JPH05172434A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH05172434A
JPH05172434A JP3333402A JP33340291A JPH05172434A JP H05172434 A JPH05172434 A JP H05172434A JP 3333402 A JP3333402 A JP 3333402A JP 33340291 A JP33340291 A JP 33340291A JP H05172434 A JPH05172434 A JP H05172434A
Authority
JP
Japan
Prior art keywords
heat source
heat
opening
valve
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3333402A
Other languages
Japanese (ja)
Other versions
JP2718308B2 (en
Inventor
Noriaki Hayashida
徳明 林田
Shuichi Tani
秀一 谷
Setsu Nakamura
節 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3333402A priority Critical patent/JP2718308B2/en
Publication of JPH05172434A publication Critical patent/JPH05172434A/en
Application granted granted Critical
Publication of JP2718308B2 publication Critical patent/JP2718308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent a heating capability from being reduced in the case that a cooling operation is mainly carried out and further to prevent a cooling capability from being damaged in the case a heating operation is mainly carried out by a method wherein a degree of opening of each of opening or closing valves placed at both ends of a plurality of heat exchangers at heat source machines, an opening or closing valve of the first bypassing circuit of the heat source machine and the fifth flow rate control device in the second bypassing circuit of the heat source machine is controlled. CONSTITUTION:In the case where a cooling operation is mainly carried out, a sensing signal of the first pressure sensing means 79 is inputted and in turn in the case where a heating operation is mainly carried out, a sensing signal of the second pressure sensing means 78 is inputted, means 50 for controlling a capacity of a heat exchanger on the side of the source machine controls a degree of opening of each of opening or closing valves 70 to 73 of a plurality of heat exchangers 3a and 3b of heat source machines, an opening or closing valve 74 of the first bypassing circuit 75 on the side of the heat source machine and the fifth flow rate control device 76 in the second bypassing circuit 77 at the heat source machine. In the case where a heating operation is mainly carried out, a discharging pressure of a compressor 1 is converged into a predetermined set pressure and in turn in the case where a cooling operation is mainly carried out, a suction pressure of the compressor 1 is converged between set pressures. Accordingly, in the case where the heating operation is mainly carried out, an evaporation pressure of the heat exchanger of the indoor cooling machine can be restricted from being excessively increased and then a cooling capability may not be damaged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
装置で、各室内機毎に冷暖房を選択的に、かつ一方の室
内機では冷房、他方の室内機では暖房を同時に行うこと
ができる空気調和装置の、熱源機側熱交換器の熱交換容
量制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chamber heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit. The present invention relates to heat exchange capacity control of a heat source side heat exchanger of an air conditioner capable of simultaneously performing cooling in an indoor unit and heating in the other indoor unit.

【0002】[0002]

【従来の技術】以下、この発明の従来技術について説明
する。図9は、従来の空気調和装置の冷媒系を中心とす
る全体構成図である。又、図10乃至図12は図9の示
す空気調和装置における冷暖房運転時の動作状態を示し
たもので、図10は冷房又は暖房のみの運転状態図、図
11及び図12は冷暖房同時運転の動作を示すもので、
図11は暖房主体運転(暖房運転容量が冷房運転容量よ
り大きい場合)を、図12は冷房主体運転(冷房運転容
量が暖房運転容量より大きい場合)を示す運転動作状態
図である。
2. Description of the Related Art The prior art of the present invention will be described below. FIG. 9 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner. 10 to 12 show operating states during cooling / heating operation in the air conditioner shown in FIG. 9, FIG. 10 is an operating state diagram of only cooling or heating, and FIGS. 11 and 12 show simultaneous cooling / heating operation. It shows the operation,
FIG. 11 is an operation state diagram showing heating-main operation (when the heating operation capacity is larger than the cooling operation capacity) and FIG. 12 is a cooling-main operation (when the cooling operation capacity is larger than the heating operation capacity).

【0003】図9において、Aは熱源機、B、C、Dは
後述するように互に並列接続された室内機でそれぞれ同
じ構成となっている。Eは後述するように、第1の分岐
部10、第2の流量制御装置13、第2の分岐部11、
第1の気液分離装置12、熱交換部16a、16b、1
6c、16d、19、第3の流量制御装置15、第4の
流量制御装置17を内蔵した中継機である。又、1は圧
縮機、2は熱源機の冷媒流通方向を切り換える四方切換
弁、3は熱源機側熱交換器、4はアキュムレータで、上
記四方切換弁2を介して圧縮機1と接続されている。こ
れらによって熱源機Aが構成される。又、5は3台の室
内機B、C、Dに設けられた室内側熱交換器、6は熱源
機Aの四方切換弁2と中継機Eを後述する第4の逆止弁
33を介して接続する太い第1の接続配管、6b、6
c、6dはそれぞれ室内機B、C、Dの室内側熱交換器
5と中継器Eを接続し、第1の接続配管6に対応する室
内機側の第1の接続配管、7は熱源機Aの熱源機側熱交
換器3と中継機Eを後述する第3の逆止弁32を介して
接続する上記第1の接続配管より細い第2の接続配管で
ある。
In FIG. 9, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, which will be described later, and have the same structure. As will be described later, E is a first branch portion 10, a second flow rate control device 13, a second branch portion 11,
First gas-liquid separation device 12, heat exchange parts 16a, 16b, 1
6c, 16d, 19, the third flow rate control device 15, and the fourth flow rate control device 17 are built-in repeaters. Further, 1 is a compressor, 2 is a four-way switching valve for switching the refrigerant flow direction of the heat source device, 3 is a heat source device side heat exchanger, 4 is an accumulator, and is connected to the compressor 1 via the four-way switching valve 2. There is. The heat source machine A is constituted by these. Further, 5 is an indoor heat exchanger provided in the three indoor units B, C, D, 6 is a four-way switching valve 2 of the heat source unit A and a relay unit E via a fourth check valve 33 described later. Thick connecting pipes 6b, 6
Reference numerals c and 6d respectively connect the indoor heat exchangers 5 and the relays E of the indoor units B, C, and D, and the first connection pipes on the indoor unit side corresponding to the first connection pipes 6, and 7 are heat source units. It is a second connection pipe that is thinner than the above-mentioned first connection pipe that connects the heat source unit side heat exchanger 3 of A and the relay unit E via a third check valve 32 described later.

【0004】又、7b、7c、7dはそれぞれ室内機
B、C、Dの室内側熱交換器5と中継機Eを第1の流量
制御装置9を介して接続し、第2の接続配管7に対応す
る室内機側の第2の接続配管である。21は室内機側の
第1の接続配管6b、6c、6dと、第1の接続配管6
を連接させる第1の開閉弁、22は室内機側の第1の接
続配管6b、6c、6dと、第2の接続配管7を連接さ
せる第2の開閉弁、23は第1の開閉弁21の出入口を
バイパスする第3の開閉弁である。9は室内側熱交換器
5に近接して接続され、冷房時は室内側熱交換器5の出
口側のスーパーヒート量、暖房時はサブクール量により
制御される第1の流量制御装置で、室内機側の第2の接
続配管7b、7c、7dに接続される。10は室内機側
の第1の接続配管6b、6c、6dを、第1の接続配管
6又は、第2の接続配管7に切換え可能に接続する第1
の開閉弁21と第2の開閉弁22、更に第1の開閉弁2
1の出入口をバイパスする第3の開閉弁23を備えた第
1の分岐部である。11は室内機側の第2の接続配管7
b、7c、7dと、第2の接続配管7よりなる第2の分
岐部である。12は第2の接続配管7の途中に設けられ
た第1の気液分離装置で、その気相部は第1の分岐部の
第2の開閉弁22に接続され、その液相部は第2の分岐
部11に接続されている。13は第1の気液分離装置1
2と第2の分岐部11との間に接続する開閉自在な第2
の流量制御装置(ここでは電気式膨張弁)である。
Reference numerals 7b, 7c and 7d respectively connect the indoor heat exchangers 5 of the indoor units B, C and D to the relay E via the first flow control device 9 and the second connecting pipe 7 2 is a second connection pipe on the indoor unit side corresponding to. Reference numeral 21 denotes the first connection pipes 6b, 6c, 6d on the indoor unit side, and the first connection pipe 6
A second opening / closing valve for connecting the first connecting pipes 6b, 6c, 6d on the indoor unit side and a second connecting pipe 7 and a first opening / closing valve 21 Is a third on-off valve that bypasses the entrance and exit of the. Reference numeral 9 is a first flow rate control device which is connected close to the indoor heat exchanger 5 and is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating. It is connected to the second connection pipes 7b, 7c, 7d on the machine side. Reference numeral 10 denotes a first connecting pipe 6b, 6c, 6d on the indoor unit side, which is switchably connected to the first connecting pipe 6 or the second connecting pipe 7.
Open / close valve 21 and second open / close valve 22, and further the first open / close valve 2
It is the 1st branch part provided with the 3rd on-off valve 23 which bypasses the entrance and exit of 1. 11 is the second connection pipe 7 on the indoor unit side
b, 7c, 7d, and a second branch portion including the second connection pipe 7. Reference numeral 12 is a first gas-liquid separation device provided in the middle of the second connection pipe 7, the gas phase portion of which is connected to the second on-off valve 22 of the first branch portion, and the liquid phase portion of which is the first. It is connected to the two branch parts 11. 13 is the first gas-liquid separation device 1
A second openable and closable connected between the second branch 11 and the second branch 11.
Flow control device (here, an electric expansion valve).

【0005】14は第2の分岐部11と上記第1の接続
配管6とを結ぶバイパス配管、15はバイパス配管14
の途中に設けられた第3の流量制御装置(ここでは電気
式膨張弁)、16aはバイパス配管14の途中に設けら
れた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内機側の第2の接続配管7b、
7c、7dの会合部との間でそれぞれ熱交換を行う第2
の熱交換部である。16b,16c、16dはそれぞれ
バイパス配管14の途中に設けられた第3の流量制御装
置15の下流に設けられ、第2の分岐部11における各
室内機側の第2の接続配管7b、7c、7dとの間でそ
れぞれ熱交換を行う第3の熱交換部である。19はバイ
パス配管14の上記第3の流量制御装置15の下流およ
び第2の熱交換部16aの下流に設けられ、第1の気液
分離装置12と第2の流量制御装置13とを接続する配
管との間で熱交換を行う第1の熱交換部、17は第2の
分岐部11と上記第1の接続配管6との間に接続する開
閉自在な第4の流量制御装置(ここでは電気式膨張弁)
である。
Reference numeral 14 is a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and 15 is a bypass pipe 14.
The third flow rate control device (here, an electric expansion valve) 16a provided in the middle of the bypass pipe 16a is provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the second branch portion is provided. The second connection pipe 7b on the indoor unit side in 11
Second heat exchange with the joints of 7c and 7d, respectively
It is a heat exchange part. 16b, 16c, 16d are respectively provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the second connection pipes 7b, 7c on the indoor unit side of the second branch section 11 are provided. 7d is a third heat exchanging unit for exchanging heat with each other. Reference numeral 19 is provided in the bypass pipe 14 downstream of the third flow rate control device 15 and downstream of the second heat exchange section 16a, and connects the first gas-liquid separation device 12 and the second flow rate control device 13. A first heat exchanging unit for exchanging heat with the pipe, and 17 is a fourth flow control device (here, a freely openable and closable flow controller connected between the second branching unit 11 and the first connecting pipe 6). Electric expansion valve)
Is.

【0006】一方、32は上記熱源機側熱交換器3と上
記第2の接続配管7との間に設けられた第3の逆止弁で
あり、上記熱源側熱交換器3から上記第2の接続配管7
へのみ冷媒流通を許容する。33は上記熱源機Aの四方
切換弁2と上記第1の接続配管6との間に設けられた第
4の逆止弁であり、上記第1の接続配管6から上記四方
切換弁2へのみ冷媒流通を許容する。34は上記熱源機
Aの四方切換弁2と上記第2の接続配管7との間設けら
れた第5の逆止弁であり、上記四方切換弁2から上記第
2の接続配管7へのみ冷媒流通を許容する。35は上記
熱源機側熱交換器3と上記第1の接続配管6との間に設
けられた第6の逆止弁であり、上記第1の接続配管6か
ら上記熱源機側熱交換器3へのみ冷媒流通を許容する。
上記第3、第4、第5、第6の逆止弁32、33、3
4、35で流路切換弁装置40を構成する。25は上記
第1の分岐部10と第2の流量制御装置13との間に設
けられた第3の圧力検出手段、26は上記第2の流量制
御装置13と第4の流量制御装置17との間に設けられ
た第4の圧力検出手段である。
On the other hand, reference numeral 32 is a third check valve provided between the heat source side heat exchanger 3 and the second connecting pipe 7, and from the heat source side heat exchanger 3 to the second check valve. Connection pipe 7
Allows refrigerant flow only to. Reference numeral 33 is a fourth check valve provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6, and only from the first connecting pipe 6 to the four-way switching valve 2. Allows refrigerant flow. Reference numeral 34 denotes a fifth check valve provided between the four-way switching valve 2 of the heat source unit A and the second connection pipe 7, and the refrigerant is provided only from the four-way switching valve 2 to the second connection pipe 7. Allow distribution. Reference numeral 35 denotes a sixth check valve provided between the heat source unit side heat exchanger 3 and the first connection pipe 6, from the first connection pipe 6 to the heat source unit side heat exchanger 3 Allows refrigerant flow only to.
The third, fourth, fifth and sixth check valves 32, 33, 3
The flow path switching valve device 40 is composed of 4, 35. Reference numeral 25 is a third pressure detecting means provided between the first branch portion 10 and the second flow rate control device 13, and 26 is the second flow rate control device 13 and the fourth flow rate control device 17. It is a fourth pressure detecting means provided between.

【0007】次に動作について説明する。まず、図10
を用いて冷房運転のみの場合について説明する。同図に
実線矢印で示すように圧縮機1より吐出された高温高圧
冷媒ガスは四方切換弁2を通り、熱源機側熱交換器3で
熱源水と熱交換して凝縮された後、第3の逆止弁32、
第2の接続配管7、第1の気液分離装置12、第2の流
量制御装置13の順に通り、更に第2の分岐部11、室
内機側の第2の接続配管7b、7c、7dを通り、各室
内機B、C、Dに流入する。各室内機B、C、Dに流入
した冷媒は、各室内側熱交換器5の出口のスーパーヒー
ト量により制御される第1の流量制御装置9により低圧
まで減圧されて室内側熱交換器5で室内空気と熱交換し
て蒸発しガス化され室内を冷房する。
Next, the operation will be described. First, FIG.
The case of only the cooling operation will be described using. As shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, is heat-exchanged with the heat-source water in the heat-source-side heat exchanger 3, and is condensed into the third gas. Check valve 32,
The second connection pipe 7, the first gas-liquid separation device 12, and the second flow rate control device 13 are passed in this order, and further the second branch portion 11 and the second connection pipes 7b, 7c, 7d on the indoor unit side are connected. As a result, it flows into each indoor unit B, C, D. The refrigerant flowing into each indoor unit B, C, D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 is cooled. It heats and exchanges heat with the room air, is gasified, and cools the room.

【0008】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、第1の開閉弁21、
第3の開閉弁23、第1の接続配管6、第4の逆止弁3
3、熱源機Aの四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房運転
を行う。この時、第1の開閉弁21、第3の開閉弁23
は開路、第2の開閉弁22は閉路されている。又、冷媒
はこの時、第1の接続配管6が低圧、第2の接続配管7
が高圧のため必然的に第3の逆止弁32、第4の逆止弁
33へ流通する。又、このサイクルの時、第2の流量制
御装置13を通過した冷媒の一部がバイパス配管14へ
入り第3の流量制御装置15で低圧まで減圧されて第3
の熱交換部16b、16c、16dで第2の分岐部11
の室内機側の第2の接続配管7b、7c、7dとの間
で、又、第2の熱交換部16aで第2の分岐部11の各
室内機側の第2の接続配管7b、7c、7dの会合部と
の間で、更に第1の熱交換部19で第2の流量制御装置
13に流入する冷媒との間で、熱交換を行い蒸発した冷
媒は、第1の接続配管6、第4の逆止弁33へ入り、熱
源機Aの四方切換弁2、アキュムレータ4を経て圧縮機
1に吸入される。一方、第1、第2、第3の熱交換部1
9、16a、16b、16c、16dで熱交換し冷却さ
れ、サブクールを充分につけられた上記第2の分岐部1
1の冷媒は冷房しようとしている室内機B、C、Dへ流
入する。
The refrigerant in the gas state is supplied to the first connection pipes 6b, 6c, 6d on the indoor unit side, the first opening / closing valve 21,
Third on-off valve 23, first connecting pipe 6, fourth check valve 3
3, the four-way switching valve 2 of the heat source unit A, and the accumulator 4 form a circulation cycle that is sucked into the compressor 1 to perform the cooling operation. At this time, the first opening / closing valve 21 and the third opening / closing valve 23
Is open and the second on-off valve 22 is closed. At this time, the refrigerant has a low pressure in the first connecting pipe 6 and the second connecting pipe 7
Due to the high pressure, it inevitably circulates to the third check valve 32 and the fourth check valve 33. In addition, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the bypass pipe 14 and is depressurized to a low pressure by the third flow rate control device 15 to generate the third pressure.
The second branch portion 11 in the heat exchange portions 16b, 16c, 16d of
Between the second connection pipes 7b, 7c, 7d on the indoor unit side, and the second connection pipes 7b, 7c on the indoor unit side of the second branch section 11 in the second heat exchange section 16a. , 7d and the refrigerant flowing into the second flow rate control device 13 in the first heat exchanging section 19 for heat exchange with the evaporated refrigerant. , Enters the fourth check valve 33, and is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4. On the other hand, the first, second, and third heat exchange units 1
The second branch portion 1 having sufficient subcooling by being heat-exchanged and cooled by 9, 16a, 16b, 16c, 16d.
Refrigerant No. 1 flows into the indoor units B, C, and D that are about to be cooled.

【0009】次に、図10を用いて暖房運転のみの場合
について説明する。すなわち、同図に点線矢印で示すよ
うに、圧縮機1より吐出された高温高圧冷媒ガスは、四
方切換弁2を通り、第5の逆止弁34、第2の接続配管
7、第1の気液分離装置12を通り、第2の開閉弁2
2、室内機側の第1の接続配管6b、6c、6dの順に
通り、各室内機B、C、Dに流入し、室内空気と熱交換
して凝縮液化し、室内を暖房する。この液状態となった
冷媒は、各室内側熱交換器5の出口のサブクール量によ
り制御されてほぼ全開状態の第1の流量制御装置9を通
り、室内機側の第2の接続配管7b、7c、7dから第
2の分岐部11に流入して合流し、更に第4の流量制御
装置17を通る。ここで、第1の流量制御装置9又は第
3、第4の流量制御装置15、17のどちらか一方で低
圧の気液二相状態まで減圧される。低圧まで減圧された
冷媒は、第1の接続配管6を経て熱源機Aの第6の逆止
弁35、熱源機側熱交換器3に流入し、熱源水と熱交換
して蒸発しガス状態となり、熱源機Aの四方切換弁2、
アキュムレータ4を経て圧縮機1に吸入される循環サイ
クルを構成し、暖房運転を行う。この時、第2の開閉弁
22は開路、第1の開閉弁21、第3の開閉弁23は閉
路されている。又、冷媒はこの時、第1の接続配管6が
低圧、第2の接続配管7が高圧のため必然的に第5の逆
止弁34、第6の逆止弁35へ流通する。なお、この時
第2の流量制御装置13は、通常所定最小開度状態とな
っている。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by the dotted arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, the second connecting pipe 7, and the first connecting pipe 7. The second on-off valve 2 passing through the gas-liquid separator 12
2. The first connection pipes 6b, 6c, 6d on the indoor unit side are sequentially passed into the indoor units B, C, D to exchange heat with indoor air to be condensed and liquefied to heat the room. The refrigerant in this liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state, and the second connection pipe 7b on the indoor unit side, From 7c and 7d, they flow into the second branch portion 11 and merge, and further pass through the fourth flow rate control device 17. Here, the pressure is reduced to a low pressure gas-liquid two-phase state by either the first flow rate control device 9 or the third and fourth flow rate control devices 15 and 17. The refrigerant decompressed to a low pressure flows into the sixth check valve 35 of the heat source device A and the heat source device side heat exchanger 3 through the first connection pipe 6, exchanges heat with the heat source water and evaporates to a gas state. And the four-way switching valve 2 of the heat source unit A,
A circulation cycle in which the compressor 1 is sucked through the accumulator 4 constitutes a heating operation. At this time, the second opening / closing valve 22 is open, and the first opening / closing valve 21 and the third opening / closing valve 23 are closed. At this time, the refrigerant inevitably circulates to the fifth check valve 34 and the sixth check valve 35 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure. At this time, the second flow rate control device 13 is normally in the predetermined minimum opening state.

【0010】次に冷暖同時運転における暖房主体運転の
場合について図11を用いて説明する。同図に点線矢印
で示すように圧縮機1より吐出された高温高圧冷媒ガス
は、四方切換弁2を経て第5の逆止弁34、第2の接続
配管7を通して中継機Eへ送られ、第1の気液分離装置
12を通り、第2の開閉弁22、室内機側の第1の接続
配管6b、6cの順に通り、暖房しようとしている各室
内機B、Cに流入し、室内側熱交換器5で室内空気と熱
交換して凝縮液化され、室内を暖房する。この凝縮液化
した冷媒は、各室内側熱交換器5の出口のサブクール量
により制御されほぼ全開状態の第1の流量制御装置9を
通り、少し減圧されて第2の分岐部11に流入する。こ
の冷媒の一部は、室内機側の第2の接続配管7dを通
り、冷房しようとする室内機Dに入り、室内側熱交換器
5の出口のスーパーヒート量により制御される第1の流
量制御装置9に入り、減圧された後に、室内側熱交換器
5に入って熱交換して蒸発しガス状態となって室内を冷
房し、第1の接続配管6dを経て第1の開閉弁21、第
3の開閉弁23を介して第1の接続配管6に流入する。
一方、他の冷媒は第3の圧力検出手段25の検出圧力、
第4の圧力検出手段26の検出圧力の圧力差が所定範囲
となるように制御される第4の流量制御装置17を通っ
て、冷房しようとする室内機Dを通った冷媒と合流して
太い第1の接続配管6を経て、熱源機Aの第6の逆止弁
35、熱源機側熱交換器3に流入し、熱源水と熱交換し
て蒸発しガス状態となる。
Next, the case of the heating-main operation in the simultaneous cooling and heating operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 is sent to the relay machine E through the four-way switching valve 2 and the fifth check valve 34 and the second connecting pipe 7 as shown by the dotted arrow in the figure. After passing through the first gas-liquid separation device 12, the second opening / closing valve 22 and the first connection pipes 6b and 6c on the indoor unit side in this order, and flowing into the indoor units B and C to be heated, and the indoor side The heat exchanger 5 exchanges heat with the indoor air to be condensed and liquefied to heat the room. The condensed and liquefied refrigerant passes through the first flow rate control device 9 which is controlled by the amount of subcool at the outlet of each indoor heat exchanger 5 and is in a substantially fully opened state, and is slightly depressurized and flows into the second branch portion 11. Part of this refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and has a first flow rate controlled by the superheat amount at the outlet of the indoor heat exchanger 5. After entering the control device 9 and being decompressed, it enters the indoor heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room, and the first opening / closing valve 21 via the first connection pipe 6d. , And flows into the first connecting pipe 6 via the third opening / closing valve 23.
On the other hand, the other refrigerants are the pressure detected by the third pressure detecting means 25,
The pressure difference of the detected pressure of the fourth pressure detecting means 26 is controlled to be within a predetermined range, passes through the fourth flow rate control device 17, and merges with the refrigerant that has passed through the indoor unit D to be cooled and is thick. After passing through the first connecting pipe 6, the sixth check valve 35 of the heat source unit A and the heat source unit side heat exchanger 3 flow into the heat source unit A to exchange heat with the heat source unit and evaporate into a gas state.

【0011】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5の蒸発圧力と熱源機側熱交換
器3の圧力差が、太い第1の接続配管6に切り換えるた
めに小さくなる。又、この時、室内機B、Cに接続され
た第2の開閉弁22は開路、第1の開閉弁21、第3の
開閉弁23は閉路されている。室内機Dに接続された第
1の開閉弁21、第3の開閉弁23は開路、第2の開閉
弁22は閉路されている。又、冷媒はこの時、第1の接
続配管6が低圧、第2の接続配管7が高圧のため必然的
に第5の逆止弁34、第6の逆止弁35へ流通する。
This refrigerant constitutes a circulation cycle in which it is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4 to perform heating-main operation. At this time, the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure difference of the heat source unit side heat exchanger 3 are reduced due to switching to the thick first connection pipe 6. At this time, the second opening / closing valve 22 connected to the indoor units B and C is open, and the first opening / closing valve 21 and the third opening / closing valve 23 are closed. The first opening / closing valve 21 and the third opening / closing valve 23 connected to the indoor unit D are open, and the second opening / closing valve 22 is closed. At this time, the refrigerant inevitably circulates to the fifth check valve 34 and the sixth check valve 35 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure.

【0012】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部からバイパス配管14へ入り、第3の流量
制御装置15で低圧まで減圧されて、第3の熱交換部1
6b、16c、16dで第2の分岐部11の各室内機側
の第2の接続配管7b、7c、7dとの間で、又、第2
の熱交換部16aで第2の分岐部11の各室内機側の第
2の接続配管7b、7c、7dの会合部との間で熱交換
を行い、蒸発した冷媒は、第1の接続配管6、第6の逆
止弁35を経由し、熱源機側熱交換器3へ入り、熱源水
と熱交換して蒸発気化した後、熱源機Aの四方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される。一
方、第2、第3の熱交換部、16a、16b、16c、
16dで熱交換し、冷却され、サブクールを充分につけ
られた上記第2の分岐部11の冷媒は冷房しようとして
いる室内機Dへ流入する。なお、この時第2の流量制御
装置13は、通常所定最小開度状態となっている。
During this cycle, part of the liquid refrigerant is the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
It enters the bypass pipe 14 from the meeting portion of 7d, is depressurized to a low pressure by the third flow control device 15, and the third heat exchange portion 1
6b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 and the second
The heat exchange section 16a performs heat exchange with the association section of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and the evaporated refrigerant is the first connection pipe. 6, after entering the heat source unit side heat exchanger 3 via the sixth check valve 35, exchanging heat with the heat source water to evaporate and vaporize, and then through the four-way switching valve 2 of the heat source unit A and the accumulator 4 to the compressor. Inhaled to 1. On the other hand, the second and third heat exchange parts 16a, 16b, 16c,
The refrigerant in the second branch portion 11 that has been heat-exchanged and cooled in 16d and is sufficiently subcooled flows into the indoor unit D that is about to be cooled. At this time, the second flow rate control device 13 is normally in the predetermined minimum opening state.

【0013】次に、冷暖房同時運転における冷房主体の
場合について図12を用いて説明する。同図に実線矢印
で示すように、圧縮機1より吐出された高温高圧冷媒ガ
スは、四方切換弁2を経て熱源機側熱交換器3に流入
し、熱源水と熱交換して気液二相の高温高圧状態とな
る。その後、この二相の高温高圧状態の冷媒は第3の逆
止弁32、第2の接続配管7を経て、中継機Eの第1の
気液分離装置12へ送られる。ここで、ガス状冷媒と液
状冷媒に分離され、分離されたガス状冷媒は第2の開閉
弁22、室内機側の第1の接続配管6dの順に通り、暖
房しようとする室内機Dに流入し、室内側熱交換器5で
室内空気と熱交換して凝縮液化し、室内を暖房する。更
に、室内側熱交換器5の出口のサブクール量により制御
され、ほぼ全開状態の第1の流量制御装置9を通り、少
し減圧されて、第2の分岐部11に流入する。
Next, the case of mainly cooling in the simultaneous heating and cooling operation will be described with reference to FIG. As shown by the solid line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 through the four-way switching valve 2 and exchanges heat with the heat source water to form a gas-liquid mixture. The phase becomes high temperature and high pressure. Then, the two-phase high-temperature high-pressure refrigerant is sent to the first gas-liquid separation device 12 of the relay machine E through the third check valve 32 and the second connection pipe 7. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant flows through the second opening / closing valve 22 and the first connection pipe 6d on the indoor unit side in this order and flows into the indoor unit D to be heated. Then, the indoor heat exchanger 5 exchanges heat with the indoor air to condense and liquefy, and heat the room. Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, is slightly decompressed, and flows into the second branch portion 11.

【0014】一方、残りの液状冷媒は第3の圧力検出手
段25の検出圧力、第4の圧力検出手段26の検出圧力
によって制御される第2の流量制御装置13を通って、
第2の分岐部11に流入し、暖房しようとしている室内
機Dを通った冷媒と合流する。第2の分岐部11、室内
機側の第2の接続配管7b、7cを順に通り、各室内機
B、Cに流入する。各室内機B、Cに流入した冷媒は、
室内機側熱交換器5の出口のスーパーヒート量により制
御される第1の流量制御装置9により低圧まで減圧され
た後に、室内側熱交換器5に流入し、室内空気と熱交換
して蒸発しガス化され、室内を冷房する。更に、このガ
ス状態となった冷媒は、室内機側の第1の接続配管6
b、6c、第1の開閉弁21、第3の開閉弁23、第1
の接続配管6、第4の逆止弁33、熱源機Aの四方切換
弁2、アキュムレータ4を経て圧縮機1に吸入される循
環サイクルを構成し、冷房主体運転を行う。又、この
時、室内機B、Cに接続された第1の開閉弁21、第3
の開閉弁23は開路、第2の開閉弁22は閉路されてい
る。室内機Dに接続された第2の開閉弁22は開路、第
1の開閉弁21、第3の開閉弁23は閉路されている。
冷媒はこの時、第1の接続配管6が低圧、第2の接続配
管7が高圧のため、必然的に第3の逆止弁32、第4の
逆止弁33へ流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 controlled by the pressure detected by the third pressure detecting means 25 and the pressure detected by the fourth pressure detecting means 26,
It flows into the second branch portion 11 and merges with the refrigerant having passed through the indoor unit D that is going to be heated. The second branch portion 11 and the second connection pipes 7b and 7c on the indoor unit side are sequentially passed to flow into the indoor units B and C. The refrigerant flowing into each indoor unit B, C is
After the pressure is reduced to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of the indoor unit side heat exchanger 5, it flows into the indoor side heat exchanger 5 and heat-exchanges with indoor air to evaporate. Then it is gasified and the room is cooled. Further, the refrigerant in the gas state is used as the first connection pipe 6 on the indoor unit side.
b, 6c, first on-off valve 21, third on-off valve 23, first
A connecting cycle 6, a fourth check valve 33, a four-way switching valve 2 of the heat source unit A, and an accumulator 4 form a circulation cycle that is sucked into the compressor 1 to perform a cooling main operation. At this time, the first on-off valve 21 connected to the indoor units B and C, the third
The open / close valve 23 is open and the second open / close valve 22 is closed. The second opening / closing valve 22 connected to the indoor unit D is open, and the first opening / closing valve 21 and the third opening / closing valve 23 are closed.
At this time, the refrigerant circulates inevitably to the third check valve 32 and the fourth check valve 33 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure.

【0015】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部からバイパス配管14へ入り、第3の流量
制御装置15で低圧まで減圧されて、第3の熱交換部1
6b、16c、16dで第2の分岐部11の各室内機側
の第2の接続配管7b、7c、7dとの間で、又、第2
の熱交換器部16aで第2の分岐部11の各室内機側の
第2の接続配管7b、7c、7dの会合部との間で、更
に第1の熱交換部19で第2の流量制御装置13に流入
する冷媒との間で熱交換を行い、蒸発した冷媒は第1の
接続配管6、第4の逆止弁33へ入り、熱源機Aの四方
切換弁2、アキュムレータ4を経て圧縮機1に吸入され
る。一方、第1、第2、第3の熱交換部19、16a、
16b、16c、16dで熱交換し冷却されサブクール
を充分につけられた上記第2の分岐部11の冷媒は冷房
しようとしている室内機B、Cへ流入する。
During this cycle, a part of the liquid refrigerant is supplied to the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
It enters the bypass pipe 14 from the meeting portion of 7d, is depressurized to a low pressure by the third flow control device 15, and the third heat exchange portion 1
6b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 and the second
Of the second branch portion 11 between the second connection pipes 7b, 7c, 7d of the second branch portion 11 of the second heat exchanger portion 16a, and the first heat exchange portion 19 at the second flow rate. Heat is exchanged with the refrigerant flowing into the control device 13, and the evaporated refrigerant enters the first connection pipe 6 and the fourth check valve 33, and passes through the four-way switching valve 2 of the heat source device A and the accumulator 4. It is sucked into the compressor 1. On the other hand, the first, second and third heat exchange parts 19, 16a,
The refrigerant in the second branch portion 11 that is heat-exchanged and cooled in 16b, 16c, and 16d and is sufficiently subcooled flows into the indoor units B and C that are about to be cooled.

【0016】[0016]

【発明が解決しようとする課題】従来の多室型ヒートポ
ンプ式空気調和装置は以上のように構成されているの
で、冷暖房同時運転における冷房主体運転の場合、凝縮
器となる熱源機側熱交換器に高圧のガス冷媒が流れ圧力
損失が大きくなると上記熱源機側熱交換器より下流に位
置する暖房室内機の室内機側熱交換器に於ける凝縮圧力
は低くなり暖房能力が出ないという問題があった。又、
冷暖房同時運転における暖房主体運転の場合、蒸発器と
なる熱源機側熱交換器に低圧の2相冷媒が流れるため圧
力損失が大きく上記熱源機側熱交換器より上流に位置す
る冷房室内機の室内機側熱交換器に於ける蒸発圧力が高
くなり冷房能力が出ないという問題があった。又、同じ
く暖房主体運転で冷房室内機容量と暖房室内機容量の差
が小さい場合、熱源機側熱交換器の蒸発能力が過大とな
り蒸発圧力が高くなり冷房能力が出ないという問題があ
った。更に、同じく暖房主体運転で冷房室内機容量と暖
房室内機容量の差が小さく運転室内機の合計容量が熱源
機の容量より小さくなる場合、暖房室内機の凝縮能力も
減少するため凝縮圧力が上昇し高圧圧力異常で停止する
という問題があった。なお、近似技術として、特開平1
−118372号公報がある。
Since the conventional multi-chamber heat pump type air conditioner is constructed as described above, in the case of the cooling-main operation in the cooling / heating simultaneous operation, the heat source side heat exchanger which becomes the condenser. When high-pressure gas refrigerant flows into the heat exchanger and the pressure loss becomes large, the condensation pressure in the indoor unit side heat exchanger of the heating indoor unit located downstream of the heat source unit side heat exchanger becomes low, and there is a problem that heating capacity does not come out. there were. or,
In the heating-main operation in the cooling / heating simultaneous operation, the low-pressure two-phase refrigerant flows in the heat source side heat exchanger, which serves as an evaporator, so that the pressure loss is large and the inside of the cooling indoor unit located upstream of the heat source side heat exchanger. There was a problem that the evaporation pressure in the machine side heat exchanger became high and the cooling capacity could not be obtained. Also, when the difference between the capacity of the cooling indoor unit and the capacity of the heating indoor unit is small in the heating-main operation as well, there is a problem that the evaporation capacity of the heat exchanger on the heat source unit side becomes excessive and the evaporation pressure becomes high, so that the cooling capacity cannot be obtained. In addition, when the difference between the capacity of the cooling indoor unit and the capacity of the heating indoor unit is small and the total capacity of the operating indoor unit is smaller than the capacity of the heat source unit in the heating-main operation as well, the condensing capacity of the heating indoor unit also decreases and the condensing pressure rises. However, there was a problem that it stopped due to abnormal high pressure. As an approximation technique, Japanese Patent Laid-Open No.
There is a publication of -118372.

【0017】この発明は、上記のような問題点を解決す
るためになされたもので、熱源機1台に対して複数台の
室内機を接続し、各室内機毎に冷暖房を選択的に、かつ
一方の室内機では冷房、他方の室内機では暖房を同時に
行うことができる多室型ヒートポンプ式空気調和装置に
おいて冷暖房同時運転における冷房主体運転の場合に熱
源機側熱交換器の圧力損失を抑制し、適正な凝縮能力に
調整することにより暖房室内機の室内機側熱交換器に於
ける凝縮圧力を高くして暖房能力を損なうことが無く、
冷暖房同時運転における暖房主体運転の場合に熱源機側
熱交換器の圧力損失を抑制し、適正な蒸発能力に調整す
ることにより冷房室内機の室内機側熱交換器に於ける蒸
発圧力を低くして冷房能力を損なうことが無く、更に異
常停止することも無い空気調和装置を得ることを目的と
する。
The present invention has been made to solve the above problems, and a plurality of indoor units are connected to one heat source unit, and heating / cooling is selectively performed for each indoor unit. And in a multi-chamber heat pump type air conditioner that can perform cooling in one indoor unit and heating in the other indoor unit, suppress pressure loss of the heat source side heat exchanger in the case of cooling main operation in simultaneous cooling and heating operation However, by adjusting to an appropriate condensing capacity, the condensing pressure in the indoor unit side heat exchanger of the heating indoor unit is not increased and the heating capacity is not impaired.
In the case of heating-main operation in simultaneous heating and cooling operation, the pressure loss of the heat source side heat exchanger is suppressed, and the evaporation pressure in the indoor unit side heat exchanger of the cooling indoor unit is lowered by adjusting to an appropriate evaporation capacity. It is an object of the present invention to obtain an air conditioner that does not impair the cooling capacity and does not abnormally stop.

【0018】[0018]

【課題を解決するための手段】この発明に係る空気調和
装置は、互に並列に接続され、かつ両端に開閉弁を備え
た複数の熱源機側熱交換器と、上記複数の熱源機側熱交
換器と並列に接続され途中に開閉弁を備えた第1の熱源
機側バイパス回路と、上記複数の熱源機側熱交換器と並
列に接続され途中に第5の流量制御装置を備えた第2の
熱源機側バイパス回路、及び上記圧縮機の吸入側圧力を
検出する第1の圧力検出手段並びに上記圧縮機の吐出側
圧力を検出する第2の圧力検出手段とを備え、冷房主体
運転時には、第1の圧力検出手段の検出信号を入力と
し、複数の熱源機側熱交換器両端の開閉弁、第1の熱源
機側バイパス回路の開閉弁、及び第2の熱源機側バイパ
ス回路の第5の流量制御装置の開度を制御すると共に暖
房主体運転時には上記第2の圧力検出手段の検出信号を
入力とし、上記複数の熱源機側熱交換器の両端の開閉
弁、上記第1の熱源機側バイパス回路の開閉弁及び上記
第2の熱源機側バイパス回路の第5の流量制御装置の開
度を制御する熱源機側熱交換容量制御手段を備えたもの
である。更に、開閉弁を介して、四方切換弁と熱源機側
熱交換器の一端側とを接続する配管に連通するガス側配
管と、熱源機側熱交換器の他端側に連通する液側配管、
及び流路切換弁装置を介して第1の接続配管からの冷媒
の流入、或は第2の接続配管への冷媒の流出を可能とす
る接続配管とを設けてなる気液分離装置を備えたもので
ある。
An air conditioner according to the present invention includes a plurality of heat source side heat exchangers connected in parallel with each other and provided with open / close valves at both ends, and the plurality of heat source side heat exchangers. A first heat source unit side bypass circuit connected in parallel with the exchanger and having an opening / closing valve in the middle thereof, and a fifth flow rate control device connected in parallel with the plurality of heat source unit side heat exchangers and provided with a fifth flow rate control unit in the middle thereof. The heat source side bypass circuit of No. 2, the first pressure detecting means for detecting the suction side pressure of the compressor, and the second pressure detecting means for detecting the discharge side pressure of the compressor. And a detection signal of the first pressure detection means as an input, and opening / closing valves at both ends of the heat exchangers on the heat source side, a switching valve on the first heat source side bypass circuit, and a second heat source side bypass circuit. 5 controls the opening of the flow rate control device, and Inputting the detection signal of the second pressure detecting means, the opening / closing valves at both ends of the plurality of heat source unit side heat exchangers, the opening / closing valves of the first heat source unit side bypass circuit, and the second heat source unit side bypass circuit. The heat source device side heat exchange capacity control means for controlling the opening degree of the fifth flow rate control device is provided. Further, a gas side pipe communicating with a pipe connecting the four-way switching valve and one end side of the heat source device side heat exchanger through an on-off valve, and a liquid side pipe communicating with the other end side of the heat source device side heat exchanger. ,
And a connection pipe for allowing the inflow of the refrigerant from the first connection pipe or the outflow of the refrigerant to the second connection pipe via the flow path switching valve device. It is a thing.

【0019】[0019]

【作用】この発明における空気調和装置は、冷房主体運
転時には第1の圧力検出手段の検出信号、暖房主体運転
時には第2の圧力検出手段の検出信号を入力として、熱
源機側熱交換機容量制御手段がそれぞれ複数の熱源機側
熱交換器の両端の開閉弁、第1の熱源機側バイパス回路
の開閉弁及び第2の熱源機側バイパス回路の第5の流量
制御装置の開度を制御し、圧縮機の吸入側圧力及び吐出
側圧力をそれぞれ所定の目標圧力に収束させる。また、
切換弁を介して四方切換弁と熱源機側熱交換器の一端側
とを接続する配管に連通するガス側配管と、熱源機側熱
交換器の他端側に連通する液側配管、及び流路切換弁装
置を介して第1の接続配管からの冷媒の流入、或は第2
の接続配管への冷媒の流出を可能とする接続配管とを設
けてなる気液分離装置を備えたことにより、蒸発能力の
大小に寄与する液状冷媒のみを熱源機側熱交換器に供給
できる。
In the air conditioner according to the present invention, the heat source unit side heat exchanger capacity control unit receives the detection signal of the first pressure detecting unit during the cooling main operation and the detection signal of the second pressure detecting unit during the heating main operation. Respectively control the opening / closing valves at both ends of the plurality of heat source machine side heat exchangers, the opening / closing valves of the first heat source machine side bypass circuit and the fifth flow control device of the second heat source machine side bypass circuit, The suction side pressure and the discharge side pressure of the compressor are made to converge to predetermined target pressures. Also,
A gas side pipe that communicates with a pipe that connects the four-way switching valve and one end side of the heat source device side heat exchanger via a switching valve, a liquid side pipe that communicates with the other end side of the heat source device side heat exchanger, and a flow. Inflow of refrigerant from the first connecting pipe via the path switching valve device, or second
Since the gas-liquid separator provided with the connection pipe that allows the refrigerant to flow out to the connection pipe is provided, only the liquid refrigerant that contributes to the magnitude of the evaporation capacity can be supplied to the heat source side heat exchanger.

【0020】[0020]

【実施例】【Example】

実施例1.以下、この発明の実施例について説明する。
図1はこの発明の一実施例による空気調和装置の冷媒系
を中心とする全体構成図である。又、図3乃至図5は図
1の一実施例における冷暖房運転時の動作状態を示した
もので、図3は冷房又は暖房のみの運転状態図、図4及
び図5は冷暖房同時運転の動作を示すもので、図4は暖
房主体運転(暖房運転容量が冷房運転容量より大きい場
合)を、図5は冷房主体運転(冷房運転容量が暖房運転
容量より大きい場合)を示す運転動作状態図である。な
お、この実施例では熱源機1台に室内機3台を接続した
場合について説明するが、2台以上の室内機を接続した
場合も同様である。
Example 1. Examples of the present invention will be described below.
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. 3 to 5 show operation states during the heating and cooling operation in the embodiment of FIG. 1, FIG. 3 is an operation state diagram only for cooling or heating, and FIGS. 4 and 5 are operations for simultaneous cooling and heating operation. FIG. 4 is an operation state diagram showing heating-main operation (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 5 is an operation operation state diagram showing cooling-main operation (when the cooling operation capacity is larger than the heating operation capacity). is there. In this embodiment, a case where three indoor units are connected to one heat source device will be described, but the same applies to a case where two or more indoor units are connected.

【0021】図1において、Aは熱源機、B、C、Dは
後述するように互に並列接続された室内機でそれぞれ同
じ構成となっている。Eは後述するように、第1の分岐
部10、第2の流量制御装置13、第2の分岐部11、
第1の気液分離装置12、熱交換部16a、16b、1
6c、16d、19、第3の流量制御装置15、第4の
流量制御装置17を内蔵した中継機である。又、1は圧
縮機、2は熱源機の冷媒流通方向を切り換える四方切換
弁、3は互に並列に接続され両端に第4の開閉弁70、
第5の開閉弁71を備えた第1の熱源機側熱交換器3a
と、両端に第6の開閉弁72、第7の開閉弁73を備え
た第2の熱源機側熱交換器3bと、上記第1、第2の熱
源機側熱交換器3a、3bに並列に接続され途中に第8
の開閉弁74を備えた第1の熱源機側バイパス回路75
及び上記第1、第2の熱源機側熱交換器3a、3bに並
列に接続され途中に第5の流量制御装置76を備えた第
2の熱源機側バイパス回路77とで構成された熱源機側
熱交換器、4はアキュムレータで、上記四方切換弁2を
介して圧縮機1と接続されている。79は上記四方切換
弁2と上記アキュムレータ4の間に設けられた第1の圧
力検出手段である。78は上記四方切換弁2と上記圧縮
機1の間に設けられた第2の圧力検出手段である。これ
らによって熱源機Aが構成される。又、5は3台の室内
機B、C、Dに設けられた室内側熱交換器、6は熱源機
Aの四方切換弁2と中継機Eを後述する第4の逆止弁3
3を介して接続する太い第1の接続配管、6b、6c、
6dはそれぞれ室内機B、C、Dの室内側熱交換器5と
中継機Eを接続し、第1の接続配管6に対応する室内機
側の第1の接続配管、7は熱源機Aの熱源機側熱交換器
3と中継機Eを後述する第3の逆止弁32を介して接続
する上記第1の接続配管より細い第2の接続配管であ
る。
In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, as will be described later, and have the same structure. As will be described later, E is a first branch portion 10, a second flow rate control device 13, a second branch portion 11,
First gas-liquid separation device 12, heat exchange parts 16a, 16b, 1
6c, 16d, 19, the third flow rate control device 15, and the fourth flow rate control device 17 are built-in repeaters. Further, 1 is a compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source device, 3 is parallel to each other, and a fourth opening / closing valve 70 is provided at both ends.
First heat source side heat exchanger 3a including fifth on-off valve 71
And a second heat source unit side heat exchanger 3b having a sixth opening / closing valve 72 and a seventh opening / closing valve 73 at both ends, and the first and second heat source unit side heat exchangers 3a and 3b in parallel. Connected to the 8th
First heat source machine side bypass circuit 75 including the open / close valve 74
And a second heat source unit side bypass circuit 77 which is connected in parallel to the first and second heat source unit side heat exchangers 3a and 3b and is provided with a fifth flow rate control device 76 on the way. The side heat exchangers 4 are accumulators, which are connected to the compressor 1 via the four-way switching valve 2. Reference numeral 79 is a first pressure detecting means provided between the four-way switching valve 2 and the accumulator 4. Reference numeral 78 is a second pressure detecting means provided between the four-way switching valve 2 and the compressor 1. The heat source machine A is constituted by these. Further, 5 is an indoor heat exchanger provided in the three indoor units B, C and D, 6 is a four-way switching valve 2 of the heat source unit A and a relay E is a fourth check valve 3 which will be described later.
Thick first connecting pipes 6b, 6c, which are connected via 3
Reference numeral 6d connects the indoor heat exchangers 5 of the indoor units B, C, and D to the repeater E, respectively, and the first connection pipe on the indoor unit side corresponding to the first connection pipe 6 and 7 of the heat source unit A. It is a second connection pipe that is thinner than the above-mentioned first connection pipe that connects the heat source unit side heat exchanger 3 and the relay unit E via a third check valve 32 described later.

【0022】又、7b、7c、7dはそれぞれ室内機
B、C、Dの室内側熱交換機5と中継機Eを第1の流量
制御装置9を介して接続し、第2の接続配管7に対応す
る室内機側の第2の接続配管である。21は室内機側の
第1の接続配管6b、6c、6dと、第1の接続配管6
を連接させる第1の開閉弁、22は室内機側の第1の接
続配管6b、6c、6dと、第2の接続配管7を連接さ
せる第2の開閉弁、23は第1の開閉弁21の出入口を
バイパスする第3の開閉弁である。9は、室内側熱交換
器5に近接して接続され、冷房時は室内側熱交換器5の
出口側のスーパーヒート量、暖房時はサブクール量によ
り制御される第1の流量制御装置で、室内機側の第2の
接続配管7b、7c、7dに接続される。10は室内機
側の第1の接続配管6b、6c、6dを、第1の接続配
管6又は、第2の接続配管7に切換え可能に接続する第
1の開閉弁21と第2の開閉弁22、更に第1の開閉弁
21の出入口をバイパスする第3の開閉弁23を備えた
第1の分岐部である。11は室内機側の第2の接続配管
7b、7c、7dと、第2の接続配管7よりなる第2の
分岐部である。12は第2の接続配管7の途中に設けら
れた第2の気液分離装置で、その気相部は第1の分岐部
の第2の開閉弁22に接続され、その液相部は第2の分
岐部11に接続されている。13は第1の気液分離装置
12と第2の分岐部11との間に接続する開閉自在な第
2の流量制御装置(ここでは電気式膨張弁)である。
Reference numerals 7b, 7c and 7d respectively connect the indoor heat exchangers 5 of the indoor units B, C and D to the relay E via the first flow rate control device 9 and to the second connection pipe 7. It is the corresponding second connection pipe on the indoor unit side. Reference numeral 21 denotes the first connection pipes 6b, 6c, 6d on the indoor unit side, and the first connection pipe 6
A second opening / closing valve for connecting the first connecting pipes 6b, 6c, 6d on the indoor unit side and a second connecting pipe 7 and a first opening / closing valve 21 Is a third on-off valve that bypasses the entrance and exit of the. Reference numeral 9 is a first flow rate control device which is connected close to the indoor heat exchanger 5 and is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling and by the subcool amount during heating. It is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side. Reference numeral 10 denotes a first on-off valve 21 and a second on-off valve that connect the first connection pipes 6b, 6c, 6d on the indoor unit side to the first connection pipe 6 or the second connection pipe 7 in a switchable manner. 22 is a first branch portion including a third opening / closing valve 23 that bypasses the inlet / outlet of the first opening / closing valve 21. Reference numeral 11 denotes a second branch portion including the second connection pipes 7b, 7c, 7d on the indoor unit side and the second connection pipe 7. Reference numeral 12 is a second gas-liquid separation device provided in the middle of the second connecting pipe 7, the gas phase portion of which is connected to the second opening / closing valve 22 of the first branch portion, and the liquid phase portion of which is the first It is connected to the two branch parts 11. Reference numeral 13 is a second flow rate control device (here, an electric expansion valve) which is connected between the first gas-liquid separation device 12 and the second branch portion 11 and which can be opened and closed.

【0023】14は第2の分岐部11と上記第1の接続
配管6とを結ぶバイパス配管、15はバイパス配管14
の途中に設けられた第3の流量制御装置(ここでは電気
式膨張弁)、16aはバイパス配管14の途中に設けら
れた第3の流量制御装置15の下流に設けられ、第2の
分岐部11における各室内気側の第2の接続配管7b、
7c、7dの会合部との間でそれぞれ熱交換を行う第2
の熱交換部である。16b、16c、16dはそれぞれ
バイパス配管14の途中に設けられた第3の流量制御装
置15の下流に設けられ、第2の分岐部11における各
室内機側の第2の接続配管7b、7c、7dとの間でそ
れぞれ熱交換を行う第3の熱交換部である。19はバイ
パス配管14の上記第3の流量制御装置15の下流およ
び第2の熱交換部16aの下流に設けられ、第1の気液
分離装置12と第2の流量制御装置13とを接続する配
管との間で熱交換を行う第1の熱交換部、17は第2の
分岐部11と上記第1の接続配管6との間に接続する開
閉自在な第4の流量制御装置(ここでは電気式膨張弁)
である。
Reference numeral 14 is a bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and 15 is a bypass pipe 14.
The third flow rate control device (here, an electric expansion valve) 16a provided in the middle of the bypass pipe 16a is provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the second branch portion is provided. The second connection pipe 7b on the indoor air side in FIG.
Second heat exchange with the joints of 7c and 7d, respectively
It is a heat exchange part. 16b, 16c, 16d are respectively provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and the second connection pipes 7b, 7c on the indoor unit side of the second branch portion 11 are provided. 7d is a third heat exchanging unit for exchanging heat with each other. Reference numeral 19 is provided in the bypass pipe 14 downstream of the third flow rate control device 15 and downstream of the second heat exchange section 16a, and connects the first gas-liquid separation device 12 and the second flow rate control device 13. A first heat exchanging unit for exchanging heat with the pipe, and 17 is a fourth flow control device (here, a freely openable and closable flow controller connected between the second branching unit 11 and the first connecting pipe 6). Electric expansion valve)
Is.

【0024】一方、32は上記熱源機側熱交換器3と上
記第2の接続配管7との間に設けられた第3の逆止弁で
あり、上記熱源機側熱交換器3から上記第2の接続配管
7へのみ冷媒流通を許容する。33は上記熱源機Aの四
方切換弁2と上記第1の接続配管6との間に設けられた
第4の逆止弁であり、上記第1の接続配管6から上記四
方弁切換弁2へのみ冷媒流通を許容する。34は上記熱
源機Aの四方切換弁2と上記第2の接続配管7との間に
設けられた第5の逆止弁であり、上記四方切換弁2から
上記第2の接続配管7へのみ冷媒流通を許容する。35
は上記熱源機側熱交換器3と上記第1の接続配管6との
間に設けられた第6の逆止弁であり、上記第1の接続配
管6から上記熱源機側熱交換器3へのみ冷媒流通を許容
する。上記第3、第4、第5、第6の逆止弁32、3
3、34、35で流路切換弁装置40を構成する。 実施例2.90は上記流路切換弁装置40と上記熱源機
側熱交換器3の間に設けられた第2の気液分離装置であ
る。91は上記第2の気液分離装置の気相部と上記四方
切換弁2の間に設けられた第9の開閉弁である。90a
は開閉弁91を介して上記第2の気液分離装置90の上
部と、上記四方切換弁2と上記熱源機側熱交換器3a、
3bの一端側とを接続する配管とを連通するガス側配
管、90bは、上記第2の気液分離装置の下部と上記熱
源機側熱交換器3a、3bの他端側とを連通する液側配
管、90cは、流路切換弁装置40を介して第1の接続
配管6からの冷媒の流入、或は第2の接続配管7への冷
媒の流出を可能とする接続配管である。25は上記第1
の分岐部10と第2の流量制御装置13との間に設けら
れた第3の圧力検出手段、26は上記第2の流量制御装
置13と第4の流量制御装置17との間に設けられた第
4の圧力検出手段である。
On the other hand, reference numeral 32 is a third check valve provided between the heat source unit side heat exchanger 3 and the second connection pipe 7, and the heat source unit side heat exchanger 3 to the third check valve are provided. Refrigerant flow is allowed only to the second connecting pipe 7. Reference numeral 33 denotes a fourth check valve provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6, and from the first connecting pipe 6 to the four-way valve switching valve 2. Allows only refrigerant flow. Reference numeral 34 is a fifth check valve provided between the four-way switching valve 2 of the heat source unit A and the second connection pipe 7, and only from the four-way switching valve 2 to the second connection pipe 7. Allows refrigerant flow. 35
Is a sixth check valve provided between the heat source device side heat exchanger 3 and the first connection pipe 6, and from the first connection pipe 6 to the heat source device side heat exchanger 3. Allows only refrigerant flow. The third, fourth, fifth and sixth check valves 32, 3
The flow path switching valve device 40 is constituted by 3, 34, and 35. Example 2.90 is a second gas-liquid separation device provided between the flow path switching valve device 40 and the heat source unit side heat exchanger 3. Reference numeral 91 is a ninth on-off valve provided between the gas phase portion of the second gas-liquid separator and the four-way switching valve 2. 90a
Via the on-off valve 91, the upper part of the second gas-liquid separation device 90, the four-way switching valve 2 and the heat source unit side heat exchanger 3a,
A gas side pipe that communicates with a pipe that connects one end side of 3b, a liquid 90b that communicates the lower part of the second gas-liquid separation device and the other end side of the heat source unit side heat exchangers 3a, 3b. The side pipe 90c is a connection pipe that enables the inflow of the refrigerant from the first connection pipe 6 or the outflow of the refrigerant to the second connection pipe 7 via the flow path switching valve device 40. 25 is the above first
A third pressure detecting means 26 provided between the branch portion 10 and the second flow rate control device 13 is provided between the second flow rate control device 13 and the fourth flow rate control device 17. It is the fourth pressure detecting means.

【0025】次に動作について説明する。まず、図3を
用いて冷房運転のみの場合について説明する。同図に実
線矢印で示すように圧縮機1より吐出された高温高圧冷
媒ガスは四方切換弁2を通り、熱源機側熱交換器3で熱
源水と熱交換して凝縮された後、第3の逆止弁32、第
2の接続配管7、第1の気液分離装置12、第2の流量
制御装置13の順に通り、更に第2の分岐部11、室内
機側の第2の接続配管7b、7c、7dを通り、各室内
機B、C、Dに流入する。各室内機B、C、Dに流入し
た冷媒は、各室内側熱交換器5の出口のスーパーヒート
量により制御される第1の流量制御装置9により低圧ま
で減圧されて室内側熱交換器5で室内空気と熱交換して
蒸発しガス化され室内を冷房する。
Next, the operation will be described. First, the case of only the cooling operation will be described with reference to FIG. As shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, is heat-exchanged with the heat-source water in the heat-source-side heat exchanger 3, and is condensed into the third gas. Of the check valve 32, the second connection pipe 7, the first gas-liquid separation device 12, and the second flow rate control device 13 in this order, the second branch portion 11, and the second connection pipe on the indoor unit side. It passes through 7b, 7c, 7d and flows into each indoor unit B, C, D. The refrigerant flowing into each indoor unit B, C, D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 is cooled. It heats and exchanges heat with the room air, is gasified, and cools the room.

【0026】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、第1の開閉弁21、
第3の開閉弁23、第1の接続配管6、第4の逆止弁3
3、熱源機Aの四方切換弁2、アキュムレータ4を経て
圧縮機1に吸入される循環サイクルを構成し、冷房運転
を行う。この時、第1の開閉弁21、第3の開閉弁23
開路、第2の開閉弁22は閉路されている。又、冷媒は
この時、第1の接続配管6が低圧、第2の接続配管7が
高圧のため必然的に第3の逆止弁32、第4の逆止弁3
3へ流通する。又、このサイクルの時、第2の流量制御
装置13を通過した冷媒の一部がバイパス配管14へ入
り第3の流量制御装置15で低圧まで減圧されて第3の
熱交換部16b、16c、16dで第2の分岐部11の
各室内機側の第2の接続配管7b、7c、7dとの間
で、又、第2の熱交換部16aで第2の分岐部11の各
室内機側の第2の接続配管7b、7c、7dの会合部と
の間で、更に第1の熱交換部19で第2の流量制御装置
13に流入する冷媒との間で、熱交換を行い蒸発した冷
媒は、第1の接続配管6、第4の逆止弁33へ入り、熱
源機Aの四方切換弁2、アキュムレータ4を経て圧縮機
1に吸入される。一方、第1、第2、第3の熱交換部1
9、16a、16b、16c、16dで熱交換し冷却さ
れ、サブクールを充分につけられた上記第2の分岐部1
1の冷媒は冷房しようとしている室内機B、C、Dへ流
入する。
The refrigerant in the gas state is supplied to the first connecting pipes 6b, 6c, 6d on the indoor unit side, the first opening / closing valve 21,
Third on-off valve 23, first connecting pipe 6, fourth check valve 3
3, the four-way switching valve 2 of the heat source unit A, and the accumulator 4 form a circulation cycle that is sucked into the compressor 1 to perform the cooling operation. At this time, the first opening / closing valve 21 and the third opening / closing valve 23
Open, the second on-off valve 22 is closed. At this time, the refrigerant has a low pressure in the first connecting pipe 6 and a high pressure in the second connecting pipe 7, so that the third check valve 32 and the fourth check valve 3 are inevitable.
Distribution to 3. In addition, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the bypass pipe 14 and is depressurized to a low pressure by the third flow rate control device 15, so that the third heat exchange parts 16b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 and also on the indoor unit side of the second branch portion 11 on the second heat exchange part 16a. Of the second connection pipes 7b, 7c, and 7d, and further with the refrigerant flowing into the second flow rate control device 13 in the first heat exchange unit 19, heat is exchanged and evaporated. The refrigerant enters the first connecting pipe 6 and the fourth check valve 33, and is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4. On the other hand, the first, second, and third heat exchange units 1
The second branch portion 1 having sufficient subcooling by being heat-exchanged and cooled by 9, 16a, 16b, 16c, 16d.
Refrigerant No. 1 flows into the indoor units B, C, and D that are about to be cooled.

【0027】次に、図3を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に、圧縮機1より吐出された高温高圧冷媒ガスは、四方
切換弁2を通り、第5の逆止弁34、第2の接続配管
7、第1の気液分離装置12を通り、第2の開閉弁2
2、室内機側の第1の接続配管6b、6c、6dの順に
通り、各室内機B、C、Dに流入し、室内空気と熱交換
して凝縮液化し、室内を暖房する。この液状態となった
冷媒は、各室内側熱交換器5の出口のサブクール量によ
り制御されてほぼ全開状態の第1の流量制御装置9を通
り、室内機側の第2の接続配管7b、7c、7dから第
2の分岐部11に流入して合流し、更に第4の流量制御
装置17を通る。ここで、第1の流量制御装置9又は第
3、第4の流量制御装置15、17のどちらか一方で低
圧の気液二相状態まで減圧される。低圧まで減圧された
冷媒は、第1の接続配管6を経て熱源機Aの第6の逆止
弁35、熱源機側熱交換器3に流入し、熱源水と熱交換
して蒸発しガス状態となり、熱源機Aの四方切換弁2、
アキュムレータ4を経て圧縮機1に吸入される循環サイ
クルを構成し、暖房運転を行う。この時、第2の開閉弁
22は開路、第1の開閉弁21、第3の開閉弁23は閉
路されている。又、冷媒はこの時、第1の接続配管6が
低圧、第2の接続配管7が高圧のため必然的に第5の逆
止弁34、第6の逆止弁35へ流通する。なお、この時
第2の流量制御装置13は、通常所定最小開度状態とな
っている。
Next, the case of only the heating operation will be described with reference to FIG. That is, as shown by the dotted arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, the second connecting pipe 7, and the first connecting pipe 7. The second on-off valve 2 passing through the gas-liquid separator 12
2. The first connection pipes 6b, 6c, 6d on the indoor unit side are sequentially passed into the indoor units B, C, D to exchange heat with indoor air to be condensed and liquefied to heat the room. The refrigerant in this liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state, and the second connection pipe 7b on the indoor unit side, From 7c and 7d, they flow into the second branch portion 11 and merge, and further pass through the fourth flow rate control device 17. Here, the pressure is reduced to a low pressure gas-liquid two-phase state by either the first flow rate control device 9 or the third and fourth flow rate control devices 15 and 17. The refrigerant decompressed to a low pressure flows into the sixth check valve 35 of the heat source device A and the heat source device side heat exchanger 3 through the first connection pipe 6, exchanges heat with the heat source water and evaporates to a gas state. And the four-way switching valve 2 of the heat source unit A,
A circulation cycle in which the compressor 1 is sucked through the accumulator 4 constitutes a heating operation. At this time, the second opening / closing valve 22 is open, and the first opening / closing valve 21 and the third opening / closing valve 23 are closed. At this time, the refrigerant inevitably circulates to the fifth check valve 34 and the sixth check valve 35 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure. At this time, the second flow rate control device 13 is normally in the predetermined minimum opening state.

【0028】次に冷暖同時運転における暖房主体運転の
場合について図4を用いて説明する。同図に点線矢印で
示すように圧縮機1より吐出された高温高圧冷媒ガス
は、四方切換弁2を経て第5の逆止弁34、第2の接続
配管7を通して中継機Eへ送られ、第1の気液分離装置
12を通り、第2の開閉弁22、室内機側の第1の接続
配管6b、6cの順に通り、暖房しようとしている各室
内機B、Cに流入し、室内側熱交換器5で室内空気と熱
交換して凝縮液化し、室内を暖房する。この凝縮液化し
た冷媒は、各室内側熱交換器5の出口のサブクール量に
より制御されほぼ全開状態の第1の流量制御装置9を通
り、少し減圧されて第2の分岐部11に流入する。
Next, the case of the heating-main operation in the cooling / heating simultaneous operation will be described with reference to FIG. The high-temperature high-pressure refrigerant gas discharged from the compressor 1 is sent to the relay machine E through the four-way switching valve 2 and the fifth check valve 34 and the second connecting pipe 7 as shown by the dotted arrow in the figure. After passing through the first gas-liquid separation device 12, the second opening / closing valve 22 and the first connection pipes 6b and 6c on the indoor unit side in this order, and flowing into the indoor units B and C to be heated, and the indoor side The heat exchanger 5 exchanges heat with indoor air to condense and liquefy, and heats the room. The condensed and liquefied refrigerant passes through the first flow rate control device 9 which is controlled by the amount of subcool at the outlet of each indoor heat exchanger 5 and is in a substantially fully opened state, and is slightly depressurized and flows into the second branch portion 11.

【0029】この冷媒の一部は、室内機側の第2の査閲
配管7dを通り、冷房しようとする室内機Dに入り、室
内側熱交換器5の出口のスーパーヒート量により制御さ
れる第1の流量制御装置9に入り、減圧された後に、室
内側熱交換器5に入って熱交換して蒸発しガス状態とな
って室内を冷房し、室内機側の第1の接続配管6dを経
て第1の開閉弁21、第3の開閉弁23を介して第1の
接続配管6に流入する。一方、他の冷媒は第3の圧力検
出手段25の検出圧力、第4の圧力検出手段26の検出
圧力の圧力差が所定範囲となるように制御される第4の
流量制御装置17を通って、冷房しようとする室内機D
を通った冷媒と合流して太い第1の接続配管6を経て、
熱源機Aの第6の逆止弁35、第2の気液分離装置90
に流入し、液状冷媒は熱源機側熱交換器3に分流され熱
源水と熱交換して蒸発しガス状態となる。一方第2の気
液分離装置90で分流されたガス状冷媒は四方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される。こ
こで、第2の気液分離装置90に流入し、熱源機側熱交
換器3に分流された液状冷媒は第1の熱源機側熱交換器
3aの両端にある第4の開閉弁70、第5の開閉弁71
と第2の熱源機側熱交換器3bの両端にある第6の開閉
弁72、第7の開閉弁73、及び上記第1、第2の熱源
機側熱交換器3a、3bと並列に接続された第1の熱源
機側バイパス回路75の第8の開閉弁74の開閉及び、
更に上記第1、第2の熱源機側熱交換器3a、3bと並
列に接続された第2の熱源機側バイパス回路77の第5
の流量制御装置76の開度を調節することにより流量を
調節され第2の圧力検の手段78の検出圧力が予め定め
られた目標圧力となるように熱源機側熱交換器3の熱交
換量を任意に調整する。
Part of this refrigerant passes through the second inspection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and is controlled by the superheat amount at the outlet of the indoor heat exchanger 5. After entering the flow rate control device 9 of No. 1 and being decompressed, it enters the indoor heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room, and to connect the first connection pipe 6d on the indoor unit side. After that, it flows into the first connecting pipe 6 via the first opening / closing valve 21 and the third opening / closing valve 23. On the other hand, the other refrigerant passes through the fourth flow rate control device 17 which is controlled so that the pressure difference between the pressure detected by the third pressure detecting means 25 and the pressure detected by the fourth pressure detecting means 26 falls within a predetermined range. , Indoor unit D trying to cool
Through the thick first connecting pipe 6 which merges with the refrigerant passing through
The sixth check valve 35 and the second gas-liquid separation device 90 of the heat source unit A
, The liquid refrigerant is split into the heat source unit side heat exchanger 3 and exchanges heat with the heat source water to evaporate and become a gas state. On the other hand, the gaseous refrigerant divided in the second gas-liquid separator 90 is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. Here, the liquid refrigerant that has flowed into the second gas-liquid separation device 90 and has been split into the heat source device side heat exchanger 3 has a fourth opening / closing valve 70 at both ends of the first heat source device side heat exchanger 3a. Fifth on-off valve 71
And a sixth opening / closing valve 72, a seventh opening / closing valve 73 at both ends of the second heat source unit side heat exchanger 3b, and the first and second heat source unit side heat exchangers 3a, 3b are connected in parallel. The opening and closing of the eighth opening / closing valve 74 of the first heat source unit side bypass circuit 75, and
Further, the fifth heat source unit side bypass circuit 77 is connected in parallel with the first and second heat source unit side heat exchangers 3a and 3b.
The heat exchange amount of the heat source side heat exchanger 3 is adjusted so that the flow rate is adjusted by adjusting the opening degree of the flow rate control device 76 and the pressure detected by the second pressure detection means 78 becomes a predetermined target pressure. To be adjusted arbitrarily.

【0030】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5の蒸発圧力と熱源機側熱交換
器3の圧力差が、太い第1の接続配管6に切り換えるた
めに小さくなる。又、この時、室内機B、Cに接続され
た第2の開閉弁22は開路、第1の開閉弁21、第3の
開閉弁23は閉路されている。室内機Dに接続された第
1の開閉弁21、第3の開閉弁23は開路、第2の開閉
弁22は閉路されている。又、冷媒はこの時、第1の接
続配管6が低圧、第2の接続配管7が高圧のため必然的
に第5の逆止弁34、第6の逆止弁35へ流通する。
This refrigerant constitutes a circulation cycle in which it is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4, and performs heating-main operation. At this time, the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure difference of the heat source unit side heat exchanger 3 are reduced due to switching to the thick first connection pipe 6. At this time, the second opening / closing valve 22 connected to the indoor units B and C is open, and the first opening / closing valve 21 and the third opening / closing valve 23 are closed. The first opening / closing valve 21 and the third opening / closing valve 23 connected to the indoor unit D are open, and the second opening / closing valve 22 is closed. At this time, the refrigerant inevitably circulates to the fifth check valve 34 and the sixth check valve 35 because the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure.

【0031】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部からバイパス配管14へ入り、第3の流量
制御装置15で低圧まで減圧されて、第3の熱交換部1
6b、16c、16dで第2の分岐部11の各室内機側
の第2の接続配管7b、7c、7dとの間で、又、第2
の熱交換部16aで第2の分岐部11の各室内機側の第
2の接続配管7b、7c、7dの会合部との間で熱交換
を行い、蒸発した冷媒は、第1の接続配管6、第6の逆
止弁35を経由し、熱源機側熱交換器3へ入り、熱源水
と熱交換して蒸発気化した後、熱源機Aの四方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される。一
方、第2、第3の熱交換部、16a、16b、16c、
16dで熱交換し、冷却され、サブクールを充分につけ
られた上記第2の分岐部11の冷媒は冷房しようとして
いる室内機Dへ流入する。なお、この時第2の流量制御
装置13は、通常所定最小開度状態となっている。
During this cycle, part of the liquid refrigerant is the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
It enters the bypass pipe 14 from the meeting portion of 7d, is depressurized to a low pressure by the third flow control device 15, and the third heat exchange portion 1
6b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 and the second
The heat exchange section 16a performs heat exchange with the association section of the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11, and the evaporated refrigerant is the first connection pipe. 6, after entering the heat source unit side heat exchanger 3 via the sixth check valve 35, exchanging heat with the heat source water to evaporate and vaporize, and then through the four-way switching valve 2 of the heat source unit A and the accumulator 4 to the compressor. Inhaled to 1. On the other hand, the second and third heat exchange parts 16a, 16b, 16c,
The refrigerant in the second branch portion 11 that has been heat-exchanged and cooled in 16d and is sufficiently subcooled flows into the indoor unit D that is about to be cooled. At this time, the second flow rate control device 13 is normally in the predetermined minimum opening state.

【0032】次に、冷暖房同時運転における冷房主体の
場合について図5を用いて説明する。同図に実線矢印で
示すように、圧縮機1より吐出された高温高圧冷媒ガス
は、四方切換弁2を経て熱源機側熱交換器3に流入し、
熱源水と熱交換して気液二相の高温高圧状態となる。こ
こで、第1の圧力検出手段79の検出圧力が予め定めら
れた目標圧力となるように第1の熱源機側熱交換器3a
の両端にある第4の開閉弁70、第5の開閉弁71と第
2の熱現機側熱交換器3bの両端にある第6の開閉弁7
2、第7の開閉弁73、及び上記第1、第2の熱源機側
熱交換器3a、3bと並列に接続された第1の熱現機側
バイパス回路75の第8の開閉弁74、上記第2の気液
分離装置の気相部と上記四方切換弁2の間に設けられた
第9の開閉弁91を開閉し、更に上記第1、第2の熱源
機側熱交換器3a、3bと並列に接続された第2の熱源
機側バイパス回路77の第5の流量制御装置76の開度
を調節し熱源機側熱交換器3の熱交換量を任意に調整す
る。その後、この気液二相の高温高圧状態の冷媒は第3
の逆止弁32、第2の接続配管7を経て、中継機Eの第
1の気液分離装置12へ送られる。ここで、ガス状冷媒
と液状冷媒に分離され、分理されたガス状冷媒は第2の
開閉弁22、室内機側第1の接続配管6dの順に通り、
暖房しようとする室内機Dに流入し、室内側熱交換器5
で室内空気と熱交換して凝縮液化し、室内を暖房する。
更に、室内側熱交換器5の出口のサブクール量により制
御され、ほぼ全開状態の第1の流量制御装置9を通り、
少し減圧されて、第2の分岐部11に流入する。
Next, the case of mainly cooling in the simultaneous heating and cooling operation will be described with reference to FIG. As shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 via the four-way switching valve 2,
It exchanges heat with the heat source water to form a gas-liquid two-phase high-temperature high-pressure state. Here, the first heat source unit side heat exchanger 3a is set so that the pressure detected by the first pressure detecting means 79 becomes a predetermined target pressure.
Of the fourth on-off valve 70 and the fifth on-off valve 71 at both ends of the second heat-generating unit side heat exchanger 3b
2, the seventh on-off valve 73, and the eighth on-off valve 74 of the first heat generator side bypass circuit 75 connected in parallel with the first and second heat source side heat exchangers 3a and 3b, The ninth on-off valve 91 provided between the gas phase portion of the second gas-liquid separation device and the four-way switching valve 2 is opened and closed, and the first and second heat source unit side heat exchangers 3a, 3b, the opening degree of the 5th flow control device 76 of the 2nd heat source machine side bypass circuit 77 is adjusted, and the heat exchange amount of the heat source machine side heat exchanger 3 is arbitrarily adjusted. After that, this gas-liquid two-phase high-temperature and high-pressure refrigerant has a third
It is sent to the first gas-liquid separation device 12 of the relay machine E via the check valve 32 and the second connection pipe 7. Here, the separated and separated gaseous refrigerant and liquid refrigerant pass through the second opening / closing valve 22 and the indoor unit side first connection pipe 6d in this order,
It flows into the indoor unit D that is going to be heated, and the indoor heat exchanger 5
Heats the room by exchanging heat with the room air to condense and liquefy.
Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state,
It is slightly decompressed and flows into the second branch portion 11.

【0033】一方、残りの液状冷媒は第3の圧力検出手
段25の検出圧力、第4の圧力検出手段26の検出圧力
によって制御される第2の流量制御装置13を通って、
第2の分岐部11に流入し、暖房しようとする室内機D
を通った冷媒と合流する。第2の分岐部11、室内機側
の第2の接続配管7b、7cの順に通り、各室内機B、
Cに流入する。各室内機B、Cに流入した冷媒は、室内
機側熱交換器5の出口のスーパーヒート量により制御さ
れる第1の流量制御装置9により低圧まで減圧された後
に、室内側熱交換器5に流入し、室内空気と熱交換して
蒸発しガス化され、室内を冷房する。更に、このガス状
態となった冷媒は、室内機側の第1の接続配管6b、6
c、第1の開閉弁21、第3の開閉弁23、第1の接続
配管6、第4の逆止弁33、熱源機Aの四方切換弁2、
アキュムレータ4を経て圧縮機1に吸入される循環サイ
クルを構成し、冷房主体運転を行う。又、この時、室内
機B、Cに接続された第1の開閉弁21、第3の開閉弁
23は開路、第2の開閉弁22は閉路されている。室内
機Dに接続された第2の開閉弁22は開路、第1の開閉
弁21、第3の開閉弁23は閉路されている。冷媒はこ
の時、第1の接続配管6が低圧、第2の接続配管7が高
圧のため、必然的に第3の逆止弁32、第4の逆止弁3
3へ流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 controlled by the pressure detected by the third pressure detecting means 25 and the pressure detected by the fourth pressure detecting means 26,
The indoor unit D which flows into the second branch portion 11 and tries to heat
It merges with the refrigerant that has passed through. The second branch portion 11 and the second connection pipes 7b and 7c on the indoor unit side are passed in this order, and each indoor unit B,
Flow into C. The refrigerant flowing into each indoor unit B, C is depressurized to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of the indoor unit heat exchanger 5, and then the indoor heat exchanger 5 Flows into the room, heat exchanges with the room air, evaporates and is gasified, and cools the room. Further, the refrigerant in the gas state is used as the first connection pipes 6b, 6 on the indoor unit side.
c, the first opening / closing valve 21, the third opening / closing valve 23, the first connecting pipe 6, the fourth check valve 33, the four-way switching valve 2 of the heat source unit A,
A circulation cycle in which the air is sucked into the compressor 1 via the accumulator 4 is configured to perform a cooling main operation. At this time, the first opening / closing valve 21 and the third opening / closing valve 23 connected to the indoor units B and C are open, and the second opening / closing valve 22 is closed. The second opening / closing valve 22 connected to the indoor unit D is open, and the first opening / closing valve 21 and the third opening / closing valve 23 are closed. At this time, the refrigerant has a low pressure in the first connecting pipe 6 and a high pressure in the second connecting pipe 7, so that the third check valve 32 and the fourth check valve 3 are inevitably formed.
Distribution to 3.

【0034】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部からバイパス配管14へ入り、第3の流路
制御装置15で低圧まで減圧されて、第3の熱交換部1
6b、16c、16dで第2の分岐部11の各室内機側
の第2の接続配管7b、7c、7dとの間で、又、第2
の熱交換器部16aで第2の分岐部11の各室内機側の
第2の接続配管7b、7c、7dの会合部との間で、更
に第1の熱交換部19で第2の流量制御装置13へ流入
する冷媒との間で熱交換を行い、蒸発した冷媒は第1の
接続配管6、第4の逆止弁33へ入り、熱源機Aの四方
切換弁2、アキュムレータ4を経て圧縮機1に吸入され
る。一方、第1、第2、第3の熱交換部19、16a、
16b、16c、16dで熱交換し冷却されサブクール
を充分につけられた上記第2の分岐部11の冷媒は冷房
しようとしている室内機B、Cへ流入する。
During this cycle, a part of the liquid refrigerant is supplied to the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
It enters the bypass pipe 14 from the meeting portion of 7d, is depressurized to a low pressure by the third flow path control device 15, and the third heat exchange unit 1
6b, 16c, 16d between the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch portion 11 and the second
Of the second branch portion 11 between the second connection pipes 7b, 7c, 7d of the second branch portion 11 of the second heat exchanger portion 16a, and the first heat exchange portion 19 at the second flow rate. Heat is exchanged with the refrigerant flowing into the control device 13, and the evaporated refrigerant enters the first connection pipe 6 and the fourth check valve 33, and passes through the four-way switching valve 2 of the heat source unit A and the accumulator 4. It is sucked into the compressor 1. On the other hand, the first, second and third heat exchange parts 19, 16a,
The refrigerant in the second branch portion 11 that is heat-exchanged and cooled in 16b, 16c, and 16d and is sufficiently subcooled flows into the indoor units B and C that are about to be cooled.

【0035】次に冷暖房同時運転の暖房主体運転及び冷
房主体運転の場合の第4の開閉弁70、第5の開閉弁7
1、第6の開閉弁72、第7の開閉弁73、第8の開閉
弁74、第5の流量制御装置76の制御について説明す
る。図6は第4の開閉弁70、第5の開閉弁71、第6
の開閉弁72、第7の開閉弁73、第8の開閉弁74、
第5の流量制御装置76の制御機構を示し、50は第1
の圧力検出手段79及び第2の圧力検出手段78の検出
圧力に応じて、第4の開閉弁70、第5の開閉弁71、
第6の開閉弁72、第7の開閉弁73、第8の開閉弁7
4の開閉と第5の流量制御装置76の開度を制御する熱
源機側熱交換容量調整手段である。図7は冷暖同時運転
における暖房主体運転の場合の熱源機側熱交換容量制御
手段50の制御内容を示すフローチャートである。ま
ず、熱源機側熱交換容量制御手段50による熱源機側熱
交換容量の制御方法を説明する。本実施例では、熱源機
側熱交換容量を次に示す3段階で調整する。第1段階は
最も大きな熱源機側熱交換容量を必要とする場合に対応
し、上記第4の開閉弁70、上記第5の開閉弁71、上
記第6の開閉弁72、第7の開閉弁73を開弁し、上記
第5の流量制御装置76の開度を制御することにより上
記第1及び第2の熱源機側熱交換器3a、3bの両方に
冷媒を流通させかつ上記第5の流量制御装置76の開度
ではバイパス冷媒量を全開から第1の設定開度までの間
で調整する。この場合に、上記第2の熱源機側バイパス
回路77の上記第5の流量制御装置76を全閉にすると
上記第1及び第2の熱源機側熱交換器3a、3bに空気
調和装置を循環している全冷媒が流入し圧力損失が増
し、冷房室内機での蒸発圧力が高くなり冷房能力が出な
くなるため上記第5の流量制御装置76には全閉より少
し開いた第1の所定開度を設ける。
Next, the fourth opening / closing valve 70 and the fifth opening / closing valve 7 in the heating-main operation and the cooling-main operation of the cooling / heating simultaneous operation.
The control of the first, sixth opening / closing valve 72, the seventh opening / closing valve 73, the eighth opening / closing valve 74, and the fifth flow rate control device 76 will be described. FIG. 6 shows a fourth on-off valve 70, a fifth on-off valve 71, a sixth
Open / close valve 72, seventh open / close valve 73, eighth open / close valve 74,
The control mechanism of the 5th flow control device 76 is shown, 50 is the 1st
The fourth opening / closing valve 70, the fifth opening / closing valve 71, according to the pressures detected by the pressure detecting means 79 and the second pressure detecting means 78.
Sixth on-off valve 72, seventh on-off valve 73, eighth on-off valve 7
It is a heat source unit side heat exchange capacity adjusting means for controlling the opening / closing of No. 4 and the opening degree of the fifth flow rate control device 76. FIG. 7 is a flowchart showing the control contents of the heat source unit side heat exchange capacity control means 50 in the heating-main operation in the cooling / heating simultaneous operation. First, a method of controlling the heat exchange capacity of the heat source unit by the heat exchange unit of the heat source unit 50 will be described. In this embodiment, the heat exchange capacity on the heat source unit side is adjusted in the following three stages. The first stage corresponds to the case where the heat exchange capacity on the heat source unit side is the largest, and corresponds to the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72, and the seventh opening / closing valve. By opening the valve 73 and controlling the opening of the fifth flow control device 76, the refrigerant is circulated through both the first and second heat source unit side heat exchangers 3a and 3b and the fifth flow control device 76 is controlled. At the opening of the flow rate control device 76, the amount of bypass refrigerant is adjusted from the full opening to the first set opening. In this case, when the fifth flow rate control device 76 of the second heat source unit side bypass circuit 77 is fully closed, the air conditioner is circulated to the first and second heat source unit side heat exchangers 3a and 3b. Since all the refrigerant that is operating flows in, the pressure loss increases, the evaporating pressure in the cooling indoor unit becomes high, and the cooling capacity does not come out. Set a degree.

【0036】第2段階は次に大きな熱源機側熱交換容量
を必要とする場合に対応し、上記第4の開閉弁70、上
記第5の開閉弁71、上記第6の開閉弁72、上記第7
の開閉弁73、第8の開閉弁74を開弁し、上記第5の
流量制御装置76の開度を制御することにより上記第1
及び第2の熱源機側熱交換器3a、3bの両方、及び上
記第1のバイパス回路75に冷媒を流通させかつ上記第
5の流量制御装置76の開度ではバイパス冷媒量を全開
から全閉までの間で調整する。この場合、上記第5の流
量制御装置76を全開にした時の上記第2の熱源機側バ
イパス回路77の冷媒流量と途中に上記第8の開閉弁7
4を備えた上記第1の熱源機側バイパス回路75の冷媒
流量が等しくなるよう上記第1の熱源機側バイパス回路
75の圧力損失は設定されている。これにより、第2段
階でのバイパス流量は第1段階でのバイパス流量から連
続的に調節可能となる。
The second stage corresponds to the case where the next larger heat exchange capacity on the heat source unit side is required, and the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72, the above-mentioned 7th
The first opening / closing valve 73 and the eighth opening / closing valve 74 are opened, and the opening degree of the fifth flow rate control device 76 is controlled.
And the second heat source unit side heat exchangers 3a, 3b, and the first bypass circuit 75, the refrigerant is circulated, and the opening degree of the fifth flow rate control device 76 allows the bypass refrigerant amount to be fully opened to fully closed. Adjust up to. In this case, the refrigerant flow rate of the second heat source unit side bypass circuit 77 when the fifth flow rate control device 76 is fully opened and the eighth open / close valve 7 in the middle of the flow rate.
The pressure loss of the first heat source device side bypass circuit 75 is set so that the refrigerant flow rates of the first heat source device side bypass circuit 75 are equal. Thereby, the bypass flow rate in the second stage can be continuously adjusted from the bypass flow rate in the first stage.

【0037】第3段階は最も小さい熱源機側熱交換量を
必要とする場合に対応し、上記第4の開閉弁70、上記
第5の開閉弁71、上記第6の開閉弁72、上記第7の
開閉弁73を閉弁し上記第8の開閉弁74を開弁し、上
記第5の流量制御装置76の開度を全開にすることによ
り上記第1及び第2の熱源機側熱交換器3a、3bの熱
交換量を皆無にする。このように、熱源機側熱交換容量
を3段階で調整することによって、連続的な熱源機側熱
交換容量が得られ、高圧が過昇することなく、低圧がひ
きこむことなく、冷暖同時運転における暖房主体運転の
場合の冷房能力及び暖房能力が十分得られる。
The third stage corresponds to the case where the heat exchange amount on the heat source unit side is the smallest, and corresponds to the fourth on-off valve 70, the fifth on-off valve 71, the sixth on-off valve 72, and the sixth on-off valve. No. 7 open / close valve 73 is closed, the eighth open / close valve 74 is opened, and the opening degree of the fifth flow rate control device 76 is fully opened. The heat exchange amounts of the vessels 3a and 3b are eliminated. In this way, by adjusting the heat exchange capacity on the heat source unit side in three stages, a continuous heat exchange capacity on the heat source unit side can be obtained, the high pressure does not rise excessively, the low pressure does not pull in, and the simultaneous cooling and heating operation is performed. In this case, the cooling capacity and the heating capacity can be sufficiently obtained in the heating-main operation.

【0038】次に、図7のフローチャートに添って冷暖
同時運転における暖房主体運転の場合の熱源機側熱交換
容量制御手段50の制御内容を説明する。ステップ51
で第2の圧力検出手段78の検出圧力と予め定められた
第1の設定圧力とを比較し検出圧力が第1の設定圧力よ
り低い場合にはステップ52へ進む。ステップ52で
は、上記第4の開閉弁70、上記第5の開閉弁71、上
記第6の開閉弁72、上記第7の開閉弁73の開閉を判
定し、閉弁の場合はステップ53で開弁し、ステップ5
1に戻る。開弁の場合はステップ54に進み、上記第8
の開閉弁74の開閉を判定し、開弁の場合は、ステップ
55に進み閉弁し、ステップ51に戻る。閉弁の場合
は、ステップ56に進み上記第5の流量制御装置76の
開度を判定し、全閉よりわずかに開いた第1の所定開度
より開いている場合はステップ57で開度を絞りステッ
プ51に戻る。又、第1の所定開度の場合もステップ5
1に戻る。
Next, the control contents of the heat-source-unit-side heat exchange capacity control means 50 in the heating-main operation in the simultaneous cooling and heating operation will be described with reference to the flowchart of FIG. Step 51
Then, the detected pressure of the second pressure detecting means 78 is compared with the predetermined first set pressure, and if the detected pressure is lower than the first set pressure, the routine proceeds to step 52. In step 52, it is judged whether the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72, and the seventh opening / closing valve 73 are opened or closed. Valve, step 5
Return to 1. When the valve is opened, the process proceeds to step 54 and the above eighth
It is determined whether the opening / closing valve 74 is open or closed. If the valve is open, the process proceeds to step 55, the valve is closed, and the process returns to step 51. When the valve is closed, the routine proceeds to step 56, where the opening degree of the fifth flow rate control device 76 is judged, and when it is opened from the first predetermined opening slightly opened from the fully closed state, the opening degree is set at step 57. Return to aperture step 51. Also, in the case of the first predetermined opening degree, step 5
Return to 1.

【0039】一方、ステップ51で検出圧力が第1の設
定圧力以上と判定されると、ステップ58に進む。ステ
ップ58で第2の圧力検出手段78の検出圧力と上記第
1の目標圧力より予め高く定められた第2の設定圧力と
を比較し検出圧力が第2の設定圧力より高い場合にはス
テップ59へ進み、検出圧力が第2の設定圧力以下であ
ればステップ51に戻る。ステップ59で上記第5の流
量制御装置76の開度を判定し、全開していない場合
は、ステップ60に進み開度を増やしステップ51に戻
る。全開の場合はステップ61に第8の開閉弁74の開
閉を判定し、閉弁であればステップ62で開弁し、ステ
ップ62進み、開弁し、ステップ51に戻る。開弁の場
合は、ステップ63に進み、上記第4の開閉弁70、上
記第5の開閉弁71、上記第6の開閉弁72、上記第7
の開閉弁73の開閉を判定し、開弁の場合はステップ6
4に進み閉弁しステップ51に戻る。又、閉弁の場合も
ステップ51に戻る。このようにして、第4の圧力検出
手段79の検出圧力を第1の設定圧力と第2の設定圧力
の間の値とすることができる。
On the other hand, when it is judged at step 51 that the detected pressure is equal to or higher than the first set pressure, the routine proceeds to step 58. In step 58, the detected pressure of the second pressure detecting means 78 is compared with the second set pressure which is set higher than the first target pressure in advance, and when the detected pressure is higher than the second set pressure, step 59. If the detected pressure is less than or equal to the second set pressure, the process returns to step 51. In step 59, the opening degree of the fifth flow rate control device 76 is determined, and if it is not fully opened, the operation proceeds to step 60, the opening degree is increased, and the operation returns to step 51. In the case of full opening, it is determined in step 61 whether the eighth opening / closing valve 74 is open or closed. If it is closed, the valve is opened in step 62, the process proceeds to step 62, the valve is opened, and the process returns to step 51. In the case of opening the valve, the routine proceeds to step 63, where the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72, the seventh opening
Open / close valve 73 is judged to be open / closed, and if it is open, step 6
4, the valve is closed and the process returns to step 51. If the valve is closed, the process returns to step 51. In this way, the pressure detected by the fourth pressure detecting means 79 can be set to a value between the first set pressure and the second set pressure.

【0040】図8は冷暖同時運転における冷房主体運転
の場合の熱源機側熱交換容量制御手段50の制御内容を
示すフローチャートである。まず、熱源機側熱交換容量
制御手段50による熱源機側熱交換容量の制御方法を説
明する。本実施例では、熱源機側熱交換容量を次に示す
3段階で調整する。第1段階は最も大きな熱源機側熱交
換容量を必要とする場合に対応し、上記第4の開閉弁7
0、上記第5の開閉弁71、上記第6の開閉弁72、上
記第7の開閉弁73を開弁し、上記第5の流量制御装置
76の開度を制御することにより上記第1及び第2の熱
源機側熱交換器3a、3bの両方に冷媒を流通させかつ
上記第5の流量制御装置76の開度ではバイパス冷媒量
を全開から第1の設定開度までの間で調整する。この場
合に、上記第2の熱源機側バイパス回路77の上記第5
の流量制御装置76を全閉にすると上記第1及び第2の
熱源機側熱交換器3a、3bに空気調和装置を循環して
いる全冷媒が流入し圧力損失が増し、暖房室内機での凝
縮圧力が低くなり暖房能力が出なくなるため上記第5の
流量制御装置76には全閉より少し開いた第1の所定開
度を設ける。
FIG. 8 is a flow chart showing the control contents of the heat source unit side heat exchange capacity control means 50 in the case of the cooling main operation in the cooling / heating simultaneous operation. First, a method of controlling the heat exchange capacity of the heat source unit by the heat exchange unit of the heat source unit 50 will be described. In this embodiment, the heat exchange capacity on the heat source unit side is adjusted in the following three stages. The first stage corresponds to the case where the largest heat exchange capacity on the heat source unit side is required.
0, the fifth opening / closing valve 71, the sixth opening / closing valve 72, and the seventh opening / closing valve 73 are opened, and the opening of the fifth flow control device 76 is controlled to control the first and The refrigerant is circulated through both of the second heat source unit side heat exchangers 3a and 3b, and the bypass refrigerant amount is adjusted from the full opening to the first set opening at the opening degree of the fifth flow rate control device 76. .. In this case, the fifth heat source unit side bypass circuit 77 has the fifth component.
When the flow rate control device 76 is completely closed, all the refrigerant circulating in the air conditioner flows into the first and second heat source unit side heat exchangers 3a and 3b to increase the pressure loss. Since the condensing pressure becomes low and the heating capacity does not come out, the fifth flow rate control device 76 is provided with a first predetermined opening degree which is slightly open rather than fully closed.

【0041】第2段階は次に大きな熱源機側熱交換容量
を必要とする場合に対応し、上記第4の開閉弁70、上
記第5の開閉弁71、上記第6の開閉弁72、上記第7
の開閉弁73、第8の開閉弁74を開弁し、上記第5の
流量制御装置76の開度を制御することにより上記第1
及び第2の熱源機側熱交換器3a、3bの両方、及び上
記第1のバイパス回路75に冷媒を流通させかつ上記第
5の流量制御装置76の開度ではバイパス冷媒量を全開
から全閉までの間で調整する。この場合、上記第5の流
量制御装置76を全開にした時の上記第2の熱源機側バ
イパス回路77の冷媒流量と途中に上記第8の開閉弁7
4を備えた上記第1の熱源機側バイパス回路75の冷媒
流量が等しくなるよう上記第1の熱源機側バイパス回路
75の圧力損失は設定されている。これにより、第2段
階でのバイパス流量は第1段階でのバイパス流量から連
続的に調節可能となる。第3段階は最も小さい熱源機側
熱交換量を必要とする場合に対応し、上記第4の開閉弁
70、上記第5の開閉弁71、上記第6の開閉弁72、
上記第7の開閉弁73を閉弁し上記第8の開閉弁74を
開弁し、上記第5の流量制御装置76の開度を全開にす
ることにより上記第1及び第2の熱源機側熱交換器3
a、3bの熱交換量を皆無にする。このように、熱源機
側熱交換容量を3段階に制御することによって、高圧が
過昇することなく、低圧がひきこむことなく、冷暖同時
運転における冷房主体運転の場合の冷房能力及び暖房能
力が十分得られる。
The second stage corresponds to the case where the next larger heat exchange capacity on the heat source side is required, and the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72, the above-mentioned 7th
The first opening / closing valve 73 and the eighth opening / closing valve 74 are opened, and the opening degree of the fifth flow rate control device 76 is controlled.
And the second heat source unit side heat exchangers 3a, 3b, and the first bypass circuit 75, the refrigerant is circulated, and the opening degree of the fifth flow rate control device 76 allows the bypass refrigerant amount to be fully opened to fully closed. Adjust up to. In this case, the refrigerant flow rate of the second heat source unit side bypass circuit 77 when the fifth flow rate control device 76 is fully opened and the eighth open / close valve 7 in the middle of the flow rate.
The pressure loss of the first heat source device side bypass circuit 75 is set so that the refrigerant flow rates of the first heat source device side bypass circuit 75 are equal. Thereby, the bypass flow rate in the second stage can be continuously adjusted from the bypass flow rate in the first stage. The third stage corresponds to the case where the minimum heat exchange amount on the heat source unit side is required, and the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72,
By closing the seventh opening / closing valve 73, opening the eighth opening / closing valve 74, and fully opening the opening degree of the fifth flow rate control device 76, the first and second heat source unit sides Heat exchanger 3
The heat exchange amounts of a and 3b are eliminated. In this way, by controlling the heat exchange capacity on the heat source unit side in three stages, the cooling capacity and the heating capacity in the cooling-main operation in the cooling / heating simultaneous operation can be achieved without the high pressure rising excessively and the low pressure not pulling down. You get enough.

【0042】次に、図8のフローチャートに添って冷暖
同時運転における冷房主体運転の場合の熱源機側熱交換
容量制御手段50の制御内容を説明する。ステップ10
1で第1の圧力検出手段79の検出圧力と予め定められ
た第3の設定圧力とを比較し検出圧力が第3の設定圧力
より高い場合には、ステップ102へ進む。ステップ1
02で上記第4の開閉弁70、上記第5の開閉弁71、
上記第6の開閉弁72、上記第7の開閉弁73の開閉を
判定し、閉弁の場合はステップ103で開弁し、ステッ
プ101に戻る。開弁の場合はステップ104に進み、
上記第8の開閉弁74の開閉を判定し、開弁の場合は、
ステップ105に進み閉弁し、ステップ101に戻る。
閉弁の場合は、ステップ106に進み上記第5の流量制
御装置76の開度を判定し、全閉よりわずかに開いた第
1の所定開度より開いている場合はステップ107で開
度を絞りステップ101に戻る。又、第1の所定開度の
場合もステップ101に戻る。
Next, the control contents of the heat-source-unit-side heat exchange capacity control means 50 in the case of the cooling-main operation in the simultaneous cooling and heating operation will be described with reference to the flowchart of FIG. Step 10
When the detected pressure is higher than the third set pressure by comparing the detected pressure of the first pressure detecting means 79 with the preset third set pressure in step 1, the routine proceeds to step 102. Step 1
02, the fourth on-off valve 70, the fifth on-off valve 71,
Whether the sixth on-off valve 72 and the seventh on-off valve 73 are opened or closed is determined. If they are closed, the valve is opened in step 103 and the process returns to step 101. If the valve is open, proceed to step 104,
Whether the eighth opening / closing valve 74 is opened or closed is determined.
The routine proceeds to step 105, the valve is closed, and the routine returns to step 101.
When the valve is closed, the routine proceeds to step 106, where the opening degree of the fifth flow rate control device 76 is judged, and when it is opened from the first predetermined opening slightly opened from the fully closed state, the opening degree is opened at step 107. Return to aperture step 101. Further, when the opening degree is the first predetermined opening degree, the process also returns to step 101.

【0043】一方、ステップ101で検出圧力が第3の
設定圧力以下と判定されると、ステップ108に進む。
ステップ108で第3の圧力検出手段78の検出圧力と
上記第3の設定圧力より予め低く定められた第4の設定
圧力とを比較し、検出圧力が第4の検出圧力より低い場
合にはステップ109へ進み、検出圧力が第4の設定圧
力以上であればステップ101に戻る。ステップ109
で上記第5の流量制御装置76の開度を判定し、全開し
ていない場合は、ステップ110に進み開度を増やしス
テップ101に戻る。ステップ109で上記第5の流量
制御装置76の開度を判定し、全開していない場合はス
テップ110に進み開度を増やしステップ101に戻
る。全開の場合はステップ111に進み、第8の開閉弁
74の開閉を判定し、閉弁の場合はステップ112で開
弁し、ステップ101に戻る。開弁の場合は、ステップ
113に進み、上記第4の開閉弁70、上記第5の開閉
弁71、上記第6の開閉弁72、上記第7の開閉弁73
の開閉を判定し、開弁の場合はステップ114に進み閉
弁しステップ101に戻る。又、閉弁の場合もステップ
101に戻る。このようにして、第3の圧力検出手段7
8の検出圧力を第3の設定圧力と第42の設定圧力の間
の値とすることができる。
On the other hand, if it is determined in step 101 that the detected pressure is less than or equal to the third set pressure, the process proceeds to step 108.
In step 108, the detected pressure of the third pressure detecting means 78 is compared with the fourth set pressure which is set lower than the third set pressure in advance. If the detected pressure is lower than the fourth detected pressure, step If the detected pressure is equal to or higher than the fourth set pressure, the process returns to step 101. Step 109
Then, the opening degree of the fifth flow rate control device 76 is determined. In step 109, the opening degree of the fifth flow rate control device 76 is determined, and if not fully opened, the operation proceeds to step 110, the opening degree is increased, and the operation returns to step 101. If it is fully open, the routine proceeds to step 111, where it is judged whether the eighth on-off valve 74 is open or closed. If it is closed, the valve is opened at step 112 and the routine returns to step 101. In the case of opening the valve, the routine proceeds to step 113, where the fourth opening / closing valve 70, the fifth opening / closing valve 71, the sixth opening / closing valve 72, and the seventh opening / closing valve 73.
Whether the valve is open or closed is determined, and if the valve is open, the process proceeds to step 114 and is closed, and the process returns to step 101. If the valve is closed, the process returns to step 101. In this way, the third pressure detecting means 7
The detected pressure of 8 may be a value between the third set pressure and the 42nd set pressure.

【0044】[0044]

【発明の効果】以上のようにこの発明による空気調和装
置においては、冷房主体運転時には、第1の圧力検出手
段の検出信号、暖房主体運転時には第2の圧力検出手段
の検出信号を入力とし、熱源機側熱交換器容量制御手段
がそれぞれ、複数の熱源機側熱交換器の両端の開閉弁、
第1の熱源機側バイパス回路の開閉弁、第2の熱源機側
バイパス回路の第5の流量制御装置の開度を制御し、暖
房主体運転時には圧縮機の吐出側圧力を第1の設定圧力
と第2の設定圧力との間に、また冷房主体運転時には圧
縮機の吸入側圧力を第3の設定圧力と第4の設定圧力と
の間に収束させる構成としたことにより、暖房主体運転
の場合に冷房室内機の室内機側熱交換器に於ける蒸発圧
力の過上昇を抑制でき、冷房能力羽を損なうことが無
い。更に、冷房主体運転の場合に暖房室内機の室内機側
熱交換器に於ける凝縮圧力の低下を抑制し、暖房能力を
損なうことが無い。又、同じく暖房主体運転で冷房室内
機容量と暖房室内機容量の差が小さい場合にも、熱源機
側熱交換器の蒸発能力を適正に制御するため蒸発圧力の
過上昇を抑制でき、冷房能力を損なうこと無く、高圧圧
力異常で停止することの無い安定した運転を行う効果を
奏する。更に、開閉弁を介して四方切換弁と熱源機側熱
交換機の一端側とを接続する配管に連通するガス側配管
と、熱源機側熱交換器の他端側に連通する液側配管、及
び流路切換弁装置を介して第1の接続配管からの冷媒の
流入、或は第2の接続配管への冷媒の流出を可能とする
接続配管とを設けてなる気液分離装置を備えたことによ
り、蒸発能力の大小に寄与する液状冷媒のみを熱源機側
熱交換器に供給でき、特に第2の熱源機側バイパス回路
の第5の流量制御装置での正確な流量制御を行い蒸発能
力の制御正を高める効果を奏する。
As described above, in the air conditioner according to the present invention, the detection signal of the first pressure detecting means is input during the cooling main operation, and the detection signal of the second pressure detecting means is input during the heating main operation. The heat-source-unit-side heat exchanger capacity control means respectively has an on-off valve at both ends of the heat-source-unit-side heat exchanger,
The opening / closing valve of the first heat source unit side bypass circuit and the opening degree of the fifth flow rate control device of the second heat source unit side bypass circuit are controlled, and the discharge side pressure of the compressor is set to the first set pressure during heating main operation. And the second set pressure, and the suction side pressure of the compressor is made to converge between the third set pressure and the fourth set pressure during the cooling main operation, so that the heating main operation is performed. In this case, it is possible to suppress an excessive rise in the evaporation pressure in the indoor unit side heat exchanger of the cooling indoor unit, and the cooling capacity blade is not impaired. Further, in the case of the cooling main operation, the decrease of the condensing pressure in the indoor unit side heat exchanger of the heating indoor unit is suppressed, and the heating capacity is not impaired. Also, when the difference between the capacity of the cooling indoor unit and the capacity of the heating indoor unit is small in the heating-main operation as well, the evaporation capacity of the heat exchanger on the heat source unit side is appropriately controlled, so that an excessive rise in the evaporation pressure can be suppressed and the cooling capacity can be reduced. It is possible to achieve stable operation without stopping due to abnormal high-pressure pressure without damaging the engine. Further, a gas side pipe communicating with a pipe connecting the four-way switching valve and one end side of the heat source device side heat exchanger via an on-off valve, and a liquid side pipe communicating with the other end side of the heat source device side heat exchanger, and A gas-liquid separator provided with a connection pipe for allowing the inflow of the refrigerant from the first connection pipe or the outflow of the refrigerant to the second connection pipe through the flow path switching valve device. As a result, only the liquid refrigerant that contributes to the magnitude of the evaporation capacity can be supplied to the heat source machine side heat exchanger, and in particular, the accurate flow rate control by the fifth flow rate control device of the second heat source machine side bypass circuit can be performed. It has the effect of increasing the control positive.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例2による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 2 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a second embodiment of the present invention.

【図3】図1に示す空気調和装置の冷房、又は暖房のみ
の運転状態を説明するための冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram for explaining an operating state of only cooling or heating of the air conditioner shown in FIG.

【図4】図2に示す空気調和装置の、暖房主体運転の運
転状態を説明するための冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram for explaining an operating state of a heating-main operation of the air conditioning apparatus shown in FIG.

【図5】図2に示す空気調和装置の、冷房主体運転の運
転状態を説明するための冷媒回路図である。
5 is a refrigerant circuit diagram for explaining an operating state of a cooling-main operation of the air conditioning apparatus shown in FIG.

【図6】図2に示す空気調和装置の、熱源機側熱交換容
量制御手段系の構成を示すブロック図である。
FIG. 6 is a block diagram showing a configuration of a heat source unit side heat exchange capacity control means system of the air conditioner shown in FIG. 2.

【図7】この発明の実施例による空気調和装置の、暖房
主体運転の熱源機側熱交換容量調整手段系のフローチャ
ートである。
FIG. 7 is a flowchart of a heat-source-unit-side heat exchange capacity adjusting means system for heating-main operation of the air-conditioning apparatus according to the embodiment of the present invention.

【図8】この発明の実施例による空気調和装置の、冷房
主体運転の熱源機側熱交換容量制御手段系のフローチャ
ートである。
FIG. 8 is a flowchart of a heat-source-unit-side heat exchange capacity control means system in a cooling-main operation of the air conditioner according to the embodiment of the present invention.

【図9】従来の空気調和装置の冷媒系を中心とする全体
構成図である。
FIG. 9 is an overall configuration diagram centering on a refrigerant system of a conventional air conditioner.

【図10】図9に示す空気調和装置の冷房、又は暖房の
みの運転状態を説明するための冷媒回路図である。
10 is a refrigerant circuit diagram for explaining an operating state of only cooling or heating of the air conditioner shown in FIG. 9.

【図11】図9に示す空気調和装置の、暖房主体運転の
運転状態を説明するための冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram for explaining an operating state of a heating-main operation of the air conditioning apparatus shown in FIG. 9.

【図12】図9に示す空気調和装置の、冷房主体運転の
運転状態を説明するための冷媒回路図である。
FIG. 12 is a refrigerant circuit diagram for explaining an operating state of a cooling-main operation of the air conditioning apparatus shown in FIG. 9.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方切換弁 3 熱源機側熱交換器 3a 第1の熱源機側熱交換器 3b 第2の熱源機側熱交換器 4 アキュムレータ 5 室内側熱交換器 9 第1の流量制御装置 10 第1の分岐部 11 第2の分岐部 13 第2の流量制御装置 14 バイパス配管 15 第3の流量制御装置 16a、16b、16c、16d、19 熱交換部 17 第4の流量制御装置 21 第1の開閉弁 22 第2の開閉弁 23 第3の開閉弁 40 流路切換弁装置 70 第4の開閉弁 71 第5の開閉弁 72 第6の開閉弁 73 第7の開閉弁 74 第8の開閉弁 75 第1の熱源機側バイパス回路 76 第5の流量制御装置 77 第2の熱源機側バイパス回路 78 第2の圧力検出手段 79 第1の圧力検出手段 90 気液分離装置 91 第9の開閉弁 A 熱源機 B、C、D 室内機 E 中継機 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way switching valve 3 Heat source machine side heat exchanger 3a 1st heat source machine side heat exchanger 3b 2nd heat source machine side heat exchanger 4 Accumulator 5 Indoor side heat exchanger 9 1st flow control device 10 1st branch part 11 2nd branch part 13 2nd flow rate control device 14 Bypass piping 15 3rd flow rate control device 16a, 16b, 16c, 16d, 19 Heat exchange part 17 4th flow rate control device 21 1st Open / close valve 22 second open / close valve 23 third open / close valve 40 flow path switching valve device 70 fourth open / close valve 71 fifth open / close valve 72 sixth open / close valve 73 seventh open / close valve 74 eighth open / close Valve 75 First heat source device side bypass circuit 76 Fifth flow rate control device 77 Second heat source device side bypass circuit 78 Second pressure detecting means 79 First pressure detecting means 90 Gas-liquid separation device 91 Ninth opening and closing Valve A Heat source machine B, C, D Internal mechanism E relay machine

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方切換弁、互に並列に接続さ
れた複数の熱源機側熱交換器、アキュムレータ等よりな
る1台の熱源機と、室内側熱交換器、第1の流量制御装
置、等からなる複数台の室内機とを、第1、第2の接続
配管を介して接続したものにおいて、上記複数台の室内
機の上記室内機側熱交換器の一方を上記第1の接続配管
または第2の接続配管に切換可能に連接させる第1、及
び第2の開閉弁を備えた第1の分岐部と、上記複数台の
室内機の上記室内側熱交換器の他方を、上記第1の流量
制御装置を介して上記第2の接続配管に接続してなる第
2の分岐部との間に第2の流量制御装置を介在させると
共に上記第2の分岐部と第1の接続配管を第4の流量制
御装置を介して接続し、更に一端が上記第2の分岐部に
接続され、他端が第3の流量制御装置を介して上記第1
の接続配管へ接続されたバイパス配管を備え、上記第3
の流量制御装置と上記第1の接続配管との間のバイパス
配管と、上記第2の接続配管と上記第1の流量制御装置
を接続する配管との間で熱交換を行う熱交換部を備え、
上記熱源機側熱交換器が凝縮器となる運転時には、上記
凝縮器の冷媒出口側から上記第2の接続配管側にのみ冷
媒を流通させると共に上記第1の接続配管から上記四方
切換弁側にのみ冷媒を流通させ、かつ上記熱源機側熱交
換器が蒸発器となる運転時には上記第1の接続配管から
上記蒸発器の冷媒流入側にのみ冷媒を流通させると共に
上記四方切換弁から上記第2の接続配管側にのみ冷媒を
流通させ得る流路切換弁装置を設け、上記熱源機側熱交
換器の両端には開閉弁を備え、更に上記複数の熱源機側
熱交換器と並列に接続され途中に開閉弁を備えた第1の
熱源機側バイパス回路と、上記複数の熱源機側熱交換器
と並列に接続され途中に第5の流量制御装置を備えた第
2の熱源機側バイパス回路及び上記圧縮機の吸入側圧力
を検出する第1の圧力検出手段並びに上記圧縮機の吐出
側圧力を検出する第2の圧力検出手段とを設け、冷房主
体運転時には、上記第1の圧力検出手段の検出信号を入
力とし、上記複数の熱源機側熱交換器両端の開閉弁、上
記第1の熱源機側バイパス回路の開閉弁、及び上記第2
の熱源機側バイパス回路の第5の流量制御装置の開度を
制御すると共に暖房主体運転時には、上記第2の圧力検
出手段の検出信号を入力として上記複数の熱源機側熱交
換器両端の開閉弁、上記第1の熱源機側バイパス回路の
開閉弁、及び上記第2の熱源機側バイパス回路の第5の
流量制御装置の開度を制御する熱源機側熱交換容量制御
手段を備えたことを特徴とする空気調和装置。
1. A heat source unit comprising a compressor, a four-way switching valve, a plurality of heat source unit side heat exchangers connected in parallel with each other, an accumulator, etc., an indoor side heat exchanger, and a first flow rate control. A plurality of indoor units including devices, etc. are connected via first and second connecting pipes, and one of the indoor unit side heat exchangers of the plurality of indoor units is connected to the first indoor unit. A first branch portion having first and second opening / closing valves that are switchably connected to the connection pipe or the second connection pipe; and the other of the indoor heat exchangers of the plurality of indoor units, A second flow rate control device is interposed between the second flow path control device and a second branch part connected to the second connection pipe via the first flow rate control device, and the second branch part and the first The connection pipe is connected through a fourth flow rate control device, one end is further connected to the second branch portion, and the other end is the first The first through the flow rate control device of No. 3
The bypass pipe connected to the connection pipe of
A bypass pipe between the flow control device and the first connection pipe, and a heat exchange section for performing heat exchange between the second connection pipe and the pipe connecting the first flow control device. ,
During the operation in which the heat source unit side heat exchanger serves as a condenser, the refrigerant is allowed to flow only from the refrigerant outlet side of the condenser to the second connection pipe side, and from the first connection pipe to the four-way switching valve side. During the operation in which only the refrigerant is circulated and the heat source side heat exchanger is the evaporator, the refrigerant is circulated only from the first connecting pipe to the refrigerant inflow side of the evaporator, and the four-way switching valve is connected to the second side. A flow path switching valve device that allows circulation of the refrigerant only on the connection pipe side of the heat source device side heat exchanger is provided with an opening / closing valve at both ends, and the heat source device side heat exchanger is further connected in parallel with the heat source device side heat exchanger. A first heat source unit side bypass circuit having an opening / closing valve in the middle thereof, and a second heat source unit side bypass circuit connected in parallel with the plurality of heat source unit side heat exchangers and provided with a fifth flow rate control device on the way. And a first detecting the pressure on the suction side of the compressor. Force detection means and second pressure detection means for detecting the discharge side pressure of the compressor are provided, and when the cooling main operation is performed, the detection signal of the first pressure detection means is input, and the plurality of heat source side heat Open / close valves at both ends of the exchanger, open / close valves for the first heat source unit side bypass circuit, and the second
The opening degree of the fifth flow rate control device of the heat source side bypass circuit is controlled, and at the time of the heating main operation, the detection signal of the second pressure detecting means is input to open and close both ends of the plurality of heat source side heat exchangers. A heat source device side heat exchange capacity control means for controlling the opening degree of the valve, the opening / closing valve of the first heat source device side bypass circuit, and the fifth flow rate control device of the second heat source device side bypass circuit. An air conditioner characterized by.
【請求項2】 開閉弁を介して四方切換弁と熱源機側熱
交換器の一端側とを接続する配管に連通するガス側配管
と、熱源機側熱交換器の他端側に連通する液側配管、及
び流路切換弁装置を介して第1の接続配管からの冷媒の
流入、或は第2の接続配管への冷媒の流出を可能とする
接続配管とを設けてなる気液分離装置を備えたことを特
徴とする請求項第1項記載の空気調和装置。
2. A gas side pipe communicating with a pipe connecting the four-way switching valve and one end side of the heat source side heat exchanger through an on-off valve, and a liquid communicating with the other end side of the heat source side heat exchanger. A gas-liquid separation device provided with a side pipe and a connection pipe that allows the refrigerant to flow in from the first connection pipe or to flow out to the second connection pipe via the flow path switching valve device. The air conditioner according to claim 1, further comprising:
JP3333402A 1991-12-17 1991-12-17 Air conditioner Expired - Fee Related JP2718308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3333402A JP2718308B2 (en) 1991-12-17 1991-12-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3333402A JP2718308B2 (en) 1991-12-17 1991-12-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPH05172434A true JPH05172434A (en) 1993-07-09
JP2718308B2 JP2718308B2 (en) 1998-02-25

Family

ID=18265716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3333402A Expired - Fee Related JP2718308B2 (en) 1991-12-17 1991-12-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP2718308B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219045A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner
JP2009198087A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Air conditioner
WO2016207993A1 (en) * 2015-06-24 2016-12-29 三菱電機株式会社 Air conditioner
WO2017138059A1 (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Air conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118372A (en) * 1988-10-28 1990-05-02 Mitsubishi Electric Corp Air-conditioning device
JPH03230059A (en) * 1990-02-06 1991-10-14 Matsushita Refrig Co Ltd Multi-room type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118372A (en) * 1988-10-28 1990-05-02 Mitsubishi Electric Corp Air-conditioning device
JPH03230059A (en) * 1990-02-06 1991-10-14 Matsushita Refrig Co Ltd Multi-room type air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219045A (en) * 2003-01-13 2004-08-05 Lg Electronics Inc Multiple air conditioner
JP2009198087A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Air conditioner
WO2016207993A1 (en) * 2015-06-24 2016-12-29 三菱電機株式会社 Air conditioner
JPWO2016207993A1 (en) * 2015-06-24 2018-02-08 三菱電機株式会社 Air conditioner and heat source machine
GB2557058A (en) * 2015-06-24 2018-06-13 Mitsubishi Electric Corp Air conditioner
GB2557058B (en) * 2015-06-24 2020-08-26 Mitsubishi Electric Corp Air-conditioning apparatus and heat source unit
WO2017138059A1 (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Air conditioning device
GB2561756A (en) * 2016-02-08 2018-10-24 Mitsubishi Electric Corp Air conditioning device
US10684043B2 (en) 2016-02-08 2020-06-16 Mitsubishi Electric Corporation Air-conditioning apparatus
GB2561756B (en) * 2016-02-08 2021-03-03 Mitsubishi Electric Corp Air-conditioning apparatus

Also Published As

Publication number Publication date
JP2718308B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JPH05322351A (en) Air conditioner
JP4326829B2 (en) Air conditioner, refrigerant circuit of air conditioner, and control method of refrigerant circuit in air conditioner
JP2875507B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JPH0942804A (en) Air conditioner
JPH05172434A (en) Air conditioning apparatus
JP2718286B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JPH05187739A (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JP2003279174A (en) Air conditioning device
JP3138491B2 (en) Air conditioner
JP2621687B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH04359767A (en) Air conditioner
JP2718287B2 (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH04359768A (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JPH05231749A (en) Air conditioner
JPH05172435A (en) Air conditioning apparatus
JP2723380B2 (en) Air conditioner
JP2800472B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees