JP4075072B2 - Heat pump circuit for air conditioning - Google Patents

Heat pump circuit for air conditioning Download PDF

Info

Publication number
JP4075072B2
JP4075072B2 JP2005042089A JP2005042089A JP4075072B2 JP 4075072 B2 JP4075072 B2 JP 4075072B2 JP 2005042089 A JP2005042089 A JP 2005042089A JP 2005042089 A JP2005042089 A JP 2005042089A JP 4075072 B2 JP4075072 B2 JP 4075072B2
Authority
JP
Japan
Prior art keywords
low
pipe
pressure gas
refrigerant
pressure liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042089A
Other languages
Japanese (ja)
Other versions
JP2006226626A (en
Inventor
勝博 浦野
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2005042089A priority Critical patent/JP4075072B2/en
Publication of JP2006226626A publication Critical patent/JP2006226626A/en
Application granted granted Critical
Publication of JP4075072B2 publication Critical patent/JP4075072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は空調用ヒートポンプ回路に関するものである。   The present invention relates to a heat pump circuit for air conditioning.

熱源側熱交換器と圧縮機と複数の給気側熱交換器を備え、例えば一方の給気側熱交換器で空気冷却(冷房)し、他方の給気側熱交換器で空気加熱(暖房)できる空調用ヒートポンプ回路として、特開昭61−110859号公報のものがある。これは、圧縮機の冷媒出口を高圧ガス管に、冷媒入口を低圧ガス管に接続し、熱源側熱交換器の冷媒出入口の一方を、高圧ガス管と低圧ガス管に切換自在に接続し、熱源側熱交換器の冷媒出入口の他方を膨張弁を介して液管に接続し、各給気側熱交換器の冷媒出入口の一方を、高圧ガス管と低圧ガス管に切換自在に接続し、各給気側熱交換器の冷媒出入口の他方を、膨張弁を介して液管に接続し、構成している。   A heat source side heat exchanger, a compressor, and a plurality of air supply side heat exchangers are provided. For example, air cooling (cooling) is performed with one air supply side heat exchanger, and air heating (heating) is performed with the other air supply side heat exchanger. As a heat pump circuit for air conditioning, there is one disclosed in JP-A-61-110859. The refrigerant outlet of the compressor is connected to the high-pressure gas pipe, the refrigerant inlet is connected to the low-pressure gas pipe, and one of the refrigerant inlets and outlets of the heat source side heat exchanger is switchably connected to the high-pressure gas pipe and the low-pressure gas pipe. The other of the refrigerant inlet / outlet of the heat source side heat exchanger is connected to the liquid pipe via an expansion valve, and one of the refrigerant inlet / outlet of each air supply side heat exchanger is connected to the high pressure gas pipe and the low pressure gas pipe in a switchable manner, The other refrigerant inlet / outlet of each air supply side heat exchanger is connected to a liquid pipe via an expansion valve.

特開昭61−110859号公報JP-A-61-110859

このような構成では、熱交換器毎に膨張弁が必要となり回路が複雑で製作に手間がかかりコストアップとなる問題がある。また、電子膨張弁を用いた場合、個々の膨張弁制御が必要で制御が複雑となる。   In such a configuration, there is a problem that an expansion valve is required for each heat exchanger, the circuit is complicated, and it takes time and effort to manufacture. In addition, when an electronic expansion valve is used, control of each expansion valve is necessary and the control becomes complicated.

