the detected pressure of the third pressure detecting means 27 and the detected temperature of the bypass pipe outlet temperature detecting means 28. Reference numeral 63 denotes an opening determining means for determining the opening of the third flow rate control device 15 based on the output of the bypass pipe outlet superheat amount calculating means 62 and the detected pressure of the first pressure detecting means 25. Reference numeral 64 denotes a second timer that measures the time since the previous high pressure rise suppression control, and is cleared by the start of operation of the compressor 1 or the high pressure rise suppression control.

【0032】次に、図6により高圧上昇抑制制御の流れ
を説明する。ステップ71では第1の圧力検出手段25
の検出圧力が所定値以上かを判定する。所定値以上の場
合はステップ78へ進み、所定値以下の場合はステップ
72へ進む。ステップ78では第2の計時手段64が所
定時間B以上計時しているかを判定する。計時していな
いときは、ステップ72へ進み、計時しているときは、
ステップ79へ進む。ステップ79では第2の計時手段
64のデータをクリアし、ステップ76へ進む。ステッ
プ76では第3 の流量制御装置15の開度を所定開幅
だけ開し、その後ステップ77へ進む。ステップ72で
は第1の計時手段61が所定時間A以上計時しているか
を判定する。計時している場合はステップ73へ進み、
まだ計時していない場合はステップ71へ戻る。ステッ
プ73ではバイパス配管出口スーパーヒート量が所定量
以上かを判定する。所定量以上であればステップ74へ
進み、そうでなければステップ75に進む。ステップ7
4ではスーパーヒート量の所定量との偏差に応じて、第
3の流量制御装置15の開度を増加し、ステップ77へ
進む。ステップ75ではスーパーヒート量の所定量との
偏差に応じて、第3の流量制御装置15の開度を減小し
、ステップ77へ進む。ステップ77では第1 の計時
手段61の計時データをクリアし、ステップ71に戻る
Next, the flow of the high pressure rise suppression control will be explained with reference to FIG. In step 71, the first pressure detection means 25
It is determined whether the detected pressure is greater than or equal to a predetermined value. If it is greater than or equal to the predetermined value, the process proceeds to step 78, and if it is less than the predetermined value, the process proceeds to step 72. In step 78, it is determined whether the second clocking means 64 has been clocking for a predetermined time period B or more. If the time is not being measured, proceed to step 72; if the time is being measured, proceed to step 72.
Proceed to step 79. In step 79, the data of the second timer 64 is cleared, and the process proceeds to step 76. In step 76, the opening degree of the third flow rate control device 15 is opened by a predetermined opening width, and then the process proceeds to step 77. In step 72, it is determined whether the first clocking means 61 has been clocking for a predetermined time A or more. If the clock is being counted, proceed to step 73;
If the time has not been counted yet, the process returns to step 71. In step 73, it is determined whether the amount of superheat at the outlet of the bypass pipe is greater than or equal to a predetermined amount. If the amount is equal to or greater than the predetermined amount, the process proceeds to step 74; otherwise, the process proceeds to step 75. Step 7
In step 4, the opening degree of the third flow rate control device 15 is increased according to the deviation of the superheat amount from the predetermined amount, and the process proceeds to step 77. In step 75, the opening degree of the third flow rate control device 15 is decreased depending on the deviation from the predetermined amount of superheat, and the process proceeds to step 77. In step 77, the time measurement data of the first time measurement means 61 is cleared, and the process returns to step 71.

【0033】実施例2.なお、上記実施例1では三方切
換弁8を設けて室内機側の第1の接続配管6b、6c、
6dを、第1の接続配管6または、第2の接続配管7に
切り換え可能に接続しているが、図7に示すように2つ
の電磁弁30、31等の開閉弁を設けて上述したように
切り換え可能に接続しても同様な作用効果を奏す。
Example 2. Note that in the first embodiment, a three-way switching valve 8 is provided to connect the first connection pipes 6b, 6c, and
6d is switchably connected to the first connection pipe 6 or the second connection pipe 7, but as shown in FIG. Similar effects can be obtained even if the connection is switchable.

【0034】[0034]

【発明の効果】以上説明した通り、この発明に係る空気
調和装置は、圧縮機、四方切換弁、熱源側熱交換器、ア
キュムレータ、等よりなる1台の熱源機と、室内側熱交
換器、第1の流量制御装置等からなる複数台の室内機と
を、第1、第2の接続配管を介して接続し、上記複数台
の室内機の上記室内側熱交換器の一方を上記第1の接続
配管または、第2の接続配管に切り換え可能に接続して
なる第1の分岐部と、上記複数台の室内機の上記室内側
熱交換器の他方に、上記第1の流量制御装置を介して接
続され、かつ第2の流量制御装置を介して上記第2の接
続配管に接続してなる第2の分岐部とを、上記第2の流
量制御装置を介して接続し、更に上記第2の分岐部と上
記第1の接続配管を第3の流量制御装置を介して接続し
、上記第1の分岐部、上記第2の流量制御装置、上記第
3の流量制御装置及び上記第2の分岐部を内蔵させた中
継器を、上記熱源機と上記複数台の室内機との間に介在
させると共に、上記第1の接続配管は上記第2の接続配
管より大径に構成し、上記熱源機の上記第1及び第2の
接続配管間に切り換え弁を設け、上記第1の接続配管を
低圧に、第2の接続配管を高圧に切り換え可能に構成し
たものであり、冷房のみの運転時に運搬台数変化等によ
り過渡的に高圧が上昇した場合に、第3の流量制御装置
の開度そ増加させる第3に流量制御装置の開度決定手段
を設けたことにより、中継機内において第2の接続配管
から第2及び第3の流量制御装置を介しして第1の接続
配管へ抜けるバイパス流路を広げ流路圧損を低減し、冷
媒を流れ易くすることにより、高圧を低下させ、運転停
止することなしに運転を継続することができる。
As explained above, the air conditioner according to the present invention includes one heat source device including a compressor, a four-way switching valve, a heat source side heat exchanger, an accumulator, etc., an indoor heat exchanger, A plurality of indoor units including a first flow rate control device, etc. are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first The first flow rate control device is connected to the first branching portion switchably connected to the connecting pipe or the second connecting pipe, and the other of the indoor heat exchangers of the plurality of indoor units. and a second branch section connected to the second connecting pipe via the second flow rate control device, and further connected to the second branch portion via the second flow rate control device, and The second branch part and the first connecting pipe are connected via a third flow rate control device, and the first branch part, the second flow rate control device, the third flow rate control device and the second connection pipe are connected through a third flow rate control device. A repeater having a built-in branch part is interposed between the heat source device and the plurality of indoor units, and the first connecting pipe is configured to have a larger diameter than the second connecting pipe, and the first connecting pipe is configured to have a larger diameter than the second connecting pipe. A switching valve is provided between the first and second connecting pipes of the heat source equipment, and the first connecting pipe is configured to be able to be switched to low pressure and the second connecting pipe to high pressure, and can be operated only for cooling. When the high pressure rises transiently due to a change in the number of conveyed units, etc., the opening degree of the third flow rate control device is increased.By providing a means for determining the opening degree of the third flow rate control device, the opening degree of the third flow rate control device is increased. By widening the bypass flow path leading from the connecting pipe to the first connecting pipe via the second and third flow rate control devices, reducing the pressure loss in the flow path and making it easier for the refrigerant to flow, the high pressure is lowered and the operation is improved. Operation can be continued without stopping.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centered on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例1による空気調和装置の冷房
、また暖房のみの運転状態を説明するための冷媒回路図
である。
FIG. 2 is a refrigerant circuit diagram for explaining the operating state of only cooling and heating of the air conditioner according to the first embodiment of the present invention.

【図3】この発明の実施例1による空気調和装置の、暖
房主体の運転状態を説明するための冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram for explaining the heating-based operating state of the air conditioner according to the first embodiment of the present invention.

【図4】この発明の実施例1による空気調和装置の、冷
房主体の運転状態を説明するための冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram for explaining the cooling-based operating state of the air conditioner according to the first embodiment of the present invention.

【図5】この発明の実施例1による空気調和装置の、高
圧上昇抑制制御のブロック図である。
FIG. 5 is a block diagram of high pressure rise suppression control of the air conditioner according to the first embodiment of the present invention.

