WO2008047784A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2008047784A1
WO2008047784A1 PCT/JP2007/070152 JP2007070152W WO2008047784A1 WO 2008047784 A1 WO2008047784 A1 WO 2008047784A1 JP 2007070152 W JP2007070152 W JP 2007070152W WO 2008047784 A1 WO2008047784 A1 WO 2008047784A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
pressure
pipe
low
gas pipe
Prior art date
Application number
PCT/JP2007/070152
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Kawano
Shinya Matsuoka
Akihiro Eguchi
Shigeki Kamitani
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008047784A1 publication Critical patent/WO2008047784A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves

Definitions

  • the present invention relates to an air conditioner, and particularly relates to prevention of noise of refrigerant passing sound that occurs when switching between cooling and heating operations.
  • the air conditioner of Patent Document 1 includes an outdoor unit and a plurality of indoor units.
  • a BS unit is connected between the outdoor unit and each indoor unit as an intermediate unit for switching the refrigerant flow path.
  • the BS unit has a refrigerant piping structure provided with a plurality of on-off valves and the like.
  • the refrigerant evaporated in the indoor unit flows in and flows out toward the compressor of the outdoor unit, and the refrigerant discharged from the compressor of the outdoor unit flows in by switching each on-off valve. Then, it is configured to switch to a state of flowing out toward the indoor unit. Thereby, the cooling operation and the heating operation are individually switched for each indoor unit.
  • Patent Document 1 JP-A-11 241844
  • the present invention has been made in view of the power and the point, and the object of the present invention is to improve the air conditioning performance of the air conditioner as a whole while preventing the passage of refrigerant that occurs when switching between cooling and heating operations. Is to ensure.
  • a first invention includes a high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41), and each of the usage-side heat exchanges
  • One end of the vessel (41) is connected to the liquid pipe (13) via an expansion mechanism (42), and the other end is connected to the high-pressure gas pipe (11) via a switching mechanism (30A, 30B).
  • the air conditioner is connected to the low-pressure gas pipe (12) so as to be switchable, and each use-side heat exchanger (41) can be individually operated for cooling and heating.
  • the switching mechanism (30A, 30B) has a first control valve (31) whose opening degree is adjustable, and connects the use side heat exchanger (41) and the high pressure gas pipe (11).
  • the first control valve (31) is slightly opened after the second control valve (32) is closed, Thereafter, when the first control valve (31) is fully opened to open the high-pressure passage (38) while switching from the heating operation to the cooling operation, the second control is performed after the first control valve (31) is closed. Fine valve (32) Then, the second control valve (32) is fully opened, and the low pressure passage (39) is opened.
  • the switching mechanism (30A, 30B) causes the first control valve (31) to be slightly opened after the second control valve (32) is closed, and the use side heat exchanger ( After the pressure is equalized with the high-pressure gas pipe (11), the first control valve (31) is fully opened, and the cooling operation force is switched to the heating operation.
  • the second control valve (32) is slightly opened, and the use side heat exchanger (41) is connected to the low-pressure gas pipe. After equalizing pressure with (12), the second control valve (32) is fully opened and switched from heating operation to cooling operation.
  • the first control valve (31) when switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened, and a small amount of high-pressure refrigerant is supplied to the use-side heat exchanger (41) that was in the low-pressure state. Introduced one by one, gradually changing the pressure of the use side heat exchanger (41) from the low pressure state to the high pressure state and equalizing the pressure to the high pressure gas pipe (11), the high pressure refrigerant suddenly increases with respect to the use side heat exchanger (41). It is possible to prevent the refrigerant from passing through and to prevent the passage of refrigerant. As a result, since it is not necessary to provide a soundproofing material or the like in the apparatus for preventing noise, it is possible to reduce the material cost.
  • pressure equalization control can be performed individually for the plurality of usage-side heat exchangers (41), and usage-side heat exchange during heating operation that does not require switching between cooling and heating operations. It is advantageous to ensure the air conditioning performance of the entire device without shutting down the unit (4 1).
  • a second invention includes a high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41), each of the usage-side heat exchanges.
  • One end of the vessel (41) is connected to the liquid pipe (13) via an expansion mechanism (42), and the other end is connected to the high-pressure gas pipe (11) via a switching mechanism (30A, 30B).
  • the air conditioner is connected to the low-pressure gas pipe (12) so as to be switchable, and each use-side heat exchanger (41) can be individually operated for cooling and heating.
  • the switching mechanism (30A, 30B) has a first control valve (31) whose opening degree is adjustable, and connects the use side heat exchanger (41) and the high pressure gas pipe (11).
  • the high-pressure passage (38), the opening degree of which can be adjusted, and the refrigerant flow rate when fully opened is smaller than the first control valve (31)! /
  • the first sub-control valve (33 ) Is formed with a smaller pipe inner diameter than the high-pressure gas pipe (11), and is connected to the high-pressure passage (38) so as to bypass the first control valve (31) ( 18), a second control valve (32) whose opening degree is adjustable, a low pressure passage (39) connecting the use side heat exchanger (41) and the low pressure gas pipe (12), and an opening degree.
  • Adjustable and fully opened refrigerant flow rate is smaller than the second control valve (32)! /, Has a second sub-control valve (34), and has a smaller pipe inner diameter than the low-pressure gas pipe (12). And a second bypass pipe (19) connected to the low pressure passage (39) so as to bypass the second control valve (32).
  • the switching mechanism (30A, 30B) switches from the cooling operation to the heating operation, the switching mechanism (30A, 30B) closes the second control valve (32) and the second sub control valve (34), and then When the control valve (33) is slightly opened, and then the first control valve (31) is fully opened to open the high pressure passage (38), while switching from heating operation to cooling operation, the first control valve (31) and after closing the first sub-control valve (33), the second sub-control valve (34) is opened slightly, and then the second control valve (32) is fully opened, Open (39).
  • the switching mechanism (30A, 30B) causes the second control valve (32) and the second sub control valve to
  • the first sub-control valve (33) is opened slightly, and the user-side heat exchanger (41) equalizes the pressure with the high-pressure gas pipe (11) before the first control valve (31 ) Is opened, and the cooling operation power is switched to heating operation.
  • the second sub control valve (34) is slightly opened, and the use side heat
  • the exchanger (41) equalizes pressure with the low-pressure gas pipe (12)
  • the second control valve (32) is opened to switch from heating operation to cooling operation.
  • the first sub control valve (33) when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and a high-pressure refrigerant is supplied to the use-side heat exchanger (41) side that was in the low-pressure state.
  • the user side heat exchanger (41) By introducing a small amount one by one, the user side heat exchanger (41) is gradually changed from a low pressure state to a high pressure state and pressure-equalized with the high pressure gas pipe (11). It is possible to prevent the refrigerant from flowing in abruptly and prevent the passage of refrigerant.
  • the first and second sub control valves (33, 34) the refrigerant flow rate when fully opened is smaller than that of the first and second control valves (31, 32)!
  • a third invention includes a high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41), each of the usage-side heat exchanges.
  • One end of the vessel (41) is connected to the liquid pipe (13) via an expansion mechanism (42), and the other end is connected to the high-pressure gas pipe (11) via a switching mechanism (30A, 30B).
  • the air conditioner is connected to the low-pressure gas pipe (12) so as to be switchable, and each use-side heat exchanger (41) can be individually operated for cooling and heating.
  • the switching mechanism (30A, 30B) includes a first on-off valve (35) that allows or blocks refrigerant flow, and connects the use side heat exchanger (41) and the high-pressure gas pipe (11).
  • a high-pressure passage (38) to be connected, a refrigerant flow rate that is freely adjustable in opening degree and smaller than that of the first on-off valve (35), and a first sub-control valve (33), and the high-pressure gas
  • a first bypass pipe (18) formed with a pipe inner diameter smaller than that of the pipe (11) and connected to the high-pressure passage (38) so as to bypass the first on-off valve (35), and allows refrigerant flow
  • the refrigerant flow rate is smaller than the second on-off valve (36)! /,
  • Has a second sub-control valve (34) is formed with a pipe inner
  • the switching mechanism (30A, 30B) when switching from cooling operation to heating operation, closes the second on-off valve (36) and the second sub control valve (34), and then When the control valve (33) is slightly opened, and then the first on-off valve (35) is opened to open the high-pressure passage (38), while the heating operation is switched to the cooling operation, the first on-off valve (35) and the first sub control valve (33) are closed, then the second sub control valve (34) is opened slightly, and then the second open valve (36) is opened to open the low pressure passage ( 39) is opened.
  • the switching mechanism (30A, 30B) causes the second on-off valve (36) and the second sub-control valve.
  • the first sub-control valve (33) is opened slightly, and the use side heat exchanger (41) equalizes pressure with the high-pressure gas pipe (11), then the first on-off valve (35 ) Is opened, and the cooling operation power is switched to heating operation.
  • the second sub-control valve (34) is slightly opened, and the use side heat After the exchanger (41) equalizes pressure with the low-pressure gas pipe (12), the second on-off valve (36) is opened to switch from heating operation to cooling operation.
  • the first sub control valve (33) when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and a high-pressure refrigerant is supplied to the use-side heat exchanger (41) side that has been in the low-pressure state. Introduce a small amount and gradually change the pressure on the use side heat exchanger (41) from the low pressure state to the high pressure state to equalize the pressure with the high pressure gas pipe (11). The high-pressure refrigerant is prevented from flowing into the side heat exchanger (41) abruptly, and the force S prevents the refrigerant from passing through.
  • the first and second on-off valves (35, 36) are not used for pressure equalization control but allow or block the refrigerant flow, so that the control valve capable of adjusting the refrigerant flow rate.
  • the refrigerant switching circuit of the air conditioner can be realized with a simple configuration that requires complicated control such as adjusting the opening.
  • a capillary tube (37 on the downstream side of the first and second sub control valves (33, 34) in the first and second bypass pipes (18, 19). ) Is connected! /
  • downstream end portions of the first and second bypass pipes (18, 19) are formed in a trumpet shape in which a pipe inner diameter is gradually enlarged, and the high-pressure passage ( 38) and the low pressure passage (39), the downstream side of the first and second bypass pipes (18, 19) with respect to the downstream end thereof is connected to the first and second bypass pipes (18, 19). ) Extends in a straight line along the flow direction of the refrigerant flowing out.
  • the first and second bypass pipes (18, 19) since the inner diameter of the downstream end of the first and second bypass pipes (18, 19) is gradually enlarged, the first and second bypass pipes The refrigerant smoothly flows from (18, 19) to the high pressure passage (38) and the low pressure passage (39).
  • the downstream side of the high pressure passage (38) and the low pressure passage (39) with respect to the downstream end of the first and second bypass pipes (18, 19) is a straight line along the refrigerant flow direction.
  • the refrigerant flowing out from the first and second bypass pipes (18, 19) flows into the high pressure passage (38) and the low pressure passage (3 It is possible to prevent the occurrence of collision noise by colliding with the inner wall of the pipe in 9), and an advantageous effect can be obtained in suppressing the generation of noise due to the refrigerant.
  • the first control valve (31) when switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened, and the use side heat exchanger (41) side which has been in the low pressure state A small amount of high-pressure refrigerant is introduced into the system, and the user-side heat exchanger (41) is gradually changed from a low pressure state to a high-pressure state to equalize pressure with the high-pressure gas pipe (11). Therefore, the rapid flow of the high-pressure refrigerant is suppressed, and the passage of refrigerant can be prevented from being generated. As a result, there is no need to provide a soundproofing material or the like in the apparatus to prevent noise, and an additional effect is obtained that the material cost can be reduced.
  • pressure equalization control can be performed individually for the plurality of usage-side heat exchangers (41), and usage-side heat exchange during heating operation that does not require switching between cooling and heating operations. It is advantageous to ensure the air conditioning performance of the entire device without shutting down the unit (4 1).
  • the first sub control valve (33) when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the use side heat exchanger that has been in the low pressure state is used.
  • the usage-side heat exchanger (41) By introducing small amounts of high-pressure refrigerant into the (41) side and gradually changing the usage-side heat exchanger (41) from the low-pressure state to the high-pressure state and equalizing pressure with the high-pressure gas pipe (11), the usage-side heat exchanger ( 41), it is possible to prevent a high-pressure refrigerant from flowing suddenly and prevent the passage of refrigerant.
  • the first and second sub-control valves (33, 34) the refrigerant flow rate when fully opened is smaller than the first and second control valves (31, 32)! /, Using the control valves! /, Therefore, the coolant flow rate can be adjusted with a smaller opening adjustment range, and a further advantageous effect can be obtained in preventing the passage of refrigerant.
  • the first sub control valve (33) when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the use side heat exchanger that has been in the low pressure state is used.
  • the first on-off valve (35) is introduced by gradually introducing high-pressure refrigerant into the (41) side and gradually changing the pressure on the use-side heat exchanger (41) from the low pressure state to the high pressure state with the high pressure gas pipe (11). ) Is prevented from flowing into the user-side heat exchanger (41) abruptly, and refrigerant flow is suppressed. Generation of excessive sound can be prevented.
  • the first and second on-off valves (35, 36) are not used for pressure equalization control, but allow or block the refrigerant flow. Therefore, the control valve can adjust the refrigerant flow rate.
  • the refrigerant switching circuit of the air conditioner can be realized with a simple configuration that requires complicated control such as adjusting the opening.
  • the depressurization distance required for depressurizing the refrigerant flowing through the first and second bypass pipes (18, 19) is set to the capacity tube (37). Can be secured. In this way, if the decompression distance is kept long downstream of the first and second sub control valves (33, 34), the refrigerant passes through the first and second sub control valves (33, 34). This is advantageous for suppressing the generation of passing sound during the operation.
  • the inner diameter of the downstream side end of the first and second bypass pipes (18, 19) is gradually enlarged.
  • the refrigerant smoothly flows from the second bypass pipe (18, 19) to the high pressure passage (38) and the low pressure passage (39).
  • the downstream side of the high pressure passage (38) and the low pressure passage (39) with respect to the downstream end of the first and second bypass pipes (18, 19) is a straight line along the refrigerant flow direction. Therefore, the refrigerant flowing out of the first and second bypass pipes (18, 19) collides with the inner wall of the high-pressure passage (38) and the low-pressure passage (39) and produces a collision sound. It is possible to prevent the occurrence of the noise, and an advantageous effect is obtained in suppressing the noise caused by the refrigerant.
  • FIG. 1 is a refrigerant circuit diagram showing an overall configuration of an air-conditioning apparatus according to Embodiment 1 and an operation for cooling operation.
  • FIG. 2 is a refrigerant circuit diagram showing the heating operation.
  • FIG. 3 is a refrigerant circuit diagram showing the operation of air conditioning operation 1.
  • FIG. 4 is a refrigerant circuit diagram showing the operation of air conditioning operation 2.
  • FIG. 5 is a flowchart showing the control operation of pressure equalizing operation 1.
  • FIG. 6 is a flowchart showing the control operation of pressure equalizing operation 2.
  • FIG. 7 is a refrigerant circuit diagram showing the overall configuration of the air-conditioning apparatus according to Embodiment 2 and the operation of cooling operation.
  • FIG. 8 is a diagram showing a piping configuration of a BS unit.
  • FIG. 9 is a flowchart showing the control operation of pressure equalizing operation 1.
  • FIG. 10 is a flowchart showing the control operation of pressure equalizing operation 2.
  • FIG. 11 is another refrigerant circuit diagram in which the overall configuration of the air conditioner is partially omitted.
  • FIG. 12 is another refrigerant circuit diagram showing the overall configuration of the air conditioner with a part thereof omitted.
  • the air conditioner (10) of the first embodiment is provided in a building or the like, and heats and cools each room.
  • the air conditioner (10) includes an outdoor unit (20), two BS units (30A, 30B) as switching mechanisms, and two indoor units (40A, 40B). And these outdoor units (20) etc. are connected by the communication piping which is refrigerant piping, and comprise the refrigerant circuit (R). In the refrigerant circuit (R), the refrigerant circulates to perform a vapor compression refrigeration cycle.
  • the outdoor unit (20) constitutes a heat source unit.
  • the outdoor unit (20) includes a main pipe (2c), a first branch pipe (2d), and a second branch pipe (2e), which are refrigerant pipes.
  • the outdoor unit (20) includes a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), and two electromagnetic valves (26, 27).
  • One end of the main pipe (2c) is connected to the liquid pipe (13) which is a communication pipe disposed outside the outdoor unit (20), and the other end is connected to the first branch pipe (2d) and the second pipe. Connected to one end of the branch pipe (2e).
  • the other end of the first branch pipe (2d) is connected to a high-pressure gas pipe (11) which is a connecting pipe arranged outside the outdoor unit (20).
  • the other end of the second branch pipe (2e) is connected to the low-pressure gas pipe (12), which is a connecting pipe arranged outside the outdoor unit (20).
  • the compressor (21) is a fluid machine for compressing the refrigerant, and is constituted by, for example, a high-pressure dome type scroll compressor.
  • the discharge pipe (2a) of the compressor (21) is connected in the middle of the first branch pipe (2d), and the suction pipe (2b) is connected in the middle of the second branch pipe (2e).
  • the suction pipe (2b) is provided with an accumulator (22).
  • the outdoor heat exchanger (23) is a cross-fin type fin-and-tube heat exchanger, and is provided in the middle of the main pipe (2c).
  • the outdoor expansion valve (24) is an electronic expansion valve. And is provided closer to the liquid pipe (13) than the outdoor heat exchanger (23) in the main pipe (2c).
  • An outdoor fan (25) is provided in the vicinity of the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) is configured so that the refrigerant exchanges heat with the air taken in by the outdoor fan (25).
  • the two solenoid valves (26, 27) are a first solenoid valve (26) and a second solenoid valve (27).
  • the first solenoid valve (26) is provided closer to the outdoor heat exchanger (23) than the connection point of the discharge pipe (2a) in the first branch pipe (2d).
  • the second solenoid valve (27) is provided closer to the outdoor heat exchanger (23) than the connection point of the suction pipe (2b) in the second branch pipe (2e).
  • These solenoid valves (26, 27) constitute a control valve that allows or blocks the refrigerant flow.
  • Each of the indoor units (40A, 40B) constitutes a use unit!
  • Each indoor unit (40A, 40B) is connected to each BS unit (30A, 30B) by an intermediate pipe (17) which is a connecting pipe. That is, the first indoor unit (40A) and the first IBS unit (30A) are connected in pairs with the second indoor unit (40B) and the second BS unit (30B).
  • the liquid pipe (13) is connected to the first indoor unit (40A).
  • the second indoor unit (40B) is connected to the branch liquid pipe (16) branched from the middle of the liquid pipe (13)!
  • Each of the indoor units (40A, 40B) is an indoor heat exchanger connected to each other through a refrigerant pipe.
  • the indoor heat exchanger (41) is connected to the intermediate pipe (17).
  • the indoor expansion valve (42) of the first indoor unit (40A) is connected to the liquid pipe (13), and the indoor expansion valve (42) of the second indoor unit (40B) is connected to the branch liquid pipe (16)! /
  • the indoor heat exchanger (41) is a cross-fin type fin 'and' tube type heat exchanger.
  • the indoor expansion valve (42) is an electronic expansion valve.
  • An indoor fan (43) is provided in the vicinity of the indoor heat exchanger (41).
  • the indoor heat exchanger (41) is configured so that the refrigerant exchanges heat with the air taken in by the indoor fan (43).
  • a high-pressure gas pipe (11) and a low-pressure gas pipe (12) are connected to the first IBS unit (30A).
  • the intermediate pipe (17) and the high pressure gas pipe (11) form a high pressure passage (38)
  • the intermediate pipe (17) and the low pressure gas pipe (12) form a low pressure passage (39).
  • the high-pressure passage (38) and the low-pressure passage (39) are joined and connected.
  • the high-pressure gas pipe (1 1) is provided with a first control valve (31) with adjustable opening
  • a low pressure gas pipe (12) with a low pressure passage (39) is provided with a second control valve (32) with adjustable opening.
  • the second BS unit (30B) includes a branched high-pressure gas pipe (14) branched from the middle of the high-pressure gas pipe (11), and a low-pressure gas pipe (12).
  • a branch low-pressure gas pipe (15) branched from the middle is connected.
  • the first control valve (31) is provided in the branch high-pressure gas pipe (14) forming the high-pressure passage (38), and the branch low-pressure gas pipe (15) forming the low-pressure passage (39).
  • Is provided with a second control valve (32).
  • the liquid pipe (13) passes through the first IBS unit (30A), and the branch liquid pipe (16) passes through the second BS unit (30B).
  • the first and second control valves (31, 32) of each BS unit (30A, 30B) constitute an electric valve that adjusts the refrigerant flow rate by adjusting the opening. These first and second control valves (31, 32) are for switching the refrigerant flow by switching between opening and closing, and for switching the cooling / heating operation in each indoor unit (40A, 40B).
  • the first control valve (31) is set to the closed state, and the second control valve (32) is set to the open state.
  • the refrigerant evaporated in (41) flows to the low-pressure gas pipe (12).
  • the first control valve (31) is set to the open state and the second control valve (32) is set to the closed state, and the high pressure gas pipe (11) force is set.
  • the gas refrigerant flows to the indoor heat exchanger (41) and condenses (dissipates heat).
  • the air conditioner (10) is provided with various pressure sensors (28, 29, 44). Specifically, the discharge pipe (2a) of the compressor (21) is provided with a discharge pressure sensor (28) for detecting the discharge pressure of the compressor (21). The suction pipe (2b) of the compressor (21) is provided with a suction pressure sensor (29) for detecting the suction pressure of the compressor (21) upstream of the accumulator (22). In addition, a heat exchange pressure sensor (44) for detecting the pressure of the indoor heat exchanger (41) is provided between the indoor heat exchanger (41) and the indoor expansion valve (42).
  • the air conditioner (10) includes a controller (50). This controller
  • (50) constitutes an opening degree control means for performing a pressure equalizing operation when switching between the air conditioning operation of at least one of the indoor units (40A, 40B).
  • this pressure equalization operation when switching from cooling operation to heating operation, the indoor heat exchanger (41) equalizes pressure with the high-pressure gas pipe (11). Heating operating force
  • the first and second control valves (31, 32) are controlled so that the indoor heat exchanger (41) equalizes pressure with the low-pressure gas pipe (12). Specific pressure equalization operation will be described later.
  • the controller (50) is provided with a pressure input section (51), a compressor control section (52), and a valve operation section (53).
  • the pressure input unit (51) receives detection pressures of the discharge pressure sensor (28), the suction pressure sensor (29), and the heat exchange pressure sensor (44) during pressure equalization operation.
  • the valve operating section (53) adjusts the opening degree of the first and second control valves (31, 32) in the pressure equalizing operation.
  • the compressor control section (52) constitutes pressure control means for controlling the inlet pressure of the first and second control valves (31, 32) to a predetermined value or more in the pressure equalizing operation.
  • the inlet pressure of the first control valve (31) is the refrigerant pressure flowing into the first control valve (31) from the discharge pipe (2a) side of the compressor (21).
  • the inlet pressure of the second control valve (32) is the refrigerant pressure flowing into the second control valve (32) from the indoor heat exchanger (41) side.
  • the detected pressure of the heat exchange pressure sensor (44) is used as the inlet pressure of the first and second control valves (31, 32). If the heat exchange pressure sensor (44) cannot be detected due to a failure or the like, the detected pressure of the discharge pressure sensor (28) is substituted for the inlet pressure of the first control valve (31), and the suction pressure sensor (29) Is used as the inlet pressure of the second control valve (32).
  • the operation of the air conditioner (10) will be described with reference to the drawings.
  • this air conditioner (10) there are an operation in which both of the two indoor units (40A, 40B) perform cooling or heating, and an operation in which one performs cooling and the other performs heating.
  • the first indoor unit (40A) and the second indoor unit (40B) perform the cooling operation
  • the first solenoid valve (26) is set to the open state
  • the second solenoid valve (27) is set to the closed state
  • the outdoor expansion valve (24) is set to the fully open state.
  • the first control valve (31) is set to the closed state
  • the second control valve (32) is set to the open state.
  • the indoor expansion valve (42) is set to an appropriate opening degree.
  • the compressor (21) When the compressor (21) is driven in such a state, the high-pressure gas refrigerant discharged from the compressor (21) passes through the first branch pipe (2d) to the outdoor heat exchanger (23). Flowing. In the outdoor heat exchanger (23), the refrigerant condenses by exchanging heat with the air taken in by the outdoor fan (25). The condensed refrigerant flows outside the outdoor unit (20) through the main pipe (2c) and flows into the liquid pipe (13). Part of the refrigerant in the liquid pipe (13) flows into the branch liquid pipe (16) and flows into the second indoor unit (40B), and the rest flows into the first indoor unit (40A).
  • the refrigerant is an indoor expansion valve.
  • the indoor heat exchanger (41) After being depressurized in (42), it flows to the indoor heat exchanger (41).
  • the refrigerant evaporates by exchanging heat with the air taken in by the indoor fan (43). This cools the air and cools the room.
  • the gas refrigerant evaporated in the indoor heat exchanger (41) flows out of the indoor units (40A, 40B), and flows into the BS units (3OA, 30B) through the intermediate pipe (17).
  • the gas refrigerant flows from the intermediate pipe (17) into the low-pressure gas pipe (12).
  • the gas refrigerant flows from the intermediate pipe (17) into the branch low-pressure gas pipe (15) and then flows into the low-pressure gas pipe (12).
  • the gas refrigerant in the low-pressure gas pipe (12) flows into the outdoor unit (20), returns to the compressor (21) through the suction pipe (2b), and this circulation is repeated.
  • the compressor (21) When the compressor (21) is driven in such a state, the high-pressure gas refrigerant discharged from the compressor (21) flows out of the outdoor unit (20) and flows into the high-pressure gas pipe (11). .
  • Part of the refrigerant in the high-pressure gas pipe (11) is branched from the high-pressure gas pipe (14) to the second BS unit (30B). It flows in and the rest flows into the IBS unit (30A).
  • the refrigerant flowing into each BS unit (30A, 30B) flows into each indoor unit (40A, 40B) through the intermediate pipe (17).
  • the refrigerant condenses by exchanging heat with air. This heats the air and heats the room.
  • the refrigerant condensed in the first indoor unit (40A) flows to the liquid pipe (13).
  • the refrigerant condensed in the second indoor unit (40B) flows into the liquid pipe (13) through the branch liquid pipe (16).
  • the refrigerant in the liquid pipe (13) flows into the outdoor unit (20) and flows through the main pipe (2c).
  • the refrigerant in the main pipe (2c) is decompressed by the outdoor expansion valve (24) and then flows into the outdoor heat exchanger (23).
  • the outdoor heat exchanger (23) the refrigerant exchanges heat with air and evaporates.
  • the evaporated gas refrigerant returns to the compressor (21) again through the second branch pipe (2e) and the suction pipe (2b), and this circulation is repeated.
  • air conditioning operation 1 an operation in which the cooling operation is performed in the first indoor unit (40A) and the heating operation is performed in the second indoor unit (40B) (hereinafter referred to as air conditioning operation 1) will be described.
  • differences from the cooling operation will be described.
  • the first control valve (31) of the second BS unit (30B) is opened, and the second control valve (32 ) Is set to the closed state. Further, the indoor expansion valve (42) of the second indoor unit (40B) is set to a fully open state. Then, a part of the high-pressure gas refrigerant discharged from the compressor (21) flows to the first branch pipe (2d) and the rest flows to the high-pressure gas pipe (11).
  • the refrigerant that has flowed into the high-pressure gas pipe (11) flows from the branch high-pressure gas pipe (14) to the second BS unit (
  • the refrigerant exchanges heat with air and condenses. Thereby, air is heated and indoor heating is performed.
  • the refrigerant condensed in the second indoor unit (40B) flows into the liquid pipe (13) through the branch liquid pipe (16), and merges with the refrigerant from the outdoor unit (20).
  • the combined refrigerant flows through the liquid pipe (13) as it is, and evaporates in the first indoor unit (40A). This will cool the room It is.
  • air conditioning operation 2 an operation in which the heating operation is performed in the first indoor unit (40A) and the cooling operation is performed in the second indoor unit (40B) (hereinafter referred to as air conditioning operation 2) will be described.
  • air conditioning operation 2 differences from the heating operation will be described.
  • the refrigerant condensed in the first indoor unit (40A) flows to the liquid pipe (13). Part of the refrigerant in the liquid pipe (13) flows into the second indoor unit (40B) through the branch liquid pipe (16), and the rest flows into the outdoor unit (20). In the second indoor unit (40B), the refrigerant is depressurized by the indoor expansion valve (42) and then evaporated by the indoor heat exchanger (41). As a result, cooling is performed in the second indoor unit (40B).
  • the gas refrigerant evaporated in the second indoor unit (40B) flows into the low-pressure gas pipe (12) through the intermediate pipe (17), the second BS unit (30B) and the branch low-pressure gas pipe (15) in this order. To do.
  • the refrigerant in the low-pressure gas pipe (12) flows into the second branch pipe (2e) of the outdoor unit (20) and merges with the refrigerant from the outdoor heat exchanger (23).
  • the merged refrigerant returns to the compressor (21) again through the suction pipe (2b).
  • the first control valve (31), the second control valve (32), the indoor expansion valve (42), the heat exchange pressure sensor (44), etc. described below are the second BS unit (30B) and the second indoor valve. Assume that it is in the unit (40B).
  • step S 11 the valve operating section (53) closes the second control valve (32).
  • the second BS unit (3 OB) and the refrigerant flow to the second indoor unit (40B) are blocked.
  • step S12 the valve operating section (53) slightly opens the first control valve (31).
  • the refrigerant discharged from the compressor (21) passes through the high-pressure passage (38) of the second BS unit (30B), that is, the low-pressure indoor heat exchange through the branch high-pressure gas pipe (14) and the intermediate pipe (17).
  • the vessel (41) little by little.
  • the indoor heat exchanger (41) in the low pressure state is gradually equalized to the same high pressure state as the branch high pressure gas pipe (14).
  • step S13 the valve operating section (53) fully opens the first control valve (31).
  • the refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (41) through the branch high-pressure gas pipe (14) and the intermediate pipe (17), and the switching from the cooling operation to the heating operation is completed.
  • the indoor heat exchanger (41) is pre-equalized with the branch high-pressure gas pipe (14), the high-pressure refrigerant is prevented from flowing into the indoor heat exchanger (41) rapidly, and the refrigerant The generation of passing sound can be prevented.
  • the first control valve (31) when switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened, and the indoor heat that has been in the low pressure state is set.
  • High pressure refrigerant was introduced little by little on the exchanger (41) side, and the indoor heat exchanger (41) was gradually changed from a low pressure state to a high pressure state so as to equalize pressure with the branch high pressure gas pipe (14). Therefore, the high-pressure refrigerant is prevented from flowing into the indoor heat exchanger (41) suddenly, and generation of refrigerant passage noise can be prevented.
  • the first control valve (31), the second control valve (32), the indoor expansion valve (42), the heat exchange pressure sensor (44), etc. described below are the second BS unit (30B) and the second indoor valve. It is in the unit (40B).
  • the controller (50) performs the control shown in FIG. First, in step S21, the valve operating section (53) closes the first control valve (31). Thereby, the distribution of the refrigerant to the second BS unit (30B) and the second indoor unit (40B) is blocked.
  • step S22 the valve operating section (53) slightly opens the second control valve (32). The That is, the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) little by little through the indoor heat exchanger (41) and the intermediate pipe (17). As a result, the indoor heat exchanger (41) in the high pressure state is gradually equalized to the same low pressure state as the branch low pressure gas pipe (15).
  • step S23 the valve operating section (53) fully opens the second control valve (32).
  • the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) through the indoor heat exchanger (41) and the intermediate pipe (17), and the switching from the heating operation to the cooling operation is completed.
  • the indoor heat exchanger (41) is pre-equalized with the branch low-pressure gas pipe (15)
  • the high-pressure refrigerant suddenly flows into the indoor heat exchanger (41) force branch low-pressure gas pipe (15). It is possible to prevent the refrigerant from passing through and to prevent the passage of refrigerant.
  • the second control valve (32) when switching from the heating operation to the cooling operation, the second control valve (32) is slightly opened, and the indoor heat that has been in the high pressure state is set. A small amount of high-pressure refrigerant is introduced from the exchanger (41) to the branch low-pressure gas pipe (15) side, and the indoor heat exchanger (41) is gradually changed from the high pressure state to the low-pressure state. The pressure was equalized. Therefore, the high-pressure refrigerant is prevented from flowing suddenly from the indoor heat exchanger (41) into the branch low-pressure gas pipe (15), and the passage of refrigerant can be prevented from being generated.
  • FIG. 7 is a refrigerant circuit diagram showing the overall configuration of the air-conditioning apparatus (30) according to Embodiment 2 of the present invention and the operation of the cooling operation.
  • the difference from Embodiment 1 is that the first and second bypass pipes (18, 19) bypassing the first and second control valves (31, 32) and the first and second bypass pipes (18, 19) Since the first and second sub control valves (33, 34) provided in the first embodiment are provided, the same parts as those in the first embodiment are denoted by the same reference numerals, and only different points will be described.
  • the high pressure gas pipe (11) and the low pressure gas pipe (12) are connected to the first IBS unit (30A).
  • the intermediate pipe (17) and the high-pressure gas pipe (11) form a high-pressure passage (38)
  • the intermediate pipe (17) and the low-pressure gas pipe (12) form a low-pressure passage (39).
  • the high-pressure passage (38) and the low-pressure passage (39) are joined and connected.
  • the high pressure gas pipe (11) is provided with the first control valve (31)
  • the low pressure gas pipe (12) is provided with the second control valve (32).
  • a first bypass pipe (18) is connected to the high pressure passage (38) so as to bypass the first control valve (31), and a second control valve (32) is connected to the low pressure passage (39).
  • the second bypass pipe (19) is connected to bypass.
  • the first and second bypass pipes (18, 19) are formed with smaller pipe inner diameters than the high-pressure gas pipe (11) and the low-pressure gas pipe (12), respectively.
  • the first and second bypass pipes (18, 19) are adjustable in opening and the refrigerant flow rate when fully opened is smaller than that of the first and second control valves (31, 32)! /, 1 and 2 sub control valves (33, 34) are installed.
  • the second BS unit (30B) includes a branch high-pressure gas pipe (14) branched from the middle of the high-pressure gas pipe (11), and a low-pressure gas pipe (12).
  • a branch low-pressure gas pipe (15) branched from the middle is connected.
  • the branch high-pressure gas pipe (14) is provided with a first control valve (31), and the branch low-pressure gas pipe (15) is provided with a second control valve (32). ! /
  • a first bypass pipe (18) is connected to the branch high-pressure gas pipe (14) so as to bypass the first control valve (31), and a second control is connected to the branch low-pressure gas pipe (15).
  • a second bypass pipe (19) is connected to bypass the valve (32).
  • Each of the first and second bypass pipes (18, 19) has a smaller pipe inner diameter than the branch high-pressure gas pipe (14) and the branch low-pressure gas pipe (15).
  • the refrigerant flow rate when fully opened is smaller than that of the first and second control valves (31, 32)! /, The first and second sub control valves ( 33, 34).
  • the downstream ends of the first and second bypass pipes (18, 19) are formed in a trumpet shape with the pipe inner diameter gradually enlarged. Then, in the high pressure passage (38), the downstream side of the connection position with the downstream end of the first bypass pipe (18), that is, the connection pipe between the high pressure gas pipe (11) and the indoor heat exchanger (41).
  • the intermediate pipe (17) connected to the downstream end of the first bypass pipe (18) extends linearly along the flow direction of the refrigerant that also flows out the force of the first bypass pipe (18). Has been placed.
  • the low pressure passage (39) is connected to the downstream end of the second bypass pipe (19), that is, to the downstream end of the second bypass pipe (19).
  • Low pressure gas The pipe (12) is arranged so as to extend linearly along the flow direction of the refrigerant from which the second bypass pipe (19) force also flows.
  • the first and second bypass pipes (18, 19) The refrigerant flows smoothly into the intermediate pipe (17) and low-pressure gas pipe (12).
  • the intermediate pipe (17) and the low-pressure gas pipe (12) connected to the downstream ends of the first and second bypass pipes (18, 19) extend linearly along the refrigerant flow direction. Therefore, the refrigerant flowing out from the first and second bypass pipes (18, 19) is the inner wall of the intermediate pipe (17) and the low pressure gas pipe (12) forming the high pressure passage (38) and the low pressure passage (39). It is possible to prevent a collision noise from being generated by colliding with the refrigerant, and an advantageous effect can be obtained in suppressing the generation of noise caused by the refrigerant.
  • the controller (50) is operated by the valve operating unit (53), and the first and second control valves (31, 32), and the first and second sub-control valves. It is configured to adjust the opening of (33, 34).
  • the operation of the air conditioner (30) will be described with reference to the drawings.
  • this air conditioner (30) there are an operation in which both of the two indoor units (40A, 40B) perform cooling or heating, and an operation in which one performs cooling and the other performs heating. Since the cooling operation, the heating operation, and the cooling / heating operation are substantially the same as the operation operations described in the first embodiment, only the cooling operation is described in the second embodiment, and the other operation operations are omitted. .
  • the first solenoid valve (26) is set to the open state
  • the second solenoid valve (27) is set to the closed state
  • the outdoor expansion valve (24) is set to the fully open state.
  • the first control valve (31), the first and second sub control valves (33, 34) are closed, and the second control valve (32) is opened. Is set.
  • the indoor expansion valve (42) is set to an appropriate opening degree.
  • the compressor (21) when the compressor (21) is driven, the high-pressure gas refrigerant discharged from the compressor (21) passes through the first branch pipe (2d) to the outdoor heat exchanger (23). Flowing. In the outdoor heat exchanger (23), the refrigerant condenses by exchanging heat with the air taken in by the outdoor fan (25). The condensed refrigerant flows outside the outdoor unit (20) through the main pipe (2c) and flows into the liquid pipe (13). Part of the refrigerant in the liquid pipe (13) flows into the branch liquid pipe (16) and flows into the second indoor unit (40B), and the rest flows into the first indoor unit (40A).
  • the refrigerant is an indoor expansion valve.
  • the indoor heat exchanger (41) After being depressurized in (42), it flows to the indoor heat exchanger (41).
  • the refrigerant evaporates by exchanging heat with the air taken in by the indoor fan (43). This cools the air and cools the room.
  • the gas refrigerant evaporated in the indoor heat exchanger (41) flows out of the indoor units (40A, 40B), and flows into the BS units (3OA, 30B) through the intermediate pipe (17).
  • the gas refrigerant flows from the intermediate pipe (17) into the low-pressure gas pipe (12).
  • the gas refrigerant flows from the intermediate pipe (17) into the branch low-pressure gas pipe (15) and then flows into the low-pressure gas pipe (12).
  • the gas refrigerant in the low-pressure gas pipe (12) flows into the outdoor unit (20), returns to the compressor (21) through the suction pipe (2b), and this circulation is repeated.
  • pressure equalization operation 1 performed when switching from the above-described cooling operation state to air conditioning operation 1 will be described with reference to FIGS.
  • the controller (50) performs the control shown in FIG. First, in step S31, the valve operating section (53) closes the second control valve (32) and the second sub control valve (34). As a result, the refrigerant flow to the second BS unit (30B) and the second indoor unit (40B) is blocked.
  • step S32 the valve operating section (53) slightly opens the first sub control valve (33). That is, the refrigerant discharged from the compressor (21) flows little by little to the low-pressure indoor heat exchanger (41) through the branch high-pressure gas pipe (14), the first bypass pipe (18), and the intermediate pipe (17). Include. As a result, the indoor heat exchanger (41) in the low-pressure state is gradually equalized to the same high-pressure state as the branch high-pressure gas pipe (14).
  • step S33 the valve operating portion (53) fully opens the first control valve (31).
  • the first sub control valve (33) may remain open or may be controlled to close when the first control valve (31) is opened.
  • the refrigerant discharged from the compressor (21) is branched into the high-pressure gas pipe (14) and the first bypass pipe.
  • the indoor heat exchanger (41) is pre-equalized with the branch high-pressure gas pipe (14), the high-pressure refrigerant is prevented from flowing into the indoor heat exchanger (41). The generation of the passage sound of the refrigerant can be prevented.
  • the first sub control valve (33) when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the room is in the low pressure state. A small amount of high-pressure refrigerant was introduced to the heat exchanger (41) side, and the indoor heat exchanger (41) was gradually changed from a low pressure state to a high pressure state so as to equalize pressure with the branch high-pressure gas pipe (14). Therefore, the high-pressure refrigerant can be prevented from flowing into the indoor heat exchanger (41) rapidly, and the generation of passage noise of the refrigerant can be prevented.
  • the first sub control valve (33) the refrigerant flow rate when fully opened is smaller than that of the first control valve (31)! The flow rate of the refrigerant can be adjusted within the adjustment range, and a further advantageous effect can be obtained in preventing the generation of the passage sound of the refrigerant.
  • step S the controller (50) performs the control shown in FIG. First, step S At 41, the valve operating section (53) closes the first control valve (31) and the first sub control valve (33). As a result, the refrigerant flow to the second BS unit (30B) and the second indoor unit (40B) is blocked.
  • step S42 the valve operating section (53) slightly opens the second sub control valve (34).
  • the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) little by little through the indoor heat exchanger (41), the intermediate pipe (17), and the second bypass pipe (19).
  • the high-pressure indoor heat exchanger (41) and the like are gradually pressure-equalized to the same low-pressure state as the branch low-pressure gas pipe (15).
  • step S43 the valve operating section (53) fully opens the second control valve (32).
  • the second sub control valve (34) may remain open or may be controlled to close when the second control valve (32) is opened.
  • the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) through the indoor heat exchanger (41), the intermediate pipe (17), and the second bypass pipe (19). Switching from to cooling operation is completed.
  • the indoor heat exchanger (41) is pre-equalized with the branch low-pressure gas pipe (15)
  • a high-pressure refrigerant flows from the indoor heat exchanger (41) to the branch low-pressure gas pipe (15). Abrupt inflow is suppressed, and it is possible to prevent the generation of refrigerant passage noise.
  • the second sub-control valve (34) when switching from the heating operation to the cooling operation, the second sub-control valve (34) is slightly opened, and the room that has been in the high pressure state is used.
  • High pressure refrigerant is introduced into the heat exchanger (41) and the branch low pressure gas pipe (15) little by little, and the indoor heat exchanger (41) is gradually changed from the high pressure state to the low pressure state to branch low pressure gas pipe (15 ) And pressure equalization. Therefore, the high-pressure refrigerant is prevented from flowing suddenly from the indoor heat exchanger (41) into the branch low-pressure gas pipe (15), and the passage of refrigerant can be prevented from being generated.
  • the refrigerant flow rate when fully opened is smaller than the second control valve (32)! /, And the control valve is used. This can be adjusted, and a further advantageous effect can be obtained in preventing the generation of the passage sound of the refrigerant.
  • the following configuration is possible.
  • the air conditioner (30) of the second embodiment as shown in Fig. 11, the first and second sub control valves (33, 33) in the first and second bypass pipes (18, 19)
  • a capillary tube (37) is connected downstream of 34)! /.
  • the capillary tube (37) is connected to the downstream side of the first and second auxiliary control valves (33, 34) in the first and second bypass pipes (18, 19).
  • the capillary tube (37) it is possible to secure the decompression distance necessary for decompressing the refrigerant flowing through the first and second bypass pipes (18, 19) with the capillary tube (37). That is, if a long decompression distance is secured downstream of the first and second sub control valves (33, 34), the refrigerant will pass through the first and second sub control valves (33, 34). This is advantageous in suppressing the generation of the passing sound.
  • the indoor heat exchanger (41) includes the first and second control valves (adjustable refrigerant flow rate) in the high-pressure gas pipe (11) and the low-pressure gas pipe (12). 31, 32) Forces connected in a switchable manner As shown in FIG. 12, which is not limited to this form, instead of the first and second control valves (31, 32), the refrigerant flow is changed.
  • the first and second open / close valves (35, 36) that allow or shut off may be used.
  • the first sub-control valve (33) is slightly opened, and the indoor heat After the exchanger (41) equalizes pressure with the high-pressure gas pipe (11), the first on-off valve (35) is opened to switch from the cooling operation to the heating operation.
  • the second sub-control valve (34) is opened slightly, and the indoor heat exchanger ( After the pressure is equalized with the low pressure gas pipe (12), the second on-off valve (36) is opened and the heating operation is switched to the cooling operation X_.
  • the first sub control valve (33) when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the high pressure is applied to the indoor heat exchanger (41) side in the low pressure state. A small amount of refrigerant is introduced, and the indoor heat exchanger (41) is gradually changed from a low pressure state to a high pressure state to equalize pressure with the high pressure gas pipe (11). The high-pressure refrigerant is prevented from flowing into the heat exchanger (41) abruptly, and the force S prevents the passage of refrigerant.
  • the first and second on-off valves (35, 36) are not used for pressure equalization control but are used for refrigerant flow. Therefore, the refrigerant switching circuit of the air conditioner is realized with a simple configuration that does not require complicated control such as adjusting the opening, such as a control valve that can adjust the refrigerant flow rate. be able to.
  • the force S described for the configuration in which two indoor units (40A, 40B) and two BS units (30A, 30B) are provided is provided in a configuration having three or more units each. Even if it exists, generation
  • coolant can be suppressed similarly.
  • the present invention provides a highly practical effect of ensuring the air conditioning performance of the entire air conditioner while preventing the passage of refrigerant that occurs when switching between cooling and heating operations. Therefore, it is extremely useful and has high industrial applicability.