本発明は上記課題を解決するため、循環冷媒の蒸発工程と凝縮工程を行う熱源側熱交換器及び複数の給気側熱交換器と、循環冷媒を圧縮する圧縮機と、循環冷媒を膨張させる膨張弁と、低圧液管及び高圧液管と、低圧ガス管と高圧ガス管と、を少なくとも備え、前記圧縮機の冷媒出口を前記高圧ガス管に接続すると共に前記圧縮機の冷媒入口を前記低圧ガス管に接続し、前記熱源側熱交換器の冷媒出入口の一方を、前記高圧ガス管と前記低圧ガス管に切換自在に接続し、前記熱源側熱交換器の冷媒出入口の他方を、前記高圧液管と前記低圧液管に切換自在に接続し、前記各給気側熱交換器の冷媒出入口の一方を、前記高圧ガス管と前記低圧ガス管に切換自在に接続し、前記各給気側熱交換器の冷媒出入口の他方を、前記高圧液管と前記低圧液管に切換自在に接続し、前記高圧液管と前記低圧液管とを前記膨張弁を介して接続したことを最も主要な特徴とする。   In order to solve the above-described problems, the present invention provides a heat source side heat exchanger and a plurality of air supply side heat exchangers that perform an evaporation process and a condensation process of the circulating refrigerant, a compressor that compresses the circulating refrigerant, and the circulating refrigerant is expanded. An expansion valve, a low-pressure liquid pipe and a high-pressure liquid pipe, and a low-pressure gas pipe and a high-pressure gas pipe. The refrigerant outlet of the compressor is connected to the high-pressure gas pipe and the refrigerant inlet of the compressor is connected to the low-pressure gas pipe. Connected to a gas pipe, one of the refrigerant inlets and outlets of the heat source side heat exchanger is switchably connected to the high pressure gas pipe and the low pressure gas pipe, and the other of the refrigerant inlets and outlets of the heat source side heat exchanger is connected to the high pressure gas A liquid pipe and a low-pressure liquid pipe are switchably connected, and one of the refrigerant inlets and outlets of each of the supply-side heat exchangers is switchably connected to the high-pressure gas pipe and the low-pressure gas pipe. The other side of the refrigerant inlet / outlet of the heat exchanger is connected to the high pressure liquid pipe and the low pressure liquid. Switching freely connected to the most important feature that the said low-pressure liquid pipe between the high pressure liquid pipe is connected through the expansion valve.

請求項1の発明によれば、高価な膨張弁が1つで済み、構造が簡略化されて配管作業などが容易となるので小型化でき、コストダウンを図れ、制御も簡単になる。各々の給気側熱交換器の冷媒出入口の他方と高圧液管と低圧液管との接続切換の制御と、熱源側熱交換器の冷媒出入口の他方と高圧液管と低圧液管との接続切換の制御と、が各々不要で、かつ高価な3方弁や電磁開閉弁を使わずに済み、コストダウンを図れる。 According to the first aspect of the present invention, only one expensive expansion valve is required, the structure is simplified and piping work is facilitated, so that the size can be reduced, the cost can be reduced, and the control can be simplified. Control of connection switching between the other refrigerant inlet / outlet of each air supply side heat exchanger, the high pressure liquid pipe and the low pressure liquid pipe, and connection between the other refrigerant inlet / outlet of the heat source side heat exchanger, the high pressure liquid pipe and the low pressure liquid pipe Switching control is unnecessary, and it is not necessary to use expensive three-way valves or electromagnetic on-off valves, thereby reducing costs.

図1は、本発明の空調用ヒートポンプ回路の一実施例を示しており、この空調用ヒートポンプ回路は、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気や熱源水に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程を行う少なくとも1つの熱源側熱交換器1及び複数の給気側熱交換器2…と、循環冷媒を圧縮する圧縮機3と、循環冷媒を膨張させる温度自動膨張弁や電子膨張弁などの膨張弁4と、低圧液管A及び高圧液管Bと、低圧ガス管Cと高圧ガス管Dと、を少なくとも備え、例えば図2のような空調機10に、送風機11と共に一体に内設され、給気側熱交換器2で熱交換された空気を送風機11で空調ゾーンへ給気し、冷房運転のみ、暖房運転のみ、冷暖同時運転、を切換自在に行う。給気側熱交換器2は給気用空気で熱交換する空冷式とし、また、熱源側熱交換器1は、水熱源媒体にて熱交換する水冷式と、空気熱源媒体にて熱交換する空冷式のいずれであってもよいが、図は水冷式を例示している。   FIG. 1 shows an embodiment of an air conditioning heat pump circuit according to the present invention. This air conditioning heat pump circuit repeats the steps of evaporation, compression, condensation, and expansion with respect to the circulating refrigerant. In the refrigerant evaporation process, heat is absorbed in the refrigerant evaporation process with respect to the air or heat source water to be exchanged, and at least one heat source side heat exchanger 1 and a plurality of supply air that perform the evaporation process and the condensation process of the circulating refrigerant A side heat exchanger 2... A compressor 3 that compresses the circulating refrigerant, an expansion valve 4 such as a temperature automatic expansion valve or an electronic expansion valve that expands the circulating refrigerant, a low pressure liquid pipe A and a high pressure liquid pipe B, and a low pressure At least a gas pipe C and a high-pressure gas pipe D are provided. For example, an air conditioner 10 as shown in FIG. To supply air to the air-conditioning zone. It rolling only, carried out simultaneous heating and cooling operation, the freely switching. The supply-side heat exchanger 2 is an air-cooling type that exchanges heat with supply air, and the heat-source-side heat exchanger 1 exchanges heat using a water-cooling type that exchanges heat using a water heat source medium and an air heat source medium. Although the air cooling method may be used, the drawing illustrates the water cooling method.