【図6】この発明の実施例1による空気調和装置の、高
圧上昇抑制制御のフローチャートである。
FIG. 6 is a flowchart of high pressure rise suppression control of the air conditioner according to the first embodiment of the present invention.

【図7】この発明の実施例2による空気調和装置の、冷
媒系を中心とする全体構成図である。
FIG. 7 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a second embodiment of the present invention.

【図8】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 8 is an overall configuration diagram centered on the refrigerant system of a conventional air conditioner.

【図9】図8に示す空気調和装置の冷房または暖房のみ
の運転状態を説明するための冷媒回路図である。
9 is a refrigerant circuit diagram for explaining an operating state of only cooling or heating of the air conditioner shown in FIG. 8. FIG.

【図10】図8に示す空気調和装置の暖房主体の運転状
態を説明するための冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram for explaining a heating-based operating state of the air conditioner shown in FIG. 8;

【図11】図8に示す空気調和装置の冷房主体の運転状
態を説明するための冷媒回路である。
11 is a refrigerant circuit for explaining the cooling-based operating state of the air conditioner shown in FIG. 8; FIG.

【符号の説明】[Explanation of symbols]

1  圧縮機 2  四方切換弁 3  熱源機側熱交換器 4  アキュムレータ 5  室内側熱交換器 6  6b、6c、6d第1の接続配管7  7b、7
c、7d第2の接続配管9  第1の流量制御装置 10  第1の分岐部 11  第2の分岐部 12  気液分離装置 13  第2の流量制御装置 14  バイパス配管 15  第3の流量制御装置 17  第4の流量制御装置 18  第4の圧力検出手段 25  第1の圧力検出手段 26  第2の圧力検出手段 27  第3の圧力検出手段 28  バイパス配管出口温度検出手段50  低圧飽
和温度検出手段 63  第3の流量制御装置開度決定手段A  熱源機 B、C、D  室内機 E  中継機
1 Compressor 2 Four-way switching valve 3 Heat source machine side heat exchanger 4 Accumulator 5 Indoor side heat exchanger 6 6b, 6c, 6d First connection pipe 7 7b, 7
c, 7d Second connection pipe 9 First flow control device 10 First branch 11 Second branch 12 Gas-liquid separation device 13 Second flow control device 14 Bypass piping 15 Third flow control device 17 Fourth flow rate control device 18 Fourth pressure detection means 25 First pressure detection means 26 Second pressure detection means 27 Third pressure detection means 28 Bypass piping outlet temperature detection means 50 Low pressure saturation temperature detection means 63 Third Flow rate control device opening determining means A Heat source machines B, C, D Indoor unit E Relay machine

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ、等よりなる1台の熱源機と、室内
側熱交換器、第1の流量制御装置等からなる複数台の室
内機とを、第1、第2の接続配管を介して接続し、上記
複数台の室内機の上記室内側熱交換器の一方を上記第1
の接続配管または、第2の接続配管に切り換え可能に接
続してなる第1の分岐部と、上記複数台の室内機の上記
室内側熱交換器の他方に、上記第1の流量制御装置を介
して接続され、かつ第2の流量制御装置を介して上記第
2の接続配管に接続してなる第2の分岐部とを、上記第
2の流量制御装置を介して接続し、更に上記第2の分岐
部と上記第1の接続配管を第3の流量制御装置を介して
接続し、上記第1の分岐部、上記第2の流量制御装置、
上記第3の流量制御装置及び上記第2の分岐部を内蔵さ
せた中継器を、上記熱源機と上記複数台の室内機との間
に介在させると共に、上記第1の接続配管は上記第2の
接続配管より大径に構成し、上記熱源機の上記第1及び
第2の接続配管間に切り換え弁を設け、上記第1の接続
配管を低圧に、第2の接続配管を高圧に切り換え可能に
した、冷暖同時運転可能な空気調和機において、冷房の
みの運転時に過渡的に高圧が上昇した場合に、上記第3
の流量制御装置の開度を増加させる第3の流量制御装置
の開度決定手段を設けたことを特徴とする空気調和装置
Claim 1: One heat source device consisting of a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. one of the indoor heat exchangers of the plurality of indoor units is connected to the first
The first flow rate control device is connected to the first branching portion switchably connected to the connecting pipe or the second connecting pipe, and the other of the indoor heat exchangers of the plurality of indoor units. and a second branch section connected to the second connecting pipe via the second flow rate control device, and further connected to the second branch portion via the second flow rate control device, and The second branch part and the first connecting pipe are connected via a third flow rate control device, the first branch part, the second flow rate control device,
A repeater incorporating the third flow rate control device and the second branch part is interposed between the heat source device and the plurality of indoor units, and the first connection pipe is connected to the second branch. A switching valve is provided between the first and second connecting pipes of the heat source device, so that the first connecting pipe can be switched to low pressure and the second connecting pipe to high pressure. In an air conditioner capable of simultaneous cooling and heating operation, if the high pressure rises transiently during cooling only operation, the third
An air conditioner comprising: third flow rate control device opening determining means for increasing the opening of the flow rate control device.
JP3132758A 1991-05-09 1991-06-04 Air conditioner Pending JPH04359767A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3132758A JPH04359767A (en) 1991-06-04 1991-06-04 Air conditioner
AU16034/92A AU649810B2 (en) 1991-05-09 1992-05-05 Air conditioning apparatus
DE69212225T DE69212225D1 (en) 1991-05-09 1992-05-08 air conditioner
US07/880,719 US5297392A (en) 1991-05-09 1992-05-08 Air conditioning apparatus
DE69226381T DE69226381T2 (en) 1991-05-09 1992-05-08 air conditioning
ES92304136T ES2092035T3 (en) 1991-05-09 1992-05-08 AIR CONDITIONER.
EP95106908A EP0676595B1 (en) 1991-05-09 1992-05-08 Air conditioning apparatus
ES95106908T ES2120104T3 (en) 1991-05-09 1992-05-08 AIR CONDITIONER.
EP92304136A EP0514086B1 (en) 1991-05-09 1992-05-08 Air conditioning apparatus
AU59368/94A AU660124B2 (en) 1991-05-09 1994-04-05 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3132758A JPH04359767A (en) 1991-06-04 1991-06-04 Air conditioner

Publications (1)

Publication Number Publication Date
JPH04359767A true JPH04359767A (en) 1992-12-14

Family

ID=15088871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3132758A Pending JPH04359767A (en) 1991-05-09 1991-06-04 Air conditioner

Country Status (1)

Country Link
JP (1) JPH04359767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052055A1 (en) * 2009-10-29 2011-05-05 三菱電機株式会社 Air conditioning device
WO2013171783A1 (en) 2012-05-14 2013-11-21 三菱電機株式会社 Multi-room air conditioner
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve
US10539343B2 (en) 2014-03-20 2020-01-21 Mitsubishi Electric Corporation Heat source side unit and air-conditioning apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052055A1 (en) * 2009-10-29 2011-05-05 三菱電機株式会社 Air conditioning device
US9310086B2 (en) 2009-10-29 2016-04-12 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2495514A4 (en) * 2009-10-29 2018-04-04 Mitsubishi Electric Corporation Air conditioning device
WO2013171783A1 (en) 2012-05-14 2013-11-21 三菱電機株式会社 Multi-room air conditioner
US9677790B2 (en) 2012-05-14 2017-06-13 Mitsubishi Electric Corporation Multi-room air-conditioning apparatus
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve
US10539343B2 (en) 2014-03-20 2020-01-21 Mitsubishi Electric Corporation Heat source side unit and air-conditioning apparatus

Similar Documents

Publication Publication Date Title
EP0676595B1 (en) Air conditioning apparatus
JPH08291952A (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP3719296B2 (en) Refrigeration cycle equipment
JPH04359767A (en) Air conditioner
JP2598550B2 (en) Air conditioner
JPH04359768A (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP2003279174A (en) Air conditioning device
JP2601052B2 (en) Air conditioner
JPH04359766A (en) Air conditioner
JP2621687B2 (en) Air conditioner
JPH05187739A (en) Air conditioner
JP2525927B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JP3092212B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner