JPH02118372A - Air-conditioning device - Google Patents
Air-conditioning deviceInfo
- Publication number
- JPH02118372A JPH02118372A JP63273771A JP27377188A JPH02118372A JP H02118372 A JPH02118372 A JP H02118372A JP 63273771 A JP63273771 A JP 63273771A JP 27377188 A JP27377188 A JP 27377188A JP H02118372 A JPH02118372 A JP H02118372A
- Authority
- JP
- Japan
- Prior art keywords
- indoor
- control device
- flow rate
- heat source
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004378 air conditioning Methods 0.000 title description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 238000001816 cooling Methods 0.000 claims abstract description 33
- 239000003507 refrigerant Substances 0.000 abstract description 35
- 230000000694 effects Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/006—Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0231—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、熱源機1台に対して、複数台の室内機を接
続する多室型ヒートポンプ式空気調和装置に関するもの
で、特に各室内機毎に冷暖房を選択的に、または一方の
室内機では冷房、他方の室内機では暖房が同時に行うこ
とができる空気調和装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multi-room heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit. The present invention relates to an air conditioner that can selectively perform heating and cooling for each indoor unit, or simultaneously perform cooling with one indoor unit and heating with the other indoor unit.
従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり、各室内機は全て暖房
、または、全て冷房を行うように形成されている。Conventionally, heat pump air conditioners have been common in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs heating and cooling operation. , or all configured to provide cooling.
従来の多室型ヒートポンプ式空気調和装置は以上のよう
に構成されているので、全ての室内機が暖房または冷房
しか運転しないため、冷房が必要場所で暖房が行われた
り、逆に暖房が必要場所で冷房が行われる様な問題があ
った。Conventional multi-room heat pump air conditioners are configured as described above, so all indoor units operate only for heating or cooling, so heating is performed in places where cooling is required, or vice versa. There were issues with air conditioning in places.
特に、大規模なビルに据え付けた場合、インテリア部と
ベリメータ一部、または一般事務室と、コンピューター
ルーム等のOA化された部屋では空調の負荷が著しく異
なるため、特に問題となっている。In particular, when installed in a large building, the air conditioning load is significantly different between the interior section and a portion of the verimeter, or between a general office and a computer room or other open-aired room, which poses a particular problem.
この発明は、上記のような問題点を解消するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、または一方の室内
機では冷房、他方の室内機では暖房が同時に行うことが
できる様にして、大規模なビルに据え付けた場合、イン
テリア部とベリメータ一部、または一般事務室と、コン
ピュータールーム等のOA化された部屋で空調の負荷が
著しく異なっても、それぞれに対応できる多室型ヒー(
ポンプ式空気調和装置を得ることを目的とする。This invention was made to solve the above-mentioned problems. Multiple indoor units are connected to one heat source unit, and each indoor unit can selectively perform air conditioning or heating. The indoor unit can perform cooling and the other indoor unit can perform heating at the same time, and when installed in a large building, the interior part and part of the Verimeter, or the general office and computer room, etc. can be made OA. Even if the air conditioning loads differ significantly in different rooms, the multi-room heater (
The purpose is to obtain a pump type air conditioner.
この発明に係わる空気調和装置は1台の熱源機と、複数
台の室内機とを、第1、第2の接続配管を介して接続し
たものにおいて、上記複数台の室内機の一方を上記第1
の接続配管または、第2の接続配管に切り替え可能に接
続してなる第1の分岐部と、上記複数台の室内機の他方
を、室内機に接続された第1の流量制御装置を介して第
2の接続配管に接続してなる第2の分岐部に接続し、更
に第2の流量制御装置を介して、上記第1の分岐部と第
2の分岐部とを接続し、上記第1の分岐部、第2の流量
制御装置及び第2の分岐部を内蔵させた中継機を、上記
熱源機と上記複数台の室内機との間に介在させ、上記熱
源機と上記中継機との間を、第1及び第2の接続配管を
延長して接続するようにしたものである。The air conditioner according to the present invention is one in which one heat source device and a plurality of indoor units are connected via first and second connection pipes, in which one of the plurality of indoor units is connected to the above-mentioned indoor unit. 1
or a first branch part that is switchably connected to the connecting pipe or the second connecting pipe, and the other of the plurality of indoor units through a first flow rate control device connected to the indoor unit. The first branch is connected to a second branch connected to a second connection pipe, and the first branch and the second branch are connected via a second flow rate control device. A relay machine having a built-in branch part, a second flow rate control device, and a second branch part is interposed between the heat source machine and the plurality of indoor units, and the heat source machine and the repeater are connected to each other. The first and second connecting pipes are extended and connected between the two.
この発明において、冷暖房同時運転における暖房主体の
場合は、高圧ガス冷媒を第1の接続配管、第1の分岐部
から暖房しようとしている各室内機に導入して暖房を行
い、その後、冷媒は第2の分岐部から一部は冷房しよう
としている室内機に流入して冷房を行い第1の分岐部か
ら第2の接続配管に流入する。In this invention, when heating is the main component in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced from the first connecting pipe and the first branch into each indoor unit to be heated, and then the refrigerant is A part of the air flows from the second branch into the indoor unit to be cooled, and then flows from the first branch into the second connection pipe.
一方、残りの冷媒は第2の流量制御装置を通って第2の
接続配管に流入し、冷房室内機を通った冷媒と合流して
熱源機に戻る。On the other hand, the remaining refrigerant flows into the second connection pipe through the second flow rate control device, joins with the refrigerant that has passed through the cooling indoor unit, and returns to the heat source device.
また、冷房主体の場合は、高圧ガスを熱源機で任意量熱
交換し二相状態として第2の接続配管から第1の分岐部
を介して冷媒の一部を暖房しようとする室内機に導入し
て暖房を行い第2の分岐部に流入する。一方、残りの冷
媒は第2の流量制御装置を沖って第2の分岐部で暖房し
ようとする室内機を通った冷媒と合流して冷房しようと
する各室内機に流入して冷房を行い、その後に第1の分
岐部から第1の接続配管を通って熱源機に導かれ再び圧
縮機に戻る。In addition, if the main purpose is cooling, the high-pressure gas is exchanged with an arbitrary amount of heat using a heat source device, and a part of the refrigerant is introduced into a two-phase state from the second connecting pipe through the first branch to the indoor unit for heating. It performs heating and flows into the second branch. On the other hand, the remaining refrigerant passes through the second flow rate control device, joins with the refrigerant that has passed through the indoor unit that is attempting to heat the air at the second branch, and flows into each indoor unit that is attempting to cool the air. Thereafter, the heat is guided from the first branch through the first connection pipe to the heat source machine and returns to the compressor.
さらに、暖房運転のみの場合、冷媒は熱源機より第1の
接続配管、第1の分岐部を通り各室内機に導入され、暖
房して第1の分岐部から第2の接続配管通り熱源機に戻
る。Furthermore, in the case of only heating operation, the refrigerant is introduced from the heat source device through the first connection pipe and the first branch to each indoor unit, heated, and then transferred from the first branch to the second connection pipe and the heat source device. Return to
そして、冷房運転のみの場合、冷媒は熱源機より第2の
接続配管、第2の分岐部を通り各室内機に導入され、冷
房して第1の分岐部から第1の接接配管通り熱源機に戻
る。In the case of only cooling operation, the refrigerant is introduced from the heat source device through the second connecting pipe and the second branch part to each indoor unit, cooled, and then passed from the first branch part to the first connecting pipe to the heat source. Return to the machine.
以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.
第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図乃至第4
図は第1図の一実施例における冷暖房運転時の動作状態
を示したもので、第2図は冷房または暖房のみの運転動
作状態図、第3図及び第4図は冷暖房同時運転の動作を
示すもので、第3図は暖房主体(暖房運転容量が冷房運
転容量より大きい場合)を、第4図は冷房主体(冷房運
転容量が暖房運転容量より大きい場合)を示す運転動作
状態図である。そして、第5図はこの発明の他の実施例
の空気調和装置の冷媒系を中心とする全体構成図である
。FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a first embodiment of the present invention. Also, Figures 2 to 4
The figure shows the operating state during cooling/heating operation in the embodiment shown in Fig. 1, Fig. 2 shows the operating state of cooling or heating only, and Figs. 3 and 4 show the operation of simultaneous cooling/heating operation. Figure 3 is an operating state diagram showing heating-dominant operation (when the heating operating capacity is greater than cooling operating capacity), and Figure 4 is an operating state diagram showing cooling-dominant operation (when cooling operating capacity is greater than heating operating capacity). . FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention.
なお、この実施例では、熱源機1台に室内機3台を接続
した場合について説明するが、2台以上の室内機を接続
した場合も同様である。In this embodiment, a case will be described in which three indoor units are connected to one heat source device, but the same applies to a case in which two or more indoor units are connected.
囚は熱源機、但)、C)、0)は後述するように互いに
並列接続された室内機で、それぞれ同じ構成となってい
る。@)は後述するように、第1の分岐部、第2の流量
制御装置、第2の分岐部を内蔵した中継機。5) is a heat source unit, and 0), C), and 0) are indoor units that are connected in parallel to each other as described later, and each has the same configuration. @) is a repeater that incorporates a first branch, a second flow control device, and a second branch, as will be described later.
(1)は圧縮機、(2)は熱源機の冷媒流通方向を切換
える4方弁、(3)は熱源機側熱交換器、(4)はアキ
ュムレータで、上記機器(1)〜(3)と接続され、熱
源機(4)を構成する。(5)は3台の室内側熱交換器
、(6)は熱s機<A)の4方弁(2)と中継機(口を
接続する第1の接続配管、(6b)、(6c)、(6d
)はそれぞれ室内m (B)、(Q、(ロ)の室内側熱
交換器(5)と中継機(匂を接続し、第1の接続配管(
6)に対応する室内機側の第1の接続配管、(7)は熱
源機(4)の熱源機側熱交換器(3)と中継機(ト)を
接続する第2の接続配管、(7b)、(7c)、(7d
)はそれぞれ室内機(B)、(C)、0))の室内側熱
交換器(5)と中継機(6)を接続し第2の接続配管(
7)に対応する室内機側の第2の接続配管、(8)は室
内機側の第1の接続配管(6b)、(6c)、(6d)
と、第1の接続配管(6)または、第2の接続配管(7
)側に切り替え可能に接続する三方切替弁、(9)は室
内側熱交換器(5)に近接して接続され熱交換器(5)
の出口側の冷房時はスーパーヒート量、暖房時はサブク
ール量により制御される第1の流量制御装置で、室内機
側の第2の接続配管(7b) (7c)(7d)に接続
される。(IQは室内機側の第1の接続配管(6b)、
(6c)、(6d)と、第1の接続配管(6)または、
第2の接続配管(7)に切り替え可能に接続する三方切
替弁(8)よりなる第1の分岐部、αυは室内機側の第
2の接続配管(7b)、(7c)、(7d)と第2の接
続配管(7)よりなる第2の分岐部、@は第2の接続配
管(7)の第1の分岐部Q(1と第2の分岐部Qカを接
続する開閉自在な第2の流量制御装置である。(1) is a compressor, (2) is a four-way valve that switches the refrigerant flow direction of the heat source machine, (3) is a heat exchanger on the heat source machine side, (4) is an accumulator, and the above equipment (1) to (3) is connected to constitute a heat source device (4). (5) is the three indoor heat exchangers, (6) is the first connection pipe that connects the four-way valve (2) of the heat exchanger <A) and the relay machine (port), (6b), (6c ), (6d
) are connected to the indoor heat exchanger (5) and repeater (indoor heat exchanger (5) of indoor m (B), (Q, and (b)), respectively, and the first connecting pipe (
The first connection pipe on the indoor unit side corresponding to (6), the second connection pipe (7) connecting the heat source machine side heat exchanger (3) of the heat source machine (4) and the relay machine (G), ( 7b), (7c), (7d
) connects the indoor heat exchanger (5) and repeater (6) of the indoor units (B), (C), 0)) respectively, and connects the second connection pipe (
7) corresponds to the second connection pipe on the indoor unit side, and (8) corresponds to the first connection pipe on the indoor unit side (6b), (6c), (6d).
and the first connection pipe (6) or the second connection pipe (7)
) side, the three-way switching valve (9) is connected in close proximity to the indoor heat exchanger (5) and the heat exchanger (5)
The first flow control device is controlled by the superheat amount during cooling and the subcooling amount during heating on the outlet side of the air conditioner, and is connected to the second connection pipes (7b) (7c) (7d) on the indoor unit side. . (IQ is the first connection pipe (6b) on the indoor unit side,
(6c), (6d) and the first connecting pipe (6), or
The first branch part consists of a three-way switching valve (8) that is switchably connected to the second connection pipe (7), αυ is the second connection pipe (7b), (7c), (7d) on the indoor unit side. and a second branching part consisting of a second connecting pipe (7), @ is a first branching part Q of the second connecting pipe (7) (a freely openable and closable part connecting the first branching part Q and the second branching part Q). This is a second flow rate control device.
このように構成されたこの発明の実施例について説明す
る。An embodiment of the invention configured in this manner will be described.
まず、第2図を用いて冷房運転のみの場合について説明
する。First, the case of only cooling operation will be explained using FIG.
すなわち、同図に実線矢印で示すように圧縮機(1)よ
り吐出された高温高圧冷媒ガスは4方弁(2)を通り、
熱源機側熱交換器(3)で熱交換して凝縮液化された後
、第2の接続配管(7)、第2の流量制御装置@の順に
通り、更に第2の分岐部Qη、室内機側の第2の接続配
管(7b)、(7C)、(7d)を通り、各室内機03
)、(0、(6)に流入する。そして、各室・内機(B
)、(C)、(L)) ニ流入シタ冷媒は、第1の流量
制御装w1(9)により低圧まで減圧されて室内側熱交
換器(5)で、室内空気と熱交換して蒸発しガス化され
室内を冷房する。そして、このガス状態となった冷媒は
、室内機側の第1の接続配管(6b)、(6C)、(6
d) 、三方切替弁(8)、第1の分岐部OQ、第1の
接続配管(6)、熱源機の4方弁(2)、アキュムレー
タ(4)を経て圧縮機(1)に吸入される循環サイクル
を構成し、冷房運(、をおこなう。この時、三方切替弁
(8)の第10(8a)は閉路、@20(8b)及び第
30(8C)は開路されている。That is, as shown by the solid line arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2),
After being condensed and liquefied by heat exchange in the heat exchanger (3) on the heat source machine side, it passes through the second connection pipe (7), the second flow rate control device @, and then the second branch Qη and the indoor unit. Pass through the second connection pipes (7b), (7C), and (7d) on the side, and connect to each indoor unit 03.
), (0, (6). Then, each indoor/indoor unit (B
), (C), (L)) The inflowing indoor refrigerant is reduced to a low pressure by the first flow rate control device w1 (9), and is evaporated by exchanging heat with indoor air in the indoor heat exchanger (5). It is gasified and cools the room. Then, this refrigerant in a gas state is transferred to the first connection pipes (6b), (6C), (6C) on the indoor unit side.
d) The air is sucked into the compressor (1) through the three-way switching valve (8), the first branch OQ, the first connection pipe (6), the four-way valve (2) of the heat source device, and the accumulator (4). A circulation cycle is formed, and cooling is performed. At this time, the 10th (8a) of the three-way switching valve (8) is closed, and the 20th (8b) and 30th (8C) are open.
次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、同図に点線矢印で示すように圧縮機(
1)より吐出された高温高圧冷媒ガスは、4方弁(2)
を通り、第1の接続配管(6)、第1の分岐部αQ、三
方切替弁(8)、室内機側の第1の接続配管(6b)、
(6c)、(6d)、の順に通り、各室内機(鵠、(0
、の)に流入し、室内空気と熱交換して凝縮液化し、室
内を暖房する。そして、この液状態となった冷媒は、第
1の流量制御装置(9)を通り、室内機側の第2の接続
配管(7b)、第2の分岐部α旬に流入して合流し、更
に第2の流量制御装置@を通り、ここで第1の流量制御
装置(9)、又は第2の流量制御装置(至)のどちらか
一方で低圧の二相状態まで減圧される。そして、低圧ま
で減圧された冷媒は、第2の接続配管(7)を経て熱源
機(5)の熱源側根熱交換器(3)に流入し熱交換して
蒸発しガス状態となった冷媒は、熱源機の4方弁(2)
、アキュムレータ(4)を経て圧縮機(1)に吸入され
る循環サイクルを構成し、暖房運転をおこなう。この時
、三方切替弁(8)は、上述した冷房運転のみの場合と
同様に開閉されている。Next, the case of only heating operation will be described using FIG. 2. In other words, the compressor (
1) The high temperature and high pressure refrigerant gas discharged from the 4-way valve (2)
, the first connection pipe (6), the first branch αQ, the three-way switching valve (8), the first connection pipe on the indoor unit side (6b),
(6c), (6d), and each indoor unit (mouse, (0
), it exchanges heat with indoor air, condenses and liquefies, heating the room. Then, the refrigerant in the liquid state passes through the first flow rate control device (9), flows into the second connection pipe (7b) on the indoor unit side, and the second branch part α, where they join together. It further passes through the second flow rate control device @, where the pressure is reduced to a low-pressure two-phase state by either the first flow rate control device (9) or the second flow rate control device (to). Then, the refrigerant that has been reduced in pressure to a low pressure flows into the heat source side root heat exchanger (3) of the heat source device (5) through the second connection pipe (7), where it exchanges heat and evaporates to become a gas. , 4-way valve of heat source machine (2)
, constitutes a circulation cycle in which the air is sucked into the compressor (1) via the accumulator (4), and performs heating operation. At this time, the three-way switching valve (8) is opened and closed in the same manner as in the case of only the cooling operation described above.
冷暖房同時運転における暖房主体の場合について第3図
を用いて説明する。すなわち、同図に点線矢印で示すよ
うに圧縮機(1)より吐出された高温高圧冷媒ガスは、
第1の接続配管(6)を通して中継機(樽へ送られ、そ
して第1の分岐部αQ、三方切替弁(8)、室内機側の
第1の接続配管(6b)、(6C)の順に通り、暖房し
ようとする各室内機(B)、(C)に流入し、室内側熱
交換器(5)で室内空気と熱交換して凝縮液化され室内
を暖房する。そして、この凝縮液化した冷媒は、はぼ全
開状態の第1の流量制御装置(9)を通り少し減圧され
て第2の分岐部αηに流入する。そして、この冷媒の一
部は、室内機側の第1の接続配管(7d)を通り冷房し
ようとする室内機(6)に入り、第1の流量制御装置(
9)に入り減圧された後に、室内側熱交換器(5)に入
って熱交換して蒸発しガス状態となって室内を冷房し、
三方切替弁(8)を介して第2の接続配管(7)に流入
する。A case in which heating is the main component in simultaneous cooling and heating operation will be described with reference to FIG. That is, as shown by the dotted arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor (1) is
It is sent to the relay machine (barrel) through the first connection pipe (6), and then to the first branch αQ, the three-way switching valve (8), and the first connection pipe (6b) on the indoor unit side (6C). The air then flows into the indoor units (B) and (C) that are to be heated, exchanges heat with the indoor air in the indoor heat exchanger (5), and is condensed and liquefied to heat the room. The refrigerant passes through the first flow control device (9) which is in a nearly fully open state, is slightly depressurized, and flows into the second branch part αη.A part of this refrigerant flows through the first connection on the indoor unit side. It passes through the pipe (7d) and enters the indoor unit (6) to be cooled, and then enters the first flow control device (
After entering 9) and being depressurized, it enters the indoor heat exchanger (5) to exchange heat and evaporate into a gas state, which cools the room.
It flows into the second connecting pipe (7) via the three-way switching valve (8).