図1に示すように、圧縮機3の冷媒出口を高圧ガス管Dに接続すると共に圧縮機3の冷媒入口を低圧ガス管Cに接続し、熱源側熱交換器1の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに開閉弁8a、8bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、熱源側熱交換器1の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第一分岐管には高圧液管方向へのみ冷媒を流す第一逆止弁5aを設け、かつ低圧液管側の第二分岐管には熱源側熱交換器方向へのみ冷媒を流す第二逆止弁5bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、熱源側熱交換器1の冷媒出入口の他方と第一・第二分岐管との間に開閉弁9を設ける。   As shown in FIG. 1, the refrigerant outlet of the compressor 3 is connected to the high-pressure gas pipe D, the refrigerant inlet of the compressor 3 is connected to the low-pressure gas pipe C, and one of the refrigerant inlets and outlets of the heat source side heat exchanger 1 is The high-pressure gas pipe D and the low-pressure gas pipe C are branched and connected via the on-off valves 8a and 8b, and are connected to the high-pressure gas pipe D and the low-pressure gas pipe C so as to be switchable. The other is branchedly connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A, and the first check valve 5a for flowing the refrigerant only in the direction of the high-pressure liquid pipe is provided in the first branch pipe on the high-pressure liquid pipe side. The second branch pipe on the pipe side is provided with a second check valve 5b that allows the refrigerant to flow only in the direction of the heat source side heat exchanger, and is connected to the high pressure liquid pipe B and the low pressure liquid pipe A in a switchable manner, and heat source side heat exchange is performed. An on-off valve 9 is provided between the other refrigerant inlet / outlet of the vessel 1 and the first and second branch pipes.

さらに、各給気側熱交換器2の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに開閉弁8a、8bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、各給気側熱交換器2の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第三分岐管には高圧液管方向へのみ冷媒を流す第三逆止弁6aを設け、かつ低圧液管側の第四分岐管には給気側熱交換器方向へのみ冷媒を流す第四逆止弁6bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、各給気側熱交換器2の冷媒出入口の他方と前記第三・第四分岐管との間に開閉弁7を設け、高圧液管Bと低圧液管Aとを膨張弁4を介して接続する。なお、図示省略するが、膨張弁4を電子膨張弁とした場合は、圧縮機3の冷媒温度と冷媒圧力により膨張弁操作を行い制御する。開閉弁7、8a、8b、9は電磁弁などを用いる。   Furthermore, one of the refrigerant inlets and outlets of each supply side heat exchanger 2 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via the on-off valves 8a and 8b, so that the high-pressure gas pipe D and the low-pressure gas pipe C are connected. The other refrigerant inlet / outlet of each air supply side heat exchanger 2 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A, and the third branch pipe on the high pressure liquid pipe side is connected to the high pressure liquid. A third check valve 6a for flowing the refrigerant only in the pipe direction is provided, and a fourth check valve 6b for flowing the refrigerant only in the direction of the supply air heat exchanger is provided in the fourth branch pipe on the low pressure liquid pipe side, A high-pressure liquid pipe B and a low-pressure liquid pipe A are switchably connected, and an on-off valve 7 is provided between the other refrigerant inlet / outlet of each air supply side heat exchanger 2 and the third and fourth branch pipes. The pipe B and the low-pressure liquid pipe A are connected via the expansion valve 4. Although not shown, when the expansion valve 4 is an electronic expansion valve, the expansion valve is operated and controlled by the refrigerant temperature and refrigerant pressure of the compressor 3. As the on-off valves 7, 8a, 8b, 9, solenoid valves or the like are used.

この空調用ヒートポンプ回路を設けた空調機10で冷房運転する場合は、図3のように、熱源側熱交換器1の冷媒出入口の一方の高圧ガス管側の開閉弁8aを開および低圧ガス管側の開閉弁8bを閉にし、2つの給気側熱交換器2の冷媒出入口の一方の高圧ガス管側の開閉弁8aを閉および低圧ガス管側の開閉弁8bを開にし、開閉弁7、9を開にする。これにより冷媒が、圧縮機3から高圧ガス状態で熱源側熱交換器1に流れ、凝縮して高圧液状態で膨張弁4に流れ、減圧して低圧液状態で一方の給気側熱交換器2と他方の給気側熱交換器2に分流し、各々蒸発して低圧ガス状態で合流して圧縮機3に戻り、このサイクルを繰返す。このようにして給気側熱交換器2にて給気用空気を冷却して冷房運転を行うが、一方の給気側熱交換器2のみ冷房運転する場合は、運転側の開閉弁7を開および停止側の開閉弁7を閉にする。なお、図例において、塗りつぶした開閉弁で閉状態を、塗りつぶしていない開閉弁で開状態を、実線の配管で冷媒流通状態を、点線の配管で冷媒停止状態を、各々示している。   When the cooling operation is performed by the air conditioner 10 provided with the heat pump circuit for air conditioning, the on-off valve 8a on the one high-pressure gas pipe side of the refrigerant inlet / outlet of the heat source side heat exchanger 1 is opened and the low-pressure gas pipe as shown in FIG. Side open / close valve 8b is closed, one open / close valve 8b on the high-pressure gas pipe side of the refrigerant inlet / outlet of the two supply-side heat exchangers 2 is closed, and open / close valve 8b on the low-pressure gas pipe side is opened. , 9 is opened. As a result, the refrigerant flows from the compressor 3 to the heat source side heat exchanger 1 in a high pressure gas state, condenses and flows to the expansion valve 4 in a high pressure liquid state, and is decompressed to one supply side heat exchanger in a low pressure liquid state. 2 and the other supply air side heat exchanger 2, each of which is evaporated and merged in a low-pressure gas state and returned to the compressor 3, and this cycle is repeated. In this way, the air supply air is cooled by the air supply side heat exchanger 2 to perform the cooling operation. When only one of the air supply side heat exchangers 2 is to be cooled, the opening / closing valve 7 on the operation side is opened. The on-off valve 7 on the open and stop sides is closed. In the illustrated example, a closed state is indicated by a solid on-off valve, an open state is indicated by an unopened on-off valve, a refrigerant flow state is indicated by a solid line, and a refrigerant stop state is indicated by a dotted line.

次に、暖房運転する場合は、図4のように、熱源側熱交換器1の冷媒出入口の一方の高圧ガス管側の開閉弁8aを閉および低圧ガス管側の開閉弁8bを開にし、2つの給気側熱交換器2の冷媒出入口の一方の高圧ガス管側の開閉弁8aを開および低圧ガス管側の開閉弁8bを閉にし、開閉弁7、9を開にする。これにより冷媒が、圧縮機3から高圧ガス状態で一方の給気側熱交換器2と他方の給気側熱交換器2に分流し、各々凝縮して高圧液状態で合流して膨張弁4に流れ、減圧して低圧液状態で熱源側熱交換器1に流れ、蒸発して低圧ガス状態で圧縮機3に戻り、このサイクルを繰返す。このようにして給気側熱交換器2にて給気用空気を加熱して暖房運転を行うが、一方の給気側熱交換器2のみ暖房運転する場合は、運転側の開閉弁7を開および停止側の開閉弁7を閉にする。   Next, in the case of heating operation, as shown in FIG. 4, one of the refrigerant inlets and outlets of the heat source side heat exchanger 1 is closed on the high pressure gas pipe side on-off valve 8 a and the low pressure gas pipe side on-off valve 8 b is opened, The on-off valve 8a on the high-pressure gas pipe side of the refrigerant inlet / outlet of the two supply-side heat exchangers 2 is opened, the on-off valve 8b on the low-pressure gas pipe side is closed, and the on-off valves 7 and 9 are opened. As a result, the refrigerant is diverted from the compressor 3 to the one supply side heat exchanger 2 and the other supply side heat exchanger 2 in the high pressure gas state, condenses and merges in the high pressure liquid state to expand the expansion valve 4. Then, the pressure is reduced and flows to the heat source side heat exchanger 1 in a low-pressure liquid state, evaporates and returns to the compressor 3 in a low-pressure gas state, and this cycle is repeated. In this way, the air supply side heat exchanger 2 heats the supply air to perform the heating operation. When only one of the air supply side heat exchangers 2 performs the heating operation, the operation side on-off valve 7 is turned on. The on-off valve 7 on the open and stop sides is closed.

