JP3138491B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3138491B2
JP3138491B2 JP03104407A JP10440791A JP3138491B2 JP 3138491 B2 JP3138491 B2 JP 3138491B2 JP 03104407 A JP03104407 A JP 03104407A JP 10440791 A JP10440791 A JP 10440791A JP 3138491 B2 JP3138491 B2 JP 3138491B2
Authority
JP
Japan
Prior art keywords
connection pipe
control device
flow control
heat source
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03104407A
Other languages
Japanese (ja)
Other versions
JPH04335967A (en
Inventor
茂生 高田
秀一 谷
節 中村
徳明 林田
智彦 河西
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03104407A priority Critical patent/JP3138491B2/en
Priority to AU16034/92A priority patent/AU649810B2/en
Priority to EP92304136A priority patent/EP0514086B1/en
Priority to EP95106908A priority patent/EP0676595B1/en
Priority to ES92304136T priority patent/ES2092035T3/en
Priority to US07/880,719 priority patent/US5297392A/en
Priority to ES95106908T priority patent/ES2120104T3/en
Priority to DE69226381T priority patent/DE69226381T2/en
Priority to DE69212225T priority patent/DE69212225D1/en
Publication of JPH04335967A publication Critical patent/JPH04335967A/en
Priority to AU59368/94A priority patent/AU660124B2/en
Application granted granted Critical
Publication of JP3138491B2 publication Critical patent/JP3138491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
機に関するもので、特に各室内機毎に冷暖房を選択的
に、かつ一方の室内機では冷房、他方の室内機では暖房
が同時に行うことができる空気調和機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit, and in particular, air conditioning and heating are selectively performed for each indoor unit. The present invention relates to an air conditioner capable of simultaneously performing cooling in one indoor unit and heating in the other indoor unit.

【0002】[0002]

【従来の技術】従来、熱源機1台に対して複数台の室内
機をガス管と液管の2本の配管で接続し、冷暖房運転を
するヒートポンプ式空気調和装置は一般的であり各室内
機はすべて暖房、またはすべて冷房を行うように形成さ
れている。
2. Description of the Related Art Conventionally, a heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit by two pipes of a gas pipe and a liquid pipe to perform a cooling and heating operation is generally used. The machines are all configured to heat or all cool.

【0003】[0003]

【発明が解決しようとする課題】従来の多室型ヒートポ
ンプ式空気調和装置は以上のように構成されているの
で、すべての室内機が冷房または暖房にしか運転しない
ため、冷房が必要な場所で暖房が行われたり、逆に暖房
が必要な場所で冷房が行われるような問題があった。特
に、大規模なビルに据え付けた場合、インテリア部とペ
リメータ部、または一般事務室と、コンピュータルーム
等のOA化された部屋では空調の負荷が著しく異なるた
め、特に問題となっている。なお、近似技術として、特
開平1−134172号公報がある。
Since the conventional multi-chamber heat pump type air conditioner is constructed as described above, all the indoor units are operated only for cooling or heating. There has been a problem that heating is performed, or conversely, cooling is performed in a place that requires heating. In particular, when installed in a large-scale building, there is a particular problem because the load of air conditioning is significantly different between an interior unit and a perimeter unit, or a general office room and a computer room or other OAized room. As an approximation technique, there is JP-A-1-134172.

【0004】この発明は、上記のような問題点を解決す
るためになされたもので、熱源機1台に対して複数台の
室内機を接続し、各室内機毎に冷暖房を選択的に、かつ
一方の室内機では冷房、他方の室内機では暖房が同時に
行うことができるようにして、大規模なビルに据え付け
た場合、インテリア部とペリメータ部、または一般事務
室と、コンピュータルーム等のOA化された部屋で空調
の負荷が著しく異なっても、それぞれに対応できる多室
型ヒートポンプ式空気調和装置を得ることを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A plurality of indoor units are connected to one heat source unit, and air conditioning is selectively performed for each indoor unit. In addition, one indoor unit can perform cooling and the other indoor unit can simultaneously perform heating, and when installed in a large-scale building, the OA such as the interior and perimeter, or the general office and the computer room, etc. It is an object of the present invention to provide a multi-room heat pump type air conditioner that can cope with a large difference in the load of air conditioning in a room.

【0005】また、圧縮機から冷媒と共に吐出された中
継機内に停滞した潤滑油を圧縮機に戻すこと(以後、油
回収と称す)を目的とするものである。
Another object of the present invention is to return the lubricating oil stagnated in the repeater discharged from the compressor together with the refrigerant to the compressor (hereinafter referred to as oil recovery).

【0006】[0006]

【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機、熱源機側熱交換器等よりなる1台の熱
源機と、室内側熱交換器、第1の流量制御装置等からな
る複数台の室内機とを、第1、第2の接続配管を介して
接続し、上記複数台の室内機の上記室内側熱交換器の一
方を上記第1の接続配管または、第2の接続配管に切り
換え可能に接続してなる第1の分岐部と、上記複数台の
室内機の上記室内側熱交換器の他方に、上記第1の流量
制御装置を介して接続され、第2の流量制御装置を介し
て上記第2の接続配管および上記第1の分岐部に接続し
てなる第2の分岐部とを備え、更に上記第2の分岐部と
上記第1の接続配管を第3の流量制御を介して接続し、
上記熱源機の上記第1及び第2の接続配管間に切り換え
弁を設け、上記熱源側熱交換器が凝縮器となる運転時、
或は蒸発器となる運転時何れの場合においても上記第1
の接続配管を上記熱源機の低圧側に、第2の接続配管を
高圧側に切り換え可能にした、冷暖同時運転可能な空気
調和機において、圧縮機連続運転中に、周期的に第2の
流量制御装置の開度を大きく開くよう制御する第2の流
量制御装置の開度決定手段を備えたものである。
An air conditioner according to the present invention includes a heat source unit including a compressor, a heat source unit side heat exchanger, and the like, an indoor side heat exchanger, a first flow control device, and the like. Are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection pipe or the second connection pipe. A first branch portion switchably connected to the second connection pipe and the other of the indoor heat exchangers of the plurality of indoor units via the first flow control device; A second branch connected to the second connection pipe and the first branch via the flow control device of the first embodiment, and further comprising the second branch and the first connection pipe connected to the second branch. 3 via flow control,
A switching valve is provided between the first and second connection pipes of the heat source unit, and when the heat source side heat exchanger is operated as a condenser,
In either case during the operation to become an evaporator,
In the air conditioner capable of simultaneous operation of cooling and heating, in which the connection pipe of the heat source unit can be switched to the low pressure side and the second connection pipe of the second connection pipe can be switched to the high pressure side, the second flow rate is periodically changed during the continuous operation of the compressor. An opening determining means of the second flow control device for controlling the opening of the control device to be greatly opened is provided.

【0007】また、圧縮機、熱源機側熱交換器等よりな
る1台の熱源機と、室内側熱交換器、第1の流量制御装
置等からなる複数台の室内機とを、第1、第2の接続配
管を介して接続し、上記複数台の室内機の上記室内側熱
交換器の一方を上記第1の接続配管または、第2の接続
配管に切り換え可能に接続してなる第1の分岐部と、上
記複数台の室内機の上記室内側熱交換器の他方に、上記
第1の流量制御装置を介して接続され、第2の流量制御
装置を介して上記第2の接続配管および上記第1の分岐
部に接続してなる第2の分岐部とを備え、更に上記第2
の分岐部と上記第1の接続配管を第3の流量制御を介し
て配管接続し、上記熱源機の上記第1及び第2の接続配
管間に切り換え弁を設け、上記熱源側熱交換器が凝縮器
となる運転時、或は蒸発器となる運転時何れの場合にお
いても上記第1の接続配管を上記熱源機の低圧側に、第
2の接続配管を上記熱源機の高圧側に切り換え可能にし
た、冷暖同時運転可能な空気調和機において、圧縮機運
転中の上記第2の流量制御装置の開度に所定の最小値を
設けたものである。
A single heat source unit including a compressor, a heat source unit side heat exchanger and the like, and a plurality of indoor units including an indoor side heat exchanger and a first flow rate control device are first and second units. A first connection pipe which is connected via a second connection pipe and one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe; And the other of the indoor-side heat exchangers of the plurality of indoor units are connected via the first flow control device, and the second connection pipe is connected via the second flow control device. And a second branch portion connected to the first branch portion.
Is connected to the first connection pipe via a third flow control, a switching valve is provided between the first and second connection pipes of the heat source unit, and the heat source side heat exchanger is The first connection pipe can be switched to the low pressure side of the heat source unit and the second connection pipe can be switched to the high pressure side of the heat source unit in any case of the operation of the condenser or the operation of the evaporator. In the air conditioner capable of simultaneous cooling and heating operation, a predetermined minimum value is provided for the opening degree of the second flow control device during the compressor operation.

