WO2016207993A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2016207993A1
WO2016207993A1 PCT/JP2015/068141 JP2015068141W WO2016207993A1 WO 2016207993 A1 WO2016207993 A1 WO 2016207993A1 JP 2015068141 W JP2015068141 W JP 2015068141W WO 2016207993 A1 WO2016207993 A1 WO 2016207993A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
control device
heat source
flow
Prior art date
Application number
PCT/JP2015/068141
Other languages
French (fr)
Japanese (ja)
Inventor
博文 ▲高▼下
博幸 岡野
一輝 大河内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1800859.9A priority Critical patent/GB2557058C/en
Priority to PCT/JP2015/068141 priority patent/WO2016207993A1/en
Priority to JP2017524331A priority patent/JP6391832B2/en
Publication of WO2016207993A1 publication Critical patent/WO2016207993A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner in which a heat source side heat exchanger has a plurality of heat exchange units.
  • a compressor, a heat source unit having a heat source side heat exchanger, a flow control device, and a load side unit (indoor unit) having an indoor unit side heat exchanger are connected by a refrigerant pipe to constitute a refrigerant circuit for circulating the refrigerant.
  • the indoor unit side heat exchanger when the refrigerant evaporates and condenses, the pressure, temperature, etc. relating to the refrigerant in the refrigerant circuit are utilized by utilizing heat absorption and heat radiation from the air in the air-conditioning target space to be heat exchanged.
  • the refrigerant used in such an air conditioner for example, an HFC (hydrofluorocarbon) refrigerant is often used.
  • a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
  • a fin tube type heat exchanger provided with heat transfer tubes and fins is used for the heat source side heat exchanger.
  • this heat transfer tube in addition to the circular heat transfer tube shown in Patent Document 1, a flat tube having a cross-sectional shape shown in Patent Document 2 in which a rectangle with a large aspect ratio is cut off is known.
  • the outdoor heat exchanger is divided
  • the present invention was made in response to the above problem, and when the heat source side heat exchanger is divided into a plurality of heat exchange parts, without adopting a special structure for the heat source side heat exchanger, It aims at providing the air conditioning apparatus which can perform optimal refrigerant
  • An air conditioner includes a compressor that compresses and discharges a refrigerant, a heat source device including a heat source side heat exchanger that exchanges heat between the refrigerant discharged from the compressor and a heat source medium, the refrigerant, and a utilization medium
  • a plurality of indoor units having a use-side heat exchanger that exchanges heat with each other, a heat-source-side flow controller connected to the use-side heat exchanger, and a refrigerant between the heat source unit and the plurality of indoor units
  • a relay that is connected via a pipe and distributes the refrigerant flowing out from the heat source side heat exchanger to the plurality of indoor units.
  • the heat source side heat exchanger is connected to the compressor in parallel with each other and arranged in the vertical direction.
  • the heat source unit includes an upper stage heat exchange unit and a lower stage side heat exchange unit, and the capacity of the heat source side heat exchanger is controlled by controlling the flow of refrigerant into the upper stage side heat exchange unit and the lower stage side heat exchange unit.
  • Capacity control valve for controlling the flow rate, and a heat source for separating the refrigerant flowing from the relay into gas refrigerant and liquid refrigerant
  • a gas-liquid separator ; a first branch pipe that allows the refrigerant that has flowed into the heat source side gas-liquid separator to flow into the capacity control valve; and a second that causes the refrigerant that has flowed into the heat source side gas-liquid separator to flow into the lower heat exchange section.
  • a branch pipe and a flow rate control device that is provided in the second branch pipe and adjusts the flow rate of the refrigerant flowing into the lower stage heat exchange section via the second branch pipe.
  • the heat source side heat exchanger itself has a simple structure without providing a special refrigerant distribution. Optimal refrigerant distribution to each heat exchange unit can be performed.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when simultaneous cooling and heating operation mainly performed by the cooling is performed in the air conditioning apparatus of FIG. 1.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when a heating / cooling simultaneous heating / cooling simultaneous operation is performed in the air conditioning apparatus of FIG. 1.
  • It is a graph which shows the relationship between the flow regulator and heating performance at the time of a heating only operation in the air conditioning apparatus of FIG.
  • It is a flowchart which shows the operation example of the flow control apparatus at the time of the heating and cooling simultaneous operation of the air conditioning apparatus of FIG.2 and FIG.3.
  • It is a flowchart which shows the operation example of the on-off valve when the air conditioning apparatus of FIG. 1 is performing the cooling operation.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus according to an embodiment of the present invention.
  • the air conditioner 1 of FIG. 1 performs air conditioning operation using the refrigerating cycle (heat pump cycle) by a refrigerant circulation.
  • the air conditioner 1 of the present embodiment can perform simultaneous cooling and heating operations in which a plurality of indoor units are mixed with cooling and heating at the same time.
  • the air conditioner 1 includes a heat source unit 10, a relay unit 20, and a plurality of indoor units 30A and 30B, and these devices are connected by refrigerant piping. That is, the relay machine 20 for controlling the flow of the refrigerant is provided between the heat source unit 10 and the indoor units 30A and 30B, and the plurality of indoor units 30A and 30B are arranged in parallel with each other. 20.
  • the heat source device 10 and the relay device 20 are connected by a first main pipe 2 and a second main pipe 3 having a smaller diameter than the first main pipe 2.
  • a high-pressure refrigerant flows from the heat source device 10 side to the relay device 20 side.
  • a refrigerant having a lower pressure flows in the second main pipe 3 than the refrigerant flowing in the first main pipe 2 from the relay machine 20 side to the heat source machine 10 side.
  • the level of the pressure is not determined by the relationship with the reference pressure (numerical value), but by the pressurization of the compressor 11, the control of the open / close state (opening) of each flow control device, or the like.
  • the refrigerant circuit it is expressed on the basis of relative height (including the middle).
  • the relay machine 20 and the indoor units 30 ⁇ / b> A and 30 ⁇ / b> B are connected by the first branch pipe 4 and the second branch pipe 5.
  • a refrigerant circuit in which the refrigerant circulates between the heat source unit 10, the relay unit 20, and the indoor units 30A, 30B is configured by the pipe connection by the first main pipe 2, the second main pipe 3, the first branch pipe 4, and the second branch pipe 5. Is done.
  • the heat source device 10 includes a compressor 11, a flow path switch 12, a heat source side heat exchanger 13, an accumulator 14, and a flow path forming unit 15.
  • the compressor 11 applies pressure to the sucked refrigerant and discharges it.
  • the compressor 11 includes, for example, a discharge capacity that is a refrigerant discharge amount as a whole, and an inverter compressor that can change the capacity according to the discharge capacity. And the compressor 11 can change a drive frequency arbitrarily based on the instruction
  • the flow path switch 12 is connected to the discharge side of the compressor 11 and switches the flow path corresponding to the form (mode) of cooling and heating based on an instruction from the control device 60, and includes, for example, a four-way valve. ing.
  • the flow path switch 12 includes four ports, and each port includes a discharge side of the compressor 11, a heat source side heat exchanger 13, an accumulator 14, an outlet side of the check valve 15b, and a check valve 15c. Each is connected to the entrance side.
  • the flow path switching unit 12 is used in the cooling only operation in which all the indoor units 30A and 30B are in the cooling operation and in the cooling main operation in which the cooling is mainly performed in the simultaneous cooling and heating operation, and in the all the indoor units 30A and 30B.
  • the refrigerant flow path is switched according to the heating-main operation in which heating is mainly performed during all heating operation and heating / cooling simultaneous operation.
  • the heat source side heat exchanger 13 includes a heat transfer tube through which the refrigerant passes and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air. ). For example, it functions as an evaporator at the time of all heating operation and heating main operation, and evaporates and evaporates the refrigerant. On the other hand, during the cooling only operation and the cooling main operation, it functions as a condenser and condenses and liquefies the refrigerant.
  • the heat source side heat exchanger 13 exchanges heat between the refrigerant flowing in the heat source side heat exchanger 13 and the refrigerant flowing in the heat source side heat exchanger 13.
  • the refrigerant flowing in the heat source side heat exchanger 13 may be water or brine.
  • the heat source unit 10 may be provided with a heat source unit side blower (not shown) for blowing air to the heat source side heat exchanger 13 and efficiently exchanging heat between the refrigerant and the air.
  • the heat source side heat exchanger 13 described above is arranged side by side in the vertical direction, and has an upper stage side heat exchange part 13a and a lower stage side heat exchange part 13b connected in parallel to each other.
  • One of the upper stage side heat exchange unit 13 a and the lower stage side heat exchange unit 13 b is connected to the flow path switch 12, and the other is connected to the first main pipe 2.
  • the heat-source side heat exchanger 13 has the upper stage side heat exchange part 13a divided
  • the heat source side heat exchanger 13 has a shape in which a cross-sectional shape is a rectangle with a large aspect ratio, and the upper stage side heat exchange unit 13a and the lower stage are divided by dividing one heat exchanger into upper and lower regions.
  • the side heat exchange part 13b is formed.
  • the heat source side heat exchanger 13 is a single-row flat tube heat exchanger having a flat tube through which refrigerant flows and a plurality of plate-like fins into which the flat tube is inserted and joined in a direction perpendicular to the flat tube. Is formed by bonding in two or less rows in the thickness direction. Thereby, since brazing etc. can be performed from the both sides of a heat exchanger, workability is improved.
  • it is not restricted to the case where it couple
  • the accumulator 14 is connected to the suction side of the compressor 11, separates the liquid refrigerant, and supplies the gas refrigerant to the compressor 11.
  • the flow path forming section 15 causes the refrigerant to flow out of the circulation path from the first main pipe 2 and into the second main pipe 3, and each check valve 15a ⁇ 15c.
  • the check valve 15 a is located on the pipe between the heat source side heat exchanger 13 and the first main pipe 2, and allows refrigerant to flow from the heat source side heat exchanger 13 to the first main pipe 2.
  • the check valve 15 b is located on the pipe between the flow path switch 12 and the second main pipe 3 and allows refrigerant to flow from the second main pipe 3 toward the flow path switch 12.
  • the check valve 15 c is located on the pipe between the flow path switch 12 and the first main pipe 2 and allows the refrigerant to flow in the direction from the flow path switch 12 to the second main pipe 3.
  • the heat source device 10 includes a capacity control valve 41, a heat source side gas-liquid separator 42, a first branch pipe 43a, a second branch pipe 43b, a third branch pipe 43c, and a flow rate control device 44.
  • the capacity control valve 41 controls the capacity of the heat source side heat exchanger 13 by controlling the inflow of refrigerant into the upper stage side heat exchange section 13a and the lower stage side heat exchange section 13b.
  • the capacity control valve 41 includes an upper stage control valve 41a connected to the upper stage side heat exchanging part 13a, and a lower stage side control valve 41b connected to the lower stage side heat exchanging part 13b.
  • the side heat exchange part 13b consists of a solenoid valve, for example.
  • a check valve 41 x is provided between the capacity control valve 41 and the flow path switch 12.
  • the check valve 41x allows the refrigerant to flow from the flow switching device 12 in the heating flow path, and prevents the refrigerant from flowing from the heat source side gas-liquid separator 42 in the cooling flow path.
  • the capacity control valve 41 is provided with a corresponding number of electromagnetic valves.
  • the heat source side gas-liquid separator 42 separates the refrigerant flowing from the relay machine 20 into a gas refrigerant and a liquid refrigerant. That is, the refrigerant flowing through the plurality of indoor units 30A and 30B flows into the heat source side gas-liquid separator 42 via the relay unit.
  • a first branch pipe 43a, a second branch pipe 43b, and a third branch pipe 43c are connected to the heat source side gas-liquid separator 42, respectively.
  • the first branch pipe 43 a allows the liquid refrigerant separated in the heat source side gas-liquid separator 42 to flow into the capacity control valve 41.
  • the check valve 16 is provided in the first branch pipe 43a, and the check valve 16 allows the refrigerant to flow from the heat source side gas-liquid separator 42 to the capacity control valve 41 in the first branch pipe 43a. To do.
  • the second branch pipe 43b allows the liquid refrigerant separated in the second heat source side gas-liquid separator to flow into the lower heat exchange section 13b.
  • the second branch pipe 43b is provided with a flow rate control device 44 composed of, for example, an electronic expansion valve, and the amount of refrigerant flowing into the lower heat exchange section 13b is adjusted by adjusting the opening degree of the flow rate control device 44. Adjusted.
  • the third branch pipe 43c is connected between the flow path switch 12 and the accumulator 14, and allows the gas refrigerant separated in the heat source side gas-liquid separator 42 to flow into the suction side of the compressor 11. .
  • the third branch pipe 43 c is provided with an on-off valve 45 that controls the inflow of refrigerant from the heat source side gas-liquid separator 42 to the suction side of the compressor 11.
  • the heat source device 10 is provided with a connection pipe 46 that connects between the flow path switch 12 and the check valve 15a (second main pipe 3), and the connection pipe 46 is provided with a check valve 47. ing. And when the cooling channel is formed, the refrigerant that has flowed out of the heat source side heat exchanger 13 flows into the accumulator 14 via the connection pipe 46 and the check valve 47, and when the heating channel is formed, The check valve 47 prevents the refrigerant from flowing into the connection pipe 46.
  • the repeater 20 includes a repeater-side gas-liquid separator 21, a first inter-refrigerant heat exchanger 22, a first repeater-side flow rate adjuster 23, a second inter-refrigerant heat exchanger 24, and a second repeater-side flow rate adjuster. 25, a first distribution unit 26, and a second distribution unit 27.
  • the repeater side gas-liquid separator 21 separates the refrigerant flowing from the second main pipe 3 into a gas refrigerant and a liquid refrigerant.
  • the repeater side gas-liquid separator 21 is connected to a gas phase pipe 21a from which a gas refrigerant flows out and a liquid phase pipe 21b from which the liquid refrigerant flows out.
  • the gas phase piping 21 a is connected to the first distribution unit 26, and the liquid phase piping 21 b is connected to the first inter-refrigerant heat exchanger 22.
  • the first inter-refrigerant heat exchanger 22 supercools the liquid refrigerant during the cooling only operation and supplies it to the indoor units 30A and 30B.
  • the first inter-refrigerant heat exchanger 22 includes a refrigerant that flows from the relay-side gas-liquid separator 21 to the first relay-side flow rate regulator 23, and a refrigerant that flows from the second inter-refrigerant heat exchanger 24 to the second main pipe 3. Heat exchange between.
  • the first relay-side flow rate regulator 23 is composed of, for example, an electronic expansion valve and is provided between the first inter-refrigerant heat exchanger 22 and the second inter-refrigerant heat exchanger 24.
  • the first relay-side flow rate regulator 23 adjusts the flow rate of refrigerant and the pressure of the refrigerant flowing from the first inter-refrigerant heat exchanger 22 to the second inter-refrigerant heat exchanger 24, and the opening degree is controlled by the control device 60. It is controlled.
  • the second inter-refrigerant heat exchanger 24 includes a refrigerant that flows from the first relay-side flow rate regulator 23 to the second distributor 27 and a second relay-side flow rate regulator 25 that flows through the first relay-side bypass pipe 28. Heat exchange is performed with the refrigerant in the downstream portion (the refrigerant that has passed through the second relay-side flow rate regulator 25).
  • the 1st relay machine side bypass piping 28 connects between the 2nd refrigerant
  • coolant heat exchanger 24 supercool a liquid refrigerant at the time of air_conditionaing
  • the second repeater side flow rate regulator 25 is composed of, for example, an electronic expansion valve and adjusts the refrigerant flow rate and the refrigerant pressure of the refrigerant passing through the first repeater side bypass pipe 28.
  • the opening degree of the second relay-side flow rate regulator 25 is controlled by the control device 60.
  • the refrigerant flowing out from the relay-side gas-liquid separator 21 is the first inter-refrigerant heat exchanger 22, the first relay-side flow rate regulator 23, and the second inter-refrigerant heat exchanger. 24 flows into the second distribution part 27 via 24.
  • the refrigerant that has passed through the second relay-side flow rate regulator 25 and the first relay-side bypass pipe 28 supercools the refrigerant in the second inter-refrigerant heat exchanger 24 and the first inter-refrigerant heat exchanger 22, It flows to the second main pipe 3.
  • the first distribution unit 26 and the second distribution unit 27 distribute the refrigerant supplied from the heat source unit 10 to the plurality of indoor units 30A and 30B.
  • the first distribution unit 26 includes a heating on / off valve 26a and a cooling on / off valve 26b connected to the indoor unit 30A and the indoor unit 30B, respectively.
  • the heating on-off valve 26 a is connected to the gas phase pipe 21 a
  • the cooling on-off valve 26 b is connected to the second main pipe 3.
  • the cooling on-off valve 26b is opened, and the refrigerant flows from the indoor units 30A and 30B to the heat source unit 10 through the second main pipe 3.
  • the heating on-off valve 26a is closed.
  • the heating on-off valve 26a is opened, and the refrigerant flows from the vapor phase pipe 21a to the indoor units 30A and 30B. At this time, the cooling on-off valve 26b is closed.
  • each of the indoor units 30A and 30B is provided with a three-way switching valve, and the second main pipe 3 or You may make it switch a connection with the gaseous-phase piping 21a.
  • the second distribution unit 27 has a heating check valve 27a and a cooling check valve 27b connected to the indoor unit 30A and the indoor unit 30B, respectively.
  • the refrigerant supercooled in the second inter-refrigerant heat exchanger 24 flows to the indoor units 30A and 30B via the cooling check valve 27b.
  • the indoor units 30A and 30B perform the heating operation
  • the refrigerant that has flowed out of the indoor units 30A and 30B flows to the second repeater-side bypass pipe 29 via the heating check valve 27a.
  • the second relay-side bypass pipe 29 connects the heating check valve 27 a, the first relay-side flow rate regulator 23, and the second inter-refrigerant heat exchanger 24.
  • the 2nd distribution part 27 may consist of an on-off valve similarly to the 1st distribution part 26.
  • the refrigerant flowing out from the indoor units 30A and 30B performing the heating operation through the second distributor 27 flows in the second relay-side bypass pipe 29. Then, some or all of the refrigerant that has passed through the second relay-side bypass pipe 29 passes through the second inter-refrigerant heat exchanger 24 and the second distribution unit 27, and then performs the cooling operation of the indoor unit 30A. It flows to 30B.
  • all of the refrigerant that has flowed out of the indoor units 30A and 30B that are performing the heating operation via the second distribution unit 27 is supplied to the second repeater side flow rate regulator 25 and the first repeater side bypass pipe. It passes through 28 and flows into the second main pipe 3.
  • the first distribution unit 26 and the second distribution unit 27 are connected to the two indoor units 30A and 30B, the first distribution unit 26 is provided with two sets of on-off valves and check valves. However, the number corresponding to the number of installed indoor units 30A and 30B is installed.
  • Each of the indoor units 30A and 30B is connected to the repeater 20 in parallel with each other and includes a use side heat exchanger 31 and a use side flow rate regulator 32 connected in series to the use side heat exchanger 31. is doing.
  • each of the indoor units 30A and 30B is illustrated as an example in which a plurality of usage-side heat exchangers 31 and usage-side flow rate regulators 32 are connected in parallel. What is necessary is just to have the use side heat exchanger 31 and the use side flow regulator 32 more than a group.
  • the use-side heat exchanger 31 exchanges heat between air blown from an indoor fan such as a fan (not shown) and the refrigerant supplied from the relay machine 20 and supplies air to the indoor space for cooling or cooling. Produce air.
  • the usage-side flow rate regulator 32 is configured such that the opening of an electronic expansion valve or the like can be variably controlled. For example, the usage-side heat exchanger 31 is decompressed by expanding the refrigerant supplied from the relay unit 20 during the cooling operation. To supply.
  • the opening degree of the use side flow rate regulator 32 is controlled by the control device 60.
  • Control device 60 The operation of the air conditioner 1 described above is controlled by the control device 60.
  • the control device 60 includes, for example, a microcomputer, a computer, and the like. For example, determination processing based on signals transmitted from various detectors (sensors) provided inside and outside the air conditioner and each device (means) of the air conditioner 1. Etc. And the control apparatus 60 operates each apparatus based on a judgment result, and carries out overall control of the air conditioning apparatus 1 whole operation
  • control device 60 is provided separately and independently from the heat source device 10 or the like, but is not limited to this, and for example, the heat source device 10, the relay device 20, or a plurality of the devices.
  • the indoor units 30A and 30B may be built in, or the functions of the control device 60 may be distributed among the devices.
  • the control device 60 controls the operation of the entire air conditioner 1 based on information detected by various sensors. That is, the heat source device 10 is provided between the compressor outlet temperature detection unit 51 including a thermistor or the like that detects the temperature of the refrigerant discharged from the compressor, and the compressor 11 and the flow path switch 12. A high pressure detection unit 52 that detects the ambient temperature, an outside air temperature detection unit 53 that is provided in the heat source unit 10 to detect outside air, and a suction side pressure (low pressure) of refrigerant flowing into the accumulator 14 (suction side of the compressor 11). And a suction-side pressure detection unit 54 for detection. And the control apparatus 60 controls various apparatuses based on the information from various sensors so that it may mention later.
  • the compressor outlet temperature detection unit 51 including a thermistor or the like that detects the temperature of the refrigerant discharged from the compressor, and the compressor 11 and the flow path switch 12.
  • a high pressure detection unit 52 that detects the ambient temperature
  • an outside air temperature detection unit 53 that is
  • the relay 20 includes a first relay-side pressure detector 55 that detects the pressure of the refrigerant flowing between the first inter-refrigerant heat exchanger 22 and the first relay-side flow rate regulator 23, and a first relay.
  • the second relay-side pressure detector 56 that detects the pressure of the refrigerant flowing between the machine-side flow rate regulator 23 and the second inter-refrigerant heat exchanger 24, and the first inter-refrigerant heat exchanger 22 to the first main pipe 2.
  • the control device 60 determines the difference between the first repeater side pressure detected by the first repeater side pressure detector 55 and the second repeater side pressure detected by the second repeater side pressure detector 56. Is controlled to become the target repeater side pressure.
  • the air-conditioning apparatus 1 has four forms of a cooling only operation, a heating only operation, and a cooling / heating simultaneous operation (cooling main operation and heating main operation) by opening and closing the flow path switch 12 and the first distribution unit 26. (Mode) can be operated.
  • the heat source side heat exchanger 13 functions as a condenser during the cooling only operation and the cooling main operation, and functions as an evaporator during the heating only operation and the heating main operation.
  • an operation example of the air-conditioning apparatus 1 and the flow of the refrigerant during the simultaneous cooling and heating operation (cooling main operation and heating main operation) will be described.
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the cooling-heating simultaneous operation mainly performed by the cooling is performed in the air-conditioning apparatus of FIG.
  • the indoor unit 30 ⁇ / b> A performs the heating operation
  • the indoor unit 30 ⁇ / b> B performs the cooling / heating simultaneous operation in which the cooling load is higher than the heating load is performed.
  • the flow of the refrigerant is indicated by an arrow, and among the check valve and the on-off valve, a portion where the refrigerant does not flow is indicated by black, and a portion where the refrigerant flows is indicated by white.
  • the control device 60 opens the heating on-off valve 26a on the side of the indoor unit 30A that performs the heating operation, and closes the cooling on-off valve 26b. Further, the control device 60 closes the heating on-off valve 26a of the indoor unit 30B that performs the cooling operation, and opens the cooling on-off valve 26b.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged in the compressor 11 flows into the heat source side heat exchanger 13 through the flow path switch 12.
  • the high-temperature and high-pressure gas refrigerant exchanges heat with a heat source medium such as air in the heat source side heat exchanger 13, and the high-temperature and high-pressure gas refrigerant subjected to heat exchange becomes a high-temperature and high-pressure refrigerant in a gas-liquid two-phase state.
  • the high-temperature and high-pressure refrigerant in the gas-liquid two-phase state passes through the second main pipe 3 through the check valve 15 a and is supplied to the relay-side gas-liquid separator 21 of the relay machine 20.
  • the refrigerant flows to the check valve 15a and the check valve 15b due to the pressure difference between the two, and the refrigerant flows to the check valve 15c. Not distributed.
  • the gas-liquid two-phase high-temperature and high-pressure refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant flows into the first distribution unit 26.
  • the gaseous refrigerant that has flowed into the first distribution unit 26 is supplied to the indoor unit 30B in which the heating operation is set via the heating on-off valve 26a.
  • the refrigerant exchanges heat with a use medium such as air to perform heating, and the supplied gaseous refrigerant condenses and liquefies.
  • the liquid refrigerant condensed and liquefied by the use side heat exchanger 31 is reduced in pressure by the use side flow rate regulator 32 to become an intermediate pressure refrigerant that is an intermediate pressure between the high pressure and the low pressure.
  • the refrigerant that has reached the intermediate pressure flows into the second distributor 27.
  • the refrigerant flowing into the second distribution unit 27 passes through the heating check valve 27a side and flows into the second inter-refrigerant heat exchanger 24 through the second relay bypass pipe.
  • the liquid refrigerant separated by the relay-side gas-liquid separator 21 flows through the first inter-refrigerant heat exchanger 22 and the first relay-side flow rate adjuster 23, and merges with the refrigerant flowing out from the indoor unit 30A.
  • the merged refrigerant flows into the second distribution unit 27 and flows into the indoor unit 30B from the cooling check valve 27b on the indoor unit 30B side.
  • the liquid refrigerant that has flowed into the indoor unit 30B is supplied to the use-side heat exchanger 31 of the indoor unit 30A in a state where the refrigerant is decompressed to a low pressure using the use-side flow rate regulator 32.
  • the liquid refrigerant supplied to the use side heat exchanger 31 is evaporated and gasified by exchanging heat with a use medium such as air.
  • the gasified refrigerant flows into the first distributor 26 through the second branch pipe 5 and flows into the heat source apparatus 10 from the cooling on-off valve 26b through the second main pipe 3.
  • the gas refrigerant flows into the check valve 15 b that is lower in pressure than the check valve 16, and is sucked into the compressor 11 through the flow path switch 12 and the accumulator 14. With such an operation, a refrigeration cycle is formed and a cooling main operation is performed.
  • the refrigerant branched from the second inter-refrigerant heat exchanger 24 to the first repeater-side bypass pipe 28 passes through the second repeater-side flow rate regulator 25, and the second inter-refrigerant heat exchanger 24, the first inter-refrigerant heat.
  • the refrigerant flowing from the relay-side gas-liquid separator 21 is supercooled and flows to the first main pipe 2.
  • the liquid refrigerant that has flowed into the second relay-side flow rate regulator 25 is depressurized to a low pressure, and the evaporation temperature is lowered.
  • the liquid refrigerant whose evaporation temperature has decreased flows into the second inter-refrigerant heat exchanger 24 via the first relay-side bypass pipe 28.
  • the second inter-refrigerant heat exchanger 24 heat is exchanged with the liquid refrigerant supplied from the first relay-side flow rate regulator 23 to become a gas-liquid two-phase refrigerant, which flows into the first inter-refrigerant heat exchanger 22. .
  • the control device 60 outputs the outlet of the first repeater-side flow rate regulator 23 so that the pressure difference between the first repeater-side pressure detector 55 and the second repeater-side pressure detector 56 becomes a predetermined value.
  • the superheat degree of the refrigerant at the second relay machine side flow controller 25 is controlled.
  • the supercooled refrigerant flows to the second distribution unit 27 side, thereby reducing the enthalpy on the refrigerant inlet side (here, the first branch pipe 4 side), and in the utilization side heat exchanger 31, The amount of heat exchange with can be increased.
  • FIG. 3 is a refrigerant circuit diagram illustrating the flow of refrigerant when the heating / cooling simultaneous heating / cooling simultaneous operation is performed in the air conditioning apparatus of FIG. 1.
  • the case where the indoor unit 30A performs the heating operation and the indoor unit 30B performs the cooling / heating simultaneous operation in which the cooling load is higher than the heating load is performed.
  • circulate among the check valve and the on-off valve is shown in black, and the part through which the refrigerant circulates is shown in white.
  • circulate among the check valve and the on-off valve is shown in black, and the part through which the refrigerant circulates is shown in white.
  • the control device 60 opens the heating on-off valve 26a and closes the cooling on-off valve 26b on the indoor unit 30A side. Further, the control device 60 closes the heating on-off valve 26a on the indoor unit 30B side and opens the cooling on-off valve 26b. Furthermore, in FIG. 3, among the capacity control valves 41, the upper control valve 41a is closed and the lower control valve 41b is opened, so that no refrigerant flows through the upper heat exchange section 13a. It has become.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged in the compressor 11 passes through the second main pipe 3 via the flow path switch 12 and the check valve 15c, and then the relay-side gas-liquid separator of the relay 20 21.
  • the first main pipe 2 has a low pressure
  • the second main pipe 3 has a high pressure. Therefore, due to the pressure difference between them, the refrigerant flows through the check valve 15c, and the refrigerant does not flow through the check valve 15a and the check valve 15b.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the relay-side gas-liquid separator 21 is supplied to the first distributor 26 via the gas-phase pipe 21a.
  • the gas refrigerant supplied to the first distribution unit 26 flows into the heating on-off valve 26a on the indoor unit 30A side, and is supplied to the indoor unit 30A in which the heating operation is set through the second branch pipe 5.
  • the refrigerant exchanges heat with a utilization medium such as air by the utilization side heat exchanger 31, and the supplied gas refrigerant is condensed and liquefied.
  • the opening degree of the use side flow rate regulator 32 is controlled based on the degree of supercooling at the outlet of the use side heat exchanger 31.
  • the liquid refrigerant condensed and liquefied in the usage-side heat exchanger 31 is reduced in pressure in the usage-side flow rate regulator 32 to become an intermediate-pressure liquid refrigerant that is an intermediate pressure between the high pressure and the low pressure.
  • the intermediate-pressure liquid refrigerant flows into the second distribution unit 27.
  • the liquid refrigerant that has flowed into the second distributor 27 passes through the second repeater-side bypass pipe 29 and merges with the liquid refrigerant separated in the repeater-side gas-liquid separator 21. Thereafter, the liquid refrigerant passes through the second inter-refrigerant heat exchanger 24 and flows into the second distribution unit 27. At this time, the liquid refrigerant passes through the second inter-refrigerant heat exchanger 24, then branches to the first relay-side bypass pipe 28, and flows into the second inter-refrigerant heat exchanger 24 again.
  • the second inter-refrigerant heat exchanger 24 heat exchange is performed between the intermediate-pressure liquid refrigerant and the low-pressure liquid refrigerant, and the low-pressure liquid refrigerant has a low evaporation temperature, and thus flows into the first main pipe 2 as a gas refrigerant. .
  • the intermediate-pressure liquid refrigerant that has flowed into the second distributor 27 flows into the indoor unit 30B via the cooling check valve 27b connected to the indoor unit 30B.
  • the liquid refrigerant that has flowed into the indoor unit 30B is reduced in pressure to a low pressure by using the use-side flow rate regulator 32 controlled according to the degree of superheat at the outlet of the use-side heat exchanger 31 of the indoor unit 30B, and the evaporation temperature is low. Then, it is supplied to the use side heat exchanger 31.
  • the supplied liquid refrigerant having a low evaporation temperature is evaporated and gasified by exchanging heat with a use medium such as air.
  • the refrigerant that has become the gas refrigerant passes through the first main pipe 2 and flows into the first distribution unit 26.
  • the gas refrigerant that has flowed into the first distributor 26 passes through the cooling on-off valve 26b connected to the indoor unit 30B and flows into the first main pipe 2.
  • the gas refrigerant that has flowed into the first main pipe 2 flows into the heat source side gas-liquid separator 42 having a lower pressure than the check valve 15b. Then, the gas refrigerant branches into the first branch pipe 43a, the second branch pipe 43b, and the third branch pipe 43c in the heat source side gas-liquid separator 42.
  • the refrigerant branched to the first branch pipe 43a passes through the check valve 16 and the lower control valve 41b, flows into the lower heat exchange section 13b, and performs heat exchange.
  • the refrigerant branched to the second branch pipe 43b flows into the lower heat exchange section 13b through the flow rate control device 44 and heat exchange is performed.
  • the on-off valve 45 When the on-off valve 45 is opened, the gas refrigerant branched to the third branch pipe 43 c flows into the accumulator 14. Thereafter, the heat-exchanged refrigerant flows into the accumulator 14 via the check valve 47 and the flow path switch 12. Next, the air is sucked into the compressor 11 through the accumulator 14. With such an operation, a refrigeration cycle is formed, and a heating main operation is performed.
  • the cooling main operation of FIG. 2 and the heating main operation of FIG. 3 are illustrated as the operation modes of the air conditioner 1, all the indoor units 30A and 30B perform the cooling operation and all the indoor operations.
  • the all-heating operation in which the machine 30B performs the heating operation can also be performed.
  • the refrigerant flow path in the heat source apparatus 10 is the same as the refrigerant flow path of FIG.
  • the refrigerant does not flow from the indoor unit 30A side in the heating operation to the indoor unit 30B side in the cooling operation as shown in FIG. It will flow to both indoor units 30A and 30B.
  • the refrigerant flow path in the heat source device 10 is the same as the refrigerant flow path of FIG.
  • the refrigerant does not flow from the indoor unit 30A side in the heating operation to the indoor unit 30B side in the cooling operation as shown in FIG. It flows to both indoor units 30A and 30B.
  • control device 60 has a function of controlling the operations of the capacity control valve 41, the flow rate control device 44, and the on-off valve 45 of the heat source unit 10 according to the operation mode. Specifically, the control device 60 opens the flow rate control device 44 so that the ratio of the refrigerant flow rate flowing through the upper stage heat exchange unit 13a and the lower stage heat exchange unit 13b becomes a set ratio during the heating operation. Control the degree.
  • control device 60 stores in advance a set opening degree that can be a setting ratio, and the control device 60 sets the opening degree of the flow rate control device 44 when the heating operation is performed. Fix in degrees. Thereby, high heating performance can be maintained as the air conditioning apparatus 1 as a whole.
  • FIG. 4 is a graph showing the relationship between the flow rate regulator and the heating performance when the all-heating operation is performed in the air conditioner of FIG.
  • the flow rate control device 44 when the flow rate control device 44 is set to a predetermined opening VPp or more in the heating only operation in which the heat source side heat exchanger 13 functions as an evaporator, the refrigerant flows into the lower stage heat exchange portion 13 b. The amount increases. For this reason, the amount of heat exchange in the lower stage side heat exchanging portion 13b is insufficient, and liquid back is made to the accumulator 14, whereby the suction side pressure of the compressor 11 is lowered and the heating performance is lowered.
  • the opening degree of the flow rate control device 44 is fixed to the set opening degree so that the amount of refrigerant flowing through the lower heat exchange section 13b satisfies the set ratio described above. Then, the flow rate of the refrigerant flowing through the lower stage side heat exchange unit 13b is limited, and as a result, the refrigerant flow rate to the upper stage side heat exchange unit 13a is increased. Thereby, optimal refrigerant
  • control device 60 performs the operation ratio between the cooling operation and the heating operation in the plurality of indoor units, the outside air temperature detected by the outside air temperature detection unit 53, and the intake air during the simultaneous cooling and heating operation illustrated in FIGS. Based on the suction side pressure detected by the side pressure detector 54, the opening degree of the flow rate control device 44 is controlled.
  • FIG. 5 is a flowchart showing an example of the operation of the flow control device during the simultaneous cooling and heating operation of the air conditioner of FIGS.
  • the control device 60 performs control so that the opening degree of the flow control device 44 is fixed to a preset initial opening degree at the start of the simultaneous cooling and heating operation (step ST1). .
  • the control device 60 detects whether the heating load is equal to or higher than the cooling load, whether the outside air temperature detected by the outside air temperature detection unit 53 is lower than an outside air temperature threshold (for example, 5 deg), or is detected by the suction side pressure detection unit 54. It is determined whether the suction side pressure is smaller than a pressure threshold (for example, 0.7 MPa) (steps ST2 to ST4).
  • a pressure threshold for example, 0.7 MPa
  • step ST5 it is determined whether the intermediate temperature detected by the intermediate temperature detection unit 58 is smaller than an intermediate temperature threshold (for example, 4 deg) (step ST5). Note that the order of determination in steps ST2 to ST5 need not be in the order shown in FIG. 5, and may be in any order.
  • an intermediate temperature threshold for example, 4 deg
  • the control device 60 releases the fixed opening of each flow control device 44 and controls the opening of the flow control device 44 variably. At this time, the flow control device 44 is adjusted so that the evaporation temperature of the indoor unit 30B performing the cooling operation does not become a predetermined value or less.
  • the evaporating temperature is detected by an evaporating temperature detecting unit 59 that detects the temperature of the refrigerant flowing in the use side heat exchanger 31. Thereby, the simultaneous cooling and heating operation of the indoor units 30A and 30B can be maintained.
  • the opening degree of the flow rate control device 44 is fixed to the set opening degree, and when the heating main operation (heating load> cooling load) is performed.
  • the opening degree of the flow control device 44 is variably controlled.
  • the control device 60 calculates the degree of superheat of the compressor outlet based on the compressor outlet temperature detected by the compressor outlet temperature detector 51 and the high pressure detected by the high pressure detector 52. .
  • the control device 60 opens the on-off valve 45. Open.
  • FIG. 6 is a flowchart showing an operation example of the on-off valve when the air-conditioning apparatus of FIG. 1 is performing the cooling operation. It is assumed that the opening / closing valve 45 is closed at the start of the cooling only operation. As shown in FIG. 6, at the start of the cooling only operation, the control device 60 determines whether or not the lower control valve 41b is closed (step ST11). When the lower control valve 41b is closed (YES in step ST11), control is performed so that the flow rate control device 44 is fixed at a predetermined opening (step ST12). Then, a predetermined amount of refrigerant flows from the first branch pipe side into the lower heat exchange section 13b, and the refrigerant present in the lower heat exchange section 13b is returned to the accumulator 14.
  • step ST14 it is determined whether the outlet superheat degree TdSH of the compressor 11 is equal to or higher than the set outlet superheat degree SHref (step ST14).
  • the on-off valve 45 is opened (step ST15). Then, a part of the refrigerant flowing from the relay machine 20 toward the accumulator 14 passes through the third branch pipe 43c, the heat source side gas-liquid separator 42, the second branch pipe 43b, and the flow rate control device 44, and the lower stage side heat exchange section 13b. Flow into.
  • the low-pressure pressure loss by piping can be reduced, the evaporation temperature of indoor unit 30A, 30B (evaporator) rises, and it can maintain high cooling performance.
  • the on-off valve 45 is closed (step ST16).
  • the lower control valve 41b is opened, it is possible to prevent the refrigerant from expanding even if the gas refrigerant flows into the lower heat exchange section 13b.
  • the heat source side heat exchanger 13 is divided into the upper stage side heat exchanging part 13a and the lower stage side heat exchanging part 13b, and the flow rate capable of adjusting the amount of refrigerant flowing into the lower stage side heat exchanging part 13b.
  • the heat exchanger that exchanges heat with air has a structure that blows wind upward (so-called top flow)
  • the wind speed that passes through the upper heat exchange section 13a is higher than the wind speed that passes through the lower heat exchange section 13b. large. Therefore, by reducing the opening degree of the flow control device 44, the amount of refrigerant flowing into the lower heat exchange section 13b is regulated, and as a result, the amount of refrigerant flowing into the upper heat exchange section 13a can be increased.
  • the heat source side heat exchanger 13 can perform heat exchange evenly by flowing the refrigerant amount to the upper stage side heat exchanging part 13a and the lower stage side heat exchanging part 13b appropriately according to the wind speed. Performance can be improved.
  • the flow rate control device 44 is not connected to the upper stage heat exchange section 13a, but is connected to the lower stage heat exchange section 13b, thereby reliably increasing the refrigerant flow rate to the upper stage heat exchange section 13a.
  • Can do That is, when the flow control device 44 is connected to the upper stage heat exchanging portion 13a, the refrigerant tends to be biased downward due to gravity. Therefore, by reducing the opening degree of the flow control device 44, the upper stage heat exchanging portion is reduced. Even if the refrigerant flow rate to 13a can be reduced, it is difficult to increase the refrigerant flow rate to the upper heat exchange section 13a by increasing the opening degree of the flow rate control device 44.
  • the liquid refrigerant flows into the heat source side heat exchanger 13, and thus the tendency becomes remarkable. Therefore, by connecting the flow rate control device 44 to the upper stage heat exchange unit 13a, the refrigerant flow rate to the upper stage side heat exchange unit 13a can be reliably increased if the opening degree of the flow rate control device 44 is reduced.
  • a heat exchanger using a flat tube has a smaller cross-sectional area of the heat transfer tube than a circular tube heat exchanger. For this reason, the flow velocity inside a heat exchanger tube increases rather than a circular tube heat exchanger, and pressure loss increases in connection with it. An increase in pressure loss decreases the suction density of the compressor, leading to a decrease in capacity and a decrease in efficiency. Therefore, in a heat exchanger using a flat tube, it is necessary to increase the number of passes of the heat exchanger.
  • the heat source side heat exchanger has a configuration in which one end of the flat tubes arranged in the vertical direction is connected to the first header collecting pipe and the other end is connected to the second header collecting pipe 70
  • the heat source side heat exchanger has When functioning as a condenser, only the refrigerant supplied to some of the heat exchanger parts flows into each communication space in the second header collecting pipe in order to reduce the difference in refrigerant flow rate among the plurality of heat exchange parts.
  • the number of times of changing the flow direction in the second header collecting pipe is set to only one.
  • the heat source side heat exchanger functions as a condenser
  • the portion to be filled with the liquid refrigerant becomes small. If the amount of the refrigerant is small, it is easy to be affected by the header, the refrigerant does not flow smoothly, and the performance of the heat exchanger deteriorates.
  • a communication space by a plurality of partition plates for partitioning the header collecting pipe of the flat tube heat exchanger is required, and the number of pipes to be connected increases. For this reason, it becomes difficult to handle the piping, the structure becomes complicated, and the number of brazing points increases, so that the productivity is deteriorated and the cost is increased.
  • the structure of the heat source heat exchanger is not complicated as in the prior art. Optimal refrigerant distribution can be performed for the upper stage heat exchange section 13a and the lower stage heat exchange section 13b. As a result, productivity can be improved and cost can be reduced.
  • control device 60 controls the operation of the flow rate control device 44 according to various operation modes, there are a plurality of use side heat exchangers 31 that are performing the cooling operation or the heating operation during the simultaneous cooling and heating operation. Even so, stable control can be performed at low cost and without performance degradation. Therefore, comfort and productivity can be maintained at the same time.
  • control device 60 controls the opening degree of the flow rate control device 44 so that the ratio of the refrigerant flow rate flowing through the upper stage side heat exchange unit 13a and the lower stage side heat exchange unit 13b during the heating operation becomes a set ratio
  • the control device 60 controls the opening degree of the flow rate control device 44 so that the ratio of the refrigerant flow rate flowing through the upper stage side heat exchange unit 13a and the lower stage side heat exchange unit 13b during the heating operation becomes a set ratio
  • the control device 60 is based on the operation ratio of the cooling operation and the heating operation at the time of the simultaneous cooling and heating operation of the plurality of indoor units 30A and 30B, the outside air temperature, and the suction side pressure.
  • the opening degree of the flow rate control device 44 is controlled and the opening degree of the flow rate control device 44 is released, the flow rate control device 44 is set so that the evaporation temperature of the use side heat exchanger 31 is equal to or higher than the set evaporation temperature.
  • the opening degree is controlled, it is possible to suppress the evaporation temperature of the indoor unit 30B that is performing the cooling operation during the cooling and heating simultaneous operation from being equal to or lower than a predetermined value, thereby preventing the cooling capacity from being lowered.
  • control device 60 controls the operation of the on-off valve 45 based on the capacity of the heat source side heat exchanger 13 and the outlet superheat degree TdSH during the cooling operation.
  • the heat source side heat exchanger 13 can perform heat exchange evenly by flowing the refrigerant in the lower stage side heat exchanging portion 13b appropriately according to the wind speed, and the performance of the heat source side heat exchanger 13 can be improved.
  • the embodiment of the present invention is not limited to the above embodiment, and various changes can be made.
  • an example in which there is one heat source unit 10 and two indoor units 30A and 30B will be described.
  • the present invention is not limited to this, and for example, a plurality of indoor units are two or more units. It may be the case. Further, for example, a plurality of heat source devices 10 may be used, or a plurality of relay devices 20 may be used.
  • the opening degree of the flow control device 44 is fixed to the set opening degree. It may be variably controlled.
  • an upper temperature sensor and a lower temperature sensor for detecting the temperature of the refrigerant flowing through the upper heat exchange unit 13a and the lower heat exchange unit 13b are provided, and the control device 60 is detected by the upper temperature sensor and the lower temperature sensor.
  • the opening speed of the flow control device 44 may be controlled by detecting the wind speed (heat exchange amount) based on the detected temperature.

Abstract

In the present invention, an air conditioner has a heat source device, a plurality of indoor devices, and a relay device connected between the heat source device and the plurality of indoor devices via refrigerant pipelines. A heat-source-side heat exchanger includes an upper-stage heat exchanger and a lower-stage heat exchanger that are connected in parallel to a compressor and disposed so as to be aligned in the vertical direction. The heat source device is provided with: a capacity control valve for controlling the flow of refrigerant into the upper-stage heat exchanger and lower-stage heat exchanger to control the capacity of the heat-source-side heat exchanger; a heat-source-side gas-liquid separator for separating the refrigerant flowing in from the relay device into a gas refrigerant and a liquid refrigerant; a first branch pipeline through which the refrigerant that has flowed into the heat-source-side gas-liquid separator is caused to flow through the capacity control valve; a second branch pipeline through which the refrigerant that has flowed into the heat-source-side gas-liquid separator is caused to flow into the lower-stage heat exchanger; and a flow-rate control device provided to the second pipeline, the flow-rate control device adjusting the rate at which refrigerant flows into the lower-stage heat exchanger via the second pipeline.

Description

空気調和装置Air conditioner
 本発明は、熱源側熱交換器が複数の熱交換部を有する空気調和装置に関するものである。 The present invention relates to an air conditioner in which a heat source side heat exchanger has a plurality of heat exchange units.
 従来の冷凍サイクル(ヒートポンプサイクル)を利用した空気調和装置では、圧縮機、熱源側熱交換器を有する熱源機側ユニットと流量制御装置、室内機側熱交換器を有する負荷側ユニット(室内機)とを冷媒配管により接続し、冷媒を循環させる冷媒回路を構成している。そして、室内機側熱交換器において、冷媒が蒸発、凝縮する際に、熱交換対象になる空調対象空間の空気から吸熱、放熱することを利用し、冷媒回路における冷媒に係る圧力、温度等を変化させながら空気調和を行う。このような空気調和装置に使用される冷媒としては、たとえばHFC(ハイドロフルオロカーボン)系冷媒が多く使われている。また、二酸化炭素(CO)等の自然冷媒を使うものも提案されている。 In an air conditioner using a conventional refrigeration cycle (heat pump cycle), a compressor, a heat source unit having a heat source side heat exchanger, a flow control device, and a load side unit (indoor unit) having an indoor unit side heat exchanger Are connected by a refrigerant pipe to constitute a refrigerant circuit for circulating the refrigerant. Then, in the indoor unit side heat exchanger, when the refrigerant evaporates and condenses, the pressure, temperature, etc. relating to the refrigerant in the refrigerant circuit are utilized by utilizing heat absorption and heat radiation from the air in the air-conditioning target space to be heat exchanged. Air conditioning while changing. As the refrigerant used in such an air conditioner, for example, an HFC (hydrofluorocarbon) refrigerant is often used. In addition, one using a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
 また、従来から、熱源側熱交換器には、伝熱管とフィンとを備えるフィンチューブ式の熱交換器が使用されている。この伝熱管として、特許文献1に示す断面形状が円形状の伝熱管の他に、特許文献2に示す断面形状がアスペクト比の大きい長方形を角取りした形状の扁平管が知られている。また、特許文献2においては、室外熱交換器が上下に3つの熱交換部に分割されており、各熱交換部に液側接続部材及びガス側ヘッダが接続されており、液側接続部材又はガス側ヘッダから冷媒が各熱交換部へ分流される構成が開示されている。 Further, conventionally, a fin tube type heat exchanger provided with heat transfer tubes and fins is used for the heat source side heat exchanger. As this heat transfer tube, in addition to the circular heat transfer tube shown in Patent Document 1, a flat tube having a cross-sectional shape shown in Patent Document 2 in which a rectangle with a large aspect ratio is cut off is known. Moreover, in patent document 2, the outdoor heat exchanger is divided | segmented up and down into three heat exchange parts, the liquid side connection member and the gas side header are connected to each heat exchange part, and a liquid side connection member or The structure by which a refrigerant | coolant is divided into each heat exchange part from the gas side header is disclosed.
特開平2-033595号公報Japanese Patent Laid-Open No. 2-033595 特開2012-163313号公報JP 2012-163313 A
 特許文献2のように、熱源側熱交換器が複数の熱交換部を有する場合、各熱交換部における風速分布が異なる場合があり、この風速分布に合わせた冷媒の分配が行う必要がある。特に、特許文献2のような伝熱管が扁平管からなる場合、上段側熱交換器への冷媒流量を増加させなければ、熱交換器全体としての性能が低下してしまう場合がある。一方、熱交換器の構造として、各熱交換部への適切な冷媒分配を図る場合、熱交換器の構造が複雑になってしまうという課題がある。 As in Patent Document 2, when the heat source side heat exchanger has a plurality of heat exchange sections, the wind speed distribution in each heat exchange section may be different, and it is necessary to distribute the refrigerant in accordance with the wind speed distribution. In particular, when the heat transfer tube as in Patent Document 2 is a flat tube, the performance of the entire heat exchanger may be deteriorated unless the refrigerant flow rate to the upper heat exchanger is increased. On the other hand, as a heat exchanger structure, there is a problem that the structure of the heat exchanger becomes complicated when appropriate refrigerant distribution to each heat exchange unit is attempted.
 そこで、本発明は、上記の課題に対応してなされたもので、熱源側熱交換器を複数の熱交換部に分割したときに、熱源側熱交換器に特別な構造を採用することなく、複数の熱交換部へ最適な冷媒分配を行うことができる空気調和装置を提供することを目的としている。 Therefore, the present invention was made in response to the above problem, and when the heat source side heat exchanger is divided into a plurality of heat exchange parts, without adopting a special structure for the heat source side heat exchanger, It aims at providing the air conditioning apparatus which can perform optimal refrigerant | coolant distribution to several heat exchange parts.
 本発明に係る空気調和装置は、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒と熱源媒体とを熱交換する熱源側熱交換器を有する熱源機と、冷媒と利用媒体との間の熱交換を行う利用側熱交換器と、利用側熱交換器に接続された熱源側流量調整器とを有する複数の室内機と、熱源機と複数の室内機との間に冷媒配管を介して接続され、熱源側熱交換器から流出する冷媒を複数の室内機に分配する中継機とを備え、熱源側熱交換器は、圧縮機に互いに並列に接続され、上下方向に並んで配置された上段側熱交換部と下段側熱交換部とを含み、熱源機は、上段側熱交換部及び下段側熱交換部への冷媒の流入を制御して熱源側熱交換器の容量を制御する容量制御弁と、中継機から流入する冷媒をガス冷媒と液冷媒とに分離する熱源側気液分離器と、熱源側気液分離器に流入した冷媒を容量制御弁へ流入させる第1分岐配管と、熱源側気液分離器に流入した冷媒を下段側熱交換部に流入させる第2分岐配管と、第2分岐配管に設けられ、第2分岐配管を介して下段側熱交換部に流入する冷媒流量を調整する流量制御装置とを備える。 An air conditioner according to the present invention includes a compressor that compresses and discharges a refrigerant, a heat source device including a heat source side heat exchanger that exchanges heat between the refrigerant discharged from the compressor and a heat source medium, the refrigerant, and a utilization medium A plurality of indoor units having a use-side heat exchanger that exchanges heat with each other, a heat-source-side flow controller connected to the use-side heat exchanger, and a refrigerant between the heat source unit and the plurality of indoor units And a relay that is connected via a pipe and distributes the refrigerant flowing out from the heat source side heat exchanger to the plurality of indoor units. The heat source side heat exchanger is connected to the compressor in parallel with each other and arranged in the vertical direction. The heat source unit includes an upper stage heat exchange unit and a lower stage side heat exchange unit, and the capacity of the heat source side heat exchanger is controlled by controlling the flow of refrigerant into the upper stage side heat exchange unit and the lower stage side heat exchange unit. Capacity control valve for controlling the flow rate, and a heat source for separating the refrigerant flowing from the relay into gas refrigerant and liquid refrigerant A gas-liquid separator; a first branch pipe that allows the refrigerant that has flowed into the heat source side gas-liquid separator to flow into the capacity control valve; and a second that causes the refrigerant that has flowed into the heat source side gas-liquid separator to flow into the lower heat exchange section. A branch pipe and a flow rate control device that is provided in the second branch pipe and adjusts the flow rate of the refrigerant flowing into the lower stage heat exchange section via the second branch pipe.
 本発明の空気調和装置によれば、熱源側熱交換器内の冷媒量を調整する流量制御装置を設けることにより、熱源側熱交換器自体に特別な冷媒分配を設けることなく、簡単な構造で各熱交換部へ最適な冷媒分配を行うことができる。 According to the air conditioner of the present invention, by providing a flow rate control device that adjusts the amount of refrigerant in the heat source side heat exchanger, the heat source side heat exchanger itself has a simple structure without providing a special refrigerant distribution. Optimal refrigerant distribution to each heat exchange unit can be performed.
本発明の実施の形態に係る空気調和装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the air conditioning apparatus which concerns on embodiment of this invention. 図1の空気調和装置において、冷房主体の冷暖房同時運転が行われた際の冷媒の流れを示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when simultaneous cooling and heating operation mainly performed by the cooling is performed in the air conditioning apparatus of FIG. 1. 図1の空気調和装置において、暖房主体の冷暖房同時運転が行われた際の冷媒の流れを示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when a heating / cooling simultaneous heating / cooling simultaneous operation is performed in the air conditioning apparatus of FIG. 1. 図1の空気調和装置において全暖房運転が行われた場合の流量調整器と暖房性能との関係を示すグラフである。It is a graph which shows the relationship between the flow regulator and heating performance at the time of a heating only operation in the air conditioning apparatus of FIG. 図2及び図3の空気調和装置の冷暖房同時運転時における流量制御装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the flow control apparatus at the time of the heating and cooling simultaneous operation of the air conditioning apparatus of FIG.2 and FIG.3. 図1の空気調和装置が冷房運転を行っている際の開閉弁の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the on-off valve when the air conditioning apparatus of FIG. 1 is performing the cooling operation.
 以下、図面に基づいて本発明の空気調和装置の実施形態について説明する。図1は、本発明の実施の形態に係る空気調和装置の一例を示す冷媒回路図である。図1の空気調和装置1は、冷媒循環による冷凍サイクル(ヒートポンプサイクル)を利用して冷暖房運転を行うものである。特に本実施の形態の空気調和装置1は、複数の室内機において、それぞれ冷房と暖房とを同時に混在して行う冷暖房同時運転を行うことができる。 Hereinafter, embodiments of the air conditioner of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus according to an embodiment of the present invention. The air conditioner 1 of FIG. 1 performs air conditioning operation using the refrigerating cycle (heat pump cycle) by a refrigerant circulation. In particular, the air conditioner 1 of the present embodiment can perform simultaneous cooling and heating operations in which a plurality of indoor units are mixed with cooling and heating at the same time.
 空気調和装置1は、熱源機10、中継機20、並びに複数の室内機30A、30Bを備え、これらの機器は冷媒配管により配管接続されている。すなわち、熱源機10と室内機30A、30Bとの間には冷媒の流れを制御するための中継機20が設けられており、複数の室内機30A、30Bは、互いに並列になるように中継機20に接続される。 The air conditioner 1 includes a heat source unit 10, a relay unit 20, and a plurality of indoor units 30A and 30B, and these devices are connected by refrigerant piping. That is, the relay machine 20 for controlling the flow of the refrigerant is provided between the heat source unit 10 and the indoor units 30A and 30B, and the plurality of indoor units 30A and 30B are arranged in parallel with each other. 20.
 熱源機10と中継機20とは、第1主管2と、第1主管2よりも管径が細い第2主管3とにより接続されている。第1主管2には、熱源機10側から中継機20側へ高圧の冷媒が流れる。第2主管3には、中継機20側から熱源機10側へ第1主管2を流れる冷媒に比べて低圧の冷媒が流れる。ここで、圧力の高低については、基準になる圧力(数値)との関係により定められているものではなく、圧縮機11の加圧、各流量制御装置の開閉状態(開度)の制御等により、冷媒回路内において、相対的な高低(中間を含む)に基づいて表すものであるとする。なお、圧縮機11から吐出した冷媒の圧力が最も高く、流量制御装置等により圧力が低下していくため、圧縮機11に吸入される冷媒の圧力が最も低くなる。 The heat source device 10 and the relay device 20 are connected by a first main pipe 2 and a second main pipe 3 having a smaller diameter than the first main pipe 2. In the first main pipe 2, a high-pressure refrigerant flows from the heat source device 10 side to the relay device 20 side. A refrigerant having a lower pressure flows in the second main pipe 3 than the refrigerant flowing in the first main pipe 2 from the relay machine 20 side to the heat source machine 10 side. Here, the level of the pressure is not determined by the relationship with the reference pressure (numerical value), but by the pressurization of the compressor 11, the control of the open / close state (opening) of each flow control device, or the like. In the refrigerant circuit, it is expressed on the basis of relative height (including the middle). In addition, since the pressure of the refrigerant | coolant discharged from the compressor 11 is the highest and a pressure falls by a flow control apparatus etc., the pressure of the refrigerant | coolant suck | inhaled by the compressor 11 becomes the lowest.
 中継機20と室内機30A、30Bとは、第1枝管4と第2枝管5とにより接続されている。第1主管2、第2主管3、第1枝管4及び第2枝管5による配管接続により、熱源機10、中継機20並びに室内機30A、30Bの間を冷媒が循環する冷媒回路が構成される。 The relay machine 20 and the indoor units 30 </ b> A and 30 </ b> B are connected by the first branch pipe 4 and the second branch pipe 5. A refrigerant circuit in which the refrigerant circulates between the heat source unit 10, the relay unit 20, and the indoor units 30A, 30B is configured by the pipe connection by the first main pipe 2, the second main pipe 3, the first branch pipe 4, and the second branch pipe 5. Is done.
[熱源機10]
 熱源機10は、圧縮機11、流路切替器12、熱源側熱交換器13、アキュムレータ14、流路形成部15を有している。圧縮機11は、吸入した冷媒に圧力を加えて吐出する。圧縮機11は、例えば、全体として時間あたりの冷媒の吐出量である吐出容量と、吐出容量に伴って能力を変化させることができるインバータ圧縮機からなっている。そして、圧縮機11は、インバータ回路(図示せず)により、制御装置60の指示に基づいて駆動周波数を任意に変化することができる。
[Heat source machine 10]
The heat source device 10 includes a compressor 11, a flow path switch 12, a heat source side heat exchanger 13, an accumulator 14, and a flow path forming unit 15. The compressor 11 applies pressure to the sucked refrigerant and discharges it. The compressor 11 includes, for example, a discharge capacity that is a refrigerant discharge amount as a whole, and an inverter compressor that can change the capacity according to the discharge capacity. And the compressor 11 can change a drive frequency arbitrarily based on the instruction | indication of the control apparatus 60 by an inverter circuit (not shown).
 流路切替器12は、圧縮機11の吐出側に接続され、制御装置60の指示に基づいて、冷暖房の形態(モード)に対応した流路の切り替えを行うものであり、例えば四方弁からなっている。流路切替器12は、4つのポートを備え、各ポートは、圧縮機11の吐出側と、熱源側熱交換器13と、アキュムレータ14と、逆止弁15bの出口側及び逆止弁15cの入口側とにそれぞれ接続されている。流路切替器12は、すべての室内機30A、30Bが冷房運転をしている全冷房運転時及び冷暖房同時運転のうち冷房が主になる冷房主体運転時と、すべての室内機30A、30Bが暖房をしている全暖房運転時及び冷暖房同時運転のうち暖房が主になる暖房主体運転時とによって冷媒流路が切り替わるようになっている。 The flow path switch 12 is connected to the discharge side of the compressor 11 and switches the flow path corresponding to the form (mode) of cooling and heating based on an instruction from the control device 60, and includes, for example, a four-way valve. ing. The flow path switch 12 includes four ports, and each port includes a discharge side of the compressor 11, a heat source side heat exchanger 13, an accumulator 14, an outlet side of the check valve 15b, and a check valve 15c. Each is connected to the entrance side. The flow path switching unit 12 is used in the cooling only operation in which all the indoor units 30A and 30B are in the cooling operation and in the cooling main operation in which the cooling is mainly performed in the simultaneous cooling and heating operation, and in the all the indoor units 30A and 30B. The refrigerant flow path is switched according to the heating-main operation in which heating is mainly performed during all heating operation and heating / cooling simultaneous operation.
 熱源側熱交換器13は、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)を有し、冷媒と空気(外気)との熱交換を行う。例えば、全暖房運転時及び暖房主体運転時においては蒸発器として機能し、冷媒を蒸発させて気化させる。一方、全冷房運転時及び冷房主体運転時においては凝縮器として機能し、冷媒を凝縮して液化させる。熱源側熱交換器13は、熱源側熱交換器13内を流れる冷媒と、熱源側熱交換器13内を流れる冷媒とで熱交換する。なお、熱源側熱交換器13内を流れる冷媒は、水もしくはブラインでもよい。また、熱源機10には、熱源側熱交換器13へ送風を行い、冷媒と空気との熱交換を効率よく行うための熱源機側送風機(図示せず)が設けられてもよい。 The heat source side heat exchanger 13 includes a heat transfer tube through which the refrigerant passes and fins (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air. ). For example, it functions as an evaporator at the time of all heating operation and heating main operation, and evaporates and evaporates the refrigerant. On the other hand, during the cooling only operation and the cooling main operation, it functions as a condenser and condenses and liquefies the refrigerant. The heat source side heat exchanger 13 exchanges heat between the refrigerant flowing in the heat source side heat exchanger 13 and the refrigerant flowing in the heat source side heat exchanger 13. The refrigerant flowing in the heat source side heat exchanger 13 may be water or brine. Further, the heat source unit 10 may be provided with a heat source unit side blower (not shown) for blowing air to the heat source side heat exchanger 13 and efficiently exchanging heat between the refrigerant and the air.
 ここで、上述した熱源側熱交換器13は、上下方向に並んで配置されているとともに、互いに並列に接続された上段側熱交換部13a及び下段側熱交換部13bを有している。上段側熱交換部13a及び下段側熱交換部13bは、一方が流路切替器12に接続されており、他方が第1主管2に接続されている。なお、熱源側熱交換器13は、2つに分割された上段側熱交換部13a及び下段側熱交換部13bを有する場合について例示しているが、2つ以上に分割されてもよい。 Here, the heat source side heat exchanger 13 described above is arranged side by side in the vertical direction, and has an upper stage side heat exchange part 13a and a lower stage side heat exchange part 13b connected in parallel to each other. One of the upper stage side heat exchange unit 13 a and the lower stage side heat exchange unit 13 b is connected to the flow path switch 12, and the other is connected to the first main pipe 2. In addition, although illustrated about the case where the heat-source side heat exchanger 13 has the upper stage side heat exchange part 13a divided | segmented into two and the lower stage side heat exchange part 13b, you may divide | segment into two or more.
 特に、熱源側熱交換器13は、断面形状がアスペクト比の大きい長方形を角取りした形状を有し、1つの熱交換器を上下の領域に分割することにより、上段側熱交換部13aと下段側熱交換部13bとが形成された構造を有している。また、熱源側熱交換器13は、冷媒が流通する扁平管と、扁平管が挿入され、扁平管に対し直角方向に接合される複数の板状のフィンとを有する単列扁平管熱交換器が、厚み方向に2列以下で結合されたものからなる。これにより、熱交換器の両側からロウ付け等を行うことができるため加工性が改善される。なお、2列以下に結合した場合に限られず、2列以上結合した熱交換器であってもよい。 In particular, the heat source side heat exchanger 13 has a shape in which a cross-sectional shape is a rectangle with a large aspect ratio, and the upper stage side heat exchange unit 13a and the lower stage are divided by dividing one heat exchanger into upper and lower regions. The side heat exchange part 13b is formed. Further, the heat source side heat exchanger 13 is a single-row flat tube heat exchanger having a flat tube through which refrigerant flows and a plurality of plate-like fins into which the flat tube is inserted and joined in a direction perpendicular to the flat tube. Is formed by bonding in two or less rows in the thickness direction. Thereby, since brazing etc. can be performed from the both sides of a heat exchanger, workability is improved. In addition, it is not restricted to the case where it couple | bonds with 2 or less rows, The heat exchanger couple | bonded with 2 or more rows may be sufficient.
 アキュムレータ14は、圧縮機11の吸入側に接続されており、液冷媒を分離し、ガス冷媒を圧縮機11へ供給する。流路形成部15は、流路切替器12による流路の切替に拘わらず、冷媒を循環経路を第1主管2から流出させ第2主管3から流入させるものであり、各逆止弁15a~15cを有している。逆止弁15aは、熱源側熱交換器13と第1主管2との間の配管上に位置し、熱源側熱交換器13から第1主管2の方向への冷媒流通を許容する。逆止弁15bは、流路切替器12と第2主管3との間の配管上に位置し、第2主管3から流路切替器12の方向への冷媒流通を許容する。逆止弁15cは、流路切替器12と第1主管2との間の配管上に位置し、流路切替器12から第2主管3の方向への冷媒流通を許容する。 The accumulator 14 is connected to the suction side of the compressor 11, separates the liquid refrigerant, and supplies the gas refrigerant to the compressor 11. Regardless of the switching of the flow path by the flow path switch 12, the flow path forming section 15 causes the refrigerant to flow out of the circulation path from the first main pipe 2 and into the second main pipe 3, and each check valve 15a˜ 15c. The check valve 15 a is located on the pipe between the heat source side heat exchanger 13 and the first main pipe 2, and allows refrigerant to flow from the heat source side heat exchanger 13 to the first main pipe 2. The check valve 15 b is located on the pipe between the flow path switch 12 and the second main pipe 3 and allows refrigerant to flow from the second main pipe 3 toward the flow path switch 12. The check valve 15 c is located on the pipe between the flow path switch 12 and the first main pipe 2 and allows the refrigerant to flow in the direction from the flow path switch 12 to the second main pipe 3.
 さらに、熱源機10は、容量制御弁41、熱源側気液分離器42、第1分岐配管43a、第2分岐配管43b、第3分岐配管43c、流量制御装置44を備える。容量制御弁41は、上段側熱交換部13a及び下段側熱交換部13bへの冷媒の流入を制御して熱源側熱交換器13の容量を制御するものである。容量制御弁41は、上段側熱交換部13aに接続された上段側制御弁41aと、下段側熱交換部13bに接続された下段側制御弁41bとを有し、上段側制御弁41a及び下段側熱交換部13bは例えば電磁弁からなっている。なお、容量制御弁41と流路切替器12との間には逆止弁41xが設けられている。逆止弁41xは、暖房流路において流路切替器12からの冷媒の流通を許容し、冷房流路において熱源側気液分離器42からの冷媒の流通を防ぐものである。なお、熱源側熱交換器13が3つ以上に分割されている場合、容量制御弁41にはそれに対応する数の電磁弁が設けられる。 Furthermore, the heat source device 10 includes a capacity control valve 41, a heat source side gas-liquid separator 42, a first branch pipe 43a, a second branch pipe 43b, a third branch pipe 43c, and a flow rate control device 44. The capacity control valve 41 controls the capacity of the heat source side heat exchanger 13 by controlling the inflow of refrigerant into the upper stage side heat exchange section 13a and the lower stage side heat exchange section 13b. The capacity control valve 41 includes an upper stage control valve 41a connected to the upper stage side heat exchanging part 13a, and a lower stage side control valve 41b connected to the lower stage side heat exchanging part 13b. The side heat exchange part 13b consists of a solenoid valve, for example. A check valve 41 x is provided between the capacity control valve 41 and the flow path switch 12. The check valve 41x allows the refrigerant to flow from the flow switching device 12 in the heating flow path, and prevents the refrigerant from flowing from the heat source side gas-liquid separator 42 in the cooling flow path. When the heat source side heat exchanger 13 is divided into three or more, the capacity control valve 41 is provided with a corresponding number of electromagnetic valves.
 熱源側気液分離器42は、中継機20から流入する冷媒をガス冷媒と液冷媒とに分離するものである。すなわち、熱源側気液分離器42には、複数の室内機30A、30Bを流通した冷媒が中継機を介して流入することになる。熱源側気液分離器42には、第1分岐配管43a、第2分岐配管43b、第3分岐配管43cがそれぞれ接続されている。第1分岐配管43aは、熱源側気液分離器42において分離された液冷媒を容量制御弁41へ流入させるものである。なお、第1分岐配管43aには逆止弁16が設けられており、逆止弁16は、第1分岐配管43aにおいて熱源側気液分離器42から容量制御弁41への冷媒の流れを許容する。 The heat source side gas-liquid separator 42 separates the refrigerant flowing from the relay machine 20 into a gas refrigerant and a liquid refrigerant. That is, the refrigerant flowing through the plurality of indoor units 30A and 30B flows into the heat source side gas-liquid separator 42 via the relay unit. A first branch pipe 43a, a second branch pipe 43b, and a third branch pipe 43c are connected to the heat source side gas-liquid separator 42, respectively. The first branch pipe 43 a allows the liquid refrigerant separated in the heat source side gas-liquid separator 42 to flow into the capacity control valve 41. The check valve 16 is provided in the first branch pipe 43a, and the check valve 16 allows the refrigerant to flow from the heat source side gas-liquid separator 42 to the capacity control valve 41 in the first branch pipe 43a. To do.
 第2分岐配管43bは、第2熱源側気液分離器において分離された液冷媒を下段側熱交換部13bに流入させるものである。第2分岐配管43bには例えば電子膨張弁等からなる流量制御装置44が設けられており、流量制御装置44の開度が調整されることにより、下段側熱交換部13bに流入する冷媒量が調整される。 The second branch pipe 43b allows the liquid refrigerant separated in the second heat source side gas-liquid separator to flow into the lower heat exchange section 13b. The second branch pipe 43b is provided with a flow rate control device 44 composed of, for example, an electronic expansion valve, and the amount of refrigerant flowing into the lower heat exchange section 13b is adjusted by adjusting the opening degree of the flow rate control device 44. Adjusted.
 第3分岐配管43cは、流路切替器12とアキュムレータ14との間に接続されており、熱源側気液分離器42において分離されたガス冷媒を圧縮機11の吸入側に流入させるものである。第3分岐配管43cには、熱源側気液分離器42から圧縮機11の吸入側への冷媒の流入を制御する開閉弁45が設けられている。 The third branch pipe 43c is connected between the flow path switch 12 and the accumulator 14, and allows the gas refrigerant separated in the heat source side gas-liquid separator 42 to flow into the suction side of the compressor 11. . The third branch pipe 43 c is provided with an on-off valve 45 that controls the inflow of refrigerant from the heat source side gas-liquid separator 42 to the suction side of the compressor 11.
 熱源側熱交換器13が凝縮器になるような冷房流路が形成されているとき、開閉弁45が開放した場合、熱源側気液分離器42により分離されたガス冷媒が第3分岐配管43cを介してアキュムレータ14に流入する。なお、開閉弁45が閉止した場合、中継機20から流入した冷媒は、第1分岐配管43aには流れず、第1分岐配管43a及び第2分岐配管43b側へ流れる。一方、熱源側熱交換器13が蒸発器になるような暖房流路が形成されているとき、開閉弁45が開放した場合には流路切替器12からアキュムレータ14へ流れる冷媒が第3分岐配管43cを介して熱源側気液分離器42へ流入する。 When the cooling channel is formed so that the heat source side heat exchanger 13 becomes a condenser, when the on-off valve 45 is opened, the gas refrigerant separated by the heat source side gas-liquid separator 42 is the third branch pipe 43c. Flows into the accumulator 14. When the on-off valve 45 is closed, the refrigerant flowing from the relay machine 20 does not flow to the first branch pipe 43a but flows to the first branch pipe 43a and the second branch pipe 43b. On the other hand, when the heating flow path is formed so that the heat source side heat exchanger 13 becomes an evaporator, when the on-off valve 45 is opened, the refrigerant flowing from the flow path switching device 12 to the accumulator 14 flows into the third branch pipe. It flows into the heat source side gas-liquid separator 42 through 43c.
 さらに、熱源機10は、流路切替器12と逆止弁15a(第2主管3)との間を接続する接続配管46が設けられており、接続配管46には逆止弁47が設けられている。そして、冷房流路が形成されているとき、熱源側熱交換器13から流出した冷媒が接続配管46及び逆止弁47を介してアキュムレータ14に流入され、暖房流路が形成されているとき、逆止弁47により冷媒が接続配管46には流れないようになっている。 Further, the heat source device 10 is provided with a connection pipe 46 that connects between the flow path switch 12 and the check valve 15a (second main pipe 3), and the connection pipe 46 is provided with a check valve 47. ing. And when the cooling channel is formed, the refrigerant that has flowed out of the heat source side heat exchanger 13 flows into the accumulator 14 via the connection pipe 46 and the check valve 47, and when the heating channel is formed, The check valve 47 prevents the refrigerant from flowing into the connection pipe 46.
[中継機20]
 中継機20は、中継機側気液分離器21、第1冷媒間熱交換器22、第1中継機側流量調整器23、第2冷媒間熱交換器24、第2中継機側流量調整器25、第1分配部26、第2分配部27を有する。中継機側気液分離器21は、第2主管3から流れる冷媒をガス冷媒と液冷媒とに分離する。中継機側気液分離器21は、ガス冷媒が流れ出る気相配管21aと、液冷媒が流れ出る液相配管21bとに接続されている。気相配管21aは第1分配部26に接続されており、液相配管21bは、第1冷媒間熱交換器22に接続されている。
[Repeater 20]
The repeater 20 includes a repeater-side gas-liquid separator 21, a first inter-refrigerant heat exchanger 22, a first repeater-side flow rate adjuster 23, a second inter-refrigerant heat exchanger 24, and a second repeater-side flow rate adjuster. 25, a first distribution unit 26, and a second distribution unit 27. The repeater side gas-liquid separator 21 separates the refrigerant flowing from the second main pipe 3 into a gas refrigerant and a liquid refrigerant. The repeater side gas-liquid separator 21 is connected to a gas phase pipe 21a from which a gas refrigerant flows out and a liquid phase pipe 21b from which the liquid refrigerant flows out. The gas phase piping 21 a is connected to the first distribution unit 26, and the liquid phase piping 21 b is connected to the first inter-refrigerant heat exchanger 22.
 第1冷媒間熱交換器22は、全冷房運転時に液冷媒を過冷却して室内機30A、30B側に供給するものである。第1冷媒間熱交換器22は、中継機側気液分離器21から第1中継機側流量調整器23へ流れる冷媒と、第2冷媒間熱交換器24から第2主管3へ流れる冷媒との間で熱交換を行う。 The first inter-refrigerant heat exchanger 22 supercools the liquid refrigerant during the cooling only operation and supplies it to the indoor units 30A and 30B. The first inter-refrigerant heat exchanger 22 includes a refrigerant that flows from the relay-side gas-liquid separator 21 to the first relay-side flow rate regulator 23, and a refrigerant that flows from the second inter-refrigerant heat exchanger 24 to the second main pipe 3. Heat exchange between.
 第1中継機側流量調整器23は、例えば電子膨張弁等からなり、第1冷媒間熱交換器22と第2冷媒間熱交換器24との間に設けられている。第1中継機側流量調整器23は、第1冷媒間熱交換器22から第2冷媒間熱交換器24へ流れる冷媒流量及び冷媒の圧力を調整するものであり、制御装置60により開度が制御されている。 The first relay-side flow rate regulator 23 is composed of, for example, an electronic expansion valve and is provided between the first inter-refrigerant heat exchanger 22 and the second inter-refrigerant heat exchanger 24. The first relay-side flow rate regulator 23 adjusts the flow rate of refrigerant and the pressure of the refrigerant flowing from the first inter-refrigerant heat exchanger 22 to the second inter-refrigerant heat exchanger 24, and the opening degree is controlled by the control device 60. It is controlled.
 第2冷媒間熱交換器24は、第1中継機側流量調整器23から第2分配部27へ流れる冷媒と、第1中継機側バイパス配管28を流れる第2中継機側流量調整器25の下流部分の冷媒(第2中継機側流量調整器25を通過した冷媒)との間で熱交換を行う。ここで、第1中継機側バイパス配管28は、第2冷媒間熱交換器24と第2分配部27との間を接続するものであり、第2冷媒間熱交換器24と第2分配部27との間を流れる冷媒の一部が第1中継機側バイパス配管28を介して第2冷媒間熱交換器24へ流入するようになっている。また、第1中継機側バイパス配管28から第2冷媒間熱交換器24を介して流出した冷媒は、第1冷媒間熱交換器22へ流入する。このように、第1冷媒間熱交換器22及び第2冷媒間熱交換器24は、冷房運転時に液冷媒を過冷却して室内機30A、30B側に供給する。 The second inter-refrigerant heat exchanger 24 includes a refrigerant that flows from the first relay-side flow rate regulator 23 to the second distributor 27 and a second relay-side flow rate regulator 25 that flows through the first relay-side bypass pipe 28. Heat exchange is performed with the refrigerant in the downstream portion (the refrigerant that has passed through the second relay-side flow rate regulator 25). Here, the 1st relay machine side bypass piping 28 connects between the 2nd refrigerant | coolant heat exchanger 24 and the 2nd distribution part 27, the 2nd refrigerant | coolant heat exchanger 24 and a 2nd distribution part. A part of the refrigerant flowing between the refrigerant and the refrigerant flows into the second inter-refrigerant heat exchanger 24 via the first relay-side bypass pipe 28. Further, the refrigerant that has flowed out of the first relay-side bypass pipe 28 via the second inter-refrigerant heat exchanger 24 flows into the first inter-refrigerant heat exchanger 22. Thus, the 1st refrigerant | coolant heat exchanger 22 and the 2nd refrigerant | coolant heat exchanger 24 supercool a liquid refrigerant at the time of air_conditionaing | cooling operation, and supply it to indoor unit 30A, 30B side.
 第2中継機側流量調整器25は、例えば電子膨張弁等からなり、第1中継機側バイパス配管28を通過する冷媒の冷媒流量及び冷媒の圧力を調整する。第2中継機側流量調整器25の開度は、制御装置60により制御されている。 The second repeater side flow rate regulator 25 is composed of, for example, an electronic expansion valve and adjusts the refrigerant flow rate and the refrigerant pressure of the refrigerant passing through the first repeater side bypass pipe 28. The opening degree of the second relay-side flow rate regulator 25 is controlled by the control device 60.
 全冷房運転又は冷房主体運転の場合、中継機側気液分離器21から流出した冷媒は、第1冷媒間熱交換器22、第1中継機側流量調整器23、第2冷媒間熱交換器24を介して第2分配部27に流入する。一方、第2中継機側流量調整器25及び第1中継機側バイパス配管28を通過した冷媒は、第2冷媒間熱交換器24及び第1冷媒間熱交換器22において冷媒を過冷却し、第2主管3へ流れる。 In the case of the cooling only operation or the cooling main operation, the refrigerant flowing out from the relay-side gas-liquid separator 21 is the first inter-refrigerant heat exchanger 22, the first relay-side flow rate regulator 23, and the second inter-refrigerant heat exchanger. 24 flows into the second distribution part 27 via 24. On the other hand, the refrigerant that has passed through the second relay-side flow rate regulator 25 and the first relay-side bypass pipe 28 supercools the refrigerant in the second inter-refrigerant heat exchanger 24 and the first inter-refrigerant heat exchanger 22, It flows to the second main pipe 3.
 第1分配部26及び第2分配部27は、熱源機10から供給される冷媒を複数の室内機30A、30Bに分配するものである。第1分配部26は、室内機30A及び室内機30B毎にそれぞれ接続された暖房用開閉弁26a及び冷房用開閉弁26bを有している。暖房用開閉弁26aは気相配管21aに接続されており、冷房用開閉弁26bは第2主管3に接続されている。そして、室内機30A、30Bが冷房運転を行う場合、冷房用開閉弁26bが開放されて、室内機30A、30Bから第2主管3を介して熱源機10へ冷媒が流れる。このとき、暖房用開閉弁26aは閉止される。一方、室内機30A、30Bが暖房運転を行う場合、暖房用開閉弁26aが開放されて、気相配管21aから室内機30A、30Bへ冷媒が流れる。このとき、冷房用開閉弁26bは閉止される。 The first distribution unit 26 and the second distribution unit 27 distribute the refrigerant supplied from the heat source unit 10 to the plurality of indoor units 30A and 30B. The first distribution unit 26 includes a heating on / off valve 26a and a cooling on / off valve 26b connected to the indoor unit 30A and the indoor unit 30B, respectively. The heating on-off valve 26 a is connected to the gas phase pipe 21 a, and the cooling on-off valve 26 b is connected to the second main pipe 3. When the indoor units 30A and 30B perform the cooling operation, the cooling on-off valve 26b is opened, and the refrigerant flows from the indoor units 30A and 30B to the heat source unit 10 through the second main pipe 3. At this time, the heating on-off valve 26a is closed. On the other hand, when the indoor units 30A and 30B perform the heating operation, the heating on-off valve 26a is opened, and the refrigerant flows from the vapor phase pipe 21a to the indoor units 30A and 30B. At this time, the cooling on-off valve 26b is closed.
 なお、第1分配部26は、暖房用開閉弁26a及び冷房用開閉弁26bを有する場合について例示しているが、例えば室内機30A、30B毎にそれぞれ三方切替弁を設け、第2主管3もしくは気相配管21aとの接続を切り替えるようにしてもよい。 In addition, although the 1st distribution part 26 illustrated about the case where it has the heating on-off valve 26a and the cooling on-off valve 26b, for example, each of the indoor units 30A and 30B is provided with a three-way switching valve, and the second main pipe 3 or You may make it switch a connection with the gaseous-phase piping 21a.
 第2分配部27は、室内機30A及び室内機30B毎にそれぞれ接続された暖房用逆止弁27a及び冷房用逆止弁27bを有している。室内機30A、30Bが冷房運転を行う場合、第2冷媒間熱交換器24において過冷却された冷媒が冷房用逆止弁27bを介して室内機30A、30Bに流れる。一方、室内機30A、30Bが暖房運転を行う場合、室内機30A、30Bから流出した冷媒が暖房用逆止弁27aを介して第2中継機側バイパス配管29に流れる。ここで、第2中継機側バイパス配管29は、暖房用逆止弁27aと第1中継機側流量調整器23と第2冷媒間熱交換器24とを接続するものである。なお、第2分配部27は複数の逆止弁からなる場合について例示しているが、第1分配部26と同様、開閉弁からなっていてもよい。 The second distribution unit 27 has a heating check valve 27a and a cooling check valve 27b connected to the indoor unit 30A and the indoor unit 30B, respectively. When the indoor units 30A and 30B perform the cooling operation, the refrigerant supercooled in the second inter-refrigerant heat exchanger 24 flows to the indoor units 30A and 30B via the cooling check valve 27b. On the other hand, when the indoor units 30A and 30B perform the heating operation, the refrigerant that has flowed out of the indoor units 30A and 30B flows to the second repeater-side bypass pipe 29 via the heating check valve 27a. Here, the second relay-side bypass pipe 29 connects the heating check valve 27 a, the first relay-side flow rate regulator 23, and the second inter-refrigerant heat exchanger 24. In addition, although illustrated about the case where the 2nd distribution part 27 consists of a several check valve, it may consist of an on-off valve similarly to the 1st distribution part 26. FIG.
 さらに、冷房主体運転もしくは暖房主体運転時には、第2中継機側バイパス配管29には、暖房運転を行っている室内機30A、30Bから第2分配部27を介して流出した冷媒が流れる。そして、第2中継機側バイパス配管29を通過した一部又はすべての冷媒は、第2冷媒間熱交換器24及び第2分配部27を通過した後に、冷房運転を行っている室内機30A、30Bに流れる。一方、全暖房運転時には、暖房運転を行っている室内機30A、30Bから第2分配部27を介して流出した冷媒のすべてが第2中継機側流量調整器25、第1中継機側バイパス配管28を通過して第2主管3に流れる。 Furthermore, during the cooling main operation or the heating main operation, the refrigerant flowing out from the indoor units 30A and 30B performing the heating operation through the second distributor 27 flows in the second relay-side bypass pipe 29. Then, some or all of the refrigerant that has passed through the second relay-side bypass pipe 29 passes through the second inter-refrigerant heat exchanger 24 and the second distribution unit 27, and then performs the cooling operation of the indoor unit 30A. It flows to 30B. On the other hand, at the time of all heating operation, all of the refrigerant that has flowed out of the indoor units 30A and 30B that are performing the heating operation via the second distribution unit 27 is supplied to the second repeater side flow rate regulator 25 and the first repeater side bypass pipe. It passes through 28 and flows into the second main pipe 3.
 なお、第1分配部26及び第2分配部27は、2台の室内機30A、30Bが接続されているため、第1分配部26は2組の開閉弁及び逆止弁が設置されているが、室内機30A、30Bの設置台数に対応した数だけ設置されることになる。 Since the first distribution unit 26 and the second distribution unit 27 are connected to the two indoor units 30A and 30B, the first distribution unit 26 is provided with two sets of on-off valves and check valves. However, the number corresponding to the number of installed indoor units 30A and 30B is installed.
[室内機30A、30B]
 各室内機30A、30Bは、中継機20に互いに並列に接続されており、それぞれ利用側熱交換器31と、利用側熱交換器31に直列に接続された利用側流量調整器32とを有している。なお、図1において、各室内機30A、30Bは、利用側熱交換器31及び利用側流量調整器32が複数並列に接続されている場合について例示するが、各室内機30A、30Bは、1組以上の利用側熱交換器31及び利用側流量調整器32を有するものであればよい。
[ Indoor units 30A, 30B]
Each of the indoor units 30A and 30B is connected to the repeater 20 in parallel with each other and includes a use side heat exchanger 31 and a use side flow rate regulator 32 connected in series to the use side heat exchanger 31. is doing. In FIG. 1, each of the indoor units 30A and 30B is illustrated as an example in which a plurality of usage-side heat exchangers 31 and usage-side flow rate regulators 32 are connected in parallel. What is necessary is just to have the use side heat exchanger 31 and the use side flow regulator 32 more than a group.
 利用側熱交換器31は、図示しないファン等の室内送風機から送風される空気と中継機20から供給される冷媒との間で熱交換を行ない、室内空間に供給するための暖房用空気あるいは冷房用空気を生成する。利用側流量調整器32は、たとえば電子式膨張弁等の開度が可変に制御できるものからなり、冷房運転時に中継機20から供給される冷媒を減圧して膨張させて利用側熱交換器31に供給する。この利用側流量調整器32の開度は制御装置60により制御される。 The use-side heat exchanger 31 exchanges heat between air blown from an indoor fan such as a fan (not shown) and the refrigerant supplied from the relay machine 20 and supplies air to the indoor space for cooling or cooling. Produce air. The usage-side flow rate regulator 32 is configured such that the opening of an electronic expansion valve or the like can be variably controlled. For example, the usage-side heat exchanger 31 is decompressed by expanding the refrigerant supplied from the relay unit 20 during the cooling operation. To supply. The opening degree of the use side flow rate regulator 32 is controlled by the control device 60.
[制御装置60]
 上述した空気調和装置1の動作は制御装置60により制御されている。制御装置60は、例えばマイコンやコンピュータ等からなっており、例えば空気調和装置内外に設けられた各種検出器(センサ)、空気調和装置1の各機器(手段)から送信される信号に基づく判断処理等を行う。そして、制御装置60は、判断結果に基づいて各機器を動作させ、熱源機10、中継機20及び複数の室内機30A、30B等の空気調和装置1の全体の動作を統括制御する。なお、図1において、1つの制御装置60が熱源機10等とは別個独立して設けられている場合について例示しているが、これに限定されず、例えば熱源機10、中継機20もしくは複数の室内機30A、30B内に内蔵されたものでもよいし、制御装置60の機能が各機器に分散して設けられていてもよい。
[Control device 60]
The operation of the air conditioner 1 described above is controlled by the control device 60. The control device 60 includes, for example, a microcomputer, a computer, and the like. For example, determination processing based on signals transmitted from various detectors (sensors) provided inside and outside the air conditioner and each device (means) of the air conditioner 1. Etc. And the control apparatus 60 operates each apparatus based on a judgment result, and carries out overall control of the air conditioning apparatus 1 whole operation | movement, such as the heat source machine 10, the relay machine 20, and several indoor unit 30A, 30B. 1 illustrates a case where one control device 60 is provided separately and independently from the heat source device 10 or the like, but is not limited to this, and for example, the heat source device 10, the relay device 20, or a plurality of the devices. The indoor units 30A and 30B may be built in, or the functions of the control device 60 may be distributed among the devices.
 制御装置60は、各種センサにおいて検知された情報に基づいて空気調和装置1全体の動作を制御する。すなわち、熱源機10は、圧縮機から吐出される冷媒の温度を検知するサーミスタ等からなる圧縮機出口温度検知部51と、圧縮機11と流路切替器12との間に設けられ冷媒の圧力を検知する高圧圧力検知部52と、熱源機10に設けられ外気を検知する外気温度検知部53と、アキュムレータ14(圧縮機11の吸入側)に流入する冷媒の吸入側圧力(低圧圧力)を検知する吸入側圧力検知部54とを有する。そして、制御装置60は、後述するように各種センサからの情報に基づき、各種機器の制御を行う。 The control device 60 controls the operation of the entire air conditioner 1 based on information detected by various sensors. That is, the heat source device 10 is provided between the compressor outlet temperature detection unit 51 including a thermistor or the like that detects the temperature of the refrigerant discharged from the compressor, and the compressor 11 and the flow path switch 12. A high pressure detection unit 52 that detects the ambient temperature, an outside air temperature detection unit 53 that is provided in the heat source unit 10 to detect outside air, and a suction side pressure (low pressure) of refrigerant flowing into the accumulator 14 (suction side of the compressor 11). And a suction-side pressure detection unit 54 for detection. And the control apparatus 60 controls various apparatuses based on the information from various sensors so that it may mention later.
 また、中継機20は、第1冷媒間熱交換器22と第1中継機側流量調整器23との間を流れる冷媒の圧力を検知する第1中継機側圧力検出器55と、第1中継機側流量調整器23と第2冷媒間熱交換器24の間を流れる冷媒の圧力を検知する第2中継機側圧力検出器56と、第1冷媒間熱交換器22から第1主管2へ流れる冷媒の温度を検知する温度検知部57と、第2冷媒間熱交換器24との出口、すなわち、第2冷媒間熱交換器24の下流側を流れる冷媒の中間温度を検知する例えばサーミスタからなる中間温度検知部58とを有する。そして、制御装置60は、第1中継機側圧力検出器55において検知された第1中継機側圧力と、第2中継機側圧力検出器56において検知された第2中継機側圧力との差が目標中継機側圧力になるように制御する。 The relay 20 includes a first relay-side pressure detector 55 that detects the pressure of the refrigerant flowing between the first inter-refrigerant heat exchanger 22 and the first relay-side flow rate regulator 23, and a first relay. The second relay-side pressure detector 56 that detects the pressure of the refrigerant flowing between the machine-side flow rate regulator 23 and the second inter-refrigerant heat exchanger 24, and the first inter-refrigerant heat exchanger 22 to the first main pipe 2. From the temperature detector 57 that detects the temperature of the flowing refrigerant and the outlet of the second inter-refrigerant heat exchanger 24, that is, from the thermistor that detects the intermediate temperature of the refrigerant that flows downstream of the second inter-refrigerant heat exchanger 24, for example. And an intermediate temperature detector 58. Then, the control device 60 determines the difference between the first repeater side pressure detected by the first repeater side pressure detector 55 and the second repeater side pressure detected by the second repeater side pressure detector 56. Is controlled to become the target repeater side pressure.
 なお、圧縮機出口温度検知部51、高圧圧力検知部52、外気温度検知部53、吸入側圧力検知部54、第1中継機側圧力検出器55、第2中継機側圧力検出器56、温度検知部57、中間温度検知部58等の各種センサは、測定結果をそのまま制御装置60に伝送してもよいし、一定期間測定結果を蓄積後に蓄積した測定結果を所定の周期間隔で制御装置60に伝送してもよい。 The compressor outlet temperature detector 51, the high pressure detector 52, the outside air temperature detector 53, the suction side pressure detector 54, the first repeater side pressure detector 55, the second repeater side pressure detector 56, the temperature Various sensors such as the detection unit 57 and the intermediate temperature detection unit 58 may transmit the measurement results as they are to the control device 60, or the measurement results accumulated after the accumulation of the measurement results for a certain period of time may be transmitted at predetermined intervals. May be transmitted.
 上述のように、空気調和装置1は、流路切替器12及び第1分配部26の開閉により、全冷房運転、全暖房運転、冷暖同時運転(冷房主体運転及び暖房主体運転)の4つの形態(モード)のいずれかによる運転を行うことができる。熱源側熱交換器13は、全冷房運転時及び冷房主体運転時には凝縮器として機能し、全暖房運転時及び暖房主体運転時には蒸発器として機能する。以下に、冷暖同時運転時(冷房主体運転及び暖房主体運転)における空気調和装置1の動作例及び冷媒の流れについて説明する。 As described above, the air-conditioning apparatus 1 has four forms of a cooling only operation, a heating only operation, and a cooling / heating simultaneous operation (cooling main operation and heating main operation) by opening and closing the flow path switch 12 and the first distribution unit 26. (Mode) can be operated. The heat source side heat exchanger 13 functions as a condenser during the cooling only operation and the cooling main operation, and functions as an evaporator during the heating only operation and the heating main operation. Hereinafter, an operation example of the air-conditioning apparatus 1 and the flow of the refrigerant during the simultaneous cooling and heating operation (cooling main operation and heating main operation) will be described.
[冷房主体運転]
 図2は、図1の空気調和装置において、冷房主体の冷暖房同時運転が行われた際の冷媒の流れを示す冷媒回路図である。なお、図2において、室内機30Aが暖房運転を行い、室内機30Bが冷房運転を行う冷暖房同時運転であって、冷房負荷が暖房負荷よりも高い冷房主体運転が行われる場合について例示する。また、図2において、冷媒の流れを矢印で示し、逆止弁及び開閉弁のうち、冷媒が流通しない部位を黒塗りで示し、冷媒が流通する部位を白塗りで示す。図2の冷房主体運転の場合、制御装置60は、暖房運転を行う室内機30A側の暖房用開閉弁26aを開放し冷房用開閉弁26bを閉止する。また、制御装置60は、冷房運転を行う室内機30Bの暖房用開閉弁26aを閉止し冷房用開閉弁26bを開放する。
[Cooling operation]
FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the cooling-heating simultaneous operation mainly performed by the cooling is performed in the air-conditioning apparatus of FIG. In FIG. 2, the case where the indoor unit 30 </ b> A performs the heating operation and the indoor unit 30 </ b> B performs the cooling / heating simultaneous operation in which the cooling load is higher than the heating load is performed. In FIG. 2, the flow of the refrigerant is indicated by an arrow, and among the check valve and the on-off valve, a portion where the refrigerant does not flow is indicated by black, and a portion where the refrigerant flows is indicated by white. In the cooling main operation of FIG. 2, the control device 60 opens the heating on-off valve 26a on the side of the indoor unit 30A that performs the heating operation, and closes the cooling on-off valve 26b. Further, the control device 60 closes the heating on-off valve 26a of the indoor unit 30B that performs the cooling operation, and opens the cooling on-off valve 26b.
 圧縮機11において圧縮され吐出された高温高圧のガス冷媒は、流路切替器12を経て、熱源側熱交換器13へ流入する。高温高圧のガス冷媒は、熱源側熱交換器13において空気等の熱源媒体と熱交換し、熱交換した高温高圧のガス冷媒は、気液二相状態の高温高圧の冷媒になる。気液二相状態の高温高圧の冷媒は、逆止弁15aを経て、第2主管3を通過し、中継機20の中継機側気液分離器21へ供給される。なお、第1主管2は低圧であり、第2主管3は高圧であるため、両者の圧力差により、冷媒は逆止弁15aと逆止弁15bとへ流通し、逆止弁15cへ冷媒は流通しない。 The high-temperature and high-pressure gas refrigerant compressed and discharged in the compressor 11 flows into the heat source side heat exchanger 13 through the flow path switch 12. The high-temperature and high-pressure gas refrigerant exchanges heat with a heat source medium such as air in the heat source side heat exchanger 13, and the high-temperature and high-pressure gas refrigerant subjected to heat exchange becomes a high-temperature and high-pressure refrigerant in a gas-liquid two-phase state. The high-temperature and high-pressure refrigerant in the gas-liquid two-phase state passes through the second main pipe 3 through the check valve 15 a and is supplied to the relay-side gas-liquid separator 21 of the relay machine 20. Since the first main pipe 2 has a low pressure and the second main pipe 3 has a high pressure, the refrigerant flows to the check valve 15a and the check valve 15b due to the pressure difference between the two, and the refrigerant flows to the check valve 15c. Not distributed.
 中継機側気液分離器21において、気液二相の高温高圧の冷媒は、ガス状冷媒と液冷媒とに分離され、分離されたガス状冷媒は第1分配部26へ流入する。第1分配部26へ流入したガス状冷媒は、暖房用開閉弁26aを経て、暖房運転が設定されている室内機30Bへ供給される。室内機30Bの利用側熱交換器31において、冷媒は空気等の利用媒体と熱交換を行い暖房が行われるとともに、供給されたガス状冷媒が凝縮して液化する。その後、利用側熱交換器31で凝縮液化された液冷媒は利用側流量調整器32により減圧され、高圧と低圧との中間の圧力である中間圧の冷媒になる。中間圧になった冷媒は、第2分配部27に流入する。第2分配部27に流入した冷媒は暖房用逆止弁27a側を通り、第2中継バイパス配管を介して第2冷媒間熱交換器24に流入する。 In the relay-side gas-liquid separator 21, the gas-liquid two-phase high-temperature and high-pressure refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant flows into the first distribution unit 26. The gaseous refrigerant that has flowed into the first distribution unit 26 is supplied to the indoor unit 30B in which the heating operation is set via the heating on-off valve 26a. In the use side heat exchanger 31 of the indoor unit 30B, the refrigerant exchanges heat with a use medium such as air to perform heating, and the supplied gaseous refrigerant condenses and liquefies. Thereafter, the liquid refrigerant condensed and liquefied by the use side heat exchanger 31 is reduced in pressure by the use side flow rate regulator 32 to become an intermediate pressure refrigerant that is an intermediate pressure between the high pressure and the low pressure. The refrigerant that has reached the intermediate pressure flows into the second distributor 27. The refrigerant flowing into the second distribution unit 27 passes through the heating check valve 27a side and flows into the second inter-refrigerant heat exchanger 24 through the second relay bypass pipe.
 一方、中継機側気液分離器21で分離された液冷媒は、第1冷媒間熱交換器22、第1中継機側流量調整器23を流れ、室内機30Aから流出した冷媒と合流する。合流した冷媒は、第2分配部27に流入し、室内機30B側の冷房用逆止弁27bから室内機30Bへ流入する。室内機30Bに流入した液冷媒は、利用側流量調整器32を用いて低圧まで減圧された状態で、室内機30Aの利用側熱交換器31に供給される。利用側熱交換器31に供給された液冷媒は、空気等の利用媒体と熱交換することで、蒸発してガス化する。 On the other hand, the liquid refrigerant separated by the relay-side gas-liquid separator 21 flows through the first inter-refrigerant heat exchanger 22 and the first relay-side flow rate adjuster 23, and merges with the refrigerant flowing out from the indoor unit 30A. The merged refrigerant flows into the second distribution unit 27 and flows into the indoor unit 30B from the cooling check valve 27b on the indoor unit 30B side. The liquid refrigerant that has flowed into the indoor unit 30B is supplied to the use-side heat exchanger 31 of the indoor unit 30A in a state where the refrigerant is decompressed to a low pressure using the use-side flow rate regulator 32. The liquid refrigerant supplied to the use side heat exchanger 31 is evaporated and gasified by exchanging heat with a use medium such as air.
 ガス化した冷媒は、第2枝管5を介して第1分配部26へ流入し、冷房用開閉弁26bから第2主管3を介して熱源機10内に流入する。ガス冷媒は、逆止弁16よりも低圧の逆止弁15b側へ流入し、流路切替器12、アキュムレータ14を経て、圧縮機11へ吸入される。このような動作で、冷凍サイクルが形成され、冷房主体運転が行われる。 The gasified refrigerant flows into the first distributor 26 through the second branch pipe 5 and flows into the heat source apparatus 10 from the cooling on-off valve 26b through the second main pipe 3. The gas refrigerant flows into the check valve 15 b that is lower in pressure than the check valve 16, and is sucked into the compressor 11 through the flow path switch 12 and the accumulator 14. With such an operation, a refrigeration cycle is formed and a cooling main operation is performed.
 ここで、第1冷媒間熱交換器22及び第2冷媒間熱交換器24における冷媒の流れについて説明する。第2冷媒間熱交換器24から第1中継機側バイパス配管28に分岐した冷媒は、第2中継機側流量調整器25を通過し、第2冷媒間熱交換器24、第1冷媒間熱交換器22において、中継機側気液分離器21から流れる冷媒を過冷却し、第1主管2に流れる。このとき、第2中継機側流量調整器25に流入した液冷媒は低圧まで減圧されて、蒸発温度が下げられる。蒸発温度が下がった液冷媒は、第1中継機側バイパス配管28を介して第2冷媒間熱交換器24に流入する。第2冷媒間熱交換器24において、第1中継機側流量調整器23から供給される液冷媒と熱交換され気液二相状態の冷媒になり、第1冷媒間熱交換器22へ流入する。 Here, the flow of the refrigerant in the first inter-refrigerant heat exchanger 22 and the second inter-refrigerant heat exchanger 24 will be described. The refrigerant branched from the second inter-refrigerant heat exchanger 24 to the first repeater-side bypass pipe 28 passes through the second repeater-side flow rate regulator 25, and the second inter-refrigerant heat exchanger 24, the first inter-refrigerant heat. In the exchanger 22, the refrigerant flowing from the relay-side gas-liquid separator 21 is supercooled and flows to the first main pipe 2. At this time, the liquid refrigerant that has flowed into the second relay-side flow rate regulator 25 is depressurized to a low pressure, and the evaporation temperature is lowered. The liquid refrigerant whose evaporation temperature has decreased flows into the second inter-refrigerant heat exchanger 24 via the first relay-side bypass pipe 28. In the second inter-refrigerant heat exchanger 24, heat is exchanged with the liquid refrigerant supplied from the first relay-side flow rate regulator 23 to become a gas-liquid two-phase refrigerant, which flows into the first inter-refrigerant heat exchanger 22. .
 第1冷媒間熱交換器22においては、中継機側気液分離器21から供給される高温高圧の液冷媒と熱交換することで、ガス冷媒となって、第1主管2へ流入する。第2中継機側流量調整器25の開度が大きく、第1中継機側バイパス配管28を流れる冷媒(過冷却に用いる冷媒)の量が多くなると、蒸発されない冷媒が多くなり過ぎる。このため、制御装置60は、第1中継機側圧力検出器55と第2中継機側圧力検出器56との圧力差が所定値になるように、第1中継機側流量調整器23の出口での冷媒の過熱度を第2中継機側流量調整器25で制御する。このように、過冷却された冷媒が第2分配部27側に流れることにより、冷媒入口側(ここでは、第1枝管4側)のエンタルピを小さくし、利用側熱交換器31において、空気との熱交換量を大きくすることができる。 In the first inter-refrigerant heat exchanger 22, heat exchange with the high-temperature and high-pressure liquid refrigerant supplied from the relay-side gas-liquid separator 21 results in a gas refrigerant that flows into the first main pipe 2. When the opening degree of the second repeater side flow rate regulator 25 is large and the amount of refrigerant (refrigerant used for supercooling) flowing through the first repeater side bypass pipe 28 increases, the amount of refrigerant that is not evaporated increases too much. For this reason, the control device 60 outputs the outlet of the first repeater-side flow rate regulator 23 so that the pressure difference between the first repeater-side pressure detector 55 and the second repeater-side pressure detector 56 becomes a predetermined value. The superheat degree of the refrigerant at the second relay machine side flow controller 25 is controlled. Thus, the supercooled refrigerant flows to the second distribution unit 27 side, thereby reducing the enthalpy on the refrigerant inlet side (here, the first branch pipe 4 side), and in the utilization side heat exchanger 31, The amount of heat exchange with can be increased.
[暖房主体運転]
 図3は、図1の空気調和装置において、暖房主体の冷暖房同時運転が行われた際の冷媒の流れを示す冷媒回路図である。なお、図3において、室内機30Aが暖房運転を行い、室内機30Bが冷房運転を行う冷暖房同時運転であって、冷房負荷が暖房負荷よりも高い冷房主体運転が行われる場合について例示する。また、図2において、逆止弁及び開閉弁のうち、冷媒が流通しない部位を黒塗りで示し、冷媒が流通する部位を白塗りで示す。図2の冷房主体運転の場合、制御装置60は、室内機30A側において暖房用開閉弁26aを開放し冷房用開閉弁26bを閉止する。また、制御装置60は、室内機30B側の暖房用開閉弁26aを閉止し冷房用開閉弁26bを開放する。さらに、図3において、容量制御弁41のうち、上段側制御弁41aが閉止し下段側制御弁41bが開放された状態になっており、上段側熱交換部13aには冷媒が流通しないようになっている。
[Heating-based operation]
FIG. 3 is a refrigerant circuit diagram illustrating the flow of refrigerant when the heating / cooling simultaneous heating / cooling simultaneous operation is performed in the air conditioning apparatus of FIG. 1. In addition, in FIG. 3, the case where the indoor unit 30A performs the heating operation and the indoor unit 30B performs the cooling / heating simultaneous operation in which the cooling load is higher than the heating load is performed. Moreover, in FIG. 2, the site | part which a refrigerant | coolant does not distribute | circulate among the check valve and the on-off valve is shown in black, and the part through which the refrigerant circulates is shown in white. In the cooling main operation of FIG. 2, the control device 60 opens the heating on-off valve 26a and closes the cooling on-off valve 26b on the indoor unit 30A side. Further, the control device 60 closes the heating on-off valve 26a on the indoor unit 30B side and opens the cooling on-off valve 26b. Furthermore, in FIG. 3, among the capacity control valves 41, the upper control valve 41a is closed and the lower control valve 41b is opened, so that no refrigerant flows through the upper heat exchange section 13a. It has become.
 まず、圧縮機11において圧縮され吐出された高温高圧のガス冷媒は、流路切替器12及び逆止弁15cを経て、第2主管3を通過し、中継機20の中継機側気液分離器21へ供給される。このとき、第1主管2は低圧であり、第2主管3は高圧である。よって、両者の圧力差のため、逆止弁15cへ冷媒は流通し、逆止弁15aと、逆止弁15bへ冷媒は流通しない。 First, the high-temperature and high-pressure gas refrigerant compressed and discharged in the compressor 11 passes through the second main pipe 3 via the flow path switch 12 and the check valve 15c, and then the relay-side gas-liquid separator of the relay 20 21. At this time, the first main pipe 2 has a low pressure, and the second main pipe 3 has a high pressure. Therefore, due to the pressure difference between them, the refrigerant flows through the check valve 15c, and the refrigerant does not flow through the check valve 15a and the check valve 15b.
 中継機側気液分離器21に流入した高温高圧のガス冷媒は、気相配管21aを介して第1分配部26へ供給される。第1分配部26へ供給されたガス冷媒は、室内機30A側の暖房用開閉弁26aに流入し、第2枝管5を経て、暖房運転が設定されている室内機30Aへ供給される。 The high-temperature and high-pressure gas refrigerant that has flowed into the relay-side gas-liquid separator 21 is supplied to the first distributor 26 via the gas-phase pipe 21a. The gas refrigerant supplied to the first distribution unit 26 flows into the heating on-off valve 26a on the indoor unit 30A side, and is supplied to the indoor unit 30A in which the heating operation is set through the second branch pipe 5.
 室内機30Aにおいて、冷媒は利用側熱交換器31により空気等の利用媒体と熱交換を行い、供給されたガス冷媒が凝縮して液化する。この際、利用側流量調整器32の開度は利用側熱交換器31の出口の過冷却度に基づいて制御される。利用側熱交換器31において凝縮液化された液冷媒は、利用側流量調整器32において減圧され、高圧と低圧との中間の圧力である中間圧の液冷媒になる。中間圧の液冷媒は、第2分配部27に流入される。 In the indoor unit 30A, the refrigerant exchanges heat with a utilization medium such as air by the utilization side heat exchanger 31, and the supplied gas refrigerant is condensed and liquefied. At this time, the opening degree of the use side flow rate regulator 32 is controlled based on the degree of supercooling at the outlet of the use side heat exchanger 31. The liquid refrigerant condensed and liquefied in the usage-side heat exchanger 31 is reduced in pressure in the usage-side flow rate regulator 32 to become an intermediate-pressure liquid refrigerant that is an intermediate pressure between the high pressure and the low pressure. The intermediate-pressure liquid refrigerant flows into the second distribution unit 27.
 第2分配部27に流入した液冷媒は、第2中継機側バイパス配管29を通り中継機側気液分離器21において分離された液冷媒と合流する。その後、液冷媒は、第2冷媒間熱交換器24を通過し、第2分配部27に流入する。このとき、液冷媒は、第2冷媒間熱交換器24を通過した後に、第1中継機側バイパス配管28へ分岐し、再び第2冷媒間熱交換器24に流入する。第2冷媒間熱交換器24では、中間圧の液冷媒と、低圧の液冷媒とが熱交換され、低圧の液冷媒は蒸発温度が低いので、ガス冷媒となって第1主管2へ流入する。 The liquid refrigerant that has flowed into the second distributor 27 passes through the second repeater-side bypass pipe 29 and merges with the liquid refrigerant separated in the repeater-side gas-liquid separator 21. Thereafter, the liquid refrigerant passes through the second inter-refrigerant heat exchanger 24 and flows into the second distribution unit 27. At this time, the liquid refrigerant passes through the second inter-refrigerant heat exchanger 24, then branches to the first relay-side bypass pipe 28, and flows into the second inter-refrigerant heat exchanger 24 again. In the second inter-refrigerant heat exchanger 24, heat exchange is performed between the intermediate-pressure liquid refrigerant and the low-pressure liquid refrigerant, and the low-pressure liquid refrigerant has a low evaporation temperature, and thus flows into the first main pipe 2 as a gas refrigerant. .
 第2分配部27に流入した中間圧の液冷媒は、室内機30Bに接続されている冷房用逆止弁27bを経て室内機30Bに流入する。室内機30Bに流入した液冷媒は、室内機30Bの利用側熱交換器31の出口の過熱度に応じて制御される利用側流量調整器32を用いて低圧まで減圧されて蒸発温度が低い状態で、利用側熱交換器31に供給される。利用側熱交換器31では、供給された蒸発温度の低い液冷媒は、空気等の利用媒体と熱交換することで、蒸発してガス化する。ガス冷媒となった冷媒は、第1主管2を通過し、第1分配部26へ流入する。第1分配部26に流入したガス冷媒は、室内機30Bと接続された冷房用開閉弁26bを通過し、第1主管2へ流入する。 The intermediate-pressure liquid refrigerant that has flowed into the second distributor 27 flows into the indoor unit 30B via the cooling check valve 27b connected to the indoor unit 30B. The liquid refrigerant that has flowed into the indoor unit 30B is reduced in pressure to a low pressure by using the use-side flow rate regulator 32 controlled according to the degree of superheat at the outlet of the use-side heat exchanger 31 of the indoor unit 30B, and the evaporation temperature is low. Then, it is supplied to the use side heat exchanger 31. In the use-side heat exchanger 31, the supplied liquid refrigerant having a low evaporation temperature is evaporated and gasified by exchanging heat with a use medium such as air. The refrigerant that has become the gas refrigerant passes through the first main pipe 2 and flows into the first distribution unit 26. The gas refrigerant that has flowed into the first distributor 26 passes through the cooling on-off valve 26b connected to the indoor unit 30B and flows into the first main pipe 2.
 第1主管2へ流入したガス冷媒は、逆止弁15bよりも低圧の熱源側気液分離器42へ流入する。そして、ガス冷媒は、熱源側気液分離器42において第1分岐配管43a、第2分岐配管43b及び第3分岐配管43cのそれぞれに分岐する。第1分岐配管43aへ分岐した冷媒は、逆止弁16及び下段側制御弁41bを通り、下段側熱交換部13bに流入して熱交換が行われる。第2分岐配管43bへ分岐した冷媒は、流量制御装置44を経て下段側熱交換部13bへ流入して熱交換が行われる。開閉弁45が開放されている場合、第3分岐配管43cへ分岐したガス冷媒はアキュムレータ14へ流入する。その後、熱交換された冷媒は、逆止弁47及び流路切替器12を介してアキュムレータ14へ流入する。次に、アキュムレータ14を経て、圧縮機11へ吸入される。このような動作で、冷凍サイクルが形成され、暖房主体運転が行われる。 The gas refrigerant that has flowed into the first main pipe 2 flows into the heat source side gas-liquid separator 42 having a lower pressure than the check valve 15b. Then, the gas refrigerant branches into the first branch pipe 43a, the second branch pipe 43b, and the third branch pipe 43c in the heat source side gas-liquid separator 42. The refrigerant branched to the first branch pipe 43a passes through the check valve 16 and the lower control valve 41b, flows into the lower heat exchange section 13b, and performs heat exchange. The refrigerant branched to the second branch pipe 43b flows into the lower heat exchange section 13b through the flow rate control device 44 and heat exchange is performed. When the on-off valve 45 is opened, the gas refrigerant branched to the third branch pipe 43 c flows into the accumulator 14. Thereafter, the heat-exchanged refrigerant flows into the accumulator 14 via the check valve 47 and the flow path switch 12. Next, the air is sucked into the compressor 11 through the accumulator 14. With such an operation, a refrigeration cycle is formed, and a heating main operation is performed.
 なお、空気調和装置1の運転モードとして、図2の冷房主体運転と図3の暖房主体運転について例示しているが、すべての室内機30A、30Bが冷房運転を行う全冷房運転及び全ての室内機30Bが暖房運転を行う全暖房運転も行うことができる。全冷房運転の場合、熱源機10における冷媒流路は図2の冷媒流路と同様である。但し、中継機20において、図2のように冷媒が暖房運転を行う室内機30A側から冷房運転を行う室内機30B側へ流れるのではなく、中継機側気液分離器21から流れる液冷媒が室内機30A、30Bの双方へ流れることになる。また、全暖房運転の場合、熱源機10における冷媒流路は図3の冷媒流路と同様である。但し、中継機20において、図3のように冷媒が暖房運転を行う室内機30A側から冷房運転を行う室内機30B側へ流れるのではなく、中継機側気液分離器21から流れるガス冷媒が室内機30A、30Bの双方へ流れる。 In addition, although the cooling main operation of FIG. 2 and the heating main operation of FIG. 3 are illustrated as the operation modes of the air conditioner 1, all the indoor units 30A and 30B perform the cooling operation and all the indoor operations. The all-heating operation in which the machine 30B performs the heating operation can also be performed. In the case of the cooling only operation, the refrigerant flow path in the heat source apparatus 10 is the same as the refrigerant flow path of FIG. However, in the relay machine 20, the refrigerant does not flow from the indoor unit 30A side in the heating operation to the indoor unit 30B side in the cooling operation as shown in FIG. It will flow to both indoor units 30A and 30B. Further, in the case of the heating only operation, the refrigerant flow path in the heat source device 10 is the same as the refrigerant flow path of FIG. However, in the relay machine 20, the refrigerant does not flow from the indoor unit 30A side in the heating operation to the indoor unit 30B side in the cooling operation as shown in FIG. It flows to both indoor units 30A and 30B.
 ここで、制御装置60は、運転モードに応じて、熱源機10の容量制御弁41、流量制御装置44及び開閉弁45の動作を制御する機能を有する。具体的には、制御装置60は、全暖房運転時において、上段側熱交換部13aと下段側熱交換部13bとに流れる冷媒流量の比が設定比になるように、流量制御装置44の開度を制御する。例えば上段側熱交換部13a及び下段側熱交換部13bの設定された冷媒流量比とは、上段側熱交換部13a:下段側熱交換部13b=8.5~9.5:5である。このとき、制御装置60には、設定比になるような設定開度が予め記憶されており、制御装置60は、全暖房運転が行われる場合には、流量制御装置44の開度を設定開度に固定する。これにより、空気調和装置1全体として高い暖房性能を維持することができる。 Here, the control device 60 has a function of controlling the operations of the capacity control valve 41, the flow rate control device 44, and the on-off valve 45 of the heat source unit 10 according to the operation mode. Specifically, the control device 60 opens the flow rate control device 44 so that the ratio of the refrigerant flow rate flowing through the upper stage heat exchange unit 13a and the lower stage heat exchange unit 13b becomes a set ratio during the heating operation. Control the degree. For example, the set refrigerant flow rate ratio of the upper stage heat exchange section 13a and the lower stage heat exchange section 13b is upper stage heat exchange section 13a: lower stage heat exchange section 13b = 8.5 to 9.5: 5. At this time, the control device 60 stores in advance a set opening degree that can be a setting ratio, and the control device 60 sets the opening degree of the flow rate control device 44 when the heating operation is performed. Fix in degrees. Thereby, high heating performance can be maintained as the air conditioning apparatus 1 as a whole.
 図4は、図1の空気調和装置において全暖房運転が行われた場合の流量調整器と暖房性能との関係を示すグラフである。図4に示すように、熱源側熱交換器13が蒸発器として機能する全暖房運転時において、流量制御装置44が所定の開度VPp以上にした場合、下段側熱交換部13bに流入する冷媒量が多くなる。このため、下段側熱交換部13bの熱交換量が不足し、アキュムレータ14へ液バックがなされることにより圧縮機11の吸入側圧力が低下し、暖房性能が低下してしまう。そこで、全暖房運転時には、下段側熱交換部13bに流れる冷媒量が上述した設定比を満たすように、流量制御装置44の開度が設定開度に固定される。すると、下段側熱交換部13bに流れる冷媒流量が制限され、その結果上段側熱交換部13aへの冷媒流量が増加する。これにより、上段側熱交換部13a及び下段側熱交換部13bに最適な冷媒分配を行うことができる。 FIG. 4 is a graph showing the relationship between the flow rate regulator and the heating performance when the all-heating operation is performed in the air conditioner of FIG. As shown in FIG. 4, when the flow rate control device 44 is set to a predetermined opening VPp or more in the heating only operation in which the heat source side heat exchanger 13 functions as an evaporator, the refrigerant flows into the lower stage heat exchange portion 13 b. The amount increases. For this reason, the amount of heat exchange in the lower stage side heat exchanging portion 13b is insufficient, and liquid back is made to the accumulator 14, whereby the suction side pressure of the compressor 11 is lowered and the heating performance is lowered. Therefore, during the heating only operation, the opening degree of the flow rate control device 44 is fixed to the set opening degree so that the amount of refrigerant flowing through the lower heat exchange section 13b satisfies the set ratio described above. Then, the flow rate of the refrigerant flowing through the lower stage side heat exchange unit 13b is limited, and as a result, the refrigerant flow rate to the upper stage side heat exchange unit 13a is increased. Thereby, optimal refrigerant | coolant distribution can be performed to the upper stage side heat exchange part 13a and the lower stage side heat exchange part 13b.
 また、制御装置60は、図2及び図3に示す冷暖同時運転時において、複数の室内機における冷房運転と暖房運転との運転比率と、外気温度検知部53において検知された外気温度と、吸入側圧力検知部54において検知された吸入側圧力とに基づいて、流量制御装置44の開度を制御する機能を有する。 In addition, the control device 60 performs the operation ratio between the cooling operation and the heating operation in the plurality of indoor units, the outside air temperature detected by the outside air temperature detection unit 53, and the intake air during the simultaneous cooling and heating operation illustrated in FIGS. Based on the suction side pressure detected by the side pressure detector 54, the opening degree of the flow rate control device 44 is controlled.
 図5は図2及び図3の空気調和装置の冷暖房同時運転時における流量制御装置の動作例を示すフローチャートである。図5に示すように、具体的には、制御装置60は、冷暖同時運転の開始時において流量制御装置44の開度を予め設定された初期開度に固定するように制御する(ステップST1)。その後、制御装置60は、暖房負荷が冷房負荷以上であるか、外気温度検知部53により検知された外気温度が外気温度閾値(例えば5deg)よりも低いか、吸入側圧力検知部54により検知された吸入側圧力が圧力閾値(例えば0.7MPa)より小さいかを判定する(ステップST2~ST4)。さらに、中間温度検知部58により検知された中間温度が中間温度閾値(例えば4deg)より小さいかを判定する(ステップST5)。なお、ステップST2~ST5の判定の順序は図5に示す順序で行う必要はなく、どのような順序で行ってもよい。 FIG. 5 is a flowchart showing an example of the operation of the flow control device during the simultaneous cooling and heating operation of the air conditioner of FIGS. As shown in FIG. 5, specifically, the control device 60 performs control so that the opening degree of the flow control device 44 is fixed to a preset initial opening degree at the start of the simultaneous cooling and heating operation (step ST1). . Thereafter, the control device 60 detects whether the heating load is equal to or higher than the cooling load, whether the outside air temperature detected by the outside air temperature detection unit 53 is lower than an outside air temperature threshold (for example, 5 deg), or is detected by the suction side pressure detection unit 54. It is determined whether the suction side pressure is smaller than a pressure threshold (for example, 0.7 MPa) (steps ST2 to ST4). Further, it is determined whether the intermediate temperature detected by the intermediate temperature detection unit 58 is smaller than an intermediate temperature threshold (for example, 4 deg) (step ST5). Note that the order of determination in steps ST2 to ST5 need not be in the order shown in FIG. 5, and may be in any order.
 そして、ステップST2~ST5のすべての条件が満たされている場合、冷房運転している室内機30Bの蒸発温度が所定値以下となり、冷房運転を継続できなくなる。そこで、制御装置60は、各流量制御装置44の開度の固定を解除し、流量制御装置44の開度を可変に制御する。この際、冷房運転を行っている室内機30Bの蒸発温度が所定値以下とならないように流量制御装置44を調整する。なお、蒸発温度は利用側熱交換器31に流れる冷媒の温度を検知する蒸発温度検知部59により検知される。これにより、室内機30A、30Bの冷暖房同時運転を維持することができる。すなわち、冷房主体運転(暖房負荷<冷房負荷)が行われている場合には流量制御装置44の開度は設定開度に固定され、暖房主体運転(暖房負荷>冷房負荷)が行われる場合には上記所定の条件を満たしたときに、流量制御装置44の開度は可変に制御される。 When all the conditions of steps ST2 to ST5 are satisfied, the evaporating temperature of the indoor unit 30B that is performing the cooling operation becomes a predetermined value or less, and the cooling operation cannot be continued. Therefore, the control device 60 releases the fixed opening of each flow control device 44 and controls the opening of the flow control device 44 variably. At this time, the flow control device 44 is adjusted so that the evaporation temperature of the indoor unit 30B performing the cooling operation does not become a predetermined value or less. The evaporating temperature is detected by an evaporating temperature detecting unit 59 that detects the temperature of the refrigerant flowing in the use side heat exchanger 31. Thereby, the simultaneous cooling and heating operation of the indoor units 30A and 30B can be maintained. That is, when the cooling main operation (heating load <cooling load) is performed, the opening degree of the flow rate control device 44 is fixed to the set opening degree, and when the heating main operation (heating load> cooling load) is performed. When the predetermined condition is satisfied, the opening degree of the flow control device 44 is variably controlled.
 さらに、図1~図3の制御装置60は、全冷房運転時において、熱源側熱交換器13の容量及び圧縮機出口過熱度に基づき、開閉弁45の動作を制御する機能を有している。具体的には、制御装置60は、圧縮機出口温度検知部51において検知された圧縮機出口温度と、高圧圧力検知部52において検知された高圧圧力とに基づき、圧縮機出口過熱度を算出する。そして、制御装置60は、容量制御弁41のうち下段側制御弁41bが開放しており、圧縮機の出口過熱度TdSHが設定出口過熱度SHref(例えば20deg)以上である場合、開閉弁45を開放する。 1 to 3 has a function of controlling the operation of the on-off valve 45 based on the capacity of the heat source side heat exchanger 13 and the degree of superheat of the compressor outlet during the cooling only operation. . Specifically, the control device 60 calculates the degree of superheat of the compressor outlet based on the compressor outlet temperature detected by the compressor outlet temperature detector 51 and the high pressure detected by the high pressure detector 52. . When the lower control valve 41b of the capacity control valve 41 is open and the outlet superheat degree TdSH of the compressor is equal to or higher than the set outlet superheat degree SHref (for example, 20 deg), the control device 60 opens the on-off valve 45. Open.
 図6は、図1の空気調和装置が冷房運転を行っている際の開閉弁の動作例を示すフローチャートである。なお、全冷房運転開始時において、開閉弁45は閉止しているものとする。図6に示すように、全冷房運転開始時において、制御装置60は、下段側制御弁41bが閉止しているか否かを判定する(ステップST11)。下段側制御弁41bが閉止している場合(ステップST11のYES)、流量制御装置44が所定開度に固定されるように制御する(ステップST12)。すると、第1分岐配管側から下段側熱交換部13bに所定量の冷媒が流入し、下段側熱交換部13b内に存在する冷媒がアキュムレータ14に戻される。 FIG. 6 is a flowchart showing an operation example of the on-off valve when the air-conditioning apparatus of FIG. 1 is performing the cooling operation. It is assumed that the opening / closing valve 45 is closed at the start of the cooling only operation. As shown in FIG. 6, at the start of the cooling only operation, the control device 60 determines whether or not the lower control valve 41b is closed (step ST11). When the lower control valve 41b is closed (YES in step ST11), control is performed so that the flow rate control device 44 is fixed at a predetermined opening (step ST12). Then, a predetermined amount of refrigerant flows from the first branch pipe side into the lower heat exchange section 13b, and the refrigerant present in the lower heat exchange section 13b is returned to the accumulator 14.
 一方、下段側制御弁41bが開放している場合(ステップST11のNO)、圧縮機11の出口過熱度TdSHが設定出口過熱度SHref以上であるかが判定される(ステップST14)。出口過熱度TdSHが設定出口過熱度SHref以上である場合(ステップST14のYES)、開閉弁45が開放される(ステップST15)。すると、中継機20からアキュムレータ14へ向かって流れる冷媒の一部が、第3分岐配管43c、熱源側気液分離器42、第2分岐配管43b及び流量制御装置44を経て下段側熱交換部13bに流入する。これにより、配管による低圧圧力損失を低下させることができ、室内機30A、30B(蒸発器)の蒸発温度が上昇し、冷房性能を高く維持できる。一方、出口過熱度TdSHが設定出口過熱度SHref未満である場合、開閉弁45が閉止される(ステップST16)。これにより、下段側制御弁41bが開いたとき、下段側熱交換部13bにガス冷媒が流入しても冷媒が液膨張することを防止できる。 On the other hand, if the lower control valve 41b is open (NO in step ST11), it is determined whether the outlet superheat degree TdSH of the compressor 11 is equal to or higher than the set outlet superheat degree SHref (step ST14). When the outlet superheat degree TdSH is equal to or higher than the set outlet superheat degree SHref (YES in step ST14), the on-off valve 45 is opened (step ST15). Then, a part of the refrigerant flowing from the relay machine 20 toward the accumulator 14 passes through the third branch pipe 43c, the heat source side gas-liquid separator 42, the second branch pipe 43b, and the flow rate control device 44, and the lower stage side heat exchange section 13b. Flow into. Thereby, the low-pressure pressure loss by piping can be reduced, the evaporation temperature of indoor unit 30A, 30B (evaporator) rises, and it can maintain high cooling performance. On the other hand, when the outlet superheat degree TdSH is less than the set outlet superheat degree SHref, the on-off valve 45 is closed (step ST16). Thereby, when the lower control valve 41b is opened, it is possible to prevent the refrigerant from expanding even if the gas refrigerant flows into the lower heat exchange section 13b.
 上記実施の形態によれば、熱源側熱交換器13を上段側熱交換部13a、下段側熱交換部13bに複数に分割し、下段側熱交換部13bに流入する冷媒量を調整可能な流量制御装置44を設け、流量制御装置44を絞ることにより、上段側熱交換部13aに冷媒を多く流すことができる。 According to the above embodiment, the heat source side heat exchanger 13 is divided into the upper stage side heat exchanging part 13a and the lower stage side heat exchanging part 13b, and the flow rate capable of adjusting the amount of refrigerant flowing into the lower stage side heat exchanging part 13b. By providing the control device 44 and narrowing the flow rate control device 44, a large amount of refrigerant can be flowed to the upper stage heat exchange section 13a.
 例えば空気と熱交換を行う熱交換器が上方へ風を吹き出す構造(いわゆるトップフロー)である場合、上段側熱交換部13a内を通過する風速が下段側熱交換部13bを通過する風速よりも大きい。そこで、流量制御装置44の開度を小さくすることにより、下段側熱交換部13bへ流入する冷媒量が規制され、結果として上段側熱交換部13aに流入する冷媒量を増加させることができる。このように、上段側熱交換部13a及び下段側熱交換部13bに冷媒量を風速に合わせ適度に流すことで熱源側熱交換器13が均等に熱交換が可能となり、熱源側熱交換器13の性能を向上させることができる。 For example, when the heat exchanger that exchanges heat with air has a structure that blows wind upward (so-called top flow), the wind speed that passes through the upper heat exchange section 13a is higher than the wind speed that passes through the lower heat exchange section 13b. large. Therefore, by reducing the opening degree of the flow control device 44, the amount of refrigerant flowing into the lower heat exchange section 13b is regulated, and as a result, the amount of refrigerant flowing into the upper heat exchange section 13a can be increased. As described above, the heat source side heat exchanger 13 can perform heat exchange evenly by flowing the refrigerant amount to the upper stage side heat exchanging part 13a and the lower stage side heat exchanging part 13b appropriately according to the wind speed. Performance can be improved.
 特に、流量制御装置44が上段側熱交換部13aに接続されるのではなく、下段側熱交換部13bに接続されることにより、確実に上段側熱交換部13aへの冷媒流量を増加させることができる。すなわち、流量制御装置44が上段側熱交換部13aに接続されている場合、重力により冷媒が下側に偏る傾向があるため、流量制御装置44の開度を小さくすることにより上段側熱交換部13aへの冷媒流量は減らせても、流量制御装置44の開度を大きくすることにより、上段側熱交換部13aへの冷媒流量を増やすことは難しい。特に、熱源側熱交換器13が蒸発器になるような暖房流路の場合、熱源側熱交換器13には液冷媒が流入されるため、その傾向は顕著になる。そこで、流量制御装置44が上段側熱交換部13aに接続されることにより、流量制御装置44の開度を小さくすれば確実に上段側熱交換部13aへの冷媒流量を増加させることができる。 In particular, the flow rate control device 44 is not connected to the upper stage heat exchange section 13a, but is connected to the lower stage heat exchange section 13b, thereby reliably increasing the refrigerant flow rate to the upper stage heat exchange section 13a. Can do. That is, when the flow control device 44 is connected to the upper stage heat exchanging portion 13a, the refrigerant tends to be biased downward due to gravity. Therefore, by reducing the opening degree of the flow control device 44, the upper stage heat exchanging portion is reduced. Even if the refrigerant flow rate to 13a can be reduced, it is difficult to increase the refrigerant flow rate to the upper heat exchange section 13a by increasing the opening degree of the flow rate control device 44. In particular, in the case of a heating flow path in which the heat source side heat exchanger 13 is an evaporator, the liquid refrigerant flows into the heat source side heat exchanger 13, and thus the tendency becomes remarkable. Therefore, by connecting the flow rate control device 44 to the upper stage heat exchange unit 13a, the refrigerant flow rate to the upper stage side heat exchange unit 13a can be reliably increased if the opening degree of the flow rate control device 44 is reduced.
 すなわち、一般的に、扁平管を用いた熱交換器は、伝熱管の流路断面積が円管熱交換器よりも小さくなる。このため、円管熱交換器よりも伝熱管内部の流速が増加し、それに伴って圧力損失が増加する。圧力損失の増加は圧縮機の吸入密度を低下させ、能力の低下、効率の悪化を招くことになる。よって、扁平管を用いた熱交換器においては、熱交換器のパス数を増加させる必要がある。 That is, generally, a heat exchanger using a flat tube has a smaller cross-sectional area of the heat transfer tube than a circular tube heat exchanger. For this reason, the flow velocity inside a heat exchanger tube increases rather than a circular tube heat exchanger, and pressure loss increases in connection with it. An increase in pressure loss decreases the suction density of the compressor, leading to a decrease in capacity and a decrease in efficiency. Therefore, in a heat exchanger using a flat tube, it is necessary to increase the number of passes of the heat exchanger.
 一方、限られたユニットスペースで伝熱面積を増加させるために、熱交換器が複数列で構成されている場合、熱交換器に必要な積長を確保すれば圧力損失は低減する。よって、伝熱管の積長は極力短くする方がよいため、列間からリードパイプを接続することが考えられる。しかしながら、リードパイプを用いた場合、リードパイプ間の干渉を防止するためにパス形状が複雑化する。例えばリードパイプに接続されるヘッダ配管が熱交換器の奥行幅よりも大きくなる等のロウ付けなど設備の制約で自動化できない問題が生じ、熱交換器の生産性が悪くなり、コストも増加する。 On the other hand, in order to increase the heat transfer area in a limited unit space, when the heat exchanger is composed of a plurality of rows, the pressure loss is reduced if the necessary length of the heat exchanger is ensured. Therefore, since it is better to make the product length of the heat transfer tubes as short as possible, it is conceivable to connect the lead pipes between the rows. However, when lead pipes are used, the path shape becomes complicated in order to prevent interference between the lead pipes. For example, problems such as brazing such that the header pipe connected to the lead pipe becomes larger than the depth of the heat exchanger, such as brazing, cannot be automated, resulting in poor heat exchanger productivity and increased cost.
 また、熱源側熱交換器が、上下に並んだ扁平管の一端が第1ヘッダ集合管に接続され、他端が第2ヘッダ集合管70に接続された構成の場合、熱源側熱交換器が凝縮器として機能する際に、複数の熱交換部での冷媒流量の差を小さくするため、第2ヘッダ集合管内の各連通空間へは、一部の熱交換器部へ供給された冷媒のみ流入させる。さらに蒸発器での圧力損失を小さくするため、第2ヘッダ集合管内の流れの向きを変更する回数を1回のみとすることが考えられる。 Further, when the heat source side heat exchanger has a configuration in which one end of the flat tubes arranged in the vertical direction is connected to the first header collecting pipe and the other end is connected to the second header collecting pipe 70, the heat source side heat exchanger has When functioning as a condenser, only the refrigerant supplied to some of the heat exchanger parts flows into each communication space in the second header collecting pipe in order to reduce the difference in refrigerant flow rate among the plurality of heat exchange parts. Let Further, in order to reduce the pressure loss in the evaporator, it is conceivable that the number of times of changing the flow direction in the second header collecting pipe is set to only one.
 しかしながら、熱源側熱交換器が凝縮器として機能する際、冷媒は複数の空間へ流入するため、液冷媒で満たさせる部分は小さくなる。冷媒量が小さいとヘッダの影響を受けやすくなり、冷媒が円滑に流れなくなり、熱交換器の性能が悪化する。さらに、扁平管熱交換器のヘッダ集合管を仕切る複数の仕切り板による連通空間が必要になり、接続される配管本数も多くなる。このため、配管の取り回しが困難になるとともに構造が複雑となり、ロウ付け箇所が多くなることで生産性も悪化し、コストが増加する。 However, when the heat source side heat exchanger functions as a condenser, since the refrigerant flows into the plurality of spaces, the portion to be filled with the liquid refrigerant becomes small. If the amount of the refrigerant is small, it is easy to be affected by the header, the refrigerant does not flow smoothly, and the performance of the heat exchanger deteriorates. Furthermore, a communication space by a plurality of partition plates for partitioning the header collecting pipe of the flat tube heat exchanger is required, and the number of pipes to be connected increases. For this reason, it becomes difficult to handle the piping, the structure becomes complicated, and the number of brazing points increases, so that the productivity is deteriorated and the cost is increased.
 一方、上記実施の形態のように、下段側熱交換部13bに接続された流量制御装置44が設けられていることにより、従来のように熱源側熱交換器の構造を複雑化することなく、上段側熱交換部13a及び下段側熱交換部13bに最適な冷媒分配を行うことができ、結果として、生産性を向上させコストの削減を図ることができる。 On the other hand, by providing the flow control device 44 connected to the lower heat exchange section 13b as in the above embodiment, the structure of the heat source heat exchanger is not complicated as in the prior art. Optimal refrigerant distribution can be performed for the upper stage heat exchange section 13a and the lower stage heat exchange section 13b. As a result, productivity can be improved and cost can be reduced.
 また、制御装置60が、各種運転モードに応じて流量制御装置44の動作を制御することにより、冷暖房同時運転中、冷房運転もしくは暖房運転を行っている利用側熱交換器31が複数存在する場合であっても、低コストで、性能低下することなく、安定した制御をすることができる。したがって、快適性と生産性とを同時に保つことができる。 In addition, when the control device 60 controls the operation of the flow rate control device 44 according to various operation modes, there are a plurality of use side heat exchangers 31 that are performing the cooling operation or the heating operation during the simultaneous cooling and heating operation. Even so, stable control can be performed at low cost and without performance degradation. Therefore, comfort and productivity can be maintained at the same time.
 さらに、制御装置60が、暖房運転時に上段側熱交換部13aと下段側熱交換部13bとに流れる冷媒流量の比が設定比になるように、流量制御装置44の開度を制御するとき、下段側熱交換部13bへ流入される冷媒流量を規制し、上段側熱交換部13aへ流入する冷媒流量を増加させることができるため、最適な冷媒分配を行うことができる。 Furthermore, when the control device 60 controls the opening degree of the flow rate control device 44 so that the ratio of the refrigerant flow rate flowing through the upper stage side heat exchange unit 13a and the lower stage side heat exchange unit 13b during the heating operation becomes a set ratio, Since the flow rate of the refrigerant flowing into the lower stage heat exchange unit 13b can be regulated and the flow rate of the refrigerant flowing into the upper stage heat exchange unit 13a can be increased, optimal refrigerant distribution can be performed.
 また、図5に示すように、制御装置60が、複数の室内機30A、30Bの冷暖同時運転時における冷房運転と暖房運転との運転比率と、外気温度と、吸入側圧力とに基づいて、流量制御装置44の開度を制御し、さらに流量制御装置44における開度の固定が解除された際、利用側熱交換器31の蒸発温度が設定蒸発温度以上になるように、流量制御装置44の開度を制御する場合、冷暖同時運転時に冷房運転を行っている室内機30Bの蒸発温度が所定値以下となるのを抑制し、冷房能力が低下するのを防止することができる。 Further, as shown in FIG. 5, the control device 60 is based on the operation ratio of the cooling operation and the heating operation at the time of the simultaneous cooling and heating operation of the plurality of indoor units 30A and 30B, the outside air temperature, and the suction side pressure. When the opening degree of the flow rate control device 44 is controlled and the opening degree of the flow rate control device 44 is released, the flow rate control device 44 is set so that the evaporation temperature of the use side heat exchanger 31 is equal to or higher than the set evaporation temperature. When the opening degree is controlled, it is possible to suppress the evaporation temperature of the indoor unit 30B that is performing the cooling operation during the cooling and heating simultaneous operation from being equal to or lower than a predetermined value, thereby preventing the cooling capacity from being lowered.
 さらに、図6に示すように、制御装置60は、冷房運転時に熱源側熱交換器13の容量及び出口過熱度TdSHに基づき、開閉弁45の動作を制御するとき、上段側熱交換部13a及び下段側熱交換部13bに冷媒量を風速に合わせ適度に流すことで熱源側熱交換器13が均等に熱交換が可能となり、熱源側熱交換器13の性能を向上させることができる。 Further, as shown in FIG. 6, the control device 60 controls the operation of the on-off valve 45 based on the capacity of the heat source side heat exchanger 13 and the outlet superheat degree TdSH during the cooling operation. The heat source side heat exchanger 13 can perform heat exchange evenly by flowing the refrigerant in the lower stage side heat exchanging portion 13b appropriately according to the wind speed, and the performance of the heat source side heat exchanger 13 can be improved.
 本発明の実施の形態は、上記実施の形態に限定されず、種々の変更を行うことができる。例えば、上記実施の形態において、熱源機10が1台、室内機30A、30Bが2台の場合の一例について説明するが、これに限定されず、例えば、室内機が2台以上の複数台の場合であってもよい。また、例えば、熱源機10が複数台の場合であってもよいし、中継機20が複数台であってもよい。 The embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, in the above-described embodiment, an example in which there is one heat source unit 10 and two indoor units 30A and 30B will be described. However, the present invention is not limited to this, and for example, a plurality of indoor units are two or more units. It may be the case. Further, for example, a plurality of heat source devices 10 may be used, or a plurality of relay devices 20 may be used.
 さらに、図4において、流量制御装置44の開度が設定開度に固定される場合について例示しているが、上段側熱交換部13a及び下段側熱交換部13bにおける風速に合わせて開度を可変に制御してもよい。この場合、例えば上段側熱交換部13a及び下段側熱交換部13bを流れる冷媒の温度を検知する上段温度センサ及び下段温度センサが設けられ、制御装置60は上段温度センサ及び下段温度センサにより検知された温度に基づいて風速(熱交換量)を検知し、流量制御装置44の開度を制御するようにしてもよい。 Furthermore, in FIG. 4, although the case where the opening degree of the flow control device 44 is fixed to the set opening degree is illustrated, the opening degree is adjusted in accordance with the wind speed in the upper stage side heat exchange unit 13a and the lower stage side heat exchange unit 13b. It may be variably controlled. In this case, for example, an upper temperature sensor and a lower temperature sensor for detecting the temperature of the refrigerant flowing through the upper heat exchange unit 13a and the lower heat exchange unit 13b are provided, and the control device 60 is detected by the upper temperature sensor and the lower temperature sensor. The opening speed of the flow control device 44 may be controlled by detecting the wind speed (heat exchange amount) based on the detected temperature.
 1 空気調和装置、2 第1主管、3 第2主管、4 第1枝管、5 第2枝管、10 熱源機、11 圧縮機、12 流路切替器、13 熱源側熱交換器、13a 上段側熱交換部、13b 下段側熱交換部、14 アキュムレータ、15 流路形成部、15a、15b、15c、16 逆止弁、20 中継機、21 中継機側気液分離器、21a 気相配管、21b 液相配管、22 第1冷媒間熱交換器、23 第2中継機側流量調整器、24 第2冷媒間熱交換器、25 第2中継機側流量調整器、26 第1分配部、26a 暖房用開閉弁、26b 冷房用開閉弁、27 第2分配部、27a 暖房用逆止弁、27b 冷房用逆止弁、28 第1中継機側バイパス配管、29 第2中継機側バイパス配管、30A、30B 室内機、31 利用側熱交換器、32 利用側流量調整器、41 容量制御弁、41a 上段側制御弁、41b 下段側制御弁、41x 逆止弁、42 熱源側気液分離器、43a 第1分岐配管、43b 第2分岐配管、43c 第3分岐配管、44 流量制御装置、45 開閉弁、46 接続配管、47 逆止弁、51 圧縮機出口温度検知部、52 高圧圧力検知部、53 外気温度検知部、54 吸入側圧力検知部、55 第1中継機側圧力検出器、56 第2中継機側圧力検出器、57 温度検知部、58 中間温度検知部、59 蒸発温度検知部、60 制御装置、SHref 設定出口過熱度、TdSH 出口過熱度、VPp 所定の開度。 DESCRIPTION OF SYMBOLS 1 Air conditioner, 2nd 1st main pipe, 3rd 2nd main pipe, 4th 1st branch pipe, 5th 2nd branch pipe, 10 heat source machine, 11 compressor, 12 flow path switcher, 13 heat source side heat exchanger, 13a upper stage Side heat exchange section, 13b Lower stage heat exchange section, 14 Accumulator, 15 Flow path forming section, 15a, 15b, 15c, 16 Check valve, 20 Relay machine, 21 Relay machine side gas-liquid separator, 21a Gas phase piping, 21b Liquid phase piping, 22 1st inter-refrigerant heat exchanger, 23 2nd relay side flow regulator, 24 2nd inter-refrigerant heat exchanger, 25 2nd relay side flow regulator, 26 1st distribution part, 26a Heating on / off valve, 26b Cooling on / off valve, 27 Second distributor, 27a Heating check valve, 27b Air conditioning check valve, 28 First relay side bypass piping, 29 Second relay side bypass piping, 30A , 30B room , 31 User side heat exchanger, 32 User side flow regulator, 41 Capacity control valve, 41a Upper stage control valve, 41b Lower stage control valve, 41x Check valve, 42 Heat source side gas-liquid separator, 43a First branch pipe , 43b 2nd branch piping, 43c 3rd branch piping, 44 flow control device, 45 open / close valve, 46 connection piping, 47 check valve, 51 compressor outlet temperature detection unit, 52 high pressure detection unit, 53 outside air temperature detection unit , 54 suction side pressure detection unit, 55 first relay side pressure detector, 56 second relay side pressure detector, 57 temperature detection unit, 58 intermediate temperature detection unit, 59 evaporation temperature detection unit, 60 control device, SHref Set outlet superheat, TdSH outlet superheat, VPp predetermined opening.

Claims (10)

  1.  冷媒を圧縮して吐出する圧縮機と、前記圧縮機から吐出された冷媒と熱源媒体とを熱交換する熱源側熱交換器を有する熱源機と、
     冷媒と利用媒体との間の熱交換を行う利用側熱交換器と、前記利用側熱交換器に接続された熱源側流量調整器とを有する複数の室内機と、
     前記熱源機と複数の前記室内機との間に冷媒配管を介して接続され、前記熱源側熱交換器から流出する冷媒を複数の前記室内機に分配する中継機と
     を備え、
     前記熱源側熱交換器は、前記圧縮機に互いに並列に接続され、上下方向に並んで配置された上段側熱交換部と下段側熱交換部とを含み、
     前記熱源機は、
     前記上段側熱交換部及び前記下段側熱交換部への冷媒の流入を制御して前記熱源側熱交換器の容量を制御する容量制御弁と、
     前記中継機から流入する冷媒をガス冷媒と液冷媒とに分離する熱源側気液分離器と、
     前記熱源側気液分離器に流入した冷媒を前記容量制御弁へ流入させる第1分岐配管と、
     前記熱源側気液分離器に流入した冷媒を前記下段側熱交換部に流入させる第2分岐配管と、
     前記第2分岐配管に設けられ、前記第2分岐配管を介して前記下段側熱交換部に流入する冷媒流量を調整する流量制御装置と
     を備えた空気調和装置。
    A compressor that compresses and discharges the refrigerant, and a heat source machine having a heat source side heat exchanger that exchanges heat between the refrigerant discharged from the compressor and the heat source medium,
    A plurality of indoor units having a use side heat exchanger that performs heat exchange between the refrigerant and the use medium, and a heat source side flow rate regulator connected to the use side heat exchanger;
    A relay that is connected between the heat source unit and the plurality of indoor units via a refrigerant pipe, and distributes the refrigerant flowing out of the heat source side heat exchanger to the plurality of indoor units,
    The heat source side heat exchanger is connected to the compressor in parallel with each other, and includes an upper stage side heat exchange part and a lower stage side heat exchange part arranged in the vertical direction,
    The heat source machine is
    A capacity control valve for controlling the capacity of the heat source side heat exchanger by controlling the flow of refrigerant into the upper stage side heat exchange section and the lower stage side heat exchange section;
    A heat source side gas-liquid separator that separates the refrigerant flowing from the relay into gas refrigerant and liquid refrigerant;
    A first branch pipe for allowing the refrigerant flowing into the heat source side gas-liquid separator to flow into the capacity control valve;
    A second branch pipe for allowing the refrigerant that has flowed into the heat source side gas-liquid separator to flow into the lower heat exchange section;
    An air conditioner comprising: a flow rate control device that is provided in the second branch pipe and adjusts the flow rate of the refrigerant flowing into the lower heat exchange section via the second branch pipe.
  2.  冷房運転と暖房運転とが同時に行われる冷暖房同時運転を行うように、前記熱源機及び前記中継機の動作を制御する制御装置をさらに備え、
     前記制御装置は、運転モードに応じて前記流量制御装置の開度を制御するものである請求項1に記載の空気調和装置。
    A control device for controlling the operation of the heat source unit and the relay unit so as to perform the cooling and heating simultaneous operation in which the cooling operation and the heating operation are performed simultaneously;
    The air conditioning apparatus according to claim 1, wherein the control device controls an opening degree of the flow control device according to an operation mode.
  3.  前記制御装置は、暖房運転時に前記上段側熱交換部と前記下段側熱交換部とに流れる冷媒流量の比が設定比になるように、前記流量制御装置の開度を制御するものである請求項2に記載の空気調和装置。 The control device controls an opening degree of the flow rate control device so that a ratio of a refrigerant flow rate flowing through the upper stage side heat exchange unit and the lower stage side heat exchange unit during a heating operation becomes a set ratio. Item 3. The air conditioner according to Item 2.
  4.  前記熱源機に設けられ、外気温度を検知する外気温度検知部と
     前記圧縮機の吸入側に設けられ、前記圧縮機に吸入側へ流れる冷媒の吸入側圧力を検知する圧力検知部と
     をさらに備え、
     前記制御装置は、複数の前記室内機の冷暖同時運転時における冷房運転と暖房運転との運転比率と、前記外気温度検知部において検知された前記外気温度と、前記圧力検知部において検知された前記吸入側圧力とに基づいて、前記流量制御装置の開度を制御するものである請求項2又は3に記載の空気調和装置。
    An outside air temperature detection unit that is provided in the heat source unit and detects an outside air temperature, and a pressure detection unit that is provided on the suction side of the compressor and detects the suction side pressure of the refrigerant flowing to the suction side of the compressor. ,
    The control device includes an operation ratio between a cooling operation and a heating operation during simultaneous cooling and heating of the plurality of indoor units, the outside air temperature detected by the outside air temperature detection unit, and the pressure detected by the pressure detection unit. The air conditioner according to claim 2 or 3, wherein the opening degree of the flow rate control device is controlled based on the suction side pressure.
  5.  前記制御装置は、冷暖同時運転の開始時において前記流量制御装置の開度を設定開度に固定し、暖房負荷が冷房負荷よりも大きく、前記外気温度が外気温度閾値よりも低く、前記吸入側圧力が圧力閾値より小さい場合、前記流量制御装置における開度の固定を解除し、前記流量制御装置の開度を可変に制御するものである請求項4に記載の空気調和装置。 The control device fixes the opening of the flow control device to a set opening at the start of simultaneous cooling and heating operation, the heating load is larger than the cooling load, the outside air temperature is lower than the outside air temperature threshold, and the suction side The air conditioning apparatus according to claim 4, wherein when the pressure is smaller than a pressure threshold, the opening degree of the flow control device is released and the opening degree of the flow control device is variably controlled.
  6.  前記制御装置は、前記流量制御装置における開度の固定が解除された際、前記利用側熱交換器の蒸発温度が設定蒸発温度以上になるように、前記流量制御装置の開度を制御するものである請求項5に記載の空気調和装置。 The control device controls the opening degree of the flow rate control device so that when the opening degree of the flow rate control device is released, the evaporation temperature of the use side heat exchanger becomes equal to or higher than a set evaporation temperature. The air conditioner according to claim 5.
  7.  前記熱源機は、
     前記熱源側気液分離器により分離されたガス冷媒を前記圧縮機の吸入側に流入させる第3分岐配管と、
     前記第3分岐配管に設けられ、前記熱源側気液分離器から前記圧縮機の吸入側へのガス冷媒の流入を制御する開閉弁と
     をさらに備えた請求項1~6のいずれか1項に記載の空気調和装置。
    The heat source machine is
    A third branch pipe for allowing the gas refrigerant separated by the heat source side gas-liquid separator to flow into the suction side of the compressor;
    7. An on-off valve provided in the third branch pipe and further configured to control the inflow of gas refrigerant from the heat source side gas-liquid separator to the suction side of the compressor. The air conditioning apparatus described.
  8.  前記開閉弁の開閉動作を制御する制御装置をさらに有し、
     前記制御装置は、冷房運転時に前記熱源側熱交換器の容量及び圧縮機出口過熱度に基づき、前記開閉弁の動作を制御するものである請求項7に記載の空気調和装置。
    A control device for controlling the opening / closing operation of the on-off valve;
    The air conditioner according to claim 7, wherein the control device controls an operation of the on-off valve based on a capacity of the heat source side heat exchanger and a compressor outlet superheat degree during cooling operation.
  9.  前記制御装置は、前記容量制御弁のうち前記下段側熱交換部側の制御弁が開放しており、前記圧縮機出口過熱度が設定出口過熱度以上である場合、前記開閉弁を開放するものである請求項8に記載の空気調和装置。 The control device opens the on-off valve when the control valve on the lower heat exchange section side of the capacity control valve is open and the compressor outlet superheat is equal to or higher than the set outlet superheat The air conditioner according to claim 8.
  10.  前記熱源側熱交換器は、
     断面形状がアスペクト比の大きい長方形を角取りした形状を有し、
     冷媒が流通する扁平管と、前記扁平管が挿入され、前記扁平管に対し直角方向に接合される複数の板状のフィンとを有する単列扁平管熱交換器が、厚み方向に2列以下で結合されたものからなる請求項1~9のいずれか1項に記載の空気調和装置。
    The heat source side heat exchanger is
    The cross-sectional shape has a shape with a rounded rectangle with a large aspect ratio,
    A single-row flat tube heat exchanger having a flat tube through which a refrigerant flows and a plurality of plate-like fins into which the flat tube is inserted and joined in a direction perpendicular to the flat tube has two or less rows in the thickness direction. The air conditioner according to any one of claims 1 to 9, wherein the air conditioner is combined with each other.
PCT/JP2015/068141 2015-06-24 2015-06-24 Air conditioner WO2016207993A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1800859.9A GB2557058C (en) 2015-06-24 2015-06-24 Air-conditioning apparatus and heat source unit
PCT/JP2015/068141 WO2016207993A1 (en) 2015-06-24 2015-06-24 Air conditioner
JP2017524331A JP6391832B2 (en) 2015-06-24 2015-06-24 Air conditioner and heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/068141 WO2016207993A1 (en) 2015-06-24 2015-06-24 Air conditioner

Publications (1)

Publication Number Publication Date
WO2016207993A1 true WO2016207993A1 (en) 2016-12-29

Family

ID=57585230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068141 WO2016207993A1 (en) 2015-06-24 2015-06-24 Air conditioner

Country Status (3)

Country Link
JP (1) JP6391832B2 (en)
GB (1) GB2557058C (en)
WO (1) WO2016207993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208805A1 (en) * 2019-04-12 2020-10-15 三菱電機株式会社 Air-conditioning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020122713A1 (en) 2020-08-31 2022-03-03 Andreas Bangheri Heat pump and method for operating a heat pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172434A (en) * 1991-12-17 1993-07-09 Mitsubishi Electric Corp Air conditioning apparatus
JP2003176959A (en) * 2001-12-12 2003-06-27 Sanyo Electric Co Ltd Air conditioner, and outdoor heat exchanger switching control method for air conditioner
WO2013111176A1 (en) * 2012-01-23 2013-08-01 三菱電機株式会社 Air-conditioning device
WO2013111177A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172434A (en) * 1991-12-17 1993-07-09 Mitsubishi Electric Corp Air conditioning apparatus
JP2003176959A (en) * 2001-12-12 2003-06-27 Sanyo Electric Co Ltd Air conditioner, and outdoor heat exchanger switching control method for air conditioner
WO2013111176A1 (en) * 2012-01-23 2013-08-01 三菱電機株式会社 Air-conditioning device
WO2013111177A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Air-conditioning unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208805A1 (en) * 2019-04-12 2020-10-15 三菱電機株式会社 Air-conditioning device
JPWO2020208805A1 (en) * 2019-04-12 2021-10-21 三菱電機株式会社 Air conditioner
JP7055239B2 (en) 2019-04-12 2022-04-15 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP6391832B2 (en) 2018-09-19
GB2557058A (en) 2018-06-13
JPWO2016207993A1 (en) 2018-02-08
GB2557058C (en) 2020-09-30
GB201800859D0 (en) 2018-03-07
GB2557058B (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
US9003823B2 (en) Combined air-conditioning and hot-water supply system
JP6644154B2 (en) Air conditioner
JP4475278B2 (en) Refrigeration apparatus and air conditioner
WO2017006596A1 (en) Refrigeration cycle device
JP6005255B2 (en) Air conditioner
WO2014128830A1 (en) Air conditioning device
JP5992088B2 (en) Air conditioner
KR20090085659A (en) Refrigeration device
JPWO2013111176A1 (en) Air conditioner
WO2006003967A1 (en) Air conditioner
JP6880204B2 (en) Air conditioner
WO2015140951A1 (en) Air conditioner
JP6479181B2 (en) Air conditioner
JP5734205B2 (en) Air conditioner
CN109312961B (en) Heat source unit of refrigerating device
JP4966742B2 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
JP5855284B2 (en) Air conditioner
JP2017015299A (en) Cooling device
WO2015029220A1 (en) Air conditioner
JP6391832B2 (en) Air conditioner and heat source machine
JP5874754B2 (en) Refrigeration equipment
JP6017049B2 (en) Air conditioner
JP2011058749A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201800859

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150624

122 Ep: pct application non-entry in european phase

Ref document number: 15896315

Country of ref document: EP

Kind code of ref document: A1