JPH0942804A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0942804A
JPH0942804A JP7189291A JP18929195A JPH0942804A JP H0942804 A JPH0942804 A JP H0942804A JP 7189291 A JP7189291 A JP 7189291A JP 18929195 A JP18929195 A JP 18929195A JP H0942804 A JPH0942804 A JP H0942804A
Authority
JP
Japan
Prior art keywords
connection pipe
refrigerant
pipe
heat exchanger
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7189291A
Other languages
Japanese (ja)
Inventor
Atsushi Obara
淳 小原
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7189291A priority Critical patent/JPH0942804A/en
Publication of JPH0942804A publication Critical patent/JPH0942804A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Abstract

PROBLEM TO BE SOLVED: To take out a predetermined cooling capability rapidly by a method wherein a control means controls various kinds of flow rate control devices or electromagnetic opening or closing valves in such a way that an inside part of a second control piping or an inside part of a gas-liquid separator is replaced with at least gas-liquid two phase refrigerant when an operation is changed over from a heating mode operation to a cooling mode operation. SOLUTION: An operating volume for each of indoor devices B, C, D is detected by an indoor device operating volume sensing means 50 and if a cooling operation volume is higher than a heating operation volume, an operation is changed over to a full cooling operation. A fourth electromagnetic opening or closing valve 48 in a bypassing circuit 49 is opened, high pressure gas refrigerant within a second connecting pipe 7 and a gas-liquid separator device 12 is transferred to a first connecting pipe 6, it is heat exchanged with air by a heat exchanger 3 at a heat source machine and then condensed high pressure two-phase refrigerant is flowed into the second connecting pipe 7 and the gas-liquid separator device 12. Accordingly, the liquid refrigerant separated by the gas-liquid separator device 12 can be flowed into an indoor side heat exchanger 5 of an indoor device to be cooled through a first flow rate control device 9, resulting in that a predetermined cooling capability can be rapidly taken out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、熱源機1台に対
して複数台の室内機を並列接続してなる多室型ヒートポ
ンプ式の空気調和装置に係り、特に、各室内機毎に冷暖
房を選択的に、かつ、一方の室内機では冷房を、他方の
室内機では暖房を同時に行うことのできる空気調和装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-chamber heat pump type air conditioner in which a plurality of indoor units are connected in parallel to one heat source unit, and in particular, heating and cooling for each indoor unit. The present invention relates to an air conditioner capable of selectively performing cooling in one indoor unit and heating in the other indoor unit at the same time.

【0002】[0002]

【従来の技術】以下、この種の空気調和装置の従来技術
について説明する。図9はこの発明の従来技術となる空
気調和装置の冷媒系統を中心とする全体構成図である。
また、図10ないし図12は図9の従来技術における冷
暖房運転時の動作状態を示したもので、図10は冷房ま
たは暖房のみの運転動作状態図、図11及び図12は冷
暖房同時運転の動作を示すもので、図11は冷房主体
(冷房運転容量が暖房運転容量より大きい場合)を、図
12は暖房主体(暖房運転容量が冷房運転容量より大き
い場合)を示す運転動作状態図である。なお、この従来
技術では熱源機1台に室内機3台を接続した場合につい
て説明するが、2台以上の室内機を接続した場合はすべ
て同様である。
2. Description of the Related Art The prior art of this type of air conditioner will be described below. FIG. 9 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a conventional technique of the present invention.
10 to 12 show operating states during cooling / heating operation in the prior art of FIG. 9, FIG. 10 is an operation state diagram of only cooling or heating, and FIGS. 11 and 12 are operations of simultaneous cooling / heating operation. FIG. 11 is an operation state diagram showing a cooling main body (when the cooling operation capacity is larger than the heating operation capacity) and FIG. 12 is a heating main body (when the heating operation capacity is larger than the cooling operation capacity). In this prior art, a case where three indoor units are connected to one heat source unit will be described, but the same applies when two or more indoor units are connected.

【0003】図9において、Aは熱源機、B、C、Dは
後述するように互いに並列接続された室内機で、それぞ
れ同じ構成となっている。Eは後述するように、第1の
分岐部10、第2の流量制御装置13、第2の分岐部1
1、気液分離装置12、第2の熱交換部16a、第3の
熱交換部16b、16c、16d、第1の熱交換部1
9、第3の流量制御装置15、第4の流量制御装置17
を内蔵した中継機である。また、1は圧縮機、2は圧縮
機1から冷媒の流通方向を切り換える四方切換弁、3は
熱源機側熱交換器、4はアキュムレータで、四方切換弁
2を介して圧縮機1と接続されている。これらから熱源
機Aが構成されている。また、5は3台の室内機B、
C、Dにそれぞれ設けられた室内側熱交換器、6は熱源
機Aの四方切換弁2と中継機Eとを後述する第2の逆止
弁33を介して接続する太い第1の接続配管、6b、6
c、6dはそれぞれ室内機B、C、Dの室内側熱交換器
5と中継機Eとを接続し、第1の接続配管6に対応する
室内機側の第1の接続配管、7は熱源機Aの熱源機側熱
交換器3と中継機Eとを後述する第1の逆止弁32を介
して接続し、第1の接続配管6よりも細い第2の接続配
管である。
In FIG. 9, A is a heat source unit, and B, C and D are indoor units connected in parallel with each other as will be described later, and have the same structure. As will be described later, E is a first branch unit 10, a second flow rate control device 13, and a second branch unit 1.
1, gas-liquid separator 12, second heat exchange section 16a, third heat exchange sections 16b, 16c, 16d, first heat exchange section 1
9, third flow controller 15, fourth flow controller 17
It is a repeater with a built-in. Further, 1 is a compressor, 2 is a four-way switching valve that switches the flow direction of the refrigerant from the compressor 1, 3 is a heat source side heat exchanger, 4 is an accumulator, and is connected to the compressor 1 via the four-way switching valve 2. ing. The heat source machine A is constructed from these. 5 is three indoor units B,
Indoor heat exchangers 6 respectively provided in C and D, and a thick first connecting pipe 6 for connecting the four-way switching valve 2 of the heat source unit A and the relay unit E via a second check valve 33 described later. , 6b, 6
Reference numerals c and 6d respectively connect the indoor heat exchangers 5 of the indoor units B, C and D and the relay unit E, and the indoor unit side first connection pipes corresponding to the first connection pipes 6, and 7 is a heat source. The heat source unit side heat exchanger 3 of the machine A and the relay unit E are connected via a first check valve 32, which will be described later, and are second connection pipes thinner than the first connection pipe 6.

【0004】また、7b、7c、7dはそれぞれ室内機
B、C、Dの室内側熱交換器5と中継機Eとを第1の流
量制御装置9を介して接続し、第2の接続配管7に対応
する室内機側の第2の接続配管である。8aは室内機側
の第1の接続配管6b、6c、6dと第1の接続配管6
との回路を開閉する第1の電磁開閉弁、8bは室内機側
の第1の接続配管6b、6c、6dと第2の接続配管7
との回路を開閉する第2の電磁開閉弁、8cは第1の電
磁開閉弁8aと並列に接続され第1の電磁開閉弁8aよ
りも開口径の小さな第3の電磁開閉弁である。9は各室
内側熱交換器5に近接してそれぞれ接続され、冷房時は
室内側熱交換器5の出口側のスーパーヒート量により、
暖房時はサブクール量により制御される第1の流量制御
装置で、室内機側の第2の接続配管7b、7c、7dに
接続されている。10は上述した第1の電磁開閉弁8a
と、第2の電磁開閉弁8bと、第3の電磁開閉弁8cと
を有する第1の分岐部である。11は室内機側の第2の
接続配管7b、7c、7dと、第2の接続配管7とより
なる第2の分岐部である。12は第2の接続配管7の途
中に設けられた気液分離装置で、その気相部は第1の分
岐部10の第1の電磁開閉弁8aに接続され、その液相
部は第2の分岐部11に接続されている。13は気液分
離装置12と第2の分岐部11との間に設けられた開閉
自在な第2の流量制御装置(ここでは電気式膨張弁)で
ある。
Reference numerals 7b, 7c and 7d respectively connect the indoor heat exchangers 5 of the indoor units B, C and D and the relay unit E via the first flow rate control device 9, and the second connecting pipes. 7 is a second connection pipe on the indoor unit side corresponding to 7. Reference numeral 8a denotes the first connection pipes 6b, 6c, 6d on the indoor unit side and the first connection pipe 6
Is a first solenoid on-off valve for opening and closing the circuit with, and 8b is the first connection pipes 6b, 6c, 6d on the indoor unit side and the second connection pipe 7
Is a second electromagnetic on-off valve for opening and closing the circuit, and 8c is a third electromagnetic on-off valve connected in parallel with the first electromagnetic on-off valve 8a and having an opening diameter smaller than that of the first electromagnetic on-off valve 8a. 9 is connected to each of the indoor heat exchangers 5 in close proximity to each other, and during cooling, due to the superheat amount on the outlet side of the indoor heat exchanger 5,
At the time of heating, the first flow rate control device is controlled by the subcool amount, and is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side. 10 is the above-mentioned first solenoid on-off valve 8a
And a second electromagnetic opening / closing valve 8b and a third electromagnetic opening / closing valve 8c. Reference numeral 11 denotes a second branch portion including the second connection pipes 7b, 7c, 7d on the indoor unit side and the second connection pipe 7. Reference numeral 12 is a gas-liquid separator provided in the middle of the second connecting pipe 7, the gas phase portion of which is connected to the first electromagnetic on-off valve 8a of the first branch portion 10 and the liquid phase portion of which is the second Is connected to the branch part 11. Reference numeral 13 denotes a second flow rate control device (here, an electric expansion valve) that is provided between the gas-liquid separation device 12 and the second branch portion 11 and can be opened and closed.

【0005】14は第2の分岐部11と第1の接続配管
6とを結ぶ第1のバイパス配管、15は第1のバイパス
配管14の途中に設けられた第3の流量制御装置(ここ
では電気式膨張弁)、16aは第1のバイパス配管14
途中の第3の流量制御装置15の下流に設けられ、第2
の分岐部11における各室内機側の第2の接続配管7
b、7c、7dの会合部との間でそれぞれ熱交換を行う
第2の熱交換部である。16b、16c、16dはそれ
ぞれ第1のバイパス配管14途中に設けられた第3の流
量制御装置15の下流側に設けられ、第2の分岐部11
における各室内機側の第2の接続配管7b、7c、7d
との間でそれぞれ熱交換を行う第3の熱交換部である。
19は第1のバイパス配管14の第3の流量制御装置1
5の下流および第2の熱交換部16aの下流に設けら
れ、気液分離装置12と第2の流量制御装置13とを接
続する配管との間で熱交換を行う第1の熱交換部、17
は第2の分岐部11と第1の接続配管6とを接続する第
2のバイパス配管14a途中に設けられた開閉自在な第
4の流量制御装置(ここでは電気式膨張弁)である。
Reference numeral 14 is a first bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and 15 is a third flow rate control device (here, a third flow control device) provided in the middle of the first bypass pipe 14. (Electrical expansion valve), 16a is the first bypass pipe 14
It is provided downstream of the third flow rate control device 15 on the way and
Second connection pipe 7 on each indoor unit side in branch portion 11 of
It is a second heat exchanging part for exchanging heat with the meeting parts of b, 7c and 7d. 16b, 16c, 16d are respectively provided on the downstream side of the third flow rate control device 15 provided in the middle of the first bypass pipe 14, and the second branch portion 11 is provided.
Second connection pipes 7b, 7c, 7d on the side of each indoor unit in
Is a third heat exchanging section for exchanging heat with each other.
19 is the third flow control device 1 of the first bypass pipe 14.
5, which is provided downstream of the second heat exchange unit 16a and performs heat exchange between the pipe connecting the gas-liquid separation device 12 and the second flow rate control device 13; 17
Is an openable and closable fourth flow rate control device (here, an electrical expansion valve) provided in the middle of the second bypass pipe 14a connecting the second branch portion 11 and the first connection pipe 6.

【0006】一方、32は熱源機側熱交換器3と第2の
接続配管7との間に設けられた第1の逆止弁であり、熱
源機側熱交換器3から第2の接続配管7へのみ冷媒流通
を許容する。33は熱源機Aの四方切換弁2と第1の接
続配管6との間に設けられた第2の逆止弁であり、第1
の接続配管6から四方切換弁2へのみ冷媒流通を許容す
る。34は熱源機Aの四方切換弁2と第2の接続配管7
との間に設けられた第3の逆止弁であり、四方切換弁2
から第2の接続配管7へのみ冷媒流通を許容する。35
は熱源機側熱交換器3と第1の接続配管6との間に設け
られた第4の逆止弁であり、第1の接続配管6から熱源
機側熱交換器3へのみ冷媒の流通を許容する。上述した
第1、第2、第3、第4の逆止弁32、33、34、3
5の組合せ構成から、流路切換装置40が構成される。
また、49は第1の接続配管6と第2の接続配管7との
間を接続するバイパス回路、48はバイパス回路49の
配管途中に設けられ、バイパス回路49の開閉を制御す
る第4の電磁開閉弁である。
On the other hand, reference numeral 32 is a first check valve provided between the heat source unit side heat exchanger 3 and the second connecting pipe 7, which connects the heat source unit side heat exchanger 3 to the second connecting pipe. Allow the refrigerant flow only to 7. Reference numeral 33 is a second check valve provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6, and is a first check valve.
From the connection pipe 6 to the four-way switching valve 2 only. Reference numeral 34 denotes the four-way switching valve 2 of the heat source unit A and the second connection pipe 7
Is a third check valve provided between the four-way switching valve 2 and
To the second connection pipe 7 only. 35
Is a fourth check valve provided between the heat source device side heat exchanger 3 and the first connection pipe 6, and the refrigerant flows only from the first connection pipe 6 to the heat source device side heat exchanger 3. Tolerate. The above-mentioned first, second, third, and fourth check valves 32, 33, 34, 3
The flow path switching device 40 is composed of the combination structure of No. 5.
Further, 49 is a bypass circuit that connects the first connection pipe 6 and the second connection pipe 7, and 48 is a fourth electromagnetic circuit that is provided in the middle of the bypass circuit 49 and that controls the opening and closing of the bypass circuit 49. It is an on-off valve.

【0007】25は第1の分岐部10と第2の流量制御
装置13との間に設けられた第1の圧力検出手段、26
は第2の流量制御装置13と第4の流量制御装置17と
の間に設けられた第2の圧力検出手段である。
Reference numeral 25 is a first pressure detecting means provided between the first branch portion 10 and the second flow rate control device 13, and 26
Is a second pressure detecting means provided between the second flow rate control device 13 and the fourth flow rate control device 17.

【0008】次に動作について説明する。まず、図10
を用いて「冷房運転のみ」の場合について説明する。同
図に実線矢印で示すように、圧縮機1より吐出された高
温高圧冷媒ガスは、四方切換弁2を通り、熱源機側熱交
換器3で空気と熱交換して凝縮された後、第1の逆止弁
32、第2の接続配管7、気液分離装置12、第2の流
量制御装置13の順に通り、更に第2の分岐部11、室
内機側の第2の接続配管7b、7c、7dを通り、各室
内機B、C、Dに流入する。各室内機B、C、Dに流入
した冷媒は、各室内側熱交換器5の出口のスーパーヒー
ト量により制御される第1の流量制御装置9により低圧
まで減圧されて室内側熱交換器5で室内空気と熱交換し
て蒸発しガス化され室内を冷房する。
Next, the operation will be described. First, FIG.
The case of "only the cooling operation" will be described using. As indicated by the solid line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, is heat-exchanged with air in the heat-source-unit-side heat exchanger 3, and is condensed. 1, the check valve 32, the second connecting pipe 7, the gas-liquid separating device 12, and the second flow rate controlling device 13 in this order, the second branch portion 11, the second connecting pipe 7b on the indoor unit side, It passes through 7c and 7d and flows into each indoor unit B, C, and D. The refrigerant flowing into each indoor unit B, C, D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 It heats and exchanges heat with the room air, is gasified, and cools the room.

【0009】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、第1の電磁開閉弁8
aおよび第3の電磁開閉弁8c、第1の分岐部10、第
1の接続配管6、第2の逆止弁33、熱源機Aの四方切
換弁2、アキュムレータ4を経て圧縮機1に吸入される
循環サイクルを構成し、冷房運転を行う。この時、第1
の電磁開閉弁8aと第3の電磁開閉弁8cは開かれ、第
2の電磁御開閉弁8bは閉じられている。また、冷媒は
この時、第1の接続配管6が低圧であり、第2の接続配
管7が高圧のため、必然的に第1の逆止弁32、第2の
逆止弁33を流通する。また、このサイクルの時、第2
の流量制御装置13を通過した冷媒の一部が第1のバイ
パス配管14へ入り第3の流量制御装置15で低圧まで
減圧されて第3の熱交換部16b、16c、16dで第
2の分岐部11の各室内機側の第2の接続配管7b、7
c、7dとの間で、また第2の熱交換部16aで第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部との間で、更に第1の熱交換部19で第2
の流量制御装置13に流入する冷媒との間で、それぞれ
熱交換を行い蒸発する。このように蒸発した冷媒は、第
1の接続配管6、第2の逆止弁33へ入り、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される。
The refrigerant in the gas state is used for the first connection pipes 6b, 6c, 6d on the indoor unit side and the first solenoid on-off valve 8.
a and the third electromagnetic opening / closing valve 8c, the first branch portion 10, the first connecting pipe 6, the second check valve 33, the four-way switching valve 2 of the heat source device A, and the accumulator 4 to suck in the compressor 1. The cooling cycle is configured and the cooling operation is performed. At this time, the first
The electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c are opened, and the second electromagnetic control valve 8b is closed. At this time, the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure, so that the refrigerant inevitably flows through the first check valve 32 and the second check valve 33. . Also, during this cycle, the second
Part of the refrigerant that has passed through the flow rate control device 13 enters the first bypass pipe 14 and is depressurized to a low pressure by the third flow rate control device 15, and then the second branch is performed by the third heat exchange units 16b, 16c, 16d. The second connection pipes 7b, 7 on the indoor unit side of the section 11
c, 7d, and the second connection pipes 7b, 7c on the indoor unit side of the second branch portion 11 in the second heat exchange portion 16a.
The first heat exchange section 19 and the second section of the 7d
The heat exchange with the refrigerant flowing into the flow rate control device 13 is performed and the heat is evaporated. The refrigerant thus evaporated enters the first connecting pipe 6 and the second check valve 33, and is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4.

【0010】一方、第1、第2、第3の熱交換部19、
16a、16b、16c、16dで熱交換し冷却され、
サブクールを充分につけられた第2の分岐部11の冷媒
は冷房しようとしている室内機B、C、Dへそれぞれ流
入する。
On the other hand, the first, second and third heat exchange parts 19,
16a, 16b, 16c, 16d exchange heat and are cooled,
The refrigerant in the second branch portion 11 that is sufficiently subcooled flows into the indoor units B, C, and D that are about to be cooled.