次に、暖房運転と冷房運転を同時にし暖房負荷と冷房負荷に差があり冷房負荷の方が大きい場合は、図5のように、熱源側熱交換器1の冷媒出入口の一方の高圧ガス管側の開閉弁8aを開および低圧ガス管側の開閉弁8bを閉にし、一方の給気側熱交換器2(図例では左側)の冷媒出入口の一方の高圧ガス管側の開閉弁8aを開および低圧ガス管側の開閉弁8bを閉にし、他方の給気側熱交換器2(図例では右側)の冷媒出入口の一方の高圧ガス管側の開閉弁8aを閉および低圧ガス管側の開閉弁8bを開にし、開閉弁7、9を開にする。これにより冷媒が、圧縮機3から高圧ガス状態で熱源側熱交換器1と一方の給気側熱交換器2に分流し、各々凝縮して高圧液状態で合流して膨張弁4に流れ、減圧して低圧液状態で他方の給気側熱交換器2に流れ、蒸発して低圧ガス状態で圧縮機3に戻り、このサイクルを繰返す。このようにして一方の給気側熱交換器2にて給気用空気を加熱して暖房運転を行い、他方の給気側熱交換器2にて給気用空気を冷却して冷房運転を行う。   Next, when the heating operation and the cooling operation are performed at the same time and there is a difference between the heating load and the cooling load and the cooling load is larger, one high-pressure gas pipe at the refrigerant inlet / outlet of the heat source side heat exchanger 1 as shown in FIG. The open / close valve 8a on the side and the open / close valve 8b on the low-pressure gas pipe side are closed, and the open / close valve 8a on the one high-pressure gas pipe side of the refrigerant inlet / outlet of one supply-side heat exchanger 2 (left side in the figure) is opened. The on-off valve 8b on the open and low-pressure gas pipe side is closed, and the on-off valve 8a on the one high-pressure gas pipe side of the refrigerant inlet / outlet of the other air supply side heat exchanger 2 (right side in the example) is closed and on the low-pressure gas pipe side The on-off valve 8b is opened, and the on-off valves 7 and 9 are opened. As a result, the refrigerant is split from the compressor 3 into the heat source side heat exchanger 1 and one of the air supply side heat exchangers 2 in a high pressure gas state, condensed and joined in a high pressure liquid state to the expansion valve 4. The pressure is reduced and the refrigerant flows into the other supply-side heat exchanger 2 in the low-pressure liquid state, evaporates and returns to the compressor 3 in the low-pressure gas state, and this cycle is repeated. In this way, one of the supply-side heat exchangers 2 heats the supply air to perform heating operation, and the other supply-side heat exchanger 2 cools the supply air to perform cooling operation. Do.