Abstract

An air conditioner in which, to switch each indoor heat exchanger (41) from cooling operation to heating operation, a controller (50) slightly opens a first control valve (31) after closing a second control valve (32) and then fully opens the first control valve (31) after a utilization-side heat exchanger (41) is equalized in pressure with high-pressure gas piping (11). Also, to switch each indoor heat exchanger (41) from heating operation to cooling operation, the controller (50) slightly opens the second control valve (32) after closing the first control valve (31) and then fully opens the second control valve (32) after the utilization-side heat exchanger (41) is equalized in pressure with low-pressure gas piping (12).

Description

明 細 書  Specification
空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、空気調和装置に関し、特に、冷暖房運転の切り換え時に生じる冷媒の 通過音の騒音防止に係るものである。  TECHNICAL FIELD [0001] The present invention relates to an air conditioner, and particularly relates to prevention of noise of refrigerant passing sound that occurs when switching between cooling and heating operations.
背景技術  Background art
[0002] 従来より、空気調和装置等の冷媒回路には、冷媒流れを遮断する電磁弁や一方 向のみの冷媒流れを許容する逆止弁等の各種制御弁が設けられている。例えば、 特許文献 1の空気調和装置は、室外ユニットと複数の室内ユニットを備えている。そ して、室外ユニットと各室内ユニットとのそれぞれの間には、冷媒流路を切り換えるた めの中間ユニットとしての BSユニットが接続されている。  Conventionally, various control valves such as an electromagnetic valve for blocking refrigerant flow and a check valve for allowing refrigerant flow only in one direction are provided in a refrigerant circuit such as an air conditioner. For example, the air conditioner of Patent Document 1 includes an outdoor unit and a plurality of indoor units. A BS unit is connected between the outdoor unit and each indoor unit as an intermediate unit for switching the refrigerant flow path.
[0003] 前記 BSユニットは、複数の開閉弁等が設けられた冷媒配管構造を備えている。 [0003] The BS unit has a refrigerant piping structure provided with a plurality of on-off valves and the like.
そして、この BSユニットは、各開閉弁の切換により、室内ユニットで蒸発した冷媒が流 入して室外ユニットの圧縮機へ向かって流出する状態と、室外ユニットの圧縮機から 吐出された冷媒が流入して室内ユニットへ向かって流出する状態とに切り換わるよう に構成されている。これにより、室内ユニット毎に冷房運転と暖房運転とが個別に切り 換わる。  In this BS unit, the refrigerant evaporated in the indoor unit flows in and flows out toward the compressor of the outdoor unit, and the refrigerant discharged from the compressor of the outdoor unit flows in by switching each on-off valve. Then, it is configured to switch to a state of flowing out toward the indoor unit. Thereby, the cooling operation and the heating operation are individually switched for each indoor unit.
特許文献 1 :特開平 11 241844号公報  Patent Document 1: JP-A-11 241844
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] ところで、この種の空気調和機にお!/、て、何れかの室内ユニットの冷暖を切り換え る際、冷媒通過音を抑制するため一旦均圧制御が行われる。つまり、例えば、冷房 運転から暖房運転へ切り換える場合、 BSユニットの電磁弁を切り換えると、低圧状態 であった室内ユニットへ高圧の冷媒が急激に流れ込むため、そのときの冷媒の流れ る音(通過音)が均圧制御によって防止される。  [0004] By the way, in this type of air conditioner, when switching between cooling and heating of any of the indoor units, pressure equalization control is once performed in order to suppress refrigerant passing noise. In other words, for example, when switching from the cooling operation to the heating operation, if the solenoid valve of the BS unit is switched, the high-pressure refrigerant suddenly flows into the indoor unit that was in the low-pressure state. ) Is prevented by pressure equalization control.
[0005] ここで、前記特許文献 1にお!/、て、冷房運転から暖房運転へ切り換える際の均圧 制御について説明する。冷房運転時は、特許文献 1の図 5における第 1開閉弁が閉 状態に、第 2開閉弁が開状態になっている。均圧制御では、まず、第 2開閉弁を閉じ 、冷媒循環量を減少させる。続いて、第 1開閉弁を開くとともに、特許文献 1の図 4に おける室内電動膨張弁を閉じて、その室内ユニットを低圧状態から高圧状態にする。 そして、室内ユニットが高圧状態 (均圧状態)になると、室内電動膨張弁を開き、暖房 運転が行われる。このように、室内ユニットが予め高圧状態となるため、その室内ュニ ットへの高圧冷媒の急激な流れ込みが抑制され、冷媒通過音の発生が防止される。 [0005] Here, the pressure equalization control at the time of switching from the cooling operation to the heating operation will be described in Patent Document 1! During cooling operation, the first on-off valve in Fig. 5 of Patent Document 1 is closed. The second on-off valve is open. In the pressure equalization control, first, the second on-off valve is closed to reduce the refrigerant circulation rate. Subsequently, the first on-off valve is opened and the indoor electric expansion valve in FIG. 4 of Patent Document 1 is closed to change the indoor unit from the low pressure state to the high pressure state. When the indoor unit is in a high pressure state (equal pressure state), the indoor electric expansion valve is opened and the heating operation is performed. Thus, since the indoor unit is in a high pressure state in advance, the rapid flow of the high-pressure refrigerant into the indoor unit is suppressed, and the generation of refrigerant passing sound is prevented.
[0006] し力もながら、従来の空気調和装置では、均圧制御を行う際に、全ての室内ュニ ットを一旦冷房運転に切り換える構成としているから、切り換えに関係のない暖房運 転中の室内ユニットまで一旦冷房運転に切り換えてしまうこととなり、その室内ユニット の暖房能力がゼロになってしまい、空気調和装置全体としての空調性能が低下する という問題があった。 [0006] However, in the conventional air conditioner, when performing the pressure equalization control, all the indoor units are temporarily switched to the cooling operation, so that the heating operation not related to the switching is being performed. The indoor unit is temporarily switched to the cooling operation, so that the heating capacity of the indoor unit becomes zero, and the air conditioning performance as a whole of the air conditioner deteriorates.
[0007] 本発明は、力、かる点に鑑みてなされたものであり、その目的とするところは、冷暖 房運転の切り換え時に生じる冷媒の通過音を防止しつつ空気調和装置全体としての 空調性能を確保することにある。  [0007] The present invention has been made in view of the power and the point, and the object of the present invention is to improve the air conditioning performance of the air conditioner as a whole while preventing the passage of refrigerant that occurs when switching between cooling and heating operations. Is to ensure.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の発明は、高圧ガス配管(11)と低圧ガス配管(12)と液配管(13)と複数の利 用側熱交換器 (41)とを備え、前記各利用側熱交換器 (41)の一端は、膨張機構 (42) を介して前記液配管(13)に接続される一方、他端は、切換機構(30A, 30B)を介して 前記高圧ガス配管(11)と前記低圧ガス配管(12)とに切換自在に接続され、前記各 利用側熱交換器 (41)が個別に冷暖房運転可能な空気調和装置を対象としている。  [0008] A first invention includes a high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41), and each of the usage-side heat exchanges One end of the vessel (41) is connected to the liquid pipe (13) via an expansion mechanism (42), and the other end is connected to the high-pressure gas pipe (11) via a switching mechanism (30A, 30B). The air conditioner is connected to the low-pressure gas pipe (12) so as to be switchable, and each use-side heat exchanger (41) can be individually operated for cooling and heating.
[0009] 前記切換機構(30A, 30B)は、開度調節自在な第 1制御弁(31)を有し、前記利用 側熱交換器 (41)と前記高圧ガス配管(11)とを接続する高圧通路 (38)と、開度調節 自在な第 2制御弁(32)を有し、前記利用側熱交換器 (41)と前記低圧ガス配管(12) とを接続する低圧通路(39)とを備えてレ、る。  [0009] The switching mechanism (30A, 30B) has a first control valve (31) whose opening degree is adjustable, and connects the use side heat exchanger (41) and the high pressure gas pipe (11). A high-pressure passage (38), a second control valve (32) whose opening degree is freely adjustable, and a low-pressure passage (39) connecting the use side heat exchanger (41) and the low-pressure gas pipe (12); It is equipped with
[0010] そして、前記切換機構(30A, 30B)は、冷房運転から暖房運転へ切り換える場合、 前記第 2制御弁(32)を閉じた後に前記第 1制御弁(31)を微開状態とし、その後、該 第 1制御弁(31)を全開状態として前記高圧通路(38)を開通する一方、暖房運転から 冷房運転へ切り換える場合、該第 1制御弁(31)を閉じた後に該第 2制御弁(32)を微 開状態とし、その後、該第 2制御弁 (32)を全開状態として前記低圧通路 (39)を開通 する。 [0010] When the switching mechanism (30A, 30B) is switched from the cooling operation to the heating operation, the first control valve (31) is slightly opened after the second control valve (32) is closed, Thereafter, when the first control valve (31) is fully opened to open the high-pressure passage (38) while switching from the heating operation to the cooling operation, the second control is performed after the first control valve (31) is closed. Fine valve (32) Then, the second control valve (32) is fully opened, and the low pressure passage (39) is opened.
[0011] 第 1の発明では、切換機構(30A, 30B)により、第 2制御弁(32)が閉じられた後に 第 1制御弁 (31)が微開状態とされ、利用側熱交換器 (41)が高圧ガス配管(11)と均 圧した後で第 1制御弁(31)が全開状態とされて、冷房運転力 暖房運転へ切り換え られる。一方、切換機構(30A, 30B)により、第 1制御弁(31)が閉じられた後に第 2制 御弁 (32)が微開状態とされ、利用側熱交換器 (41)が低圧ガス配管(12)と均圧した 後で第 2制御弁(32)が全開状態とされて、暖房運転から冷房運転へ切り換えられる  [0011] In the first invention, the switching mechanism (30A, 30B) causes the first control valve (31) to be slightly opened after the second control valve (32) is closed, and the use side heat exchanger ( After the pressure is equalized with the high-pressure gas pipe (11), the first control valve (31) is fully opened, and the cooling operation force is switched to the heating operation. On the other hand, after the first control valve (31) is closed by the switching mechanism (30A, 30B), the second control valve (32) is slightly opened, and the use side heat exchanger (41) is connected to the low-pressure gas pipe. After equalizing pressure with (12), the second control valve (32) is fully opened and switched from heating operation to cooling operation.
[0012] このため、例えば、冷房運転から暖房運転へ切り換える場合、第 1制御弁(31)を 微開状態にし、低圧状態であった利用側熱交換器 (41)側に高圧の冷媒を少量ずつ 導入し、利用側熱交換器 (41)を徐々に低圧状態から高圧状態にして高圧ガス配管( 11)と均圧することで、利用側熱交換器 (41)に対して高圧の冷媒が急激に流れ込む ことが抑制され、冷媒の通過音の発生を防止することができる。その結果、騒音を防 止するための防音材等を装置内に設けなくても済むため、材料コストを低減すること 力 Sできると!/、う付随的な効果も得られる。 Therefore, for example, when switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened, and a small amount of high-pressure refrigerant is supplied to the use-side heat exchanger (41) that was in the low-pressure state. Introduced one by one, gradually changing the pressure of the use side heat exchanger (41) from the low pressure state to the high pressure state and equalizing the pressure to the high pressure gas pipe (11), the high pressure refrigerant suddenly increases with respect to the use side heat exchanger (41). It is possible to prevent the refrigerant from passing through and to prevent the passage of refrigerant. As a result, since it is not necessary to provide a soundproofing material or the like in the apparatus for preventing noise, it is possible to reduce the material cost.
[0013] また、このような均圧制御は、複数の利用側熱交換器 (41)に対して個別に実施す ることができ、冷暖房運転を切り換える必要のない暖房運転中の利用側熱交換器 (4 1)を運転停止させることがなぐ装置全体としての空調性能を確保する上で有利とな  [0013] In addition, such pressure equalization control can be performed individually for the plurality of usage-side heat exchangers (41), and usage-side heat exchange during heating operation that does not require switching between cooling and heating operations. It is advantageous to ensure the air conditioning performance of the entire device without shutting down the unit (4 1).
[0014] 第 2の発明は、高圧ガス配管(11)と低圧ガス配管(12)と液配管(13)と複数の利 用側熱交換器 (41)とを備え、前記各利用側熱交換器 (41)の一端は、膨張機構 (42) を介して前記液配管(13)に接続される一方、他端は、切換機構(30A, 30B)を介して 前記高圧ガス配管(11)と前記低圧ガス配管(12)とに切換自在に接続され、前記各 利用側熱交換器 (41)が個別に冷暖房運転可能な空気調和装置を対象としている。 [0014] A second invention includes a high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41), each of the usage-side heat exchanges. One end of the vessel (41) is connected to the liquid pipe (13) via an expansion mechanism (42), and the other end is connected to the high-pressure gas pipe (11) via a switching mechanism (30A, 30B). The air conditioner is connected to the low-pressure gas pipe (12) so as to be switchable, and each use-side heat exchanger (41) can be individually operated for cooling and heating.
[0015] 前記切換機構(30A, 30B)は、開度調節自在な第 1制御弁(31)を有し、前記利用 側熱交換器 (41)と前記高圧ガス配管(11)とを接続する高圧通路 (38)と、開度調節 自在で且つ全開時の冷媒流量が前記第 1制御弁(31)よりも小さ!/、第 1副制御弁(33 )を有し、前記高圧ガス配管(11)よりも小径の管内径で形成され、該第 1制御弁(31) をバイパスするように前記高圧通路(38)に接続された第 1バイパス配管(18)と、開度 調節自在な第 2制御弁 (32)を有し、前記利用側熱交換器 (41)と前記低圧ガス配管( 12)とを接続する低圧通路 (39)と、開度調節自在で且つ全開時の冷媒流量が前記 第 2制御弁(32)よりも小さ!/、第 2副制御弁(34)を有し、前記低圧ガス配管(12)よりも 小径の管内径で形成され、前記第 2制御弁(32)をバイパスするように該低圧通路(39 )に接続された第 2バイパス配管(19)とを備えてレ、る。 [0015] The switching mechanism (30A, 30B) has a first control valve (31) whose opening degree is adjustable, and connects the use side heat exchanger (41) and the high pressure gas pipe (11). The high-pressure passage (38), the opening degree of which can be adjusted, and the refrigerant flow rate when fully opened is smaller than the first control valve (31)! /, The first sub-control valve (33 ), Is formed with a smaller pipe inner diameter than the high-pressure gas pipe (11), and is connected to the high-pressure passage (38) so as to bypass the first control valve (31) ( 18), a second control valve (32) whose opening degree is adjustable, a low pressure passage (39) connecting the use side heat exchanger (41) and the low pressure gas pipe (12), and an opening degree. Adjustable and fully opened refrigerant flow rate is smaller than the second control valve (32)! /, Has a second sub-control valve (34), and has a smaller pipe inner diameter than the low-pressure gas pipe (12). And a second bypass pipe (19) connected to the low pressure passage (39) so as to bypass the second control valve (32).
[0016] そして、前記切換機構(30A, 30B)は、冷房運転から暖房運転へ切り換える場合、 前記第 2制御弁(32)及び前記第 2副制御弁(34)を閉じた後に前記第 1副制御弁(33 )を微開状態とし、その後、該第 1制御弁 (31)を全開状態として前記高圧通路 (38)を 開通する一方、暖房運転から冷房運転へ切り換える場合、該第 1制御弁(31)及び前 記第 1副制御弁(33)を閉じた後に該第 2副制御弁(34)を微開状態とし、その後、該 第 2制御弁(32)を全開状態として前記低圧通路(39)を開通する。  [0016] When the switching mechanism (30A, 30B) switches from the cooling operation to the heating operation, the switching mechanism (30A, 30B) closes the second control valve (32) and the second sub control valve (34), and then When the control valve (33) is slightly opened, and then the first control valve (31) is fully opened to open the high pressure passage (38), while switching from heating operation to cooling operation, the first control valve (31) and after closing the first sub-control valve (33), the second sub-control valve (34) is opened slightly, and then the second control valve (32) is fully opened, Open (39).
[0017] 第 2の発明では、切換機構(30A, 30B)により、第 2制御弁(32)及び第 2副制御弁  In the second invention, the switching mechanism (30A, 30B) causes the second control valve (32) and the second sub control valve to
(34)が閉じられた後に第 1副制御弁 (33)が微開状態とされ、利用側熱交換器 (41)が 高圧ガス配管(11)と均圧した後で第 1制御弁(31)が開かれて、冷房運転力、ら暖房運 転へ切り換えられる。一方、切換機構(30A, 30B)により、第 1制御弁(31)及び第 1副 制御弁(33)が閉じられた後に第 2副制御弁(34)が微開状態とされ、利用側熱交換 器 (41)が低圧ガス配管(12)と均圧した後で第 2制御弁(32)が開かれて、暖房運転 から冷房運転へ切り換えられる。  After the (34) is closed, the first sub-control valve (33) is opened slightly, and the user-side heat exchanger (41) equalizes the pressure with the high-pressure gas pipe (11) before the first control valve (31 ) Is opened, and the cooling operation power is switched to heating operation. On the other hand, after the first control valve (31) and the first sub control valve (33) are closed by the switching mechanism (30A, 30B), the second sub control valve (34) is slightly opened, and the use side heat After the exchanger (41) equalizes pressure with the low-pressure gas pipe (12), the second control valve (32) is opened to switch from heating operation to cooling operation.
[0018] このため、例えば、冷房運転から暖房運転へ切り換える場合、第 1副制御弁(33) を微開状態にし、低圧状態であった利用側熱交換器 (41)側に高圧の冷媒を少量ず つ導入し、利用側熱交換器 (41)を徐々に低圧状態から高圧状態にして高圧ガス配 管(11)と均圧することで、利用側熱交換器 (41)に対して高圧の冷媒が急激に流れ 込むことが抑制され、冷媒の通過音の発生を防止することができる。ここで、第 1及び 第 2副制御弁(33, 34)として、全開時の冷媒流量が第 1及び第 2制御弁(31, 32)より も小さ!/、制御弁を用いて!/、るため、より小さい開度調整幅で冷媒流量を調節すること ができ、冷媒の通過音の発生を防止する上でさらに有利な効果が得られる。 [0019] 第 3の発明は、高圧ガス配管(11)と低圧ガス配管(12)と液配管(13)と複数の利 用側熱交換器 (41)とを備え、前記各利用側熱交換器 (41)の一端は、膨張機構 (42) を介して前記液配管(13)に接続される一方、他端は、切換機構(30A, 30B)を介して 前記高圧ガス配管(11)と前記低圧ガス配管(12)とに切換自在に接続され、前記各 利用側熱交換器 (41)が個別に冷暖房運転可能な空気調和装置を対象としている。 [0018] Therefore, for example, when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and a high-pressure refrigerant is supplied to the use-side heat exchanger (41) side that was in the low-pressure state. By introducing a small amount one by one, the user side heat exchanger (41) is gradually changed from a low pressure state to a high pressure state and pressure-equalized with the high pressure gas pipe (11). It is possible to prevent the refrigerant from flowing in abruptly and prevent the passage of refrigerant. Here, as the first and second sub control valves (33, 34), the refrigerant flow rate when fully opened is smaller than that of the first and second control valves (31, 32)! / Therefore, the flow rate of the refrigerant can be adjusted with a smaller opening adjustment range, and a further advantageous effect can be obtained in preventing the passage of refrigerant. [0019] A third invention includes a high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41), each of the usage-side heat exchanges. One end of the vessel (41) is connected to the liquid pipe (13) via an expansion mechanism (42), and the other end is connected to the high-pressure gas pipe (11) via a switching mechanism (30A, 30B). The air conditioner is connected to the low-pressure gas pipe (12) so as to be switchable, and each use-side heat exchanger (41) can be individually operated for cooling and heating.
[0020] 前記切換機構(30A, 30B)は、冷媒流れを許容又は遮断する第 1開閉弁(35)を 有し、前記利用側熱交換器 (41)と前記高圧ガス配管(11)とを接続する高圧通路 (38 )と、開度調節自在で且つ全開時の冷媒流量が前記第 1開閉弁 (35)よりも小さ!/、第 1 副制御弁(33)を有し、前記高圧ガス配管(11)よりも小径の管内径で形成され、該第 1開閉弁(35)をバイパスするように前記高圧通路(38)に接続された第 1バイパス配管 (18)と、冷媒流れを許容又は遮断する第 2開閉弁 (36)を有し、前記利用側熱交換器 (41)と前記低圧ガス配管(12)とを接続する低圧通路 (39)と、開度調節自在で且つ 全開時の冷媒流量が前記第 2開閉弁(36)よりも小さ!/、第 2副制御弁(34)を有し、前 記低圧ガス配管(12)よりも小径の管内径で形成され、前記第 2開閉弁(36)をバイパ スするように該低圧通路(39)に接続された第 2バイパス配管(19)とを備えている。  [0020] The switching mechanism (30A, 30B) includes a first on-off valve (35) that allows or blocks refrigerant flow, and connects the use side heat exchanger (41) and the high-pressure gas pipe (11). A high-pressure passage (38) to be connected, a refrigerant flow rate that is freely adjustable in opening degree and smaller than that of the first on-off valve (35), and a first sub-control valve (33), and the high-pressure gas A first bypass pipe (18) formed with a pipe inner diameter smaller than that of the pipe (11) and connected to the high-pressure passage (38) so as to bypass the first on-off valve (35), and allows refrigerant flow Or a second on-off valve (36) for shutting off, a low-pressure passage (39) connecting the use side heat exchanger (41) and the low-pressure gas pipe (12), and an opening degree adjustable and fully opened The refrigerant flow rate is smaller than the second on-off valve (36)! /, Has a second sub-control valve (34), is formed with a pipe inner diameter smaller than the low-pressure gas pipe (12), 2 Bypass the on-off valve (36) And a second bypass pipe (19) connected to the low pressure passage (39).
[0021] そして、前記切換機構(30A, 30B)は、冷房運転から暖房運転へ切り換える場合、 前記第 2開閉弁(36)及び前記第 2副制御弁(34)を閉じた後に前記第 1副制御弁(33 )を微開状態とし、その後、該第 1開閉弁 (35)を開いて前記高圧通路 (38)を開通す る一方、暖房運転から冷房運転へ切り換える場合、該第 1開閉弁(35)及び前記第 1 副制御弁(33)を閉じた後に該第 2副制御弁(34)を微開状態とし、その後、該第 2開 閉弁(36)を開いて前記低圧通路(39)を開通する。  [0021] The switching mechanism (30A, 30B), when switching from cooling operation to heating operation, closes the second on-off valve (36) and the second sub control valve (34), and then When the control valve (33) is slightly opened, and then the first on-off valve (35) is opened to open the high-pressure passage (38), while the heating operation is switched to the cooling operation, the first on-off valve (35) and the first sub control valve (33) are closed, then the second sub control valve (34) is opened slightly, and then the second open valve (36) is opened to open the low pressure passage ( 39) is opened.
[0022] 第 3の発明では、切換機構(30A, 30B)により、第 2開閉弁(36)及び第 2副制御弁  [0022] In the third invention, the switching mechanism (30A, 30B) causes the second on-off valve (36) and the second sub-control valve.
(34)が閉じられた後に第 1副制御弁 (33)が微開状態とされ、利用側熱交換器 (41)が 高圧ガス配管(11)と均圧した後で第 1開閉弁(35)が開かれて、冷房運転力、ら暖房運 転へ切り換えられる。一方、切換機構(30A, 30B)により、第 1開閉弁(35)及び第 1副 制御弁(33)が閉じられた後に第 2副制御弁(34)が微開状態とされ、利用側熱交換 器 (41)が低圧ガス配管(12)と均圧した後で第 2開閉弁 (36)が開かれて、暖房運転 から冷房運転へ切り換えられる。 [0023] このため、例えば、冷房運転から暖房運転へ切り換える場合、第 1副制御弁(33) を微開状態にし、低圧状態であった利用側熱交換器 (41)側に高圧の冷媒を少量ず つ導入し、利用側熱交換器 (41)を徐々に低圧状態から高圧状態にして高圧ガス配 管(11)と均圧することで、第 1開閉弁 (35)を開いたときに利用側熱交換器 (41)に対 して高圧の冷媒が急激に流れ込むことが抑制され、冷媒の通過音の発生を防止する こと力 Sでさる。 After the (34) is closed, the first sub-control valve (33) is opened slightly, and the use side heat exchanger (41) equalizes pressure with the high-pressure gas pipe (11), then the first on-off valve (35 ) Is opened, and the cooling operation power is switched to heating operation. On the other hand, after the first on-off valve (35) and the first sub-control valve (33) are closed by the switching mechanism (30A, 30B), the second sub-control valve (34) is slightly opened, and the use side heat After the exchanger (41) equalizes pressure with the low-pressure gas pipe (12), the second on-off valve (36) is opened to switch from heating operation to cooling operation. Therefore, for example, when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and a high-pressure refrigerant is supplied to the use-side heat exchanger (41) side that has been in the low-pressure state. Introduce a small amount and gradually change the pressure on the use side heat exchanger (41) from the low pressure state to the high pressure state to equalize the pressure with the high pressure gas pipe (11). The high-pressure refrigerant is prevented from flowing into the side heat exchanger (41) abruptly, and the force S prevents the refrigerant from passing through.
[0024] ここで、第 1及び第 2開閉弁(35, 36)は、均圧制御に使用するものではなく冷媒流 れを許容又は遮断するものであるため、冷媒流量を調節可能な制御弁のように開度 調節を行う等の複雑な制御が必要なぐ簡単な構成で空気調和装置の冷媒切換回 路を実現することができる。  [0024] Here, the first and second on-off valves (35, 36) are not used for pressure equalization control but allow or block the refrigerant flow, so that the control valve capable of adjusting the refrigerant flow rate. Thus, the refrigerant switching circuit of the air conditioner can be realized with a simple configuration that requires complicated control such as adjusting the opening.
[0025] 第 4及び第 6の発明は、前記第 1及び第 2バイパス配管(18, 19)における前記第 1 及び第 2副制御弁(33, 34)の下流側にキヤビラリチューブ(37)が接続されて!/、る。  [0025] In the fourth and sixth inventions, there is provided a capillary tube (37 on the downstream side of the first and second sub control valves (33, 34) in the first and second bypass pipes (18, 19). ) Is connected! /
[0026] 第 4及び第 6の発明では、第 1及び第 2バイパス配管(18, 19)を流れる冷媒を減 圧するために必要な減圧距離をキヤビラリチューブ(37)で確保することができる。こ のように、第 1及び第 2副制御弁(33, 34)の下流側に減圧距離を長く確保するように すれば、冷媒が第 1及び第 2副制御弁(33, 34)を通過する際の通過音の発生を抑制 する上で有利となる。  [0026] In the fourth and sixth inventions, it is possible to secure the reduced pressure distance necessary for reducing the pressure of the refrigerant flowing through the first and second bypass pipes (18, 19) with the capillary tube (37). . In this way, if a long decompression distance is secured downstream of the first and second sub control valves (33, 34), the refrigerant passes through the first and second sub control valves (33, 34). This is advantageous for suppressing the generation of passing sound.
[0027] 第 5及び第 7の発明は、前記第 1及び第 2バイパス配管(18, 19)の下流側端部は 、管内径が徐々に拡大されたラッパ形状に形成され、前記高圧通路(38)及び低圧 通路(39)における、前記第 1及び第 2バイパス配管(18, 19)の下流側端部との接続 位置よりも下流側は、該第 1及び第 2バイパス配管(18, 19)から流出する冷媒の流れ 方向に沿って直線状に延びている。  [0027] In the fifth and seventh inventions, downstream end portions of the first and second bypass pipes (18, 19) are formed in a trumpet shape in which a pipe inner diameter is gradually enlarged, and the high-pressure passage ( 38) and the low pressure passage (39), the downstream side of the first and second bypass pipes (18, 19) with respect to the downstream end thereof is connected to the first and second bypass pipes (18, 19). ) Extends in a straight line along the flow direction of the refrigerant flowing out.
[0028] 第 5及び第 7の発明では、前記第 1及び第 2バイパス配管(18, 19)の下流側端部 の管内径が徐々に拡大されていることから、第 1及び第 2バイパス配管(18, 19)から 高圧通路(38)及び低圧通路(39)へ冷媒がスムーズに流れる。また、高圧通路(38) 及び低圧通路(39)における、第 1及び第 2バイパス配管(18, 19)の下流側端部との 接続位置よりも下流側は、冷媒の流れ方向に沿って直線状に延びているから、第 1 及び第 2バイパス配管(18, 19)から流出した冷媒が、高圧通路(38)及び低圧通路(3 9)の管内壁に衝突して衝突音が発生してしまうことを防止でき、冷媒による騒音の発 生を抑制する上で有利な効果が得られる。 [0028] In the fifth and seventh inventions, since the inner diameter of the downstream end of the first and second bypass pipes (18, 19) is gradually enlarged, the first and second bypass pipes The refrigerant smoothly flows from (18, 19) to the high pressure passage (38) and the low pressure passage (39). In addition, the downstream side of the high pressure passage (38) and the low pressure passage (39) with respect to the downstream end of the first and second bypass pipes (18, 19) is a straight line along the refrigerant flow direction. Therefore, the refrigerant flowing out from the first and second bypass pipes (18, 19) flows into the high pressure passage (38) and the low pressure passage (3 It is possible to prevent the occurrence of collision noise by colliding with the inner wall of the pipe in 9), and an advantageous effect can be obtained in suppressing the generation of noise due to the refrigerant.
発明の効果  The invention's effect
[0029] 前記第 1の発明によれば、例えば、冷房運転から暖房運転へ切り換える場合、第 1制御弁(31)を微開状態にし、低圧状態であった利用側熱交換器 (41)側に高圧の 冷媒を少量ずつ導入し、利用側熱交換器 (41)を徐々に低圧状態から高圧状態にし て高圧ガス配管(11)と均圧することで、利用側熱交換器 (41)に対して高圧の冷媒が 急激に流れ込むことが抑制され、冷媒の通過音の発生を防止することができる。その 結果、騒音を防止するための防音材等を装置内に設けなくても済むため、材料コスト を低減することができるという付随的な効果も得られる。  [0029] According to the first invention, for example, when switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened, and the use side heat exchanger (41) side which has been in the low pressure state A small amount of high-pressure refrigerant is introduced into the system, and the user-side heat exchanger (41) is gradually changed from a low pressure state to a high-pressure state to equalize pressure with the high-pressure gas pipe (11). Therefore, the rapid flow of the high-pressure refrigerant is suppressed, and the passage of refrigerant can be prevented from being generated. As a result, there is no need to provide a soundproofing material or the like in the apparatus to prevent noise, and an additional effect is obtained that the material cost can be reduced.
[0030] また、このような均圧制御は、複数の利用側熱交換器 (41)に対して個別に実施す ることができ、冷暖房運転を切り換える必要のない暖房運転中の利用側熱交換器 (4 1)を運転停止させることがなぐ装置全体としての空調性能を確保する上で有利とな  [0030] In addition, such pressure equalization control can be performed individually for the plurality of usage-side heat exchangers (41), and usage-side heat exchange during heating operation that does not require switching between cooling and heating operations. It is advantageous to ensure the air conditioning performance of the entire device without shutting down the unit (4 1).
[0031] また、前記第 2の発明によれば、例えば、冷房運転から暖房運転へ切り換える場 合、第 1副制御弁 (33)を微開状態にし、低圧状態であった利用側熱交換器 (41)側 に高圧の冷媒を少量ずつ導入し、利用側熱交換器 (41)を徐々に低圧状態から高圧 状態にして高圧ガス配管(11)と均圧することで、利用側熱交換器 (41)に対して高圧 の冷媒が急激に流れ込むことが抑制され、冷媒の通過音の発生を防止することがで きる。ここで、第 1及び第 2副制御弁(33, 34)として、全開時の冷媒流量が第 1及び第 2制御弁(31 , 32)よりも小さ!/、制御弁を用いて!/、るため、より小さい開度調整幅で冷 媒流量を調節することができ、冷媒の通過音の発生を防止する上でさらに有利な効 果が得られる。 [0031] Further, according to the second invention, for example, when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the use side heat exchanger that has been in the low pressure state is used. By introducing small amounts of high-pressure refrigerant into the (41) side and gradually changing the usage-side heat exchanger (41) from the low-pressure state to the high-pressure state and equalizing pressure with the high-pressure gas pipe (11), the usage-side heat exchanger ( 41), it is possible to prevent a high-pressure refrigerant from flowing suddenly and prevent the passage of refrigerant. Here, as the first and second sub-control valves (33, 34), the refrigerant flow rate when fully opened is smaller than the first and second control valves (31, 32)! /, Using the control valves! /, Therefore, the coolant flow rate can be adjusted with a smaller opening adjustment range, and a further advantageous effect can be obtained in preventing the passage of refrigerant.
[0032] また、前記第 3の発明によれば、例えば、冷房運転から暖房運転へ切り換える場 合、第 1副制御弁 (33)を微開状態にし、低圧状態であった利用側熱交換器 (41)側 に高圧の冷媒を少量ずつ導入し、利用側熱交換器 (41)を徐々に低圧状態から高圧 状態にして高圧ガス配管(11)と均圧することで、第 1開閉弁 (35)を開いたときに利用 側熱交換器 (41)に対して高圧の冷媒が急激に流れ込むことが抑制され、冷媒の通 過音の発生を防止することができる。 [0032] According to the third aspect of the invention, for example, when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the use side heat exchanger that has been in the low pressure state is used. The first on-off valve (35) is introduced by gradually introducing high-pressure refrigerant into the (41) side and gradually changing the pressure on the use-side heat exchanger (41) from the low pressure state to the high pressure state with the high pressure gas pipe (11). ) Is prevented from flowing into the user-side heat exchanger (41) abruptly, and refrigerant flow is suppressed. Generation of excessive sound can be prevented.
[0033] ここで、第 1及び第 2開閉弁(35, 36)は、均圧制御に使用するものではなく冷媒流 れを許容又は遮断するものであるため、冷媒流量を調節可能な制御弁のように開度 調節を行う等の複雑な制御が必要なぐ簡単な構成で空気調和装置の冷媒切換回 路を実現することができる。  [0033] Here, the first and second on-off valves (35, 36) are not used for pressure equalization control, but allow or block the refrigerant flow. Therefore, the control valve can adjust the refrigerant flow rate. Thus, the refrigerant switching circuit of the air conditioner can be realized with a simple configuration that requires complicated control such as adjusting the opening.
[0034] また、前記第 4及び第 6の発明によれば、第 1及び第 2バイパス配管(18, 19)を流 れる冷媒を減圧するために必要な減圧距離をキヤビラリチューブ(37)で確保すること ができる。このように、第 1及び第 2副制御弁(33, 34)の下流側に減圧距離を長く確 保するようにすれば、冷媒が第 1及び第 2副制御弁(33, 34)を通過する際の通過音 の発生を抑制する上で有利となる。  [0034] Further, according to the fourth and sixth inventions, the depressurization distance required for depressurizing the refrigerant flowing through the first and second bypass pipes (18, 19) is set to the capacity tube (37). Can be secured. In this way, if the decompression distance is kept long downstream of the first and second sub control valves (33, 34), the refrigerant passes through the first and second sub control valves (33, 34). This is advantageous for suppressing the generation of passing sound during the operation.
[0035] また、前記第 5及び第 7の発明によれば、第 1及び第 2バイパス配管(18, 19)の下 流側端部の管内径が徐々に拡大されていることから、第 1及び第 2バイパス配管(18 , 19)から高圧通路(38)及び低圧通路(39)へ冷媒がスムーズに流れる。また、高圧 通路(38)及び低圧通路(39)における、第 1及び第 2バイパス配管(18, 19)の下流側 端部との接続位置よりも下流側は、冷媒の流れ方向に沿って直線状に延びて!/、るか ら、第 1及び第 2バイパス配管(18, 19)から流出した冷媒が、高圧通路(38)及び低圧 通路(39)の管内壁に衝突して衝突音が発生してしまうことを防止でき、冷媒による騒 音の発生を抑制する上で有利な効果が得られる。  [0035] According to the fifth and seventh inventions, the inner diameter of the downstream side end of the first and second bypass pipes (18, 19) is gradually enlarged. The refrigerant smoothly flows from the second bypass pipe (18, 19) to the high pressure passage (38) and the low pressure passage (39). In addition, the downstream side of the high pressure passage (38) and the low pressure passage (39) with respect to the downstream end of the first and second bypass pipes (18, 19) is a straight line along the refrigerant flow direction. Therefore, the refrigerant flowing out of the first and second bypass pipes (18, 19) collides with the inner wall of the high-pressure passage (38) and the low-pressure passage (39) and produces a collision sound. It is possible to prevent the occurrence of the noise, and an advantageous effect is obtained in suppressing the noise caused by the refrigerant.
図面の簡単な説明  Brief Description of Drawings
[0036] [図 1]図 1は、本実施形態 1に係る空気調和装置の全体構成を示すとともに、冷房運 転の動作を示す冷媒回路図である。  FIG. 1 is a refrigerant circuit diagram showing an overall configuration of an air-conditioning apparatus according to Embodiment 1 and an operation for cooling operation.
[図 2]図 2は、暖房運転の動作を示す冷媒回路図である。  FIG. 2 is a refrigerant circuit diagram showing the heating operation.
[図 3]図 3は、冷暖房運転 1の動作を示す冷媒回路図である。  FIG. 3 is a refrigerant circuit diagram showing the operation of air conditioning operation 1.
[図 4]図 4は、冷暖房運転 2の動作を示す冷媒回路図である。  FIG. 4 is a refrigerant circuit diagram showing the operation of air conditioning operation 2.
[図 5]図 5は、均圧運転 1の制御動作を示すフロー図である。  FIG. 5 is a flowchart showing the control operation of pressure equalizing operation 1.
[図 6]図 6は、均圧運転 2の制御動作を示すフロー図である。  FIG. 6 is a flowchart showing the control operation of pressure equalizing operation 2.
[図 7]図 7は、本実施形態 2に係る空気調和装置の全体構成を示すとともに、冷房運 転の動作を示す冷媒回路図である。 [図 8]図 8は、 BSユニットの配管構成を示す図である。 FIG. 7 is a refrigerant circuit diagram showing the overall configuration of the air-conditioning apparatus according to Embodiment 2 and the operation of cooling operation. [FIG. 8] FIG. 8 is a diagram showing a piping configuration of a BS unit.
[図 9]図 9は、均圧運転 1の制御動作を示すフロー図である。  FIG. 9 is a flowchart showing the control operation of pressure equalizing operation 1.
[図 10]図 10は、均圧運転 2の制御動作を示すフロー図である。  FIG. 10 is a flowchart showing the control operation of pressure equalizing operation 2.
園 11]図 11は、空気調和装置の全体構成を一部省略して示す別の冷媒回路図であ 11] FIG. 11 is another refrigerant circuit diagram in which the overall configuration of the air conditioner is partially omitted.
[図 12]図 12は、空気調和装置の全体構成を一部省略して示す別の冷媒回路図であ 符号の説明 FIG. 12 is another refrigerant circuit diagram showing the overall configuration of the air conditioner with a part thereof omitted.
10 空気調和装置  10 Air conditioner
11 高圧ガス配管  11 High-pressure gas piping
12 低圧ガス配管  12 Low pressure gas piping
13 液配管  13 Liquid piping
18 第ェバイパス配管  18 D bypass piping
19 第 2バイパス配管  19 Second bypass piping
21 圧縮機  21 Compressor
23 熱源側熱交換器  23 Heat source side heat exchanger
30 空気調和装置  30 Air conditioner
30A 第 IBSユニット (切換機構)  30A IBS unit (switching mechanism)
30B 第 2BSュュット (切換機構)  30B 2nd BS mute (switching mechanism)
31 第 1制御弁  31 First control valve
32 第 2制御弁  32 Second control valve
33 第 1副制御弁  33 1st sub control valve
34 第 2副制御弁  34 Second sub control valve
35 第 1開閉弁  35 First on-off valve
36 第 2開閉弁  36 Second open / close valve
37 キヤビラリチューブ  37 Firefly tube
38 高圧通路  38 High pressure passage
39 低圧通路 41 室内熱交換器 (利用側熱交換器) 39 Low pressure passage 41 Indoor heat exchanger (use side heat exchanger)
42 室内膨張弁 (膨張機構)  42 Indoor expansion valve (expansion mechanism)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実 施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を 制限することを意図するものではない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiments is merely illustrative in nature and is not intended to limit the present invention, its application, or its use.
[0039] 〈実施形態 1〉  <Embodiment 1>
図 1に示すように、本実施形態 1の空気調和装置(10)は、ビル等に設けられ、各 室内を冷暖房するものである。この空気調和装置(10)は、室外ユニット(20)と、切換 機構としての 2台の BSユニット(30A, 30B)と、 2台の室内ユニット(40A, 40B)とを備え ている。そして、これら室外ユニット (20)等が冷媒配管である連絡配管で接続されて 冷媒回路 (R)を構成している。この冷媒回路 (R)は、冷媒が循環して蒸気圧縮式冷 凍サイクルが行われる。  As shown in FIG. 1, the air conditioner (10) of the first embodiment is provided in a building or the like, and heats and cools each room. The air conditioner (10) includes an outdoor unit (20), two BS units (30A, 30B) as switching mechanisms, and two indoor units (40A, 40B). And these outdoor units (20) etc. are connected by the communication piping which is refrigerant piping, and comprise the refrigerant circuit (R). In the refrigerant circuit (R), the refrigerant circulates to perform a vapor compression refrigeration cycle.
[0040] 前記室外ユニット (20)は、熱源ユニットを構成して!/、る。室外ユニット (20)は、冷 媒配管である、主管 (2c)と第 1分岐管 (2d)と第 2分岐管 (2e)を備えている。また、室 外ユニット (20)は、圧縮機 (21)、室外熱交換器 (23)、室外膨張弁(24)及び 2つの電 磁弁(26, 27)を備えている。  [0040] The outdoor unit (20) constitutes a heat source unit. The outdoor unit (20) includes a main pipe (2c), a first branch pipe (2d), and a second branch pipe (2e), which are refrigerant pipes. The outdoor unit (20) includes a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), and two electromagnetic valves (26, 27).
[0041] 前記主管(2c)は、一端が室外ユニット(20)外に配設された連絡配管である液配 管(13)に接続され、他端が第 1分岐管(2d)と第 2分岐管(2e)の一端に接続されて!/ヽ る。第 1分岐管(2d)の他端は、室外ユニット (20)外に配設された連絡配管である高 圧ガス配管(11)に接続されている。第 2分岐管(2e)の他端は、室外ユニット(20)外 に配設された連絡配管である低圧ガス配管(12)に接続されて!/、る。  [0041] One end of the main pipe (2c) is connected to the liquid pipe (13) which is a communication pipe disposed outside the outdoor unit (20), and the other end is connected to the first branch pipe (2d) and the second pipe. Connected to one end of the branch pipe (2e). The other end of the first branch pipe (2d) is connected to a high-pressure gas pipe (11) which is a connecting pipe arranged outside the outdoor unit (20). The other end of the second branch pipe (2e) is connected to the low-pressure gas pipe (12), which is a connecting pipe arranged outside the outdoor unit (20).
[0042] 前記圧縮機(21)は、冷媒を圧縮するための流体機械であり、例えば高圧ドーム 型のスクロール式圧縮機により構成されている。圧縮機(21)の吐出管(2a)は、第 1分 岐管(2d)の途中に接続され、吸入管(2b)は、第 2分岐管(2e)の途中に接続されて いる。なお、吸入管(2b)には、アキュムレータ(22)が設けられている。  [0042] The compressor (21) is a fluid machine for compressing the refrigerant, and is constituted by, for example, a high-pressure dome type scroll compressor. The discharge pipe (2a) of the compressor (21) is connected in the middle of the first branch pipe (2d), and the suction pipe (2b) is connected in the middle of the second branch pipe (2e). The suction pipe (2b) is provided with an accumulator (22).
[0043] 前記室外熱交換器(23)は、クロスフィン式のフィン 'アンド ' ·チューブ型熱交換器 であり、主管(2c)の途中に設けられている。室外膨張弁(24)は、電子膨張弁により 構成され、主管(2c)における室外熱交換器 (23)よりも液配管(13)側に設けられてい る。室外熱交換器 (23)の近傍には、室外ファン(25)が設けられている。そして、室外 熱交換器 (23)は、冷媒が室外ファン (25)によって取り込まれた空気と熱交換するよう に構成されている。 [0043] The outdoor heat exchanger (23) is a cross-fin type fin-and-tube heat exchanger, and is provided in the middle of the main pipe (2c). The outdoor expansion valve (24) is an electronic expansion valve. And is provided closer to the liquid pipe (13) than the outdoor heat exchanger (23) in the main pipe (2c). An outdoor fan (25) is provided in the vicinity of the outdoor heat exchanger (23). The outdoor heat exchanger (23) is configured so that the refrigerant exchanges heat with the air taken in by the outdoor fan (25).
[0044] 前記 2つの電磁弁(26, 27)は、第 1電磁弁(26)及び第 2電磁弁(27)である。第 1 電磁弁(26)は、第 1分岐管(2d)における吐出管(2a)の接続点よりも室外熱交換器( 23)側に設けられている。第 2電磁弁(27)は、第 2分岐管(2e)における吸入管(2b)の 接続点よりも室外熱交換器 (23)側に設けられている。これら電磁弁(26, 27)は、冷媒 流れを許容又は遮断する制御弁を構成してレ、る。  [0044] The two solenoid valves (26, 27) are a first solenoid valve (26) and a second solenoid valve (27). The first solenoid valve (26) is provided closer to the outdoor heat exchanger (23) than the connection point of the discharge pipe (2a) in the first branch pipe (2d). The second solenoid valve (27) is provided closer to the outdoor heat exchanger (23) than the connection point of the suction pipe (2b) in the second branch pipe (2e). These solenoid valves (26, 27) constitute a control valve that allows or blocks the refrigerant flow.
[0045] 前記各室内ユニット(40A, 40B)は、利用ユニットを構成して!/、る。各室内ユニット ( 40A, 40B)は、連絡配管である中間配管(17)によって前記各 BSユニット(30A, 30B) に接続されている。つまり、第 1室内ユニット(40A)及び第 IBSユニット(30A)が、第 2 室内ユニット (40B)及び第 2BSユニット(30B)がそれぞれ一対となって接続されて!/、 る。一方、第 1室内ユニット (40A)は、液配管(13)が接続されている。第 2室内ュニッ ト(40B)は、液配管(13)の途中から分岐した分岐液配管(16)が接続されて!/、る。  [0045] Each of the indoor units (40A, 40B) constitutes a use unit! Each indoor unit (40A, 40B) is connected to each BS unit (30A, 30B) by an intermediate pipe (17) which is a connecting pipe. That is, the first indoor unit (40A) and the first IBS unit (30A) are connected in pairs with the second indoor unit (40B) and the second BS unit (30B). On the other hand, the liquid pipe (13) is connected to the first indoor unit (40A). The second indoor unit (40B) is connected to the branch liquid pipe (16) branched from the middle of the liquid pipe (13)!
[0046] 前記各室内ユニット(40A, 40B)は、冷媒配管で互いに接続された室内熱交換器  [0046] Each of the indoor units (40A, 40B) is an indoor heat exchanger connected to each other through a refrigerant pipe.
(41)と室内膨張弁 (42)を備えている。室内熱交換器 (41)は、中間配管(17)に接続 されている。第 1室内ユニット(40A)の室内膨張弁(42)は液配管(13)に接続され、第 2室内ユニット (40B)の室内膨張弁(42)は分岐液配管(16)に接続されて!/、る。室内 熱交換器 (41)は、クロスフィン式のフィン 'アンド '·チューブ型熱交換器である。室内 膨張弁 (42)は、電子膨張弁により構成されている。室内熱交換器 (41)の近傍には、 室内ファン (43)が設けられている。そして、室内熱交換器 (41)は、冷媒が室内ファン( 43)によって取り込まれた空気と熱交換するように構成されている。  (41) and an indoor expansion valve (42). The indoor heat exchanger (41) is connected to the intermediate pipe (17). The indoor expansion valve (42) of the first indoor unit (40A) is connected to the liquid pipe (13), and the indoor expansion valve (42) of the second indoor unit (40B) is connected to the branch liquid pipe (16)! / The indoor heat exchanger (41) is a cross-fin type fin 'and' tube type heat exchanger. The indoor expansion valve (42) is an electronic expansion valve. An indoor fan (43) is provided in the vicinity of the indoor heat exchanger (41). The indoor heat exchanger (41) is configured so that the refrigerant exchanges heat with the air taken in by the indoor fan (43).
[0047] 前記第 IBSユニット(30A)には、中間配管(17)の他に、高圧ガス配管(11)と低圧 ガス配管(12)とが接続されている。第 IBSュュット(30A)において、中間配管(17)と 高圧ガス配管(11)とが高圧通路(38)をなし、中間配管(17)と低圧ガス配管(12)とが 低圧通路(39)をなしており、高圧通路(38)と低圧通路(39)とは合流して接続されて いる。そして、第 IBSュュット(30A)において、高圧通路(38)をなす高圧ガス配管(1 1)には開度調節自在な第 1制御弁(31)が設けられ、低圧通路 (39)をなす低圧ガス 配管(12)には開度調節自在な第 2制御弁(32)が設けられて!/、る。 [0047] In addition to the intermediate pipe (17), a high-pressure gas pipe (11) and a low-pressure gas pipe (12) are connected to the first IBS unit (30A). In the IBS mute (30A), the intermediate pipe (17) and the high pressure gas pipe (11) form a high pressure passage (38), and the intermediate pipe (17) and the low pressure gas pipe (12) form a low pressure passage (39). The high-pressure passage (38) and the low-pressure passage (39) are joined and connected. In the IBS nut (30A), the high-pressure gas pipe (1 1) is provided with a first control valve (31) with adjustable opening, and a low pressure gas pipe (12) with a low pressure passage (39) is provided with a second control valve (32) with adjustable opening. /!
[0048] 前記第 2BSユニット(30B)には、中間配管(17)の他に、高圧ガス配管(11)の途 中から分岐した分岐高圧ガス配管(14)と、低圧ガス配管(12)の途中から分岐した分 岐低圧ガス配管(15)とが接続されている。そして、第 2BSユニット(30B)において、 高圧通路 (38)をなす分岐高圧ガス配管(14)には第 1制御弁(31)が設けられ、低圧 通路(39)をなす分岐低圧ガス配管(15)には第 2制御弁(32)が設けられている。なお 、液配管(13)は第 IBSユニット(30A)内を通過し、分岐液配管(16)は第 2BSユニット (30B)内を通過している。  [0048] In addition to the intermediate pipe (17), the second BS unit (30B) includes a branched high-pressure gas pipe (14) branched from the middle of the high-pressure gas pipe (11), and a low-pressure gas pipe (12). A branch low-pressure gas pipe (15) branched from the middle is connected. In the second BS unit (30B), the first control valve (31) is provided in the branch high-pressure gas pipe (14) forming the high-pressure passage (38), and the branch low-pressure gas pipe (15) forming the low-pressure passage (39). ) Is provided with a second control valve (32). The liquid pipe (13) passes through the first IBS unit (30A), and the branch liquid pipe (16) passes through the second BS unit (30B).
[0049] 前記各 BSユニット(30A, 30B)の第 1及び第 2制御弁(31 , 32)は、開度調節により 冷媒流量を調節する電動弁を構成している。そして、これら第 1及び第 2制御弁(31 , 32)は、開閉切換によって冷媒流れを切り換え、各室内ユニット(40A, 40B)において 冷暖房運転を切り換えるためのものである。  [0049] The first and second control valves (31, 32) of each BS unit (30A, 30B) constitute an electric valve that adjusts the refrigerant flow rate by adjusting the opening. These first and second control valves (31, 32) are for switching the refrigerant flow by switching between opening and closing, and for switching the cooling / heating operation in each indoor unit (40A, 40B).
[0050] 例えば、室内ユニット(40A, 40B)が冷房運転時の場合、第 1制御弁(31)が閉状 態に、第 2制御弁(32)が開状態にそれぞれ設定され、室内熱交換器 (41)で蒸発し た冷媒が低圧ガス配管(12)へ流れる。また、室内ユニット(40A, 40B)が暖房運転時 の場合、第 1制御弁(31)が開状態に、第 2制御弁(32)が閉状態にそれぞれ設定され 、高圧ガス配管(11)力 ガス冷媒が室内熱交換器 (41)へ流れて凝縮 (放熱)する。  [0050] For example, when the indoor unit (40A, 40B) is in the cooling operation, the first control valve (31) is set to the closed state, and the second control valve (32) is set to the open state. The refrigerant evaporated in (41) flows to the low-pressure gas pipe (12). When the indoor units (40A, 40B) are in heating operation, the first control valve (31) is set to the open state and the second control valve (32) is set to the closed state, and the high pressure gas pipe (11) force is set. The gas refrigerant flows to the indoor heat exchanger (41) and condenses (dissipates heat).
[0051] 前記空気調和装置(10)には、各種圧力センサ(28, 29, 44)が設けられている。具 体的に、圧縮機(21)の吐出管(2a)には、圧縮機(21)の吐出圧力を検出する吐出圧 力センサ(28)が設けられている。圧縮機(21)の吸入管(2b)には、アキュムレータ(22 )よりも上流に圧縮機(21)の吸入圧力を検出する吸入圧力センサ(29)が設けられて いる。また、室内熱交換器 (41)と室内膨張弁 (42)の間には、室内熱交換器 (41)の 圧力を検出する熱交圧力センサ(44)が設けられて!/、る。  [0051] The air conditioner (10) is provided with various pressure sensors (28, 29, 44). Specifically, the discharge pipe (2a) of the compressor (21) is provided with a discharge pressure sensor (28) for detecting the discharge pressure of the compressor (21). The suction pipe (2b) of the compressor (21) is provided with a suction pressure sensor (29) for detecting the suction pressure of the compressor (21) upstream of the accumulator (22). In addition, a heat exchange pressure sensor (44) for detecting the pressure of the indoor heat exchanger (41) is provided between the indoor heat exchanger (41) and the indoor expansion valve (42).
[0052] また、前記空気調和装置(10)は、コントローラ(50)を備えている。このコントローラ  [0052] The air conditioner (10) includes a controller (50). This controller
(50)は、少なくとも一方の室内ユニット(40A, 40B)の冷暖房運転を切り換える際に、 均圧運転を行う開度制御手段を構成している。この均圧運転は、冷房運転から暖房 運転へ切り換える場合は室内熱交換器 (41)が高圧ガス配管(11)と均圧するように、 暖房運転力 冷房運転へ切り換える場合は室内熱交換器 (41)が低圧ガス配管(12) と均圧するように、第 1及び第 2制御弁(31, 32)が制御される。具体的な均圧運転動 作については後述する。 (50) constitutes an opening degree control means for performing a pressure equalizing operation when switching between the air conditioning operation of at least one of the indoor units (40A, 40B). In this pressure equalization operation, when switching from cooling operation to heating operation, the indoor heat exchanger (41) equalizes pressure with the high-pressure gas pipe (11). Heating operating force When switching to cooling operation, the first and second control valves (31, 32) are controlled so that the indoor heat exchanger (41) equalizes pressure with the low-pressure gas pipe (12). Specific pressure equalization operation will be described later.
[0053] 前記コントローラ(50)には、圧力入力部(51)と、圧縮機制御部(52)と、弁操作部( 53)とが設けられている。  [0053] The controller (50) is provided with a pressure input section (51), a compressor control section (52), and a valve operation section (53).
[0054] 前記圧力入力部(51)は、均圧運転時に吐出圧力センサ(28)、吸入圧力センサ( 29)及び熱交圧力センサ(44)の各検出圧力が入力される。前記弁操作部(53)は、 均圧運転において、第 1及び第 2制御弁(31, 32)の開度調節を行うものである。  [0054] The pressure input unit (51) receives detection pressures of the discharge pressure sensor (28), the suction pressure sensor (29), and the heat exchange pressure sensor (44) during pressure equalization operation. The valve operating section (53) adjusts the opening degree of the first and second control valves (31, 32) in the pressure equalizing operation.
[0055] 前記圧縮機制御部(52)は、均圧運転において、第 1及び第 2制御弁(31, 32)の 入口圧力を所定値以上に制御する圧力制御手段を構成している。ここで、第 1制御 弁(31)の入口圧力は、圧縮機(21)の吐出管(2a)側から第 1制御弁(31)に流入する 冷媒圧力である。第 2制御弁(32)の入口圧力は、室内熱交換器 (41)側から第 2制御 弁(32)に流入する冷媒圧力である。  [0055] The compressor control section (52) constitutes pressure control means for controlling the inlet pressure of the first and second control valves (31, 32) to a predetermined value or more in the pressure equalizing operation. Here, the inlet pressure of the first control valve (31) is the refrigerant pressure flowing into the first control valve (31) from the discharge pipe (2a) side of the compressor (21). The inlet pressure of the second control valve (32) is the refrigerant pressure flowing into the second control valve (32) from the indoor heat exchanger (41) side.
[0056] また、本実施形態 1では、第 1及び第 2制御弁(31, 32)の入口圧力として、熱交圧 力センサ(44)の検出圧力が用いられる。そして、熱交圧力センサ(44)が故障等によ り検出不可の場合、吐出圧力センサ(28)の検出圧力が第 1制御弁(31)の入口圧力 として代用され、吸入圧力センサ(29)の検出圧力が第 2制御弁(32)の入口圧力とし て代用される。  [0056] In the first embodiment, the detected pressure of the heat exchange pressure sensor (44) is used as the inlet pressure of the first and second control valves (31, 32). If the heat exchange pressure sensor (44) cannot be detected due to a failure or the like, the detected pressure of the discharge pressure sensor (28) is substituted for the inlet pressure of the first control valve (31), and the suction pressure sensor (29) Is used as the inlet pressure of the second control valve (32).
[0057] 運転動作  [0057] Driving action
次に、前記空気調和装置(10)の運転動作を図面に基づいて説明する。この空気 調和装置(10)では、 2つの室内ユニット(40A, 40B)の双方が冷房又は暖房を行う運 転と、一方が冷房を行!、他方が暖房を行う運転がある。  Next, the operation of the air conditioner (10) will be described with reference to the drawings. In this air conditioner (10), there are an operation in which both of the two indoor units (40A, 40B) perform cooling or heating, and an operation in which one performs cooling and the other performs heating.
[0058] 〈冷房運転〉  [0058] <Cooling operation>
前記第 1室内ユニット(40A)及び第 2室内ユニット(40B)の双方が冷房運転を行う 場合について、図 1を参照しながら説明する。この冷房運転の場合、室外ユニット(20 )では、第 1電磁弁 (26)が開状態に、第 2電磁弁 (27)が閉状態に、室外膨張弁 (24) が全開状態にそれぞれ設定される。各 BSユニット(30A, 30B)では、第 1制御弁(31) が閉状態に、第 2制御弁(32)が開状態にそれぞれ設定される。各室内ユニット (40A , 40B)では、室内膨張弁(42)が適切な開度に設定される。 A case where both the first indoor unit (40A) and the second indoor unit (40B) perform the cooling operation will be described with reference to FIG. In this cooling operation, in the outdoor unit (20), the first solenoid valve (26) is set to the open state, the second solenoid valve (27) is set to the closed state, and the outdoor expansion valve (24) is set to the fully open state. The In each BS unit (30A, 30B), the first control valve (31) is set to the closed state, and the second control valve (32) is set to the open state. Each indoor unit (40A , 40B), the indoor expansion valve (42) is set to an appropriate opening degree.
[0059] このような状態において、圧縮機(21)を駆動すると、該圧縮機(21)から吐出され た高圧ガス冷媒が第 1分岐管(2d)を通って室外熱交換器 (23)へ流れる。室外熱交 換器 (23)では、冷媒が室外ファン (25)によって取り込まれた空気と熱交換して凝縮 する。凝縮した冷媒は、主管(2c)を通って室外ユニット (20)外へ流れ、液配管(13) へ流入する。液配管(13)の冷媒は、一部が分岐液配管(16)へ流れて第 2室内ュニ ット(40B)へ流入し、残りが第 1室内ユニット(40A)へ流入する。  [0059] When the compressor (21) is driven in such a state, the high-pressure gas refrigerant discharged from the compressor (21) passes through the first branch pipe (2d) to the outdoor heat exchanger (23). Flowing. In the outdoor heat exchanger (23), the refrigerant condenses by exchanging heat with the air taken in by the outdoor fan (25). The condensed refrigerant flows outside the outdoor unit (20) through the main pipe (2c) and flows into the liquid pipe (13). Part of the refrigerant in the liquid pipe (13) flows into the branch liquid pipe (16) and flows into the second indoor unit (40B), and the rest flows into the first indoor unit (40A).
[0060] 前記第 1室内ユニット(40A)及び第 2室内ユニット(40B)では、冷媒が室内膨張弁  [0060] In the first indoor unit (40A) and the second indoor unit (40B), the refrigerant is an indoor expansion valve.
(42)で減圧された後、室内熱交換器 (41)へ流れる。室内熱交換器 (41)では、冷媒 が室内ファン (43)によって取り込まれた空気と熱交換して蒸発する。これにより、空気 が冷却され、室内の冷房が行われる。そして、室内熱交換器 (41)で蒸発したガス冷 媒は、各室内ユニット(40A, 40B)外へ流れ、中間配管(17)を通って各 BSユニット(3 OA, 30B)へ流入する。  After being depressurized in (42), it flows to the indoor heat exchanger (41). In the indoor heat exchanger (41), the refrigerant evaporates by exchanging heat with the air taken in by the indoor fan (43). This cools the air and cools the room. The gas refrigerant evaporated in the indoor heat exchanger (41) flows out of the indoor units (40A, 40B), and flows into the BS units (3OA, 30B) through the intermediate pipe (17).
[0061] 前記第 IBSユニット (30A)では、ガス冷媒が中間配管(17)から低圧ガス配管(12) へ流入する。第 2BSユニット(30B)では、ガス冷媒が中間配管(17)から分岐低圧ガ ス配管(15)へ流入し、低圧ガス配管(12)へ流れる。低圧ガス配管(12)のガス冷媒は 、室外ユニット(20)へ流入し、吸入管(2b)を通って再び圧縮機(21)へ戻り、この循環 が繰り返される。  [0061] In the first IBS unit (30A), the gas refrigerant flows from the intermediate pipe (17) into the low-pressure gas pipe (12). In the second BS unit (30B), the gas refrigerant flows from the intermediate pipe (17) into the branch low-pressure gas pipe (15) and then flows into the low-pressure gas pipe (12). The gas refrigerant in the low-pressure gas pipe (12) flows into the outdoor unit (20), returns to the compressor (21) through the suction pipe (2b), and this circulation is repeated.
[0062] 〈暖房運転〉  [0062] <Heating operation>
前記第 1室内ユニット(40A)及び第 2室内ユニット(40B)の双方が暖房運転を行う 場合について、図 2を参照しながら説明する。この暖房運転の場合、室外ユニット(20 )では、第 1電磁弁 (26)が閉状態に、第 2電磁弁 (27)が開状態に、室外膨張弁 (24) が適切な開度にそれぞれ設定される。各 BSユニット(30A, 30B)では、第 1制御弁(3 1)が開状態に、第 2制御弁(32)が閉状態にそれぞれ設定される。各室内ユニット (40 A, 40B)では、室内膨張弁 (42)が全開状態に設定される。  A case where both the first indoor unit (40A) and the second indoor unit (40B) perform the heating operation will be described with reference to FIG. In this heating operation, in the outdoor unit (20), the first solenoid valve (26) is closed, the second solenoid valve (27) is opened, and the outdoor expansion valve (24) is set to an appropriate opening degree. Is set. In each BS unit (30A, 30B), the first control valve (31) is set in the open state, and the second control valve (32) is set in the closed state. In each indoor unit (40 A, 40B), the indoor expansion valve (42) is set to a fully open state.
[0063] このような状態において、圧縮機(21)を駆動すると、該圧縮機(21)から吐出され た高圧ガス冷媒が室外ユニット (20)外へ流れ、高圧ガス配管(11)へ流入する。高圧 ガス配管(11)の冷媒は、一部が分岐高圧ガス配管(14)から第 2BSユニット(30B)へ 流入し、残りが第 IBSユニット(30A)へ流入する。各 BSユニット(30A, 30B)へ流入し た冷媒は、中間配管(17)を通って各室内ユニット(40A, 40B)へ流入する。 [0063] When the compressor (21) is driven in such a state, the high-pressure gas refrigerant discharged from the compressor (21) flows out of the outdoor unit (20) and flows into the high-pressure gas pipe (11). . Part of the refrigerant in the high-pressure gas pipe (11) is branched from the high-pressure gas pipe (14) to the second BS unit (30B). It flows in and the rest flows into the IBS unit (30A). The refrigerant flowing into each BS unit (30A, 30B) flows into each indoor unit (40A, 40B) through the intermediate pipe (17).
[0064] 前記各室内ユニット(40A, 40B)では、冷媒が空気と熱交換して凝縮する。これに より、空気が加熱され、室内の暖房が行われる。第 1室内ユニット(40A)で凝縮した冷 媒は、液配管(13)へ流れる。第 2室内ユニット (40B)で凝縮した冷媒は、分岐液配管 (16)を通って液配管(13)へ流入する。液配管(13)の冷媒は、室外ユニット(20)へ流 入し、主管(2c)を流れる。この主管(2c)の冷媒は、室外膨張弁(24)で減圧された後 、室外熱交換器 (23)へ流入する。室外熱交換器 (23)では、冷媒が空気と熱交換し て蒸発する。蒸発したガス冷媒は、第 2分岐管(2e)及び吸入管(2b)を通って再び圧 縮機(21)へ戻り、この循環が繰り返される。  [0064] In each of the indoor units (40A, 40B), the refrigerant condenses by exchanging heat with air. This heats the air and heats the room. The refrigerant condensed in the first indoor unit (40A) flows to the liquid pipe (13). The refrigerant condensed in the second indoor unit (40B) flows into the liquid pipe (13) through the branch liquid pipe (16). The refrigerant in the liquid pipe (13) flows into the outdoor unit (20) and flows through the main pipe (2c). The refrigerant in the main pipe (2c) is decompressed by the outdoor expansion valve (24) and then flows into the outdoor heat exchanger (23). In the outdoor heat exchanger (23), the refrigerant exchanges heat with air and evaporates. The evaporated gas refrigerant returns to the compressor (21) again through the second branch pipe (2e) and the suction pipe (2b), and this circulation is repeated.
[0065] 〈冷暖房運転〉  [0065] <Air-conditioning operation>
次に、一方の室内ユニット(40A, 40B)で冷房運転を行い、他方の室内ユニット(4 OA, 40B)で暖房運転を行う場合につ!/、て説明する。  Next, a case where the cooling operation is performed in one indoor unit (40A, 40B) and the heating operation is performed in the other indoor unit (4OA, 40B) will be described.
[0066] まず、前記第 1室内ユニット(40A)で冷房運転が行われ、第 2室内ユニット(40B) で暖房運転が行われる運転 (以下、冷暖房運転 1という)について説明する。なお、こ こでは、前記冷房運転と異なる点について説明する。  First, an operation in which the cooling operation is performed in the first indoor unit (40A) and the heating operation is performed in the second indoor unit (40B) (hereinafter referred to as air conditioning operation 1) will be described. Here, differences from the cooling operation will be described.
[0067] この冷暖房運転 1の場合、図 3に示すように、上述した冷房運転の状態において、 第 2BSユニット (30B)の第 1制御弁(31)が開状態に、第 2制御弁(32)が閉状態にそ れぞれ設定される。また、第 2室内ユニット (40B)の室内膨張弁 (42)が全開状態に設 定される。そうすると、圧縮機(21)から吐出された高圧のガス冷媒は、一部が第 1分 岐管(2d)へ、残りが高圧ガス配管(11)へそれぞれ流れる。  In the cooling / heating operation 1, as shown in FIG. 3, in the cooling operation state described above, the first control valve (31) of the second BS unit (30B) is opened, and the second control valve (32 ) Is set to the closed state. Further, the indoor expansion valve (42) of the second indoor unit (40B) is set to a fully open state. Then, a part of the high-pressure gas refrigerant discharged from the compressor (21) flows to the first branch pipe (2d) and the rest flows to the high-pressure gas pipe (11).
[0068] 高圧ガス配管(11)へ流れた冷媒は、分岐高圧ガス配管(14)から第 2BSユニット(  [0068] The refrigerant that has flowed into the high-pressure gas pipe (11) flows from the branch high-pressure gas pipe (14) to the second BS unit (
30B)及び中間配管(17)を通り、第 2室内ユニット (40B)の室内熱交換器 (41)へ流れ る。第 2室内ユニット (40B)の室内熱交換器 (41)では、冷媒が空気と熱交換して凝縮 する。これにより、空気が加熱され、室内の暖房が行われる。  30B) and the intermediate pipe (17) to the indoor heat exchanger (41) of the second indoor unit (40B). In the indoor heat exchanger (41) of the second indoor unit (40B), the refrigerant exchanges heat with air and condenses. Thereby, air is heated and indoor heating is performed.
[0069] 第 2室内ユニット (40B)で凝縮した冷媒は、分岐液配管(16)を通って液配管(13) へ流入し、室外ユニット (20)からの冷媒と合流する。合流後の冷媒は、そのまま液配 管(13)を流れ、第 1室内ユニット (40A)で蒸発する。これにより、室内の冷房が行わ れる。 [0069] The refrigerant condensed in the second indoor unit (40B) flows into the liquid pipe (13) through the branch liquid pipe (16), and merges with the refrigerant from the outdoor unit (20). The combined refrigerant flows through the liquid pipe (13) as it is, and evaporates in the first indoor unit (40A). This will cool the room It is.
[0070] 次に、前記第 1室内ユニット (40A)で暖房運転が行われ、第 2室内ユニット(40B) で冷房運転が行われる運転 (以下、冷暖房運転 2という)について説明する。なお、こ こでは、前記暖房運転と異なる点について説明する。  Next, an operation in which the heating operation is performed in the first indoor unit (40A) and the cooling operation is performed in the second indoor unit (40B) (hereinafter referred to as air conditioning operation 2) will be described. Here, differences from the heating operation will be described.
[0071] この冷暖房運転 2の場合、図 4に示すように、上述した暖房運転の状態において、 第 2BSユニット (30B)の第 1制御弁(31)が閉状態に、第 2制御弁(32)が開状態にそ れぞれ設定される。また、第 2室内ユニット(40B)の室内膨張弁(42)が適切な開度に 設定される。そうすると、圧縮機 (21)力 高圧ガス配管(11)へ流れた冷媒の全量が 第 IBSユニット(30A)へ流入する。この第 IBSユニット(30A)を流れた冷媒は、第 1室 内ユニット (40A)へ流れて凝縮する。これにより、第 1室内ユニット(40A)で暖房運転 がネ亍われる。  In the case of this cooling / heating operation 2, as shown in FIG. 4, in the heating operation state described above, the first control valve (31) of the second BS unit (30B) is closed, and the second control valve (32 ) Is set to the open state. Further, the indoor expansion valve (42) of the second indoor unit (40B) is set to an appropriate opening degree. Then, the entire amount of refrigerant flowing into the compressor (21) force high pressure gas pipe (11) flows into the first IBS unit (30A). The refrigerant flowing through the first IBS unit (30A) flows to the first indoor unit (40A) and condenses. As a result, heating operation is neglected in the first indoor unit (40A).
[0072] 第 1室内ユニット (40A)で凝縮した冷媒は、液配管(13)へ流れる。液配管(13)の 冷媒は、一部が分岐液配管(16)を通って第 2室内ユニット(40B)へ流入し、残りが室 外ユニット(20)へ流入する。第 2室内ユニット(40B)では、冷媒が室内膨張弁(42)で 減圧された後、室内熱交換器 (41)で蒸発する。これにより、第 2室内ユニット (40B)で 冷房が行われる。  [0072] The refrigerant condensed in the first indoor unit (40A) flows to the liquid pipe (13). Part of the refrigerant in the liquid pipe (13) flows into the second indoor unit (40B) through the branch liquid pipe (16), and the rest flows into the outdoor unit (20). In the second indoor unit (40B), the refrigerant is depressurized by the indoor expansion valve (42) and then evaporated by the indoor heat exchanger (41). As a result, cooling is performed in the second indoor unit (40B).
[0073] 第 2室内ユニット(40B)で蒸発したガス冷媒は、中間配管(17)、第 2BSユニット(3 0B)及び分岐低圧ガス配管(15)を順に通って低圧ガス配管(12)へ流入する。低圧 ガス配管(12)の冷媒は、室外ユニット(20)の第 2分岐管(2e)へ流入し、室外熱交換 器 (23)からの冷媒と合流する。合流後の冷媒は、吸入管 (2b)を通って再び圧縮機( 21)へ戻る。  [0073] The gas refrigerant evaporated in the second indoor unit (40B) flows into the low-pressure gas pipe (12) through the intermediate pipe (17), the second BS unit (30B) and the branch low-pressure gas pipe (15) in this order. To do. The refrigerant in the low-pressure gas pipe (12) flows into the second branch pipe (2e) of the outdoor unit (20) and merges with the refrigerant from the outdoor heat exchanger (23). The merged refrigerant returns to the compressor (21) again through the suction pipe (2b).
[0074] 〈均圧運転 1〉  [0074] <Pressure equalizing operation 1>
次に、上述した冷房運転の状態から冷暖房運転 1に切り換える際に行う均圧運転 1について、図 1 ,図 5を参照しながら説明する。なお、以下にいう、第 1制御弁(31)、 第 2制御弁(32)、室内膨張弁(42)及び熱交圧力センサ(44)等は、第 2BSユニット(3 0B)及び第 2室内ユニット(40B)におけるものであるとする。  Next, pressure equalization operation 1 performed when switching from the above-described cooling operation state to air conditioning operation 1 will be described with reference to FIGS. 1 and 5. The first control valve (31), the second control valve (32), the indoor expansion valve (42), the heat exchange pressure sensor (44), etc. described below are the second BS unit (30B) and the second indoor valve. Assume that it is in the unit (40B).
[0075] この均圧運転 1では、コントローラ(50)が図 5に示す制御を行う。まず、ステップ S 1 1において、弁操作部(53)が第 2制御弁(32)を閉じる。これにより、第 2BSユニット(3 OB)及び第 2室内ユニット(40B)への冷媒の流通が遮断される。 [0075] In this pressure equalizing operation 1, the controller (50) performs the control shown in FIG. First, in step S 11, the valve operating section (53) closes the second control valve (32). As a result, the second BS unit (3 OB) and the refrigerant flow to the second indoor unit (40B) are blocked.
[0076] 次に、ステップ S12では、弁操作部(53)が第 1制御弁(31)を微開状態とする。す なわち、圧縮機(21)の吐出冷媒が、第 2BSユニット(30B)の高圧通路(38)、すなわ ち分岐高圧ガス配管(14)及び中間配管(17)を通じて低圧状態の室内熱交換器 (41 )へ少量ずつ流れ込む。これにより、低圧状態の室内熱交換器 (41)等が徐々に分岐 高圧ガス配管(14)と同じ高圧状態に均圧される。  [0076] Next, in step S12, the valve operating section (53) slightly opens the first control valve (31). In other words, the refrigerant discharged from the compressor (21) passes through the high-pressure passage (38) of the second BS unit (30B), that is, the low-pressure indoor heat exchange through the branch high-pressure gas pipe (14) and the intermediate pipe (17). Pour into the vessel (41) little by little. As a result, the indoor heat exchanger (41) in the low pressure state is gradually equalized to the same high pressure state as the branch high pressure gas pipe (14).
[0077] 次に、ステップ S13では、弁操作部(53)が第 1制御弁(31)を全開状態とする。こ れにより、圧縮機 (21)の吐出冷媒が分岐高圧ガス配管(14)及び中間配管(17)を通 じて室内熱交換器 (41)へ流れ込み、冷房運転から暖房運転への切り換えが完了す る。ここで、室内熱交換器 (41)が予め分岐高圧ガス配管(14)と均圧されているから、 室内熱交換器 (41)に対して高圧の冷媒が急激に流れ込むことが抑制され、冷媒の 通過音の発生を防止することができる。  [0077] Next, in step S13, the valve operating section (53) fully opens the first control valve (31). As a result, the refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (41) through the branch high-pressure gas pipe (14) and the intermediate pipe (17), and the switching from the cooling operation to the heating operation is completed. The Here, since the indoor heat exchanger (41) is pre-equalized with the branch high-pressure gas pipe (14), the high-pressure refrigerant is prevented from flowing into the indoor heat exchanger (41) rapidly, and the refrigerant The generation of passing sound can be prevented.
[0078] 以上のように、本実施形態 1の均圧運転 1では、冷房運転から暖房運転へ切り換 える場合、第 1制御弁 (31)を微開状態にし、低圧状態であった室内熱交換器 (41)側 に高圧の冷媒を少量ずつ導入し、室内熱交換器 (41)を徐々に低圧状態から高圧状 態にして分岐高圧ガス配管(14)と均圧するようにした。したがって、室内熱交換器 (4 1)に対して高圧の冷媒が急激に流れ込むことが抑制され、冷媒の通過音の発生を 防止することができる。その結果、騒音を防止するための防音材等を装置内に設け なくても済むため、材料コストを低減することができるという付随的な効果も得られる。  [0078] As described above, in the pressure equalizing operation 1 of the first embodiment, when switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened, and the indoor heat that has been in the low pressure state is set. High pressure refrigerant was introduced little by little on the exchanger (41) side, and the indoor heat exchanger (41) was gradually changed from a low pressure state to a high pressure state so as to equalize pressure with the branch high pressure gas pipe (14). Therefore, the high-pressure refrigerant is prevented from flowing into the indoor heat exchanger (41) suddenly, and generation of refrigerant passage noise can be prevented. As a result, there is no need to provide a soundproofing material or the like for preventing noise in the apparatus, so that an additional effect that the material cost can be reduced can be obtained.
[0079] 〈均圧運転 2〉  [0079] <Pressure equalizing operation 2>
次に、上述した暖房運転の状態から冷暖房運転 2に切り換える際に行う均圧運転 2について、図 2,図 6を参照しながら説明する。なお、以下にいう、第 1制御弁(31)、 第 2制御弁(32)、室内膨張弁(42)及び熱交圧力センサ(44)等は、第 2BSユニット(3 0B)及び第 2室内ユニット(40B)におけるものである。  Next, the pressure equalizing operation 2 performed when switching from the heating operation state to the air conditioning operation 2 will be described with reference to FIGS. The first control valve (31), the second control valve (32), the indoor expansion valve (42), the heat exchange pressure sensor (44), etc. described below are the second BS unit (30B) and the second indoor valve. It is in the unit (40B).
[0080] この均圧運転 2では、コントローラ(50)が図 6に示す制御を行う。まず、ステップ S2 1において、弁操作部(53)が第 1制御弁(31)を閉じる。これにより、第 2BSユニット(3 0B)及び第 2室内ユニット(40B)への冷媒の流通が遮断される。  [0080] In this pressure equalizing operation 2, the controller (50) performs the control shown in FIG. First, in step S21, the valve operating section (53) closes the first control valve (31). Thereby, the distribution of the refrigerant to the second BS unit (30B) and the second indoor unit (40B) is blocked.
[0081] 次に、ステップ S22では、弁操作部(53)が第 2制御弁(32)を微開状態とする。す なわち、圧縮機 (21)の吐出冷媒が、室内熱交換器 (41)及び中間配管(17)を通じて 分岐低圧ガス配管(15)へ少量ずつ流れ込む。これにより、高圧状態の室内熱交換 器 (41)等が徐々に分岐低圧ガス配管(15)と同じ低圧状態に均圧される。 [0081] Next, in step S22, the valve operating section (53) slightly opens the second control valve (32). The That is, the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) little by little through the indoor heat exchanger (41) and the intermediate pipe (17). As a result, the indoor heat exchanger (41) in the high pressure state is gradually equalized to the same low pressure state as the branch low pressure gas pipe (15).
[0082] 次に、ステップ S23では、弁操作部(53)が第 2制御弁(32)を全開状態とする。こ れにより、圧縮機 (21)の吐出冷媒が室内熱交換器 (41)及び中間配管(17)を通じて 分岐低圧ガス配管(15)へ流れ込み、暖房運転から冷房運転への切り換えが完了す る。ここで、室内熱交換器 (41)が予め分岐低圧ガス配管(15)と均圧されているから、 室内熱交換器 (41)力 分岐低圧ガス配管(15)に対して高圧の冷媒が急激に流れ込 むことが抑制され、冷媒の通過音の発生を防止することができる。  [0082] Next, in step S23, the valve operating section (53) fully opens the second control valve (32). As a result, the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) through the indoor heat exchanger (41) and the intermediate pipe (17), and the switching from the heating operation to the cooling operation is completed. Here, since the indoor heat exchanger (41) is pre-equalized with the branch low-pressure gas pipe (15), the high-pressure refrigerant suddenly flows into the indoor heat exchanger (41) force branch low-pressure gas pipe (15). It is possible to prevent the refrigerant from passing through and to prevent the passage of refrigerant.
[0083] 以上のように、本実施形態 1の均圧運転 2では、暖房運転から冷房運転へ切り換 える場合、第 2制御弁 (32)を微開状態にし、高圧状態であった室内熱交換器 (41)か ら分岐低圧ガス配管(15)側に高圧の冷媒を少量ずつ導入し、室内熱交換器 (41)を 徐々に高圧状態から低圧状態にして分岐低圧ガス配管(15)と均圧するようにした。 したがって、室内熱交換器 (41)から分岐低圧ガス配管(15)に対して高圧の冷媒が 急激に流れ込むことが抑制され、冷媒の通過音の発生を防止することができる。  [0083] As described above, in the pressure equalizing operation 2 of the first embodiment, when switching from the heating operation to the cooling operation, the second control valve (32) is slightly opened, and the indoor heat that has been in the high pressure state is set. A small amount of high-pressure refrigerant is introduced from the exchanger (41) to the branch low-pressure gas pipe (15) side, and the indoor heat exchanger (41) is gradually changed from the high pressure state to the low-pressure state. The pressure was equalized. Therefore, the high-pressure refrigerant is prevented from flowing suddenly from the indoor heat exchanger (41) into the branch low-pressure gas pipe (15), and the passage of refrigerant can be prevented from being generated.
[0084] 〈実施形態 2〉  <Embodiment 2>
図 7は、本発明の実施形態 2に係る空気調和装置 (30)の全体構成を示すとともに 、冷房運転の動作を示す冷媒回路図である。前記実施形態 1との違いは、第 1及び 第 2制御弁(31, 32)をバイパスする第 1及び第 2バイパス配管(18, 19)と、第 1及び第 2バイパス配管(18, 19)に設けられた第 1及び第 2副制御弁(33, 34)とを備えた点で あるため、以下、実施形態 1と同じ部分については同じ符号を付し、相違点について のみ説明する。  FIG. 7 is a refrigerant circuit diagram showing the overall configuration of the air-conditioning apparatus (30) according to Embodiment 2 of the present invention and the operation of the cooling operation. The difference from Embodiment 1 is that the first and second bypass pipes (18, 19) bypassing the first and second control valves (31, 32) and the first and second bypass pipes (18, 19) Since the first and second sub control valves (33, 34) provided in the first embodiment are provided, the same parts as those in the first embodiment are denoted by the same reference numerals, and only different points will be described.
[0085] 図 7に示すように、第 IBSユニット(30A)には、中間配管(17)の他に、高圧ガス配 管(11)と低圧ガス配管(12)とが接続されている。第 IBSユニット(30A)において、中 間配管(17)と高圧ガス配管(11)とが高圧通路(38)をなし、中間配管(17)と低圧ガス 配管(12)とが低圧通路(39)をなしており、高圧通路(38)と低圧通路(39)とは合流し て接続されている。そして、第 IBSュュット(30A)において、高圧ガス配管(11)には 第 1制御弁(31)が設けられ、低圧ガス配管(12)には第 2制御弁(32)が設けられて!/、 [0086] さらに、高圧通路(38)には第 1制御弁(31)をバイパスするように第 1バイパス配管 (18)が接続され、低圧通路(39)には第 2制御弁(32)をバイパスするように第 2バイパ ス配管(19)が接続されている。この第 1及び第 2バイパス配管(18, 19)はそれぞれ、 高圧ガス配管(11)及び低圧ガス配管(12)よりも小径の管内径で形成されて!/、る。そ して、第 1及び第 2バイパス配管(18, 19)には、開度調節自在で且つ全開時の冷媒 流量が第 1及び第 2制御弁(31, 32)よりも小さ!/、第 1及び第 2副制御弁(33, 34)が設 けられている。 As shown in FIG. 7, in addition to the intermediate pipe (17), the high pressure gas pipe (11) and the low pressure gas pipe (12) are connected to the first IBS unit (30A). In the IBS unit (30A), the intermediate pipe (17) and the high-pressure gas pipe (11) form a high-pressure passage (38), and the intermediate pipe (17) and the low-pressure gas pipe (12) form a low-pressure passage (39). The high-pressure passage (38) and the low-pressure passage (39) are joined and connected. In the IBS mute (30A), the high pressure gas pipe (11) is provided with the first control valve (31), and the low pressure gas pipe (12) is provided with the second control valve (32). , [0086] Further, a first bypass pipe (18) is connected to the high pressure passage (38) so as to bypass the first control valve (31), and a second control valve (32) is connected to the low pressure passage (39). The second bypass pipe (19) is connected to bypass. The first and second bypass pipes (18, 19) are formed with smaller pipe inner diameters than the high-pressure gas pipe (11) and the low-pressure gas pipe (12), respectively. The first and second bypass pipes (18, 19) are adjustable in opening and the refrigerant flow rate when fully opened is smaller than that of the first and second control valves (31, 32)! /, 1 and 2 sub control valves (33, 34) are installed.
[0087] 前記第 2BSユニット(30B)には、中間配管(17)の他に、高圧ガス配管(11)の途 中から分岐した分岐高圧ガス配管(14)と、低圧ガス配管(12)の途中から分岐した分 岐低圧ガス配管(15)とが接続されている。そして、第 2BSユニット(30B)において、 分岐高圧ガス配管(14)には第 1制御弁(31)が設けられ、分岐低圧ガス配管(15)に は第 2制御弁(32)が設けられて!/、る。  [0087] In addition to the intermediate pipe (17), the second BS unit (30B) includes a branch high-pressure gas pipe (14) branched from the middle of the high-pressure gas pipe (11), and a low-pressure gas pipe (12). A branch low-pressure gas pipe (15) branched from the middle is connected. In the second BS unit (30B), the branch high-pressure gas pipe (14) is provided with a first control valve (31), and the branch low-pressure gas pipe (15) is provided with a second control valve (32). ! /
[0088] さらに、前記分岐高圧ガス配管(14)には第 1制御弁(31)をバイパスするように第 1 バイパス配管(18)が接続され、分岐低圧ガス配管(15)には第 2制御弁(32)をバイパ スするように第 2バイパス配管(19)が接続されている。この第 1及び第 2バイパス配管 (18, 19)はそれぞれ、分岐高圧ガス配管(14)及び分岐低圧ガス配管(15)よりも小径 の管内径を有している。そして、第 1及び第 2バイパス配管(18, 19)には、全開時の 冷媒流量が第 1及び第 2制御弁(31, 32)よりも小さ!/、第 1及び第 2副制御弁(33, 34) が設けられている。  [0088] Further, a first bypass pipe (18) is connected to the branch high-pressure gas pipe (14) so as to bypass the first control valve (31), and a second control is connected to the branch low-pressure gas pipe (15). A second bypass pipe (19) is connected to bypass the valve (32). Each of the first and second bypass pipes (18, 19) has a smaller pipe inner diameter than the branch high-pressure gas pipe (14) and the branch low-pressure gas pipe (15). In the first and second bypass pipes (18, 19), the refrigerant flow rate when fully opened is smaller than that of the first and second control valves (31, 32)! /, The first and second sub control valves ( 33, 34).
[0089] ここで、前記第 1及び第 2バイパス配管(18, 19)の下流側端部は、図 8に示すよう に、管内径が徐々に拡大されたラッパ形状に形成されている。そして、高圧通路(38) における、第 1バイパス配管(18)の下流側端部との接続位置よりも下流側、すなわち 、高圧ガス配管(11)と室内熱交換器 (41)との連絡配管をなし且つ第 1バイパス配管 (18)の下流側端部に接続される中間配管(17)は、第 1バイパス配管(18)力も流出す る冷媒の流れ方向に沿って直線状に延びるように配置されている。  Here, as shown in FIG. 8, the downstream ends of the first and second bypass pipes (18, 19) are formed in a trumpet shape with the pipe inner diameter gradually enlarged. Then, in the high pressure passage (38), the downstream side of the connection position with the downstream end of the first bypass pipe (18), that is, the connection pipe between the high pressure gas pipe (11) and the indoor heat exchanger (41). The intermediate pipe (17) connected to the downstream end of the first bypass pipe (18) extends linearly along the flow direction of the refrigerant that also flows out the force of the first bypass pipe (18). Has been placed.
[0090] また、低圧通路(39)における、第 2バイパス配管(19)の下流側端部との接続位置 よりも下流側、すなわち、第 2バイパス配管(19)の下流側端部に接続される低圧ガス 配管(12)は、第 2バイパス配管(19)力も流出する冷媒の流れ方向に沿って直線状に 延びるように配置されている。 [0090] In addition, the low pressure passage (39) is connected to the downstream end of the second bypass pipe (19), that is, to the downstream end of the second bypass pipe (19). Low pressure gas The pipe (12) is arranged so as to extend linearly along the flow direction of the refrigerant from which the second bypass pipe (19) force also flows.
[0091] このように、第 1及び第 2バイパス配管(18, 19)の下流側端部の管内径が徐々に 拡大されていることから、第 1及び第 2バイパス配管(18, 19)から中間配管(17)及び 低圧ガス配管(12)へ冷媒カ Sスムーズに流れる。また、第 1及び第 2バイパス配管(18 , 19)の下流側端部に接続される中間配管(17)及び低圧ガス配管(12)は、冷媒の流 れ方向に沿って直線状に延びているから、第 1及び第 2バイパス配管(18, 19)から流 出した冷媒が、高圧通路 (38)及び低圧通路 (39)をなす中間配管(17)及び低圧ガス 配管(12)の管内壁に衝突して衝突音が発生してしまうことを防止でき、冷媒による騒 音の発生を抑制する上で有利な効果が得られる。  [0091] As described above, since the pipe inner diameters at the downstream ends of the first and second bypass pipes (18, 19) are gradually enlarged, the first and second bypass pipes (18, 19) The refrigerant flows smoothly into the intermediate pipe (17) and low-pressure gas pipe (12). The intermediate pipe (17) and the low-pressure gas pipe (12) connected to the downstream ends of the first and second bypass pipes (18, 19) extend linearly along the refrigerant flow direction. Therefore, the refrigerant flowing out from the first and second bypass pipes (18, 19) is the inner wall of the intermediate pipe (17) and the low pressure gas pipe (12) forming the high pressure passage (38) and the low pressure passage (39). It is possible to prevent a collision noise from being generated by colliding with the refrigerant, and an advantageous effect can be obtained in suppressing the generation of noise caused by the refrigerant.
[0092] 前記コントローラ(50)は、均圧運転にお!/、て、弁操作部(53)により第 1及び第 2制 御弁(31, 32)、並びに第 1及び第 2副制御弁(33, 34)の開度調節を行うように構成さ れている。  [0092] In the pressure equalizing operation, the controller (50) is operated by the valve operating unit (53), and the first and second control valves (31, 32), and the first and second sub-control valves. It is configured to adjust the opening of (33, 34).
[0093] 運転動作  [0093] Driving action
次に、前記空気調和装置(30)の運転動作を図面に基づいて説明する。この空気 調和装置(30)では、 2つの室内ユニット(40A, 40B)の双方が冷房又は暖房を行う運 転と、一方が冷房を行い他方が暖房を行う運転がある。冷房運転、暖房運転、冷暖 房運転については、前記実施形態 1で説明した運転動作と略同じであるため、本実 施形態 2では、冷房運転についてのみ説明し、その他の運転動作については省略 する。  Next, the operation of the air conditioner (30) will be described with reference to the drawings. In this air conditioner (30), there are an operation in which both of the two indoor units (40A, 40B) perform cooling or heating, and an operation in which one performs cooling and the other performs heating. Since the cooling operation, the heating operation, and the cooling / heating operation are substantially the same as the operation operations described in the first embodiment, only the cooling operation is described in the second embodiment, and the other operation operations are omitted. .
[0094] 〈冷房運転〉  [0094] <Cooling operation>
前記第 1室内ユニット(40A)及び第 2室内ユニット(40B)の双方が冷房運転を行う 場合について、図 7を参照しながら説明する。この冷房運転の場合、室外ユニット(20 )では、第 1電磁弁 (26)が開状態に、第 2電磁弁 (27)が閉状態に、室外膨張弁 (24) が全開状態にそれぞれ設定される。前記各 BSユニット(30A, 30B)では、第 1制御弁 (31)、第 1及び第 2副制御弁(33, 34)が閉状態に、第 2制御弁(32)が開状態にそれ ぞれ設定される。各室内ユニット(40A, 40B)では、室内膨張弁(42)が適切な開度に 設定される。 [0095] このような状態において、圧縮機(21)を駆動すると、該圧縮機(21)から吐出され た高圧ガス冷媒が第 1分岐管(2d)を通って室外熱交換器 (23)へ流れる。室外熱交 換器 (23)では、冷媒が室外ファン (25)によって取り込まれた空気と熱交換して凝縮 する。凝縮した冷媒は、主管(2c)を通って室外ユニット (20)外へ流れ、液配管(13) へ流入する。液配管(13)の冷媒は、一部が分岐液配管(16)へ流れて第 2室内ュニ ット(40B)へ流入し、残りが第 1室内ユニット(40A)へ流入する。 A case where both the first indoor unit (40A) and the second indoor unit (40B) perform the cooling operation will be described with reference to FIG. In this cooling operation, in the outdoor unit (20), the first solenoid valve (26) is set to the open state, the second solenoid valve (27) is set to the closed state, and the outdoor expansion valve (24) is set to the fully open state. The In each BS unit (30A, 30B), the first control valve (31), the first and second sub control valves (33, 34) are closed, and the second control valve (32) is opened. Is set. In each indoor unit (40A, 40B), the indoor expansion valve (42) is set to an appropriate opening degree. In this state, when the compressor (21) is driven, the high-pressure gas refrigerant discharged from the compressor (21) passes through the first branch pipe (2d) to the outdoor heat exchanger (23). Flowing. In the outdoor heat exchanger (23), the refrigerant condenses by exchanging heat with the air taken in by the outdoor fan (25). The condensed refrigerant flows outside the outdoor unit (20) through the main pipe (2c) and flows into the liquid pipe (13). Part of the refrigerant in the liquid pipe (13) flows into the branch liquid pipe (16) and flows into the second indoor unit (40B), and the rest flows into the first indoor unit (40A).
[0096] 前記第 1室内ユニット(40A)及び第 2室内ユニット(40B)では、冷媒が室内膨張弁  [0096] In the first indoor unit (40A) and the second indoor unit (40B), the refrigerant is an indoor expansion valve.
(42)で減圧された後、室内熱交換器 (41)へ流れる。室内熱交換器 (41)では、冷媒 が室内ファン (43)によって取り込まれた空気と熱交換して蒸発する。これにより、空気 が冷却され、室内の冷房が行われる。そして、室内熱交換器 (41)で蒸発したガス冷 媒は、各室内ユニット(40A, 40B)外へ流れ、中間配管(17)を通って各 BSユニット(3 OA, 30B)へ流入する。  After being depressurized in (42), it flows to the indoor heat exchanger (41). In the indoor heat exchanger (41), the refrigerant evaporates by exchanging heat with the air taken in by the indoor fan (43). This cools the air and cools the room. The gas refrigerant evaporated in the indoor heat exchanger (41) flows out of the indoor units (40A, 40B), and flows into the BS units (3OA, 30B) through the intermediate pipe (17).
[0097] 前記第 IBSユニット (30A)では、ガス冷媒が中間配管(17)から低圧ガス配管(12) へ流入する。第 2BSユニット(30B)では、ガス冷媒が中間配管(17)から分岐低圧ガ ス配管(15)へ流入し、低圧ガス配管(12)へ流れる。低圧ガス配管(12)のガス冷媒は 、室外ユニット(20)へ流入し、吸入管(2b)を通って再び圧縮機(21)へ戻り、この循環 が繰り返される。  In the first IBS unit (30A), the gas refrigerant flows from the intermediate pipe (17) into the low-pressure gas pipe (12). In the second BS unit (30B), the gas refrigerant flows from the intermediate pipe (17) into the branch low-pressure gas pipe (15) and then flows into the low-pressure gas pipe (12). The gas refrigerant in the low-pressure gas pipe (12) flows into the outdoor unit (20), returns to the compressor (21) through the suction pipe (2b), and this circulation is repeated.
[0098] 〈均圧運転 1〉  [0098] <Pressure equalizing operation 1>
次に、上述した冷房運転の状態から冷暖房運転 1に切り換える際に行う均圧運転 1について、図 7,図 9を参照しながら説明する。なお、以下にいう、第 1及び第 2制御 弁(31, 32)、第 1及び第 2副制御弁(33, 34)、室内膨張弁(42)及び熱交圧力センサ (44)等は、第 2BSユニット(30B)及び第 2室内ユニット(40B)におけるものであるとす  Next, pressure equalization operation 1 performed when switching from the above-described cooling operation state to air conditioning operation 1 will be described with reference to FIGS. The first and second control valves (31, 32), the first and second sub control valves (33, 34), the indoor expansion valve (42), the heat exchange pressure sensor (44), etc. It is assumed that it is in the second BS unit (30B) and the second indoor unit (40B).
[0099] この均圧運転 1では、コントローラ(50)が図 8に示す制御を行う。まず、ステップ S3 1において、弁操作部(53)が第 2制御弁(32)及び第 2副制御弁(34)を閉じる。これ により、第 2BSユニット(30B)及び第 2室内ユニット (40B)への冷媒の流通が遮断され [0099] In the pressure equalizing operation 1, the controller (50) performs the control shown in FIG. First, in step S31, the valve operating section (53) closes the second control valve (32) and the second sub control valve (34). As a result, the refrigerant flow to the second BS unit (30B) and the second indoor unit (40B) is blocked.
[0100] 次に、ステップ S32では、弁操作部(53)が第 1副制御弁(33)を微開状態とする。 すなわち、圧縮機 (21)の吐出冷媒が、分岐高圧ガス配管(14)、第 1バイパス配管(1 8)、及び中間配管(17)を通じて低圧状態の室内熱交換器 (41)へ少量ずつ流れ込 む。これにより、低圧状態の室内熱交換器 (41)等が徐々に分岐高圧ガス配管(14)と 同じ高圧状態に均圧される。 [0100] Next, in step S32, the valve operating section (53) slightly opens the first sub control valve (33). That is, the refrigerant discharged from the compressor (21) flows little by little to the low-pressure indoor heat exchanger (41) through the branch high-pressure gas pipe (14), the first bypass pipe (18), and the intermediate pipe (17). Include. As a result, the indoor heat exchanger (41) in the low-pressure state is gradually equalized to the same high-pressure state as the branch high-pressure gas pipe (14).
[0101] 次に、ステップ S33では、弁操作部(53)が第 1制御弁(31)を全開状態とする。な お、第 1副制御弁(33)は、開いた状態のままでもよいし、第 1制御弁(31)を開いたと きに閉じるように制御してもよい。  [0101] Next, in step S33, the valve operating portion (53) fully opens the first control valve (31). The first sub control valve (33) may remain open or may be controlled to close when the first control valve (31) is opened.
[0102] これにより、圧縮機 (21)の吐出冷媒が分岐高圧ガス配管(14)、第 1バイパス配管  [0102] As a result, the refrigerant discharged from the compressor (21) is branched into the high-pressure gas pipe (14) and the first bypass pipe.
(18)、及び中間配管(17)を通じて室内熱交換器 (41)へ流れ込み、冷房運転から暖 房運転への切り換えが完了する。ここで、室内熱交換器 (41)が予め分岐高圧ガス配 管(14)と均圧されているから、室内熱交換器 (41)に対して高圧の冷媒が急激に流れ 込むことが抑制され、冷媒の通過音の発生を防止することができる。  (18) and the intermediate pipe (17) flow into the indoor heat exchanger (41), completing the switching from the cooling operation to the heating operation. Here, since the indoor heat exchanger (41) is pre-equalized with the branch high-pressure gas pipe (14), the high-pressure refrigerant is prevented from flowing into the indoor heat exchanger (41). The generation of the passage sound of the refrigerant can be prevented.
[0103] 以上のように、本実施形態 2の均圧運転 1では、冷房運転から暖房運転へ切り換 える場合、第 1副制御弁 (33)を微開状態にし、低圧状態であった室内熱交換器 (41) 側に高圧の冷媒を少量ずつ導入し、室内熱交換器 (41)を徐々に低圧状態から高圧 状態にして分岐高圧ガス配管(14)と均圧するようにした。したがって、室内熱交換器 (41)に対して高圧の冷媒が急激に流れ込むことが抑制され、冷媒の通過音の発生 を防止すること力できる。ここで、第 1副制御弁(33)として、全開時の冷媒流量が第 1 制御弁(31)よりも小さ!/、制御弁を用いて!/、るため、より小さ!/、開度調整幅で冷媒流量 を調節することができ、冷媒の通過音の発生を防止する上でさらに有利な効果が得 られる。  [0103] As described above, in the pressure equalizing operation 1 of the second embodiment, when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the room is in the low pressure state. A small amount of high-pressure refrigerant was introduced to the heat exchanger (41) side, and the indoor heat exchanger (41) was gradually changed from a low pressure state to a high pressure state so as to equalize pressure with the branch high-pressure gas pipe (14). Therefore, the high-pressure refrigerant can be prevented from flowing into the indoor heat exchanger (41) rapidly, and the generation of passage noise of the refrigerant can be prevented. Here, as the first sub control valve (33), the refrigerant flow rate when fully opened is smaller than that of the first control valve (31)! The flow rate of the refrigerant can be adjusted within the adjustment range, and a further advantageous effect can be obtained in preventing the generation of the passage sound of the refrigerant.
[0104] 〈均圧運転 2〉  [0104] <Pressure equalizing operation 2>
次に、上述した暖房運転の状態から冷暖房運転 2 (実施形態 1参照)に切り換える 際に行う均圧運転 2について、図 10を参照しながら説明する。なお、以下にいう、第 1及び第 2制御弁(31, 32)、第 1及び第 2副制御弁(33, 34)、室内膨張弁(42)及び 熱交圧力センサ(44)等は、第 2BSユニット(30B)及び第 2室内ユニット (40B)におけ るものである。  Next, pressure equalization operation 2 performed when switching from the above-described heating operation state to air-conditioning operation 2 (see Embodiment 1) will be described with reference to FIG. The first and second control valves (31, 32), the first and second sub control valves (33, 34), the indoor expansion valve (42), the heat exchange pressure sensor (44), etc. This is in the second BS unit (30B) and the second indoor unit (40B).
[0105] この均圧運転 2では、コントローラ(50)が図 10に示す制御を行う。まず、ステップ S 41におレ、て、弁操作部(53)が第 1制御弁(31)及び第 1副制御弁(33)を閉じる。これ により、第 2BSユニット(30B)及び第 2室内ユニット (40B)への冷媒の流通が遮断され [0105] In the pressure equalizing operation 2, the controller (50) performs the control shown in FIG. First, step S At 41, the valve operating section (53) closes the first control valve (31) and the first sub control valve (33). As a result, the refrigerant flow to the second BS unit (30B) and the second indoor unit (40B) is blocked.
[0106] 次に、ステップ S42では、弁操作部(53)が第 2副制御弁(34)を微開状態とする。 [0106] Next, in step S42, the valve operating section (53) slightly opens the second sub control valve (34).
すなわち、圧縮機 (21)の吐出冷媒が、室内熱交換器 (41)、中間配管(17)、及び第 2 バイパス配管(19)を通じて分岐低圧ガス配管(15)へ少量ずつ流れ込む。これにより 、高圧状態の室内熱交換器 (41)等が徐々に分岐低圧ガス配管(15)と同じ低圧状態 に均圧される。  That is, the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) little by little through the indoor heat exchanger (41), the intermediate pipe (17), and the second bypass pipe (19). As a result, the high-pressure indoor heat exchanger (41) and the like are gradually pressure-equalized to the same low-pressure state as the branch low-pressure gas pipe (15).
[0107] 次に、ステップ S43では、弁操作部(53)が第 2制御弁(32)を全開状態とする。な お、第 2副制御弁(34)は、開いた状態のままでもよいし、第 2制御弁(32)を開いたと きに閉じるように制御してもよい。  [0107] Next, in step S43, the valve operating section (53) fully opens the second control valve (32). The second sub control valve (34) may remain open or may be controlled to close when the second control valve (32) is opened.
[0108] これにより、圧縮機 (21)の吐出冷媒が室内熱交換器 (41)、中間配管(17)、及び 第 2バイパス配管(19)を通じて分岐低圧ガス配管(15)へ流れ込み、暖房運転から冷 房運転への切り換えが完了する。ここで、室内熱交換器 (41)が予め分岐低圧ガス配 管(15)と均圧されているから、室内熱交換器 (41)から分岐低圧ガス配管(15)に対し て高圧の冷媒が急激に流れ込むことが抑制され、冷媒の通過音の発生を防止するこ と力 Sできる。  [0108] As a result, the refrigerant discharged from the compressor (21) flows into the branch low-pressure gas pipe (15) through the indoor heat exchanger (41), the intermediate pipe (17), and the second bypass pipe (19). Switching from to cooling operation is completed. Here, since the indoor heat exchanger (41) is pre-equalized with the branch low-pressure gas pipe (15), a high-pressure refrigerant flows from the indoor heat exchanger (41) to the branch low-pressure gas pipe (15). Abrupt inflow is suppressed, and it is possible to prevent the generation of refrigerant passage noise.
[0109] 以上のように、本実施形態 2の均圧運転 2では、暖房運転から冷房運転へ切り換 える場合、第 2副制御弁 (34)を微開状態にし、高圧状態であった室内熱交換器 (41) 力、ら分岐低圧ガス配管(15)側に高圧の冷媒を少量ずつ導入し、室内熱交換器 (41) を徐々に高圧状態から低圧状態にして分岐低圧ガス配管(15)と均圧するようにした 。したがって、室内熱交換器 (41)から分岐低圧ガス配管(15)に対して高圧の冷媒が 急激に流れ込むことが抑制され、冷媒の通過音の発生を防止することができる。ここ で、第 2副制御弁(34)として、全開時の冷媒流量が第 2制御弁(32)よりも小さ!/、制御 弁を用いているため、より小さい開度調整幅で冷媒流量を調節することができ、冷媒 の通過音の発生を防止する上でさらに有利な効果が得られる。  As described above, in the pressure equalizing operation 2 of the present embodiment 2, when switching from the heating operation to the cooling operation, the second sub-control valve (34) is slightly opened, and the room that has been in the high pressure state is used. High pressure refrigerant is introduced into the heat exchanger (41) and the branch low pressure gas pipe (15) little by little, and the indoor heat exchanger (41) is gradually changed from the high pressure state to the low pressure state to branch low pressure gas pipe (15 ) And pressure equalization. Therefore, the high-pressure refrigerant is prevented from flowing suddenly from the indoor heat exchanger (41) into the branch low-pressure gas pipe (15), and the passage of refrigerant can be prevented from being generated. Here, as the second sub-control valve (34), the refrigerant flow rate when fully opened is smaller than the second control valve (32)! /, And the control valve is used. This can be adjusted, and a further advantageous effect can be obtained in preventing the generation of the passage sound of the refrigerant.
[0110] 〈その他の実施形態〉  <Other Embodiments>
前記実施形態にっレ、ては、以下のような構成としてもょレ、。 [0111] 例えば、前記実施形態 2の空気調和装置(30)において、図 1 1に示すように、第 1 及び第 2バイパス配管(18, 19)における第 1及び第 2副制御弁(33, 34)の下流側に キヤビラリチューブ(37)を接続した構成としてもよ!/、。 According to the above embodiment, the following configuration is possible. [0111] For example, in the air conditioner (30) of the second embodiment, as shown in Fig. 11, the first and second sub control valves (33, 33) in the first and second bypass pipes (18, 19) It is also possible to have a configuration in which a capillary tube (37) is connected downstream of 34)! /.
[0112] このようにすれば、第 1及び第 2バイパス配管(18, 19)における第 1及び第 2副制 御弁(33, 34)の下流側にキヤビラリチューブ(37)が接続すれば、第 1及び第 2バイパ ス配管(18, 19)を流れる冷媒を減圧するために必要な減圧距離をキヤビラリチューブ (37)で確保することができる。すなわち、第 1及び第 2副制御弁(33, 34)の下流側に 減圧距離を長く確保するようにすれば、冷媒が第 1及び第 2副制御弁(33, 34)を通 過する際の通過音の発生を抑制する上で有利となる。  [0112] By doing this, the capillary tube (37) is connected to the downstream side of the first and second auxiliary control valves (33, 34) in the first and second bypass pipes (18, 19). For example, it is possible to secure the decompression distance necessary for decompressing the refrigerant flowing through the first and second bypass pipes (18, 19) with the capillary tube (37). That is, if a long decompression distance is secured downstream of the first and second sub control valves (33, 34), the refrigerant will pass through the first and second sub control valves (33, 34). This is advantageous in suppressing the generation of the passing sound.
[0113] また、前記実施形態 2では、室内熱交換器 (41)は、高圧ガス配管(11)と低圧ガス 配管(12)とに、冷媒流量を調節可能な第 1及び第 2制御弁 (31 , 32)を介して切換可 能に接続されている力 この形態に限定するものではなぐ図 12に示すように、第 1 及び第 2制御弁(31 , 32)の代わりに、冷媒流れを許容又は遮断する第 1及び第 2開 閉弁(35, 36)を用いても構わない。  [0113] In the second embodiment, the indoor heat exchanger (41) includes the first and second control valves (adjustable refrigerant flow rate) in the high-pressure gas pipe (11) and the low-pressure gas pipe (12). 31, 32) Forces connected in a switchable manner As shown in FIG. 12, which is not limited to this form, instead of the first and second control valves (31, 32), the refrigerant flow is changed. The first and second open / close valves (35, 36) that allow or shut off may be used.
[0114] この場合、コントローラ(50)により、第 2開閉弁(36)及び第 2副制御弁(34)が閉じ られた後に第 1副制御弁(33)が微開状態とされ、室内熱交換器 (41)が高圧ガス配 管(11)と均圧した後で第 1開閉弁(35)が開かれて、冷房運転から暖房運転へ切り換 えられる。一方、コントローラ(50)により、第 1開閉弁(35)及び第 1副制御弁(33)が閉 じられた後に第 2副制御弁(34)が微開状態とされ、室内熱交換器 (41)が低圧ガス配 管(12)と均圧した後で第 2開閉弁(36)が開かれて、暖房運転から冷房運転へ切り換 X_られる。  [0114] In this case, after the second on-off valve (36) and the second sub-control valve (34) are closed by the controller (50), the first sub-control valve (33) is slightly opened, and the indoor heat After the exchanger (41) equalizes pressure with the high-pressure gas pipe (11), the first on-off valve (35) is opened to switch from the cooling operation to the heating operation. On the other hand, after the first on-off valve (35) and the first sub-control valve (33) are closed by the controller (50), the second sub-control valve (34) is opened slightly, and the indoor heat exchanger ( After the pressure is equalized with the low pressure gas pipe (12), the second on-off valve (36) is opened and the heating operation is switched to the cooling operation X_.
[0115] このようにすれば、例えば、冷房運転から暖房運転へ切り換える場合、第 1副制御 弁 (33)を微開状態にし、低圧状態であった室内熱交換器 (41)側に高圧の冷媒を少 量ずつ導入し、室内熱交換器 (41)を徐々に低圧状態から高圧状態にして高圧ガス 配管(11)と均圧することで、第 1開閉弁(35)を開いたときに室内熱交換器 (41)に対 して高圧の冷媒が急激に流れ込むことが抑制され、冷媒の通過音の発生を防止する こと力 Sでさる。  In this way, for example, when switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened, and the high pressure is applied to the indoor heat exchanger (41) side in the low pressure state. A small amount of refrigerant is introduced, and the indoor heat exchanger (41) is gradually changed from a low pressure state to a high pressure state to equalize pressure with the high pressure gas pipe (11). The high-pressure refrigerant is prevented from flowing into the heat exchanger (41) abruptly, and the force S prevents the passage of refrigerant.
[0116] ここで、第 1及び第 2開閉弁(35, 36)は、均圧制御に使用するものではなく冷媒流 れを許容又は遮断するものであるため、冷媒流量を調節可能な制御弁のように開度 調節を行う等の複雑な制御が必要なぐ簡単な構成で空気調和装置の冷媒切換回 路を実現することができる。 [0116] Here, the first and second on-off valves (35, 36) are not used for pressure equalization control but are used for refrigerant flow. Therefore, the refrigerant switching circuit of the air conditioner is realized with a simple configuration that does not require complicated control such as adjusting the opening, such as a control valve that can adjust the refrigerant flow rate. be able to.
[0117] また、前記実施形態 1 , 2では、室内ユニット(40A, 40B)及び BSユニット(30A, 30 B)が各 2台設けられた形態について説明した力 S、各 3台以上有する形態であっても 同様に冷媒の通過音の発生を抑制することができる。 [0117] In the first and second embodiments, the force S described for the configuration in which two indoor units (40A, 40B) and two BS units (30A, 30B) are provided is provided in a configuration having three or more units each. Even if it exists, generation | occurrence | production of the passage sound of a refrigerant | coolant can be suppressed similarly.
産業上の利用可能性  Industrial applicability
[0118] 以上説明したように、本発明は、冷暖房運転の切り換え時に生じる冷媒の通過音 を防止しつつ空気調和装置全体としての空調性能を確保することができるという実用 性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 [0118] As described above, the present invention provides a highly practical effect of ensuring the air conditioning performance of the entire air conditioner while preventing the passage of refrigerant that occurs when switching between cooling and heating operations. Therefore, it is extremely useful and has high industrial applicability.

Claims

請求の範囲 The scope of the claims
高圧ガス配管(11)と低圧ガス配管(12)と液配管(13)と複数の利用側熱交換器 (4 1)とを備え、  A high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41).
前記各利用側熱交換器 (41)の一端は、膨張機構 (42)を介して前記液配管(13) に接続される一方、他端は、切換機構(30A, 30B)を介して前記高圧ガス配管(11)と 前記低圧ガス配管(12)とに切換自在に接続され、  One end of each use side heat exchanger (41) is connected to the liquid pipe (13) via an expansion mechanism (42), while the other end is connected to the high pressure via a switching mechanism (30A, 30B). The gas pipe (11) and the low-pressure gas pipe (12) are switchably connected,
前記各利用側熱交換器 (41)が個別に冷暖房運転可能な空気調和装置であって 前記切換機構(30A, 30B)は、  Each of the use side heat exchangers (41) is an air conditioner capable of individually cooling and heating, and the switching mechanism (30A, 30B)
開度調節自在な第 1制御弁 (31)を有し、前記利用側熱交換器 (41)と前記高圧ガ ス配管(11)とを接続する高圧通路 (38)と、  A high-pressure passage (38) having a first control valve (31) with adjustable opening, and connecting the use-side heat exchanger (41) and the high-pressure gas pipe (11);
開度調節自在な第 2制御弁 (32)を有し、前記利用側熱交換器 (41)と前記低圧ガ ス配管(12)とを接続する低圧通路 (39)とを備える一方、  While having a second control valve (32) whose opening degree is adjustable, and having a low pressure passage (39) connecting the use side heat exchanger (41) and the low pressure gas pipe (12),
冷房運転から暖房運転へ切り換える場合、前記第 2制御弁(32)を閉じた後に前 記第 1制御弁 (31)を微開状態とし、その後、該第 1制御弁 (31)を全開状態として前 記高圧通路(38)を開通する一方、暖房運転から冷房運転へ切り換える場合、該第 1 制御弁(31)を閉じた後に該第 2制御弁(32)を微開状態とし、その後、該第 2制御弁( 32)を全開状態として前記低圧通路(39)を開通するように構成されて!/、ることを特徴 とする空気調和装置。  When switching from the cooling operation to the heating operation, the first control valve (31) is slightly opened after the second control valve (32) is closed, and then the first control valve (31) is fully opened. When switching from heating operation to cooling operation while opening the high-pressure passage (38), the second control valve (32) is slightly opened after the first control valve (31) is closed, and then the An air conditioner configured to open the low-pressure passage (39) with the second control valve (32) fully open!
高圧ガス配管(11)と低圧ガス配管(12)と液配管(13)と複数の利用側熱交換器 (4 1)とを備え、  A high-pressure gas pipe (11), a low-pressure gas pipe (12), a liquid pipe (13), and a plurality of usage-side heat exchangers (41).
前記各利用側熱交換器 (41)の一端は、膨張機構 (42)を介して前記液配管(13) に接続される一方、他端は、切換機構(30A, 30B)を介して前記高圧ガス配管(11)と 前記低圧ガス配管(12)とに切換自在に接続され、  One end of each use side heat exchanger (41) is connected to the liquid pipe (13) via an expansion mechanism (42), while the other end is connected to the high pressure via a switching mechanism (30A, 30B). The gas pipe (11) and the low-pressure gas pipe (12) are switchably connected,
前記各利用側熱交換器 (41)が個別に冷暖房運転可能な空気調和装置であって 前記切換機構(30A, 30B)は、  Each of the use side heat exchangers (41) is an air conditioner capable of individually cooling and heating, and the switching mechanism (30A, 30B)
開度調節自在な第 1制御弁 (31)を有し、前記利用側熱交換器 (41)と前記高圧ガ ス配管(11)とを接続する高圧通路 (38)と、 A first control valve (31) whose opening degree is adjustable, and the use side heat exchanger (41) and the high pressure gas High-pressure passage (38) connecting the pipe (11),
開度調節自在で且つ全開時の冷媒流量が前記第 1制御弁(31)よりも小さ!/ヽ第 1 副制御弁(33)を有し、前記高圧ガス配管(11)よりも小径の管内径で形成され、該第 1制御弁(31)をバイパスするように前記高圧通路(38)に接続された第 1バイパス配管 Adjustable opening and flow rate of refrigerant when fully open is smaller than the first control valve (31)! / ヽ The first sub control valve (33) has a smaller diameter than the high-pressure gas pipe (11) A first bypass pipe formed with an inner diameter and connected to the high-pressure passage (38) so as to bypass the first control valve (31)
(18)と、 (18)
開度調節自在な第 2制御弁 (32)を有し、前記利用側熱交換器 (41)と前記低圧ガ ス配管(12)とを接続する低圧通路 (39)と、  A low-pressure passage (39) having a second control valve (32) with adjustable opening, and connecting the use-side heat exchanger (41) and the low-pressure gas pipe (12);
開度調節自在で且つ全開時の冷媒流量が前記第 2制御弁(32)よりも小さ!/、第 2 副制御弁(34)を有し、前記低圧ガス配管(12)よりも小径の管内径で形成され、前記 第 2制御弁(32)をバイパスするように該低圧通路(39)に接続された第 2バイパス配管 Adjustable opening and flow rate of refrigerant when fully open is smaller than the second control valve (32)! /, Has a second sub-control valve (34) and has a smaller diameter than the low-pressure gas pipe (12) A second bypass pipe formed with an inner diameter and connected to the low pressure passage (39) so as to bypass the second control valve (32)
(19)とを備える一方、 (19)
冷房運転から暖房運転へ切り換える場合、前記第 2制御弁(32)及び前記第 2副 制御弁(34)を閉じた後に前記第 1副制御弁(33)を微開状態とし、その後、該第 1制 御弁(31)を全開状態として前記高圧通路(38)を開通する一方、暖房運転から冷房 運転へ切り換える場合、該第 1制御弁(31)及び前記第 1副制御弁(33)を閉じた後に 該第 2副制御弁 (34)を微開状態とし、その後、該第 2制御弁 (32)を全開状態として 前記低圧通路(39)を開通するように構成されていることを特徴とする空気調和装置。  When switching from the cooling operation to the heating operation, the first sub control valve (33) is slightly opened after the second control valve (32) and the second sub control valve (34) are closed, and then the first sub control valve (33) is opened. 1 When the control valve (31) is fully opened and the high pressure passage (38) is opened while the heating operation is switched to the cooling operation, the first control valve (31) and the first sub control valve (33) are The second sub control valve (34) is slightly opened after being closed, and then the second control valve (32) is fully opened to open the low pressure passage (39). Air conditioner.
[3] 高圧ガス配管(11)と低圧ガス配管(12)と液配管(13)と複数の利用側熱交換器 (4[3] High-pressure gas pipe (11), low-pressure gas pipe (12), liquid pipe (13), and multiple use side heat exchangers (4
1)とを備え、 1)
前記各利用側熱交換器 (41)の一端は、膨張機構 (42)を介して前記液配管(13) に接続される一方、他端は、切換機構(30A, 30B)を介して前記高圧ガス配管(11)と 前記低圧ガス配管(12)とに切換自在に接続され、  One end of each use side heat exchanger (41) is connected to the liquid pipe (13) via an expansion mechanism (42), while the other end is connected to the high pressure via a switching mechanism (30A, 30B). The gas pipe (11) and the low-pressure gas pipe (12) are switchably connected,
前記各利用側熱交換器 (41)が個別に冷暖房運転可能な空気調和装置であって 前記切換機構(30A, 30B)は、  Each of the use side heat exchangers (41) is an air conditioner capable of individually cooling and heating, and the switching mechanism (30A, 30B)
冷媒流れを許容又は遮断する第 1開閉弁 (35)を有し、前記利用側熱交換器 (41) と前記高圧ガス配管(11)とを接続する高圧通路 (38)と、  A high pressure passage (38) having a first on-off valve (35) for allowing or blocking the refrigerant flow, and connecting the use side heat exchanger (41) and the high pressure gas pipe (11);
開度調節自在で且つ全開時の冷媒流量が前記第 1開閉弁 (35)よりも小さ!/ヽ第 1 副制御弁(33)を有し、前記高圧ガス配管(11)よりも小径の管内径で形成され、該第 1開閉弁(35)をバイパスするように前記高圧通路(38)に接続された第 1バイパス配管Adjustable opening and refrigerant flow when fully open is smaller than the first on-off valve (35)! It has a sub-control valve (33), is formed with a smaller pipe inner diameter than the high-pressure gas pipe (11), and is connected to the high-pressure passage (38) so as to bypass the first on-off valve (35) 1st bypass piping
(18)と、 (18)
冷媒流れを許容又は遮断する第 2開閉弁 (36)を有し、前記利用側熱交換器 (41) と前記低圧ガス配管(12)とを接続する低圧通路 (39)と、  A low-pressure passage (39) having a second on-off valve (36) for allowing or blocking the refrigerant flow, and connecting the use-side heat exchanger (41) and the low-pressure gas pipe (12);
開度調節自在で且つ全開時の冷媒流量が前記第 2開閉弁 (36)よりも小さ!/、第 2 副制御弁(34)を有し、前記低圧ガス配管(12)よりも小径の管内径で形成され、前記 第 2開閉弁(36)をバイパスするように該低圧通路(39)に接続された第 2バイパス配管 Adjustable opening and flow rate of refrigerant when fully open is smaller than the second on-off valve (36)! / Has a second sub-control valve (34) and has a smaller diameter than the low-pressure gas pipe (12) A second bypass pipe formed with an inner diameter and connected to the low pressure passage (39) so as to bypass the second on-off valve (36)
(19)とを備える一方、 (19)
冷房運転から暖房運転へ切り換える場合、前記第 2開閉弁(36)及び前記第 2副 制御弁(34)を閉じた後に前記第 1副制御弁(33)を微開状態とし、その後、該第 1開 閉弁(35)を開いて前記高圧通路(38)を開通する一方、暖房運転から冷房運転へ切 り換える場合、該第 1開閉弁(35)及び前記第 1副制御弁(33)を閉じた後に該第 2副 制御弁(34)を微開状態とし、その後、該第 2開閉弁(36)を開いて前記低圧通路(39) を開通するように構成されていることを特徴とする空気調和装置。  When switching from the cooling operation to the heating operation, the first sub-control valve (33) is slightly opened after closing the second on-off valve (36) and the second sub-control valve (34), and then the first 1 When opening and closing the valve (35) and opening the high-pressure passage (38) while switching from heating operation to cooling operation, the first on-off valve (35) and the first sub-control valve (33) The second sub control valve (34) is slightly opened after closing, and then the second on-off valve (36) is opened to open the low pressure passage (39). Air conditioner.
請求項 2において、  In claim 2,
前記第 1及び第 2バイパス配管(18, 19)における前記第 1及び第 2副制御弁(33, 34)の下流側には、キヤビラリチューブ(37)が接続されていることを特徴とする空気調 和装置。  A capillary tube (37) is connected to the first and second bypass pipes (18, 19) downstream of the first and second sub control valves (33, 34). Air conditioning device.
請求項 2において、  In claim 2,
前記第 1及び第 2バイパス配管(18, 19)の下流側端部は、管内径が徐々に拡大 されたラッパ形状に形成され、  The downstream ends of the first and second bypass pipes (18, 19) are formed in a trumpet shape in which the pipe inner diameter is gradually enlarged,
前記高圧通路(38)及び低圧通路(39)における、前記第 1及び第 2バイパス配管( 18, 19)の下流側端部との接続位置よりも下流側は、該第 1及び第 2バイパス配管(18 , 19)から流出する冷媒の流れ方向に沿って直線状に延びていることを特徴とする空 気調和装置。  In the high-pressure passage (38) and the low-pressure passage (39), the first and second bypass pipes are located downstream of the connection positions with the downstream ends of the first and second bypass pipes (18, 19). An air conditioner that extends in a straight line along the flow direction of the refrigerant flowing out of (18, 19).
請求項 3において、  In claim 3,
前記第 1及び第 2バイパス配管(18, 19)における前記第 1及び第 2副制御弁(33, 34)の下流側には、キヤビラリチューブ(37)が接続されていることを特徴とする空気調 和装置。 The first and second sub control valves (33, 33) in the first and second bypass pipes (18, 19) 34) An air conditioner characterized in that a downstream tube (37) is connected to the downstream side.
請求項 3において、  In claim 3,
前記第 1及び第 2バイパス配管(18, 19)の下流側端部は、管内径が徐々に拡大 されたラッパ形状に形成され、  The downstream ends of the first and second bypass pipes (18, 19) are formed in a trumpet shape in which the pipe inner diameter is gradually enlarged,
前記高圧通路(38)及び低圧通路(39)における、前記第 1及び第 2バイパス配管( 18, 19)の下流側端部との接続位置よりも下流側は、該第 1及び第 2バイパス配管(18 , 19)から流出する冷媒の流れ方向に沿って直線状に延びていることを特徴とする空 気調和装置。  In the high-pressure passage (38) and the low-pressure passage (39), the first and second bypass pipes are located downstream of the connection positions with the downstream ends of the first and second bypass pipes (18, 19). An air conditioner that extends in a straight line along the flow direction of the refrigerant flowing out of (18, 19).
PCT/JP2007/070152 2006-10-17 2007-10-16 Air conditioner WO2008047784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-282274 2006-10-17
JP2006282274A JP2008101787A (en) 2006-10-17 2006-10-17 Air conditioner

Publications (1)

Publication Number Publication Date
WO2008047784A1 true WO2008047784A1 (en) 2008-04-24

Family

ID=39314012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070152 WO2008047784A1 (en) 2006-10-17 2007-10-16 Air conditioner

Country Status (2)

Country Link
JP (1) JP2008101787A (en)
WO (1) WO2008047784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363654A3 (en) * 2010-02-24 2014-12-03 Mitsubishi Heavy Industries Air conditioner
CN106152406A (en) * 2016-07-04 2016-11-23 珠海格力电器股份有限公司 A kind of air-conditioning system and the control method of cold and hot pattern switching thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293261A (en) * 1988-09-30 1990-04-04 Sanyo Electric Co Ltd Air conditioning device
JPH0355475A (en) * 1989-07-24 1991-03-11 Sanyo Electric Co Ltd Air conditioner
JPH03260561A (en) * 1990-03-09 1991-11-20 Hitachi Ltd Air conditioner
JPH07180927A (en) * 1994-07-25 1995-07-18 Sanyo Electric Co Ltd Multi-chamber type cooling and heating device
JPH0942804A (en) * 1995-07-25 1997-02-14 Mitsubishi Electric Corp Air conditioner
JP2004144428A (en) * 2002-10-25 2004-05-20 Denso Corp Refrigerating cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293261A (en) * 1988-09-30 1990-04-04 Sanyo Electric Co Ltd Air conditioning device
JPH0355475A (en) * 1989-07-24 1991-03-11 Sanyo Electric Co Ltd Air conditioner
JPH03260561A (en) * 1990-03-09 1991-11-20 Hitachi Ltd Air conditioner
JPH07180927A (en) * 1994-07-25 1995-07-18 Sanyo Electric Co Ltd Multi-chamber type cooling and heating device
JPH0942804A (en) * 1995-07-25 1997-02-14 Mitsubishi Electric Corp Air conditioner
JP2004144428A (en) * 2002-10-25 2004-05-20 Denso Corp Refrigerating cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363654A3 (en) * 2010-02-24 2014-12-03 Mitsubishi Heavy Industries Air conditioner
CN106152406A (en) * 2016-07-04 2016-11-23 珠海格力电器股份有限公司 A kind of air-conditioning system and the control method of cold and hot pattern switching thereof

Also Published As

Publication number Publication date
JP2008101787A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4254863B2 (en) Air conditioner
JP6081033B1 (en) Air conditioner
WO2016157519A1 (en) Air-conditioning device
KR100757442B1 (en) Air conditioner
JP5332093B2 (en) Refrigeration equipment
JP4553761B2 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
CN109791007B (en) Air conditioner
JP5875710B2 (en) Air conditioner
WO2008053802A1 (en) Air conditioning apparatus
JP7034272B2 (en) Refrigeration cycle device
KR100791930B1 (en) Outdoor unit for multi-type air conditioner
KR20080060756A (en) Multi-air conditioner for heating and cooling operations at the same time
JP3984250B2 (en) Multi-room air conditioner
WO2008047784A1 (en) Air conditioner
JP2005147440A (en) Multiroom-type air conditioner
KR102337394B1 (en) Air Conditioner
JP5217710B2 (en) Air conditioner
JP3835478B1 (en) Air conditioner
JP2022534229A (en) air conditioner
JP2008002740A (en) Air conditioner
WO2021065677A1 (en) Air conditioner
JPH04347466A (en) Air conditioner
JP2002340435A (en) Air conditioner
JP2723380B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829886

Country of ref document: EP

Kind code of ref document: A1