一方、他の冷媒は第2の分岐部Ql)、第2の流量制御
装置Oカを通って第2の接続配管(7)に流入し、冷房
しようとする室内機■を通った冷媒と合流して熱111
1囚の熱源側柵熱交換器(3)に流入し熱交換して蒸発
しガス状態となる。そして、その冷媒は、熱源機の4方
弁(2)、アキュムレータ(4)を経て圧縮機(1)に
吸入される循環サイクルを構成し、暖房主体運転をおこ
なう。この時、室内機の)(2)に接続された三方切替
弁(8)の第10(8a)は閉路、第20(8b)、g
30(8C)は開路されており、室内機(ロ)の第20
(8b)は閉路、第10(8a)、第30(8c)は開
路されている。On the other hand, the other refrigerant flows into the second connection pipe (7) through the second branch Ql) and the second flow rate control device Oka, and joins with the refrigerant that has passed through the indoor unit ■ to be cooled. fever 111
It flows into the first heat source side fence heat exchanger (3), exchanges heat, and evaporates into a gas state. Then, the refrigerant forms a circulation cycle in which the refrigerant is sucked into the compressor (1) through the four-way valve (2) of the heat source device and the accumulator (4), thereby performing heating-dominant operation. At this time, the 10th (8a) of the three-way switching valve (8) connected to )(2) of the indoor unit is closed, and the 20th (8b), g
30 (8C) is open, and the 20th circuit of the indoor unit (b)
(8b) is a closed circuit, and the 10th (8a) and 30th (8c) are open circuits.
冷暖房同時運転における冷房主体の場合について第4図
を用いて説明する。すなわち、同図に実線矢印で示すよ
うに圧縮機(1)より吐出された高温高圧冷媒ガスは、
熱源機側熱交換器(3)で任意量を熱交換して二相の高
温高圧状態となり第2の接続配管(7)により、中継機
(E)へ送られる。そして、この冷媒の一部を第1の分
岐部αQ1三方切替弁(8)、室内機側の第1の接続配
管(6d)の順に通り、暖房しようとする室内機■)に
流入し、室内側熱交換器(5)で室内空気と熱交換して
凝縮液化し、室内を暖房する。更に、はぼ全開状態の第
1の流量制御装置(9)を通り第2の分岐部αηに流入
する。一方、残りの冷媒は第2の流量制御装置U(全開
状態)を通−・て第2の分岐部Qηに流入し、暖房しよ
うとする室内機の)を通った冷媒と合流する。そして、
第2の分岐部αη、室内機側の第2の接続配管(7b)
(7c)の順に通り、各室内機(ト)、■に流入する。A case in which cooling is the main component in simultaneous heating and cooling operation will be described with reference to FIG. 4. That is, as shown by the solid arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor (1) is
An arbitrary amount of heat is exchanged in the heat exchanger (3) on the heat source side, resulting in a two-phase high temperature and high pressure state, which is sent to the repeater (E) via the second connection pipe (7). Then, a part of this refrigerant passes through the first branch αQ1 three-way switching valve (8) and the first connection pipe (6d) on the indoor unit side, and flows into the indoor unit (■) to be heated. It exchanges heat with the indoor air in the inner heat exchanger (5), condenses and liquefies it, and heats the room. Furthermore, it flows into the second branch αη through the first flow rate control device (9) which is in the fully open state. On the other hand, the remaining refrigerant passes through the second flow rate control device U (fully open state), flows into the second branch part Qη, and joins with the refrigerant that has passed through the indoor unit to be heated. and,
Second branch part αη, second connection pipe on the indoor unit side (7b)
The water passes through (7c) and flows into each indoor unit (g) and (2).
そして、各室内機(B)、(C)に流入した冷媒は、第
1の流量制御装置(9)により低圧まで減圧されて室内
側熱交換器(5)に流入し、室内空気と熱交換して蒸発
しガス化され室内を冷房する。更にこのガス状態となっ
た冷媒は、室内機側の第1の接続配管(6b)、(6c
)、三方切替弁(8)、第1の分岐部atS、第1の接
続配管(6へ熱源機の4方弁(2)、アキュムレータ(
4)を経て圧縮機(1)に吸入される循環サイクルを構
成し、冷房主体運転をおこなう。この時、室内機@(C
)(2)に接続された三方切替弁(8)の第10(8a
)〜(8c)は暖房主体運転と同様に開閉されている。The refrigerant that has flowed into each of the indoor units (B) and (C) is then reduced to a low pressure by the first flow control device (9), flows into the indoor heat exchanger (5), and exchanges heat with the indoor air. It evaporates and becomes gas, cooling the room. Furthermore, this gaseous refrigerant is transferred to the first connection pipes (6b) and (6c) on the indoor unit side.
), three-way switching valve (8), first branch part atS, first connection pipe (to 6), four-way valve (2) of heat source equipment, accumulator (
A circulation cycle is configured in which the air is sucked into the compressor (1) via step 4), and air-conditioning-based operation is performed. At this time, indoor unit @(C
) (2), the tenth (8a) of the three-way switching valve (8) connected to
) to (8c) are opened and closed in the same way as in heating-based operation.
なお、上記実施例では三方切替弁(8)を設けて室内機
側の第1の接続配管(6b)、(6c)、(6d)と、
第1の接続配管(6)または、第2の接続配管(7)に
切り替え可能に接続しているが、第5図に示すように2
つの電磁弁曽、0力等の開閉弁を設けて上述しt二よう
に切り替え制御しても同様な作用効果を奏す。In addition, in the above embodiment, a three-way switching valve (8) is provided to connect the first connection pipes (6b), (6c), (6d) on the indoor unit side,
It is connected to the first connection pipe (6) or the second connection pipe (7) in a switchable manner, but as shown in FIG.
Even if two solenoid valves, zero-force on-off valves, etc. are provided and switching control is performed as described in t2 above, similar effects can be obtained.
以上説明したとおり、この発明の空気調和装置は、1台
の熱源機と、複数台の室内機とを、第11第2の接続配
管を介して接続したものにおいて、上記複数台の室内機
の一方を上記第1の接続配管または、第2の接続配管に
切り替え可能に接続してなる第1の分岐部と、上記複数
台の室内機の他方を、室内機に接続された第1の流量制
御装置を介して第2の接続配管に接続してなる第2の分
岐部に接続し、更に第2の流量制御装置を介して、上記
第1の分岐部と第2の分岐部を接続し、上記第1の分岐
部、第2の流量制御装置、及び第2の分岐部を内蔵した
中継機を、上記熱源機と上記複数台の室内機との間に介
在させ、上記熱源機と上記中継機との間を、第1及び第
2の接続配管を接続するようにしたので、複数台の室内
機を選択的に、かつ同時に冷房運転、暖房運転とに選択
的に行うことができる。As explained above, the air conditioner of the present invention is one in which one heat source device and a plurality of indoor units are connected via the eleventh and second connection pipes. A first branch part in which one of the plurality of indoor units is switchably connected to the first connection pipe or the second connection pipe, and the other of the plurality of indoor units is connected to a first flow rate connected to the indoor unit. Connecting to a second branch part connected to a second connecting pipe via a control device, and further connecting the first branch part and the second branch part via a second flow rate control device. , a repeater incorporating the first branch part, the second flow rate control device, and the second branch part is interposed between the heat source machine and the plurality of indoor units, and Since the first and second connecting pipes are connected to the repeater, a plurality of indoor units can be selectively operated for cooling and heating at the same time.
また、中継機を、熱源機と複数台の室内機を接続する2
本の延長配管の間に設け、熱源機と中継機、中継機と複
数台の室内機間の接続配管をそれぞれの室内機に対し、
往路、復路の2本の配管だけで行うことができ、熱源機
と複数台の室内機を接続する長い接続配管が従来の2本
で良く据付工事性も良く、費用も安いというメリットが
ある。In addition, a repeater can be used to connect a heat source device and multiple indoor units.
Install between the main extension pipes, connect the heat source equipment and the repeater, and connect the repeater and multiple indoor units to each indoor unit.
This can be done with only two pipes, one for the outward and one for the return journey, and the advantages are that the long connection pipes connecting the heat source unit and multiple indoor units are reduced to two compared to the conventional method, and the installation work is easy and the cost is low.
第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図、第2図は第1図で示した一実
施例の冷房または暖房のみの運転動作状態図、第3図は
第1図で示した一実施例の暖房主体(暖房運転容量が冷
房運転容量より大きい場合)の運転動作状態図、第4図
は第1図で示した一実施例の冷房主体(冷房運転容量が
暖房運転容量より大きい場合)を示す運転動作状態図、
第5図はこの発明の他の実施例の空気調和装置の冷媒系
を中心とする全体構成図である。
図において、(ト)は熱源機、[F])、C)、■)は
室内機、[F])は中継機、(1)は圧縮機、(2)は
熱源機の4方弁、(3)は熱源機側熱交換器、(4)は
アキュムレータ、(5)は室内側熱交換器、(6)は第
1の接続配管、(6b) 。
(6c) 、 (6d)は室内機側の第1の接続配管、
(7)は第2の接続配管、(7b)、 (7c) 、
(7d)は室内機側の第2の接続配管、(8)は三方
切替弁、(9)は第1の流量制御装置、QIは第1の分
岐部、(ロ)は第2の分岐部、@は第2の流量制御装置
。
なお、図中、同一符号は、同一または相当部分を示す。FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a first embodiment of the present invention, and FIG. 2 is an operational status diagram of only cooling or heating of the embodiment shown in FIG. 1. Fig. 3 is a diagram of the operation state of the heating main body (when the heating operation capacity is larger than the cooling operation capacity) of the embodiment shown in Fig. 1, and Fig. 4 is the cooling main main unit of the embodiment shown in Fig. 1. (When the cooling operation capacity is larger than the heating operation capacity)
FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention. In the figure, (G) is the heat source machine, [F]), C), ■) are the indoor units, [F]) is the repeater, (1) is the compressor, (2) is the four-way valve of the heat source machine, (3) is a heat exchanger on the heat source equipment side, (4) is an accumulator, (5) is an indoor heat exchanger, (6) is a first connection pipe, and (6b). (6c) and (6d) are the first connection pipes on the indoor unit side;
(7) is the second connection pipe, (7b), (7c),
(7d) is the second connection pipe on the indoor unit side, (8) is the three-way switching valve, (9) is the first flow rate control device, QI is the first branch, and (b) is the second branch. , @ is the second flow rate control device. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
タ等よりなる1台の熱源機と、室内側熱交換器、第1の
流量制御装置等からなる複数台の室内機とを、第1、第
2の接続配管を介して接続したものにおいて、上記複数
台の室内機の一方を上記第1の接続配管または、第2の
接続配管に切り替え可能に接続してなる第1の分岐部と
、上記複数台の室内機の他方を、室内機に接続された第
1の流量制御装置を介して第2の接続配管に接続してな
る第2の分岐部に接続し、更に第2の流量制御装置を介
して、上記第1の分岐部と第2の分岐部とを接続し、上
記第1の分岐部、第2の流量制御装置及び第2の分岐部
を内蔵させた中継機を、上記熱源機と上記複数台の室内
機との間に介在させ、上記熱源機と上記中継機との間を
、第1及び第2の接続配管を延長して接続するようにし
たことを特徴とする冷暖同時運転可能な空気調和装置。1. One heat source machine consisting of a compressor, a four-way valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. , connected via a second connection pipe, with a first branch part formed by connecting one of the plurality of indoor units to the first connection pipe or the second connection pipe in a switchable manner; , the other of the plurality of indoor units is connected to a second branch part formed by connecting to a second connection piping via a first flow rate control device connected to the indoor unit, and further a second flow rate is controlled. A repeater that connects the first branch part and the second branch part through a control device and incorporates the first branch part, the second flow rate control device, and the second branch part, The heat source device is interposed between the heat source device and the plurality of indoor units, and the heat source device and the relay device are connected by extending first and second connection pipes. An air conditioner that can be used for cooling and heating simultaneously.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63273771A JPH0743187B2 (en) | 1988-10-28 | 1988-10-28 | Air conditioner |
KR1019890011915A KR920008504B1 (en) | 1988-10-17 | 1989-08-22 | Air conditioner |
AU42562/89A AU615347B2 (en) | 1988-10-17 | 1989-10-04 | Air conditioning device |
US07/417,207 US4987747A (en) | 1988-10-17 | 1989-10-04 | Air conditioning device |
EP89118584A EP0364834B1 (en) | 1988-10-17 | 1989-10-06 | Air conditioning device |
ES89118584T ES2051338T3 (en) | 1988-10-17 | 1989-10-06 | AIR CONDITIONING DEVICE. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63273771A JPH0743187B2 (en) | 1988-10-28 | 1988-10-28 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02118372A true JPH02118372A (en) | 1990-05-02 |
JPH0743187B2 JPH0743187B2 (en) | 1995-05-15 |
Family
ID=17532353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63273771A Expired - Lifetime JPH0743187B2 (en) | 1988-10-17 | 1988-10-28 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0743187B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0552437A (en) * | 1991-08-28 | 1993-03-02 | Mitsubishi Electric Corp | Air-conditioner |
JPH05172434A (en) * | 1991-12-17 | 1993-07-09 | Mitsubishi Electric Corp | Air conditioning apparatus |
US5237833A (en) * | 1991-01-10 | 1993-08-24 | Mitsubishi Denki Kabushiki Kaisha | Air-conditioning system |
US5297392A (en) * | 1991-05-09 | 1994-03-29 | Mitsubishi Denki Kabushiki Kaisha | Air conditioning apparatus |
US5347826A (en) * | 1992-05-28 | 1994-09-20 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
WO2009133644A1 (en) | 2008-04-30 | 2009-11-05 | 三菱電機株式会社 | Air conditioner |
WO2009133640A1 (en) | 2008-04-30 | 2009-11-05 | 三菱電機株式会社 | Air conditioner |
WO2010050007A1 (en) | 2008-10-29 | 2010-05-06 | 三菱電機株式会社 | Air conditioner |
WO2010050006A1 (en) | 2008-10-29 | 2010-05-06 | 三菱電機株式会社 | Air conditioner |
WO2010109571A1 (en) | 2009-03-23 | 2010-09-30 | 三菱電機株式会社 | Air conditioner |
WO2010119555A1 (en) | 2009-04-17 | 2010-10-21 | 三菱電機株式会社 | Heating medium converter and air-conditioning device |
WO2010119560A1 (en) | 2009-04-17 | 2010-10-21 | 三菱電機株式会社 | Valve block, valve block unit, and method for inspecting the valve block unit |
WO2010128557A1 (en) | 2009-05-08 | 2010-11-11 | 三菱電機株式会社 | Air conditioner |
WO2011033652A1 (en) | 2009-09-18 | 2011-03-24 | 三菱電機株式会社 | Air conditioning device |
WO2011064830A1 (en) * | 2009-11-30 | 2011-06-03 | 三菱電機株式会社 | Air-conditioning device |
WO2011064827A1 (en) | 2009-11-30 | 2011-06-03 | 三菱電機株式会社 | Air-conditioning device |
EP1816416B1 (en) * | 2004-11-25 | 2019-06-19 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
-
1988
- 1988-10-28 JP JP63273771A patent/JPH0743187B2/en not_active Expired - Lifetime
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5237833A (en) * | 1991-01-10 | 1993-08-24 | Mitsubishi Denki Kabushiki Kaisha | Air-conditioning system |
US5297392A (en) * | 1991-05-09 | 1994-03-29 | Mitsubishi Denki Kabushiki Kaisha | Air conditioning apparatus |
JPH0552437A (en) * | 1991-08-28 | 1993-03-02 | Mitsubishi Electric Corp | Air-conditioner |
JPH05172434A (en) * | 1991-12-17 | 1993-07-09 | Mitsubishi Electric Corp | Air conditioning apparatus |
US5347826A (en) * | 1992-05-28 | 1994-09-20 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
EP1816416B1 (en) * | 2004-11-25 | 2019-06-19 | Mitsubishi Denki Kabushiki Kaisha | Air conditioner |
US8820106B2 (en) | 2008-04-30 | 2014-09-02 | Mitsubishi Electric Corporation | Air conditioning apparatus |
WO2009133644A1 (en) | 2008-04-30 | 2009-11-05 | 三菱電機株式会社 | Air conditioner |
WO2009133640A1 (en) | 2008-04-30 | 2009-11-05 | 三菱電機株式会社 | Air conditioner |
US9212825B2 (en) | 2008-04-30 | 2015-12-15 | Mitsubishi Electric Corporation | Air conditioner |
WO2010050007A1 (en) | 2008-10-29 | 2010-05-06 | 三菱電機株式会社 | Air conditioner |
US9353979B2 (en) | 2008-10-29 | 2016-05-31 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2010050006A1 (en) | 2008-10-29 | 2010-05-06 | 三菱電機株式会社 | Air conditioner |
US8943849B2 (en) | 2009-03-23 | 2015-02-03 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2010109571A1 (en) | 2009-03-23 | 2010-09-30 | 三菱電機株式会社 | Air conditioner |
US9062787B2 (en) | 2009-04-17 | 2015-06-23 | Mitsubishi Electric Corporation | Valve block, and valve block unit |
WO2010119560A1 (en) | 2009-04-17 | 2010-10-21 | 三菱電機株式会社 | Valve block, valve block unit, and method for inspecting the valve block unit |
WO2010119555A1 (en) | 2009-04-17 | 2010-10-21 | 三菱電機株式会社 | Heating medium converter and air-conditioning device |
EP2428749A4 (en) * | 2009-05-08 | 2018-01-10 | Mitsubishi Electric Corporation | Air conditioner |
US8881548B2 (en) | 2009-05-08 | 2014-11-11 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2010128557A1 (en) | 2009-05-08 | 2010-11-11 | 三菱電機株式会社 | Air conditioner |
JP5241923B2 (en) * | 2009-09-18 | 2013-07-17 | 三菱電機株式会社 | Air conditioner |
US9279591B2 (en) | 2009-09-18 | 2016-03-08 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
JPWO2011033652A1 (en) * | 2009-09-18 | 2013-02-07 | 三菱電機株式会社 | Air conditioner |
WO2011033652A1 (en) | 2009-09-18 | 2011-03-24 | 三菱電機株式会社 | Air conditioning device |
WO2011064827A1 (en) | 2009-11-30 | 2011-06-03 | 三菱電機株式会社 | Air-conditioning device |
US8733120B2 (en) | 2009-11-30 | 2014-05-27 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
JP5436575B2 (en) * | 2009-11-30 | 2014-03-05 | 三菱電機株式会社 | Air conditioner |
JPWO2011064827A1 (en) * | 2009-11-30 | 2013-04-11 | 三菱電機株式会社 | Air conditioner |
WO2011064830A1 (en) * | 2009-11-30 | 2011-06-03 | 三菱電機株式会社 | Air-conditioning device |
Also Published As
Publication number | Publication date |
---|---|
JPH0743187B2 (en) | 1995-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5063752A (en) | Air conditioning apparatus | |
JPH02118372A (en) | Air-conditioning device | |
JPH01134172A (en) | Air conditioner | |
JP2004324947A (en) | Air conditioning system | |
JP3655523B2 (en) | Multi-type air conditioner | |
JP2503669B2 (en) | Air conditioner | |
JPH0293263A (en) | Air conditioning device | |
JP2616525B2 (en) | Air conditioner | |
JP4075072B2 (en) | Heat pump circuit for air conditioning | |
JPH0754218B2 (en) | Air conditioner | |
JP2503668B2 (en) | Air conditioner | |
JPH0311276A (en) | Air conditioner | |
JPH0765825B2 (en) | Air conditioner | |
JPH0752044B2 (en) | Air conditioner | |
JP2002089996A (en) | Multi-chamber type air conditioner | |
JPH0325256A (en) | Multi-room type air conditioner | |
JPH046362A (en) | Air-conditioner | |
JPH05172430A (en) | Air conditioning apparatus | |
JP2002156167A (en) | Multi-chamber type air conditioner | |
JP2723380B2 (en) | Air conditioner | |
JPH07104075B2 (en) | Air conditioner | |
JPH04110573A (en) | Air conditioner | |
JP2800472B2 (en) | Air conditioner | |
JPH02279962A (en) | Air conditioner | |
JPH06221716A (en) | Refrigeration cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080515 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090515 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090515 Year of fee payment: 14 |