【0008】また、圧縮機、熱源機側熱交換器等よりな
る1台の熱源機と、室内側熱交換器、第1の流量制御装
置等からなる複数台の室内機とを、第1、第2の接続配
管を介して接続し、上記複数台の室内機の上記室内側熱
交換器の一方を上記第1の接続配管または、第2の接続
配管に切り換え可能に接続してなる第1の分岐部と、上
記複数台の室内機の上記室内側熱交換器の他方に、上記
第1の流量制御装置を介して接続され、第2の流量制御
装置を介して上記第2の接続配管および上記第1の分岐
部に接続してなる第2の分岐部とを備え、更に上記第2
の分岐部と上記第1の接続配管を第3の流量制御を介し
て配管接続し、上記熱源機の上記第1及び第2の接続配
管間に切り換え弁を設け、上記熱源側熱交換器が凝縮器
となる運転時、或は蒸発器となる運転時何れの場合にお
いても上記第1の接続配管を上記熱源機の低圧側に、第
2の接続配管を上記熱源機の高圧側に切り換え可能にし
た、冷暖同時運転可能な空気調和機において、上記第2
の流量制御装置と並列にキャピラリを設けたものであ
る。
In addition, one heat source unit including a compressor, a heat source unit side heat exchanger, and the like, and a plurality of indoor units including an indoor side heat exchanger, a first flow control device, etc., are first and second units. A first connection pipe which is connected via a second connection pipe and one of the indoor heat exchangers of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe; And the other of the indoor-side heat exchangers of the plurality of indoor units are connected via the first flow control device, and the second connection pipe is connected via the second flow control device. And a second branch portion connected to the first branch portion.
Is connected to the first connection pipe via a third flow control, a switching valve is provided between the first and second connection pipes of the heat source unit, and the heat source side heat exchanger is The first connection pipe can be switched to the low pressure side of the heat source unit and the second connection pipe can be switched to the high pressure side of the heat source unit in any case of the operation of the condenser or the operation of the evaporator. In the air conditioner capable of simultaneous cooling and heating operation,
Is provided with a capillary in parallel with the flow control device.

【0009】[0009]

【作用】この発明においては、圧縮機運転中に、第2の
接続配管側から流入して第2の流量制御装置に停滞した
圧縮機の潤滑油を、第2の流量制御装置の開度を定期的
に大きくして通過させ、第3の流量制御装置、または冷
房している室内機から第1の接続配管を介して圧縮機へ
戻す。
According to the present invention, during operation of the compressor, the lubricating oil of the compressor which has flowed in from the second connection pipe side and stagnated in the second flow control device is used to reduce the opening degree of the second flow control device. The air is periodically passed through the compressor, and is returned from the third flow control device or the cooling indoor unit to the compressor via the first connection pipe.

【0010】また、圧縮機運転中に、第2の流量制御装
置の開度に所定の最小値を設け、圧縮機の潤滑油の流路
を確保し、圧縮機の潤滑油が第2の流量制御装置の入口
側で停滞することをなくし、圧縮機の潤滑油を、第3の
流量制御装置、または冷房している室内機から第1の接
続配管を介して圧縮機へ戻す。
In addition, during the operation of the compressor, a predetermined minimum value is provided for the opening of the second flow control device to secure a flow path for the lubricating oil of the compressor. Eliminating stagnation on the inlet side of the control device, lubricating oil of the compressor is returned from the third flow control device or the cooling indoor unit to the compressor via the first connection pipe.

【0011】また、第2の流量制御装置に並列にキャピ
ラリを設けることにより、圧縮機運転中に、第2の流量
制御装置が全閉状態でも圧縮機の潤滑油の流路を確保
し、圧縮機の潤滑油の第2の流量制御装置の入口側での
停滞をなくし、圧縮機の潤滑油を、第3の流量制御装
置、または冷房している室内機から第1の接続配管を介
して圧縮機へ戻す。
In addition, by providing a capillary in parallel with the second flow control device, a lubricating oil flow path of the compressor can be secured during the operation of the compressor even when the second flow control device is in the fully closed state. Eliminating the stagnation of the lubricating oil of the compressor on the inlet side of the second flow control device, and supplying the lubricating oil of the compressor from the third flow control device or the cooling indoor unit via the first connection pipe. Return to compressor.

【0012】[0012]

【実施例】実施例1. 以下、この発明の実施例について説明する。図1はこの
発明の一実施例による空気調和装置の冷媒系を中心とす
る全体構成図である。また、図2乃至図4は図1の一実
施例における冷暖房運転時の動作状態を示したもので、
図2は冷房または暖房のみの運転状態図、図3及び図4
は冷暖房同時運転の動作を示すもので、図3は暖房主体
(暖房運転容量が冷房運転容量より大きい場合)を、図
4は冷房主体(冷房運転容量が暖房運転容量より大きい
場合)を示す運転動作状態図である。なお、この実施例
では熱源機1台に室内機3台を接続した場合について説
明するが、2台以上の室内機を接続した場合はすべて同
様である。
[Embodiment 1] Hereinafter, embodiments of the present invention will be described. FIG. 1 is an overall configuration diagram mainly showing a refrigerant system of an air conditioner according to an embodiment of the present invention. FIGS. 2 to 4 show the operation states during the cooling / heating operation in the embodiment of FIG.
FIG. 2 is an operation state diagram of only cooling or heating, and FIGS. 3 and 4
Fig. 3 shows an operation of simultaneous cooling and heating operation, Fig. 3 shows an operation mainly for heating (when the heating operation capacity is larger than the cooling operation capacity), and Fig. 4 shows an operation mainly for cooling (when the cooling operation capacity is larger than the heating operation capacity). It is an operation | movement state diagram. In this embodiment, a case where three indoor units are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected.

【0013】図1において、Aは熱源機、B、C、Dは
後述するように互いに並列接続された室内機でそれぞれ
同じ構成となっている。Eは後述するように、第1の分
岐部10、第2の流量制御装置13、第2の分岐部11、気液
分離装置12、熱交換部16a 、16b 、16c 、16d 、19、第
3の流量制御装置15、第4の流量制御装置17を内蔵した
中継機である。また、1は圧縮機、2は熱源機の冷媒流
通方向を切り換える四方切換弁、3は熱源機側熱交換
器、4はアキュムレータで、上記四方切換弁2を介して
圧縮機1と接続されている。これらによって熱源機Aが
構成される。また、5は3台の室内機B、C、Dに設け
られた室内側熱交換器、6は熱源機Aの四方切換弁2と
中継機Eを後述する第4の逆止弁33を介して接続する太
い第1の接続配管、6b、6c、6dはそれぞれ室内機B、
C、Dの室内側熱交換器5と中継機Eを接続し、第1の
接続配管6に対応する室内機側の第1の接続配管、7は
熱源機Aの熱源機側熱交換器3と中継機Eを後述する第
3の逆止弁32を介して接続する上記第1の接続配管より
細い第2の接続配管である。
In FIG. 1, A is a heat source unit, and B, C and D are indoor units connected in parallel to each other as described later, and have the same configuration. E denotes a first branch 10, a second flow controller 13, a second branch 11, a gas-liquid separator 12, a heat exchanger 16a, 16b, 16c, 16d, 19, a third branch 19, as will be described later. Is a repeater incorporating the fourth flow control device 17 and the fourth flow control device 17. Further, 1 is a compressor, 2 is a four-way switching valve for switching the refrigerant flow direction of the heat source machine, 3 is a heat source side heat exchanger, and 4 is an accumulator, which is connected to the compressor 1 via the four-way switching valve 2. I have. These constitute the heat source device A. Reference numeral 5 denotes an indoor heat exchanger provided in three indoor units B, C and D, and reference numeral 6 denotes a four-way switching valve 2 of the heat source unit A and a relay unit E via a fourth check valve 33 which will be described later. The first connecting pipes 6b, 6c, and 6d that are connected to each other are indoor units B,
C and D indoor-side heat exchangers 5 are connected to the repeater E, and a first connection pipe on the indoor unit side corresponding to the first connection pipe 6 is a heat source unit-side heat exchanger 3 of the heat source unit A. And a second connection pipe which is thinner than the first connection pipe and connects the relay E with a third check valve 32 to be described later.