【0011】次に、図10を用いて「暖房運転のみ」の
場合について説明する。同図に破線矢印で示すように、
圧縮機1より吐出された高温高圧冷媒ガスは、四方切換
弁2を通り、第3の逆止弁34、第2の接続配管7、気
液分離装置12を通り、第1の分岐部10、第2の電磁
開閉弁8b、室内機側の第1の接続配管6b、6c、6
dを順に通り、各室内機B、C、Dに流入し、室内空気
と熱交換して凝縮液化し、室内を暖房する。
Next, the case of "only heating operation" will be described with reference to FIG. As indicated by the dashed arrow in the figure,
The high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the third check valve 34, the second connecting pipe 7, the gas-liquid separation device 12, and the first branch portion 10, The second solenoid on-off valve 8b, the first connection pipes 6b, 6c, 6 on the indoor unit side
After passing through d in order, it flows into each of the indoor units B, C, D, exchanges heat with the indoor air to be condensed and liquefied, and heats the room.

【0012】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b、7c、7dから第2の分岐部11に流入
して合流し、更に第4の流量制御装置17を通る。ここ
で、冷媒は、第1の流量制御装置9または第3、第4の
流量制御装置15、17で低圧の気液二相状態まで減圧
される。低圧まで減圧された冷媒は、第1の接続配管6
を経て熱源機Aの第4の逆止弁35、熱源機側熱交換器
3に流入し、空気と熱交換して蒸発しガス状態となり、
熱源機Aの四方切換弁2、アキュムレータ4を経て圧縮
機1に吸入される循環サイクルを構成し、暖房運転を行
う。この時、第1の電磁開閉弁8aと第3の電磁開閉弁
8cは閉じられ、第2の電磁開閉弁8bは開かれてい
る。また、冷媒はこの時、第1の接続配管6が高圧であ
り、第2の接続配管7が低圧のため、必然的に第3の逆
止弁34、第4の逆止弁35を流通する。
The refrigerant in this liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state, and the second connection on the indoor unit side. From the pipes 7b, 7c and 7d, they flow into the second branch portion 11 and merge, and further pass through the fourth flow rate control device 17. Here, the refrigerant is decompressed by the first flow control device 9 or the third and fourth flow control devices 15 and 17 to a low-pressure gas-liquid two-phase state. The refrigerant reduced to a low pressure is the first connection pipe 6
Through the fourth check valve 35 of the heat source unit A and the heat exchanger 3 on the heat source unit side, and exchanges heat with air to evaporate and become a gas state,
A circulation cycle in which the compressor 1 is sucked through the four-way switching valve 2 of the heat source unit A and the accumulator 4 constitutes a heating operation. At this time, the first electromagnetic opening / closing valve 8a and the third electromagnetic opening / closing valve 8c are closed, and the second electromagnetic opening / closing valve 8b is opened. At this time, the refrigerant has a high pressure in the first connecting pipe 6 and a low pressure in the second connecting pipe 7, so that the refrigerant inevitably flows through the third check valve 34 and the fourth check valve 35. .

【0013】次に、「冷暖房同時運転における冷房主
体」の場合について図11を用いて説明する。同図に実
線矢印で示すように、圧縮機1より吐出された高温高圧
冷媒ガスは、四方切換弁2を経て熱源機側熱交換器3に
流入し、空気と熱交換して気液二相の高温高圧状態とな
る。その後、この二相の高温高圧状態の冷媒は、第1の
逆止弁32、第2の接続配管7を経て、中継機Eの気液
分離装置12へ送られる。ここで、ガス状冷媒と液状冷
媒に分離され、分離されたガス状冷媒は、第1の分岐部
10、第2の電磁開閉弁8b、室内機側の第1の接続配
管6dを順に通り、暖房しようとする室内機Dに流入
し、室内側熱交換器5で室内空気と熱交換して凝縮液化
し、室内を暖房する。更に、室内側熱交換器5の出口の
サブクール量により制御され、ほぼ全開状態の第1の流
量制御装置9を通り、少し減圧されて、第2の分岐部1
1に流入する。
Next, the case of "mainly cooling in simultaneous cooling and heating operation" will be described with reference to FIG. As shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 through the four-way switching valve 2 and exchanges heat with air to form a gas-liquid two-phase. It becomes a high temperature and high pressure state. After that, the two-phase high-temperature high-pressure refrigerant is sent to the gas-liquid separation device 12 of the relay machine E through the first check valve 32 and the second connection pipe 7. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant sequentially passes through the first branch portion 10, the second electromagnetic opening / closing valve 8b, and the first connection pipe 6d on the indoor unit side, It flows into the indoor unit D to be heated, heat-exchanges with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied, and heats the room. Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, and is slightly decompressed to the second branch portion 1.
Flow into 1.

【0014】一方、残りの液状冷媒は第1の圧力検出手
段25の検出圧力、第2の圧力検出手段26の検出圧力
によって制御される第2の流量制御装置13を通って、
第2の分岐部11に流入し、暖房しようとする室内機D
を通過後の冷媒と合流する。そして、合流した冷媒は、
第2の分岐部11、室内機側の第2の接続配管7b、7
cの順に通り、各室内機B、Cに流入する。各室内機
B、Cに流入した冷媒は、室内機側熱交換器5の出口の
スーパーヒート量により制御される第1の流量制御装置
9によって低圧まで減圧された後に、室内側熱交換器5
に流入し、室内空気と熱交換して蒸発しガス化され、室
内を冷房する。更に、このガス状態となった冷媒は、室
内機側の第1の接続配管6b、6c、第1の電磁開閉弁
8aおよび第3の電磁開閉弁8c、第1の分岐部10を
通り、第1の接続配管6、第2の逆止弁33、熱源機A
の四方切換弁2、アキュムレータ4を経て圧縮機1に吸
入される循環サイクルを構成し、冷房主体運転を行う。
また、この時、室内機B、Cに接続された第1の電磁開
閉弁8aと第3の電磁開閉弁8cは開かれ、第2の電磁
開閉弁8bは閉じられており、室内機Dに接続された第
1の電磁開閉弁8aと第3の電磁開閉弁8cは閉じら
れ、第2の電磁開閉弁8bは開かれている。冷媒はこの
時、第1の接続配管6が低圧、第2の接続配管7が高圧
のため、必然的に第1の逆止弁32、第2の逆止弁33
を流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 controlled by the pressure detected by the first pressure detecting means 25 and the pressure detected by the second pressure detecting means 26,
The indoor unit D that flows into the second branch portion 11 and tries to heat
And then merge with the refrigerant. And the combined refrigerant,
2nd branch part 11, 2nd connection piping 7b and 7 by the side of an indoor unit
It flows into each indoor unit B and C in order of c. The refrigerant flowing into each indoor unit B, C is depressurized to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of the indoor unit heat exchanger 5, and then the indoor heat exchanger 5
Flows into the room, heat exchanges with the room air, evaporates and is gasified, and cools the room. Further, the refrigerant in the gas state passes through the first connection pipes 6b and 6c on the indoor unit side, the first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c, the first branch portion 10, 1, the connection pipe 6, the second check valve 33, the heat source device A
The four-way switching valve 2 and the accumulator 4 form a circulation cycle that is sucked into the compressor 1 to perform the cooling main operation.
At this time, the first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c connected to the indoor units B and C are open, and the second electromagnetic on-off valve 8b is closed, so that the indoor unit D is The first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c that are connected are closed, and the second electromagnetic on-off valve 8b is opened. At this time, the refrigerant has a low pressure in the first connecting pipe 6 and a high pressure in the second connecting pipe 7, so that the first check valve 32 and the second check valve 33 are inevitable.
Distribute.

【0015】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部から第1のバイパス配管14へ入り、第3
の流量制御装置15で低圧まで減圧されて、第3の熱交
換部16b、16c、16dで第2の分岐部11の各室
内機側の第2の接続配管7b、7c、7dとの間で、ま
た第2の熱交換器部16aで第2の分岐部11の各室内
機側の第2の接続配管7b、7c、7dの会合部との間
で、更に第1の熱交換部19で第2の流量制御装置13
に流入する冷媒との間で熱交換を行い、蒸発した冷媒は
第1の接続配管6第2の逆止弁33へ入り、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される。一方、第1、第2、第3の熱交換部19、16
a、16b、16c、16dで熱交換し冷却されサブク
ールを充分につけられた第2の分岐部11の冷媒は、冷
房しようとしている室内機B、Cへ流入する。従来、熱
源機1台に対して複数台の室内機をガス管と液管の2本
の配管で接続されて、冷暖房運転をするヒートポンプ式
空気調和装置は一般的であり、各室内機B、C、Dはす
べて暖房、またはすべて冷房を行うように形成されてい
る。
During this cycle, part of the liquid refrigerant is the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
Enter the first bypass pipe 14 from the meeting point of 7d,
The pressure is reduced to a low pressure by the flow rate control device 15 of the third heat exchange unit 16b, 16c, 16d and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch unit 11. Further, in the second heat exchanger section 16a, between the second connection section 11 and the meeting section of the second connection pipes 7b, 7c, 7d of each indoor unit side, and further in the first heat exchange section 19. Second flow control device 13
The heat exchange is performed with the refrigerant flowing into the refrigerant, and the evaporated refrigerant enters the first connecting pipe 6 and the second check valve 33, and passes through the four-way switching valve 2 of the heat source device A and the accumulator 4 to the compressor 1. Inhaled. On the other hand, the first, second and third heat exchange parts 19, 16
The refrigerant in the second branch portion 11 which has been heat-exchanged and cooled in a, 16b, 16c, and 16d and is sufficiently subcooled flows into the indoor units B and C that are about to be cooled. Conventionally, a heat pump type air conditioner in which a plurality of indoor units are connected to one heat source unit by two pipes of a gas pipe and a liquid pipe to perform cooling and heating operation is common, and each indoor unit B, All of C and D are formed to perform heating or cooling.

【0016】次に、「冷暖同時運転における暖房主体」
の場合について図12を用いて説明する。同図に破線矢
印で示すように、圧縮機1より吐出された高温高圧冷媒
ガスは、四方切換弁2を経て第3の逆止弁34、第2の
接続配管7を通して中継機Eへ送られ、気液分離装置1
2を通り、第1の分岐部10、第2の電磁開閉弁8b、
室内機側の第1の接続配管6b、6cを順に通り、暖房
しようとしている各室内機B、Cに流入する。そして、
冷媒は室内側熱交換器5で室内空気と熱交換して凝縮液
化され、室内を暖房する。この凝縮液化した冷媒は、各
室内側熱交換器5の出口のサブクール量により制御され
てほぼ全開状態の第1の流量制御装置9を通り、少し減
圧されて第2の分岐部11に流入する。
Next, "mainly heating in simultaneous cooling and heating operation"
The case will be described with reference to FIG. As indicated by the broken line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 is sent to the repeater E through the four-way switching valve 2, the third check valve 34, and the second connecting pipe 7. , Gas-liquid separator 1
2, the first branch portion 10, the second electromagnetic opening / closing valve 8b,
The first connection pipes 6b and 6c on the indoor unit side are sequentially passed to flow into the indoor units B and C to be heated. And
The refrigerant exchanges heat with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room. The condensed and liquefied refrigerant is controlled by the subcool amount at the outlet of each indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, is slightly decompressed, and flows into the second branch portion 11. .

【0017】この冷媒の一部は、室内機側の第2の接続
配管7dを通り、冷房しようとする室内機Dに入り、室
内側熱交換器5の出口のスーパーヒート量により制御さ
れる第1の流量制御装置9に入り、減圧された後に、室
内側熱交換器5に入って熱交換して蒸発しガス状態とな
って室内を冷房し、第1の接続配管6dを経て第1の電
磁開閉弁8aおよび第3の電磁開閉弁8cを介して第1
の接続配管6に流入する。一方、第2の分岐部11から
の冷媒は、第1の圧力検出手段25の検出圧力と、第2
の圧力検出手段26の検出圧力との圧力差が所定範囲と
なるように制御される第4の流量制御装置17と第2の
バイパス配管14aを通って、冷房しようとする室内機
Dを通った冷媒と合流して太い第1の接続配管6を経
て、熱源機Aの第4の逆止弁35、熱源機側熱交換器3
に流入し、空気と熱交換して蒸発しガス状態となる。
A part of this refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and is controlled by the superheat amount at the outlet of the indoor heat exchanger 5. After entering the flow rate control device 9 of No. 1 and being decompressed, it enters the indoor side heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room, and the first connecting pipe 6d First via the electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c
Flows into the connecting pipe 6. On the other hand, the refrigerant from the second branch portion 11 has a pressure detected by the first pressure detection means 25 and a second pressure.
Through the fourth flow rate controller 17 and the second bypass pipe 14a, which are controlled so that the pressure difference from the pressure detected by the pressure detecting means 26 falls within a predetermined range, and then passes through the indoor unit D to be cooled. The fourth check valve 35 of the heat source unit A, the heat source unit side heat exchanger 3 merges with the refrigerant and passes through the thick first connection pipe 6.
Flowing in, and heat-exchanges with air to evaporate and become a gas state.

【0018】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5での蒸発圧力と、熱源機側熱
交換器3での圧力との差は、太い第1の接続配管6に切
り換えるために小さくなる。また、この時、室内機B、
Cに接続された第1の電磁開閉弁8aと第3の電磁開閉
弁8cは閉じられ、第2の電磁開閉弁8bは開かれてお
り、室内機Dに接続された第1の電磁開閉弁8aと第3
の電磁開閉弁8cは開かれ、第2の電磁開閉弁8bは閉
じられている。また、冷媒はこの時、第1の接続配管6
が低圧であり、第2の接続配管7が高圧のため、必然的
に第3の逆止弁34、第4の逆止弁35へ流通する。
This refrigerant constitutes a circulation cycle in which it is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4, and performs heating-main operation. At this time, the difference between the evaporation pressure in the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure in the heat source unit side heat exchanger 3 becomes small because of switching to the thick first connection pipe 6. At this time, the indoor unit B,
The first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c connected to C are closed, the second electromagnetic on-off valve 8b is opened, and the first electromagnetic on-off valve connected to the indoor unit D 8a and 3rd
The electromagnetic opening / closing valve 8c is opened and the second electromagnetic opening / closing valve 8b is closed. At this time, the refrigerant is the first connecting pipe 6
Is a low pressure and the second connection pipe 7 is a high pressure, so that it inevitably flows to the third check valve 34 and the fourth check valve 35.

【0019】このサイクル時、一部の液冷媒は第2の分
岐部11の各室内機側の第2の接続配管7b、7c、7
dの会合部から第1のバイパス配管14へ入り、第3の
流量制御装置15で低圧まで減圧されて、第3の熱交換
部16b、16c、16dで第2の分岐部11の各室内
機側の第2の接続配管7b、7c、7dとの間で、また
第2の熱交換部16aで第2の分岐部11の各室内機側
の第2の接続配管7b、7c、7dの会合部との間で、
更に第1の熱交換部19で第2の流量制御装置13から
流入する冷媒との間で、それぞれ熱交換して蒸発する。
このように蒸発した冷媒は、第1の接続配管6、第4の
逆止弁35を経由し、熱源機側熱交換器3へ入り、空気
と熱交換して蒸発気化した後、熱源機Aの四方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される。一
方、第1、第2、第3の熱交換部19、16a、16
b、16c、16dで熱交換して冷却され、サブクール
を充分につけられた第2の分岐部11の冷媒は冷房しよ
うとしている室内機Dへ流入する。
During this cycle, part of the liquid refrigerant is the second connecting pipes 7b, 7c, 7 on the indoor unit side of the second branch portion 11.
It enters into the 1st bypass piping 14 from the meeting part of d, it is pressure-reduced to low pressure with the 3rd flow control device 15, and each indoor unit of the 2nd branching part 11 is 3rd heat exchange parts 16b, 16c, and 16d. Of the second connection pipes 7b, 7c, 7d on the side of each indoor unit and the second connection pipes 7b, 7c, 7d on the side of each indoor unit of the second branch portion 11 in the second heat exchange portion 16a. Between departments,
Further, the first heat exchange section 19 exchanges heat with the refrigerant flowing from the second flow rate control device 13 to evaporate.
The refrigerant thus evaporated enters the heat source unit side heat exchanger 3 via the first connecting pipe 6 and the fourth check valve 35, and after heat exchange with the air to evaporate and vaporize, the heat source unit A It is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4. On the other hand, the first, second, and third heat exchange parts 19, 16a, 16
The refrigerant in the second branch portion 11, which is cooled by heat exchange with b, 16c, and 16d and is sufficiently subcooled, flows into the indoor unit D that is about to be cooled.

【0020】[0020]

【発明が解決しようとする課題】従来の冷暖房同時運転
可能な多室型ヒートポンプ式の空気調和装置は以上のよ
うに構成されているので、運転状態が全暖房または暖房
主体運転時は、第2の接続配管7および気液分分離装置
12内は高圧ガス冷媒で満たされており、また、全冷房
または冷房主体運転時は、第2の接続配管7および気液
分離装置12内は高圧で気液二相の冷媒で満たされてい
る。よって、運転状態が全暖房または暖房主体運転から
全冷房または冷房主体運転へと切換えられた場合、各室
内機において所定の冷房能力を出すためには、第2の接
続配管7内および気液分離装置12内の高圧ガス冷媒を
速やかに移動させ、高圧で二相の冷媒に置き換えられな
ければならない。
Since the conventional multi-chamber heat pump type air conditioner capable of simultaneous heating and cooling operation is constructed as described above, the second state is set when the operating state is heating only or heating-based operation. The inside of the connection pipe 7 and the gas-liquid separation device 12 is filled with a high-pressure gas refrigerant, and the inside of the second connection pipe 7 and the gas-liquid separation device 12 is filled with high-pressure gas refrigerant during the cooling only or the cooling main operation. Liquid filled with two-phase refrigerant. Therefore, when the operating state is switched from the heating only or heating-main operation to the cooling only or the cooling-main operation, in order to obtain a predetermined cooling capacity in each indoor unit, the inside of the second connection pipe 7 and the gas-liquid separation are separated. The high pressure gas refrigerant in the device 12 must be rapidly displaced and replaced with high pressure, two phase refrigerant.

【0021】この発明は、上記のような問題点を解決す
るためになされたもので、運転状態が全暖房または暖房
主体運転から全冷房または冷房主体運転へと切換える際
に、各室内機において所定の冷房能力を出すために、第
2の接続配管内または気液分離装置内の高圧ガス冷媒を
速やかに移動させ、高圧で二相の冷媒に置き換えること
のできる空気調和装置の提供を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and when the operating state is switched from the heating only or heating-main operation to the cooling only or the cooling-main operation, each indoor unit has a predetermined operation. It is an object of the present invention to provide an air conditioner capable of promptly moving the high-pressure gas refrigerant in the second connection pipe or the gas-liquid separator to replace it with a two-phase refrigerant at high pressure in order to obtain the cooling capacity of .

【0022】[0022]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1の発明に係る空気調和装置は、圧縮機、
四方切換弁、熱源機側熱交換器、アキュムレータ等から
なる1台の熱源機と、室内側熱交換器、第1の流量制御
装置等からなる複数台の室内機と、熱源機と複数の室内
機とを並列に接続する第1、第2の接続配管と、複数台
の室内機の室内側熱交換器の一方側と第1の接続配管と
を接続する配管の途中に設けられた第1の電磁開閉弁、
複数台の室内機の室内側熱交換器の一方側と第2の接続
配管とを接続する配管の途中に設けられた第2の電磁開
閉弁、および複数台の室内機の室内側熱交換器の一方側
と第1の接続配管とを接続する配管の途中に設けられ第
1の電磁開閉弁と並列に接続される第3の電磁開閉弁か
ら構成される第1の分岐部と、複数台の室内機の室内側
熱交換器の他方側をそれぞれ第1の流量制御装置を介し
て第2の接続配管に接続する第2の分岐部と、第2の接
続配管の途中に設けられガス冷媒と液冷媒とを分離する
気液分離装置と、気液分離装置の下部と第2の分岐部と
の間の第2の接続配管の途中に設けられた第2の流量制
御装置と、第2の分岐部と第1の接続配管とを接続して
設けられ第3の流量制御装置を有する第1のバイパス配
管と、第2の分岐部と第1の接続配管とを接続して設け
られ第4の流量制御装置を有する第2のバイパス配管
と、第1の接続配管と第2の接続配管とをバイパス接続
して設けられ第4の電磁開閉弁を有するバイパス回路
と、熱源機側熱交換器が凝縮器となる冷房モード運転時
には、熱源機側熱交換器の冷媒出口側から第2の接続配
管側にのみ冷媒を流通させるとともに第1の接続配管か
ら四方切換弁側にのみ冷媒を流通させ、かつ、熱源機側
熱交換器が蒸発器となる暖房モード運転時には、第1の
接続配管から熱源機側熱交換器の冷媒流入側にのみ冷媒
を流通させるとともに四方切換弁から第2の接続配管側
にのみ冷媒を流通させる流路切換装置と、第1の分岐
部、第2の分岐部、気液分離装置、第2の流量制御装
置、第3の流量制御装置、第4の流量制御装置、第1の
バイパス配管、および第2のバイパス配管を有してなり
熱源機と複数台の室内機との間に介在される中継機と、
暖房モード運転から冷房モード運転への切換え時、第2
の接続配管内または気液分離装置内を、ガス冷媒から少
なくとも気液二相冷媒に置き換える冷媒置換手段とを備
えたものである。
In order to achieve the above object, an air conditioner according to the invention of claim 1 is a compressor,
One heat source unit including a four-way switching valve, a heat source unit side heat exchanger, an accumulator, and the like, a plurality of indoor units including an indoor side heat exchanger, a first flow rate control unit, and the like, a heat source unit and a plurality of indoor units First and second connection pipes connecting the machines in parallel, and a first pipe provided in the middle of a pipe connecting one side of the indoor heat exchangers of the plurality of indoor units and the first connection pipe Solenoid on-off valve,
A second electromagnetic on-off valve provided in the middle of a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units and the second connection pipe, and an indoor heat exchanger of the plurality of indoor units A first branch portion including a third electromagnetic opening / closing valve connected in parallel to the first electromagnetic opening / closing valve and provided in the middle of a pipe connecting one side to the first connecting pipe; Second branch part for connecting the other side of the indoor side heat exchanger of the indoor unit to the second connecting pipe via the first flow rate control device, and a gas refrigerant provided in the middle of the second connecting pipe. A gas-liquid separation device for separating the liquid refrigerant and the liquid refrigerant; a second flow rate control device provided in the middle of the second connecting pipe between the lower portion of the gas-liquid separation device and the second branch portion; A first bypass pipe having a third flow rate control device, which is provided by connecting the first branch pipe and the first connection pipe, and a second branch pipe. A second bypass pipe provided by connecting the first connection pipe and the first connection pipe, and a fourth bypass pipe provided by connecting the first connection pipe and the second connection pipe by bypass connection. During the cooling mode operation in which the bypass circuit having the electromagnetic opening / closing valve and the heat-source-unit-side heat exchanger serve as a condenser, the refrigerant is circulated only from the coolant outlet side of the heat-source-unit-side heat exchanger to the second connection pipe side, and During the heating mode operation in which the refrigerant is circulated only from the connection pipe No. 1 to the four-way switching valve side and the heat exchanger on the heat source unit side becomes the evaporator, the refrigerant inflow side of the heat exchanger on the heat source unit side from the first connection pipe And a flow path switching device that allows the refrigerant to flow only through the four-way switching valve to the second connection pipe side, and a first branch portion, a second branch portion, a gas-liquid separation device, and a second flow rate. Control device, third flow control device, fourth flow control device A repeater interposed between the first bypass pipe, and the second has a bypass pipe to become the heat source apparatus and a plurality of indoor units,
When switching from heating mode operation to cooling mode operation, the second
Refrigerant replacement means for replacing the inside of the connection pipe or the inside of the gas-liquid separator with at least the gas-liquid two-phase refrigerant from the gas refrigerant.

【0023】請求項2の発明に係る空気調和装置は、圧
縮機、四方切換弁、熱源機側熱交換器、アキュムレータ
等からなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置等からなる複数台の室内機と、熱源機と複数
の室内機とを並列に接続する第1、第2の接続配管と、
複数台の室内機の室内側熱交換器の一方側と第1の接続
配管とを接続する配管の途中に設けられた第1の電磁開
閉弁、複数台の室内機の室内側熱交換器の一方側と第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および複数台の室内機の室内側熱交換器の
一方側と第1の接続配管とを接続する配管の途中に設け
られ第1の電磁開閉弁と並列に接続される第3の電磁開
閉弁から構成される第1の分岐部と、複数台の室内機の
室内側熱交換器の他方側をそれぞれ第1の流量制御装置
を介して第2の接続配管に接続する第2の分岐部と、第
2の接続配管の途中に設けられガス冷媒と液冷媒とを分
離する気液分離装置と、気液分離装置の下部と第2の分
岐部との間の第2の接続配管の途中に設けられた第2の
流量制御装置と、第2の分岐部と第1の接続配管とを接
続して設けられ第3の流量制御装置を有する第1のバイ
パス配管と、第2の分岐部と第1の接続配管とを接続し
て設けられ第4の流量制御装置を有する第2のバイパス
配管と、第1の接続配管と第2の接続配管とをバイパス
接続して設けられ第4の電磁開閉弁を有するバイパス回
路と、熱源機側熱交換器が凝縮器となる冷房モード運転
時には、熱源機側熱交換器の冷媒出口側から第2の接続
配管側にのみ冷媒を流通させるとともに第1の接続配管
から四方切換弁側にのみ冷媒を流通させ、かつ、熱源機
側熱交換器が蒸発器となる暖房モード運転時には、第1
の接続配管から熱源機側熱交換器の冷媒流入側にのみ冷
媒を流通させるとともに四方切換弁から第2の接続配管
側にのみ冷媒を流通させる流路切換装置と、第1の分岐
部、第2の分岐部、気液分離装置、第2の流量制御装
置、第3の流量制御装置、第4の流量制御装置、第1の
バイパス配管、および第2のバイパス配管を有してなり
熱源機と複数台の室内機との間に介在される中継機と、
暖房モード運転から冷房モード運転への切換え時、バイ
パス回路の第4の電磁開閉弁を開けて、第2の接続配管
内または気液分離装置内を少なくとも気液二相冷媒に置
き換えるように制御する第1の制御手段とを備えてなる
ものである。
According to the second aspect of the present invention, there is provided an air conditioner comprising: a heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, etc., an indoor side heat exchanger, and a first flow rate. A plurality of indoor units including a control device and the like, first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel,
A first electromagnetic opening / closing valve provided in the middle of a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units and the first connection pipe, One side and second
A second solenoid on-off valve provided in the middle of a pipe connecting the first connection pipe and a second electromagnetic on-off valve provided in the middle of the pipe connecting the first connection pipe and the indoor heat exchanger of the plurality of indoor units. A first branch portion that is provided and is configured by a third electromagnetic on-off valve that is connected in parallel with the first electromagnetic on-off valve and the other side of the indoor heat exchangers of the plurality of indoor units are respectively connected to the first A second branch portion connected to the second connection pipe via the flow rate control device, a gas-liquid separation device provided in the middle of the second connection pipe for separating a gas refrigerant and a liquid refrigerant, and a gas-liquid separation device A second flow rate control device provided in the middle of the second connection pipe between the lower part of the first branch pipe and the second branch part, and a second flow control device provided by connecting the second branch part and the first connection pipe. The first bypass pipe having the flow rate control device of No. 3 is connected to the second branch portion and the first connection pipe, and the fourth bypass pipe is provided. A second bypass pipe having a quantity control device, a bypass circuit provided by connecting the first connection pipe and the second connection pipe by bypass and having a fourth electromagnetic on-off valve, and a heat source side heat exchanger During cooling mode operation as a condenser, the refrigerant is circulated only from the refrigerant outlet side of the heat source side heat exchanger to the second connection pipe side and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, In addition, during the heating mode operation in which the heat source side heat exchanger serves as an evaporator, the first
A flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; the first branching portion; A heat source device having two branch parts, a gas-liquid separation device, a second flow rate control device, a third flow rate control device, a fourth flow rate control device, a first bypass pipe, and a second bypass pipe. And a repeater interposed between the indoor units and a plurality of indoor units,
At the time of switching from the heating mode operation to the cooling mode operation, the fourth electromagnetic opening / closing valve of the bypass circuit is opened, and control is performed so that at least the gas-liquid two-phase refrigerant is replaced in the second connection pipe or the gas-liquid separator. And a first control means.

【0024】請求項3の発明に係る空気調和装置は、圧
縮機、四方切換弁、熱源機側熱交換器、アキュムレータ
等からなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置等からなる複数台の室内機と、熱源機と複数
の室内機とを並列に接続する第1、第2の接続配管と、
複数台の室内機の室内側熱交換器の一方側と第1の接続
配管とを接続する配管の途中に設けられた第1の電磁開
閉弁、複数台の室内機の室内側熱交換器の一方側と第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および複数台の室内機の室内側熱交換器の
一方側と第1の接続配管とを接続する配管の途中に設け
られ第1の電磁開閉弁と並列に接続される第3の電磁開
閉弁から構成される第1の分岐部と、複数台の室内機の
室内側熱交換器の他方側をそれぞれ第1の流量制御装置
を介して第2の接続配管に接続する第2の分岐部と、第
2の接続配管の途中に設けられガス冷媒と液冷媒とを分
離する気液分離装置と、気液分離装置の下部と第2の分
岐部との間の第2の接続配管の途中に設けられた第2の
流量制御装置と、第2の分岐部と第1の接続配管とを接
続して設けられ第3の流量制御装置を有する第1のバイ
パス配管と、第2の分岐部と第1の接続配管とを接続し
て設けられ第4の流量制御装置を有する第2のバイパス
配管と、第1の接続配管と第2の接続配管とをバイパス
接続して設けられ第4の電磁開閉弁を有するバイパス回
路と、熱源機側熱交換器が凝縮器となる冷房モード運転
時には、熱源機側熱交換器の冷媒出口側から第2の接続
配管側にのみ冷媒を流通させるとともに第1の接続配管
から四方切換弁側にのみ冷媒を流通させ、かつ、熱源機
側熱交換器が蒸発器となる暖房モード運転時には、第1
の接続配管から熱源機側熱交換器の冷媒流入側にのみ冷
媒を流通させるとともに四方切換弁から第2の接続配管
側にのみ冷媒を流通させる流路切換装置と、第1の分岐
部、第2の分岐部、気液分離装置、第2の流量制御装
置、第3の流量制御装置、第4の流量制御装置、第1の
バイパス配管、および第2のバイパス配管を有してなり
熱源機と複数台の室内機との間に介在される中継機と、
暖房モード運転から冷房モード運転への切換え時、中継
機内の第2の流量制御装置および他の少なくとも1つ以
上の流量制御装置を開けて、第2の接続配管内または気
液分離装置内を少なくとも気液二相冷媒に置き換えるよ
うに制御する第2の制御手段とを備えてなるものであ
る。
In the air conditioner according to the invention of claim 3, one heat source device comprising a compressor, a four-way switching valve, a heat source device side heat exchanger, an accumulator, etc., an indoor side heat exchanger, and a first flow rate. A plurality of indoor units including a control device and the like, first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel,
A first electromagnetic opening / closing valve provided in the middle of a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units and the first connection pipe, One side and second
A second solenoid on-off valve provided in the middle of a pipe connecting the first connection pipe and a second electromagnetic on-off valve provided in the middle of the pipe connecting the first connection pipe and the indoor heat exchanger of the plurality of indoor units. A first branch portion that is provided and is configured by a third electromagnetic on-off valve that is connected in parallel with the first electromagnetic on-off valve and the other side of the indoor heat exchangers of the plurality of indoor units are respectively connected to the first A second branch portion connected to the second connection pipe via the flow rate control device, a gas-liquid separation device provided in the middle of the second connection pipe for separating a gas refrigerant and a liquid refrigerant, and a gas-liquid separation device A second flow rate control device provided in the middle of the second connection pipe between the lower part of the first branch pipe and the second branch part, and a second flow control device provided by connecting the second branch part and the first connection pipe. The first bypass pipe having the flow rate control device of No. 3 is connected to the second branch portion and the first connection pipe, and the fourth bypass pipe is provided. A second bypass pipe having a quantity control device, a bypass circuit provided by connecting the first connection pipe and the second connection pipe by bypass and having a fourth electromagnetic on-off valve, and a heat source side heat exchanger During cooling mode operation as a condenser, the refrigerant is circulated only from the refrigerant outlet side of the heat source side heat exchanger to the second connection pipe side and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, In addition, during the heating mode operation in which the heat source side heat exchanger serves as an evaporator, the first
A flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; the first branching portion; A heat source device having two branch parts, a gas-liquid separation device, a second flow rate control device, a third flow rate control device, a fourth flow rate control device, a first bypass pipe, and a second bypass pipe. And a repeater interposed between the indoor units and a plurality of indoor units,
At the time of switching from the heating mode operation to the cooling mode operation, the second flow rate control device in the repeater and at least one other flow rate control device are opened so that at least the second connection pipe or the gas-liquid separation device is opened. Second control means for controlling so as to replace with the gas-liquid two-phase refrigerant.

【0025】請求項4の発明に係る空気調和装置は、圧
縮機、四方切換弁、熱源機側熱交換器、アキュムレータ
等からなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置等からなる複数台の室内機と、熱源機と複数
の室内機とを並列に接続する第1、第2の接続配管と、
複数台の室内機の室内側熱交換器の一方側と第1の接続
配管とを接続する配管の途中に設けられた第1の電磁開
閉弁、複数台の室内機の室内側熱交換器の一方側と第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および複数台の室内機の室内側熱交換器の
一方側と第1の接続配管とを接続する配管の途中に設け
られ第1の電磁開閉弁と並列に接続される第3の電磁開
閉弁から構成される第1の分岐部と、複数台の室内機の
室内側熱交換器の他方側をそれぞれ第1の流量制御装置
を介して第2の接続配管に接続する第2の分岐部と、第
2の接続配管の途中に設けられガス冷媒と液冷媒とを分
離する気液分離装置と、気液分離装置の下部と第2の分
岐部との間の第2の接続配管の途中に設けられた第2の
流量制御装置と、第2の分岐部と第1の接続配管とを接
続して設けられ第3の流量制御装置を有する第1のバイ
パス配管と、第2の分岐部と第1の接続配管とを接続し
て設けられ第4の流量制御装置を有する第2のバイパス
配管と、第1の接続配管と第2の接続配管とをバイパス
接続して設けられ第4の電磁開閉弁を有するバイパス回
路と、熱源機側熱交換器が凝縮器となる冷房モード運転
時には、熱源機側熱交換器の冷媒出口側から第2の接続
配管側にのみ冷媒を流通させるとともに第1の接続配管
から四方切換弁側にのみ冷媒を流通させ、かつ、熱源機
側熱交換器が蒸発器となる暖房モード運転時には、第1
の接続配管から熱源機側熱交換器の冷媒流入側にのみ冷
媒を流通させるとともに四方切換弁から第2の接続配管
側にのみ冷媒を流通させる流路切換装置と、第1の分岐
部、第2の分岐部、気液分離装置、第2の流量制御装
置、第3の流量制御装置、第4の流量制御装置、第1の
バイパス配管、および第2のバイパス配管を有してなり
熱源機と複数台の室内機との間に介在される中継機と、
暖房モード運転から冷房モード運転への切換え時、第1
の電磁開閉弁および第2の電磁開閉弁を開けて、第2の
接続配管内または気液分離装置内を少なくとも気液二相
冷媒に置き換えるように制御する第3の制御手段とを備
えてなるものである。
In the air conditioner according to the invention of claim 4, one heat source device comprising a compressor, a four-way switching valve, a heat source device side heat exchanger, an accumulator, etc., an indoor side heat exchanger, and a first flow rate. A plurality of indoor units including a control device and the like, first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel,
A first electromagnetic opening / closing valve provided in the middle of a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units and the first connection pipe, One side and second
A second solenoid on-off valve provided in the middle of a pipe connecting the first connection pipe and a second electromagnetic on-off valve provided in the middle of the pipe connecting the first connection pipe and the indoor heat exchanger of the plurality of indoor units. A first branch portion that is provided and is configured by a third electromagnetic on-off valve that is connected in parallel with the first electromagnetic on-off valve and the other side of the indoor heat exchangers of the plurality of indoor units are respectively connected to the first A second branch portion connected to the second connection pipe via the flow rate control device, a gas-liquid separation device provided in the middle of the second connection pipe for separating a gas refrigerant and a liquid refrigerant, and a gas-liquid separation device A second flow rate control device provided in the middle of the second connection pipe between the lower part of the first branch pipe and the second branch part, and a second flow control device provided by connecting the second branch part and the first connection pipe. The first bypass pipe having the flow rate control device of No. 3 is connected to the second branch portion and the first connection pipe, and the fourth bypass pipe is provided. A second bypass pipe having a quantity control device, a bypass circuit provided by connecting the first connection pipe and the second connection pipe by bypass and having a fourth electromagnetic on-off valve, and a heat source side heat exchanger During cooling mode operation as a condenser, the refrigerant is circulated only from the refrigerant outlet side of the heat source side heat exchanger to the second connection pipe side and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, In addition, during the heating mode operation in which the heat source side heat exchanger serves as an evaporator, the first
A flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; the first branching portion; A heat source device having two branch parts, a gas-liquid separation device, a second flow rate control device, a third flow rate control device, a fourth flow rate control device, a first bypass pipe, and a second bypass pipe. And a repeater interposed between the indoor units and a plurality of indoor units,
When switching from heating mode operation to cooling mode operation, the first
And a third control means for controlling so as to open the electromagnetic on-off valve and the second electromagnetic on-off valve and replace at least the gas-liquid two-phase refrigerant in the second connection pipe or in the gas-liquid separation device. It is a thing.