次に、暖房運転と冷房運転を同時にし暖房負荷と冷房負荷に差があり暖房負荷の方が大きい場合は、図6のように、熱源側熱交換器1の冷媒出入口の一方の高圧ガス管側の開閉弁8aを閉および低圧ガス管側の開閉弁8bを開にし、一方の給気側熱交換器2(図例では左側)の冷媒出入口の一方の高圧ガス管側の開閉弁8aを開および低圧ガス管側の開閉弁8bを閉にし、他方の給気側熱交換器2(図例では右側)の冷媒出入口の一方の高圧ガス管側の開閉弁8aを閉および低圧ガス管側の開閉弁8bを開にし、開閉弁7、9を開にする。これにより冷媒が、圧縮機3から高圧ガス状態で一方の給気側熱交換器2に流れ、凝縮して高圧液状態で膨張弁4に流れ、減圧して低圧液状態で熱源側熱交換器1と他方の給気側熱交換器2に分流し、各々蒸発して低圧ガス状態で合流して圧縮機3に戻り、このサイクルを繰返す。このようにして一方の給気側熱交換器2にて給気用空気を加熱して暖房運転を行い、他方の給気側熱交換器2にて給気用空気を冷却して冷房運転を行う。   Next, when the heating operation and the cooling operation are performed at the same time and there is a difference between the heating load and the cooling load and the heating load is larger, as shown in FIG. 6, one high-pressure gas pipe at the refrigerant inlet / outlet of the heat source side heat exchanger 1 Side open / close valve 8a is closed and low pressure gas pipe side open / close valve 8b is opened, and one high pressure gas pipe side open / close valve 8a on the refrigerant inlet / outlet side of one air supply side heat exchanger 2 (left side in the figure) is opened. The on-off valve 8b on the open and low-pressure gas pipe side is closed, and the on-off valve 8a on the one high-pressure gas pipe side of the refrigerant inlet / outlet of the other air supply side heat exchanger 2 (right side in the example) is closed and on the low-pressure gas pipe side The on-off valve 8b is opened, and the on-off valves 7 and 9 are opened. As a result, the refrigerant flows from the compressor 3 to the one supply side heat exchanger 2 in the high pressure gas state, condenses and flows to the expansion valve 4 in the high pressure liquid state, and is decompressed to the heat source side heat exchanger in the low pressure liquid state. 1 and the other air supply side heat exchanger 2 are diverted, and each is evaporated and merged in a low-pressure gas state and returned to the compressor 3, and this cycle is repeated. In this way, one of the supply-side heat exchangers 2 heats the supply air to perform heating operation, and the other supply-side heat exchanger 2 cools the supply air to perform cooling operation. Do.

以下図示省略するが、前記図5と図6の運転において、暖房負荷と冷房負荷が釣り合う場合、開閉弁9を閉にすることにより、熱源側熱交換器1を使わずに冷暖房同時運転を行えて省エネとなる。また、熱源側熱交換器1を複数として、各熱源側熱交換器1の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに開閉弁8a、8bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、各熱源側熱交換器1の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第一分岐管には高圧液管方向へのみ冷媒を流す第一逆止弁5aを設け、かつ低圧液管側の第二分岐管には熱源側熱交換器方向へのみ冷媒を流す第二逆止弁5bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、各熱源側熱交換器1の冷媒出入口の他方と第一・第二分岐管との間に開閉弁9を設けてもよい。さらに、給気側熱交換器2と開閉弁7、8a、8b、9と逆止弁6a、6bの数の増減や、開閉弁9を省略するも自由である。また、給気側熱交換器2の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに三方弁を介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続したり、熱源側熱交換器1の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに三方弁を介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続してもよい。同様に、給気側熱交換器2の冷媒出入口の他方を、高圧液管Bと低圧液管Aとに三方弁を介して分岐接続して、高圧液管Bと低圧液管Aに切換自在に接続したり、熱源側熱交換器1の冷媒出入口の他方を、高圧液管Bと低圧液管Aとに三方弁を介して分岐接続して、高圧液管Bと低圧液管Aに切換自在に接続してもよい。   Although not shown in the drawings, when the heating load and the cooling load are balanced in the operations shown in FIGS. 5 and 6, by simultaneously closing the on-off valve 9, the simultaneous cooling and heating operation can be performed without using the heat source side heat exchanger 1. Energy saving. Further, a plurality of heat source side heat exchangers 1 are provided, and one of the refrigerant inlets and outlets of each heat source side heat exchanger 1 is branched and connected to the high pressure gas pipe D and the low pressure gas pipe C via the on-off valves 8a and 8b. The high-pressure gas pipe D and the low-pressure gas pipe C are switchably connected, and the other refrigerant inlet / outlet of each heat source side heat exchanger 1 is branched and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A. A first check valve 5a that allows the refrigerant to flow only in the direction of the high-pressure liquid pipe is provided in the first branch pipe, and a second reverse flow in which the refrigerant flows only in the direction of the heat source side heat exchanger in the second branch pipe on the low-pressure liquid pipe side. A stop valve 5b is provided and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A in a switchable manner, and the on-off valve 9 is provided between the other refrigerant inlet / outlet of each heat source side heat exchanger 1 and the first and second branch pipes. May be provided. Furthermore, the number of the supply side heat exchanger 2, the on-off valves 7, 8a, 8b, 9 and the check valves 6a, 6b can be increased or decreased, and the on-off valve 9 can be omitted. One of the refrigerant inlets and outlets of the supply side heat exchanger 2 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via a three-way valve so that the high-pressure gas pipe D and the low-pressure gas pipe C can be switched. Can be connected, or one of the refrigerant inlets and outlets of the heat source side heat exchanger 1 can be branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via a three-way valve to switch between the high-pressure gas pipe D and the low-pressure gas pipe C. You may connect to. Similarly, the other refrigerant inlet / outlet of the supply side heat exchanger 2 is branched and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A via a three-way valve so that the high-pressure liquid pipe B and the low-pressure liquid pipe A can be switched. Or the other refrigerant inlet / outlet of the heat source side heat exchanger 1 is branched and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A via a three-way valve to switch to the high-pressure liquid pipe B and the low-pressure liquid pipe A. You may connect freely.

空調用ヒートポンプ回路の一実施例。An example of a heat pump circuit for air conditioning. 本発明を用いた空調機の説明図。Explanatory drawing of the air conditioner using this invention. 冷房運転の説明図。Explanatory drawing of air_conditionaing | cooling operation. 暖房運転の説明図。Explanatory drawing of heating operation. 冷暖房同時運転の説明図。Explanatory drawing of air-conditioning simultaneous operation. 他の冷暖房同時運転の説明図。Explanatory drawing of other air-conditioning simultaneous operation.

符号の説明Explanation of symbols

1 熱源側熱交換器
2 給気側熱交換器
3 圧縮機
4 膨張弁
5a 第一逆止弁
5b 第二逆止弁
6a 第三逆止弁
6b 第四逆止弁
A 低圧液管
B 高圧液管
C 低圧ガス管
D 高圧ガス管
DESCRIPTION OF SYMBOLS 1 Heat source side heat exchanger 2 Supply air side heat exchanger 3 Compressor 4 Expansion valve 5a First check valve 5b Second check valve 6a Third check valve 6b Fourth check valve A Low pressure liquid pipe B High pressure liquid Pipe C Low pressure gas pipe D High pressure gas pipe

Claims (1)

循環冷媒の蒸発工程と凝縮工程を行う熱源側熱交換器1及び複数の給気側熱交換器2…と、循環冷媒を圧縮する圧縮機3と、循環冷媒を膨張させる膨張弁4と、低圧液管A及び高圧液管Bと、低圧ガス管Cと高圧ガス管Dと、を少なくとも備え、前記圧縮機3の冷媒出口を前記高圧ガス管Dに接続すると共に前記圧縮機3の冷媒入口を前記低圧ガス管Cに接続し、前記熱源側熱交換器1の冷媒出入口の一方を、前記高圧ガス管Dと前記低圧ガス管Cとに開閉弁8a、8bを介して分岐接続して、前記高圧ガス管Dと前記低圧ガス管Cに切換自在に接続し、前記熱源側熱交換器1の冷媒出入口の他方を、前記高圧液管Bと前記低圧液管Aに分岐接続すると共に、高圧液管側の第一分岐管には高圧液管方向へのみ冷媒を流す第一逆止弁5aを設け、かつ低圧液管側の第二分岐管には熱源側熱交換器方向へのみ冷媒を流す第二逆止弁5bを設けて、前記高圧液管Bと前記低圧液管Aに切換自在に接続し、前記各給気側熱交換器2の冷媒出入口の一方を、前記高圧ガス管Dと前記低圧ガス管Cとに開閉弁8a、8bを介して分岐接続して、前記高圧ガス管Dと前記低圧ガス管Cに切換自在に接続し、前記各給気側熱交換器2の冷媒出入口の他方を、前記高圧液管Bと前記低圧液管Aに分岐接続すると共に、高圧液管側の第三分岐管には高圧液管方向へのみ冷媒を流す第三逆止弁6aを設け、かつ低圧液管側の第四分岐管には給気側熱交換器方向へのみ冷媒を流す第四逆止弁6bを設けて、前記高圧液管Bと前記低圧液管Aに切換自在に接続し、前記高圧液管Bと前記低圧液管Aとを前記膨張弁4を介して接続したことを特徴とする空調用ヒートポンプ回路。 A heat source side heat exchanger 1 and a plurality of air supply side heat exchangers 2 that perform an evaporation process and a condensation process of the circulating refrigerant, a compressor 3 that compresses the circulating refrigerant, an expansion valve 4 that expands the circulating refrigerant, and a low pressure At least a liquid pipe A and a high-pressure liquid pipe B, a low-pressure gas pipe C, and a high-pressure gas pipe D. The refrigerant outlet of the compressor 3 is connected to the high-pressure gas pipe D and the refrigerant inlet of the compressor 3 is connected. Connected to the low-pressure gas pipe C, one of the refrigerant inlets and outlets of the heat source side heat exchanger 1 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via on-off valves 8a and 8b, The high pressure gas pipe D and the low pressure gas pipe C are switchably connected, and the other refrigerant inlet / outlet of the heat source side heat exchanger 1 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A. The first branch pipe on the pipe side is provided with a first check valve 5a that allows the refrigerant to flow only in the direction of the high-pressure liquid pipe. And the second branch of the low-pressure liquid pipe side is provided a second check valve 5b to flow only refrigerant to the heat source-side heat exchanger direction, switching freely connected to the high pressure liquid pipe B and the low-pressure liquid pipe A One of the refrigerant inlets and outlets of each supply side heat exchanger 2 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via on-off valves 8a and 8b, and the high-pressure gas pipe D and the The low-pressure gas pipe C is switchably connected, and the other refrigerant inlet / outlet of each of the supply-side heat exchangers 2 is branched and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A, and the high-pressure liquid pipe side The third branch valve is provided with a third check valve 6a for flowing the refrigerant only in the direction of the high-pressure liquid pipe, and the fourth reverse flow of the refrigerant in the fourth branch pipe on the low-pressure liquid pipe side only in the direction of the air supply side heat exchanger. provided check valve 6b, the high pressure liquid pipe connected switching freely B and the low-pressure liquid pipe a, the expansion of said high pressure liquid pipe B and the low-pressure liquid pipe a Air-conditioning heat pump circuit, characterized in 4 via the connected.
JP2005042089A 2005-02-18 2005-02-18 Heat pump circuit for air conditioning Active JP4075072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042089A JP4075072B2 (en) 2005-02-18 2005-02-18 Heat pump circuit for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042089A JP4075072B2 (en) 2005-02-18 2005-02-18 Heat pump circuit for air conditioning

Publications (2)

Publication Number Publication Date
JP2006226626A JP2006226626A (en) 2006-08-31
JP4075072B2 true JP4075072B2 (en) 2008-04-16

Family

ID=36988150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042089A Active JP4075072B2 (en) 2005-02-18 2005-02-18 Heat pump circuit for air conditioning

Country Status (1)

Country Link
JP (1) JP4075072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230688A (en) * 2011-03-29 2011-11-02 清华大学 Solution-spraying heat pump unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230688A (en) * 2011-03-29 2011-11-02 清华大学 Solution-spraying heat pump unit

Also Published As

Publication number Publication date
JP2006226626A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
US7412838B2 (en) Heat pump using CO2 as refrigerant and method of operation thereof
WO2011052031A1 (en) Heat pump
KR100589913B1 (en) Air conditioning apparatus
KR20070071213A (en) Air conditioner
KR20050074066A (en) Cooling and heating system
JP2017101855A (en) Air conditioning system
JPH02118372A (en) Air-conditioning device
KR100468474B1 (en) Cooling and heating system
JP6832939B2 (en) Refrigeration cycle equipment
JP2017101854A (en) Air conditioning system
JP4918450B2 (en) Air conditioning / hot water heat pump system
JP2019060545A (en) Air conditioner
JP2019060544A (en) Air conditioner
JP4075072B2 (en) Heat pump circuit for air conditioning
JP6373469B1 (en) heat pump
JP5447968B2 (en) Heat pump equipment
KR100849613B1 (en) High effectiveness heat pump system that available water heating and floor heating
JP3655523B2 (en) Multi-type air conditioner
KR101127758B1 (en) Hot and cool water, heating and cooling supply system
KR101416207B1 (en) Heat-pump system with three cycles using air and water heat
WO2012127834A1 (en) Refrigeration cycle device
JPH06257874A (en) Heat pump type air-conditioning machine
JP2018128167A (en) Air conditioner
KR102378843B1 (en) Heatpump for always counterflow
JP2005308375A (en) Refrigeration air conditioning device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080120

R150 Certificate of patent or registration of utility model

Ref document number: 4075072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250