【0014】また、7b、7c、7dはそれぞれ室内機B、
C、Dの室内側熱交換器5と中継機Eを第1の流量制御
装置9を介して接続し、第2の接続配管7に対応する室
内機側の第2の接続配管である。8は室内機側の第1の
接続配管6b、6c、6dを、第1の接続配管6または第2の
接続配管7側に切り換え可能に接続する三方切換弁であ
る。9は室内側熱交換器5に近接して接続され、冷房時
は室内側熱交換器5の出口側のスーパーヒート量、暖房
時はサブクール量により制御される第1の流量制御装置
で、室内機側の第2の接続配管7b、7c、7dに接続され
る。10は室内機側の第1の接続配管6b、6c、6dを、第1
の接続配管6または、第2の接続配管7に切換え可能に
接続する三方切換弁8よりなる第1の分岐部である。11
は室内機側の第2の接続配管7b、7c、7dと、第2の接続
配管7よりなる第2の分岐部である。12は第2の接続配
管7の途中に設けられた気液分離装置で、その気相部は
三方切換弁8の第1口8aに接続され、その液相部は第2
の分岐部11に接続されている。13は気液分離装置12と第
2の分岐部11との間に接続する開閉自在な第2の流量制
御装置(ここでは電気式膨張弁)である。
7b, 7c and 7d are indoor units B and
A second connection pipe on the indoor unit side corresponding to the second connection pipe 7, wherein the indoor heat exchangers 5 of C and D and the repeater E are connected via the first flow control device 9. Reference numeral 8 denotes a three-way switching valve for switchably connecting the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7 side. Reference numeral 9 denotes a first flow control device which is connected in proximity to the indoor heat exchanger 5 and is controlled by the amount of superheat at the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating. It is connected to the second connection pipes 7b, 7c, 7d on the machine side. 10 is the first connection pipe 6b, 6c, 6d on the indoor unit side,
And a first branch portion including a three-way switching valve 8 which is switchably connected to the connection pipe 6 or the second connection pipe 7. 11
Denotes a second branch portion including the second connection pipes 7b, 7c, and 7d on the indoor unit side and the second connection pipe 7. Reference numeral 12 denotes a gas-liquid separation device provided in the middle of the second connection pipe 7, the gas phase portion of which is connected to the first port 8a of the three-way switching valve 8, and the liquid phase portion thereof is connected to the second port 8a.
Are connected to the branch portion 11. Reference numeral 13 denotes an openable and closable second flow control device (here, an electric expansion valve) connected between the gas-liquid separation device 12 and the second branch portion 11.

【0015】14は第2の分岐部11と上記第1の接続配管
6とを結ぶバイパス配管、15はバイパス配管14の途中に
設けられた第3の流量制御装置(ここでは電気式膨張
弁)、16a はバイパス配管14の途中に設けられた第3の
流量制御装置15の下流に設けられ、第2の分岐部11にお
ける各室内機側の第2の接続配管7b、7c、7dの会合部と
の間でそれぞれ熱交換を行う第2の熱交換部である。16
b 、16c 、16d はそれぞれバイパス配管14の途中に設け
られた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b、7c、
7dとの間でそれぞれ熱交換を行う第3の熱交換部であ
る。19はバイパス配管14の上記第3の流量制御装置15の
下流および第2の熱交換部16a の下流に設けられ、気液
分離装置12と第2の流量制御装置13とを接続する配管と
の間で熱交換を行う第1の熱交換部、17は第2の分岐部
11と上記第1の接続配管6との間に接続する開閉自在な
第4の流量制御装置(ここでは電気式膨張弁)である。
Reference numeral 14 denotes a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and reference numeral 15 denotes a third flow control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14. , 16a are provided downstream of the third flow control device 15 provided in the middle of the bypass pipe 14, and are associated with the second connection pipes 7b, 7c, 7d on the indoor unit side in the second branch section 11. And a second heat exchange section for performing heat exchange between the first heat exchanger and the second heat exchanger. 16
b, 16c, 16d are respectively provided downstream of the third flow control device 15 provided in the middle of the bypass pipe 14, and the second connection pipes 7b, 7c,
This is a third heat exchanging section for exchanging heat with 7d. 19 is provided downstream of the third flow control device 15 of the bypass pipe 14 and downstream of the second heat exchange section 16a, and is connected to a pipe connecting the gas-liquid separation device 12 and the second flow control device 13. 1st heat exchange section which exchanges heat between, 17 is the 2nd branch section
A fourth flow control device (here, an electric expansion valve) that can be opened and closed is connected between the first connection pipe 6 and the first connection pipe 6.

【0016】一方、32は上記熱源機側熱交換器3と上記
第2の接続配管7との間に設けられた第3の逆止弁であ
り、上記熱源機側熱交換器3から上記第2の接続配管7
へのみ冷媒流通を許容する。33は上記熱源機Aの四方切
換弁2と上記第1の接続配管6との間に設けられた第4
の逆止弁であり、上記第1の接続配管6から上記四方切
換弁2へのみ冷媒流通を許容する。34は上記熱源機Aの
四方切換弁2と上記第2の接続配管7との間に設けられ
た第5の逆止弁であり、上記四方切換弁2から上記第2
の接続配管7へのみ冷媒流通を許容する。35は上記熱源
機側熱交換器3と上記第1の接続配管6との間に設けら
れた第6の逆止弁であり、上記第1の接続配管6から上
記熱源機側熱交換器3へのみ冷媒流通を許容する。上記
第3、第4、第5、第6の逆止弁32、33、34、35で切換
弁40を構成する。
On the other hand, reference numeral 32 denotes a third check valve provided between the heat source unit side heat exchanger 3 and the second connection pipe 7, and a third check valve 32. 2 connection piping 7
Only the refrigerant flow is allowed. Reference numeral 33 denotes a fourth valve provided between the four-way switching valve 2 of the heat source unit A and the first connection pipe 6.
And allows the refrigerant to flow only from the first connection pipe 6 to the four-way switching valve 2. Reference numeral 34 denotes a fifth check valve provided between the four-way switching valve 2 of the heat source unit A and the second connection pipe 7.
Is allowed to flow only to the connection pipe 7. Reference numeral 35 denotes a sixth check valve provided between the heat source unit-side heat exchanger 3 and the first connection pipe 6, and a sixth check valve 35 from the first connection pipe 6 to the heat source unit-side heat exchanger 3. Only the refrigerant flow is allowed. The third, fourth, fifth, and sixth check valves 32, 33, 34, and 35 constitute a switching valve 40.

【0017】25は上記第1の分岐部10と第2の流量制御
装置13との間に設けられた第1の圧力検出手段、26は上
記第2の流量制御装置13と第4の流量制御装置17との間
に設けられた第2の圧力検出手段である。また、50は上
記四方切換弁2と上記アキュムレータ4とを接続する配
管途中に設けられた低圧飽和温度検出手段、18は上記圧
縮機1と上記四方切換弁2とを接続する配管途中に設け
られた第4の圧力検出手段である。
Reference numeral 25 denotes a first pressure detecting means provided between the first branch portion 10 and the second flow control device 13, and 26 denotes a second flow control device 13 and a fourth flow control device. This is second pressure detection means provided between the apparatus and the apparatus 17. 50 is a low-pressure saturation temperature detecting means provided in the pipe connecting the four-way switching valve 2 and the accumulator 4, and 18 is provided in the pipe connecting the compressor 1 and the four-way switching valve 2. And a fourth pressure detecting means.

【0018】次に動作について説明する。まず、図2を
用いて冷房運転のみの場合について説明する。同図に実
線矢印で示すように低圧飽和温度検出手段50の検出温度
が所定値になるように容量制御される圧縮機1より吐出
された高温高圧冷媒ガスは四方切換弁2を通り、熱源機
側熱交換器3で空気と熱交換して凝縮された後、第3の
逆止弁32、第2の接続配管7、気液分離装置12、第2の
流量制御装置13の順に通り、更に第2の分岐部11、室内
機側の第2の接続配管7b、7c、7dを通り、各室内機B、
C、Dに流入する。各室内機B、C、Dに流入した冷媒
は、各室内側熱交換器5出口のスーパーヒート量により
制御される第1の流量制御装置9により低圧まで減圧さ
れて室内側熱交換器5で室内空気と熱交換して蒸発しガ
ス化され室内を冷房する。
Next, the operation will be described. First, the case of only the cooling operation will be described with reference to FIG. As shown by a solid line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the temperature detected by the low-pressure saturation temperature detecting means 50 becomes a predetermined value passes through the four-way switching valve 2 and passes through the heat source unit. After being condensed by exchanging heat with air in the side heat exchanger 3, the third check valve 32, the second connection pipe 7, the gas-liquid separator 12, and the second flow controller 13 are further passed in this order. The second branch portion 11 passes through the second connection pipes 7b, 7c, and 7d on the indoor unit side, and each indoor unit B,
Flow into C and D. The refrigerant flowing into each of the indoor units B, C, and D is decompressed to a low pressure by the first flow control device 9 controlled by the amount of superheat at the outlet of each of the indoor heat exchangers 5, and It exchanges heat with indoor air and evaporates and gasifies to cool the room.

【0019】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、三方切換弁8、第1の分岐
部10、第1の接続配管6、第4の逆止弁33、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、冷房運転を行う。この
時、三方切換弁8の第1口8aは閉路、第2口8bと第3口
8cは開路されている。また、冷媒はこの時、第1の接続
配管6が低圧、第2の接続配管7が高圧のため必然的に
第3の逆止弁32、第4の逆止弁33へ流通する。また、こ
のサイクルの時、第2の流量制御装置13を通過した冷媒
の一部がバイパス配管14へ入り第3の流量制御装置15で
低圧まで減圧されて第3の熱交換部16b 、16c 、16d で
第2の分岐部11の各室内機側の第2の接続配管7b、7c、
7dとの間で、また第2の熱交換部16a で第2の分岐部11
の各室内機側の第2の接続配管7b、7c、7dの会合部との
間で、更に第1の熱交換部19で第2の流量制御装置13に
流入する冷媒との間で、熱交換を行ない蒸発した冷媒
は、第1の接続配管6、第4の逆止弁33へ入り、熱源機
Aの四方切換弁2、アキュムレータ4を経て圧縮機1に
吸入される。
The refrigerant in the gaseous state is supplied to the first connection pipes 6b, 6c, 6d on the indoor unit side, the three-way switching valve 8, the first branch 10, the first connection pipe 6, and the fourth reverse pipe. A circulation cycle is drawn into the compressor 1 through the stop valve 33, the four-way switching valve 2 of the heat source unit A, and the accumulator 4, and performs a cooling operation. At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and the third port 8b are closed.
8c is open. At this time, the refrigerant naturally flows to the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure. At the time of this cycle, a part of the refrigerant that has passed through the second flow control device 13 enters the bypass pipe 14 and is reduced to a low pressure by the third flow control device 15, so that the third heat exchange units 16b, 16c, 16d, the second connection pipes 7b, 7c on the indoor unit side of the second branch 11
7d and the second branch 11
Between the second connection pipes 7b, 7c, 7d on the side of each indoor unit and the refrigerant flowing into the second flow control device 13 in the first heat exchange section 19, The evaporated refrigerant that has been exchanged enters the first connection pipe 6 and the fourth check valve 33, and is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4 of the heat source unit A.

【0020】一方、第1、第2、第3の熱交換部19、16
b 、16c 、16d で熱交換し冷却され、サブクールを充分
につけられた上記第2の分岐部11の冷媒は冷房しようと
している室内機B、C、Dへ流入する。
On the other hand, the first, second and third heat exchange sections 19 and 16
The refrigerant in the second branch portion 11, which is cooled by exchanging heat in b, 16c, and 16d and is sufficiently subcooled, flows into the indoor units B, C, and D to be cooled.

【0021】次に、図2を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に、第4の圧力検出手段18の検出圧力が所定値になるよ
うに容量制御される圧縮機1より吐出された高温高圧冷
媒ガスは、四方切換弁2を通り、第5の逆止弁34、第2
の接続配管7、気液分離装置12を通り、第1の分岐部1
0、三方切換弁8、室内機側の第1の接続配管6b、6c、6
dの順に通り、各室内機B、C、Dに流入し、室内空気
と熱交換して凝縮液化し、室内を暖房する。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by a dotted arrow in FIG. 3, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the pressure detected by the fourth pressure detecting means 18 becomes a predetermined value is supplied to the four-way switching valve 2 Through the fifth check valve 34, the second
Through the connection pipe 7 and the gas-liquid separation device 12 to the first branch 1
0, three-way switching valve 8, first connection piping 6b, 6c, 6 on indoor unit side
The air flows into each of the indoor units B, C, and D in the order of d, exchanges heat with indoor air to be condensed and liquefied, and heats the indoor.

【0022】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b、7c、7dから第2の分岐部11に流入して合流
し、更に第4の流量制御装置17を通る。ここで、第1の
流量制御装置9または第3、第4の流量制御装置15、17
のどちらか一方で低圧の気液二相状態まで減圧される。
低圧まで減圧された冷媒は、第1の接続配管6を経て熱
源機Aの第6の逆止弁35、熱源機側熱交換器3に流入
し、空気と熱交換して蒸発しガス状態となり、熱源機
A、四方切換弁2及びアキュムレータ4を経て圧縮機1
に吸入される循環サイクルを構成し、暖房運転を行う。
この時、三方切換弁8は第2口8bは閉路、第1口8aと第
3口8cは開路されている。また、冷媒はこの時、第1の
接続配管6が低圧、第2の接続配管7が高圧のため必然
的に第5の逆止弁34、第6の逆止弁35へ流通する。な
お、この時第2の流量制御装置13は、通常全閉状態とな
っている。
The refrigerant in the liquid state is controlled by the subcooling amount at the outlet of each indoor side heat exchanger 5, passes through the first flow control device 9 which is almost fully opened, and the second connection on the indoor unit side. The pipes flow into the second branch portion 11 from the pipes 7b, 7c, and 7d, join together, and further pass through the fourth flow control device 17. Here, the first flow control device 9 or the third and fourth flow control devices 15 and 17 are used.
The pressure is reduced to a low-pressure gas-liquid two-phase state in one of the two.
The refrigerant decompressed to a low pressure flows into the sixth check valve 35 of the heat source device A and the heat source device side heat exchanger 3 via the first connection pipe 6, and exchanges heat with air to evaporate to a gas state. , Heat source unit A, four-way switching valve 2 and accumulator 4
A circulation cycle is drawn into the hopper and a heating operation is performed.
At this time, the three-way switching valve 8 has the second port 8b closed, and the first port 8a and the third port 8c open. At this time, the refrigerant naturally flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure. At this time, the second flow control device 13 is normally in a fully closed state.

【0023】次に冷暖同時運転における暖房主体の場合
について図3を用いて説明する。同図に点線矢印で示す
ように第4の圧力検出手段18の検出圧力が所定値にな
るように容量制御される圧縮機1より吐出された高温高
圧冷媒ガスは、四方切換弁2を経て第5の逆止弁34、
第2の接続配管7を通して中継器Eへ送られ、気液分離
装置12を通り、第1の分岐部10、三方切換弁8、室
内機側の第1の接続配管6b、6cの順に通り、暖房し
ようとしている各室内機B、Cに流入し、室内側熱交換
器5で室内空気と熱交換して凝縮液化され、室内を暖房
する。この凝縮液化した冷媒は、各室内側熱交換器5の
出口のサブク−ル量により制御されほぼ全開状態の第1
の流量制御装置9を通り、少し減圧されて第2の分岐部
11に流入する。
Next, a description will be given of a case where heating and cooling are mainly performed in simultaneous cooling and heating operation with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the pressure detected by the fourth pressure detecting means 18 becomes a predetermined value as indicated by a dotted arrow in FIG. 5 check valve 34,
It is sent to the relay E through the second connection pipe 7, passes through the gas-liquid separator 12, passes through the first branch section 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side in this order, It flows into each of the indoor units B and C to be heated, exchanges heat with the indoor air in the indoor heat exchanger 5, is condensed and liquefied, and heats the room. The condensed and liquefied refrigerant is controlled by the amount of subcooling at the outlet of each indoor side heat exchanger 5, and is substantially fully opened.
And flows into the second branch portion 11 after being slightly reduced in pressure.

【0024】この冷媒の一部は、室内機側の第2の接続
配管7dを通り、冷房しようとする室内機Dに入り、室内
側熱交換器5出口のスーパーヒート量により制御される
第1の流量制御装置9に入り、減圧された後に、室内側
熱交換器5に入って熱交換して蒸発しガス状態となって
室内を冷房し、第1の接続配管6dを経て三方切換弁8を
介して第1の接続配管6に流入する。一方、他の冷媒は
第1の圧力検出手段25の検出圧力、第2の圧力検出手段
26の検出圧力の圧力差が所定範囲となるように制御され
る第4の流量制御装置17を通って、冷房しようとする室
内機Dを通った冷媒と合流して太い第1の接続配管6を
経て、熱源機Aの第6の逆止弁35、熱源機側熱交換器3
に流入し、空気と熱交換して蒸発しガス状態となる。
A part of the refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and is controlled by the amount of superheat at the outlet of the indoor heat exchanger 5. After being decompressed, it enters the indoor heat exchanger 5 and exchanges heat to evaporate to a gaseous state to cool the room, and the three-way switching valve 8 via the first connection pipe 6d. Flows into the first connection pipe 6 through the. On the other hand, other refrigerants are detected by the first pressure detecting means 25 and the second pressure detecting means.
Through the fourth flow control device 17, which is controlled so that the pressure difference of the detected pressure of 26 is within a predetermined range, the refrigerant flows through the indoor unit D to be cooled and merges with the refrigerant to form the first thick connection pipe 6. Through the sixth check valve 35 of the heat source device A, the heat source device side heat exchanger 3
And exchanges heat with air to evaporate to a gaseous state.

【0025】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5の蒸発圧力と熱源機側熱交換
器3の圧力差が、太い第1の接続配管6に切り換えるた
めに小さくなる。また、この時、室内機B、Cに接続さ
れた三方切換弁8の第2口8bは閉路、第1口8aと第3口
8cは開路されており、室内機Dの第1口8aは閉路、第2
口8bと第3口8cは開路されている。また、冷媒はこの
時、第1の接続配管6が低圧、第2の接続配管7が高圧
のため必然的に第5の逆止弁34、第6の逆止弁35へ流通
する。
This refrigerant forms a circulation cycle which is drawn into the compressor 1 through the four-way switching valve 2 and the accumulator 4 of the heat source unit A, and performs a heating-main operation. At this time, the difference between the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure of the heat source unit side heat exchanger 3 is reduced due to the switching to the thick first connection pipe 6. At this time, the second port 8b of the three-way switching valve 8 connected to the indoor units B and C is closed, and the first port 8a is connected to the third port 8a.
8c is open, the first port 8a of the indoor unit D is closed,
The mouth 8b and the third mouth 8c are open. At this time, the refrigerant naturally flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.

【0026】このサイクル時、一部の液冷媒は第2の分
岐部11の各室内機側の第2の接続配管7b、7c、7dの会合
部からバイパス配管14へ入り、第3の流量制御装置15で
低圧まで減圧されて、第3の熱交換部16b 、16c 、16d
で第2の分岐部11の各室内機側の第2の接続配管7b,7
c,7dとの間で、また第2の熱交換部16a で第2の分岐
部11の各室内機側の第2の接続配管7b、7c、7dの会合部
との間で、更に第1の熱交換部19で第2の流量制御装置
13の冷媒入口側配管との間で熱交換を行い、蒸発した冷
媒は、第1の接続配管6、第6の逆止弁35を経由し、熱
源機側熱交換器3へ入り、空気と熱交換して蒸発気化し
た後、熱源機Aの四方切換弁2、アキュムレータ4を経
て圧縮機1に吸入される。一方、第1、第2、第3の熱
交換部19、16a 、16b 、16c 、16d で熱交換し、冷却さ
れ、サブクールを充分につけられた上記第2の分岐部11
の冷媒は冷房しようとしている室内機Dへ流入する。な
お、この時第2の流量制御装置13は、通常全閉状態とな
っている。
During this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the junction of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and the third flow control The pressure is reduced to a low pressure by the device 15, and the third heat exchange units 16b, 16c, 16d
The second connection pipes 7b and 7 on each indoor unit side of the second branch 11
c, 7d, and between the second heat exchange section 16a and the junction of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and The second flow control device in the heat exchange section 19
The heat exchange is performed between the refrigerant and the thirteenth refrigerant inlet side pipe, and the evaporated refrigerant enters the heat source unit side heat exchanger 3 via the first connection pipe 6 and the sixth check valve 35, and exchanges with air. After evaporating by heat exchange, the refrigerant is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4 of the heat source device A. On the other hand, the first, second, and third heat exchangers 19, 16a, 16b, 16c, and 16d exchange heat, are cooled, and are sufficiently cooled and provided with a subcool.
Flows into the indoor unit D to be cooled. At this time, the second flow control device 13 is normally in a fully closed state.

【0027】次に、冷暖房同時運転における冷房主体の
場合について図4を用いて説明する。同図に実線矢印で
示すように、低圧飽和温度検出手段50の検出温度が所定
値になるように容量制御される圧縮機1より吐出された
高温高圧冷媒ガスは、四方切換弁2を経て熱源機側熱交
換器3に流入し、空気と熱交換して気液二相の高温高圧
状態となる。その後、この二相の高温高圧状態の冷媒は
第3の逆止弁32、第2の接続配管7を経て、中継機Eの
気液分離装置12へ送られる。ここで、ガス状冷媒と液状
冷媒に分離され、分離されたガス状冷媒は第1の分岐部
10、三方切換弁8、室内機側の第1の接続配管6dの順に
通り、暖房しようとする室内機Dに流入し、室内側熱交
換器5で室内空気と熱交換して凝縮液化し、室内を暖房
する。更に、室内側熱交換器5出口のサブクール量によ
り制御され、ほぼ全開状態の第1の流量制御装置9を通
り、少し減圧されて、第2の分岐部11に流入する。
Next, a description will be given of a case in which cooling is mainly performed in simultaneous cooling and heating operation with reference to FIG. As shown by the solid line arrow in FIG. 3, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 whose capacity is controlled so that the temperature detected by the low-pressure saturation temperature detecting means 50 becomes a predetermined value passes through a four-way switching valve 2 and a heat source. It flows into the machine side heat exchanger 3 and exchanges heat with air to be in a gas-liquid two-phase high-temperature and high-pressure state. Thereafter, the two-phase high-temperature and high-pressure refrigerant is sent to the gas-liquid separator 12 of the repeater E via the third check valve 32 and the second connection pipe 7. Here, the gaseous refrigerant and the liquid refrigerant are separated, and the separated gaseous refrigerant is supplied to the first branch portion.
10, the three-way switching valve 8, and the first connection pipe 6d on the indoor unit side, flow into the indoor unit D to be heated, exchange heat with the indoor air in the indoor heat exchanger 5, and condense and liquefy. Heat the room. Further, it is controlled by the subcooling amount at the outlet of the indoor heat exchanger 5, passes through the first flow control device 9 in a substantially fully opened state, and is slightly reduced in pressure, and flows into the second branch portion 11.

【0028】一方、残りの液状冷媒は第1の圧力検出手
段25の検出圧力、第2の圧力検出手段26の検出圧力によ
って制御される第2の流量制御装置13を通って、第2の
分岐部11に流入し、暖房しようとする室内機Dを通った
冷媒と合流する。この合流した冷媒は、第2の分岐部1
1、室内機側の第2の接続配管7b、7cの順に通り、各室
内機B、Cに流入する。各室内機B、Cに流入した冷媒
は、室内機側熱交換器5出口のスーパーヒート量により
制御される第1の流量制御装置9により低圧まで減圧さ
れた後に、室内側熱交換器5に流入し、室内空気と熱交
換して蒸発しガス化され、室内を冷房する。更に、この
ガス状態となった冷媒は、室内機側の第1の接続配管6
b、6c三方切換弁8、第1の分岐部10を通り、第1の接
続配管6、第4の逆止弁33、熱源機Aの四方切換弁2、
アキュムレータ4を経て圧縮機1に吸入される循環サイ
クルを構成し、冷房主体運転を行う。また、この時、室
内機B、Cに接続された三方切換弁8の第1口8aは閉
路、第2口8bと第3口8cは開路されており、室内機Dの
第2口8bは閉路、第1口8aと第3口8cは開路されてい
る。冷媒はこの時、第1の接続配管6が低圧、第2の接
続配管7が高圧のため、必然的に第3の逆止弁、第4の
逆止弁33へ流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow control device 13 controlled by the pressure detected by the first pressure detecting means 25 and the pressure detected by the second pressure detecting means 26, and passes through the second branch. The refrigerant flows into the unit 11 and merges with the refrigerant that has passed through the indoor unit D to be heated. The combined refrigerant is supplied to the second branch 1
1. Flow into the indoor units B and C in the order of the second connection pipes 7b and 7c on the indoor unit side. The refrigerant flowing into each of the indoor units B and C is depressurized to a low pressure by the first flow control device 9 controlled by the amount of superheat at the outlet of the indoor unit-side heat exchanger 5, and then is transferred to the indoor-side heat exchanger 5. It flows in, exchanges heat with room air, evaporates and gasifies, and cools the room. Further, the refrigerant in the gas state is supplied to the first connection pipe 6 on the indoor unit side.
b, 6c, passing through the three-way switching valve 8, the first branch portion 10, the first connection pipe 6, the fourth check valve 33, the four-way switching valve 2 of the heat source unit A,
A circulation cycle is drawn into the compressor 1 via the accumulator 4, and the cooling-main operation is performed. At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are open, and the second port 8b of the indoor unit D is closed. The circuit is closed, and the first port 8a and the third port 8c are open. At this time, the refrigerant naturally flows to the third check valve and the fourth check valve 33 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.

【0029】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、7dの会
合部からバイパス配管14へ入り、第3の流量制御装置15
で低圧まで減圧されて、第3の熱交換部16b 、16c 、16
d で第2の分岐部11の各室内機側の第2の接続配管7b、
7c、7dとの間で、また第2の熱交換器部16a で第2の分
岐部11の各室内機側の第2の接続配管7b、7c、7dの会合
部との間で、更に第1の熱交換部19で第2の流量制御装
置13に流入する冷媒との間で熱交換を行い、蒸発した冷
媒は第1の接続配管6、第4の逆止弁33へ入り、熱源機
Aの四方切換弁2、アキュムレータ4を経て圧縮機1に
吸入される。一方、第1、第2、第3の熱交換部19、16
a 、16b 、16c で熱交換し、冷却されサブクールを充分
につけられた上記第2の分岐部11の冷媒は冷房しようと
している室内機B、Cへ流入する。
In this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the junction of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and the third flow rate Control device 15
The pressure is reduced to a low pressure by the third heat exchange units 16b, 16c, 16
d, a second connection pipe 7b on each indoor unit side of the second branch portion 11,
7c and 7d, and in the second heat exchanger section 16a between the second connection pipes 7b, 7c and 7d of the second branch section 11 on the side of each indoor unit, and The first heat exchange section 19 exchanges heat with the refrigerant flowing into the second flow control device 13, and the evaporated refrigerant enters the first connection pipe 6 and the fourth check valve 33, and the heat source device A is sucked into the compressor 1 through the four-way switching valve 2 of A and the accumulator 4. On the other hand, the first, second, and third heat exchange units 19, 16
The refrigerant in the second branch portion 11, which has been subjected to heat exchange in a, 16b, and 16c and cooled and sufficiently subcooled, flows into the indoor units B and C to be cooled.

【0030】次に、上記のように実施例1では通常第2
の流量制御装置13が全閉状態である暖房のみ、及び暖房
主体の場合の、油回収について、図5乃至図7で説明す
る。図5は実施例1の油回収のブロック図、図6は上記
実施例1の油回収のフローチャート、図7は油回収によ
る第2の流量制御装置13の開度変化図である。図5にお
いて、61は第2の流量制御装置13の開度制御を第1の周
期で周期的に行うために、前回制御をおこなってからの
時間を計時する第1の計時手段であり、圧縮機1の運転
開始または第2の流量制御装置13の開度制御を行う毎に
クリアされる。62は圧縮機1の運転時間を計時する第2
の計時手段であり、圧縮機1の運転開始、または第1の
周期より長い第2の周期毎にクリアされる。63は上記第
1の計時手段の出力に基づき第2の流量制御装置の開度
を所定の開幅分ずつ閉じていくと共に、第2の計時手段
の出力に基づき上記第2の流量制御装置の開度を初期開
度に復元させる第2の流量制御装置13の開度を決定する
開度決定手段である。
Next, as described above, in the first embodiment, the second
The oil recovery in the case where only the heating in which the flow control device 13 of FIG. FIG. 5 is a block diagram of the oil recovery of the first embodiment, FIG. 6 is a flowchart of the oil recovery of the first embodiment, and FIG. 7 is a diagram showing a change in the opening degree of the second flow control device 13 by the oil recovery. In FIG. 5, reference numeral 61 denotes first timing means for measuring the time since the previous control was performed in order to periodically perform the opening control of the second flow control device 13 in the first cycle. It is cleared each time the operation of the machine 1 is started or the opening control of the second flow control device 13 is performed. 62 is a second time measuring operation time of the compressor 1
Is cleared at the start of the operation of the compressor 1 or at every second cycle longer than the first cycle. 63 closes the opening of the second flow control device by a predetermined opening width based on the output of the first timing device, and closes the opening of the second flow control device based on the output of the second timing device. This is an opening determining means for determining the opening of the second flow control device 13 that restores the opening to the initial opening.

【0031】次に、図6及び図7により油回収の制御の
流れを説明する。ステップ71では第2の計時手段62
が第2の周期として所定時間2以上計時しているかを判
定する。計時している場合はステップ76へ進み、まだ
計時していない場合はステップ72へ進む。ステップ7
6では図7のa点に示すように第2の流量制御装置13
の開度を所定開幅だけ開し、初期開度に復元する。ステ
ップ77では第2の計時手段62の計時デ−タをクリア
し、ステップ71に戻る。ステップ72では第1の計時
手段61が所定時間2より短い第1の周期として所定時
間1以上計時しているかを判定する。計時している場合
はステップ73へ進み、まだ計時していない場合はステ
ップ71へ戻る。ステップ73では第2の流量制御装置
13の開度が全閉かどうかを判定する。全閉であればス
テップ75へ進み、全閉でなければステップ74に進
む。ステップ74では図7のb部分のように初期開度a
点より順次第2の流量制御装置13の開度をステップ7
6の所定開幅よりも小さい所定閉幅分だけ閉し、ステッ
プ75へ進む。ステップ75では第1の計時手段61の
計時デ−タをクリアし、ステップ71に戻る。
Next, the flow of control of oil recovery will be described with reference to FIGS. In step 71, the second timing means 62
Is measured as the second period for a predetermined time 2 or more. If the time has been measured, the process proceeds to step 76, and if not, the process proceeds to step 72. Step 7
In FIG. 6, the second flow control device 13 shown in FIG.
Is opened by a predetermined opening width to restore the initial opening. In step 77, the time data of the second time measuring means 62 is cleared, and the process returns to step 71. In step 72, it is determined whether or not the first clocking means 61 has clocked a predetermined period of 1 or more as a first cycle shorter than the predetermined time 2. If it is timed, the process proceeds to step 73, and if not, the process returns to step 71. In step 73, it is determined whether the opening of the second flow control device 13 is fully closed. If it is fully closed, the process proceeds to step 75, and if it is not fully closed, the process proceeds to step 74. In step 74, the initial opening a
The opening degree of the second flow control device 13 is sequentially determined from step
The shutter is closed by a predetermined closing width smaller than the predetermined opening width of No. 6 and the process proceeds to step 75. In step 75, the clock data of the first clock means 61 is cleared, and the process returns to step 71.

【0032】実施例2. また、第2の流量制御装置13の入口側に圧縮機の潤滑油
を停滞させないためには、暖房のみ、及び暖房主体の場
合に第2の流量制御装置13を全閉とせず、最小開度を設
け、常時少しだけ開けておくという方法も効果がある。
Embodiment 2 FIG. In order to prevent the lubricant oil of the compressor from stagnating at the inlet side of the second flow control device 13, the second flow control device 13 is not fully closed in the case of heating only and in the case of mainly heating, and the minimum opening degree is set. There is also an effect that a method of always providing a slight opening is provided.

【0033】実施例3. また、図8に示すように第2の流量制御装置13と並列に
キャピラリ51を設けることにより、上記第2の流量制御
装置13に最小開度を設ける場合と同様の効果が得られ
る。
Embodiment 3 FIG. Also, by providing the capillary 51 in parallel with the second flow control device 13 as shown in FIG. 8, the same effect as in the case where the second flow control device 13 is provided with the minimum opening degree can be obtained.

【0034】実施例4. なお、上記実施例1では三方切換弁8を設けて室内機側
の第1の接続配管6b、6c、6dを、第1の接続配管6また
は、第2の接続配管7に切り換え可能に接続している
が、図9に示すように2つの電磁弁30、31の開閉弁を設
けて上述したように切り換え可能に接続しても同様な作
用効果を奏す。
Embodiment 4 FIG. In the first embodiment, the three-way switching valve 8 is provided to switchably connect the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7. However, the same operation and effect can be obtained even if the on-off valves of the two solenoid valves 30 and 31 are provided as shown in FIG.

【0035】[0035]

【発明の効果】以上説明した通り、この発明に係わる空
気調和装置は、圧縮機、熱源機側熱交換器等よりなる1
台の熱源機と、室内側熱交換器、第1の流量制御装置等
からなる複数台の室内機とを、第1、第2の接続配管を
介して接続し、上記複数台の室内機の上記室内側熱交換
器の一方を上記第1の接続配管または、第2の接続配管
に切り換え可能に接続してなる第1の分岐部と、上記複
数台の室内機の上記室内側熱交換器の他方に、上記第1
の流量制御装置を介して接続され、第2の流量制御装置
を介して上記第2の接続配管および上記第1の分岐部に
接続してなる第2の分岐部とを備え、更に上記第2の分
岐部と上記第1の接続配管を第3の流量制御を介して接
続し、上記熱源機の上記第1及び第2の接続配管間に切
り換え弁を設け、上記熱源側熱交換器が凝縮器となる運
転時、或は蒸発器となる運転時何れの場合においても上
記第1の接続配管を上記熱源機の低圧側に、第2の接続
配管を高圧側に切り換え可能にした、冷暖同時運転可能
な空気調和機において、圧縮機運転中に、周期的に第2
の流量制御装置の開度を大きくするよう制御する第2の
流量制御装置の開度決定手段を備えたので、特に、暖房
のみ、及び暖房主体の場合には通常全閉に制御される上
記第2の流量制御装置の開度を定期的に大きくすること
により上記第2の流量制御装置の入口側に停滞している
圧縮機の潤滑油を上記圧縮機に戻し、圧縮機の焼き付を
防止できる。
As described above, the air conditioner according to the present invention comprises a compressor, a heat source unit-side heat exchanger, and the like.
Heat source units and a plurality of indoor units including an indoor heat exchanger, a first flow control device and the like are connected via first and second connection pipes, and the plurality of indoor units are connected to each other. A first branching section that is connected to one of the indoor heat exchangers so as to be switchable to the first connection pipe or the second connection pipe; and the indoor heat exchanger of the plurality of indoor units. In the other, the first
And a second branch portion connected to the second connection pipe and the first branch portion via a second flow control device, and further comprising the second branch portion. Is connected to the first connection pipe via a third flow control, a switching valve is provided between the first and second connection pipes of the heat source unit, and the heat source side heat exchanger is condensed. The first connection pipe can be switched to the low-pressure side of the heat source unit and the second connection pipe can be switched to the high-pressure side in both cases of the operation of the heat source and the operation of the evaporator. In the operable air conditioner, the second cycle is periodically performed during the compressor operation.
The opening degree determining means of the second flow control apparatus for controlling the opening degree of the flow control apparatus to be increased is provided. The lubricating oil of the compressor stagnant at the inlet side of the second flow control device is returned to the compressor by periodically increasing the opening of the flow control device 2 to prevent seizure of the compressor. it can.

【0036】また、上記空気調和装置において上記第2
の流量制御装置に最小開度を設けることにより、常時上
記第2の流量制御装置を冷媒が流れるようにし、定常的
な暖房能力の低下は少し出るものの上記第2の流量制御
装置入口側への潤滑油の停滞をなくすことができ、圧縮
機の焼き付を防止できる。
In the air conditioner, the second
By providing a minimum opening degree to the flow control device, the refrigerant always flows through the second flow control device, and although a steady decrease in the heating capacity appears slightly, the flow rate to the second flow control device inlet side is reduced. Stagnation of the lubricating oil can be eliminated, and seizure of the compressor can be prevented.

【0037】また、上記空気調和装置において上記第2
の流量制御装置に並列にキャピラリを設けることによ
り、上記第2の流量制御装置が全閉状態であっても、常
時上記第2の流量制御装置の並列部分を冷媒が流れるよ
うにし、上記第2の流量制御装置に最小開度を設けた場
合と同様の効果を得ることができる。
Further, in the air conditioner, the second
By providing a capillary in parallel with the flow control device, the refrigerant always flows through the parallel portion of the second flow control device even when the second flow control device is in the fully closed state, The same effect as in the case where the minimum opening is provided in the flow control device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air-conditioning apparatus according to Embodiment 1 of the present invention.

【図2】この発明の実施例1による空気調和装置の冷
房、または暖房のみの運転状態を説明するための冷媒回
路図である。
FIG. 2 is a refrigerant circuit diagram for explaining an operation state of only cooling or heating of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図3】この発明の実施例1による空気調和装置の、暖
房主体の運転状態を説明するための冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram for explaining an operation state mainly of heating of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図4】この発明の実施例1による空気調和装置の、冷
房主体の運転状態を説明するための冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram for explaining an operation state mainly for cooling of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図5】この発明の実施例1による空気調和装置の、油
回収のブロック図である。
FIG. 5 is a block diagram of oil recovery of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図6】この発明の実施例1による空気調和装置の、油
回収のフローチャートである。
FIG. 6 is a flowchart of oil recovery of the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図7】この発明の実施例1による空気調和装置の、油
回収による第2の流量制御装置13の開度変化図である。
FIG. 7 is a change diagram of an opening degree of the second flow control device 13 by oil recovery in the air-conditioning apparatus according to Embodiment 1 of the present invention.

【図8】この発明の実施例3による空気調和装置の、実
施例3に対応する冷媒系を中心とする全体構成図であ
る。
FIG. 8 is an overall configuration diagram of an air conditioner according to Embodiment 3 of the present invention, centering on a refrigerant system corresponding to Embodiment 3.

【図9】この発明の実施例4による空気調和装置の、冷
媒系を中心とする全体構成図である。
FIG. 9 is an overall configuration diagram of an air conditioner according to Embodiment 4 of the present invention, centering on a refrigerant system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方切換弁 3 熱源機側熱交換器 4 アキュムレータ 5 室内側熱交換器 6 6b、6c、6d 第1の接続配管 7 7b、7c、7d 第2の接続配管 8 三方切換弁 9 第1の流量制御装置 10 第1の分岐部 11 第2の分岐部 13 第2の流量制御装置 15 第3の流量制御装置 40 切換弁 61 第1の計時手段 62 第2の計時手段 63 第2の流量制御装置の開度決定手段 A 熱源機 B、C、D 室内機 E 中継機 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way switching valve 3 Heat exchanger side heat exchanger 4 Accumulator 5 Indoor heat exchanger 6 6b, 6c, 6d First connection pipe 7 7b, 7c, 7d Second connection pipe 8 Three-way switching valve 9 1 flow control device 10 first branch portion 11 second branch portion 13 second flow control device 15 third flow control device 40 switching valve 61 first timing means 62 second timing means 63 second Opening determining means of flow control device A Heat source unit B, C, D Indoor unit E Repeater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 徳明 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 亀山 純一 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (58)調査した分野(Int.Cl.7,DB名) F25B 29/00 361 F25B 13/00 104 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Tokuaki Hayashida 6-66, Tehira, Wakayama-shi Mitsubishi Electric Corporation Wakayama Works (72) Inventor Tomohiko Kasai 6-66, Tehira, Wakayama-shi Mitsubishi Electric Wakayama Works, Ltd. (72) Inventor Junichi Kameyama 6-66, Teira, Wakayama City Mitsubishi Electric Wakayama Works, Ltd. (58) Fields investigated (Int. Cl. 7 , DB name) F25B 29/00 361 F25B 13/00 104

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、熱源機側熱交換器等よりなる1
台の熱源機と、室内側熱交換器、第1の流量制御装置等
からなる複数台の室内機とを、第1、第2の接続配管を
介して接続し、上記複数台の室内機の上記室内側熱交換
器の一方を上記第1の接続配管または、第2の接続配管
に切り換え可能に接続してなる第1の分岐部と、上記複
数台の室内機の上記室内側熱交換器の他方に、上記第1
の流量制御装置を介して接続され、第2の流量制御装置
を介して上記第2の接続配管および上記第1の分岐部に
接続してなる第2の分岐部とを備え、更に上記第2の分
岐部と上記第1の接続配管を第3の流量制御を介して接
続し、上記熱源機の上記第1及び第2の接続配管間に切
り換え弁を設け、上記熱源側熱交換器が凝縮器となる運
転時、或は蒸発器となる運転時何れの場合においても上
記第1の接続配管を上記熱源機の低圧側に、第2の接続
配管を高圧側に切り換え可能にした、冷暖同時運転可能
な空気調和機において、圧縮機連続運転中に、周期的に
第2の流量制御装置の開度を大きく開くよう制御する
2の流量制御装置の開度決定手段を備えたことを特徴と
する空気調和装置。
1. A compressor comprising a heat exchanger on the heat source unit side, etc.
Heat source units and a plurality of indoor units including an indoor heat exchanger, a first flow control device and the like are connected via first and second connection pipes, and the plurality of indoor units are connected to each other. A first branching section that is connected to one of the indoor heat exchangers so as to be switchable to the first connection pipe or the second connection pipe; and the indoor heat exchanger of the plurality of indoor units. In the other, the first
Connected through the flow control device of the second , the second flow control device
To the second connection pipe and the first branch through
A second branch portion connected to the first and second connection portions. The second branch portion is connected to the first connection pipe via a third flow rate control. A switching valve is provided between the connection pipes, and the first connection pipe is placed on the low pressure side of the heat source device in any case of the operation in which the heat source side heat exchanger becomes a condenser or the operation in which the heat source side heat exchanger becomes an evaporator. In an air conditioner capable of simultaneous cooling and heating operation in which the second connection pipe can be switched to the high pressure side, control is performed so that the opening of the second flow rate control device is periodically greatly opened during continuous operation of the compressor. An air conditioner comprising an opening determining means of the second flow control device.
【請求項2】 圧縮機、熱源機側熱交換器等よりなる1
台の熱源機と、室内側熱交換器、第1の流量制御装置等
からなる複数台の室内機とを、第1、第2の接続配管を
介して接続し、上記複数台の室内機の上記室内側熱交換
器の一方を上記第1の接続配管または、第2の接続配管
に切り換え可能に接続してなる第1の分岐部と、上記複
数台の室内機の上記室内側熱交換器の他方に、上記第1
の流量制御装置を介して接続され、第2の流量制御装置
を介して上記第2の接続配管および上記第1の分岐部に
接続してなる第2の分岐部とを備え、更に上記第2の分
岐部と上記第1の接続配管を第3の流量制御を介して配
管接続し、上記熱源機の上記第1及び第2の接続配管間
に切り換え弁を設け、上記熱源側熱交換器が凝縮器とな
る運転時、或は蒸発器となる運転時何れの場合において
も上記第1の接続配管を上記熱源機の低圧側に、第2の
接続配管を上記熱源機の高圧側に切り換え可能にした、
冷暖同時運転可能な空気調和機において、圧縮機運転中
の上記第2の流量制御装置の開度に所定の最小値を設け
たことを特徴とする空気調和装置。
2. A compressor comprising a heat exchanger and a heat source side heat exchanger.
Heat source units and a plurality of indoor units including an indoor heat exchanger, a first flow control device and the like are connected via first and second connection pipes, and the plurality of indoor units are connected to each other. A first branching section that is connected to one of the indoor heat exchangers so as to be switchable to the first connection pipe or the second connection pipe; and the indoor heat exchanger of the plurality of indoor units. In the other, the first
Connected through the flow control device of the second , the second flow control device
To the second connection pipe and the first branch through
A second branch portion connected to the first and second connection portions. Further, the second branch portion and the first connection pipe are connected to each other via a third flow rate control, and the first and second connection portions of the heat source device are connected to each other. A switching valve is provided between the connecting pipes of the first and second embodiments, and the first connecting pipe is connected to the low-pressure side of the heat source unit in any case where the heat source side heat exchanger operates as a condenser or operates as an evaporator. In addition, the second connection pipe can be switched to the high pressure side of the heat source device,
An air conditioner capable of simultaneous operation of cooling and heating, wherein a predetermined minimum value is provided for an opening degree of the second flow control device during operation of the compressor.
【請求項3】 圧縮機、熱源機側熱交換器等よりなる1
台の熱源機と、室内側熱交換器、第1の流量制御装置等
からなる複数台の室内機とを、第1、第2の接続配管を
介して接続し、上記複数台の室内機の上記室内側熱交換
器の一方を上記第1の接続配管または、第2の接続配管
に切り換え可能に接続してなる第1の分岐部と、上記複
数台の室内機の上記室内側熱交換器の他方に、上記第1
の流量制御装置を介して接続され、第2の流量制御装置
を介して上記第2の接続配管および上記第1の分岐部に
接続してなる第2の分岐部とを備え、更に上記第2の分
岐部と上記第1の接続配管を第3の流量制御を介して配
管接続し、上記熱源機の上記第1及び第2の接続配管間
に切り換え弁を設け、上記熱源側熱交換器が凝縮器とな
る運転時、或は蒸発器となる運転時何れの場合において
も上記第1の接続配管を上記熱源機の低圧側に、第2の
接続配管を上記熱源機の高圧側に切り換え可能にした、
冷暖同時運転可能な空気調和機において、上記第2の流
量制御装置と並列にキャピラリを設けたことを特徴とす
る空気調和装置。
3. A compressor comprising a compressor, a heat source unit side heat exchanger, and the like.
Heat source units and a plurality of indoor units including an indoor heat exchanger, a first flow control device and the like are connected via first and second connection pipes, and the plurality of indoor units are connected to each other. A first branching section that is connected to one of the indoor heat exchangers so as to be switchable to the first connection pipe or the second connection pipe; and the indoor heat exchanger of the plurality of indoor units. In the other, the first
Connected through the flow control device of the second , the second flow control device
To the second connection pipe and the first branch through
A second branch portion connected to the first and second connection portions. Further, the second branch portion and the first connection pipe are connected to each other via a third flow rate control, and the first and second connection portions of the heat source device are connected to each other. A switching valve is provided between the connecting pipes of the first and second embodiments, and the first connecting pipe is connected to the low-pressure side of the heat source unit in any case where the heat source side heat exchanger operates as a condenser or operates as an evaporator. In addition, the second connection pipe can be switched to the high pressure side of the heat source device,
An air conditioner capable of simultaneous cooling and heating operation, wherein a capillary is provided in parallel with the second flow control device.
JP03104407A 1991-05-09 1991-05-09 Air conditioner Expired - Lifetime JP3138491B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP03104407A JP3138491B2 (en) 1991-05-09 1991-05-09 Air conditioner
AU16034/92A AU649810B2 (en) 1991-05-09 1992-05-05 Air conditioning apparatus
EP95106908A EP0676595B1 (en) 1991-05-09 1992-05-08 Air conditioning apparatus
ES92304136T ES2092035T3 (en) 1991-05-09 1992-05-08 AIR CONDITIONER.
US07/880,719 US5297392A (en) 1991-05-09 1992-05-08 Air conditioning apparatus
ES95106908T ES2120104T3 (en) 1991-05-09 1992-05-08 AIR CONDITIONER.
EP92304136A EP0514086B1 (en) 1991-05-09 1992-05-08 Air conditioning apparatus
DE69226381T DE69226381T2 (en) 1991-05-09 1992-05-08 air conditioning
DE69212225T DE69212225D1 (en) 1991-05-09 1992-05-08 air conditioner
AU59368/94A AU660124B2 (en) 1991-05-09 1994-04-05 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03104407A JP3138491B2 (en) 1991-05-09 1991-05-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04335967A JPH04335967A (en) 1992-11-24
JP3138491B2 true JP3138491B2 (en) 2001-02-26

Family

ID=14379861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03104407A Expired - Lifetime JP3138491B2 (en) 1991-05-09 1991-05-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP3138491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074028A1 (en) 2009-12-15 2011-06-23 三菱電機株式会社 Air conditioner
EP2570740B1 (en) * 2010-05-12 2019-02-27 Mitsubishi Electric Corporation Air conditioning apparatus
JP5983401B2 (en) * 2012-12-28 2016-08-31 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH04335967A (en) 1992-11-24

Similar Documents

Publication Publication Date Title
AU656063B2 (en) Air-conditioning system
EP0676595B1 (en) Air conditioning apparatus
JP2944507B2 (en) Air conditioner
JPH08291952A (en) Air conditioner
JP3138491B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JPH04359767A (en) Air conditioner
JP2003279174A (en) Air conditioning device
JP3092212B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JPH0765825B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JPH05172432A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11