【0026】請求項5の発明に係る空気調和装置は、圧
縮機、四方切換弁、熱源機側熱交換器、アキュムレータ
等からなる1台の熱源機と、室内側熱交換器、第1の流
量制御装置等からなる複数台の室内機と、熱源機と複数
の室内機とを並列に接続する第1、第2の接続配管と、
複数台の室内機の室内側熱交換器の一方側と第1の接続
配管とを接続する配管の途中に設けられた第1の電磁開
閉弁、複数台の室内機の室内側熱交換器の一方側と第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および複数台の室内機の室内側熱交換器の
一方側と第1の接続配管とを接続する配管の途中に設け
られるとともに第1の電磁開閉弁と並列に接続され第1
の電磁開閉弁よりも開口径の小さな第3の電磁開閉弁か
ら構成される第1の分岐部と、複数台の室内機の室内側
熱交換器の他方側をそれぞれ第1の流量制御装置を介し
て第2の接続配管に接続する第2の分岐部と、第2の接
続配管の途中に設けられガス冷媒と液冷媒とを分離する
気液分離装置と、気液分離装置の下部と第2の分岐部と
の間の第2の接続配管の途中に設けられた第2の流量制
御装置と、第2の分岐部と第1の接続配管とを接続して
設けられ第3の流量制御装置を有する第1のバイパス配
管と、第2の分岐部と第1の接続配管とを接続して設け
られ第4の流量制御装置を有する第2のバイパス配管
と、第1の接続配管と第2の接続配管とをバイパス接続
して設けられ第4の電磁開閉弁を有するバイパス回路
と、熱源機側熱交換器が凝縮器となる冷房モード運転時
には、熱源機側熱交換器の冷媒出口側から第2の接続配
管側にのみ冷媒を流通させるとともに第1の接続配管か
ら四方切換弁側にのみ冷媒を流通させ、かつ、熱源機側
熱交換器が蒸発器となる暖房モード運転時には、第1の
接続配管から熱源機側熱交換器の冷媒流入側にのみ冷媒
を流通させるとともに四方切換弁から第2の接続配管側
にのみ冷媒を流通させる流路切換装置と、第1の分岐
部、第2の分岐部、気液分離装置、第2の流量制御装
置、第3の流量制御装置、第4の流量制御装置、第1の
バイパス配管、および第2のバイパス配管を有してなり
熱源機と複数台の室内機との間に介在される中継機と、
暖房モード運転から冷房モード運転への切換え時、第2
の電磁開閉弁および第3の電磁開閉弁を開けて、第2の
接続配管内または気液分離装置内を少なくとも気液二相
冷媒に置き換えるように制御する第4の制御手段とを備
えてなるものである。
According to the fifth aspect of the present invention, in the air conditioner, one heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, etc., an indoor side heat exchanger, and a first flow rate are provided. A plurality of indoor units including a control device and the like, first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel,
A first electromagnetic opening / closing valve provided in the middle of a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units and the first connection pipe, One side and second
A second solenoid on-off valve provided in the middle of a pipe connecting the first connection pipe and a second electromagnetic on-off valve provided in the middle of the pipe connecting the first connection pipe and the indoor heat exchanger of the plurality of indoor units. Is provided and is connected in parallel with the first solenoid valve
The first branch part composed of a third electromagnetic on-off valve having an opening diameter smaller than that of the electromagnetic on-off valve and the other side of the indoor heat exchangers of the plurality of indoor units, respectively. A second branch part connected to the second connection pipe via the second connection pipe, a gas-liquid separation device provided in the middle of the second connection pipe for separating a gas refrigerant and a liquid refrigerant, and a lower part of the gas-liquid separation device and a first part. A second flow rate control device provided in the middle of the second connection pipe between the second branch part and the third flow rate control device provided by connecting the second branch part and the first connection pipe. A first bypass pipe having a device, a second bypass pipe provided by connecting the second branch portion and the first connection pipe and having a fourth flow rate control device, a first connection pipe and a first bypass pipe A bypass circuit having a fourth electromagnetic on-off valve provided by bypass connection with the second connection pipe, and a heat source side heat exchanger During cooling mode operation as a condenser, the refrigerant is circulated only from the refrigerant outlet side of the heat source side heat exchanger to the second connection pipe side and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, In addition, during the heating mode operation in which the heat source side heat exchanger serves as an evaporator, the refrigerant is circulated from the first connection pipe only to the refrigerant inflow side of the heat source side heat exchanger, and the four-way switching valve is connected to the second connection pipe. Flow path switching device that allows the refrigerant to flow only to the first side, first branch part, second branch part, gas-liquid separation device, second flow rate control device, third flow rate control device, fourth flow rate control device A repeater having a first bypass pipe and a second bypass pipe and interposed between the heat source unit and a plurality of indoor units;
When switching from heating mode operation to cooling mode operation, the second
And a fourth control means for controlling so that the inside of the second connecting pipe or the inside of the gas-liquid separation device is replaced with at least the gas-liquid two-phase refrigerant. It is a thing.

【0027】[0027]

【発明の実施の形態】以下、この発明の空気調和装置の
実施例について説明する。図1はこの発明の一実施例に
よる空気調和装置の冷媒系統を中心とする全体構成図で
ある。また、図2ないし図4は図1の空気調和装置にお
ける冷暖房運転時の動作状態を示したもので、図2は冷
房のみまたは暖房のみの運転動作状態図、図3及び図4
は冷暖房同時運転の動作を示すもので、図3は冷房主体
(冷房運転容量が暖房運転容量より大きい場合)を、図
4は暖房主体(暖房運転容量が冷房運転容量より大きい
場合)を示す運転動作状態図である。なお、ここでは熱
源機1台に室内機3台を接続した場合について説明する
が、2台以上の室内機を接続した場合はすべて同様であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the air conditioner of the present invention will be described below. FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. 2 to 4 show operating states of the air conditioner of FIG. 1 during cooling and heating operations, and FIG. 2 is an operating state diagram of only cooling or only heating, and FIGS.
3 shows the operation of the cooling and heating simultaneous operation, FIG. 3 is an operation mainly showing cooling (when the cooling operation capacity is larger than the heating operation capacity), and FIG. 4 is an operation showing heating mainly (when the heating operation capacity is larger than the cooling operation capacity) It is an operation state diagram. It should be noted that here, a case where three indoor units are connected to one heat source device will be described, but the same applies when two or more indoor units are connected.

【0028】図1において、Aは熱源機、B、C、Dは
後述するように互いに並列接続された室内機で、それぞ
れ同じ構成となっている。Eは後述するように、第1の
分岐部10、第2の流量制御装置13、第2の分岐部1
1、気液分離装置12、第2の熱交換部16a、第3の
熱交換部16b、16c、16d、第1の熱交換部1
9、第3の流量制御装置15、第4の流量制御装置17
を内蔵した中継機である。また、1は圧縮機、2は圧縮
機1から冷媒の流通方向を切り換える四方切換弁、3は
熱源機側熱交換器、4はアキュムレータで、四方切換弁
2を介して圧縮機1と接続されている。これらから熱源
機Aが構成されている。また、5は3台の室内機B、
C、Dにそれぞれ設けられた室内側熱交換器、6は熱源
機Aの四方切換弁2と中継機Eとを後述する第2の逆止
弁33を介して接続する太い第1の接続配管、6b、6
c、6dはそれぞれ室内機B、C、Dの室内側熱交換器
5と中継機Eとを接続し、第1の接続配管6に対応する
室内機側の第1の接続配管、7は熱源機Aの熱源機側熱
交換器3と中継機Eとを後述する第1の逆止弁32を介
して接続し、第1の接続配管6よりも細い第2の接続配
管である。
In FIG. 1, A is a heat source unit, and B, C, and D are indoor units connected in parallel with each other, which will be described later, and have the same structure. As will be described later, E is a first branch unit 10, a second flow rate control device 13, and a second branch unit 1.
1, gas-liquid separator 12, second heat exchange section 16a, third heat exchange sections 16b, 16c, 16d, first heat exchange section 1
9, third flow controller 15, fourth flow controller 17
It is a repeater with a built-in. Further, 1 is a compressor, 2 is a four-way switching valve that switches the flow direction of the refrigerant from the compressor 1, 3 is a heat source side heat exchanger, 4 is an accumulator, and is connected to the compressor 1 via the four-way switching valve 2. ing. The heat source machine A is constructed from these. 5 is three indoor units B,
Indoor heat exchangers 6 respectively provided in C and D, and a thick first connecting pipe 6 for connecting the four-way switching valve 2 of the heat source unit A and the relay unit E via a second check valve 33 described later. , 6b, 6
Reference numerals c and 6d respectively connect the indoor heat exchangers 5 of the indoor units B, C and D and the relay unit E, and the indoor unit side first connection pipes corresponding to the first connection pipes 6, and 7 is a heat source. The heat source unit side heat exchanger 3 of the machine A and the relay unit E are connected via a first check valve 32, which will be described later, and are second connection pipes thinner than the first connection pipe 6.

【0029】また、7b、7c、7dはそれぞれ室内機
B、C、Dの室内側熱交換器5と中継機Eとを第1の流
量制御装置9を介して接続し、第2の接続配管7に対応
する室内機側の第2の接続配管である。8aは室内機側
の第1の接続配管6b、6c、6dと第1の接続配管6
との回路を開閉する第1の電磁開閉弁、8bは室内機側
の第1の接続配管6b、6c、6dと第2の接続配管7
との回路を開閉する第2の電磁開閉弁、8cは第1の電
磁開閉弁8aと並列に接続され第1の電磁開閉弁8aよ
りも開口径の小さな第3の電磁開閉弁である。9は各室
内側熱交換器5に近接してそれぞれ接続され、冷房時は
室内側熱交換器5の出口側のスーパーヒート量により、
暖房時はサブクール量により制御される第1の流量制御
装置で、室内機側の第2の接続配管7b、7c、7dに
接続されている。10は上述した第1の電磁開閉弁8a
と、第2の電磁開閉弁8bと、第3の電磁開閉弁8cと
を有する第1の分岐部である。11は室内機側の第2の
接続配管7b、7c、7dと、第2の接続配管7とより
なる第2の分岐部である。12は第2の接続配管7の途
中に設けられた気液分離装置で、その気相部は第1の分
岐部10の第1の電磁開閉弁8aに接続され、その液相
部は第2の分岐部11に接続されている。13は気液分
離装置12と第2の分岐部11との間に設けられた開閉
自在な第2の流量制御装置(ここでは電気式膨張弁)で
ある。
Reference numerals 7b, 7c and 7d respectively connect the indoor heat exchangers 5 of the indoor units B, C and D and the relay unit E via the first flow control device 9, and the second connecting pipes. 7 is a second connection pipe on the indoor unit side corresponding to 7. Reference numeral 8a denotes the first connection pipes 6b, 6c, 6d on the indoor unit side and the first connection pipe 6
Is a first solenoid on-off valve for opening and closing the circuit with, and 8b is the first connection pipes 6b, 6c, 6d on the indoor unit side and the second connection pipe 7
Is a second electromagnetic on-off valve for opening and closing the circuit, and 8c is a third electromagnetic on-off valve connected in parallel with the first electromagnetic on-off valve 8a and having an opening diameter smaller than that of the first electromagnetic on-off valve 8a. 9 is connected to each of the indoor heat exchangers 5 in close proximity to each other, and during cooling, due to the superheat amount on the outlet side of the indoor heat exchanger 5,
At the time of heating, the first flow rate control device is controlled by the subcool amount, and is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side. 10 is the above-mentioned first solenoid on-off valve 8a
And a second electromagnetic opening / closing valve 8b and a third electromagnetic opening / closing valve 8c. Reference numeral 11 denotes a second branch portion including the second connection pipes 7b, 7c, 7d on the indoor unit side and the second connection pipe 7. Reference numeral 12 is a gas-liquid separator provided in the middle of the second connecting pipe 7, the gas phase portion of which is connected to the first electromagnetic on-off valve 8a of the first branch portion 10 and the liquid phase portion of which is the second Is connected to the branch part 11. Reference numeral 13 denotes a second flow rate control device (here, an electric expansion valve) that is provided between the gas-liquid separation device 12 and the second branch portion 11 and can be opened and closed.

【0030】14は第2の分岐部11と第1の接続配管
6とを結ぶ第1のバイパス配管、15は第1のバイパス
配管14の途中に設けられた第3の流量制御装置(ここ
では電気式膨張弁)、16aは第1のバイパス配管14
途中の第3の流量制御装置15の下流に設けられ、第2
の分岐部11における各室内機側の第2の接続配管7
b、7c、7dの会合部との間でそれぞれ熱交換を行う
第2の熱交換部である。16b、16c、16dはそれ
ぞれ第1のバイパス配管14の途中に設けられた第3の
流量制御装置15の下流側に設けられ、第2の分岐部1
1における各室内機側の第2の接続配管7b、7c、7
dとの間でそれぞれ熱交換を行う第3の熱交換部であ
る。19は第1のバイパス配管14の第3の流量制御装
置15の下流および第2の熱交換部16aの下流に設け
られ、気液分離装置12と第2の流量制御装置13とを
接続する配管との間で熱交換を行う第1の熱交換部、1
7は第2の分岐部11と第1の接続配管6とを接続する
第2のバイパス配管14a途中に設けられた開閉自在な
第4の流量制御装置(ここでは電気式膨張弁)である。
Reference numeral 14 is a first bypass pipe connecting the second branch portion 11 and the first connection pipe 6, and 15 is a third flow rate control device (here, a third flow control device) provided in the middle of the first bypass pipe 14. (Electrical expansion valve), 16a is the first bypass pipe 14
It is provided downstream of the third flow rate control device 15 on the way and
Second connection pipe 7 on each indoor unit side in branch portion 11 of
It is a second heat exchanging part for exchanging heat with the meeting parts of b, 7c and 7d. 16b, 16c, 16d are respectively provided on the downstream side of the third flow rate control device 15 provided in the middle of the first bypass pipe 14, and the second branch portion 1 is provided.
The second connection pipes 7b, 7c, 7 on the indoor unit side in FIG.
It is a third heat exchanging section for exchanging heat with the d. 19 is a pipe that is provided in the first bypass pipe 14 downstream of the third flow rate controller 15 and downstream of the second heat exchange unit 16a, and connects the gas-liquid separator 12 and the second flow rate controller 13 to each other. A first heat exchange section for exchanging heat with
Reference numeral 7 denotes a fourth flow rate control device (here, an electric expansion valve) that is openable and closable provided in the middle of the second bypass pipe 14a that connects the second branch portion 11 and the first connection pipe 6.

【0031】一方、32は熱源機側熱交換器3と第2の
接続配管7との間に設けられた第1の逆止弁であり、熱
源機側熱交換器3から第2の接続配管7へのみ冷媒流通
を許容する。33は熱源機Aの四方切換弁2と第1の接
続配管6との間に設けられた第2の逆止弁であり、第1
の接続配管6から四方切換弁2へのみ冷媒流通を許容す
る。34は熱源機Aの四方切換弁2と第2の接続配管7
との間に設けられた第3の逆止弁であり、四方切換弁2
から第2の接続配管7へのみ冷媒流通を許容する。35
は熱源機側熱交換器3と第1の接続配管6との間に設け
られた第4の逆止弁であり、第1の接続配管6から熱源
機側熱交換器3へのみ冷媒の流通を許容する。上述した
第1、第2、第3、第4の逆止弁32、33、34、3
5の組合せ構成から、流路切換装置40が構成される。
また、49は第1の接続配管6と第2の接続配管7との
間を接続するバイパス回路、48はバイパス回路49の
配管途中に設けられ、バイパス回路49の開閉を制御す
る第4の電磁開閉弁である。
On the other hand, reference numeral 32 is a first check valve provided between the heat source unit side heat exchanger 3 and the second connecting pipe 7, which connects the heat source unit side heat exchanger 3 to the second connecting pipe. Allow the refrigerant flow only to 7. Reference numeral 33 is a second check valve provided between the four-way switching valve 2 of the heat source unit A and the first connecting pipe 6, and is a first check valve.
From the connection pipe 6 to the four-way switching valve 2 only. Reference numeral 34 denotes the four-way switching valve 2 of the heat source unit A and the second connection pipe 7
Is a third check valve provided between the four-way switching valve 2 and
To the second connection pipe 7 only. 35
Is a fourth check valve provided between the heat source device side heat exchanger 3 and the first connection pipe 6, and the refrigerant flows only from the first connection pipe 6 to the heat source device side heat exchanger 3. Tolerate. The above-mentioned first, second, third, and fourth check valves 32, 33, 34, 3
The flow path switching device 40 is composed of the combination structure of No. 5.
Further, 49 is a bypass circuit that connects the first connection pipe 6 and the second connection pipe 7, and 48 is a fourth electromagnetic circuit that is provided in the middle of the bypass circuit 49 and that controls the opening and closing of the bypass circuit 49. It is an on-off valve.

【0032】25は第1の分岐部10と第2の流量制御
装置13との間に設けられた第1の圧力検出手段、26
は第2の流量制御装置13と第4の流量制御装置17と
の間に設けられた第2の圧力検出手段である。50は各
室内機B、C、Dの運転容量をそれぞれ検出する室内機
運転容量検出手段である。また、51は室内機運動容量
検出手段50からの検出信号に基づいて、四方切換弁2
を操作して運転モードを切換えるとともに、第4の電磁
開閉弁48、第2の流量制御装置13、第3の流量制御
装置15、第4の流量制御装置17、第1の電磁開閉弁
8a、第2の電磁開閉弁8b、第3の電磁開閉弁8cを
開閉制御する制御手段(本発明にいう、冷媒置換手段、
第1、第2、第3、第4の制御手段のそれぞれの一例)
である。
Reference numeral 25 is a first pressure detecting means provided between the first branch portion 10 and the second flow rate control device 13, and 26.
Is a second pressure detecting means provided between the second flow rate control device 13 and the fourth flow rate control device 17. Reference numeral 50 is an indoor unit operating capacity detecting means for detecting the operating capacity of each indoor unit B, C, D. Further, 51 is a four-way switching valve 2 based on a detection signal from the indoor unit motion capacity detecting means 50.
Is operated to switch the operation mode, and at the same time, the fourth electromagnetic on-off valve 48, the second flow rate control device 13, the third flow rate control device 15, the fourth flow rate control device 17, the first electromagnetic on-off valve 8a, Control means for controlling the opening / closing of the second electromagnetic opening / closing valve 8b and the third electromagnetic opening / closing valve 8c (refrigerant replacement means in the present invention,
(One example of each of the first, second, third, and fourth control means)
It is.

【0033】次に動作について説明する。まず、図2を
用いて「冷房運転のみ」の場合について説明する。同図
に実線矢印で示すように、圧縮機1より吐出された高温
高圧冷媒ガスは、四方切換弁2を通り、熱源機側熱交換
器3で空気と熱交換して凝縮された後、第1の逆止弁3
2、第2の接続配管7、気液分離装置12、第2の流量
制御装置13の順に通り、更に第2の分岐部11、室内
機側の第2の接続配管7b、7c、7dを通り、各室内
機B、C、Dに流入する。各室内機B、C、Dに流入し
た冷媒は、各室内側熱交換器5の出口のスーパーヒート
量により制御される第1の流量制御装置9により低圧ま
で減圧されて室内側熱交換器5で室内空気と熱交換して
蒸発しガス化され室内を冷房する。
Next, the operation will be described. First, the case of "only cooling operation" will be described with reference to FIG. As indicated by the solid line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, is heat-exchanged with air in the heat-source-unit-side heat exchanger 3, and is condensed. Check valve 3 of 1
2, the second connection pipe 7, the gas-liquid separation device 12, the second flow rate control device 13 in this order, and then the second branch portion 11 and the second connection pipes 7b, 7c, 7d on the indoor unit side. , Into each indoor unit B, C, D. The refrigerant flowing into each indoor unit B, C, D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of each indoor heat exchanger 5, and the indoor heat exchanger 5 It heats and exchanges heat with the room air, is gasified, and cools the room.

【0034】このガス状態となった冷媒は、室内機側の
第1の接続配管6b、6c、6d、第1の電磁開閉弁8
aおよび第3の電磁開閉弁8c、第1の分岐部10、第
1の接続配管6、第2の逆止弁33、熱源機Aの四方切
換弁2、アキュムレータ4を経て圧縮機1に吸入される
循環サイクルを構成し、冷房運転を行う。この時、第1
の電磁開閉弁8aと第3の電磁開閉弁8cは開かれ、第
2の電磁御開閉弁8bは閉じられている。また、冷媒は
この時、第1の接続配管6が低圧であり、第2の接続配
管7が高圧のため、必然的に第1の逆止弁32、第2の
逆止弁33を流通する。また、このサイクルの時、第2
の流量制御装置13を通過した冷媒の一部が第1のバイ
パス配管14へ入り第3の流量制御装置15で低圧まで
減圧されて第3の熱交換部16b、16c、16dで第
2の分岐部11の各室内機側の第2の接続配管7b、7
c、7dとの会合部との間で、また第2の熱交換部16
aで第2の分岐部11の各室内機側の第2の接続配管7
b、7c、7dの間で、更に第1の熱交換部19で第2
の流量制御装置13に流入する冷媒との間で、それぞれ
熱交換を行い蒸発する。このように蒸発した冷媒は、第
1の接続配管6、第2の逆止弁33へ入り、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される。
The refrigerant in the gas state is used as the first connection pipes 6b, 6c, 6d on the indoor unit side and the first solenoid on-off valve 8.
a and the third electromagnetic opening / closing valve 8c, the first branch portion 10, the first connecting pipe 6, the second check valve 33, the four-way switching valve 2 of the heat source device A, and the accumulator 4 to suck in the compressor 1. The cooling cycle is configured and the cooling operation is performed. At this time, the first
The electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c are opened, and the second electromagnetic control valve 8b is closed. At this time, the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure, so that the refrigerant inevitably flows through the first check valve 32 and the second check valve 33. . Also, during this cycle, the second
Part of the refrigerant that has passed through the flow rate control device 13 enters the first bypass pipe 14 and is depressurized to a low pressure by the third flow rate control device 15, and then the second branch is performed by the third heat exchange units 16b, 16c, 16d. The second connection pipes 7b, 7 on the indoor unit side of the section 11
c, 7d and the second heat exchange section 16
The second connection pipe 7 on the side of each indoor unit of the second branch portion 11 is a.
Between b, 7c and 7d, the first heat exchange section 19
The heat exchange with the refrigerant flowing into the flow rate control device 13 is performed and the heat is evaporated. The refrigerant thus evaporated enters the first connecting pipe 6 and the second check valve 33, and is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4.

【0035】一方、第1、第2、第3の熱交換部19、
16a、16b、16c、16dで熱交換して冷却さ
れ、サブクールを充分につけられた第2の分岐部11の
冷媒は冷房しようとしている室内機B、C、Dへそれぞ
れ流入する。
On the other hand, the first, second and third heat exchange parts 19,
The refrigerant in the second branch portion 11, which is cooled by heat exchange with 16a, 16b, 16c, and 16d and is sufficiently subcooled, flows into the indoor units B, C, and D that are about to be cooled.

【0036】次に、図2を用いて「暖房運転のみ」の場
合について説明する。同図に破線矢印で示すように、圧
縮機1より吐出された高温高圧冷媒ガスは、四方切換弁
2を通り、第3の逆止弁34、第2の接続配管7、気液
分離装置12を通り、第1の分岐部10、第2の電磁開
閉弁8b、室内機側の第1の接続配管6b、6c、6d
を順に通り、各室内機B、C、Dに流入し、室内空気と
熱交換して凝縮液化し、室内を暖房する。
Next, the case of "only heating operation" will be described with reference to FIG. As shown by the broken line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the third check valve 34, the second connecting pipe 7, the gas-liquid separation device 12 Through the first branch portion 10, the second electromagnetic opening / closing valve 8b, and the first connection pipes 6b, 6c, 6d on the indoor unit side.
Through each of the indoor units B, C, and D, and exchanges heat with indoor air to be condensed and liquefied to heat the room.

【0037】この液状態となった冷媒は、各室内側熱交
換器5の出口のサブクール量により制御されてほぼ全開
状態の第1の流量制御装置9を通り、室内機側の第2の
接続配管7b、7c、7dから第2の分岐部11に流入
して合流し、更に第4の流量制御装置17を通る。ここ
で、冷媒は、第1の流量制御装置9または第3、第4の
流量制御装置15、17で低圧の気液二相状態まで減圧
される。低圧まで減圧された冷媒は、第2のバイパス配
管14aから第1の接続配管6を経て熱源機Aの第4の
逆止弁35、熱源機側熱交換器3に流入し、空気と熱交
換して蒸発しガス状態となり、熱源機Aの四方切換弁
2、アキュムレータ4を経て圧縮機1に吸入される循環
サイクルを構成し、暖房運転を行う。この時、第1の電
磁開閉弁8aと第3の電磁開閉弁8cは閉じられ、第2
の電磁開閉弁8bは開かれている。また、冷媒はこの
時、第1の接続配管6が高圧であり、第2の接続配管7
が低圧のため、必然的に第3の逆止弁34、第4の逆止
弁35を流通する。
The refrigerant in this liquid state is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state, and then the second connection on the indoor unit side. From the pipes 7b, 7c and 7d, they flow into the second branch portion 11 and merge, and further pass through the fourth flow rate control device 17. Here, the refrigerant is decompressed by the first flow control device 9 or the third and fourth flow control devices 15 and 17 to a low-pressure gas-liquid two-phase state. The refrigerant decompressed to a low pressure flows from the second bypass pipe 14a through the first connecting pipe 6 into the fourth check valve 35 of the heat source device A and the heat source device side heat exchanger 3 to exchange heat with the air. Then, it is vaporized into a gas state, forms a circulation cycle in which it is sucked into the compressor 1 through the four-way switching valve 2 of the heat source unit A and the accumulator 4, and the heating operation is performed. At this time, the first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c are closed, and the second electromagnetic on-off valve 8c is closed.
The solenoid on-off valve 8b of is open. At this time, the refrigerant has a high pressure in the first connecting pipe 6 and the second connecting pipe 7
Is low pressure, so that the third check valve 34 and the fourth check valve 35 necessarily flow.

【0038】続いて、「冷暖房同時運転における冷房主
体」の場合について図3を用いて説明する。同図に実線
矢印で示すように、圧縮機1より吐出された高温高圧冷
媒ガスは、四方切換弁2を経て熱源機側熱交換器3に流
入し、空気と熱交換して気液二相の高温高圧状態とな
る。その後、この二相の高温高圧状態の冷媒は、第1の
逆止弁32、第2の接続配管7を経て、中継機Eの気液
分離装置12へ送られる。ここで、ガス状冷媒と液状冷
媒に分離され、分離されたガス状冷媒は、第1の分岐部
10、第2の電磁開閉弁8b、室内機側の第1の接続配
管6dを順に通り、暖房しようとする室内機Dに流入
し、室内側熱交換器5で室内空気と熱交換して凝縮液化
し、室内を暖房する。更に、室内側熱交換器5の出口の
サブクール量により制御され、ほぼ全開状態の第1の流
量制御装置9を通り、少し減圧されて、第2の分岐部1
1に流入する。
Next, the case of "mainly cooling in simultaneous cooling and heating operation" will be described with reference to FIG. As shown by the solid arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanger 3 through the four-way switching valve 2 and exchanges heat with air to form a gas-liquid two-phase. It becomes a high temperature and high pressure state. After that, the two-phase high-temperature high-pressure refrigerant is sent to the gas-liquid separation device 12 of the relay machine E through the first check valve 32 and the second connection pipe 7. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant sequentially passes through the first branch portion 10, the second electromagnetic opening / closing valve 8b, and the first connection pipe 6d on the indoor unit side, It flows into the indoor unit D to be heated, heat-exchanges with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied, and heats the room. Further, it is controlled by the amount of subcool at the outlet of the indoor heat exchanger 5, passes through the first flow rate control device 9 in a substantially fully opened state, and is slightly decompressed to the second branch portion 1.
Flow into 1.

【0039】一方、残りの液状冷媒は、第1の圧力検出
手段25の検出圧力、第2の圧力検出手段26の検出圧
力によって制御される第2の流量制御装置13を通っ
て、第2の分岐部11に流入し、暖房しようとする室内
機Dを通過後の冷媒と合流する。そして、合流した冷媒
は、第2の分岐部11、室内機側の第2の接続配管7
b、7cの順に通り、各室内機B、Cに流入する。各室
内機B、Cに流入した冷媒は、室内機側熱交換器5の出
口のスーパーヒート量により制御される第1の流量制御
装置9によって低圧まで減圧された後に、室内側熱交換
器5に流入し、室内空気と熱交換して蒸発しガス化さ
れ、室内を冷房する。更に、このガス状態となった冷媒
は、室内機側の第1の接続配管6b、6c、第1の電磁
開閉弁8aおよび第3の電磁開閉弁8c、第1の分岐部
10を通り、第1の接続配管6、第2の逆止弁33、熱
源機Aの四方切換弁2、アキュムレータ4を経て圧縮機
1に吸入される循環サイクルを構成し、冷房主体運転を
行う。また、ここで、室内機B、Cに接続された第1の
電磁開閉弁8aと第3の電磁開閉弁8cは開かれ、第2
の電磁開閉弁8bは閉じられており、室内機Dに接続さ
れた第1の電磁開閉弁8aと第3の電磁開閉弁8cは閉
じられ、第2の電磁開閉弁8bは開かれている。冷媒は
この時、第1の接続配管6が低圧、第2の接続配管7が
高圧のため、必然的に第1の逆止弁32、第2の逆止弁
33を流通する。
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 which is controlled by the pressure detected by the first pressure detecting means 25 and the pressure detected by the second pressure detecting means 26, and passes through the second flow rate control device 13. It flows into the branch portion 11 and merges with the refrigerant that has passed through the indoor unit D that is going to be heated. Then, the combined refrigerant is used as the second branch portion 11 and the second connection pipe 7 on the indoor unit side.
It flows into each indoor unit B, C in order of b, 7c. The refrigerant flowing into each indoor unit B, C is depressurized to a low pressure by the first flow rate control device 9 controlled by the superheat amount at the outlet of the indoor unit heat exchanger 5, and then the indoor heat exchanger 5 Flows into the room, heat exchanges with the room air, evaporates and is gasified, and cools the room. Further, the refrigerant in the gas state passes through the first connection pipes 6b and 6c on the indoor unit side, the first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c, the first branch portion 10, A circulation cycle in which the compressor 1 is sucked through the connecting pipe 6 of the first unit, the second check valve 33, the four-way switching valve 2 of the heat source unit A, and the accumulator 4 constitutes a cooling main operation. Further, here, the first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c connected to the indoor units B and C are opened, and the second electromagnetic on-off valve 8c is opened.
The electromagnetic opening / closing valve 8b is closed, the first electromagnetic opening / closing valve 8a and the third electromagnetic opening / closing valve 8c connected to the indoor unit D are closed, and the second electromagnetic opening / closing valve 8b is opened. At this time, since the first connecting pipe 6 has a low pressure and the second connecting pipe 7 has a high pressure, the refrigerant necessarily flows through the first check valve 32 and the second check valve 33.

【0040】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部から第1のバイパス配管14へ入り、第3
の流量制御装置15で低圧まで減圧されて、第3の熱交
換部16b、16c、16dで第2の分岐部11の各室
内機側の第2の接続配管7b、7c、7dとの間で、ま
た第2の熱交換器部16aで第2の分岐部11の各室内
機側の第2の接続配管7b、7c、7dの会合部との間
で、更に第1の熱交換部19で第2の流量制御装置13
に流入する冷媒との間で熱交換を行い、蒸発した冷媒は
第1の接続配管6第2の逆止弁33へ入り、熱源機Aの
四方切換弁2、アキュムレータ4を経て圧縮機1に吸入
される。一方、第1、第2、第3の熱交換部19、16
a、16b、16c、16dで熱交換し冷却されサブク
ールを充分につけられた第2の分岐部11の冷媒は、冷
房しようとしている室内機B、Cへ流入する。
During this cycle, part of the liquid refrigerant is the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
Enter the first bypass pipe 14 from the meeting point of 7d,
The pressure is reduced to a low pressure by the flow rate control device 15 of the third heat exchange unit 16b, 16c, 16d and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch unit 11. Further, in the second heat exchanger section 16a, between the second connection section 11 and the meeting section of the second connection pipes 7b, 7c, 7d of each indoor unit side, and further in the first heat exchange section 19. Second flow control device 13
The heat exchange is performed with the refrigerant flowing into the refrigerant, and the evaporated refrigerant enters the first connecting pipe 6 and the second check valve 33, and passes through the four-way switching valve 2 of the heat source device A and the accumulator 4 to the compressor 1. Inhaled. On the other hand, the first, second and third heat exchange parts 19, 16
The refrigerant in the second branch portion 11 which has been heat-exchanged and cooled in a, 16b, 16c, and 16d and is sufficiently subcooled flows into the indoor units B and C that are about to be cooled.

【0041】引続き、「冷暖同時運転における暖房主
体」の場合について図4を用いて説明する。同図に破線
矢印で示すように、圧縮機1より吐出された高温高圧冷
媒ガスは、四方切換弁2を経て第3の逆止弁34、第2
の接続配管7を通して中継機Eへ送られ、気液分離装置
12を通り、第1の分岐部10、第2の電磁開閉弁8
b、室内機側の第1の接続配管6b、6cを順に通り、
暖房しようとしている各室内機B、Cに流入する。そし
て、冷媒は室内側熱交換器5で室内空気と熱交換して凝
縮液化され、室内を暖房する。この凝縮液化した冷媒
は、各室内側熱交換器5の出口のサブクール量により制
御されてほぼ全開状態の第1の流量制御装置9を通り、
少し減圧されて第2の分岐部11に流入する。
Next, the case of "mainly heating in simultaneous cooling and heating operation" will be described with reference to FIG. As shown by the broken line arrow in the figure, the high-temperature high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and the third check valve 34 and the second check valve 34.
Is sent to the repeater E through the connection pipe 7 of the first branch portion 10 and the second solenoid opening / closing valve 8 through the gas-liquid separation device 12.
b, through the first connection pipes 6b, 6c on the indoor unit side in order,
It flows into each of the indoor units B and C that are going to be heated. Then, the refrigerant exchanges heat with the indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room. The condensed and liquefied refrigerant is controlled by the subcool amount at the outlet of each indoor heat exchanger 5 and passes through the first flow rate control device 9 in a substantially fully opened state,
It is slightly decompressed and flows into the second branch portion 11.

【0042】この冷媒の一部は、室内機側の第2の接続
配管7dを通り、冷房しようとする室内機Dに入り、室
内側熱交換器5の出口のスーパーヒート量により制御さ
れる第1の流量制御装置9に入り、減圧された後に、室
内側熱交換器5に入って熱交換して蒸発しガス状態とな
って室内を冷房し、第1の接続配管6dを経て第1の電
磁開閉弁8aおよび第3の電磁開閉弁8cを介して第1
の接続配管6に流入する。一方、第2の分岐部11から
の冷媒は、第1の圧力検出手段25の検出圧力と、第2
の圧力検出手段26の検出圧力との圧力差が所定範囲と
なるように制御される第4の流量制御装置17と第2の
バイパス配管14aを通って、冷房しようとする室内機
Dを通った冷媒と合流して太い第1の接続配管6を経
て、熱源機Aの第4の逆止弁35、熱源機側熱交換器3
に流入し、空気と熱交換して蒸発しガス状態となる。
Part of this refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit D to be cooled, and is controlled by the superheat amount at the outlet of the indoor heat exchanger 5. After entering the flow rate control device 9 of No. 1 and being decompressed, it enters the indoor side heat exchanger 5 to exchange heat and evaporate into a gas state to cool the room, and the first connecting pipe 6d First via the electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c
Flows into the connecting pipe 6. On the other hand, the refrigerant from the second branch portion 11 has a pressure detected by the first pressure detection means 25 and a second pressure.
Through the fourth flow rate controller 17 and the second bypass pipe 14a, which are controlled so that the pressure difference from the pressure detected by the pressure detecting means 26 falls within a predetermined range, and then passes through the indoor unit D to be cooled. The fourth check valve 35 of the heat source unit A, the heat source unit side heat exchanger 3 merges with the refrigerant and passes through the thick first connection pipe 6.
Flowing in, and heat-exchanges with air to evaporate and become a gas state.

【0043】この冷媒は、熱源機Aの四方切換弁2、ア
キュムレータ4を経て圧縮機1に吸入される循環サイク
ルを構成し、暖房主体運転を行う。この時、冷房する室
内機Dの室内側熱交換器5での蒸発圧力と、熱源機側熱
交換器3での圧力との差は、太い第1の接続配管6に切
り換えるために小さくなる。また、この時、室内機B、
Cに接続された第1の電磁開閉弁8aと第3の電磁開閉
弁8cは閉じられ、第2の電磁開閉弁8bは開かれてお
り、室内機Dに接続された第1の電磁開閉弁8aと第3
の電磁開閉弁8cは開かれ、第2の電磁開閉弁8bは閉
じられている。また、冷媒はこの時、第1の接続配管6
が低圧であり、第2の接続配管7が高圧のため、必然的
に第3の逆止弁34、第4の逆止弁35へ流通する。
This refrigerant constitutes a circulation cycle in which it is sucked into the compressor 1 via the four-way switching valve 2 of the heat source unit A and the accumulator 4, and performs heating-main operation. At this time, the difference between the evaporation pressure in the indoor side heat exchanger 5 of the indoor unit D to be cooled and the pressure in the heat source unit side heat exchanger 3 becomes small because of switching to the thick first connection pipe 6. At this time, the indoor unit B,
The first electromagnetic on-off valve 8a and the third electromagnetic on-off valve 8c connected to C are closed, the second electromagnetic on-off valve 8b is opened, and the first electromagnetic on-off valve connected to the indoor unit D 8a and 3rd
The electromagnetic opening / closing valve 8c is opened and the second electromagnetic opening / closing valve 8b is closed. At this time, the refrigerant is the first connecting pipe 6
Is a low pressure and the second connection pipe 7 is a high pressure, so that it inevitably flows to the third check valve 34 and the fourth check valve 35.

【0044】このサイクルの時、一部の液冷媒は第2の
分岐部11の各室内機側の第2の接続配管7b、7c、
7dの会合部から第1のバイパス配管14へ入り、第3
の流量制御装置15で低圧まで減圧されて、第3の熱交
換部16b、16c、16dで第2の分岐部11の各室
内機側の第2の接続配管7b、7c、7dとの間で、ま
た第2の熱交換部16aで第2の分岐部11の各室内機
側の第2の接続配管7b、7c、7dの会合部との間
で、更に第1の熱交換部19で第2の流量制御装置13
から流入する冷媒との間で、それぞれ熱交換を行って蒸
発する。このように蒸発した冷媒は、第1の接続配管
6、第4の逆止弁35を経由し、熱源機側熱交換器3へ
入り、空気と熱交換して蒸発気化した後、熱源機Aの四
方切換弁2、アキュムレータ4を経て圧縮機1に吸入さ
れる。一方、第1、第2、第3の熱交換部19、16
a、16b、16c、16dで熱交換して冷却され、サ
ブクールを充分につけられた第2の分岐部11の冷媒は
冷房しようとしている室内機Dへ流入する。
During this cycle, part of the liquid refrigerant is the second connecting pipes 7b, 7c on the indoor unit side of the second branch portion 11,
Enter the first bypass pipe 14 from the meeting point of 7d,
The pressure is reduced to a low pressure by the flow rate control device 15 of the third heat exchange unit 16b, 16c, 16d and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch unit 11. In addition, in the second heat exchange section 16a, between the second connection section 11 and the connection section of the second connection pipes 7b, 7c, 7d on the indoor unit side, and further in the first heat exchange section 19, 2 flow control device 13
The heat exchange is performed between the refrigerant and the refrigerant flowing in to evaporate. The refrigerant thus evaporated enters the heat source unit side heat exchanger 3 via the first connecting pipe 6 and the fourth check valve 35, and after heat exchange with the air to evaporate and vaporize, the heat source unit A It is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4. On the other hand, the first, second and third heat exchange parts 19, 16
The refrigerant in the second branch portion 11, which is cooled by heat exchange with a, 16b, 16c, and 16d and is sufficiently subcooled, flows into the indoor unit D that is about to be cooled.

【0045】図5は請求項1および請求項2の発明にか
かる空気調和装置における制御フローチャートである。
制御手段51により実行される上記フローチャートに添
って、本実施例を説明する。全暖房または暖房主体(こ
れらのように、熱源機側熱交換器3が蒸発器となるモー
ドを、以後、暖房モードと総称する)で圧縮機1の運転
中、ステップS51で、室内機運転容量検出手段50に
て各室内機B、C、D毎の運転容量を検出する。室内機
の運転容量は、例えば各室内機の最大能力、稼働台数、
運転モード(冷房運転か暖房運転か)等に基づいて演算
され検出される。次に、ステップS52ではステップS
51で検出した室内機運転容量で、暖房運転容量が冷房
運転容量より大きいか否かを判定し、もし、冷房運転容
量が暖房運転容量より大きければステップS53へ進
み、全冷房または冷房主体(これらのように、熱源機側
熱交換器3が凝縮器となるモードを、以後、冷房モード
と総称する)運転に切換える。ステップS53にて運転
モードを切換えた後、ステップS54ではバイパス回路
49内の第4の電磁開閉弁48を開ける。これにより、
第2の接続配管7および気液分離装置12内の高圧ガス
冷媒をバイパス回路49により低圧ガス冷媒が流れる第
1の接続配管6へ移行させる。このことにより、熱源機
側熱交換器3で空気と熱交換して凝縮された高圧二相の
冷媒を、いちはやく第2の接続配管7内および気液分離
装置12内へ流し込むことができる。よって、気液分離
装置12で分離された液冷媒を、第1の流量制御装置9
を経て、冷房すべき室内機の室内側熱交換器5へ流し込
むことができるため、所定の冷房能力を速やかに引き出
すことができる。その後、ステップS55では、第1の
バイパス回路の開放時間が、ガス冷媒を第2の接続配管
7または気液分離装置12から移送し終える程度の所定
の時間を経過しているか否かを判定し、もし、過ぎてい
ればステップS56にバイパス回路49を閉路とするた
めに、第4の電磁開閉弁48を閉める。
FIG. 5 is a control flowchart in the air conditioner according to the first and second aspects of the invention.
The present embodiment will be described with reference to the above flowchart executed by the control means 51. During the operation of the compressor 1 in all heating or heating only (the mode in which the heat-source-unit-side heat exchanger 3 becomes an evaporator like this is hereinafter referred to as heating mode), the indoor unit operating capacity is determined in step S51. The detecting means 50 detects the operating capacity of each indoor unit B, C, D. The operating capacity of the indoor unit is, for example, the maximum capacity of each indoor unit, the number of operating units,
It is calculated and detected based on the operation mode (cooling operation or heating operation) or the like. Next, in step S52, step S
Based on the indoor unit operating capacity detected in 51, it is determined whether the heating operating capacity is larger than the cooling operating capacity, and if the cooling operating capacity is larger than the heating operating capacity, the process proceeds to step S53, and all cooling or cooling main As described above, the mode in which the heat-source-unit-side heat exchanger 3 serves as a condenser is switched to a cooling mode). After switching the operation mode in step S53, the fourth electromagnetic on-off valve 48 in the bypass circuit 49 is opened in step S54. This allows
The high pressure gas refrigerant in the second connection pipe 7 and the gas-liquid separation device 12 is transferred to the first connection pipe 6 through which the low pressure gas refrigerant flows by the bypass circuit 49. As a result, the high-pressure two-phase refrigerant condensed by exchanging heat with the air in the heat-source-unit-side heat exchanger 3 can quickly flow into the second connection pipe 7 and the gas-liquid separation device 12. Therefore, the liquid refrigerant separated by the gas-liquid separator 12 is fed to the first flow controller 9
Since it can be poured into the indoor heat exchanger 5 of the indoor unit to be cooled, a predetermined cooling capacity can be promptly drawn out. Then, in step S55, it is determined whether or not the opening time of the first bypass circuit has passed a predetermined time such that transfer of the gas refrigerant from the second connecting pipe 7 or the gas-liquid separation device 12 is completed. If so, the fourth electromagnetic opening / closing valve 48 is closed in order to close the bypass circuit 49 in step S56.

【0046】また、実施例1において、ステップS55
で時間を判定基準としたが、時間の代わりに温度や圧力
を判定基準としても同様の効果が得られる。
Also, in the first embodiment, step S55.
Although the time is used as the criterion in the above, the same effect can be obtained by using the temperature or pressure as the criterion instead of the time.

【0047】実施例2.本実施例は請求項1及び請求項
3の発明にかかるもので、空気調和装置の冷媒系を中心
とする全体構成図は実施例1の図1と同様なので説明は
省略する。
Example 2. The present embodiment relates to the inventions of claims 1 and 3, and the overall configuration diagram centering on the refrigerant system of the air conditioner is the same as that of FIG.

【0048】図6は請求項1および請求項3の発明にか
かる空気調和装置における制御フローチャートである。
制御手段51により実行される上記フローチャートに添
って、本実施例を説明する。暖房モードで圧縮機1の運
転中、ステップS61で、室内機運転容量検出手段50
にて室内機の運転容量を検出する。次に、ステップS6
2ではステップS61で検出した室内機運転容量で、暖
房運転容量が冷房運転容量より大きいか否かを判定し、
もし、冷房運転容量が暖房運転容量より大きければステ
ップS63へ進み、冷房モード運転に切換える。ステッ
プS63にて運転モードを切換えた後、ステップS64
では中継機E内の第2の分岐部11に設けられた第2の
流量制御装置13および第3の流量制御装置15を開
け、第2の接続配管7内および気液分離装置12内の高
圧ガス冷媒を、低圧ガス冷媒が流れる第1の接続配管6
へ移行させる。このことにより、熱源機側熱交換器3で
空気と熱交換して凝縮された高圧二相の冷媒を、いちは
やく第2の接続配管7および気液分離装置12へ流し込
むことができる。よって、気液分離装置12で分離され
た液冷媒を、第1の流量制御装置9を経て、冷房室内機
の室内側熱交換器5へ流し込むことができるため、所定
の冷房能力を速やかに引き出すことができる。その後、
ステップS65では、第2の流量制御装置13および第
3の流量制御装置15を開けている時間が所定の時間を
経過しているか否かを判定し、もし、過ぎていればステ
ップS66で第2の流量制御装置13および第3の流量
制御装置15を通常の制御に戻す。
FIG. 6 is a control flowchart in the air conditioner according to the first and third aspects of the invention.
The present embodiment will be described with reference to the above flowchart executed by the control means 51. While the compressor 1 is operating in the heating mode, the indoor unit operating capacity detecting means 50 is operated in step S61.
Detects the operating capacity of the indoor unit. Next, step S6
In 2, it is determined whether the heating operation capacity is larger than the cooling operation capacity based on the indoor unit operation capacity detected in step S61.
If the cooling operation capacity is larger than the heating operation capacity, the process proceeds to step S63 to switch to the cooling mode operation. After switching the operation mode in step S63, step S64
Then, the second flow rate control device 13 and the third flow rate control device 15 provided in the second branch portion 11 in the relay device E are opened, and the high pressure in the second connection pipe 7 and the gas-liquid separation device 12 is increased. The first connection pipe 6 through which the low-pressure gas refrigerant flows
Shift to. As a result, the high-pressure two-phase refrigerant condensed by exchanging heat with the air in the heat source unit side heat exchanger 3 can quickly flow into the second connecting pipe 7 and the gas-liquid separation device 12. Therefore, the liquid refrigerant separated by the gas-liquid separation device 12 can be poured into the indoor heat exchanger 5 of the cooling indoor unit via the first flow rate control device 9, so that a predetermined cooling capacity can be promptly drawn out. be able to. afterwards,
In step S65, it is determined whether or not the time during which the second flow rate control device 13 and the third flow rate control device 15 are open has exceeded a predetermined time, and if they have passed, a second time is determined in step S66. The flow rate control device 13 and the third flow rate control device 15 are returned to normal control.

【0049】また、実施例2において、第3の流量制御
装置15を開ける代わりに第4の流量制御装置17を開
けても、あるいは、第3の流量制御装置15および第4
の流量制御装置17の双方を開けても効果が得られる。
In the second embodiment, instead of opening the third flow control device 15, the fourth flow control device 17 may be opened, or the third flow control device 15 and the fourth flow control device 15 may be opened.
Even if both of the flow rate control devices 17 are opened, the effect can be obtained.

【0050】また、実施例2において、ステップS65
で時間を判定基準としたが、時間の代わりに温度や圧力
を判定基準としても同様の効果が得られる。
Also, in the second embodiment, step S65.
Although the time is used as the criterion in the above, the same effect can be obtained by using the temperature or pressure as the criterion instead of the time.

【0051】実施例3.本実施例は請求項1及び請求項
4の発明にかかるもので、空気調和装置の冷媒系を中心
とする全体構成図は実施例1の図1と同様なので説明を
省略する。
Embodiment 3 FIG. The present embodiment relates to the inventions of claims 1 and 4, and the overall configuration diagram centering on the refrigerant system of the air conditioner is the same as that of FIG.

【0052】図7は請求項1および請求項4の発明にか
かる空気調和装置における制御フローチャートである。
制御手段51により実行される上記フローチャートに添
って、本実施例を説明する。暖房モードで圧縮機1の運
転中、ステップS71で、室内機運転容量検出手段50
にて各室内機B、C、Dの運転容量を検出する。次に、
ステップS72ではステップS71で検出した室内機運
転容量で、暖房運転容量が冷房運転容量より大きいか否
かを判定し、もし、冷房運転容量が暖房運転容量より大
きければステップS73へ進み、冷房モード運転に切換
える。ステップS73にて運転モードを切換えた後、ス
テップS74では中継機E内の第1の分岐部10に設け
られた第1の電磁開閉弁8aおよび第2の電磁開閉弁8
bを開け、第2の接続配管7および気液分離装置12内
の高圧ガス冷媒を、低圧ガス冷媒が流れる第1の接続配
管6へ移行させる。このことにより、熱源機側熱交換器
3で空気と熱交換して凝縮された高圧二相の冷媒が、い
ちはやく第2の接続配管7および気液分離装置12へ流
し込むことができる。よって、気液分離装置12で分離
された液冷媒を、第1の流量制御装置9を経て、冷房室
内機の室内側熱交換器5へ流し込むことができるため、
所定の冷房能力を速やかに引き出すことができる。その
後、ステップS75では、第1の電磁開閉弁8aおよび
第2の電磁開閉弁8bを開けている時間が所定の時間を
経過しているか否かを判定し、もし、過ぎていればステ
ップS76で第1の電磁開閉弁8aおよび第2の電磁開
閉弁8bを通常の制御に戻す。
FIG. 7 is a control flowchart in the air conditioner according to the inventions of claims 1 and 4.
The present embodiment will be described with reference to the above flowchart executed by the control means 51. During operation of the compressor 1 in the heating mode, the indoor unit operating capacity detection means 50 is operated in step S71.
Detects the operating capacity of each indoor unit B, C, D. next,
In step S72, it is determined whether or not the heating operation capacity is larger than the cooling operation capacity based on the indoor unit operation capacity detected in step S71. If the cooling operation capacity is larger than the heating operation capacity, the process proceeds to step S73, and the cooling mode operation is performed. Switch to. After switching the operation mode in step S73, in step S74, the first electromagnetic opening / closing valve 8a and the second electromagnetic opening / closing valve 8 provided in the first branch portion 10 in the relay device E are connected.
b is opened, and the high pressure gas refrigerant in the second connection pipe 7 and the gas-liquid separation device 12 is transferred to the first connection pipe 6 through which the low pressure gas refrigerant flows. As a result, the high-pressure two-phase refrigerant condensed by exchanging heat with the air in the heat source side heat exchanger 3 can quickly flow into the second connecting pipe 7 and the gas-liquid separation device 12. Therefore, the liquid refrigerant separated by the gas-liquid separation device 12 can be poured into the indoor heat exchanger 5 of the cooling indoor unit via the first flow rate control device 9.
It is possible to promptly bring out the predetermined cooling capacity. After that, in step S75, it is determined whether or not the time during which the first electromagnetic opening / closing valve 8a and the second electromagnetic opening / closing valve 8b are opened has exceeded a predetermined time, and if so, in step S76. The first electromagnetic on-off valve 8a and the second electromagnetic on-off valve 8b are returned to normal control.

【0053】また、実施例3において、ステップS75
で時間を判定基準としたが、時間の代わりに温度や圧力
を判定基準としても同様の効果が得られる。
In the third embodiment, step S75
Although the time is used as the criterion in the above, the same effect can be obtained by using the temperature or pressure as the criterion instead of the time.

【0054】実施例4.本実施例は請求項1及び請求項
5の発明にかかるもので、空気調和装置の冷媒系を中心
とする全体構成図は実施例1の図1と同様なので説明を
省略する。
Embodiment 4 FIG. The present embodiment relates to the inventions of claims 1 and 5, and the overall configuration diagram centering on the refrigerant system of the air conditioner is the same as that of FIG.

【0055】図8は請求項1及び請求項5の発明にかか
る空気調和装置における制御フローチャートである。制
御手段51により実行される上記フローチャートに添っ
て、本実施例を説明する。暖房モードで圧縮機1の運転
中、ステップS81で、室内機運転容量検出手段50に
て室内機の運転容量を検出する。次に、ステップS82
ではステップS81で検出した室内機運転容量で、暖房
運転容量が冷房運転容量より大きいか否かを判定し、も
し、冷房運転容量が暖房運転容量より大きければステッ
プS83へ進み、冷房モード運転に切換える。ステップ
S83にて運転モードを切換えた後、ステップS84で
は中継機E内の第1の分岐部10に設けられた第2の電
磁開閉弁8bおよび第3の電磁開閉弁8cを開け、第2
の接続配管7内および気液分離装置12内の高圧ガス冷
媒を、低圧ガス冷媒が流れる第1の接続配管6へ移行さ
せる。このことにより、熱源機側熱交換器3で空気と熱
交換して凝縮された高圧二相の冷媒が、いちはやく第2
の接続配管7および気液分離装置12へ流し込むことが
できる。よって、気液分離装置12で分離された液冷媒
を、第1の流量制御装置9を経て、冷房室内機の室内側
熱交換器5へ流し込むことができるため、所定の冷房能
力を速やかに引き出すことができる。その後、ステップ
S85では、第2の電磁開閉弁8bおよび第3の電磁開
閉弁8cを開けている時間が所定の時間を経過している
か否かを判定し、もし、過ぎていればステップS86で
第2の電磁開閉弁8bおよび第3の電磁開閉弁8cを通
常の制御に戻す。
FIG. 8 is a control flowchart in the air conditioner according to the inventions of claims 1 and 5. The present embodiment will be described with reference to the above flowchart executed by the control means 51. During operation of the compressor 1 in the heating mode, in step S81, the indoor unit operating capacity detection means 50 detects the operating capacity of the indoor unit. Next, step S82.
Then, it is determined whether or not the heating operation capacity is larger than the cooling operation capacity based on the indoor unit operation capacity detected in step S81. If the cooling operation capacity is larger than the heating operation capacity, the process proceeds to step S83 to switch to the cooling mode operation. . After switching the operation mode in step S83, in step S84, the second electromagnetic opening / closing valve 8b and the third electromagnetic opening / closing valve 8c provided in the first branch portion 10 in the relay device E are opened, and the second electromagnetic opening / closing valve 8c is opened.
The high-pressure gas refrigerant in the connection pipe 7 and the gas-liquid separation device 12 is transferred to the first connection pipe 6 in which the low-pressure gas refrigerant flows. As a result, the high-pressure two-phase refrigerant condensed by exchanging heat with the air in the heat source side heat exchanger 3 is quickly transferred to the second
Can be poured into the connecting pipe 7 and the gas-liquid separation device 12. Therefore, the liquid refrigerant separated by the gas-liquid separation device 12 can be poured into the indoor heat exchanger 5 of the cooling indoor unit via the first flow rate control device 9, so that a predetermined cooling capacity can be promptly drawn out. be able to. After that, in step S85, it is determined whether or not the time during which the second electromagnetic opening / closing valve 8b and the third electromagnetic opening / closing valve 8c are opened has exceeded a predetermined time, and if so, in step S86. The second electromagnetic opening / closing valve 8b and the third electromagnetic opening / closing valve 8c are returned to normal control.

【0056】また、実施例4において、ステップS85
で時間を判定基準としたが、時間の代わりに温度や圧力
を判定基準としても同様の効果が得られる。
In the fourth embodiment, step S85
Although the time is used as the criterion in the above, the same effect can be obtained by using the temperature or pressure as the criterion instead of the time.

【0057】[0057]

【発明の効果】以上述べたように、第1の発明によれ
ば、運転状態が全暖房または暖房主体運転の暖房モード
運転から全冷房または冷房主体運転の冷房モード運転へ
の切換え時、冷媒回路内の第2の接続配管内または気液
分離装置内からガス冷媒を移行させ、少なくとも気液二
相冷媒に置き換えることで、速やかに所定の冷房能力を
引き出すことができる。
As described above, according to the first aspect of the present invention, when the operating state is switched from the heating mode operation of heating only or heating-main operation to the cooling only operation of cooling only or cooling-main operation, the refrigerant circuit is operated. By moving the gas refrigerant from the second connection pipe in the inside or the gas-liquid separator and replacing it with at least the gas-liquid two-phase refrigerant, it is possible to promptly bring out the predetermined cooling capacity.

【0058】第2の発明によれば、全暖房または暖房主
体運転の暖房モード運転から全冷房または冷房主体運転
の冷房モード運転への切換え時、バイパス回路の第4の
電磁開閉弁を開けて、第2の接続配管内または気液分離
装置内を少なくとも気液二相冷媒に置き換えることによ
り、比較的簡単に、かつ、速やかに所定の冷房能力を引
き出すことができる。
According to the second invention, at the time of switching from the heating mode operation of the heating only or the heating main operation to the cooling mode operation of the cooling only or the cooling main operation, the fourth electromagnetic on-off valve of the bypass circuit is opened, By replacing at least the gas-liquid two-phase refrigerant in the second connection pipe or the gas-liquid separation device, it is possible to relatively easily and quickly bring out the predetermined cooling capacity.

【0059】第3の発明によれば、全暖房または暖房主
体運転の暖房モード運転から全冷房または冷房主体運転
の冷房モード運転への切換え時、中継機内の第2の流量
制御装置および他の少なくとも1つ以上の流量制御装置
を開けて、第2の接続配管内または気液分離装置内を少
なくとも気液二相冷媒に置き換えることにより、速やか
に所定の冷房能力を引き出すことができる。また、流量
制御装置は開口径が小さいことやパルス制御により徐々
に開口することから、冷媒音の発生をも防ぐことができ
る。
According to the third invention, at the time of switching from the heating mode operation of the heating only or the heating main operation to the cooling mode operation of the cooling only or the cooling main operation, at least the second flow rate control device in the repeater and at least another By opening one or more flow rate control devices and replacing at least the gas-liquid two-phase refrigerant in the second connection pipe or the gas-liquid separation device, it is possible to promptly bring out the predetermined cooling capacity. Further, since the flow control device has a small opening diameter and gradually opens by pulse control, it is possible to prevent the generation of refrigerant noise.

【0060】第4の発明によれば、全暖房または暖房主
体運転の暖房モード運転から全冷房または冷房主体運転
の冷房モード運転への切換え時、第1の電磁開閉弁およ
び第2の電磁開閉弁を開けて、第2の接続配管内または
気液分離装置内を少なくとも気液二相冷媒に置き換える
ことにより、速やかに所定の冷房能力を引き出すことが
できる。また、気液分離装置のガス側から冷媒を移行さ
せることにより、ガスに伴って冷房運転に必要な液冷媒
が移行してしまうことも防ぐことができる。
According to the fourth aspect of the invention, when the heating mode operation of the heating only or the heating main operation is switched to the cooling mode operation of the cooling only or the cooling main operation, the first electromagnetic on-off valve and the second electromagnetic on-off valve. By opening and replacing the inside of the second connection pipe or the inside of the gas-liquid separation device with at least a gas-liquid two-phase refrigerant, a predetermined cooling capacity can be promptly drawn out. Further, by transferring the refrigerant from the gas side of the gas-liquid separator, it is possible to prevent the liquid refrigerant necessary for the cooling operation from being transferred with the gas.

【0061】第5の発明によれば、全暖房または暖房主
体運転の暖房モード運転から全冷房または冷房主体運転
の冷房モード運転への切換え時、第2の電磁開閉弁およ
び第3の電磁開閉弁を開けて、第2の接続配管内または
気液分離装置内を少なくとも気液二相冷媒に置き換える
ことにより、速やかに所定の冷房能力を引き出すことが
できる。また、気液分離装置のガス側から冷媒を移行さ
せることにより、ガスに伴って冷房運転に必要な液冷媒
が移行してしまうことも防ぐことや、開口径の小さな第
3の電磁開閉弁を使用することにより、冷媒音の発生を
も防ぐことができる。
According to the fifth invention, when the heating mode operation of the heating only or the heating main operation is switched to the cooling mode operation of the cooling only or the cooling main operation, the second electromagnetic opening / closing valve and the third electromagnetic opening / closing valve are provided. By opening and replacing the inside of the second connection pipe or the inside of the gas-liquid separation device with at least a gas-liquid two-phase refrigerant, a predetermined cooling capacity can be promptly drawn out. Further, by transferring the refrigerant from the gas side of the gas-liquid separator, it is possible to prevent the liquid refrigerant necessary for the cooling operation from being transferred with the gas, and to prevent the third solenoid on-off valve having a small opening diameter. By using it, it is possible to prevent the generation of refrigerant noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1、請求項2、請求項3、請求項4、
または請求項5の発明の一実施例に係る空気調和装置の
冷媒系統を中心とする全体構成図である。
FIG. 1 is a diagram showing the structure of claim 1, claim 2, claim 3, claim 4,
FIG. 7 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the invention of claim 5.

【図2】 図1の空気調和装置による全冷房または全暖
房運転時の冷媒の流れを示す運転動作状態図である。
2 is an operation state diagram showing a flow of a refrigerant during a cooling only or heating only operation by the air-conditioning apparatus of FIG. 1. FIG.

【図3】 図1の空気調和装置の冷暖房同時運転におけ
る冷房主体運転時の冷媒の流れを示す運転動作状態図で
ある。
FIG. 3 is an operation state diagram showing the flow of the refrigerant during the cooling-main operation in the cooling / heating simultaneous operation of the air conditioner of FIG. 1.

【図4】 図1の空気調和装置の冷暖房同時運転におけ
る暖房主体運転時の冷媒の流れを示す運転動作状態図で
ある。
FIG. 4 is an operation state diagram showing a refrigerant flow during a heating-main operation in a simultaneous heating / cooling operation of the air-conditioning apparatus of FIG. 1.

【図5】 請求項1及び請求項2の発明の一実施例によ
る空気調和装置の制御フローチャートである。
FIG. 5 is a control flowchart of the air conditioner according to an embodiment of the inventions of claims 1 and 2.

【図6】 請求項1及び請求項3の発明の一実施例によ
る空気調和装置の制御フローチャートである。
FIG. 6 is a control flowchart of the air conditioner according to an embodiment of the inventions of claims 1 and 3.

【図7】 請求項1及び請求項4の発明の一実施例によ
る空気調和装置の制御フローチャートである。
FIG. 7 is a control flowchart of the air conditioner according to an embodiment of the inventions of claims 1 and 4.

【図8】 請求項1及び請求項5の発明の一実施例によ
る空気調和装置の制御フローチャートである。
FIG. 8 is a control flowchart of an air conditioner according to an embodiment of the inventions of claims 1 and 5.

【図9】 従来技術に係る空気調和装置の冷媒系統を中
心とする全体構成図である。
FIG. 9 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to a conventional technique.

【図10】 従来技術の空気調和装置による全冷房また
は全暖房運転時の冷媒の流れを示す運転動作状態図であ
る。
FIG. 10 is an operation state diagram showing the flow of the refrigerant at the time of cooling only or heating only by the air conditioner of the related art.

【図11】 従来技術の空気調和装置による冷暖房同時
運転における冷房主体運転時の冷媒の流れを示す運転動
作状態図である。
FIG. 11 is an operation state diagram showing the flow of the refrigerant during the cooling-main operation in the simultaneous cooling and heating operation by the conventional air conditioner.

【図12】 従来技術の空気調和装置による冷暖房同時
運転における暖房主体運転時の冷媒の流れを示す運転動
作状態図である。
FIG. 12 is an operation state diagram showing the flow of the refrigerant during heating-main operation in simultaneous heating and cooling operation by the air conditioner of the conventional technique.

【符号の説明】[Explanation of symbols]

A 熱源機、B 室内機、C 室内機、D 室内機、E
中継機、1 圧縮機、2 四方切換弁、3 熱源機側
熱交換器、4 アキュムレータ、5 室内側熱交換器、
6 第1の接続配管、6b 室内側の第1の接続配管、
6c 室内側の第1の接続配管、7 第2の接続配管、
7b 室内側の第2の接続配管、7c室内側の第2の接
続配管、8a 第1の電磁開閉弁、8b 第2の電磁開
閉弁、8c 第3の電磁開閉弁、9 第1の流量制御装
置、10 第1の分岐部、11第2の分岐部、12 気
液分離装置、13 第2の流量制御装置、14 第1の
バイパス配管、14a 第2のバイパス配管、15 第
3の流量制御装置、17 第4の流量制御装置、40
流路切換装置、48 第4の電磁開閉弁、49バイパス
回路、50 室内機運転容量検出手段、51 制御手
段。
A heat source unit, B indoor unit, C indoor unit, D indoor unit, E
Repeater, 1 compressor, 2 4-way switching valve, 3 heat source side heat exchanger, 4 accumulator, 5 indoor heat exchanger,
6 1st connection piping, 6b 1st indoor connection piping,
6c First connection pipe on the indoor side, 7 Second connection pipe,
7b 2nd indoor connection pipe, 7c 2nd indoor connection pipe, 8a 1st solenoid valve, 8b 2nd solenoid valve, 8c 3rd solenoid valve, 9 1st flow control Device, 10 1st branch part, 11 2nd branch part, 12 Gas-liquid separation device, 13 2nd flow control device, 14 1st bypass piping, 14a 2nd bypass piping, 15 3rd flow control Device, 17 Fourth flow controller, 40
Flow path switching device, 48 Fourth electromagnetic opening / closing valve, 49 Bypass circuit, 50 Indoor unit operating capacity detecting means, 51 Control means.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等からなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機と、上記熱源機と上記複数の室内機とを並列に接続す
る第1、第2の接続配管と、上記複数台の室内機の上記
室内側熱交換器の一方側と上記第1の接続配管とを接続
する配管の途中に設けられた第1の電磁開閉弁、上記複
数台の室内機の上記室内側熱交換器の一方側と上記第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および上記複数台の室内機の上記室内側熱
交換器の一方側と上記第1の接続配管とを接続する配管
の途中に設けられ上記第1の電磁開閉弁と並列に接続さ
れる第3の電磁開閉弁から構成される第1の分岐部と、
上記複数台の室内機の上記室内側熱交換器の他方側をそ
れぞれ上記第1の流量制御装置を介して上記第2の接続
配管に接続する第2の分岐部と、上記第2の接続配管の
途中に設けられガス冷媒と液冷媒とを分離する気液分離
装置と、上記気液分離装置の下部と上記第2の分岐部と
の間の上記第2の接続配管の途中に設けられた第2の流
量制御装置と、上記第2の分岐部と上記第1の接続配管
とを接続して設けられ第3の流量制御装置を有する第1
のバイパス配管と、上記第2の分岐部と上記第1の接続
配管とを接続して設けられ第4の流量制御装置を有する
第2のバイパス配管と、上記第1の接続配管と上記第2
の接続配管とをバイパス接続して設けられ第4の電磁開
閉弁を有するバイパス回路と、上記熱源機側熱交換器が
凝縮器となる冷房モード運転時には、上記熱源機側熱交
換器の冷媒出口側から上記第2の接続配管側にのみ冷媒
を流通させるとともに上記第1の接続配管から上記四方
切換弁側にのみ冷媒を流通させ、かつ、上記熱源機側熱
交換器が蒸発器となる暖房モード運転時には、上記第1
の接続配管から上記熱源機側熱交換器の冷媒流入側にの
み冷媒を流通させるとともに上記四方切換弁から第2の
接続配管側にのみ冷媒を流通させる流路切換装置と、上
記第1の分岐部、上記第2の分岐部、上記気液分離装
置、上記第2の流量制御装置、上記第3の流量制御装
置、上記第4の流量制御装置、上記第1のバイパス配
管、および上記第2のバイパス配管を有してなり上記熱
源機と上記複数台の室内機との間に介在される中継機
と、上記暖房モード運転から上記冷房モード運転への切
換え時、上記第2の接続配管内または上記気液分離装置
内を、ガス冷媒から少なくとも気液二相冷媒に置き換え
る冷媒置換手段とを備えたことを特徴とする空気調和装
置。
1. A heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, and the like, and a plurality of indoor units including an indoor side heat exchanger, a first flow controller, and the like. And first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel, one side of the indoor heat exchanger of the plurality of indoor units, and the first connection pipe A first electromagnetic on-off valve provided in the middle of a pipe connecting to, a first side of the indoor heat exchanger of the plurality of indoor units and the second
Second solenoid on-off valve provided in the middle of a pipe connecting the above-mentioned connection pipe and a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units to the first connection pipe A first branch portion formed of a third electromagnetic on-off valve connected in parallel with the first electromagnetic on-off valve provided in the middle of
A second branch portion that connects the other side of the indoor heat exchanger of the plurality of indoor units to the second connection pipe via the first flow rate control device, and the second connection pipe. And a gas-liquid separator for separating a gas refrigerant and a liquid refrigerant, provided in the middle of the second connecting pipe between the lower portion of the gas-liquid separator and the second branch portion. A first flow rate control device, a first flow rate control device that is provided by connecting the second branch portion and the first connection pipe to each other, and has a third flow rate control device.
Bypass pipe, a second bypass pipe provided by connecting the second branch portion and the first connection pipe, and having a fourth flow rate control device, the first connection pipe, and the second bypass pipe.
In the cooling mode operation in which the bypass circuit having the fourth electromagnetic on-off valve provided by bypass connection with the connection pipe of No. 1 and the heat source unit side heat exchanger serves as a condenser, the refrigerant outlet of the heat source unit side heat exchanger Side, the refrigerant is circulated only to the second connection pipe side, the refrigerant is circulated from the first connection pipe only to the four-way switching valve side, and the heat source side heat exchanger serves as an evaporator. In mode operation, the first
Flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger, and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; and the first branch. Section, the second branch portion, the gas-liquid separator, the second flow rate control device, the third flow rate control device, the fourth flow rate control device, the first bypass pipe, and the second A repeater having a bypass pipe of No. 3 and interposed between the heat source unit and the plurality of indoor units, and in the second connection pipe when switching from the heating mode operation to the cooling mode operation Alternatively, an air conditioner characterized by comprising a refrigerant replacement means for replacing the inside of the gas-liquid separation device with at least a gas-liquid two-phase refrigerant from the gas refrigerant.
【請求項2】 圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等からなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機と、上記熱源機と上記複数の室内機とを並列に接続す
る第1、第2の接続配管と、上記複数台の室内機の上記
室内側熱交換器の一方側と上記第1の接続配管とを接続
する配管の途中に設けられた第1の電磁開閉弁、上記複
数台の室内機の上記室内側熱交換器の一方側と上記第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および上記複数台の室内機の上記室内側熱
交換器の一方側と上記第1の接続配管とを接続する配管
の途中に設けられ上記第1の電磁開閉弁と並列に接続さ
れる第3の電磁開閉弁から構成される第1の分岐部と、
上記複数台の室内機の上記室内側熱交換器の他方側をそ
れぞれ上記第1の流量制御装置を介して上記第2の接続
配管に接続する第2の分岐部と、上記第2の接続配管の
途中に設けられガス冷媒と液冷媒とを分離する気液分離
装置と、上記気液分離装置の下部と上記第2の分岐部と
の間の上記第2の接続配管の途中に設けられた第2の流
量制御装置と、上記第2の分岐部と上記第1の接続配管
とを接続して設けられ第3の流量制御装置を有する第1
のバイパス配管と、上記第2の分岐部と上記第1の接続
配管とを接続して設けられ第4の流量制御装置を有する
第2のバイパス配管と、上記第1の接続配管と上記第2
の接続配管とをバイパス接続して設けられ第4の電磁開
閉弁を有するバイパス回路と、上記熱源機側熱交換器が
凝縮器となる冷房モード運転時には、上記熱源機側熱交
換器の冷媒出口側から上記第2の接続配管側にのみ冷媒
を流通させるとともに上記第1の接続配管から上記四方
切換弁側にのみ冷媒を流通させ、かつ、上記熱源機側熱
交換器が蒸発器となる暖房モード運転時には、上記第1
の接続配管から上記熱源機側熱交換器の冷媒流入側にの
み冷媒を流通させるとともに上記四方切換弁から第2の
接続配管側にのみ冷媒を流通させる流路切換装置と、上
記第1の分岐部、上記第2の分岐部、上記気液分離装
置、上記第2の流量制御装置、上記第3の流量制御装
置、上記第4の流量制御装置、上記第1のバイパス配
管、および上記第2のバイパス配管を有してなり上記熱
源機と上記複数台の室内機との間に介在される中継機
と、上記暖房モード運転から上記冷房モード運転への切
換え時、上記バイパス回路の上記第4の電磁開閉弁を開
けて、上記第2の接続配管内または上記気液分離装置内
を少なくとも気液二相冷媒に置き換えるように制御する
第1の制御手段とを備えてなることを特徴とする空気調
和装置。
2. A heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, and the like, and a plurality of indoor units including an indoor side heat exchanger, a first flow rate control unit, and the like. And first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel, one side of the indoor heat exchanger of the plurality of indoor units, and the first connection pipe A first electromagnetic on-off valve provided in the middle of a pipe connecting to, a first side of the indoor heat exchanger of the plurality of indoor units and the second
Second solenoid on-off valve provided in the middle of a pipe connecting the above-mentioned connection pipe and a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units to the first connection pipe A first branch portion formed of a third electromagnetic on-off valve connected in parallel with the first electromagnetic on-off valve provided in the middle of
A second branch portion that connects the other side of the indoor heat exchanger of the plurality of indoor units to the second connection pipe via the first flow rate control device, and the second connection pipe. And a gas-liquid separator for separating a gas refrigerant and a liquid refrigerant, provided in the middle of the second connecting pipe between the lower portion of the gas-liquid separator and the second branch portion. A first flow rate control device, a first flow rate control device that is provided by connecting the second branch portion and the first connection pipe to each other, and has a third flow rate control device.
Bypass pipe, a second bypass pipe provided by connecting the second branch portion and the first connection pipe, and having a fourth flow rate control device, the first connection pipe, and the second bypass pipe.
In the cooling mode operation in which the bypass circuit having the fourth electromagnetic on-off valve provided by bypass connection with the connection pipe of No. 1 and the heat source unit side heat exchanger serves as a condenser, the refrigerant outlet of the heat source unit side heat exchanger Side, the refrigerant is circulated only to the second connection pipe side, the refrigerant is circulated from the first connection pipe only to the four-way switching valve side, and the heat source side heat exchanger serves as an evaporator. In mode operation, the first
Flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger, and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; and the first branch. Section, the second branch portion, the gas-liquid separator, the second flow rate control device, the third flow rate control device, the fourth flow rate control device, the first bypass pipe, and the second A repeater having a bypass pipe between the heat source unit and the plurality of indoor units, and the fourth of the bypass circuit when switching from the heating mode operation to the cooling mode operation. And a first control means for controlling the solenoid valve to open so as to replace at least the gas-liquid two-phase refrigerant in the second connection pipe or in the gas-liquid separation device. Air conditioner.
【請求項3】 圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等からなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機と、上記熱源機と上記複数の室内機とを並列に接続す
る第1、第2の接続配管と、上記複数台の室内機の上記
室内側熱交換器の一方側と上記第1の接続配管とを接続
する配管の途中に設けられた第1の電磁開閉弁、上記複
数台の室内機の上記室内側熱交換器の一方側と上記第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および上記複数台の室内機の上記室内側熱
交換器の一方側と上記第1の接続配管とを接続する配管
の途中に設けられ上記第1の電磁開閉弁と並列に接続さ
れる第3の電磁開閉弁から構成される第1の分岐部と、
上記複数台の室内機の上記室内側熱交換器の他方側をそ
れぞれ上記第1の流量制御装置を介して上記第2の接続
配管に接続する第2の分岐部と、上記第2の接続配管の
途中に設けられガス冷媒と液冷媒とを分離する気液分離
装置と、上記気液分離装置の下部と上記第2の分岐部と
の間の上記第2の接続配管の途中に設けられた第2の流
量制御装置と、上記第2の分岐部と上記第1の接続配管
とを接続して設けられ第3の流量制御装置を有する第1
のバイパス配管と、上記第2の分岐部と上記第1の接続
配管とを接続して設けられ第4の流量制御装置を有する
第2のバイパス配管と、上記第1の接続配管と上記第2
の接続配管とをバイパス接続して設けられ第4の電磁開
閉弁を有するバイパス回路と、上記熱源機側熱交換器が
凝縮器となる冷房モード運転時には、上記熱源機側熱交
換器の冷媒出口側から上記第2の接続配管側にのみ冷媒
を流通させるとともに上記第1の接続配管から上記四方
切換弁側にのみ冷媒を流通させ、かつ、上記熱源機側熱
交換器が蒸発器となる暖房モード運転時には、上記第1
の接続配管から上記熱源機側熱交換器の冷媒流入側にの
み冷媒を流通させるとともに上記四方切換弁から第2の
接続配管側にのみ冷媒を流通させる流路切換装置と、上
記第1の分岐部、上記第2の分岐部、上記気液分離装
置、上記第2の流量制御装置、上記第3の流量制御装
置、上記第4の流量制御装置、上記第1のバイパス配
管、および上記第2のバイパス配管を有してなり上記熱
源機と上記複数台の室内機との間に介在される中継機
と、上記暖房モード運転から上記冷房モード運転への切
換え時、上記中継機内の上記第2の流量制御装置および
他の少なくとも1つ以上の流量制御装置を開けて、上記
第2の接続配管内または上記気液分離装置内を少なくと
も気液二相冷媒に置き換えるように制御する第2の制御
手段とを備えてなることを特徴とする空気調和装置。
3. A heat source unit including a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, etc., and a plurality of indoor units including an indoor side heat exchanger, a first flow control device, etc. And first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel, one side of the indoor heat exchanger of the plurality of indoor units, and the first connection pipe A first electromagnetic on-off valve provided in the middle of a pipe connecting to, a first side of the indoor heat exchanger of the plurality of indoor units and the second
Second solenoid on-off valve provided in the middle of a pipe connecting the above-mentioned connection pipe and a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units to the first connection pipe A first branch portion formed of a third electromagnetic on-off valve connected in parallel with the first electromagnetic on-off valve provided in the middle of
A second branch portion that connects the other side of the indoor heat exchanger of the plurality of indoor units to the second connection pipe via the first flow rate control device, and the second connection pipe. And a gas-liquid separator for separating a gas refrigerant and a liquid refrigerant, provided in the middle of the second connecting pipe between the lower portion of the gas-liquid separator and the second branch portion. A first flow rate control device, a first flow rate control device that is provided by connecting the second branch portion and the first connection pipe to each other, and has a third flow rate control device.
Bypass pipe, a second bypass pipe provided by connecting the second branch portion and the first connection pipe, and having a fourth flow rate control device, the first connection pipe, and the second bypass pipe.
In the cooling mode operation in which the bypass circuit having the fourth electromagnetic on-off valve provided by bypass connection with the connection pipe of No. 1 and the heat source unit side heat exchanger serves as a condenser, the refrigerant outlet of the heat source unit side heat exchanger Side, the refrigerant is circulated only to the second connection pipe side, the refrigerant is circulated from the first connection pipe only to the four-way switching valve side, and the heat source side heat exchanger serves as an evaporator. In mode operation, the first
Flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger, and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; and the first branch. Section, the second branch portion, the gas-liquid separator, the second flow rate control device, the third flow rate control device, the fourth flow rate control device, the first bypass pipe, and the second A repeater having a bypass pipe between the heat source unit and the plurality of indoor units, and the second unit in the repeater when switching from the heating mode operation to the cooling mode operation. Second control for opening the flow rate control device and other at least one flow rate control device to control the inside of the second connecting pipe or the inside of the gas-liquid separator to replace at least the gas-liquid two-phase refrigerant To be equipped with means Air conditioning apparatus and butterflies.
【請求項4】 圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等からなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機と、上記熱源機と上記複数の室内機とを並列に接続す
る第1、第2の接続配管と、上記複数台の室内機の上記
室内側熱交換器の一方側と上記第1の接続配管とを接続
する配管の途中に設けられた第1の電磁開閉弁、上記複
数台の室内機の上記室内側熱交換器の一方側と上記第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および上記複数台の室内機の上記室内側熱
交換器の一方側と上記第1の接続配管とを接続する配管
の途中に設けられ上記第1の電磁開閉弁と並列に接続さ
れる第3の電磁開閉弁から構成される第1の分岐部と、
上記複数台の室内機の上記室内側熱交換器の他方側をそ
れぞれ上記第1の流量制御装置を介して上記第2の接続
配管に接続する第2の分岐部と、上記第2の接続配管の
途中に設けられガス冷媒と液冷媒とを分離する気液分離
装置と、上記気液分離装置の下部と上記第2の分岐部と
の間の上記第2の接続配管の途中に設けられた第2の流
量制御装置と、上記第2の分岐部と上記第1の接続配管
とを接続して設けられ第3の流量制御装置を有する第1
のバイパス配管と、上記第2の分岐部と上記第1の接続
配管とを接続して設けられ第4の流量制御装置を有する
第2のバイパス配管と、上記第1の接続配管と上記第2
の接続配管とをバイパス接続して設けられ第4の電磁開
閉弁を有するバイパス回路と、上記熱源機側熱交換器が
凝縮器となる冷房モード運転時には、上記熱源機側熱交
換器の冷媒出口側から上記第2の接続配管側にのみ冷媒
を流通させるとともに上記第1の接続配管から上記四方
切換弁側にのみ冷媒を流通させ、かつ、上記熱源機側熱
交換器が蒸発器となる暖房モード運転時には、上記第1
の接続配管から上記熱源機側熱交換器の冷媒流入側にの
み冷媒を流通させるとともに上記四方切換弁から第2の
接続配管側にのみ冷媒を流通させる流路切換装置と、上
記第1の分岐部、上記第2の分岐部、上記気液分離装
置、上記第2の流量制御装置、上記第3の流量制御装
置、上記第4の流量制御装置、上記第1のバイパス配
管、および上記第2のバイパス配管を有してなり上記熱
源機と上記複数台の室内機との間に介在される中継機
と、上記暖房モード運転から上記冷房モード運転への切
換え時、上記第1の電磁開閉弁および上記第2の電磁開
閉弁を開けて、上記第2の接続配管内または上記気液分
離装置内を少なくとも気液二相冷媒に置き換えるように
制御する第3の制御手段とを備えてなることを特徴とす
る空気調和装置。
4. A heat source unit comprising a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator, etc., and a plurality of indoor units comprising an indoor side heat exchanger, a first flow rate control device, etc. And first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel, one side of the indoor heat exchanger of the plurality of indoor units, and the first connection pipe A first electromagnetic on-off valve provided in the middle of a pipe connecting to, a first side of the indoor heat exchanger of the plurality of indoor units and the second
Second solenoid on-off valve provided in the middle of a pipe connecting the above-mentioned connection pipe and a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units to the first connection pipe A first branch portion formed of a third electromagnetic on-off valve connected in parallel with the first electromagnetic on-off valve provided in the middle of
A second branch portion that connects the other side of the indoor heat exchanger of the plurality of indoor units to the second connection pipe via the first flow rate control device, and the second connection pipe. And a gas-liquid separator for separating a gas refrigerant and a liquid refrigerant, provided in the middle of the second connecting pipe between the lower portion of the gas-liquid separator and the second branch portion. A first flow rate control device, a first flow rate control device that is provided by connecting the second branch portion and the first connection pipe to each other, and has a third flow rate control device.
Bypass pipe, a second bypass pipe provided by connecting the second branch portion and the first connection pipe, and having a fourth flow rate control device, the first connection pipe, and the second bypass pipe.
In the cooling mode operation in which the bypass circuit having the fourth electromagnetic on-off valve provided by bypass connection with the connection pipe of No. 1 and the heat source unit side heat exchanger serves as a condenser, the refrigerant outlet of the heat source unit side heat exchanger Side, the refrigerant is circulated only to the second connection pipe side, the refrigerant is circulated from the first connection pipe only to the four-way switching valve side, and the heat source side heat exchanger serves as an evaporator. In mode operation, the first
Flow path switching device that allows the refrigerant to flow only from the connection pipe to the refrigerant inflow side of the heat source side heat exchanger, and allows the refrigerant to flow only from the four-way switching valve to the second connection pipe side; and the first branch. Section, the second branch portion, the gas-liquid separator, the second flow rate control device, the third flow rate control device, the fourth flow rate control device, the first bypass pipe, and the second A repeater having a bypass pipe between the heat source unit and the plurality of indoor units, and the first solenoid valve when switching from the heating mode operation to the cooling mode operation. And a third control means for controlling the second electromagnetic on-off valve to open to replace at least the gas-liquid two-phase refrigerant in the second connection pipe or in the gas-liquid separation device. An air conditioner characterized by.
【請求項5】 圧縮機、四方切換弁、熱源機側熱交換
器、アキュムレータ等からなる1台の熱源機と、室内側
熱交換器、第1の流量制御装置等からなる複数台の室内
機と、上記熱源機と上記複数の室内機とを並列に接続す
る第1、第2の接続配管と、上記複数台の室内機の上記
室内側熱交換器の一方側と上記第1の接続配管とを接続
する配管の途中に設けられた第1の電磁開閉弁、上記複
数台の室内機の上記室内側熱交換器の一方側と上記第2
の接続配管とを接続する配管の途中に設けられた第2の
電磁開閉弁、および上記複数台の室内機の上記室内側熱
交換器の一方側と上記第1の接続配管とを接続する配管
の途中に設けられるとともに上記第1の電磁開閉弁と並
列に接続され上記第1の電磁開閉弁よりも開口径の小さ
な第3の電磁開閉弁から構成される第1の分岐部と、上
記複数台の室内機の上記室内側熱交換器の他方側をそれ
ぞれ上記第1の流量制御装置を介して上記第2の接続配
管に接続する第2の分岐部と、上記第2の接続配管の途
中に設けられガス冷媒と液冷媒とを分離する気液分離装
置と、上記気液分離装置の下部と上記第2の分岐部との
間の上記第2の接続配管の途中に設けられた第2の流量
制御装置と、上記第2の分岐部と上記第1の接続配管と
を接続して設けられ第3の流量制御装置を有する第1の
バイパス配管と、上記第2の分岐部と上記第1の接続配
管とを接続して設けられ第4の流量制御装置を有する第
2のバイパス配管と、上記第1の接続配管と上記第2の
接続配管とをバイパス接続して設けられ第4の電磁開閉
弁を有するバイパス回路と、上記熱源機側熱交換器が凝
縮器となる冷房モード運転時には、上記熱源機側熱交換
器の冷媒出口側から上記第2の接続配管側にのみ冷媒を
流通させるとともに上記第1の接続配管から上記四方切
換弁側にのみ冷媒を流通させ、かつ、上記熱源機側熱交
換器が蒸発器となる暖房モード運転時には、上記第1の
接続配管から上記熱源機側熱交換器の冷媒流入側にのみ
冷媒を流通させるとともに上記四方切換弁から第2の接
続配管側にのみ冷媒を流通させる流路切換装置と、上記
第1の分岐部、上記第2の分岐部、上記気液分離装置、
上記第2の流量制御装置、上記第3の流量制御装置、上
記第4の流量制御装置、上記第1のバイパス配管、およ
び上記第2のバイパス配管を有してなり上記熱源機と上
記複数台の室内機との間に介在される中継機と、上記暖
房モード運転から上記冷房モード運転への切換え時、上
記第2の電磁開閉弁および上記第3の電磁開閉弁を開け
て、上記第2の接続配管内または上記気液分離装置内を
少なくとも気液二相冷媒に置き換えるように制御する第
4の制御手段とを備えてなることを特徴とする空気調和
装置。
5. A heat source unit comprising a compressor, a four-way switching valve, a heat source unit side heat exchanger, an accumulator and the like, and a plurality of indoor units comprising an indoor side heat exchanger, a first flow control device and the like. And first and second connection pipes that connect the heat source unit and the plurality of indoor units in parallel, one side of the indoor heat exchanger of the plurality of indoor units, and the first connection pipe A first electromagnetic on-off valve provided in the middle of a pipe connecting to, a first side of the indoor heat exchanger of the plurality of indoor units and the second
Second solenoid on-off valve provided in the middle of a pipe connecting the above-mentioned connection pipe and a pipe connecting one side of the indoor heat exchanger of the plurality of indoor units to the first connection pipe A first branch portion that is provided in the middle of the first solenoid opening / closing valve and is connected in parallel with the first electromagnetic opening / closing valve and has a smaller opening diameter than the first electromagnetic opening / closing valve; A second branch portion that connects the other side of the indoor heat exchanger of the indoor unit of the table to the second connection pipe via the first flow rate control device, and the middle of the second connection pipe. A gas-liquid separating device for separating a gas refrigerant and a liquid refrigerant, and a second connecting pipe provided between the lower portion of the gas-liquid separating device and the second branch portion. Of the flow control device, the second branch portion and the first connecting pipe are connected to each other. A first bypass pipe having a third flow control device; a second bypass pipe having a fourth flow control device, which is provided by connecting the second branch portion and the first connection pipe; During a cooling mode operation in which the first connection pipe and the second connection pipe are bypass-connected and provided with a fourth electromagnetic on-off valve, and the heat source side heat exchanger serves as a condenser, The refrigerant is circulated from the refrigerant outlet side of the heat source unit side heat exchanger only to the second connection pipe side, and the refrigerant is circulated only from the first connection pipe to the four-way switching valve side, and the heat source unit During the heating mode operation in which the side heat exchanger serves as an evaporator, the refrigerant is circulated from the first connection pipe only to the refrigerant inflow side of the heat source side heat exchanger, and the four-way switching valve is connected to the second connection pipe side. Flow that only allows the refrigerant to flow A switching device, the first branch portion, the second branch portion, the gas-liquid separator,
The heat source device and the plurality of units, each of which has the second flow control device, the third flow control device, the fourth flow control device, the first bypass pipe, and the second bypass pipe. When the switching from the heating mode operation to the cooling mode operation is performed, the relay device interposed between the indoor unit and the indoor unit is opened to open the second electromagnetic on-off valve and the third electromagnetic on-off valve, and the second electromagnetic on-off valve is opened. And a fourth control means for controlling the inside of the connection pipe or the inside of the gas-liquid separator to replace at least the gas-liquid two-phase refrigerant.
JP7189291A 1995-07-25 1995-07-25 Air conditioner Pending JPH0942804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7189291A JPH0942804A (en) 1995-07-25 1995-07-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7189291A JPH0942804A (en) 1995-07-25 1995-07-25 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0942804A true JPH0942804A (en) 1997-02-14

Family

ID=16238878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7189291A Pending JPH0942804A (en) 1995-07-25 1995-07-25 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0942804A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309538A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Air conditioner
WO2008047784A1 (en) * 2006-10-17 2008-04-24 Daikin Industries, Ltd. Air conditioner
WO2008053802A1 (en) * 2006-11-01 2008-05-08 Daikin Industries, Ltd. Air conditioning apparatus
JP2009121707A (en) * 2007-11-12 2009-06-04 Samsung Electronics Co Ltd Air conditioner
WO2011141959A1 (en) * 2010-05-12 2011-11-17 三菱電機株式会社 Switching apparatus and air conditioning apparatus
WO2014106901A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device
WO2014106900A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device
WO2017168681A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Air conditioner
WO2018020621A1 (en) * 2016-07-27 2018-02-01 三菱電機株式会社 Air conditioning device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309538A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Air conditioner
WO2008047784A1 (en) * 2006-10-17 2008-04-24 Daikin Industries, Ltd. Air conditioner
WO2008053802A1 (en) * 2006-11-01 2008-05-08 Daikin Industries, Ltd. Air conditioning apparatus
JP2008116073A (en) * 2006-11-01 2008-05-22 Daikin Ind Ltd Air conditioning apparatus
JP2009121707A (en) * 2007-11-12 2009-06-04 Samsung Electronics Co Ltd Air conditioner
JP4629083B2 (en) * 2007-11-12 2011-02-09 三星電子株式会社 Air conditioner
WO2011141959A1 (en) * 2010-05-12 2011-11-17 三菱電機株式会社 Switching apparatus and air conditioning apparatus
CN102893095A (en) * 2010-05-12 2013-01-23 三菱电机株式会社 Switching device and air-conditioning apparatus
CN102893095B (en) * 2010-05-12 2016-01-06 三菱电机株式会社 Switching device shifter and aircondition
GB2524184A (en) * 2013-01-07 2015-09-16 Mitsubishi Electric Corp Air conditioner device
WO2014106900A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device
US20150338120A1 (en) * 2013-01-07 2015-11-26 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2014106901A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device
JP5875710B2 (en) * 2013-01-07 2016-03-02 三菱電機株式会社 Air conditioner
GB2524184B (en) * 2013-01-07 2019-11-20 Mitsubishi Electric Corp Air conditioning apparatus
WO2017168681A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Air conditioner
GB2563170A (en) * 2016-03-31 2018-12-05 Mitsubishi Electric Corp Air conditioner
GB2563170B (en) * 2016-03-31 2020-10-21 Mitsubishi Electric Corp Air-conditioning apparatus
WO2018020621A1 (en) * 2016-07-27 2018-02-01 三菱電機株式会社 Air conditioning device
GB2567332A (en) * 2016-07-27 2019-04-10 Mitsubishi Electric Corp Air conditioning device
GB2567332B (en) * 2016-07-27 2021-04-21 Mitsubishi Electric Corp Air conditioning apparatus

Similar Documents

Publication Publication Date Title
JPH0754217B2 (en) Air conditioner
JPH0942804A (en) Air conditioner
JP2004317091A (en) Air conditioner, refrigerant circuit of air conditioner and control method for refrigerant circuit in air conditioner
JPH08291952A (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2598550B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2003279174A (en) Air conditioning device
JP2621687B2 (en) Air conditioner
JPH05322348A (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JP2757584B2 (en) Air conditioner
JPH046364A (en) Air-conditioner
JP2508311B2 (en) Air conditioner
JPH04359767A (en) Air conditioner
JPH04347466A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JPH05172430A (en) Air conditioning apparatus
JPH04110573A (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH086980B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JPH05172432A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees