WO2018020621A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2018020621A1
WO2018020621A1 PCT/JP2016/072083 JP2016072083W WO2018020621A1 WO 2018020621 A1 WO2018020621 A1 WO 2018020621A1 JP 2016072083 W JP2016072083 W JP 2016072083W WO 2018020621 A1 WO2018020621 A1 WO 2018020621A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
cooling
heating
flow
Prior art date
Application number
PCT/JP2016/072083
Other languages
French (fr)
Japanese (ja)
Inventor
幸志 東
智一 川越
要平 馬場
森本 修
浩樹 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/072083 priority Critical patent/WO2018020621A1/en
Priority to GB1819447.2A priority patent/GB2567332B/en
Priority to JP2018530267A priority patent/JP6591071B2/en
Publication of WO2018020621A1 publication Critical patent/WO2018020621A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0311Pressure sensors near the expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the present invention relates to an air conditioner having a relay that distributes a refrigerant supplied from a heat source unit to a plurality of indoor units.
  • an air conditioner in which heating operation or cooling operation is individually performed in a plurality of indoor units, for example, heat, cold, or both heat and cold created in a heat source device are efficiently supplied to a plurality of loads.
  • Refrigerant circuit and structure Such an air conditioner is applied to, for example, a building multi-air conditioner.
  • a cooling operation or a heating operation is performed by circulating a refrigerant between an outdoor unit that is a heat source unit arranged outdoors and an indoor unit arranged indoors. Is executed.
  • the air-conditioning target space is cooled or heated by air cooled by heat absorbed by the refrigerant or air heated by heat released from the refrigerant.
  • an HFC refrigerant that is, a hydrofluorocarbon refrigerant
  • An air conditioner using a natural refrigerant such as carbon dioxide, that is, CO 2 has also been proposed.
  • the air conditioner described in Patent Literature 1 includes a first branch pipe configured from a first connection pipe and a three-way switching valve that is switchably connected to the first connection pipe or the second connection pipe.
  • a second branch pipe that connects the second connection pipe and the second connection pipe on the indoor unit side via six check valves;
  • the air conditioner described in Patent Document 1 switches a refrigerant flowing into an indoor unit that is in a heating operation and a refrigerant flowing in from an indoor unit that is in a cooling operation into a three-way switching valve of a first branching section. Is going on.
  • each check valve constituting the second branch portion allows the refrigerant to flow in one direction in accordance with the switching of the refrigerant at the first branch portion. Therefore, when the indoor unit performs a cooling operation, the first port of the connection port of the three-way switching valve is closed, and the second port and the third port are opened. In addition, when the indoor unit performs a heating operation, the second port of the connection port is closed, and the first port and the third port are opened.
  • the refrigerant When the indoor unit performs a cooling operation, the refrigerant has a low pressure in the first connection pipe and a high pressure in the second connection pipe. Therefore, the refrigerant is high in the connection pipe on the first port side of the connection port of the three-way switching valve.
  • the connection piping on the mouth side is in a low pressure state
  • the connection piping on the third port side is in a low pressure state.
  • the refrigerant is controlled by the superheat amount on the outlet side of the indoor heat exchanger, and the refrigerant in the low-pressure gas state flows through the first connection pipe on the indoor unit side.
  • the refrigerant when the indoor unit is in a heating operation, the refrigerant has a low pressure in the first connection pipe and a high pressure in the second connection pipe. Therefore, the refrigerant is high in the connection pipe on the first port side of the connection port of the three-way switching valve.
  • the connection piping on the mouth side is in a low pressure state
  • the connection piping on the third port side is in a high pressure state.
  • the refrigerant is controlled by the subcooling amount on the outlet side of the indoor heat exchanger, and the refrigerant in the high-temperature and high-pressure gas state flows through the first connection pipe on the indoor unit side.
  • coolant of a high temperature / high pressure liquid state exists in the connection piping from an indoor side heat exchanger and an indoor side heat exchanger to a 1st flow control apparatus.
  • the high-temperature high-pressure gas refrigerant and the high-temperature high-pressure liquid refrigerant that have flowed during the heating pass through the three-way switching valve and are in a low-pressure state. It flows into the connecting pipe. At that time, in the three-way switching valve, refrigerant flow noise is generated due to the balance between the high pressure and the low pressure of the refrigerant passing through the three-way switching valve. In particular, the flow noise of the high-temperature high-pressure liquid refrigerant is increased.
  • an air conditioner using a solenoid valve particularly an electromagnetic on-off valve, instead of the three-way switching valve.
  • the second electromagnetic valve is used for heating
  • the first electromagnetic valve and the third electromagnetic valve with an orifice function added are used for cooling
  • the refrigerant is allowed to flow stepwise through the first solenoid valve and the third solenoid valve.
  • the flow noise of the refrigerant is reduced by reducing the opening diameter of the flow control device, performing pulse control of the flow control device, and reducing the opening diameter of the third electromagnetic valve.
  • an air conditioner that uses a solenoid valve, particularly an electromagnetic on-off valve, and is compact.
  • the second electromagnetic valve is used for heating
  • the first electromagnetic valve, the third electromagnetic valve, and the orifice are used for cooling.
  • the orifice attempts to equalize the high-pressure side pipe and the low-pressure side pipe by bypassing the high pressure and the low pressure, thereby reducing the flow noise of the refrigerant. That is, in this air conditioner, when switching from the heating operation to the cooling operation, the refrigerant is allowed to flow stepwise through the orifice, the third electromagnetic valve, and the first electromagnetic valve. Thereby, it is trying to reduce the flow noise of the high-temperature high-pressure liquid refrigerant.
  • the refrigerant flows from the heat source unit to the relay unit, then flows out to the liquid outflow side of the gas-liquid separator and passes through the bypass circuit. Return to the heat source machine. At this time, after the refrigerant flows out to the liquid outflow side of the gas-liquid separator, the first heat exchange unit, the flow rate control device, the second heat exchange unit, the flow rate control device, the second heat exchange unit, the first It flows in the order of the heat exchange part.
  • the present invention has been made in order to solve the above-described problems, and is an air conditioner that suppresses the generation of flow noise in the flow rate control device on the liquid outflow side of the gas-liquid separator during the defrosting operation.
  • a device is provided.
  • An air conditioner includes a heat source device having a compressor, a flow path switching valve, and a heat source side heat exchanger, and a first flow rate control device and an indoor side heat exchanger, respectively, for cooling operation or heating operation.
  • a heat source device having a compressor, a flow path switching valve, and a heat source side heat exchanger, and a first flow rate control device and an indoor side heat exchanger, respectively, for cooling operation or heating operation.
  • a relay that distributes the refrigerant to be delivered to a plurality of indoor units, and a controller that controls the operation of the relay, and the relay is in a state of the refrigerant flowing between the liquid branch pipe and the second connection pipe
  • a third flow control device that adjusts the flow rate of the refrigerant, and one cooling electromagnetic that is connected to the gas branch pipe, the other connected to the first connection pipe, opened during the cooling operation, and closed during the heating operation.
  • a heating solenoid valve one of which is connected to the gas branch pipe and one of which is connected to the gas outflow side of the gas-liquid separator, opened during heating operation, and closed during cooling operation.
  • a judgment means for judging whether or not the refrigerant flowing through the second flow control device or the third flow control device generates a flow noise, and the second flow control device or the second by the judgment means.
  • a timing control means for controlling the valve control means so as to sequentially open the heating solenoid valve and the cooling solenoid valve when it is determined that the refrigerant flowing through the flow control device 3 generates a flow noise.
  • the heating solenoid valve and the cooling solenoid valve are sequentially opened. Is done. Thereby, since the amount of the refrigerant flowing through the second flow control device or the third flow control device is reduced, the refrigerant flowing through the second flow control device or the third flow control device generates a flow sound. Is suppressed. Therefore, the quietness of the air conditioner is improved.
  • FIG. 1 is a circuit diagram showing an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air conditioner 100 will be described with reference to FIG.
  • the air conditioning apparatus 100 includes a heat source unit A, a plurality of indoor units B, C, and D, a relay unit E, and a control unit 70.
  • the number of the heat source units A may be two or more. Further, the number of indoor units may be three or more.
  • the air conditioner 100 is configured by connecting a heat source unit A, indoor units B, C, D, and a relay unit E.
  • the heat source unit A has a function of supplying hot or cold heat to the three indoor units B, C, and D.
  • the three indoor units B, C, and D are connected in parallel to each other and have the same configuration.
  • the indoor units B, C, and D have a function of cooling or heating an air-conditioning target space such as a room by using the heat or cold supplied from the heat source device A.
  • the relay unit E is interposed between the heat source unit A and the indoor units B, C, D, and has a function of switching the flow of refrigerant supplied from the heat source unit A in response to requests from the indoor units B, C, D. Have.
  • the air conditioner 100 also includes a liquid state detection unit 81 that detects the state of the refrigerant, and a gas state detection unit 80.
  • the liquid state detection unit 81 includes, for example, a liquid outflow pressure detection sensor 25 and a downstream liquid outflow pressure detection sensor 26.
  • the gas state detection unit 80 includes a merged pressure detection sensor 56.
  • the gas state detection unit 80 includes a gas pipe temperature detection sensor 53, a liquid pipe temperature detection sensor 54, a liquid outflow pressure detection sensor 25, a downstream side liquid outflow pressure detection sensor 26, a merging pressure detection sensor 56, and a discharge pressure detection sensor 18. You may have.
  • the heat source machine A includes a variable capacity compressor 1, a flow path switching valve 2 that switches a refrigerant flow direction in the heat source machine A, a heat source side heat exchange unit 3 that functions as an evaporator or a condenser, and a flow path switching valve 2.
  • the accumulator 4 connected to the suction side of the compressor 1 and the heat source side flow path adjustment unit 40 that restricts the flow direction of the refrigerant are provided.
  • the heat source unit A has a function of supplying hot or cold to the indoor units B, C, and D.
  • the flow path switching valve 2 is illustrated as being a four-way valve, it may be configured by combining a two-way valve or a three-way valve.
  • the heat source side heat exchange unit 3 includes a first heat source side heat exchanger 41 and a second heat source side heat exchanger 42, a heat source side bypass passage 43, a first electromagnetic on-off valve 44, a second electromagnetic on-off valve 45, A third electromagnetic on-off valve 46, a fourth electromagnetic on-off valve 47, a fifth electromagnetic on-off valve 48, and a heat source side blower 20 are provided.
  • the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42 have the same heat transfer area and are connected in parallel to each other.
  • the heat source side bypass passage 43 is connected in parallel to the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42.
  • the refrigerant flowing through the heat source side bypass passage 43 does not pass through the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42 and is not heat-exchanged.
  • the first electromagnetic on-off valve 44 is provided on one end side of the first heat source side heat exchanger 41.
  • the second electromagnetic opening / closing valve 45 is provided on the other end side of the first heat source side heat exchanger 41.
  • the third electromagnetic opening / closing valve 46 is provided on one end side of the second heat source side heat exchanger 42.
  • the fourth electromagnetic opening / closing valve 47 is provided on the other end side of the second heat source side heat exchanger 42.
  • the fifth electromagnetic opening / closing valve 48 is provided in the heat source side bypass passage 43.
  • the heat source side flow path adjustment unit 40 includes a third check valve 32, a fourth check valve 33, a fifth check valve 34, and a sixth check valve 35.
  • the third check valve 32 is provided in a pipe that connects the heat source side heat exchange unit 3 and the second connection pipe 7, and allows the refrigerant to flow from the heat source side heat exchange unit 3 to the second connection pipe 7. Allow.
  • the fourth check valve 33 is provided in a pipe that connects the flow path switching valve 2 of the heat source apparatus A and the first connection pipe 6, and the refrigerant that flows from the first connection pipe 6 to the flow path switching valve 2. Allow distribution.
  • the fifth check valve 34 is provided in a pipe connecting the flow path switching valve 2 of the heat source apparatus A and the second connection pipe 7, and the refrigerant flowing from the flow path switching valve 2 to the second connection pipe 7 is provided. Allow distribution.
  • the sixth check valve 35 is provided in a pipe connecting the heat source side heat exchange unit 3 and the first connection pipe 6, and allows the refrigerant to flow from the first connection pipe 6 toward the heat source side heat exchange unit 3. Allow.
  • the heat source machine A is provided with a discharge pressure detection sensor 18.
  • the discharge pressure detection sensor 18 is provided in a pipe connecting the flow path switching valve 2 and the discharge side of the compressor 1, and detects the discharge pressure of the compressor 1.
  • the heat source side blower 20 varies the amount of air blown to the heat source side heat exchange unit 3 and controls the heat exchange capacity.
  • the heat source machine A performs a defrosting operation when frost adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 during the heating operation.
  • the indoor units B, C, and D are provided with an indoor heat exchanger 5 and a first flow rate control device 9 that function as a condenser or an evaporator, and air conditioning such as indoors by hot or cold supplied from the heat source unit A. It has a function of cooling or heating the target space.
  • the first flow rate control device 9 is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling.
  • the 1st flow control apparatus 9 is controlled by the subcooling amount by the side of the exit of the indoor side heat exchanger 5 at the time of heating.
  • the indoor units B, C, and D are provided with a gas pipe temperature detection sensor 53 and a liquid pipe temperature detection sensor 54.
  • the gas pipe temperature detection sensor 53 is provided between the indoor heat exchanger 5 and the relay E, and is connected to the gas branch pipes 6b, 6c, and 6d that connect the indoor heat exchanger 5 and the relay E.
  • the temperature of the circulating refrigerant is detected.
  • the liquid pipe temperature detection sensor 54 is provided between the indoor heat exchanger 5 and the first flow control device 9, and is a liquid that connects the indoor heat exchanger 5 and the first flow control device 9. The temperature of the refrigerant flowing through the branch pipes 7b, 7c, 7d is detected.
  • the relay machine E includes a first branch unit 10, a second flow rate control device 13, a second branch unit 11, a gas-liquid separation device 12, a heat exchange unit 8, and a third flow rate control device 15.
  • the relay unit E is interposed between the heat source unit A and the indoor units B, C, D, and switches the flow of the refrigerant supplied from the heat source unit A in response to a request from the indoor units B, C, D. It has a function of distributing the refrigerant supplied from the machine A to the plurality of indoor units B, C, and D.
  • the flow path switching valve 2 of the heat source device A and the relay device E are connected by the first connection pipe 6.
  • the indoor side heat exchanger 5 of the indoor units B, C, and D and the relay unit E are connected by gas branch pipes 6b, 6c, and 6d on the indoor units B, C, and D sides corresponding to the first connection pipe 6. ing.
  • the heat source side heat exchange unit 3 of the heat source machine A and the relay machine E are connected by a second connection pipe 7 having a diameter smaller than that of the first connection pipe 6.
  • the indoor side heat exchanger 5 and the relay unit E of the indoor units B, C, and D are connected via the first connection pipe 6 and the indoor units B and C corresponding to the second connection pipe 7. , D side liquid branch pipes 7b, 7c and 7d.
  • the first branching unit 10 includes a first cooling electromagnetic valve 31a, a second cooling electromagnetic valve 31b, and a heating electromagnetic valve 30.
  • the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are connected in parallel with each other, one of which is connected to the gas branch pipes 6b, 6c, 6d, and the other of which is the first. It is connected to the connecting pipe 6 and is opened during cooling operation and closed during heating operation.
  • the first cooling electromagnetic valve 31a, the second cooling electromagnetic valve 31b, and the heating electromagnetic valve 30 are not limited to valve types, and may be, for example, an electric valve.
  • one of the heating solenoid valves 30 is connected to the gas branch pipes 6b, 6c and 6d, and the other is connected to the second connection pipe 7, and is opened during the heating operation and closed during the cooling operation.
  • the first cooling electromagnetic valve 31 a and the second cooling electromagnetic valve 31 b connected to the indoor units B, C, and D may be collectively referred to as a cooling electromagnetic valve 31.
  • the number of cooling solenoid valves 31 is not limited to two, and may be three or more. Further, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b may have the same or different Cv values. Further, the cooling electromagnetic valves 31 connected to the indoor units B, C, and D may have the same or different Cv values.
  • One of the second branch portions 11 is connected to the liquid branch pipes 7b, 7c, and 7d, and the other is connected to the first connection pipe 6 and the second connection pipe 7, and the flow direction of the refrigerant during the cooling operation is The flow direction of the refrigerant during the heating operation is different.
  • the second branch portion 11 includes first check valves 50b, 50c, and 50d and second check valves 52b, 52c, and 52d.
  • the first check valves 50b, 50c, 50d are provided in the number corresponding to the number of indoor units B, C, D, respectively.
  • the first check valves 50b, 50c, 50d are provided in the liquid branch pipes 7b, 7c, 7d, respectively, and allow the refrigerant to flow from the second connection pipe 7 to the liquid branch pipes 7b, 7c, 7d. To do.
  • the number of second check valves 52b, 52c, and 52d is provided in a number corresponding to the number of indoor units B, C, and D, respectively.
  • the second check valves 52b, 52c, 52d are connected in parallel to the first check valves 50b, 50c, 50d in the liquid branch pipes 7b, 7c, 7d, respectively, and the liquid branch pipes 7b, 7c, The refrigerant is allowed to flow from 7d toward the second connection pipe 7.
  • the gas-liquid separator 12 separates the refrigerant in the gas state and the refrigerant in the liquid state, the inflow side is connected to the second connection pipe 7, the gas outflow side is connected to the first branch portion 10, and the liquid The outflow side is connected to the second branch portion 11.
  • the heat exchange unit 8 includes a first heat exchange unit 19 and a second heat exchange unit 16.
  • the second flow rate control device 13 is configured by, for example, an electric expansion valve that can be freely opened and closed.
  • the second flow control device 13 is closed during the heating operation and opened during the cooling operation.
  • the gas-liquid separator 12 and the second branching unit 11 are connected via a first heat exchange unit 19, a second flow rate control device 13, and a second heat exchange unit 16.
  • the second branch portion 11 and the first connection pipe 6 are connected by a first bypass pipe 14.
  • the third flow rate control device 15 is provided in the first bypass pipe 14 on the downstream side of the second flow rate control device 13, and is configured by, for example, an electric expansion valve that can be freely opened and closed.
  • the 2nd branch part 11 and the 1st connection piping 6 are connected via the 3rd flow control device 15, the 2nd heat exchange part 16, and the 1st heat exchange part 19.
  • the first heat exchange unit 19 heats the upstream side of the second flow rate control device 13 in the second connection pipe 7 and the downstream side of the second heat exchange unit 16 in the first bypass pipe 14.
  • the second heat exchange unit 16 heats the downstream side of the second flow rate control device 13 in the second connection pipe 7 and the downstream side of the third flow rate control device 15 in the first bypass pipe 14.
  • the gas-liquid separator 12 has the gas outflow side connected to the heating solenoid valve 30 and the liquid outflow side connected to the liquid branch pipes 7 b, 7 c, 7 d and the first connection pipe 6.
  • the downstream side of the first check valves 50b, 50c, 50d in the liquid branch pipes 7b, 7c, 7d, the downstream side of the second flow rate control device 13 in the second connection pipe 7, and the second The upstream side of the heat exchange unit 16 is connected by a second bypass pipe 51. Then, the pipes connected to the liquid branch pipes 7 b, 7 c, 7 d in the second bypass pipe 51 and the pipes connected to the second connection pipe 7 in the second bypass pipe 51 merge on the way.
  • the second check valves 52 b, 52 c and 52 d are connected to the liquid branch pipes 7 b, 7 c and 7 d in the second bypass pipe 51 and the second connection pipe 7 in the second bypass pipe 51. It is provided on the upstream side from the portion where the pipe connected to the pipe joins.
  • the flow path from the second connection pipe 7 to the first flow control device 9 via the liquid branch pipes 7b, 7c, 7d provided with the first check valves 50b, 50c, 50d is the first flow path.
  • the refrigerant flow path is configured and the second flow rate from the first flow rate control device 9 through the second bypass pipe 51 provided with the liquid branch pipes 7b, 7c, 7d and the second check valves 52b, 52c, 52d.
  • the flow path leading to the connection pipe 7 constitutes the second refrigerant flow path.
  • the relay E is provided with a liquid outflow pressure detection sensor 25, a downstream liquid outflow pressure detection sensor 26, and a merging pressure detection sensor 56.
  • the liquid outflow pressure detection sensor 25 is provided between the first heat exchange unit 19 and the second flow control device 13 in the second connection pipe 7, and is a refrigerant on the liquid outflow side of the gas-liquid separation device 12. The pressure is detected.
  • the downstream liquid outflow pressure detection sensor 26 is provided between the second flow rate control device 13 and the second heat exchange unit 16 in the second connection pipe 7, and the second flow rate control device 13 and the second flow rate control device 13. The pressure of the refrigerant
  • the downstream liquid outflow pressure detection sensor 26 detects the pressure of the refrigerant flowing through the portion where the plurality of liquid branch pipes 7b, 7c, 7d join.
  • the merge pressure detection sensor 56 is provided in a portion where the first connection pipe 6 and the first bypass pipe 14 are connected, and the liquid branch pipes 7b, 7c, 7d and the first connection pipe 6 are connected. The pressure of the refrigerant flowing through the part is detected.
  • refrigerant In the air conditioner 100, the inside of a pipe is filled with a refrigerant.
  • the refrigerant include natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, CFC-free refrigerants that do not contain chlorine such as HFC410A, HFC407C, and HFC404A, and CFC-based refrigerants such as R22 and R134a that are used in existing products. Etc. are used.
  • HFC407C is a non-azeotropic refrigerant mixture in which R32, R125, and R134a of HFC are mixed at a ratio of 23 wt%, 25 wt%, and 52 wt%, respectively.
  • the inside of the piping of the air conditioning apparatus 100 may be filled with a heat medium instead of the refrigerant.
  • the heat medium is, for example, water, brine or the like.
  • the control unit 70 controls the entire system of the air conditioning apparatus 100.
  • the control unit 70 includes a gas pipe temperature detection sensor 53, a liquid pipe temperature detection sensor 54, a liquid outflow pressure detection sensor 25, a downstream side liquid outflow pressure detection sensor 26, a merging pressure detection sensor 56, and a discharge pressure detection sensor. 18, based on the detection information received from 18 and an instruction from a remote controller (not shown), the driving frequency of the compressor 1, the heat source side blower 20 and the blower (not shown) provided in the indoor side heat exchanger 5.
  • the control unit 70 may be mounted on any one of the heat source unit A, the indoor units B, C, D, and the relay unit E, or may be mounted on all. Further, the control unit 70 may be mounted separately from the heat source unit A, the indoor units B, C, D, and the relay unit E. Moreover, when the air conditioning apparatus 100 has the some control part 70, it mutually connects so that communication is possible by radio
  • FIG. 2 is a block diagram showing the control unit 70 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the control unit 70 includes valve control means 71, determination means 72, and timing control means 73.
  • the valve control means 71 switches the flow path switching valve 2 and closes the heating electromagnetic valve 30, and the second flow control device 13 and the third flow rate The control device 15 is opened.
  • the valve control means 71 has a function of making the opening degree of the first flow control device 9 constant when the indoor units B, C, and D are switched from the heating operation to the cooling operation.
  • the valve control means 71 opens one of the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b.
  • the determination unit 72 is configured to use the second flow rate control device 13 and the third flow rate control device based on the state of the refrigerant detected by the liquid state detection unit 81 when the refrigerant flows through the second flow rate control device 13. It is determined whether or not the refrigerant flowing through 15 generates a flow noise. Specifically, the determination means 72 uses the refrigerant pressure detected by the liquid outflow pressure detection sensor 25 and the downstream liquid outflow pressure detection sensor 26 so that the pressure difference before and after the second flow control device 13 is equal to or greater than a threshold value. In this case, it is determined that the flow sound of the refrigerant is generated. Note that the determination unit 72 may determine whether or not the refrigerant flowing through one of the second flow control device 13 and the third flow control device 15 generates a flow noise.
  • the determination unit 72 when the refrigerant flows through the cooling electromagnetic valve 31, the determination unit 72 generates a flow sound of the refrigerant flowing through the heating electromagnetic valve 30 based on the state of the refrigerant detected by the gas state detection unit 80. Whether or not. In addition, when the refrigerant flows through the cooling electromagnetic valve 31, the determination unit 72 generates a flow sound of the refrigerant flowing through the cooling electromagnetic valve 31 based on the state of the refrigerant detected by the gas state detection unit 80. Whether or not. Specifically, the determination means 72 uses the refrigerant pressure detected by the liquid outflow pressure detection sensor 25 and the combined pressure detection sensor 56 to determine whether the pressure difference before and after the heating solenoid valve 30 or the cooling solenoid valve 31 is a threshold value.
  • the present invention is not limited to this, and is described below. As will be described, information from other detection means may be used.
  • the heating solenoid valve 30 or the cooling solenoid valve 31 may be determined by predicting the differential pressure value at the inlet / outlet of the heating solenoid valve 30 or the cooling solenoid valve 31 based on information from the merging pressure detection sensor 56 and the gas pipe temperature detection sensor 53. Further, the state of the refrigerant flowing into the cooling electromagnetic valve 31 may be determined from the outlet subcool value of the indoor heat exchanger 5 performing the heating operation before switching to the cooling operation. Good.
  • the state of the refrigerant flowing into the heating electromagnetic valve 30 or the cooling electromagnetic valve 31 may be determined by predicting the refrigerant state of the indoor unit that has been stopped from the elapsed time since the heating was stopped. Furthermore, the state of the refrigerant flowing into the fourth flow control device 55 may be determined by combining these. The determination of the state of the refrigerant may be replaced by a thermistor that detects the temperature without using the merged pressure detection sensor 56.
  • the timing control means 73 When it is determined by the determination means 72 that the refrigerant flowing through the second flow control device 13 and the third flow control device 15 generates a flow noise, the timing control means 73 has the heating solenoid valve 30 and the cooling solenoid valve 31.
  • the valve control means 71 is controlled so as to open sequentially.
  • the timing control unit 73 opens the heating electromagnetic valve 30 when the determination unit 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 does not generate a flow noise, and when the time threshold has elapsed, The valve control means 71 is controlled to open the electromagnetic valve 31 for use.
  • the timing control means 73 opens the heating solenoid valve 30 when the judgment means 72 determines that the refrigerant flowing through the heating solenoid valve 30 does not generate a flow noise, and the first threshold is reached when the time threshold value has elapsed.
  • the valve control means 71 may be controlled so that both the cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are opened.
  • the timing control unit 73 determines that the refrigerant flowing through one of the second flow rate control device 13 and the third flow rate control device 15 generates a flow noise, and the heating solenoid valve 30 and the cooling flow rate control unit 73.
  • the valve control means 71 may be controlled so that the electromagnetic valves 31 are sequentially opened.
  • the timing control unit 73 closes the heating electromagnetic valve 30 and opens the cooling electromagnetic valve 31 when the determination unit 72 determines that the refrigerant flowing in the heating electromagnetic valve 30 generates a flow noise.
  • the valve control means 71 is controlled so as to open the heating solenoid valve 30.
  • the timing control means 73 sequentially opens the heating solenoid valves 30 connected to the gas branch pipes 6b, 6c, 6d, for example.
  • the timing control means 73 may open one of the heating solenoid valves 30 that are closed, and then open two of the heating solenoid valves 30 that are closed. Two of the heating solenoid valves 30 being opened may be opened, and then one of the heating solenoid valves 30 being closed may be opened, or of the heating solenoid valves 30 being closed One of the heating solenoid valves 30 may be opened, and then one of the closed heating solenoid valves 30 may be opened, and then one of the closed heating solenoid valves 30 may be opened.
  • the timing control means 73 opens the heating electromagnetic valve 30 and closes the cooling electromagnetic valve 31 when the determination means 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow noise.
  • the valve control means 71 is controlled so as to open the cooling electromagnetic valve 31.
  • the timing control means 73 sequentially opens the cooling electromagnetic valves 31 connected to the gas branch pipes 6b, 6c, 6d, for example.
  • the timing control means 73 may open one of the closed cooling electromagnetic valves 31 and then open all of the remaining cooling electromagnetic valves 31.
  • One of the cooling electromagnetic valves 31 is opened, then one of the closed cooling electromagnetic valves 31 is opened, and then all of the remaining cooling electromagnetic valves 31 are closed. May be opened, or two of the closed cooling electromagnetic valves 31 may be opened, and then all the remaining of the closed cooling electromagnetic valves 31 may be opened.
  • the timing control means 73 opens the heating electromagnetic valve 30 and the cooling electromagnetic valve 31 when the determination means 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow noise.
  • the valve control means 71 is controlled so as to open the cooling electromagnetic valve 31.
  • the timing control means 73 opens the heating electromagnetic valve 30 and opens the cooling electromagnetic valve 31 when the determination means 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow noise.
  • the valve control means 71 may be controlled to open the cooling electromagnetic valve 31. Further, the timing control means 73 sequentially opens the cooling electromagnetic valves 31 connected to the gas branch pipes 6b, 6c, 6d, for example. In this case, the timing control means 73 may open one of the closed cooling electromagnetic valves 31 and then open all of the remaining cooling electromagnetic valves 31. One of the cooling electromagnetic valves 31 is opened, then one of the closed cooling electromagnetic valves 31 is opened, and then all of the remaining cooling electromagnetic valves 31 are closed. May be opened, or two of the closed cooling electromagnetic valves 31 may be opened, and then all the remaining of the closed cooling electromagnetic valves 31 may be opened.
  • the timing control means 73 controls the valve control means 71 to open one of the plurality of cooling electromagnetic valves 31 when the indoor units B, C, D are switched from the heating operation to the cooling operation, Further, when it is determined by the determination means 72 that the flow noise of the refrigerant is generated, the valve control means 71 is controlled so as to open one of the closed electromagnetic valves 31 for cooling. Further, the timing control means 73 is configured to open one of the closed cooling electromagnetic valves 31 when the opening time threshold has elapsed after one of the closed cooling electromagnetic valves 31 is opened. The control means 71 may be controlled. For example, the timing control means 73 is configured to open the second cooling electromagnetic valve 31b when the opening time threshold has elapsed since the opening of the first cooling electromagnetic valve 31a by the valve control means 71. 71 is controlled.
  • the valve control means 71 may open any of the cooling electromagnetic valves 31.
  • the timing control means 73 may control the valve control means 71 so as to open from the cooling electromagnetic valve 31 connected to the indoor unit B with a young address, for example, and the order of the cooling electromagnetic valves 31 to be opened. Does not matter.
  • the timing control unit 73 sets the second cooling electromagnetic valve 31b connected to the indoor unit B.
  • the valve control means 71 may be controlled so as to open the valve, the valve control means 71 may be controlled so as to open the first cooling electromagnetic valve 31a connected to the indoor unit C, or the indoor unit C
  • the valve control means 71 may be controlled to open the second cooling electromagnetic valve 31b connected to the. That is, the timing control means 73 not only controls the valve control means 71 to open the cooling electromagnetic valve 31 connected to the indoor unit B to which the cooling electromagnetic valve 31 connected to the valve control means 71 is connected.
  • the valve control means 71 may be controlled to open the cooling electromagnetic valve 31 connected to the other indoor unit C.
  • the first cooling electromagnetic valve 31a connected to the indoor unit B with the younger address is opened, Thereafter, the second cooling electromagnetic valve 31b connected to the indoor unit B is opened.
  • the second cooling solenoid valve 31b is opened first.
  • the second cooling electromagnetic valve 31b having the smallest Cv value is opened.
  • control unit 70 causes the refrigerant to flow through the indoor units B, C, and D when there is a possibility that the flow noise of the refrigerant flowing through the heating solenoid valve 30 or the cooling solenoid valve 31 is generated during the defrosting operation.
  • the first flow control device 9 may be controlled. Thereby, since the quantity of the refrigerant
  • the air conditioner 100 has a cooling only operation, a heating only operation, a cooling main operation, a heating main operation, and a defrosting operation as operation modes.
  • the all-cooling operation is a mode in which all of the indoor units B, C, and D perform the cooling operation.
  • the all heating operation is a mode in which all of the indoor units B, C, and D perform the heating operation.
  • the cooling main operation is a mode in which the capacity of the cooling operation is larger than the capacity of the heating operation among the simultaneous cooling and heating operations.
  • the heating main operation is a mode in which the heating operation capacity is larger than the cooling operation capacity in the simultaneous cooling and heating operation.
  • the defrosting operation is the first heat source when frost adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 when the all heating operation or the heating main operation is performed. In this mode, frost attached to the side heat exchanger 41 or the second heat source side heat exchanger 42 is removed.
  • FIG. 3 is a circuit diagram showing a state during the cooling only operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the cooling only operation will be described.
  • the air conditioner 100 all of the indoor units B, C, and D are performing the cooling operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2 and the air blown by the heat source-side blower 20 having a variable blowing amount in the heat source-side heat exchange unit 3. Heat exchanged and condensed.
  • the refrigerant flows in the order of the third check valve 32, the second connection pipe 7, the gas-liquid separation device 12, and the second flow rate control device 13, and further the second branch portion 11, the liquid branch pipe. Passes 7b, 7c, 7d and flows into indoor units B, C, D.
  • the refrigerant flowing into the indoor units B, C, and D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount on the outlet side of the indoor heat exchanger 5.
  • the decompressed refrigerant flows into the indoor heat exchanger 5 and exchanges heat with indoor air in the indoor heat exchanger 5 to evaporate.
  • the room is cooled.
  • the refrigerant in the gas state includes the gas branch pipes 6b, 6c and 6d, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b of the first branching section 10, and the first connection piping. 6, sucked into the compressor 1 through the fourth check valve 33, the flow path switching valve 2 of the heat source device A, and the accumulator 4.
  • part of the refrigerant that has passed through the second flow rate control device 13 enters the first bypass pipe 14. Then, after the refrigerant is depressurized to a low pressure by the third flow control device 15, the refrigerant branches to the refrigerant that has passed through the second flow control device 13 in the second heat exchange unit 16, that is, the first bypass pipe 14. Heat is exchanged with the previous refrigerant to evaporate. Further, the first heat exchange unit 19 evaporates by exchanging heat with the refrigerant before flowing into the second flow rate control device 13. The evaporated refrigerant flows into the first connection pipe 6 and the fourth check valve 33 and is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
  • the control unit 70 sets the capacity of the variable capacity compressor 1 and the heat source side so that the evaporation temperatures of the indoor units B, C, and D and the condensation temperature of the heat source side heat exchange unit 3 become predetermined target temperatures.
  • the air volume of the blower 20 is adjusted. For this reason, the target cooling capacity can be obtained in each of the indoor units B, C, and D.
  • the condensation temperature of the heat source side heat exchange unit 3 is obtained as the saturation temperature of the pressure detected by the discharge pressure detection sensor 18.
  • FIG. 4 is a circuit diagram showing a state during the heating only operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the all heating operation will be described.
  • the air conditioner 100 all of the indoor units B, C, and D perform the heating operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2, passes through the fifth check valve 34, the second connection pipe 7, the gas-liquid separator 12,
  • the heating solenoid valve 30 of the first branching section 10 and the gas branch pipes 6b, 6c, and 6d are passed through in this order and flow into the indoor units B, C, and D.
  • the refrigerant that has flowed into the indoor units B, C, and D is condensed and liquefied by exchanging heat with the indoor air. At that time, the room is heated. And the refrigerant
  • FIG. 1st flow control apparatus 9 controlled by the subcool amount of the exit side of each indoor side heat exchanger 5.
  • the refrigerant that has passed through the first flow control device 9 flows into the second branch portion 11 from the liquid branch pipes 7b, 7c, 7d, and merges after passing through the second check valves 52b, 52c, 52d.
  • the refrigerant merged at the second branch portion 11 is further guided between the second flow control device 13 and the second heat exchange portion 16 of the second connection pipe 7, and passes through the third flow control device 15. Pass through. Further, the refrigerant is depressurized to a low-pressure gas-liquid two-phase by the first flow control device 9 and the third flow control device 15.
  • both heating solenoid valves 30 are opened.
  • both the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are closed.
  • the first connection pipe 6 is at a low pressure and the second connection pipe 7 is at a high pressure, so that the refrigerant flows through the fifth check valve 34 and the sixth check valve 35.
  • the control unit 70 sets the capacity of the variable capacity compressor 1 and the heat source side so that the condensation temperatures of the indoor units B, C, and D and the evaporation temperature of the heat source side heat exchange unit 3 become predetermined target temperatures. The air volume of the blower 20 is adjusted. For this reason, the target heating capacity can be obtained in each of the indoor units B, C, and D.
  • FIG. 5 is a circuit diagram illustrating a state during the cooling main operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the cooling main operation will be described.
  • the air conditioner 100 there is a cooling request from the indoor units B and C, and a heating request from the indoor unit D.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchange unit 3 through the flow path switching valve 2 and is blown by the heat source side blower 20 having a variable blowing amount. Heat exchange with air results in a two-phase high temperature and high pressure state.
  • control part 70 adjusts the capacity
  • the control unit 70 also includes a first electromagnetic open / close valve 44, a second electromagnetic open / close valve 45, and a third electromagnetic open / close valve at both ends of the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42.
  • the heat transfer area is adjusted by opening and closing the valve 46 and the fourth electromagnetic opening / closing valve 47.
  • control unit 70 opens and closes the fifth electromagnetic opening / closing valve 48 of the heat source side bypass passage 43 to flow the refrigerant flowing through the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. Adjust. Thereby, arbitrary heat exchange amount is obtained in the heat source side heat exchange unit 3, and in each of the indoor units B, C, D, a target heating capacity or cooling capacity can be obtained.
  • the two-phase high-temperature and high-pressure refrigerant passes through the third check valve 32 and the second connection pipe 7 and is sent to the gas-liquid separator 12 of the relay machine E, where it is separated into a gas refrigerant and a liquid refrigerant. .
  • the gas refrigerant separated by the gas-liquid separator 12 passes through the heating solenoid valve 30 of the first branch portion 10 and the gas branch pipe 6d in this order, and flows into the indoor unit D to be heated, so that the indoor heat Heat is exchanged with room air in the exchanger 5 to be condensed and liquefied. At that time, the room is heated by the indoor unit D.
  • the refrigerant that has flowed out of the indoor heat exchanger 5 passes through the first flow rate control device 9 controlled by the subcooling amount on the outlet side of the indoor heat exchanger 5 of the indoor unit D, and is reduced in pressure to a second level. Flows into the branching section 11 of the. This refrigerant flows through the second bypass pipe 51 including the second check valve 52d to the downstream side of the second flow control device 13 of the second connection pipe 7.
  • the liquid refrigerant separated by the gas-liquid separation device 12 passes through the second flow rate control device 13 controlled by the detection pressure of the liquid outflow pressure detection sensor 25 and the detection pressure of the downstream liquid outflow pressure detection sensor 26. Then, the refrigerant passes through the indoor unit D to be heated. Thereafter, it flows into the second heat exchange unit 16 and is cooled by the second heat exchange unit 16.
  • a part of the refrigerant cooled in the second heat exchange unit 16 passes through the first check valves 50b and 50c, passes through the liquid branch pipes 7b and 7c, and the indoor unit B to be cooled, Enter C.
  • the refrigerant flowing into the indoor units B and C enters the first flow rate control device 9 controlled by the superheat amount on the outlet side of the indoor heat exchangers 5 of the indoor units B and C, It enters into the indoor heat exchanger 5 and undergoes heat exchange to evaporate and gasify. At that time, each room is cooled by the indoor units B and C. Thereafter, the refrigerant flows into the first connection pipe 6 via the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b.
  • the remainder of the refrigerant cooled by the second heat exchange unit 16 is such that the pressure difference between the detection pressure of the liquid outflow pressure detection sensor 25 and the detection pressure of the downstream liquid outflow pressure detection sensor 26 falls within a predetermined range. It passes through a controlled third flow control device 15. Then, after heat-exchanged by the 2nd heat exchange part 16 and the 1st heat exchange part 19, and evaporating, it flows in into the 1st connection piping 6, and merges with the refrigerant which passed indoor units B and C. The refrigerant merged in the first connection pipe 6 is sucked into the compressor 1 through the fourth check valve 33, the flow path switching valve 2, and the accumulator 4 of the heat source machine A.
  • the heating solenoid valve 30 connected to the indoor units B and C is closed. Moreover, the heating solenoid valve 30 connected to the indoor unit D is opened. Further, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor units B and C are opened. Furthermore, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor unit D are closed.
  • the refrigerant flows through the third check valve 32 and the fourth check valve 33. Furthermore, since the liquid branch pipes 7b and 7c have a lower pressure than the second connection pipe 7 through the second check valves 52b and 52c, the refrigerant does not pass through. Furthermore, since the liquid branch pipe 7d has a higher pressure than the second connection pipe 7 through the first check valve 50d, the refrigerant does not pass therethrough. By the first check valve 50 and the second check valve 52, the refrigerant that has passed through the indoor unit D that requires heating does not pass through the second heat exchange unit 16, and the subcooling is not sufficiently applied. This prevents it from flowing into certain indoor units B and C.
  • FIG. 6 is a circuit diagram showing a state of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention during a heating main operation. Next, the heating main operation will be described.
  • the air conditioner 100 there is a heating request from the indoor units B and C, and a cooling request from the indoor unit D.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the relay device E through the flow path switching valve 2, the fifth check valve 34, and the second connection pipe 7. Through the gas-liquid separator 12.
  • the refrigerant that has passed through the gas-liquid separator 12 passes through the heating solenoid valve 30 and the gas branch pipes 6b and 6c of the first branching section 10 in this order, and flows into the indoor units B and C that are to be heated. Heat is exchanged with room air in the exchanger 5 to be condensed and liquefied. At that time, each room is heated by the indoor units B and C.
  • the condensed and liquefied refrigerant passes through the first flow rate control device 9 controlled by the subcooling amount on the outlet side of the indoor heat exchanger 5 of each of the indoor units C and D, and is slightly reduced in pressure to the second branching unit 11. Inflow.
  • the refrigerant that has flowed into the second branching section 11 passes through the second bypass pipe 51 including the second check valves 52b and 52c and merges with the second connection pipe 7, and the second heat exchange section 16 To be cooled.
  • a part of the refrigerant cooled by the second heat exchange unit 16 enters the indoor unit D that is going to be cooled through the first check valve 50d and the liquid branch pipe 7d.
  • the refrigerant that has entered the indoor unit D enters the first heat flow controller 9 controlled by the superheat amount on the outlet side of the indoor heat exchanger 5, is depressurized, and then enters the indoor heat exchanger 5. Heat exchanged to evaporate and gasify.
  • the indoor unit D cools the room. Thereafter, the refrigerant flows into the first connection pipe 6 via the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b.
  • the remainder of the refrigerant cooled by the second heat exchange unit 16 is such that the pressure difference between the detection pressure of the liquid outflow pressure detection sensor 25 and the detection pressure of the downstream liquid outflow pressure detection sensor 26 falls within a predetermined range. It passes through a controlled third flow control device 15.
  • the refrigerant that has passed through the third flow control device 15 is evaporated by exchanging heat with the refrigerant that has come out of the indoor units B and C in the second heat exchange unit 16. Thereafter, the refrigerant merges with the refrigerant that has passed through the indoor unit D to be cooled, and flows into the sixth check valve 35 and the heat source side heat exchange unit 3 of the heat source machine A through the first connection pipe 6.
  • the refrigerant that has flowed into the heat source side heat exchange unit 3 undergoes heat exchange with the air blown by the heat source side blower 20 with a variable air flow rate, evaporates and gasifies.
  • control unit 70 sets the capacity of the compressor 1 with a variable capacity so that the evaporation temperature of the indoor unit D requiring cooling and the condensation temperature of the indoor units B and C requiring heating become the predetermined target temperatures. And the ventilation volume of the heat source side air blower 20 is adjusted.
  • the control unit 70 also includes a first electromagnetic open / close valve 44, a second electromagnetic open / close valve 45, and a third electromagnetic open / close valve at both ends of the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42.
  • the heat transfer area is adjusted by opening and closing the valve 46 and the fourth electromagnetic opening / closing valve 47.
  • control unit 70 opens and closes the fifth electromagnetic opening / closing valve 48 of the heat source side bypass passage 43 to change the flow rate of the refrigerant flowing through the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. adjust. Thereby, arbitrary heat exchange amount is obtained in the heat source side heat exchange unit 3, and the heating capacity or the cooling capacity targeted in each indoor unit B, C, D can be obtained. Then, the refrigerant is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
  • the heating solenoid valve 30 connected to the indoor units B and C is opened. Moreover, the heating solenoid valve 30 connected to the indoor unit D is closed. Further, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor units B and C are closed. Furthermore, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor unit D are opened.
  • the refrigerant flows through the fifth check valve 34 and the sixth check valve 35.
  • the second flow rate control device 13 is closed.
  • the liquid branch pipes 7b and 7c have a higher pressure than the second connection pipe 7 in the first check valves 50b and 50c, the refrigerant does not pass through.
  • the liquid branch pipe 7d has a lower pressure than the second connection pipe 7 in the second check valve 52d, the refrigerant does not pass through.
  • frost may adhere to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42.
  • a defrosting operation is performed.
  • FIG. 7 is a circuit diagram illustrating a first state during the defrosting operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the first state of the defrosting operation will be described.
  • the first state is a state in which the refrigerant flowing through the second flow control device 13 and the third flow control device 15 does not generate a flow noise.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2, and in the heat source side heat exchange unit 3, the first heat source side heat exchanger 41 or the second heat source.
  • the frost which flows into the side heat exchanger 42 and adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 is melted.
  • the refrigerant is condensed and liquefied by exchanging heat with air. Thereafter, the refrigerant flows in the order of the third check valve 32, the second connection pipe 7, and the gas-liquid separator 12.
  • the heating solenoid valve 30 is closed. For this reason, all the refrigerant flows out from the liquid outflow side of the gas-liquid separation device 12 and flows into the second flow rate control device 13 through the first heat exchange unit 19.
  • the refrigerant is decompressed to a low pressure by the second flow control device 13, then flows into the second heat exchange unit 16, enters the first bypass pipe 14, and flows into the third flow control device 15.
  • the refrigerant passes through the second flow control device 13 in the second heat exchange unit 16, that is, before branching to the first bypass pipe 14. Heat is exchanged with the refrigerant to evaporate.
  • the first heat exchange unit 19 evaporates by exchanging heat with the refrigerant before flowing into the second flow rate control device 13.
  • the evaporated refrigerant flows into the first connection pipe 6 and the fourth check valve 33 and is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
  • FIG. 8 is a circuit diagram illustrating a second state during the defrosting operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the second state of the defrosting operation will be described.
  • the second state is a state in which the refrigerant flowing through the second flow control device 13 and the third flow control device 15 generates a flow noise. As shown in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2, and in the heat source side heat exchange unit 3, the first heat source side heat exchanger 41 or the second heat source.
  • the frost which flows into the side heat exchanger 42 and adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 is melted.
  • the refrigerant is condensed and liquefied by exchanging heat with air. Thereafter, the refrigerant flows in the order of the third check valve 32, the second connection pipe 7, and the gas-liquid separator 12.
  • the heating solenoid valve 30 and the cooling solenoid valve 31 are open.
  • the refrigerant is decompressed to a low pressure by the second flow control device 13, then flows into the second heat exchange unit 16, enters the first bypass pipe 14, and flows into the third flow control device 15.
  • the refrigerant passes through the second flow control device 13 in the second heat exchange unit 16, that is, before branching to the first bypass pipe 14. Heat is exchanged with the refrigerant to evaporate.
  • the first heat exchange unit 19 evaporates by exchanging heat with the refrigerant before flowing into the second flow rate control device 13. The evaporated refrigerant reaches the first connection pipe 6.
  • a part of the refrigerant flows out from the gas outflow side of the gas-liquid separator 12, passes through the heating electromagnetic valve 30, passes through the cooling electromagnetic valve 31, and reaches the first connection pipe 6.
  • the refrigerant that has flowed out from the liquid outflow side of the gas-liquid separation device 12 and the refrigerant that has flowed out from the gas outflow side of the gas-liquid separation device 12 merge.
  • the merged refrigerant flows into the fourth check valve 33 and is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
  • FIG. 9 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the control unit 70 When the defrosting operation is performed, the refrigerant flowing through the second flow control device 13 and the third flow control device 15 may generate a flow noise.
  • the control unit 70 prevents the refrigerant flowing through the second flow rate control device 13 and the third flow rate control device 15 from generating flow noise. Furthermore, in this Embodiment 1, the control part 70 suppresses that the refrigerant
  • step ST100 When switching from the all heating operation or the heating main operation to the defrosting operation, as shown in FIG. 9, the flow path switching valve 2 is switched by the valve control means 71, the heating electromagnetic valve 30 is closed, and the second The flow control device 13 and the third flow control device 15 are opened (step ST100). Thereby, a refrigerant
  • the determination means 72 determines whether or not the refrigerant flowing through the second flow control device 13 and the third flow control device 15 generates a flow noise (step ST200). When it is determined that no flowing sound is generated (No in step ST200), the process returns to step ST200.
  • step ST200 when it is determined that the flow noise is generated (Yes in step ST200), the control is performed so as to shift to the second state of the defrosting operation and reduce the amount of the refrigerant flowing to the second flow control device 13. .
  • the refrigerant flowing through the second flow rate control device 13 generates flow noise
  • the refrigerant flow rate increases, the horsepower of the heat source machine A increases, the outdoor temperature decreases, and pressure loss improvement is required. It can be mentioned.
  • Heating solenoid valve 30 is opened by valve control means 71 (step ST300).
  • step ST400 it is determined by the determination means 72 whether or not the refrigerant flowing through the heating solenoid valve 30 generates a flow noise (step ST400). When it is determined that no flowing sound is generated (No in step ST400), the process returns to step ST200.
  • step ST400 when it is determined that a flowing sound is generated (Yes in step ST400), the heating electromagnetic valve 30 is closed by the valve control means 71, and the cooling electromagnetic valve 31 is opened (step ST500). At this time, the cooling electromagnetic valves 31 may be opened one by one or all of the closed electromagnetic valves 31 may be opened. As a result, the pressure of the refrigerant flowing through each cooling electromagnetic valve 31 is equalized.
  • step ST600 it is determined whether or not the time threshold has elapsed.
  • the process returns to step ST600.
  • the time threshold has not elapsed (No in step ST600)
  • the heating electromagnetic valve 30 is opened by the valve control means 71 (step ST700).
  • coolant flows as a 2nd state of a defrost operation.
  • the heating solenoid valves 30 may be opened one by one or all of the closed heating solenoid valves 30 may be opened.
  • the refrigerant flowing through the heating solenoid valve 30 is equalized. Then, control is continued.
  • FIG. 10 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the operation of the control unit 70 when the indoor units B, C, and D are switched from the heating operation to the cooling operation will be described.
  • the indoor units B, C, and D are switched from the heating operation to the cooling operation, the high-temperature and high-pressure gas refrigerant and the high-temperature and high-pressure liquid refrigerant that were flowing during the heating are used as the first cooling electromagnetic valve 31a and the second cooling. It passes through the electromagnetic valve 31b and flows into the first connection pipe 6 that is in a low pressure state during cooling.
  • the control unit 70 suppresses the flow noise of the refrigerant generated from the relay device E having the cooling electromagnetic valve 31.
  • the addresses are assumed to be younger in the order of indoor units B, C, and D.
  • the timing control means 73 causes the valve control means 71 to keep the opening degree of the first flow control device 9 constant. (Step ST1). Thereby, the pressure in the first connection pipe 6 is released to the second connection pipe 7. Accordingly, the pressure on the first connection pipe 6 side in the first cooling solenoid valve 31a and the second cooling solenoid valve 31b is reduced, and the pressure of the first connection pipe 6 and the pressure of the second connection pipe 7 are reduced. And head for equal pressure.
  • the timing control unit 73 controls the valve control unit 71 so that the first cooling electromagnetic valve 31a connected to the indoor unit B is opened (step ST2).
  • FIG. 11 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the flow sound is determined based on the state of the refrigerant detected by the gas state detection unit 80. Is determined (step ST3). Specifically, as shown in FIG. 11, it is determined by the determination means 72 whether or not the refrigerant pressure P detected by the merged pressure detection sensor 56 is equal to or higher than the pressure threshold value P 0 (step ST31). . As shown in FIG.
  • step ST3 when the pressure P of the refrigerant is less than the pressure threshold P 0 (No in step ST3), since the difference between the pressure and the pressure in the second connecting pipe 7 of the first connection pipe 6 is small, It is determined that no refrigerant flow noise is generated, and the normal operation is resumed.
  • the pressure P of the refrigerant is greater than the pressure threshold P 0 (Yes in step ST3), since the difference between the pressure of the pressure and the second connecting pipe 7 of the first connection pipe 6 is large, the refrigerant flow noise is It is determined that there is a risk of occurrence, and the process proceeds to step ST4.
  • the determination means 72 uses the refrigerant pressure detected by the liquid outflow pressure detection sensor 25 and the combined pressure detection sensor 56, and if the pressure difference before and after the cooling electromagnetic valve 31 is greater than or equal to the threshold value, the flow sound of the refrigerant is generated. It may be determined that it occurs.
  • step ST4 the timing control means 73 confirms whether or not the opening time threshold has elapsed since the second cooling electromagnetic valve 31b was opened. If the open time threshold has not elapsed (No in step ST4), step ST4 is repeated.
  • the timing control means 73 selects the second cooling electromagnetic valve 31b connected to the indoor unit B having a young address (step ST5). Thereafter, the selected second cooling electromagnetic valve 31b is opened (step ST6). As a result, the plurality of cooling electromagnetic valves 31 are not simultaneously opened. Therefore, it is possible to prevent the refrigerant from flowing vigorously into the first connection pipe 6.
  • step ST7 it is determined whether or not there is a cooling electromagnetic valve 31 that is closed in the indoor unit that has a cooling request. If there is a cooling electromagnetic valve 31 that is closed (Yes in step ST7), the process returns to step ST3. On the other hand, if there is no closed cooling electromagnetic valve 31 (No in step ST7), the control ends.
  • Step ST7 there is a cooling electromagnetic valve 31 that is closed, and the process returns to Step ST3. And still the pressure P of the refrigerant is not less than the pressure threshold P 0, flow of operation proceeds to step ST4.
  • the second cooling electromagnetic valve 31b connected to the indoor unit C is selected. Then, it is confirmed whether the opening time threshold has elapsed since the opening of the second cooling electromagnetic valve 31b connected to the indoor unit B which is another branch (step ST5). The second cooling electromagnetic valve 31b connected to the selected indoor unit C is opened (step ST6).
  • step ST4 Since the second cooling electromagnetic valve 31b connected to the indoor unit D is closed, the process returns to step ST3 again in step ST7. And still the pressure P of the refrigerant is not less than the pressure threshold P 0, flow of operation proceeds to step ST4.
  • the second cooling electromagnetic valve 31b connected to the indoor unit D is selected. Then, it is confirmed whether or not the opening time threshold has elapsed since the opening of the second cooling electromagnetic valve 31b connected to the indoor unit D that was closed immediately before (step ST5), and when the opening time threshold has elapsed, The second cooling electromagnetic valve 31b connected to the selected indoor unit D is opened (step ST6). In step ST7, since the cooling electromagnetic valve 31 is not present, the control ends.
  • the heating solenoid valve 30 and the cooling The electromagnetic valve 31 is opened sequentially.
  • the amount of refrigerant flowing through the second flow control device 13 or the third flow control device 15 is reduced, so that the refrigerant flowing through the second flow control device 13 or the third flow control device 15 flows. Is suppressed. Therefore, the quietness of the air conditioner 100 is improved. Moreover, since quietness improves, the freedom degree of the installation place of the relay machine E increases.
  • the gas state detection part 80 which detects the state of the refrigerant
  • the timing control means 73 opens the heating solenoid valve 30 when the judgment means 72 determines that the refrigerant flowing through the heating solenoid valve 30 does not generate a flow noise, and when the time threshold has elapsed, The valve control means 71 is controlled so that the electromagnetic valve 31 is opened.
  • the cooling electromagnetic valves 31 are a plurality of cooling electromagnetic valves 31 connected in parallel to each other, and the timing control means 73 determines that the refrigerant flowing into the heating electromagnetic valve 30 by the determination means 72 does not generate a flow sound. If it is determined, the heating electromagnetic valve 30 is opened, and when the time threshold value has elapsed, the valve control means 71 is controlled so as to open the plurality of cooling electromagnetic valves 31. Thereby, in the 2nd flow control device 13, the 3rd flow control device 15, and the solenoid valve 30 for heating, generation
  • the timing control means 73 closes the heating solenoid valve 30 and opens the cooling solenoid valve 31 when the judgment means 72 determines that the refrigerant flowing through the heating solenoid valve 30 generates a flow noise, and the time threshold value is When the time has elapsed, the valve control means 71 is controlled to open the heating electromagnetic valve 30.
  • the timing control means 73 controls the valve control means 71 so that the heating electromagnetic valves 30 connected to the gas branch pipes 6b, 6c, 6d are sequentially opened. Thereby, the refrigerant
  • the timing control unit 73 opens the heating electromagnetic valve 30 and closes the cooling electromagnetic valve 31 when the determination unit 72 determines that the refrigerant flowing in the heating electromagnetic valve 30 generates a flow noise.
  • the valve control means 71 is controlled so as to open the cooling electromagnetic valve 31.
  • the cooling electromagnetic valve 31 is a plurality of cooling electromagnetic valves 31 connected in parallel to each other, and the timing control means 73 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow sound by the determination means 72. If so, the heating solenoid valve 30 is opened and one of the cooling solenoid valves 31 is opened.
  • the time threshold value has elapsed
  • one of the closed cooling solenoid valves 31 is opened.
  • the valve control means 71 is controlled.
  • the valve control means 71 controls the valve control means 71 to sequentially open the cooling electromagnetic valves 31 connected to the gas branch pipes 6b, 6c, 6d. Thereby, the refrigerant
  • the timing control means 73 controls the valve control means 71 to open one of the plurality of cooling electromagnetic valves 31 when the indoor units B, C, D are switched from the heating operation to the cooling operation, Further, when it is determined that the flow noise of the refrigerant is generated, the valve control means 71 is controlled so as to open one of the closed electromagnetic valves 31 for cooling. In this way, since the plurality of cooling electromagnetic valves 31 are sequentially opened, the flow noise of the refrigerant can be reduced without using an orifice. Therefore, it is possible to improve the blocking function against refrigerant leakage and reduce the flow noise of the refrigerant.
  • FIG. 12 is a circuit diagram showing a conventional air conditioner 200.
  • the first branching section 110 includes a first cooling electromagnetic valve a, a second cooling electromagnetic valve c, an orifice d, and a heating electromagnetic valve b.
  • the refrigerant flows stepwise in the order of the orifice d, the first cooling electromagnetic valve a, and the second cooling electromagnetic valve c.
  • the orifice d attempts to reduce the refrigerant flow noise by equalizing the high-pressure side pipe and the low-pressure side pipe by bypassing the high pressure and the low pressure. Therefore, in the orifice d, the refrigerant supplied to the indoor unit during the heating operation is bypassed, so that the blocking function is bad.
  • valve control means 71 when the valve control means 71 opens one of the plurality of cooling electromagnetic valves 31, and the timing control means 73 determines that the refrigerant flow noise is generated, The valve control means 71 is controlled so as to open one of the closed electromagnetic valves 31 for cooling. For this reason, the flow noise of the refrigerant can be reduced without using an orifice. Therefore, it is possible to improve the blocking function against refrigerant leakage and reduce the flow noise of the refrigerant.
  • valve control means 71 has a function of making the opening degree of the first flow control device 9 constant when the indoor units B, C, D are switched from the heating operation to the cooling operation. Thereby, the first connecting pipe 6 and the second connecting pipe 7 are equalized. Accordingly, the refrigerant is prevented from flowing vigorously.
  • timing control means 73 is configured to open one of the closed cooling electromagnetic valves 31 when the opening time threshold has elapsed after one of the closed cooling electromagnetic valves 31 is opened.
  • the control means 71 is controlled. Accordingly, the refrigerant is prevented from flowing vigorously. For this reason, the flow noise of the refrigerant can be further reduced.
  • the gas state detection unit 80 includes a merged pressure detection sensor 56 that detects the pressure of the refrigerant flowing through the portion where the liquid branch pipes 7b, 7c, and 7d and the first connection pipe 6 are connected, and a gas-liquid separation.
  • a liquid outflow pressure detection sensor 25 for detecting the pressure of the refrigerant on the liquid outflow side of the apparatus 12, and the judging means 72 is a pressure difference between the refrigerant detected by the combined pressure detection sensor 56 and the liquid outflow pressure detection sensor 25. Is equal to or greater than the threshold value, it is determined that refrigerant flow noise is generated. Thereby, the pressure of the 1st connection piping 6 can be optimized. Therefore, the flow noise of the refrigerant can be further reduced.
  • FIG. 13 is a flowchart showing the operation of the air-conditioning apparatus 100 according to the first modification example of Embodiment 1 of the present invention. Next, a first modification of the first embodiment will be described.
  • the operation in step ST3 in FIG. 10 is different from that in the first embodiment, and the determination unit 72 determines the difference between one pressure of the cooling electromagnetic valve 31 and the other pressure of the cooling electromagnetic valve 31. Based on the above, it is determined whether or not the flow noise of the refrigerant is generated.
  • the judgment means 72 causes the pressure of one of the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b and the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve. It is determined whether or not the difference ⁇ Pa between 31 b and the other pressure is equal to or greater than the pressure difference threshold value ⁇ P 0 (step ST41). Specifically, the determination unit 72 determines that the difference ⁇ Pa between the refrigerant pressure detected by the merging pressure detection sensor 56 and the refrigerant pressure corresponding to the refrigerant temperature detected by the gas pipe temperature detection sensor 53 is a pressure. When the difference threshold value ⁇ P is equal to or greater than 0, it is determined that a refrigerant flow noise is generated.
  • the pressure of one of the first cooling electromagnetic valve 31 a and the second cooling electromagnetic valve 31 b is detected by the merged pressure detection sensor 56.
  • the other pressure of the first cooling electromagnetic valve 31 a and the second cooling electromagnetic valve 31 b is calculated based on the saturation temperature detected by the gas pipe temperature detection sensor 53.
  • the pressure difference ⁇ P is less than the pressure difference threshold ⁇ P 0 (No in step ST3)
  • the normal operation is resumed.
  • the pressure difference ⁇ P is equal to or greater than the pressure difference threshold ⁇ P 0 (Yes in step ST3), the process proceeds to step ST4.
  • the gas state detection unit 80 detects the pressure of the refrigerant flowing through the portion where the liquid branch pipes 7b, 7c, 7d and the first connection pipe 6 are connected.
  • the difference between the refrigerant pressure and the refrigerant pressure corresponding to the refrigerant temperature detected by the gas pipe temperature detection sensor 53 is equal to or greater than the pressure difference threshold, it is determined that the refrigerant flow noise is generated.
  • This first modification also has the same effect as that of the first embodiment.
  • FIG. 14 is a flowchart showing the operation of the air-conditioning apparatus 100 according to the second modification of the first embodiment of the present invention.
  • a second modification of the first embodiment will be described.
  • the operation in step ST3 in FIG. 10 is different from that in the first embodiment, and the determination unit 72 sets the subcool value on the outlet side of the indoor heat exchanger 5 of the indoor unit that is performing the heating operation. Based on this, it is determined whether or not a refrigerant flow noise is generated.
  • the determination means 72 subcooled value SCa of the outlet side of the indoor heat exchanger 5 which indoor unit has that heating operation, whether it is subcooled threshold SC 0 or more is determined (Step ST51).
  • the subcool value SCa is calculated based on the saturation temperature of the indoor unit during the heating operation and the refrigerant temperature detected by the liquid pipe temperature detection sensor 54.
  • the saturation temperature of the indoor unit during the heating operation is calculated based on the pressure detected by the liquid outflow pressure detection sensor 25.
  • for subcooling value SCa is of less than subcooling threshold SC 0 (No in step ST3), a small liquid refrigerant, it is determined that flow noise of the refrigerant is not generated, the flow returns to normal operation.
  • the subcooling value SCa is more subcooling threshold SC 0 (Yes in step ST3), because there are many liquid refrigerant, it is determined that flow noise of the refrigerant is generated, before proceeding to a step ST4.
  • the relay E has the inflow side connected to the second connection pipe 7, the gas outflow side connected to the heating solenoid valve 30, and the liquid outflow side liquid branch pipes 7b, 7c, 7d.
  • the gas-liquid separator 12 is further connected to the gas-liquid separator 12 to separate the gas refrigerant and the liquid refrigerant, and the gas state detection unit 80 detects the pressure of the refrigerant on the liquid outlet side of the gas-liquid separator 12.
  • a sensor 25 and a liquid pipe temperature detection sensor 54 for detecting the temperature of the refrigerant flowing through the liquid branch pipes 7b, 7c, and 7d, and the judging means 72 is configured to detect the refrigerant detected by the liquid outflow pressure detection sensor 25.
  • FIG. 15 is a flowchart showing the operation of the air-conditioning apparatus 100 according to the third modification of the first embodiment of the present invention.
  • a third modification of the first embodiment will be described.
  • the operation in step ST3 in FIG. 10 is different from that in the first embodiment, and the determination unit 72 is configured to stop the threshold value after the indoor heat exchanger 5 of the indoor unit that is performing the heating operation is stopped. It is determined whether or not a refrigerant flow noise is generated depending on whether or not time has elapsed.
  • step ST61 whether or not the elapsed time Ta after the indoor side heat exchanger 5 of the indoor unit that is performing the heating operation is equal to or less than the threshold elapsed time T 0 is determined by the determining unit 72. Judgment is made (step ST61). As shown in FIG. 10, when the elapsed time Ta is elapsed time T 0 or larger than the threshold (No in step ST3), the difference between the pressure and the pressure in the second connecting pipe 7 of the first connection pipe 6 is reduced Then, it is determined that no refrigerant flow noise is generated, and the normal operation is resumed.
  • step ST3 Yes when the elapsed time Ta is less than the threshold value the elapsed time T 0 (step ST3 Yes), it therefore, the refrigerant remains difference between the pressure of the pressure and the second connecting pipe 7 of the first connection pipe 6 is greater It is determined that a flowing sound is generated, and the process proceeds to step ST4.
  • the determination unit 72 is configured until the stop threshold time elapses after the indoor heat exchanger 5 of the indoor units B, C, and D that are performing the heating operation is stopped. It is determined that the flow noise of the refrigerant is generated.
  • the same effect as in the first embodiment is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioning device comprising a heat source, a plurality of indoor units, a relay device, and a control unit. The relay device has a liquid state detection unit, a gas/liquid separation device, a second flow rate control device, a third flow rate control device, a cooler solenoid valve, and a heater solenoid valve. The control unit has the following: a valve control means that, when the heat source switches from heating operation to defrosting operation, causes a flow path switching valve to switch, stops the heater solenoid valve, and opens the second flow rate control device; a determination means that determines whether the coolant flowing in the second flow rate control device or the third flow rate control device is generating flow noise on the basis of the state of the coolant detected by the liquid state detection unit when the coolant flows in the second flow rate control device; and a timing control means that controls the valve control means such that the heater solenoid valve and the cooler solenoid valve successively open when the determination means determines that the coolant flowing in the second flow rate control device or the third flow rate control device is generating flow noise.

Description

空気調和装置Air conditioner
 本発明は、熱源機から供給される冷媒を複数の室内機に分配する中継機を有する空気調和装置に関する。 The present invention relates to an air conditioner having a relay that distributes a refrigerant supplied from a heat source unit to a plurality of indoor units.
 複数の室内機において個別に暖房運転又は冷房運転が実施される空気調和装置は、例えば熱源機において作成された温熱、冷熱、又は温熱及び冷熱の両方が、複数の負荷に対して効率よく供給される冷媒回路及び構造を備えている。このような空気調和装置は、例えばビル用マルチエアコン等に適用される。従来、ビル用マルチエアコン等の空気調和装置においては、例えば室外に配置された熱源機である室外機と室内に配置された室内機との間に冷媒を循環させることによって、冷房運転又は暖房運転が実行される。具体的には、冷媒が吸熱して冷却された空気、又は、冷媒が放熱して加熱された空気によって、空調対象空間の冷房又は暖房が行われる。このような空気調和装置に使用される冷媒として、例えばHFC系冷媒、即ちハイドロフルオロカーボン系冷媒が多く使われている。また、二酸化炭素、即ちCO等の自然冷媒が使用される空気調和装置も提案されている。 In an air conditioner in which heating operation or cooling operation is individually performed in a plurality of indoor units, for example, heat, cold, or both heat and cold created in a heat source device are efficiently supplied to a plurality of loads. Refrigerant circuit and structure. Such an air conditioner is applied to, for example, a building multi-air conditioner. Conventionally, in an air conditioner such as a multi air conditioner for buildings, for example, a cooling operation or a heating operation is performed by circulating a refrigerant between an outdoor unit that is a heat source unit arranged outdoors and an indoor unit arranged indoors. Is executed. Specifically, the air-conditioning target space is cooled or heated by air cooled by heat absorbed by the refrigerant or air heated by heat released from the refrigerant. As a refrigerant used in such an air conditioner, for example, an HFC refrigerant, that is, a hydrofluorocarbon refrigerant is often used. An air conditioner using a natural refrigerant such as carbon dioxide, that is, CO 2 has also been proposed.
 ここで、熱源機と複数台の室内機とが接続され、熱源機から複数台の室内機に冷媒が供給されて冷暖同時運転が実施される空気調和装置が提案されている。特許文献1に記載された空気調和装置は、第1の接続配管と、第1の接続配管又は第2の接続配管に切り替え可能に接続する三方切替弁から構成された第1の分岐部と、室内機側の第2の接続配管と第2の接続配管とを6個の逆止弁を介して接続する第2の分岐部とを備えている。 Here, there has been proposed an air conditioner in which a heat source unit and a plurality of indoor units are connected, and a refrigerant is supplied from the heat source unit to the plurality of indoor units to perform simultaneous cooling and heating operations. The air conditioner described in Patent Literature 1 includes a first branch pipe configured from a first connection pipe and a three-way switching valve that is switchably connected to the first connection pipe or the second connection pipe. A second branch pipe that connects the second connection pipe and the second connection pipe on the indoor unit side via six check valves;
 特許文献1に記載された空気調和装置は、暖房運転している室内機に流入する冷媒と冷房運転している室内機から流入してくる冷媒の切り替えを、第1の分岐部の三方切替弁において行っている。また、第2の分岐部を構成している各逆止弁は、第1の分岐部での冷媒の切り替えに応じて、冷媒の流通を一方向に許容する。そのため、室内機が冷房運転する場合は、三方切替弁の接続口の第1口は閉路、第2口及び第3口は開路となる。また、室内機が暖房運転する場合は、接続口の第2口は閉路、第1口及び第3口は開路となる。 The air conditioner described in Patent Document 1 switches a refrigerant flowing into an indoor unit that is in a heating operation and a refrigerant flowing in from an indoor unit that is in a cooling operation into a three-way switching valve of a first branching section. Is going on. In addition, each check valve constituting the second branch portion allows the refrigerant to flow in one direction in accordance with the switching of the refrigerant at the first branch portion. Therefore, when the indoor unit performs a cooling operation, the first port of the connection port of the three-way switching valve is closed, and the second port and the third port are opened. In addition, when the indoor unit performs a heating operation, the second port of the connection port is closed, and the first port and the third port are opened.
 そして、室内機が冷房運転する場合、冷媒は第1の接続配管が低圧、第2の接続配管が高圧となるため、三方切替弁の接続口の第1口側の接続配管では高圧、第2口側の接続配管では低圧、第3口側の接続配管では低圧の状態になる。また、冷房運転時においては、冷媒は室内側熱交換器の出口側のスーパーヒート量によって制御されており、室内機側の第1の接続配管には低圧ガス状態の冷媒が流れている。 When the indoor unit performs a cooling operation, the refrigerant has a low pressure in the first connection pipe and a high pressure in the second connection pipe. Therefore, the refrigerant is high in the connection pipe on the first port side of the connection port of the three-way switching valve. The connection piping on the mouth side is in a low pressure state, and the connection piping on the third port side is in a low pressure state. In the cooling operation, the refrigerant is controlled by the superheat amount on the outlet side of the indoor heat exchanger, and the refrigerant in the low-pressure gas state flows through the first connection pipe on the indoor unit side.
 また、室内機が暖房運転する場合、冷媒は第1の接続配管が低圧、第2の接続配管が高圧となるため、三方切替弁の接続口の第1口側の接続配管では高圧、第2口側の接続配管では低圧、第3口側の接続配管では高圧の状態になる。また、暖房運転時においては、冷媒は室内側熱交換器の出口側のサブクール量によって制御されており、室内機側の第1の接続配管には高温高圧ガス状態の冷媒が流れている。ここで、室内側熱交換器及び室内側熱交換器から第1の流量制御装置までの接続配管には高温高圧液状態の冷媒が存在する。 Further, when the indoor unit is in a heating operation, the refrigerant has a low pressure in the first connection pipe and a high pressure in the second connection pipe. Therefore, the refrigerant is high in the connection pipe on the first port side of the connection port of the three-way switching valve. The connection piping on the mouth side is in a low pressure state, and the connection piping on the third port side is in a high pressure state. Further, during the heating operation, the refrigerant is controlled by the subcooling amount on the outlet side of the indoor heat exchanger, and the refrigerant in the high-temperature and high-pressure gas state flows through the first connection pipe on the indoor unit side. Here, the refrigerant | coolant of a high temperature / high pressure liquid state exists in the connection piping from an indoor side heat exchanger and an indoor side heat exchanger to a 1st flow control apparatus.
 よって、室内機の運転を暖房運転から冷房運転に切り替える際には、暖房時に流れていた高温高圧ガス冷媒と高温高圧液冷媒とが、三方切替弁を通過して低圧の状態にある第1の接続配管に流入する。その際、三方切替弁において、三方切替弁を通過する冷媒の高圧と低圧とのバランスによって冷媒の流動音が発生する。特に、高温高圧液冷媒の流動音が大きくなる。 Therefore, when switching the operation of the indoor unit from the heating operation to the cooling operation, the high-temperature high-pressure gas refrigerant and the high-temperature high-pressure liquid refrigerant that have flowed during the heating pass through the three-way switching valve and are in a low-pressure state. It flows into the connecting pipe. At that time, in the three-way switching valve, refrigerant flow noise is generated due to the balance between the high pressure and the low pressure of the refrigerant passing through the three-way switching valve. In particular, the flow noise of the high-temperature high-pressure liquid refrigerant is increased.
 そのため、三方切替弁に代えて電磁弁、特に電磁開閉弁を用いた空気調和装置が提案されている。特許文献2に記載された空気調和装置においては、第2の電磁弁を暖房用に使用し、第1の電磁弁及びオリフィス機能が付加された第3の電磁弁を冷房用に使用して、暖房運転から冷房運転に切り替わる際、第1の電磁弁及び第3の電磁弁に段階的に冷媒を流している。これにより、高温高圧液冷媒の流動音を軽減しようとしている。また、特許文献2に記載された空気調和装置では、流量制御装置の開口径を小さくし、流量制御装置をパルス制御し、第3の電磁弁の開口径を小さくすることによって、冷媒の流動音を低減しようとしている。また、電磁弁、特に電磁開閉弁を用い、コンパクト化を図った空気調和装置も提案されている。この空気調和装置においては、第2の電磁弁が暖房用に使用され、第1の電磁弁、第3の電磁弁及びオリフィスが冷房用に使用されている。ここで、オリフィスは、高圧圧力と低圧圧力とをバイパスすることによって、高圧側配管と低圧側配管とを均圧化して、冷媒の流動音を軽減しようとするものである。即ち、この空気調和装置では、暖房運転から冷房運転に切り替わる際、オリフィス、第3の電磁弁、第1の電磁弁に段階的に冷媒を流している。これにより、高温高圧液冷媒の流動音を軽減しようとしている。更に、従来の空気調和装置において、暖房運転から除霜運転に切り替わる場合、冷媒は、熱源機から中継機に流入した後、気液分離装置の液流出側に流出して、バイパス回路を通過して熱源機に戻る。このとき、冷媒は、気液分離装置の液流出側に流出した後、第1の熱交換部、流量制御装置、第2の熱交換部、流量制御装置、第2の熱交換部、第1の熱交換部の順に流れる。 Therefore, an air conditioner using a solenoid valve, particularly an electromagnetic on-off valve, instead of the three-way switching valve has been proposed. In the air conditioner described in Patent Document 2, the second electromagnetic valve is used for heating, the first electromagnetic valve and the third electromagnetic valve with an orifice function added are used for cooling, When switching from the heating operation to the cooling operation, the refrigerant is allowed to flow stepwise through the first solenoid valve and the third solenoid valve. Thereby, it is trying to reduce the flow noise of the high-temperature high-pressure liquid refrigerant. Moreover, in the air conditioning apparatus described in Patent Document 2, the flow noise of the refrigerant is reduced by reducing the opening diameter of the flow control device, performing pulse control of the flow control device, and reducing the opening diameter of the third electromagnetic valve. Trying to reduce. There has also been proposed an air conditioner that uses a solenoid valve, particularly an electromagnetic on-off valve, and is compact. In this air conditioner, the second electromagnetic valve is used for heating, and the first electromagnetic valve, the third electromagnetic valve, and the orifice are used for cooling. Here, the orifice attempts to equalize the high-pressure side pipe and the low-pressure side pipe by bypassing the high pressure and the low pressure, thereby reducing the flow noise of the refrigerant. That is, in this air conditioner, when switching from the heating operation to the cooling operation, the refrigerant is allowed to flow stepwise through the orifice, the third electromagnetic valve, and the first electromagnetic valve. Thereby, it is trying to reduce the flow noise of the high-temperature high-pressure liquid refrigerant. Furthermore, in a conventional air conditioner, when switching from heating operation to defrosting operation, the refrigerant flows from the heat source unit to the relay unit, then flows out to the liquid outflow side of the gas-liquid separator and passes through the bypass circuit. Return to the heat source machine. At this time, after the refrigerant flows out to the liquid outflow side of the gas-liquid separator, the first heat exchange unit, the flow rate control device, the second heat exchange unit, the flow rate control device, the second heat exchange unit, the first It flows in the order of the heat exchange part.
特許第4350836号公報Japanese Patent No. 4350836 特開平09-042804号公報Japanese Patent Application Laid-Open No. 09-0428804
 しかしながら、従来の空気調和装置は、除霜運転時に、気液分離装置の液流出側の流量制御装置に流れる冷媒が流動音を発生する虞がある。 However, in the conventional air conditioner, there is a possibility that the refrigerant flowing in the flow rate control device on the liquid outflow side of the gas-liquid separator generates a flow noise during the defrosting operation.
 本発明は、上記のような課題を解決するためになされたもので、除霜運転時に、気液分離装置の液流出側の流量制御装置において冷媒が流動音を発生することを抑制する空気調和装置を提供するものである。 The present invention has been made in order to solve the above-described problems, and is an air conditioner that suppresses the generation of flow noise in the flow rate control device on the liquid outflow side of the gas-liquid separator during the defrosting operation. A device is provided.
 本発明に係る空気調和装置は、圧縮機、流路切替弁及び熱源側熱交換器を有する熱源機と、それぞれ第1の流量制御装置及び室内側熱交換器を有し、冷房運転又は暖房運転する複数の室内機と、第1の接続配管及び第2の接続配管によって熱源機に接続され、複数のガス枝管及び複数の液枝管によって複数の室内機にそれぞれ接続され、熱源機から供給される冷媒を複数の室内機に分配する中継機と、中継機の動作を制御する制御部と、を備え、中継機は、液枝管と第2の接続配管との間に流れる冷媒の状態を検出する液状態検出部と、流入する冷媒をガス冷媒と液冷媒とに分離するものであって、流入側が第2の接続配管に接続され、ガス流出側がガス枝管に接続され、液流出側が液枝管及び第1の接続配管に接続された気液分離装置と、気液分離装置の液流出側に設けられ、暖房運転時に閉止され、冷房運転時に開放され、冷媒の流量を調整する第2の流量制御装置と、第2の流量制御装置の下流側に設けられ、冷媒の流量を調整する第3の流量制御装置と、一方がガス枝管に接続され、他方が第1の接続配管に接続され、冷房運転時に開放され、暖房運転時に閉止される冷房用電磁弁と、一方がガス枝管に接続され、他方が気液分離装置のガス流出側に接続され、暖房運転時に開放され、冷房運転時に閉止される暖房用電磁弁と、を有し、制御部は、熱源機が暖房運転から除霜運転に切り替えたとき、流路切替弁を切り替え、暖房用電磁弁を閉止し、第2の流量制御装置を開放する弁制御手段と、第2の流量制御装置に冷媒が流通する際に、液状態検出部によって検出された冷媒の状態に基づいて、第2の流量制御装置又は第3の流量制御装置に流れる冷媒が流動音を発生するか否かを判断する判断手段と、判断手段によって第2の流量制御装置又は第3の流量制御装置に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁及び冷房用電磁弁を順次開放するように弁制御手段を制御するタイミング制御手段と、を有する。 An air conditioner according to the present invention includes a heat source device having a compressor, a flow path switching valve, and a heat source side heat exchanger, and a first flow rate control device and an indoor side heat exchanger, respectively, for cooling operation or heating operation. Connected to the heat source unit by a plurality of indoor units, a first connection pipe and a second connection pipe, and connected to a plurality of indoor units by a plurality of gas branch pipes and a plurality of liquid branch pipes, respectively, and supplied from the heat source unit A relay that distributes the refrigerant to be delivered to a plurality of indoor units, and a controller that controls the operation of the relay, and the relay is in a state of the refrigerant flowing between the liquid branch pipe and the second connection pipe A liquid state detection unit for detecting the refrigerant, and the refrigerant flowing in is separated into a gas refrigerant and a liquid refrigerant, the inflow side is connected to the second connection pipe, the gas outflow side is connected to the gas branch pipe, and the liquid outflow A gas-liquid separator whose side is connected to the liquid branch pipe and the first connection pipe; Provided on the liquid outflow side of the gas-liquid separator, closed during heating operation, opened during cooling operation, and provided downstream of the second flow control device for adjusting the flow rate of the refrigerant. A third flow control device that adjusts the flow rate of the refrigerant, and one cooling electromagnetic that is connected to the gas branch pipe, the other connected to the first connection pipe, opened during the cooling operation, and closed during the heating operation. And a heating solenoid valve, one of which is connected to the gas branch pipe and one of which is connected to the gas outflow side of the gas-liquid separator, opened during heating operation, and closed during cooling operation. When the heat source device switches from the heating operation to the defrosting operation, the flow control valve is switched, the heating solenoid valve is closed, and the second flow control device is opened, and the second flow control When the refrigerant flows through the device, it is detected by the liquid state detector. Based on the state of the refrigerant, a judgment means for judging whether or not the refrigerant flowing through the second flow control device or the third flow control device generates a flow noise, and the second flow control device or the second by the judgment means. And a timing control means for controlling the valve control means so as to sequentially open the heating solenoid valve and the cooling solenoid valve when it is determined that the refrigerant flowing through the flow control device 3 generates a flow noise.
 本発明によれば、除霜運転時に、第2の流量制御装置又は第3の流量制御装置に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁及び冷房用電磁弁が順次開放される。これにより、第2の流量制御装置又は第3の流量制御装置に流れる冷媒の量が低減されるため、第2の流量制御装置又は第3の流量制御装置に流れる冷媒が流動音を発生することが抑制される。従って、空気調和装置の静穏性が向上する。 According to the present invention, when it is determined that the refrigerant flowing through the second flow control device or the third flow control device generates a flow noise during the defrosting operation, the heating solenoid valve and the cooling solenoid valve are sequentially opened. Is done. Thereby, since the amount of the refrigerant flowing through the second flow control device or the third flow control device is reduced, the refrigerant flowing through the second flow control device or the third flow control device generates a flow sound. Is suppressed. Therefore, the quietness of the air conditioner is improved.
本発明の実施の形態1に係る空気調和装置100を示す回路図である。It is a circuit diagram which shows the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の制御部70を示すブロック図である。It is a block diagram which shows the control part 70 of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の全冷房運転時の状態を示す回路図である。It is a circuit diagram which shows the state at the time of the cooling operation of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の全暖房運転時の状態を示す回路図である。It is a circuit diagram which shows the state at the time of the heating operation of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の冷房主体運転時の状態を示す回路図である。It is a circuit diagram which shows the state at the time of the cooling main operation | movement of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の暖房主体運転時の状態を示す回路図である。It is a circuit diagram which shows the state at the time of heating main operation | movement of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の除霜運転時の第1状態を示す回路図である。It is a circuit diagram which shows the 1st state at the time of the defrost driving | operation of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の除霜運転時の第2状態を示す回路図である。It is a circuit diagram which shows the 2nd state at the time of the defrost driving | operation of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on Embodiment 1 of this invention. 従来の空気調和装置200を示す回路図である。It is a circuit diagram which shows the conventional air conditioning apparatus. 本発明の実施の形態1の第1変形例に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on the 1st modification of Embodiment 1 of this invention. 本発明の実施の形態1の第2変形例に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on the 2nd modification of Embodiment 1 of this invention. 本発明の実施の形態1の第3変形例に係る空気調和装置100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus 100 which concerns on the 3rd modification of Embodiment 1 of this invention.
実施の形態1.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空気調和装置100を示す回路図である。この図1に基づいて、空気調和装置100について説明する。図1に示すように、空気調和装置100は、熱源機Aと、複数の室内機B、C、Dと、中継機Eと、制御部70とを備えている。なお、本実施の形態1では、1台の熱源機Aに3台の室内機B、C、Dが接続された場合について例示するが、熱源機Aの台数は、2台以上でもよい。また、室内機の台数は、3台以上でもよい。
Embodiment 1 FIG.
Hereinafter, embodiments of an air-conditioning apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air-conditioning apparatus 100 according to Embodiment 1 of the present invention. The air conditioner 100 will be described with reference to FIG. As shown in FIG. 1, the air conditioning apparatus 100 includes a heat source unit A, a plurality of indoor units B, C, and D, a relay unit E, and a control unit 70. In addition, in this Embodiment 1, although illustrated about the case where the three indoor units B, C, and D are connected to one heat source unit A, the number of the heat source units A may be two or more. Further, the number of indoor units may be three or more.
 図1に示すように、空気調和装置100は、熱源機Aと、室内機B、C、Dと、中継機Eとが接続されて構成されている。熱源機Aは、3台の室内機B、C、Dに温熱又は冷熱を供給する機能を有している。3台の室内機B、C、Dは、それぞれ互いに並列に接続されており、それぞれ同じ構成となっている。室内機B、C、Dは、熱源機Aから供給される温熱又は冷熱によって、室内等の空調対象空間を冷房又は暖房する機能を有している。中継機Eは、熱源機Aと室内機B、C、Dとの間に介在し、室内機B、C、Dからの要求に応じて熱源機Aから供給される冷媒の流れを切り替える機能を有している。また、空気調和装置100は、冷媒の状態を検出する液状態検出部81と、ガス状態検出部80とを備えている。液状態検出部81は、例えば液流出圧力検出センサ25及び下流側液流出圧力検出センサ26を有している。また、ガス状態検出部80は、合流圧力検出センサ56を有している。なお、ガス状態検出部80は、ガス管温度検出センサ53、液管温度検出センサ54、液流出圧力検出センサ25、下流側液流出圧力検出センサ26、合流圧力検出センサ56及び吐出圧力検出センサ18を有していてもよい。 As shown in FIG. 1, the air conditioner 100 is configured by connecting a heat source unit A, indoor units B, C, D, and a relay unit E. The heat source unit A has a function of supplying hot or cold heat to the three indoor units B, C, and D. The three indoor units B, C, and D are connected in parallel to each other and have the same configuration. The indoor units B, C, and D have a function of cooling or heating an air-conditioning target space such as a room by using the heat or cold supplied from the heat source device A. The relay unit E is interposed between the heat source unit A and the indoor units B, C, D, and has a function of switching the flow of refrigerant supplied from the heat source unit A in response to requests from the indoor units B, C, D. Have. The air conditioner 100 also includes a liquid state detection unit 81 that detects the state of the refrigerant, and a gas state detection unit 80. The liquid state detection unit 81 includes, for example, a liquid outflow pressure detection sensor 25 and a downstream liquid outflow pressure detection sensor 26. Further, the gas state detection unit 80 includes a merged pressure detection sensor 56. The gas state detection unit 80 includes a gas pipe temperature detection sensor 53, a liquid pipe temperature detection sensor 54, a liquid outflow pressure detection sensor 25, a downstream side liquid outflow pressure detection sensor 26, a merging pressure detection sensor 56, and a discharge pressure detection sensor 18. You may have.
 (熱源機A)
 熱源機Aは、容量可変の圧縮機1、熱源機Aでの冷媒流通方向を切り替える流路切替弁2、蒸発器又は凝縮器として機能する熱源側熱交換ユニット3、流路切替弁2を介して圧縮機1の吸入側に接続されているアキュムレータ4、冷媒の流通方向を制限する熱源側流路調整ユニット40を備えている。熱源機Aは、室内機B、C、Dに温熱又は冷熱を供給する機能を有している。なお、流路切替弁2は、四方弁である場合について例示しているが、二方弁又は三方弁等を組み合わせることによって構成されてもよい。
(Heat source machine A)
The heat source machine A includes a variable capacity compressor 1, a flow path switching valve 2 that switches a refrigerant flow direction in the heat source machine A, a heat source side heat exchange unit 3 that functions as an evaporator or a condenser, and a flow path switching valve 2. The accumulator 4 connected to the suction side of the compressor 1 and the heat source side flow path adjustment unit 40 that restricts the flow direction of the refrigerant are provided. The heat source unit A has a function of supplying hot or cold to the indoor units B, C, and D. In addition, although the flow path switching valve 2 is illustrated as being a four-way valve, it may be configured by combining a two-way valve or a three-way valve.
 熱源側熱交換ユニット3は、第1の熱源側熱交換器41及び第2の熱源側熱交換器42、熱源側バイパス路43、第1の電磁開閉弁44、第2の電磁開閉弁45、第3の電磁開閉弁46、第4の電磁開閉弁47、第5の電磁開閉弁48、熱源側送風機20を備えている。 The heat source side heat exchange unit 3 includes a first heat source side heat exchanger 41 and a second heat source side heat exchanger 42, a heat source side bypass passage 43, a first electromagnetic on-off valve 44, a second electromagnetic on-off valve 45, A third electromagnetic on-off valve 46, a fourth electromagnetic on-off valve 47, a fifth electromagnetic on-off valve 48, and a heat source side blower 20 are provided.
 第1の熱源側熱交換器41及び第2の熱源側熱交換器42は、同じ伝熱面積を有し、互いに並列に接続されている。熱源側バイパス路43は、第1の熱源側熱交換器41及び第2の熱源側熱交換器42に並列に接続されている。熱源側バイパス路43に流通する冷媒は、第1の熱源側熱交換器41及び第2の熱源側熱交換器42を通過せず、熱交換されない。 The first heat source side heat exchanger 41 and the second heat source side heat exchanger 42 have the same heat transfer area and are connected in parallel to each other. The heat source side bypass passage 43 is connected in parallel to the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. The refrigerant flowing through the heat source side bypass passage 43 does not pass through the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42 and is not heat-exchanged.
 第1の電磁開閉弁44は、第1の熱源側熱交換器41の一端側に設けられている。第2の電磁開閉弁45は、第1の熱源側熱交換器41の他端側に設けられている。第3の電磁開閉弁46は、第2の熱源側熱交換器42の一端側に設けられている。第4の電磁開閉弁47は、第2の熱源側熱交換器42の他端側に設けられている。第5の電磁開閉弁48は、熱源側バイパス路43に設けられている。 The first electromagnetic on-off valve 44 is provided on one end side of the first heat source side heat exchanger 41. The second electromagnetic opening / closing valve 45 is provided on the other end side of the first heat source side heat exchanger 41. The third electromagnetic opening / closing valve 46 is provided on one end side of the second heat source side heat exchanger 42. The fourth electromagnetic opening / closing valve 47 is provided on the other end side of the second heat source side heat exchanger 42. The fifth electromagnetic opening / closing valve 48 is provided in the heat source side bypass passage 43.
 熱源側流路調整ユニット40は、第3の逆止弁32、第4の逆止弁33、第5の逆止弁34、第6の逆止弁35を有している。第3の逆止弁32は、熱源側熱交換ユニット3と第2の接続配管7とを接続する配管に設けられ、熱源側熱交換ユニット3から第2の接続配管7に向かう冷媒の流通を許容する。第4の逆止弁33は、熱源機Aの流路切替弁2と第1の接続配管6とを接続する配管に設けられ、第1の接続配管6から流路切替弁2に向かう冷媒の流通を許容する。第5の逆止弁34は、熱源機Aの流路切替弁2と第2の接続配管7とを接続する配管に設けられ、流路切替弁2から第2の接続配管7に向かう冷媒の流通を許容する。第6の逆止弁35は、熱源側熱交換ユニット3と第1の接続配管6とを接続する配管に設けられ、第1の接続配管6から熱源側熱交換ユニット3に向かう冷媒の流通を許容する。 The heat source side flow path adjustment unit 40 includes a third check valve 32, a fourth check valve 33, a fifth check valve 34, and a sixth check valve 35. The third check valve 32 is provided in a pipe that connects the heat source side heat exchange unit 3 and the second connection pipe 7, and allows the refrigerant to flow from the heat source side heat exchange unit 3 to the second connection pipe 7. Allow. The fourth check valve 33 is provided in a pipe that connects the flow path switching valve 2 of the heat source apparatus A and the first connection pipe 6, and the refrigerant that flows from the first connection pipe 6 to the flow path switching valve 2. Allow distribution. The fifth check valve 34 is provided in a pipe connecting the flow path switching valve 2 of the heat source apparatus A and the second connection pipe 7, and the refrigerant flowing from the flow path switching valve 2 to the second connection pipe 7 is provided. Allow distribution. The sixth check valve 35 is provided in a pipe connecting the heat source side heat exchange unit 3 and the first connection pipe 6, and allows the refrigerant to flow from the first connection pipe 6 toward the heat source side heat exchange unit 3. Allow.
 また、熱源機Aには、吐出圧力検出センサ18が設けられている。吐出圧力検出センサ18は、流路切替弁2と圧縮機1の吐出側とを接続する配管に設けられており、圧縮機1の吐出圧力を検出するものである。熱源側送風機20は、熱源側熱交換ユニット3に送風する空気の送風量を可変し、熱交換容量を制御するものである。なお、熱源機Aは、暖房運転時に第1の熱源側熱交換器41又は第2の熱源側熱交換器42に霜が付着した場合、除霜運転を行う。 Also, the heat source machine A is provided with a discharge pressure detection sensor 18. The discharge pressure detection sensor 18 is provided in a pipe connecting the flow path switching valve 2 and the discharge side of the compressor 1, and detects the discharge pressure of the compressor 1. The heat source side blower 20 varies the amount of air blown to the heat source side heat exchange unit 3 and controls the heat exchange capacity. The heat source machine A performs a defrosting operation when frost adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 during the heating operation.
 (室内機B、C、D)
 室内機B、C、Dは、凝縮器又は蒸発器として機能する室内側熱交換器5及び第1の流量制御装置9を備え、熱源機Aから供給される温熱又は冷熱によって、室内等の空調対象空間を冷房又は暖房する機能を有している。第1の流量制御装置9は、冷房時において、室内側熱交換器5の出口側のスーパーヒート量によって制御されている。また、第1の流量制御装置9は、暖房時において、室内側熱交換器5の出口側のサブクール量によって制御されている。
(Indoor units B, C, D)
The indoor units B, C, and D are provided with an indoor heat exchanger 5 and a first flow rate control device 9 that function as a condenser or an evaporator, and air conditioning such as indoors by hot or cold supplied from the heat source unit A. It has a function of cooling or heating the target space. The first flow rate control device 9 is controlled by the superheat amount on the outlet side of the indoor heat exchanger 5 during cooling. Moreover, the 1st flow control apparatus 9 is controlled by the subcooling amount by the side of the exit of the indoor side heat exchanger 5 at the time of heating.
 室内機B、C、Dには、ガス管温度検出センサ53及び液管温度検出センサ54が設けられている。ガス管温度検出センサ53は、室内側熱交換器5と中継機Eとの間に設けられており、室内側熱交換器5と中継機Eとを接続するガス枝管6b、6c、6dに流通する冷媒の温度を検出するものである。液管温度検出センサ54は、室内側熱交換器5と第1の流量制御装置9との間に設けられており、室内側熱交換器5と第1の流量制御装置9とを接続する液枝管7b、7c、7dに流通する冷媒の温度を検出するものである。 The indoor units B, C, and D are provided with a gas pipe temperature detection sensor 53 and a liquid pipe temperature detection sensor 54. The gas pipe temperature detection sensor 53 is provided between the indoor heat exchanger 5 and the relay E, and is connected to the gas branch pipes 6b, 6c, and 6d that connect the indoor heat exchanger 5 and the relay E. The temperature of the circulating refrigerant is detected. The liquid pipe temperature detection sensor 54 is provided between the indoor heat exchanger 5 and the first flow control device 9, and is a liquid that connects the indoor heat exchanger 5 and the first flow control device 9. The temperature of the refrigerant flowing through the branch pipes 7b, 7c, 7d is detected.
 (中継機E)
 中継機Eは、第1の分岐部10、第2の流量制御装置13、第2の分岐部11、気液分離装置12、熱交換部8、第3の流量制御装置15を備えている。中継機Eは、熱源機Aと室内機B、C、Dとの間に介在し、室内機B、C、Dからの要求に応じて熱源機Aから供給される冷媒の流れを切り替え、熱源機Aから供給される冷媒を複数の室内機B、C、Dに分配する機能を有している。
(Repeater E)
The relay machine E includes a first branch unit 10, a second flow rate control device 13, a second branch unit 11, a gas-liquid separation device 12, a heat exchange unit 8, and a third flow rate control device 15. The relay unit E is interposed between the heat source unit A and the indoor units B, C, D, and switches the flow of the refrigerant supplied from the heat source unit A in response to a request from the indoor units B, C, D. It has a function of distributing the refrigerant supplied from the machine A to the plurality of indoor units B, C, and D.
 ここで、熱源機Aの流路切替弁2と中継機Eとは、第1の接続配管6によって接続されている。室内機B、C、Dの室内側熱交換器5と中継機Eとは、第1の接続配管6に対応する室内機B、C、D側のガス枝管6b、6c、6dによって接続されている。熱源機Aの熱源側熱交換ユニット3と中継機Eとは、第1の接続配管6より細径の第2の接続配管7によって接続されている。室内機B、C、Dの室内側熱交換器5と中継機Eとは、第1の接続配管6を介して接続されていると共に、第2の接続配管7に対応する室内機B、C、D側の液枝管7b、7c、7dによって接続されている。 Here, the flow path switching valve 2 of the heat source device A and the relay device E are connected by the first connection pipe 6. The indoor side heat exchanger 5 of the indoor units B, C, and D and the relay unit E are connected by gas branch pipes 6b, 6c, and 6d on the indoor units B, C, and D sides corresponding to the first connection pipe 6. ing. The heat source side heat exchange unit 3 of the heat source machine A and the relay machine E are connected by a second connection pipe 7 having a diameter smaller than that of the first connection pipe 6. The indoor side heat exchanger 5 and the relay unit E of the indoor units B, C, and D are connected via the first connection pipe 6 and the indoor units B and C corresponding to the second connection pipe 7. , D side liquid branch pipes 7b, 7c and 7d.
 第1の分岐部10は、一方がガス枝管6b、6c、6dに接続され、他方が第1の接続配管6及び第2の接続配管7に接続され、冷房運転時の冷媒の流通方向と暖房運転時の冷媒の流通方向とが異なるものである。第1の分岐部10は、第1の冷房用電磁弁31aと第2の冷房用電磁弁31bと暖房用電磁弁30とを備えている。第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bは、互いに並列に接続されており、それぞれの一方がガス枝管6b、6c、6dに接続され、それぞれの他方が第1の接続配管6に接続され、冷房運転時に開放され、暖房運転時に閉止されるものである。なお、第1の冷房用電磁弁31a、第2の冷房用電磁弁31b及び暖房用電磁弁30は、弁の種類が限定されるものではなく、例えば電動弁でもよい。 One of the first branch portions 10 is connected to the gas branch pipes 6b, 6c, 6d, and the other is connected to the first connection pipe 6 and the second connection pipe 7, and the refrigerant flow direction during the cooling operation is The flow direction of the refrigerant during the heating operation is different. The first branching unit 10 includes a first cooling electromagnetic valve 31a, a second cooling electromagnetic valve 31b, and a heating electromagnetic valve 30. The first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are connected in parallel with each other, one of which is connected to the gas branch pipes 6b, 6c, 6d, and the other of which is the first. It is connected to the connecting pipe 6 and is opened during cooling operation and closed during heating operation. The first cooling electromagnetic valve 31a, the second cooling electromagnetic valve 31b, and the heating electromagnetic valve 30 are not limited to valve types, and may be, for example, an electric valve.
 また、暖房用電磁弁30は、一方がガス枝管6b、6c、6dに接続され、他方が第2の接続配管7に接続され、暖房運転時に開放され、冷房運転時に閉止されるものである。なお、以下、室内機B、C、Dに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bを、冷房用電磁弁31と総称する場合がある。冷房用電磁弁31は、2個に限らず、3個以上設けられてもよい。また、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bは、Cv値が同等でもよいし異なっていてもよい。更に、各室内機B、C、Dに接続された冷房用電磁弁31は、それぞれCv値が同等でもよいし異なっていてもよい。 In addition, one of the heating solenoid valves 30 is connected to the gas branch pipes 6b, 6c and 6d, and the other is connected to the second connection pipe 7, and is opened during the heating operation and closed during the cooling operation. . Hereinafter, the first cooling electromagnetic valve 31 a and the second cooling electromagnetic valve 31 b connected to the indoor units B, C, and D may be collectively referred to as a cooling electromagnetic valve 31. The number of cooling solenoid valves 31 is not limited to two, and may be three or more. Further, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b may have the same or different Cv values. Further, the cooling electromagnetic valves 31 connected to the indoor units B, C, and D may have the same or different Cv values.
 第2の分岐部11は、一方が液枝管7b、7c、7dに接続され、他方が第1の接続配管6及び第2の接続配管7に接続され、冷房運転時の冷媒の流通方向と暖房運転時の冷媒の流通方向とが異なるものである。第2の分岐部11は、第1の逆止弁50b、50c、50dと第2の逆止弁52b、52c、52dとを有している。 One of the second branch portions 11 is connected to the liquid branch pipes 7b, 7c, and 7d, and the other is connected to the first connection pipe 6 and the second connection pipe 7, and the flow direction of the refrigerant during the cooling operation is The flow direction of the refrigerant during the heating operation is different. The second branch portion 11 includes first check valves 50b, 50c, and 50d and second check valves 52b, 52c, and 52d.
 第1の逆止弁50b、50c、50dは、それぞれ室内機B、C、Dの台数に対応する数だけ設けられている。第1の逆止弁50b、50c、50dは、それぞれ液枝管7b、7c、7dに設けられており、第2の接続配管7から液枝管7b、7c、7dに向かう冷媒の流通を許容する。 The first check valves 50b, 50c, 50d are provided in the number corresponding to the number of indoor units B, C, D, respectively. The first check valves 50b, 50c, 50d are provided in the liquid branch pipes 7b, 7c, 7d, respectively, and allow the refrigerant to flow from the second connection pipe 7 to the liquid branch pipes 7b, 7c, 7d. To do.
 第2の逆止弁52b、52c、52dは、それぞれ室内機B、C、Dの台数に対応する数だけ設けられている。第2の逆止弁52b、52c、52dは、それぞれ液枝管7b、7c、7dにおいて、第1の逆止弁50b、50c、50dに並列に接続されており、液枝管7b、7c、7dから第2の接続配管7に向かう冷媒の流通を許容する。 The number of second check valves 52b, 52c, and 52d is provided in a number corresponding to the number of indoor units B, C, and D, respectively. The second check valves 52b, 52c, 52d are connected in parallel to the first check valves 50b, 50c, 50d in the liquid branch pipes 7b, 7c, 7d, respectively, and the liquid branch pipes 7b, 7c, The refrigerant is allowed to flow from 7d toward the second connection pipe 7.
 気液分離装置12は、ガス状態の冷媒と液状態の冷媒とを分離するものであり、流入側が第2の接続配管7に接続され、ガス流出側が第1の分岐部10に接続され、液流出側が第2の分岐部11に接続されている。 The gas-liquid separator 12 separates the refrigerant in the gas state and the refrigerant in the liquid state, the inflow side is connected to the second connection pipe 7, the gas outflow side is connected to the first branch portion 10, and the liquid The outflow side is connected to the second branch portion 11.
 熱交換部8は、第1の熱交換部19と第2の熱交換部16とから構成されている。第2の流量制御装置13は、例えば開閉自在の電気式膨張弁等で構成されている。第2の流量制御装置13は、暖房運転時に閉止され、冷房運転時に開放されるものである。ここで、気液分離装置12と第2の分岐部11とは、第1の熱交換部19、第2の流量制御装置13、第2の熱交換部16を介して接続されている。また、第2の分岐部11と第1の接続配管6とは、第1のバイパス配管14によって接続されている。第3の流量制御装置15は、第2の流量制御装置13の下流側において第1のバイパス配管14に設けられており、例えば開閉自在の電気式膨張弁等で構成されている。ここで、第2の分岐部11と第1の接続配管6とは、第3の流量制御装置15、第2の熱交換部16、第1の熱交換部19を介して接続されている。 The heat exchange unit 8 includes a first heat exchange unit 19 and a second heat exchange unit 16. The second flow rate control device 13 is configured by, for example, an electric expansion valve that can be freely opened and closed. The second flow control device 13 is closed during the heating operation and opened during the cooling operation. Here, the gas-liquid separator 12 and the second branching unit 11 are connected via a first heat exchange unit 19, a second flow rate control device 13, and a second heat exchange unit 16. Further, the second branch portion 11 and the first connection pipe 6 are connected by a first bypass pipe 14. The third flow rate control device 15 is provided in the first bypass pipe 14 on the downstream side of the second flow rate control device 13, and is configured by, for example, an electric expansion valve that can be freely opened and closed. Here, the 2nd branch part 11 and the 1st connection piping 6 are connected via the 3rd flow control device 15, the 2nd heat exchange part 16, and the 1st heat exchange part 19.
 即ち、第1の熱交換部19は、第2の接続配管7における第2の流量制御装置13の上流側と、第1のバイパス配管14における第2の熱交換部16の下流側とを熱交換するものである。また、第2の熱交換部16は、第2の接続配管7における第2の流量制御装置13の下流側と、第1のバイパス配管14における第3の流量制御装置15の下流側とを熱交換するものである。このように、気液分離装置12は、ガス流出側が暖房用電磁弁30に接続され、液流出側が液枝管7b、7c、7d及び第1の接続配管6に接続されている。 That is, the first heat exchange unit 19 heats the upstream side of the second flow rate control device 13 in the second connection pipe 7 and the downstream side of the second heat exchange unit 16 in the first bypass pipe 14. To be exchanged. The second heat exchange unit 16 heats the downstream side of the second flow rate control device 13 in the second connection pipe 7 and the downstream side of the third flow rate control device 15 in the first bypass pipe 14. To be exchanged. Thus, the gas-liquid separator 12 has the gas outflow side connected to the heating solenoid valve 30 and the liquid outflow side connected to the liquid branch pipes 7 b, 7 c, 7 d and the first connection pipe 6.
 なお、液枝管7b、7c、7dにおける第1の逆止弁50b、50c、50dの下流側と、第2の接続配管7における第2の流量制御装置13の下流側、且つ、第2の熱交換部16の上流側とは、第2のバイパス配管51によって接続されている。そして、第2のバイパス配管51における液枝管7b、7c、7dに接続される配管と、第2のバイパス配管51における第2の接続配管7に接続される配管とは、途中で合流する。 In addition, the downstream side of the first check valves 50b, 50c, 50d in the liquid branch pipes 7b, 7c, 7d, the downstream side of the second flow rate control device 13 in the second connection pipe 7, and the second The upstream side of the heat exchange unit 16 is connected by a second bypass pipe 51. Then, the pipes connected to the liquid branch pipes 7 b, 7 c, 7 d in the second bypass pipe 51 and the pipes connected to the second connection pipe 7 in the second bypass pipe 51 merge on the way.
 また、第2の逆止弁52b、52c、52dは、第2のバイパス配管51における液枝管7b、7c、7dに接続される配管と、第2のバイパス配管51における第2の接続配管7に接続される配管とが合流する部分より上流側に設けられている。なお、第2の接続配管7から第1の逆止弁50b、50c、50dが設けられた液枝管7b、7c、7dを介して第1の流量制御装置9に至る流路が第1の冷媒流路を構成し、第1の流量制御装置9から液枝管7b、7c、7d及び第2の逆止弁52b、52c、52dが設けられた第2のバイパス配管51を介して第2の接続配管7に至る流路が第2の冷媒流路を構成している。 The second check valves 52 b, 52 c and 52 d are connected to the liquid branch pipes 7 b, 7 c and 7 d in the second bypass pipe 51 and the second connection pipe 7 in the second bypass pipe 51. It is provided on the upstream side from the portion where the pipe connected to the pipe joins. The flow path from the second connection pipe 7 to the first flow control device 9 via the liquid branch pipes 7b, 7c, 7d provided with the first check valves 50b, 50c, 50d is the first flow path. The refrigerant flow path is configured and the second flow rate from the first flow rate control device 9 through the second bypass pipe 51 provided with the liquid branch pipes 7b, 7c, 7d and the second check valves 52b, 52c, 52d. The flow path leading to the connection pipe 7 constitutes the second refrigerant flow path.
 また、中継機Eには、液流出圧力検出センサ25、下流側液流出圧力検出センサ26、及び、合流圧力検出センサ56が設けられている。液流出圧力検出センサ25は、第2の接続配管7における第1の熱交換部19と第2の流量制御装置13との間に設けられており、気液分離装置12の液流出側の冷媒の圧力を検出するものである。下流側液流出圧力検出センサ26は、第2の接続配管7における第2の流量制御装置13と第2の熱交換部16との間に設けられており、第2の流量制御装置13と第2の熱交換部16との間の冷媒の圧力を検出するものである。即ち、下流側液流出圧力検出センサ26は、複数の液枝管7b、7c、7dが合流する部分に流通する冷媒の圧力を検出するものである。合流圧力検出センサ56は、第1の接続配管6と第1のバイパス配管14とが接続される部分に設けられており、液枝管7b、7c、7dと第1の接続配管6とが接続された部分に流通する冷媒の圧力を検出するものである。 Further, the relay E is provided with a liquid outflow pressure detection sensor 25, a downstream liquid outflow pressure detection sensor 26, and a merging pressure detection sensor 56. The liquid outflow pressure detection sensor 25 is provided between the first heat exchange unit 19 and the second flow control device 13 in the second connection pipe 7, and is a refrigerant on the liquid outflow side of the gas-liquid separation device 12. The pressure is detected. The downstream liquid outflow pressure detection sensor 26 is provided between the second flow rate control device 13 and the second heat exchange unit 16 in the second connection pipe 7, and the second flow rate control device 13 and the second flow rate control device 13. The pressure of the refrigerant | coolant between 2 heat-exchange parts 16 is detected. That is, the downstream liquid outflow pressure detection sensor 26 detects the pressure of the refrigerant flowing through the portion where the plurality of liquid branch pipes 7b, 7c, 7d join. The merge pressure detection sensor 56 is provided in a portion where the first connection pipe 6 and the first bypass pipe 14 are connected, and the liquid branch pipes 7b, 7c, 7d and the first connection pipe 6 are connected. The pressure of the refrigerant flowing through the part is detected.
 (冷媒)
 空気調和装置100は、配管の内部に冷媒が充填されている。冷媒は、例えば二酸化炭素(CO)、炭化水素、ヘリウム等の自然冷媒、HFC410A、HFC407C、HFC404A等の塩素を含有しないフロン代替冷媒、既存の製品に使用されるR22、R134a等のフロン系冷媒等が使用される。なお、HFC407Cは、HFCのR32、R125、R134aが、それぞれ23wt%、25wt%、52wt%の比率で混合されている非共沸混合冷媒である。また、空気調和装置100の配管の内部に、冷媒ではなく熱媒体が充填されていてもよい。熱媒体は、例えば水、ブライン等である。
(Refrigerant)
In the air conditioner 100, the inside of a pipe is filled with a refrigerant. Examples of the refrigerant include natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, CFC-free refrigerants that do not contain chlorine such as HFC410A, HFC407C, and HFC404A, and CFC-based refrigerants such as R22 and R134a that are used in existing products. Etc. are used. HFC407C is a non-azeotropic refrigerant mixture in which R32, R125, and R134a of HFC are mixed at a ratio of 23 wt%, 25 wt%, and 52 wt%, respectively. Moreover, the inside of the piping of the air conditioning apparatus 100 may be filled with a heat medium instead of the refrigerant. The heat medium is, for example, water, brine or the like.
 (制御部70)
 制御部70は、空気調和装置100のシステム全体を制御するものである。具体的には、制御部70は、ガス管温度検出センサ53、液管温度検出センサ54、液流出圧力検出センサ25、下流側液流出圧力検出センサ26、合流圧力検出センサ56及び吐出圧力検出センサ18から受信した検出情報及びリモコン(図示せず)からの指示に基づいて、圧縮機1の駆動周波数、熱源側送風機20及び室内側熱交換器5に設けられている送風機(図示せず)の回転数、流路切替弁2の切り替え、第1の電磁開閉弁44、第2の電磁開閉弁45、第3の電磁開閉弁46、第4の電磁開閉弁47、第5の電磁開閉弁48、第1の冷房用電磁弁31a、第2の冷房用電磁弁31b及び暖房用電磁弁30の開閉、第1の流量制御装置9、第2の流量制御装置13、第3の流量制御装置15の開度等を制御する。
(Control unit 70)
The control unit 70 controls the entire system of the air conditioning apparatus 100. Specifically, the control unit 70 includes a gas pipe temperature detection sensor 53, a liquid pipe temperature detection sensor 54, a liquid outflow pressure detection sensor 25, a downstream side liquid outflow pressure detection sensor 26, a merging pressure detection sensor 56, and a discharge pressure detection sensor. 18, based on the detection information received from 18 and an instruction from a remote controller (not shown), the driving frequency of the compressor 1, the heat source side blower 20 and the blower (not shown) provided in the indoor side heat exchanger 5. Rotation speed, switching of flow path switching valve 2, first electromagnetic on-off valve 44, second electromagnetic on-off valve 45, third electromagnetic on-off valve 46, fourth electromagnetic on-off valve 47, fifth electromagnetic on-off valve 48 , Opening / closing of the first cooling electromagnetic valve 31a, the second cooling electromagnetic valve 31b and the heating electromagnetic valve 30, the first flow control device 9, the second flow control device 13, and the third flow control device 15 To control the degree of opening.
 なお、制御部70は、熱源機A、室内機B、C、D、中継機Eのいずれかに搭載してもよいし、全てに搭載してもよい。また、熱源機A、室内機B、C、D、中継機Eとは別に制御部70を搭載してもよい。また、空気調和装置100が複数の制御部70を有する場合は、互いに無線又は有線によって通信可能に接続される。 The control unit 70 may be mounted on any one of the heat source unit A, the indoor units B, C, D, and the relay unit E, or may be mounted on all. Further, the control unit 70 may be mounted separately from the heat source unit A, the indoor units B, C, D, and the relay unit E. Moreover, when the air conditioning apparatus 100 has the some control part 70, it mutually connects so that communication is possible by radio | wireless or a wire communication.
 図2は、本発明の実施の形態1に係る空気調和装置100の制御部70を示すブロック図である。図2に示すように、制御部70は、弁制御手段71と、判断手段72と、タイミング制御手段73とを有している。弁制御手段71は、熱源機Aが暖房運転から除霜運転に切り替えたとき、流路切替弁2を切り替え、暖房用電磁弁30を閉止し、第2の流量制御装置13及び第3の流量制御装置15を開放するものである。また、弁制御手段71は、室内機B、C、Dが暖房運転から冷房運転に切り替えたとき、第1の流量制御装置9の開度を一定にする機能を有するものである。例えば、弁制御手段71は、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bのうち一つを開放する。 FIG. 2 is a block diagram showing the control unit 70 of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 2, the control unit 70 includes valve control means 71, determination means 72, and timing control means 73. When the heat source machine A switches from the heating operation to the defrosting operation, the valve control means 71 switches the flow path switching valve 2 and closes the heating electromagnetic valve 30, and the second flow control device 13 and the third flow rate The control device 15 is opened. The valve control means 71 has a function of making the opening degree of the first flow control device 9 constant when the indoor units B, C, and D are switched from the heating operation to the cooling operation. For example, the valve control means 71 opens one of the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b.
 判断手段72は、第2の流量制御装置13に冷媒が流通する際に、液状態検出部81によって検出された冷媒の状態に基づいて、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生するか否かを判断するものである。具体的には、判断手段72は、液流出圧力検出センサ25及び下流側液流出圧力検出センサ26によって検出された冷媒の圧力を使用して第2の流量制御装置13前後の圧力差が閾値以上の場合、冷媒の流動音が発生すると判断するものである。なお、判断手段72は、第2の流量制御装置13及び第3の流量制御装置15のいずれか一方に流れる冷媒が流動音を発生するか否かを判断するものであってもよい。 The determination unit 72 is configured to use the second flow rate control device 13 and the third flow rate control device based on the state of the refrigerant detected by the liquid state detection unit 81 when the refrigerant flows through the second flow rate control device 13. It is determined whether or not the refrigerant flowing through 15 generates a flow noise. Specifically, the determination means 72 uses the refrigerant pressure detected by the liquid outflow pressure detection sensor 25 and the downstream liquid outflow pressure detection sensor 26 so that the pressure difference before and after the second flow control device 13 is equal to or greater than a threshold value. In this case, it is determined that the flow sound of the refrigerant is generated. Note that the determination unit 72 may determine whether or not the refrigerant flowing through one of the second flow control device 13 and the third flow control device 15 generates a flow noise.
 また、判断手段72は、冷房用電磁弁31に冷媒が流通する際に、ガス状態検出部80によって検出された冷媒の状態に基づいて、暖房用電磁弁30に流れる冷媒が流動音を発生するか否かを判断するものである。また、判断手段72は、冷房用電磁弁31に冷媒が流通する際に、ガス状態検出部80によって検出された冷媒の状態に基づいて、冷房用電磁弁31に流れる冷媒が流動音を発生するか否かを判断するものである。具体的には、判断手段72は、液流出圧力検出センサ25及び合流圧力検出センサ56によって検出された冷媒の圧力を使用して暖房用電磁弁30又は冷房用電磁弁31前後の圧力差が閾値以上の場合、冷媒の流動音が発生すると判断するものである。なお、合流圧力検出センサ56での検知情報により暖房用電磁弁30又は冷房用電磁弁31に流入する冷媒の状態を判断した場合を例に示したが、これに限定するものではなく、以下に説明するように他の検出手段からの情報を利用するようにしてもよい。 In addition, when the refrigerant flows through the cooling electromagnetic valve 31, the determination unit 72 generates a flow sound of the refrigerant flowing through the heating electromagnetic valve 30 based on the state of the refrigerant detected by the gas state detection unit 80. Whether or not. In addition, when the refrigerant flows through the cooling electromagnetic valve 31, the determination unit 72 generates a flow sound of the refrigerant flowing through the cooling electromagnetic valve 31 based on the state of the refrigerant detected by the gas state detection unit 80. Whether or not. Specifically, the determination means 72 uses the refrigerant pressure detected by the liquid outflow pressure detection sensor 25 and the combined pressure detection sensor 56 to determine whether the pressure difference before and after the heating solenoid valve 30 or the cooling solenoid valve 31 is a threshold value. In the above case, it is determined that the flow noise of the refrigerant is generated. In addition, although the case where the state of the refrigerant flowing into the heating electromagnetic valve 30 or the cooling electromagnetic valve 31 is determined based on the detection information in the merging pressure detection sensor 56 is shown as an example, the present invention is not limited to this, and is described below. As will be described, information from other detection means may be used.
 例えば、合流圧力検出センサ56、ガス管温度検出センサ53からの情報に基づいて、暖房用電磁弁30又は冷房用電磁弁31の出入口の差圧値を予測することによって、暖房用電磁弁30又は冷房用電磁弁31に流入する冷媒の状態を判断するようにしてもよい。また、冷房運転に切り替えられる前の暖房運転を行っている室内側熱交換器5の出口サブクール値から暖房用電磁弁30又は冷房用電磁弁31に流入する冷媒の状態を判断するようにしてもよい。更に、暖房停止からの経過時間から停止している室内機の冷媒状態を予測することによって、暖房用電磁弁30又は冷房用電磁弁31に流入する冷媒の状態を判断するようにしてもよい。更にまた、これらを組み合わせることによって、第4の流量制御装置55に流入する冷媒の状態を判断するようにしてもよい。なお、冷媒の状態の判断は、合流圧力検出センサ56を用いずに、温度を検出するサーミスタで代用してもよい。 For example, by predicting the differential pressure value at the inlet / outlet of the heating solenoid valve 30 or the cooling solenoid valve 31 based on information from the merging pressure detection sensor 56 and the gas pipe temperature detection sensor 53, the heating solenoid valve 30 or The state of the refrigerant flowing into the cooling electromagnetic valve 31 may be determined. Further, the state of the refrigerant flowing into the heating solenoid valve 30 or the cooling solenoid valve 31 may be determined from the outlet subcool value of the indoor heat exchanger 5 performing the heating operation before switching to the cooling operation. Good. Furthermore, the state of the refrigerant flowing into the heating electromagnetic valve 30 or the cooling electromagnetic valve 31 may be determined by predicting the refrigerant state of the indoor unit that has been stopped from the elapsed time since the heating was stopped. Furthermore, the state of the refrigerant flowing into the fourth flow control device 55 may be determined by combining these. The determination of the state of the refrigerant may be replaced by a thermistor that detects the temperature without using the merged pressure detection sensor 56.
 タイミング制御手段73は、判断手段72によって第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30及び冷房用電磁弁31を順次開放するように弁制御手段71を制御するものである。ここで、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生しないと判断された場合、暖房用電磁弁30を開放し、時間閾値が経過したとき、冷房用電磁弁31を開放するように弁制御手段71を制御する。なお、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生しないと判断された場合、暖房用電磁弁30を開放し、時間閾値が経過したとき、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bのいずれも開放するように弁制御手段71を制御してもよい。なお、タイミング制御手段73は、第2の流量制御装置13及び第3の流量制御装置15のいずれか一方に流れる冷媒が流動音を発生すると判断された場合に、暖房用電磁弁30及び冷房用電磁弁31を順次開放するように弁制御手段71を制御するものであってもよい。 When it is determined by the determination means 72 that the refrigerant flowing through the second flow control device 13 and the third flow control device 15 generates a flow noise, the timing control means 73 has the heating solenoid valve 30 and the cooling solenoid valve 31. The valve control means 71 is controlled so as to open sequentially. Here, the timing control unit 73 opens the heating electromagnetic valve 30 when the determination unit 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 does not generate a flow noise, and when the time threshold has elapsed, The valve control means 71 is controlled to open the electromagnetic valve 31 for use. Note that the timing control means 73 opens the heating solenoid valve 30 when the judgment means 72 determines that the refrigerant flowing through the heating solenoid valve 30 does not generate a flow noise, and the first threshold is reached when the time threshold value has elapsed. The valve control means 71 may be controlled so that both the cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are opened. Note that the timing control unit 73 determines that the refrigerant flowing through one of the second flow rate control device 13 and the third flow rate control device 15 generates a flow noise, and the heating solenoid valve 30 and the cooling flow rate control unit 73. The valve control means 71 may be controlled so that the electromagnetic valves 31 are sequentially opened.
 一方、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を閉止すると共に冷房用電磁弁31を開放し、時間閾値が経過したとき、暖房用電磁弁30を開放するように弁制御手段71を制御する。このとき、例えばそれぞれの液枝管7b、7c、7dに接続された冷房用電磁弁31のいずれも開放することによって、各冷房用電磁弁31に流れる冷媒の圧力が均圧化される。また、タイミング制御手段73は、例えばそれぞれのガス枝管6b、6c、6dに接続された暖房用電磁弁30を順次開放する。この場合、タイミング制御手段73は、閉止されている暖房用電磁弁30のうち一つを開放し、その後、閉止されている暖房用電磁弁30のうち二つを開放してもよいし、閉止されている暖房用電磁弁30のうち二つを開放し、その後、閉止されている暖房用電磁弁30のうち一つを開放してもよいし、閉止されている暖房用電磁弁30のうち一つを開放し、その後、閉止されている暖房用電磁弁30のうち一つを開放し、その後、閉止されている暖房用電磁弁30のうち一つを開放してもよい。 On the other hand, the timing control unit 73 closes the heating electromagnetic valve 30 and opens the cooling electromagnetic valve 31 when the determination unit 72 determines that the refrigerant flowing in the heating electromagnetic valve 30 generates a flow noise. When the threshold value has elapsed, the valve control means 71 is controlled so as to open the heating solenoid valve 30. At this time, for example, by opening any of the cooling electromagnetic valves 31 connected to the respective liquid branch pipes 7b, 7c, 7d, the pressure of the refrigerant flowing through each cooling electromagnetic valve 31 is equalized. Further, the timing control means 73 sequentially opens the heating solenoid valves 30 connected to the gas branch pipes 6b, 6c, 6d, for example. In this case, the timing control means 73 may open one of the heating solenoid valves 30 that are closed, and then open two of the heating solenoid valves 30 that are closed. Two of the heating solenoid valves 30 being opened may be opened, and then one of the heating solenoid valves 30 being closed may be opened, or of the heating solenoid valves 30 being closed One of the heating solenoid valves 30 may be opened, and then one of the closed heating solenoid valves 30 may be opened, and then one of the closed heating solenoid valves 30 may be opened.
 また、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を開放すると共に冷房用電磁弁31を閉止し、時間閾値が経過したとき、冷房用電磁弁31を開放するように弁制御手段71を制御する。このとき、例えばそれぞれの液枝管7b、7c、7dに接続された暖房用電磁弁30のいずれも開放することによって、各暖房用電磁弁30に流れる冷媒の圧力が均圧化される。また、タイミング制御手段73は、例えばそれぞれのガス枝管6b、6c、6dに接続された冷房用電磁弁31を順次開放する。この場合、タイミング制御手段73は、閉止されている冷房用電磁弁31のうち一つを開放し、その後、閉止されている冷房用電磁弁31のうち残り全てを開放してもよいし、閉止されている冷房用電磁弁31のうち一つを開放し、その後、閉止されている冷房用電磁弁31のうち一つを開放し、その後、閉止されている冷房用電磁弁31のうち残り全てを開放してもよいし、閉止されている冷房用電磁弁31のうち二つを開放し、その後、閉止されている冷房用電磁弁31のうち残り全てを開放してもよい。 The timing control means 73 opens the heating electromagnetic valve 30 and closes the cooling electromagnetic valve 31 when the determination means 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow noise. When the threshold value has elapsed, the valve control means 71 is controlled so as to open the cooling electromagnetic valve 31. At this time, for example, by opening any of the heating solenoid valves 30 connected to the respective liquid branch pipes 7b, 7c, 7d, the pressure of the refrigerant flowing through each heating solenoid valve 30 is equalized. Further, the timing control means 73 sequentially opens the cooling electromagnetic valves 31 connected to the gas branch pipes 6b, 6c, 6d, for example. In this case, the timing control means 73 may open one of the closed cooling electromagnetic valves 31 and then open all of the remaining cooling electromagnetic valves 31. One of the cooling electromagnetic valves 31 is opened, then one of the closed cooling electromagnetic valves 31 is opened, and then all of the remaining cooling electromagnetic valves 31 are closed. May be opened, or two of the closed cooling electromagnetic valves 31 may be opened, and then all the remaining of the closed cooling electromagnetic valves 31 may be opened.
 また、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を開放すると共に冷房用電磁弁31を開放し、時間閾値が経過したとき、冷房用電磁弁31を開放するように弁制御手段71を制御する。このとき、例えばそれぞれの液枝管7b、7c、7dに接続された暖房用電磁弁30のいずれも開放することによって、各暖房用電磁弁30に流れる冷媒の圧力が均圧化される。なお、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を開放すると共に冷房用電磁弁31を開放し、時間閾値が経過したとき、冷房用電磁弁31を開放するように弁制御手段71を制御してもよい。また、タイミング制御手段73は、例えばそれぞれのガス枝管6b、6c、6dに接続された冷房用電磁弁31を順次開放する。この場合、タイミング制御手段73は、閉止されている冷房用電磁弁31のうち一つを開放し、その後、閉止されている冷房用電磁弁31のうち残り全てを開放してもよいし、閉止されている冷房用電磁弁31のうち一つを開放し、その後、閉止されている冷房用電磁弁31のうち一つを開放し、その後、閉止されている冷房用電磁弁31のうち残り全てを開放してもよいし、閉止されている冷房用電磁弁31のうち二つを開放し、その後、閉止されている冷房用電磁弁31のうち残り全てを開放してもよい。 Further, the timing control means 73 opens the heating electromagnetic valve 30 and the cooling electromagnetic valve 31 when the determination means 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow noise. When the threshold value has elapsed, the valve control means 71 is controlled so as to open the cooling electromagnetic valve 31. At this time, for example, by opening any of the heating solenoid valves 30 connected to the respective liquid branch pipes 7b, 7c, 7d, the pressure of the refrigerant flowing through each heating solenoid valve 30 is equalized. The timing control means 73 opens the heating electromagnetic valve 30 and opens the cooling electromagnetic valve 31 when the determination means 72 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow noise. When the threshold value has elapsed, the valve control means 71 may be controlled to open the cooling electromagnetic valve 31. Further, the timing control means 73 sequentially opens the cooling electromagnetic valves 31 connected to the gas branch pipes 6b, 6c, 6d, for example. In this case, the timing control means 73 may open one of the closed cooling electromagnetic valves 31 and then open all of the remaining cooling electromagnetic valves 31. One of the cooling electromagnetic valves 31 is opened, then one of the closed cooling electromagnetic valves 31 is opened, and then all of the remaining cooling electromagnetic valves 31 are closed. May be opened, or two of the closed cooling electromagnetic valves 31 may be opened, and then all the remaining of the closed cooling electromagnetic valves 31 may be opened.
 また、タイミング制御手段73は、室内機B、C、Dが暖房運転から冷房運転に切り替えたとき、複数の冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御し、また、判断手段72によって冷媒の流動音が発生すると判断された場合、閉止された冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御するものである。更に、タイミング制御手段73は、閉止された冷房用電磁弁31のうち一つが開放されてから開放時間閾値が経過したとき、閉止された冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御してもよい。例えば、タイミング制御手段73は、弁制御手段71によって第1の冷房用電磁弁31aが開放されてから開放時間閾値が経過したとき、第2の冷房用電磁弁31bを開放するように弁制御手段71を制御する。 Further, the timing control means 73 controls the valve control means 71 to open one of the plurality of cooling electromagnetic valves 31 when the indoor units B, C, D are switched from the heating operation to the cooling operation, Further, when it is determined by the determination means 72 that the flow noise of the refrigerant is generated, the valve control means 71 is controlled so as to open one of the closed electromagnetic valves 31 for cooling. Further, the timing control means 73 is configured to open one of the closed cooling electromagnetic valves 31 when the opening time threshold has elapsed after one of the closed cooling electromagnetic valves 31 is opened. The control means 71 may be controlled. For example, the timing control means 73 is configured to open the second cooling electromagnetic valve 31b when the opening time threshold has elapsed since the opening of the first cooling electromagnetic valve 31a by the valve control means 71. 71 is controlled.
 なお、室内機B及び室内機Cが、暖房運転から冷房運転に切り替えられる場合、室内機Bに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31b、室内機Cに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bのうち、弁制御手段71は、いずれの冷房用電磁弁31を開放してもよい。例えば、タイミング制御手段73は、例えばアドレスの若い室内機Bに接続された冷房用電磁弁31から開放するように弁制御手段71を制御してもよく、開放される冷房用電磁弁31の順序は問わない。 When the indoor unit B and the indoor unit C are switched from the heating operation to the cooling operation, the first cooling electromagnetic valve 31a, the second cooling electromagnetic valve 31b, and the indoor unit C connected to the indoor unit B Of the connected first cooling electromagnetic valve 31a and second cooling electromagnetic valve 31b, the valve control means 71 may open any of the cooling electromagnetic valves 31. For example, the timing control means 73 may control the valve control means 71 so as to open from the cooling electromagnetic valve 31 connected to the indoor unit B with a young address, for example, and the order of the cooling electromagnetic valves 31 to be opened. Does not matter.
 また、弁制御手段71によって、室内機Bに接続された第1の冷房用電磁弁31aが開かれた場合、タイミング制御手段73は、室内機Bに接続された第2の冷房用電磁弁31bを開くように弁制御手段71を制御してもよいし、室内機Cに接続された第1の冷房用電磁弁31aを開くように弁制御手段71を制御してもよいし、室内機Cに接続された第2の冷房用電磁弁31bを開くように弁制御手段71を制御してもよい。即ち、タイミング制御手段73は、弁制御手段71が開いた冷房用電磁弁31が接続された室内機Bに接続された冷房用電磁弁31を開くように弁制御手段71を制御するだけではなく、他の室内機Cに接続された冷房用電磁弁31を開くように弁制御手段71を制御してもよい。 Further, when the valve control unit 71 opens the first cooling electromagnetic valve 31a connected to the indoor unit B, the timing control unit 73 sets the second cooling electromagnetic valve 31b connected to the indoor unit B. The valve control means 71 may be controlled so as to open the valve, the valve control means 71 may be controlled so as to open the first cooling electromagnetic valve 31a connected to the indoor unit C, or the indoor unit C The valve control means 71 may be controlled to open the second cooling electromagnetic valve 31b connected to the. That is, the timing control means 73 not only controls the valve control means 71 to open the cooling electromagnetic valve 31 connected to the indoor unit B to which the cooling electromagnetic valve 31 connected to the valve control means 71 is connected. The valve control means 71 may be controlled to open the cooling electromagnetic valve 31 connected to the other indoor unit C.
 なお、本実施の形態1では、暖房運転から冷房運転に切り替えられた室内機B、C、Dのうち、アドレスの若い室内機Bに接続された第1の冷房用電磁弁31aが開放され、その後、室内機Bに接続された第2の冷房用電磁弁31bが開放される。なお、第1の冷房用電磁弁31aのCv値が、第2の冷房用電磁弁31bのCv値よりも大きい場合、第2の冷房用電磁弁31bが先に開放される。また、各室内機B、C、Dに接続された第2の冷房用電磁弁31bのCv値が異なる場合、Cv値がもっとも小さい第2の冷房用電磁弁31bが開放される。本実施の形態1では、弁制御手段71によって、室内機Bに接続された第2の冷房用電磁弁31bが先に開放される場合について例示する。 In the first embodiment, among the indoor units B, C, and D that are switched from the heating operation to the cooling operation, the first cooling electromagnetic valve 31a connected to the indoor unit B with the younger address is opened, Thereafter, the second cooling electromagnetic valve 31b connected to the indoor unit B is opened. When the Cv value of the first cooling solenoid valve 31a is larger than the Cv value of the second cooling solenoid valve 31b, the second cooling solenoid valve 31b is opened first. When the Cv values of the second cooling electromagnetic valves 31b connected to the indoor units B, C, and D are different, the second cooling electromagnetic valve 31b having the smallest Cv value is opened. In the first embodiment, the case where the second cooling electromagnetic valve 31b connected to the indoor unit B is opened first by the valve control means 71 will be exemplified.
 なお、制御部70は、除霜運転時に、暖房用電磁弁30又は冷房用電磁弁31に流れる冷媒の流動音が発生する虞がある場合、室内機B,C,Dに冷媒を流すように第1の流量制御装置9を制御してもよい。これにより、暖房用電磁弁30及び冷房用電磁弁31に流れる冷媒の量が減るため、流動音の発生を抑制することができる。また、第2の流量制御装置13及び第3の流量制御装置15に接続される配管の径を太くしてもよい。これにより、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒の圧力損失が減るため、冷媒の流動音の発生を抑制することができる。 In addition, the control unit 70 causes the refrigerant to flow through the indoor units B, C, and D when there is a possibility that the flow noise of the refrigerant flowing through the heating solenoid valve 30 or the cooling solenoid valve 31 is generated during the defrosting operation. The first flow control device 9 may be controlled. Thereby, since the quantity of the refrigerant | coolant which flows into the solenoid valve 30 for heating and the solenoid valve 31 for cooling reduces, generation | occurrence | production of a flow sound can be suppressed. Further, the diameter of the pipe connected to the second flow control device 13 and the third flow control device 15 may be increased. Thereby, since the pressure loss of the refrigerant | coolant which flows into the 2nd flow control apparatus 13 and the 3rd flow control apparatus 15 reduces, generation | occurrence | production of the flow sound of a refrigerant | coolant can be suppressed.
 次に、空気調和装置100の動作について説明する。空気調和装置100は、運転モードとして、全冷房運転、全暖房運転、冷房主体運転、暖房主体運転及び除霜運転を有している。全冷房運転は、室内機B、C、Dの全てが冷房運転を行うモードである。全暖房運転は、室内機B、C、Dの全てが暖房運転を行うモードである。冷房主体運転は、冷暖同時運転のうち、冷房運転の容量が暖房運転の容量よりも大きいモードである。暖房主体運転は、冷暖同時運転のうち、暖房運転の容量が冷房運転の容量よりも大きいモードである。除霜運転は、全暖房運転又は暖房主体運転が行われているときに、第1の熱源側熱交換器41又は第2の熱源側熱交換器42に霜が付着した場合、第1の熱源側熱交換器41又は第2の熱源側熱交換器42に付着した霜を除去するモードである。 Next, the operation of the air conditioner 100 will be described. The air conditioner 100 has a cooling only operation, a heating only operation, a cooling main operation, a heating main operation, and a defrosting operation as operation modes. The all-cooling operation is a mode in which all of the indoor units B, C, and D perform the cooling operation. The all heating operation is a mode in which all of the indoor units B, C, and D perform the heating operation. The cooling main operation is a mode in which the capacity of the cooling operation is larger than the capacity of the heating operation among the simultaneous cooling and heating operations. The heating main operation is a mode in which the heating operation capacity is larger than the cooling operation capacity in the simultaneous cooling and heating operation. The defrosting operation is the first heat source when frost adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 when the all heating operation or the heating main operation is performed. In this mode, frost attached to the side heat exchanger 41 or the second heat source side heat exchanger 42 is removed.
 (全冷房運転)
 図3は、本発明の実施の形態1に係る空気調和装置100の全冷房運転時の状態を示す回路図である。先ず、全冷房運転について説明する。空気調和装置100において、室内機B、C、Dの全てが冷房運転を行っている。図3に示すように、圧縮機1から吐出された高温高圧のガス冷媒は、流路切替弁2を通り、熱源側熱交換ユニット3において送風量可変の熱源側送風機20によって送風される空気と熱交換されて凝縮液化される。この冷媒は、その後、第3の逆止弁32、第2の接続配管7、気液分離装置12、第2の流量制御装置13の順に流通し、更に第2の分岐部11、液枝管7b、7c、7dを通過し、室内機B、C、Dに流入する。
(Cooling only)
FIG. 3 is a circuit diagram showing a state during the cooling only operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. First, the cooling only operation will be described. In the air conditioner 100, all of the indoor units B, C, and D are performing the cooling operation. As shown in FIG. 3, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2 and the air blown by the heat source-side blower 20 having a variable blowing amount in the heat source-side heat exchange unit 3. Heat exchanged and condensed. Thereafter, the refrigerant flows in the order of the third check valve 32, the second connection pipe 7, the gas-liquid separation device 12, and the second flow rate control device 13, and further the second branch portion 11, the liquid branch pipe. Passes 7b, 7c, 7d and flows into indoor units B, C, D.
 そして、室内機B、C、Dに流入した冷媒は、室内側熱交換器5の出口側のスーパーヒート量によって制御された第1の流量制御装置9によって、低圧まで減圧される。減圧された冷媒は、室内側熱交換器5に流入し、室内側熱交換器5で室内空気と熱交換して蒸発ガス化する。その際、室内が冷房される。そして、このガス状態となった冷媒は、ガス枝管6b、6c、6d、第1の分岐部10の第1の冷房用電磁弁31a及び第2の冷房用電磁弁31b、第1の接続配管6、第4の逆止弁33、熱源機Aの流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 Then, the refrigerant flowing into the indoor units B, C, and D is decompressed to a low pressure by the first flow rate control device 9 controlled by the superheat amount on the outlet side of the indoor heat exchanger 5. The decompressed refrigerant flows into the indoor heat exchanger 5 and exchanges heat with indoor air in the indoor heat exchanger 5 to evaporate. At that time, the room is cooled. The refrigerant in the gas state includes the gas branch pipes 6b, 6c and 6d, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b of the first branching section 10, and the first connection piping. 6, sucked into the compressor 1 through the fourth check valve 33, the flow path switching valve 2 of the heat source device A, and the accumulator 4.
 なお、全冷房運転において、いずれの暖房用電磁弁30も、閉止されている。また、いずれの第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bも、開放されている。そして、第1の接続配管6が低圧、第2の接続配管7が高圧であるため、冷媒は、第3の逆止弁32、第4の逆止弁33に流通する。 In addition, in the cooling only operation, all the heating solenoid valves 30 are closed. Further, both the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are opened. Since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure, the refrigerant flows through the third check valve 32 and the fourth check valve 33.
 また、この循環サイクルにおいて、第2の流量制御装置13を通過した冷媒の一部が第1のバイパス配管14へ入る。そして、冷媒は、第3の流量制御装置15で低圧まで減圧された後、第2の熱交換部16において第2の流量制御装置13を通過した冷媒、即ち第1のバイパス配管14に分岐する前の冷媒との間で熱交換されて蒸発する。更に、第1の熱交換部19において第2の流量制御装置13に流入する前の冷媒との間で熱交換を行って蒸発する。この蒸発した冷媒は、第1の接続配管6、第4の逆止弁33に流入し、熱源機Aの流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 In this circulation cycle, part of the refrigerant that has passed through the second flow rate control device 13 enters the first bypass pipe 14. Then, after the refrigerant is depressurized to a low pressure by the third flow control device 15, the refrigerant branches to the refrigerant that has passed through the second flow control device 13 in the second heat exchange unit 16, that is, the first bypass pipe 14. Heat is exchanged with the previous refrigerant to evaporate. Further, the first heat exchange unit 19 evaporates by exchanging heat with the refrigerant before flowing into the second flow rate control device 13. The evaporated refrigerant flows into the first connection pipe 6 and the fourth check valve 33 and is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
 一方、第1の熱交換部19及び第2の熱交換部16において第1のバイパス配管14に流入して第3の流量制御装置15で低圧まで減圧された冷媒との間で熱交換を行って冷却され、サブクールを充分につけられた冷媒は、第2の分岐部11の第1の逆止弁50b、50c、50dを通って、冷房しようとしている室内機B、C、Dへ流入する。ここで、制御部70は、室内機B、C、Dの蒸発温度及び熱源側熱交換ユニット3の凝縮温度が予め定められた目標温度になるように容量可変の圧縮機1の容量及び熱源側送風機20の送風量を調節している。このため、各室内機B、C、Dにおいて目標とする冷房能力を得ることができる。なお、熱源側熱交換ユニット3の凝縮温度は、吐出圧力検出センサ18によって検出される圧力の飽和温度として求められる。 On the other hand, in the first heat exchange section 19 and the second heat exchange section 16, heat exchange is performed with the refrigerant that flows into the first bypass pipe 14 and is decompressed to a low pressure by the third flow control device 15. The refrigerant having been cooled and sufficiently subcooled flows through the first check valves 50b, 50c, and 50d of the second branch portion 11 and flows into the indoor units B, C, and D that are to be cooled. Here, the control unit 70 sets the capacity of the variable capacity compressor 1 and the heat source side so that the evaporation temperatures of the indoor units B, C, and D and the condensation temperature of the heat source side heat exchange unit 3 become predetermined target temperatures. The air volume of the blower 20 is adjusted. For this reason, the target cooling capacity can be obtained in each of the indoor units B, C, and D. The condensation temperature of the heat source side heat exchange unit 3 is obtained as the saturation temperature of the pressure detected by the discharge pressure detection sensor 18.
 (全暖房運転)
 図4は、本発明の実施の形態1に係る空気調和装置100の全暖房運転時の状態を示す回路図である。次に、全暖房運転について説明する。空気調和装置100において、室内機B、C、Dの全てが暖房運転を行っている。図4に示すように、圧縮機1から吐出された高温高圧のガス冷媒は、流路切替弁2を通り、第5の逆止弁34、第2の接続配管7、気液分離装置12、第1の分岐部10の暖房用電磁弁30、ガス枝管6b、6c、6dの順に通り、室内機B、C、Dに流入する。室内機B、C、Dに流入した冷媒は、室内空気と熱交換して凝縮液化する。その際、室内が暖房される。そして、この状態となった冷媒は、各室内側熱交換器5の出口側のサブクール量によって制御された第1の流量制御装置9を通る。
(All heating operation)
FIG. 4 is a circuit diagram showing a state during the heating only operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the all heating operation will be described. In the air conditioner 100, all of the indoor units B, C, and D perform the heating operation. As shown in FIG. 4, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2, passes through the fifth check valve 34, the second connection pipe 7, the gas-liquid separator 12, The heating solenoid valve 30 of the first branching section 10 and the gas branch pipes 6b, 6c, and 6d are passed through in this order and flow into the indoor units B, C, and D. The refrigerant that has flowed into the indoor units B, C, and D is condensed and liquefied by exchanging heat with the indoor air. At that time, the room is heated. And the refrigerant | coolant which became this state passes the 1st flow control apparatus 9 controlled by the subcool amount of the exit side of each indoor side heat exchanger 5. FIG.
 第1の流量制御装置9を通った冷媒は、液枝管7b、7c、7dから第2の分岐部11に流入し、第2の逆止弁52b、52c、52dを通った後合流する。第2の分岐部11で合流した冷媒は、更に第2の接続配管7の第2の流量制御装置13と第2の熱交換部16との間に導かれ、第3の流量制御装置15を通る。また、冷媒は、第1の流量制御装置9及び第3の流量制御装置15で低圧の気液二相まで減圧される。 The refrigerant that has passed through the first flow control device 9 flows into the second branch portion 11 from the liquid branch pipes 7b, 7c, 7d, and merges after passing through the second check valves 52b, 52c, 52d. The refrigerant merged at the second branch portion 11 is further guided between the second flow control device 13 and the second heat exchange portion 16 of the second connection pipe 7, and passes through the third flow control device 15. Pass through. Further, the refrigerant is depressurized to a low-pressure gas-liquid two-phase by the first flow control device 9 and the third flow control device 15.
 そして、低圧まで減圧された冷媒は、第1の接続配管6を経て熱源機Aの第6の逆止弁35を通過して、熱源側熱交換ユニット3に流入し、送風量可変の熱源側送風機20によって送風される空気と熱交換されて蒸発する。蒸発してガス状態となった冷媒は、流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 And the refrigerant | coolant decompressed to low pressure passes the 6th non-return valve 35 of the heat source machine A through the 1st connection piping 6, flows in into the heat source side heat exchange unit 3, and the heat source side with variable ventilation volume Heat exchange with the air blown by the blower 20 evaporates. The refrigerant that has evaporated to a gas state is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4.
 なお、全暖房運転において、いずれの暖房用電磁弁30も、開放されている。また、いずれの第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bも、閉止されている。 In addition, in the all heating operation, both heating solenoid valves 30 are opened. In addition, both the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b are closed.
 また、この循環サイクルにおいては、第1の接続配管6が低圧、第2の接続配管7が高圧であるため、冷媒は第5の逆止弁34、第6の逆止弁35に流通する。また、第1の逆止弁50b、50c、50dには、液枝管7b、7c、7dが第2の接続配管7よりも高圧であるため、冷媒が通過しない。ここで、制御部70は、室内機B、C、Dの凝縮温度及び熱源側熱交換ユニット3の蒸発温度が予め定められた目標温度になるように容量可変の圧縮機1の容量及び熱源側送風機20の送風量を調節している。このため、各室内機B、C、Dにおいて目標とする暖房能力を得ることができる。 Further, in this circulation cycle, the first connection pipe 6 is at a low pressure and the second connection pipe 7 is at a high pressure, so that the refrigerant flows through the fifth check valve 34 and the sixth check valve 35. Further, since the liquid branch pipes 7b, 7c, and 7d are higher in pressure than the second connection pipe 7 through the first check valves 50b, 50c, and 50d, the refrigerant does not pass through. Here, the control unit 70 sets the capacity of the variable capacity compressor 1 and the heat source side so that the condensation temperatures of the indoor units B, C, and D and the evaporation temperature of the heat source side heat exchange unit 3 become predetermined target temperatures. The air volume of the blower 20 is adjusted. For this reason, the target heating capacity can be obtained in each of the indoor units B, C, and D.
 (冷房主体運転)
 図5は、本発明の実施の形態1に係る空気調和装置100の冷房主体運転時の状態を示す回路図である。次に、冷房主体運転について説明する。空気調和装置100において、室内機B、Cから冷房要求があり、室内機Dから暖房要求がある。図5に示すように、圧縮機1から吐出された高温高圧のガス冷媒は、流路切替弁2を経て熱源側熱交換ユニット3に流入し、送風量可変の熱源側送風機20によって送風される空気と熱交換されて二相の高温高圧状態となる。
(Cooling operation)
FIG. 5 is a circuit diagram illustrating a state during the cooling main operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the cooling main operation will be described. In the air conditioner 100, there is a cooling request from the indoor units B and C, and a heating request from the indoor unit D. As shown in FIG. 5, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchange unit 3 through the flow path switching valve 2 and is blown by the heat source side blower 20 having a variable blowing amount. Heat exchange with air results in a two-phase high temperature and high pressure state.
 ここで、制御部70は、室内機B、C、Dの蒸発温度及び凝縮温度が予め定められた目標温度になるように容量可変の圧縮機1の容量及び熱源側送風機20の送風量を調節する。また、制御部70は、第1の熱源側熱交換器41及び第2の熱源側熱交換器42の両端の第1の電磁開閉弁44、第2の電磁開閉弁45、第3の電磁開閉弁46、第4の電磁開閉弁47を開閉して伝熱面積を調整する。更に、制御部70は、熱源側バイパス路43の第5の電磁開閉弁48を開閉して、第1の熱源側熱交換器41及び第2の熱源側熱交換器42に流通する冷媒の流量を調整する。これにより、熱源側熱交換ユニット3において任意の熱交換量が得られ、また、各室内機B、C、Dにおいて、目標とする暖房能力又は冷房能力を得ることができる。 Here, the control part 70 adjusts the capacity | capacitance of the capacity variable compressor 1, and the ventilation volume of the heat source side air blower 20 so that the evaporation temperature and condensation temperature of indoor unit B, C, D may become predetermined target temperature. To do. The control unit 70 also includes a first electromagnetic open / close valve 44, a second electromagnetic open / close valve 45, and a third electromagnetic open / close valve at both ends of the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. The heat transfer area is adjusted by opening and closing the valve 46 and the fourth electromagnetic opening / closing valve 47. Further, the control unit 70 opens and closes the fifth electromagnetic opening / closing valve 48 of the heat source side bypass passage 43 to flow the refrigerant flowing through the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. Adjust. Thereby, arbitrary heat exchange amount is obtained in the heat source side heat exchange unit 3, and in each of the indoor units B, C, D, a target heating capacity or cooling capacity can be obtained.
 二相の高温高圧状態の冷媒は、第3の逆止弁32、第2の接続配管7を経て、中継機Eの気液分離装置12に送られ、ガス冷媒と液冷媒とに分離される。そして、気液分離装置12で分離されたガス冷媒が、第1の分岐部10の暖房用電磁弁30、ガス枝管6dの順に通り、暖房しようとする室内機Dに流入し、室内側熱交換器5で室内空気と熱交換されて凝縮液化する。その際、室内機Dによって室内が暖房される。更に、室内側熱交換器5を流出した冷媒は、室内機Dの室内側熱交換器5の出口側のサブクール量によって制御された第1の流量制御装置9を通り、少し減圧されて第2の分岐部11に流入する。この冷媒は、第2の逆止弁52dを含む第2のバイパス配管51を通って、第2の接続配管7の第2の流量制御装置13の下流側に流入する。 The two-phase high-temperature and high-pressure refrigerant passes through the third check valve 32 and the second connection pipe 7 and is sent to the gas-liquid separator 12 of the relay machine E, where it is separated into a gas refrigerant and a liquid refrigerant. . Then, the gas refrigerant separated by the gas-liquid separator 12 passes through the heating solenoid valve 30 of the first branch portion 10 and the gas branch pipe 6d in this order, and flows into the indoor unit D to be heated, so that the indoor heat Heat is exchanged with room air in the exchanger 5 to be condensed and liquefied. At that time, the room is heated by the indoor unit D. Further, the refrigerant that has flowed out of the indoor heat exchanger 5 passes through the first flow rate control device 9 controlled by the subcooling amount on the outlet side of the indoor heat exchanger 5 of the indoor unit D, and is reduced in pressure to a second level. Flows into the branching section 11 of the. This refrigerant flows through the second bypass pipe 51 including the second check valve 52d to the downstream side of the second flow control device 13 of the second connection pipe 7.
 一方、気液分離装置12で分離された液冷媒は、液流出圧力検出センサ25の検出圧力と下流側液流出圧力検出センサ26の検出圧力とによって制御された第2の流量制御装置13を通って、暖房しようとする室内機Dを通った冷媒と合流する。その後、第2の熱交換部16に流入し、第2の熱交換部16で冷却される。 On the other hand, the liquid refrigerant separated by the gas-liquid separation device 12 passes through the second flow rate control device 13 controlled by the detection pressure of the liquid outflow pressure detection sensor 25 and the detection pressure of the downstream liquid outflow pressure detection sensor 26. Then, the refrigerant passes through the indoor unit D to be heated. Thereafter, it flows into the second heat exchange unit 16 and is cooled by the second heat exchange unit 16.
 そして、第2の熱交換部16で冷却された冷媒の一部は、第1の逆止弁50b、50cを通過し、液枝管7b、7cを通って、冷房しようとする室内機B、Cに入る。室内機B、Cに流入した冷媒は、室内機B、Cの各室内側熱交換器5の出口側のスーパーヒート量によって制御された第1の流量制御装置9に入って減圧された後に、室内側熱交換器5に入って熱交換されて蒸発してガス化する。その際、室内機B、Cによって各室内が冷房される。その後、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bを介して第1の接続配管6に流入する。 Then, a part of the refrigerant cooled in the second heat exchange unit 16 passes through the first check valves 50b and 50c, passes through the liquid branch pipes 7b and 7c, and the indoor unit B to be cooled, Enter C. After the refrigerant flowing into the indoor units B and C enters the first flow rate control device 9 controlled by the superheat amount on the outlet side of the indoor heat exchangers 5 of the indoor units B and C, It enters into the indoor heat exchanger 5 and undergoes heat exchange to evaporate and gasify. At that time, each room is cooled by the indoor units B and C. Thereafter, the refrigerant flows into the first connection pipe 6 via the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b.
 一方、第2の熱交換部16で冷却された冷媒の残部は、液流出圧力検出センサ25の検出圧力と下流側液流出圧力検出センサ26の検出圧力との圧力差が所定範囲となるように制御された第3の流量制御装置15を通る。その後、第2の熱交換部16及び第1の熱交換部19で熱交換されて蒸発した後、第1の接続配管6に流入して室内機B、Cを通った冷媒と合流する。第1の接続配管6で合流した冷媒は、熱源機Aの第4の逆止弁33、流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 On the other hand, the remainder of the refrigerant cooled by the second heat exchange unit 16 is such that the pressure difference between the detection pressure of the liquid outflow pressure detection sensor 25 and the detection pressure of the downstream liquid outflow pressure detection sensor 26 falls within a predetermined range. It passes through a controlled third flow control device 15. Then, after heat-exchanged by the 2nd heat exchange part 16 and the 1st heat exchange part 19, and evaporating, it flows in into the 1st connection piping 6, and merges with the refrigerant which passed indoor units B and C. The refrigerant merged in the first connection pipe 6 is sucked into the compressor 1 through the fourth check valve 33, the flow path switching valve 2, and the accumulator 4 of the heat source machine A.
 なお、冷房主体運転において、室内機B、Cに接続された暖房用電磁弁30は、閉止されている。また、室内機Dに接続された暖房用電磁弁30は開放されている。更に、室内機B、Cに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bは開放されている。更にまた、室内機Dに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bは閉止されている。 In the cooling-main operation, the heating solenoid valve 30 connected to the indoor units B and C is closed. Moreover, the heating solenoid valve 30 connected to the indoor unit D is opened. Further, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor units B and C are opened. Furthermore, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor unit D are closed.
 また、第1の接続配管6が低圧、第2の接続配管7が高圧であるため、冷媒は第3の逆止弁32、第4の逆止弁33に流通する。更に、第2の逆止弁52b、52cには、液枝管7b、7cは第2の接続配管7よりも低圧であるため、冷媒が通過しない。更にまた、第1の逆止弁50dには、液枝管7dは第2の接続配管7よりも高圧であるため、冷媒が通過しない。第1の逆止弁50及び第2の逆止弁52によって、暖房要求のある室内機Dを通った冷媒が第2の熱交換部16を通らずにサブクールが充分につかない状態で冷房要求のある室内機B、Cへ流れ込むことを防止している。 Further, since the first connection pipe 6 is at a low pressure and the second connection pipe 7 is at a high pressure, the refrigerant flows through the third check valve 32 and the fourth check valve 33. Furthermore, since the liquid branch pipes 7b and 7c have a lower pressure than the second connection pipe 7 through the second check valves 52b and 52c, the refrigerant does not pass through. Furthermore, since the liquid branch pipe 7d has a higher pressure than the second connection pipe 7 through the first check valve 50d, the refrigerant does not pass therethrough. By the first check valve 50 and the second check valve 52, the refrigerant that has passed through the indoor unit D that requires heating does not pass through the second heat exchange unit 16, and the subcooling is not sufficiently applied. This prevents it from flowing into certain indoor units B and C.
 (暖房主体運転)
 図6は、本発明の実施の形態1に係る空気調和装置100の暖房主体運転時の状態を示す回路図である。次に、暖房主体運転について説明する。空気調和装置100において、室内機B、Cから暖房要求があり、室内機Dから冷房要求がある。図6に示すように、圧縮機1から吐出された高温高圧のガス冷媒は、流路切替弁2、第5の逆止弁34、第2の接続配管7を通って中継機Eへ送られ、気液分離装置12を通る。気液分離装置12を通った冷媒は、第1の分岐部10の暖房用電磁弁30、ガス枝管6b、6cの順に通り、暖房しようとする室内機B、Cに流入し、室内側熱交換器5で室内空気と熱交換して凝縮液化される。その際、室内機B、Cによって、各室内が暖房される。凝縮液化した冷媒は、室内機C、Dの各室内側熱交換器5の出口側のサブクール量によって制御された第1の流量制御装置9を通り、少し減圧されて第2の分岐部11に流入する。
(Heating-based operation)
FIG. 6 is a circuit diagram showing a state of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention during a heating main operation. Next, the heating main operation will be described. In the air conditioner 100, there is a heating request from the indoor units B and C, and a cooling request from the indoor unit D. As shown in FIG. 6, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the relay device E through the flow path switching valve 2, the fifth check valve 34, and the second connection pipe 7. Through the gas-liquid separator 12. The refrigerant that has passed through the gas-liquid separator 12 passes through the heating solenoid valve 30 and the gas branch pipes 6b and 6c of the first branching section 10 in this order, and flows into the indoor units B and C that are to be heated. Heat is exchanged with room air in the exchanger 5 to be condensed and liquefied. At that time, each room is heated by the indoor units B and C. The condensed and liquefied refrigerant passes through the first flow rate control device 9 controlled by the subcooling amount on the outlet side of the indoor heat exchanger 5 of each of the indoor units C and D, and is slightly reduced in pressure to the second branching unit 11. Inflow.
 第2の分岐部11に流入した冷媒は、第2の逆止弁52b、52cを含む第2のバイパス配管51を通って第2の接続配管7に合流し、第2の熱交換部16で冷却される。この第2の熱交換部16で冷却された冷媒の一部は、第1の逆止弁50d、液枝管7dを通り冷房しようとする室内機Dに入る。そして、室内機Dに入った冷媒は、室内側熱交換器5の出口側のスーパーヒート量によって制御された第1の流量制御装置9に入り減圧された後に、室内側熱交換器5に入って熱交換されて蒸発し、ガス化する。その際、室内機Dによって、室内が冷房される。その後、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bを介して第1の接続配管6に流入する。 The refrigerant that has flowed into the second branching section 11 passes through the second bypass pipe 51 including the second check valves 52b and 52c and merges with the second connection pipe 7, and the second heat exchange section 16 To be cooled. A part of the refrigerant cooled by the second heat exchange unit 16 enters the indoor unit D that is going to be cooled through the first check valve 50d and the liquid branch pipe 7d. Then, the refrigerant that has entered the indoor unit D enters the first heat flow controller 9 controlled by the superheat amount on the outlet side of the indoor heat exchanger 5, is depressurized, and then enters the indoor heat exchanger 5. Heat exchanged to evaporate and gasify. At that time, the indoor unit D cools the room. Thereafter, the refrigerant flows into the first connection pipe 6 via the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b.
 一方、第2の熱交換部16で冷却された冷媒の残部は、液流出圧力検出センサ25の検出圧力と下流側液流出圧力検出センサ26の検出圧力との圧力差が所定範囲となるように制御された第3の流量制御装置15を通る。第3の流量制御装置15を通った冷媒は、第2の熱交換部16で室内機B、Cから出てきた冷媒と熱交換して蒸発する。その後、冷媒は、冷房しようとする室内機Dを通った冷媒と合流して第1の接続配管6を経て熱源機Aの第6の逆止弁35、熱源側熱交換ユニット3に流入する。熱源側熱交換ユニット3に流入した冷媒は、送風量可変の熱源側送風機20によって送風される空気と熱交換されて蒸発しガス化する。 On the other hand, the remainder of the refrigerant cooled by the second heat exchange unit 16 is such that the pressure difference between the detection pressure of the liquid outflow pressure detection sensor 25 and the detection pressure of the downstream liquid outflow pressure detection sensor 26 falls within a predetermined range. It passes through a controlled third flow control device 15. The refrigerant that has passed through the third flow control device 15 is evaporated by exchanging heat with the refrigerant that has come out of the indoor units B and C in the second heat exchange unit 16. Thereafter, the refrigerant merges with the refrigerant that has passed through the indoor unit D to be cooled, and flows into the sixth check valve 35 and the heat source side heat exchange unit 3 of the heat source machine A through the first connection pipe 6. The refrigerant that has flowed into the heat source side heat exchange unit 3 undergoes heat exchange with the air blown by the heat source side blower 20 with a variable air flow rate, evaporates and gasifies.
 ここで、制御部70は、冷房要求のある室内機Dの蒸発温度及び暖房要求のある室内機B、Cの凝縮温度が予め定められた目標温度になるように容量可変の圧縮機1の容量及び熱源側送風機20の送風量を調節する。また、制御部70は、第1の熱源側熱交換器41及び第2の熱源側熱交換器42の両端の第1の電磁開閉弁44、第2の電磁開閉弁45、第3の電磁開閉弁46、第4の電磁開閉弁47を開閉して伝熱面積を調整する。更に、制御部70は、熱源側バイパス路43の第5の電磁開閉弁48を開閉して、第1の熱源側熱交換器41及び第2の熱源側熱交換器42を流通する冷媒流量を調整する。これにより、熱源側熱交換ユニット3において任意の熱交換量が得られ、また、各室内機B、C、Dにおいて目標とする暖房能力又は冷房能力を得ることができる。そして、冷媒は、熱源機Aの流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 Here, the control unit 70 sets the capacity of the compressor 1 with a variable capacity so that the evaporation temperature of the indoor unit D requiring cooling and the condensation temperature of the indoor units B and C requiring heating become the predetermined target temperatures. And the ventilation volume of the heat source side air blower 20 is adjusted. The control unit 70 also includes a first electromagnetic open / close valve 44, a second electromagnetic open / close valve 45, and a third electromagnetic open / close valve at both ends of the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. The heat transfer area is adjusted by opening and closing the valve 46 and the fourth electromagnetic opening / closing valve 47. Further, the control unit 70 opens and closes the fifth electromagnetic opening / closing valve 48 of the heat source side bypass passage 43 to change the flow rate of the refrigerant flowing through the first heat source side heat exchanger 41 and the second heat source side heat exchanger 42. adjust. Thereby, arbitrary heat exchange amount is obtained in the heat source side heat exchange unit 3, and the heating capacity or the cooling capacity targeted in each indoor unit B, C, D can be obtained. Then, the refrigerant is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
 なお、暖房主体運転において、室内機B、Cに接続された暖房用電磁弁30は開放されている。また、室内機Dに接続された暖房用電磁弁30は閉止されている。更に、室内機B、Cに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bは閉止されている。更にまた、室内機Dに接続された第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bは開放されている。 In heating-main operation, the heating solenoid valve 30 connected to the indoor units B and C is opened. Moreover, the heating solenoid valve 30 connected to the indoor unit D is closed. Further, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor units B and C are closed. Furthermore, the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b connected to the indoor unit D are opened.
 また、第1の接続配管6が低圧、第2の接続配管7が高圧であるため、冷媒は第5の逆止弁34、第6の逆止弁35に流通する。なお、第2の流量制御装置13は閉止されている。更に、第1の逆止弁50b、50cには、液枝管7b、7cは第2の接続配管7よりも高圧であるため、冷媒は通過しない。また、第2の逆止弁52dには、液枝管7dは第2の接続配管7よりも低圧であるため、冷媒は通過しない。第1の逆止弁50及び第2の逆止弁52によって、暖房要求のある室内機B、Cを通った冷媒が第2の熱交換部16を通らずにサブクールが充分につかない状態で冷房要求のある室内機Dへ流れ込むことを防止している。 Further, since the first connection pipe 6 is low pressure and the second connection pipe 7 is high pressure, the refrigerant flows through the fifth check valve 34 and the sixth check valve 35. The second flow rate control device 13 is closed. Furthermore, since the liquid branch pipes 7b and 7c have a higher pressure than the second connection pipe 7 in the first check valves 50b and 50c, the refrigerant does not pass through. Further, since the liquid branch pipe 7d has a lower pressure than the second connection pipe 7 in the second check valve 52d, the refrigerant does not pass through. By the first check valve 50 and the second check valve 52, the refrigerant that has passed through the indoor units B and C that require heating does not pass through the second heat exchange unit 16 and is not cooled sufficiently. It is prevented from flowing into the requested indoor unit D.
 (除霜運転)
 次に、除霜運転について説明する。空気調和装置100において、全暖房運転又は暖房主体運転が行われると、第1の熱源側熱交換器41又は第2の熱源側熱交換器42に霜が付着する場合がある。第1の熱源側熱交換器41又は第2の熱源側熱交換器42に付着した霜を除去するため、除霜運転が行われる。
(Defrosting operation)
Next, the defrosting operation will be described. In the air conditioner 100, when the all heating operation or the heating main operation is performed, frost may adhere to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42. In order to remove frost adhering to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42, a defrosting operation is performed.
 (第1状態)
 図7は、本発明の実施の形態1に係る空気調和装置100の除霜運転時の第1状態を示す回路図である。次に、除霜運転の第1状態について説明する。除霜運転が行われる際、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生する場合がある。第1状態は、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生しない場合の状態である。図7に示すように、圧縮機1から吐出された高温高圧のガス冷媒は、流路切替弁2を通り、熱源側熱交換ユニット3において第1の熱源側熱交換器41又は第2の熱源側熱交換器42に流入し、第1の熱源側熱交換器41又は第2の熱源側熱交換器42に付着した霜を溶かす。そして、冷媒は、第1の熱源側熱交換器41又は第2の熱源側熱交換器42において、空気と熱交換されて凝縮液化される。この冷媒は、その後、第3の逆止弁32、第2の接続配管7、気液分離装置12の順に流れる。
(First state)
FIG. 7 is a circuit diagram illustrating a first state during the defrosting operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the first state of the defrosting operation will be described. When the defrosting operation is performed, the refrigerant flowing through the second flow control device 13 and the third flow control device 15 may generate a flow noise. The first state is a state in which the refrigerant flowing through the second flow control device 13 and the third flow control device 15 does not generate a flow noise. As shown in FIG. 7, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2, and in the heat source side heat exchange unit 3, the first heat source side heat exchanger 41 or the second heat source. The frost which flows into the side heat exchanger 42 and adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 is melted. In the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42, the refrigerant is condensed and liquefied by exchanging heat with air. Thereafter, the refrigerant flows in the order of the third check valve 32, the second connection pipe 7, and the gas-liquid separator 12.
 ここで、暖房用電磁弁30は閉止されている。このため、全ての冷媒が、気液分離装置12の液流出側から流出し、第1の熱交換部19を通って、第2の流量制御装置13に流入する。冷媒は、第2の流量制御装置13で低圧まで減圧された後、第2の熱交換部16に流れ、第1のバイパス配管14へ入り、第3の流量制御装置15に流入する。冷媒は、第3の流量制御装置15で低圧まで減圧された後、第2の熱交換部16において第2の流量制御装置13を通過した冷媒、即ち第1のバイパス配管14に分岐する前の冷媒との間で熱交換されて蒸発する。更に、第1の熱交換部19において第2の流量制御装置13に流入する前の冷媒との間で熱交換を行って蒸発する。この蒸発した冷媒は、第1の接続配管6、第4の逆止弁33に流入し、熱源機Aの流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 Here, the heating solenoid valve 30 is closed. For this reason, all the refrigerant flows out from the liquid outflow side of the gas-liquid separation device 12 and flows into the second flow rate control device 13 through the first heat exchange unit 19. The refrigerant is decompressed to a low pressure by the second flow control device 13, then flows into the second heat exchange unit 16, enters the first bypass pipe 14, and flows into the third flow control device 15. After the refrigerant is depressurized to a low pressure by the third flow control device 15, the refrigerant passes through the second flow control device 13 in the second heat exchange unit 16, that is, before branching to the first bypass pipe 14. Heat is exchanged with the refrigerant to evaporate. Further, the first heat exchange unit 19 evaporates by exchanging heat with the refrigerant before flowing into the second flow rate control device 13. The evaporated refrigerant flows into the first connection pipe 6 and the fourth check valve 33 and is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
 (第2状態)
 図8は、本発明の実施の形態1に係る空気調和装置100の除霜運転時の第2状態を示す回路図である。次に、除霜運転の第2状態について説明する。除霜運転が行われる際、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生する場合がある。第2状態は、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生する場合の状態である。図8に示すように、圧縮機1から吐出された高温高圧のガス冷媒は、流路切替弁2を通り、熱源側熱交換ユニット3において第1の熱源側熱交換器41又は第2の熱源側熱交換器42に流入し、第1の熱源側熱交換器41又は第2の熱源側熱交換器42に付着した霜を溶かす。そして、冷媒は、第1の熱源側熱交換器41又は第2の熱源側熱交換器42において、空気と熱交換されて凝縮液化される。この冷媒は、その後、第3の逆止弁32、第2の接続配管7、気液分離装置12の順に流れる。
(Second state)
FIG. 8 is a circuit diagram illustrating a second state during the defrosting operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the second state of the defrosting operation will be described. When the defrosting operation is performed, the refrigerant flowing through the second flow control device 13 and the third flow control device 15 may generate a flow noise. The second state is a state in which the refrigerant flowing through the second flow control device 13 and the third flow control device 15 generates a flow noise. As shown in FIG. 8, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 passes through the flow path switching valve 2, and in the heat source side heat exchange unit 3, the first heat source side heat exchanger 41 or the second heat source. The frost which flows into the side heat exchanger 42 and adheres to the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42 is melted. In the first heat source side heat exchanger 41 or the second heat source side heat exchanger 42, the refrigerant is condensed and liquefied by exchanging heat with air. Thereafter, the refrigerant flows in the order of the third check valve 32, the second connection pipe 7, and the gas-liquid separator 12.
 ここで、暖房用電磁弁30及び冷房用電磁弁31は開放されている。冷媒の一部は、気液分離装置12の液流出側から流出し、第1の熱交換部19を通って、第2の流量制御装置13に流入する。冷媒は、第2の流量制御装置13で低圧まで減圧された後、第2の熱交換部16に流れ、第1のバイパス配管14へ入り、第3の流量制御装置15に流入する。冷媒は、第3の流量制御装置15で低圧まで減圧された後、第2の熱交換部16において第2の流量制御装置13を通過した冷媒、即ち第1のバイパス配管14に分岐する前の冷媒との間で熱交換されて蒸発する。更に、第1の熱交換部19において第2の流量制御装置13に流入する前の冷媒との間で熱交換を行って蒸発する。この蒸発した冷媒は、第1の接続配管6に至る。 Here, the heating solenoid valve 30 and the cooling solenoid valve 31 are open. A part of the refrigerant flows out from the liquid outflow side of the gas-liquid separation device 12, passes through the first heat exchange unit 19, and flows into the second flow rate control device 13. The refrigerant is decompressed to a low pressure by the second flow control device 13, then flows into the second heat exchange unit 16, enters the first bypass pipe 14, and flows into the third flow control device 15. After the refrigerant is depressurized to a low pressure by the third flow control device 15, the refrigerant passes through the second flow control device 13 in the second heat exchange unit 16, that is, before branching to the first bypass pipe 14. Heat is exchanged with the refrigerant to evaporate. Further, the first heat exchange unit 19 evaporates by exchanging heat with the refrigerant before flowing into the second flow rate control device 13. The evaporated refrigerant reaches the first connection pipe 6.
 一方、冷媒の一部は、気液分離装置12のガス流出側から流出し、暖房用電磁弁30を通って、冷房用電磁弁31を通過し、第1の接続配管6に至る。第1の接続配管6において、気液分離装置12の液流出側から流出した冷媒と、気液分離装置12のガス流出側から流出した冷媒とが合流する。合流した冷媒は、第4の逆止弁33に流入し、熱源機Aの流路切替弁2、アキュムレータ4を経て圧縮機1に吸入される。 On the other hand, a part of the refrigerant flows out from the gas outflow side of the gas-liquid separator 12, passes through the heating electromagnetic valve 30, passes through the cooling electromagnetic valve 31, and reaches the first connection pipe 6. In the first connection pipe 6, the refrigerant that has flowed out from the liquid outflow side of the gas-liquid separation device 12 and the refrigerant that has flowed out from the gas outflow side of the gas-liquid separation device 12 merge. The merged refrigerant flows into the fourth check valve 33 and is sucked into the compressor 1 through the flow path switching valve 2 and the accumulator 4 of the heat source apparatus A.
 図9は、本発明の実施の形態1に係る空気調和装置100の動作を示すフローチャートである。次に、制御部70の動作について説明する。除霜運転が行われる際、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生する場合がある。本実施の形態1では、制御部70によって、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生することを抑制する。更に、本実施の形態1では、制御部70によって、暖房用電磁弁30に流れる冷媒が流動音を発生することを抑制する。 FIG. 9 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the operation of the control unit 70 will be described. When the defrosting operation is performed, the refrigerant flowing through the second flow control device 13 and the third flow control device 15 may generate a flow noise. In the first embodiment, the control unit 70 prevents the refrigerant flowing through the second flow rate control device 13 and the third flow rate control device 15 from generating flow noise. Furthermore, in this Embodiment 1, the control part 70 suppresses that the refrigerant | coolant which flows into the solenoid valve 30 for heating generate | occur | produces a flow sound.
 全暖房運転又は暖房主体運転から除霜運転に切り替えられると、図9に示すように、弁制御手段71によって、流路切替弁2が切り替えられ、暖房用電磁弁30が閉止され、第2の流量制御装置13及び第3の流量制御装置15が開放される(ステップST100)。これにより、除霜運転の第1状態として、図7に示すように冷媒が流れる。次に、判断手段72によって、第2の流量制御装置13及び第3の流量制御装置15に流れる冷媒が流動音を発生するか否かが判断される(ステップST200)。流動音が発生しないと判断された場合(ステップST200のNo)、ステップST200に戻る。一方、流動音が発生すると判断された場合(ステップST200のYes)、除霜運転の第2状態に移行して、第2の流量制御装置13に流れる冷媒の量が低減するように制御される。第2の流量制御装置13に流れる冷媒が流動音を発生する例として、冷媒の流量が多くなること、熱源機Aの馬力が増加すること、室外の温度が低下すること、圧損改善が必要となることが挙げられる。弁制御手段71によって暖房用電磁弁30が開放される(ステップST300)。 When switching from the all heating operation or the heating main operation to the defrosting operation, as shown in FIG. 9, the flow path switching valve 2 is switched by the valve control means 71, the heating electromagnetic valve 30 is closed, and the second The flow control device 13 and the third flow control device 15 are opened (step ST100). Thereby, a refrigerant | coolant flows as a 1st state of a defrost operation, as shown in FIG. Next, the determination means 72 determines whether or not the refrigerant flowing through the second flow control device 13 and the third flow control device 15 generates a flow noise (step ST200). When it is determined that no flowing sound is generated (No in step ST200), the process returns to step ST200. On the other hand, when it is determined that the flow noise is generated (Yes in step ST200), the control is performed so as to shift to the second state of the defrosting operation and reduce the amount of the refrigerant flowing to the second flow control device 13. . As an example in which the refrigerant flowing through the second flow rate control device 13 generates flow noise, the refrigerant flow rate increases, the horsepower of the heat source machine A increases, the outdoor temperature decreases, and pressure loss improvement is required. It can be mentioned. Heating solenoid valve 30 is opened by valve control means 71 (step ST300).
 その後、冷房用電磁弁31が開放され高圧の冷媒が流れる第2の接続配管7と低圧の冷媒が流れる第1の接続配管6とが接続される。このように、暖房用電磁弁30及び冷房用電磁弁31の前後の差圧が大きい場合、暖房用電磁弁30及び冷房用電磁弁31に騒音及び衝撃が発生する虞がある。そこで、判断手段72によって、暖房用電磁弁30に流れる冷媒が流動音を発生するか否かが判断される(ステップST400)。流動音が発生しないと判断された場合(ステップST400のNo)、ステップST200に戻る。一方、流動音が発生すると判断された場合(ステップST400のYes)、弁制御手段71によって暖房用電磁弁30が閉止され、冷房用電磁弁31が開放される(ステップST500)。このとき、冷房用電磁弁31は、閉止された冷房用電磁弁31が一つ一つ開放されてもよいし、全て開放されてもよい。これにより、各冷房用電磁弁31に流れる冷媒の圧力が均圧化される。 Thereafter, the cooling solenoid valve 31 is opened, and the second connection pipe 7 through which the high-pressure refrigerant flows and the first connection pipe 6 through which the low-pressure refrigerant flows are connected. Thus, when the differential pressure before and after the heating solenoid valve 30 and the cooling solenoid valve 31 is large, noise and impact may occur in the heating solenoid valve 30 and the cooling solenoid valve 31. Therefore, it is determined by the determination means 72 whether or not the refrigerant flowing through the heating solenoid valve 30 generates a flow noise (step ST400). When it is determined that no flowing sound is generated (No in step ST400), the process returns to step ST200. On the other hand, when it is determined that a flowing sound is generated (Yes in step ST400), the heating electromagnetic valve 30 is closed by the valve control means 71, and the cooling electromagnetic valve 31 is opened (step ST500). At this time, the cooling electromagnetic valves 31 may be opened one by one or all of the closed electromagnetic valves 31 may be opened. As a result, the pressure of the refrigerant flowing through each cooling electromagnetic valve 31 is equalized.
 その後、時間閾値が経過したか否かが判断される(ステップST600)。時間閾値が経過していない場合(ステップST600のNo)、ステップST600に戻る。一方、時間閾値が経過した場合(ステップST600のYes)、十分に均圧化されたと判断され、弁制御手段71によって暖房用電磁弁30が開放される(ステップST700)。これにより、除霜運転の第2状態として、図8に示すように冷媒が流れる。このとき、暖房用電磁弁30は、閉止された暖房用電磁弁30が一つ一つ開放されてもよいし、全て開放されてもよい。閉止された暖房用電磁弁30が一つ一つ開放される場合、暖房用電磁弁30に流れる冷媒が均圧化される。そして、制御が継続される。 Thereafter, it is determined whether or not the time threshold has elapsed (step ST600). When the time threshold has not elapsed (No in step ST600), the process returns to step ST600. On the other hand, when the time threshold has elapsed (Yes in step ST600), it is determined that the pressure has been sufficiently equalized, and the heating electromagnetic valve 30 is opened by the valve control means 71 (step ST700). Thereby, as shown in FIG. 8, a refrigerant | coolant flows as a 2nd state of a defrost operation. At this time, the heating solenoid valves 30 may be opened one by one or all of the closed heating solenoid valves 30 may be opened. When each of the closed heating solenoid valves 30 is opened one by one, the refrigerant flowing through the heating solenoid valve 30 is equalized. Then, control is continued.
 図10は、本発明の実施の形態1に係る空気調和装置100の動作を示すフローチャートである。次に、室内機B、C、Dを暖房運転から冷房運転に切り替えたときにおける制御部70の動作について説明する。室内機B、C、Dを暖房運転から冷房運転に切り替えたとき、暖房時に流れていた高温高圧のガス冷媒と高温高圧の液冷媒とが、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bを通過して、冷房時に低圧の状態にある第1の接続配管6に流入することになる。このため、冷房用電磁弁31の前後に大きな圧力差が生じ、冷房用電磁弁31周辺から冷媒の流動音が発生する虞がある。本実施の形態1では、制御部70によって、冷房用電磁弁31を有する中継機Eから発生する冷媒の流動音を抑制する。なお、本実施の形態1では、室内機B、C、Dの順に、アドレスが若いものとする。 FIG. 10 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, the operation of the control unit 70 when the indoor units B, C, and D are switched from the heating operation to the cooling operation will be described. When the indoor units B, C, and D are switched from the heating operation to the cooling operation, the high-temperature and high-pressure gas refrigerant and the high-temperature and high-pressure liquid refrigerant that were flowing during the heating are used as the first cooling electromagnetic valve 31a and the second cooling. It passes through the electromagnetic valve 31b and flows into the first connection pipe 6 that is in a low pressure state during cooling. For this reason, there is a possibility that a large pressure difference occurs before and after the cooling electromagnetic valve 31, and refrigerant flow noise is generated around the cooling electromagnetic valve 31. In the first embodiment, the control unit 70 suppresses the flow noise of the refrigerant generated from the relay device E having the cooling electromagnetic valve 31. In the first embodiment, the addresses are assumed to be younger in the order of indoor units B, C, and D.
 図10に示すように、例えば室内機B、Cを暖房運転から冷房運転に切り替えたとき、タイミング制御手段73は、弁制御手段71を、第1の流量制御装置9の開度を一定にするように制御する(ステップST1)。これにより、第1の接続配管6の圧力が、第2の接続配管7に逃がされる。従って、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bにおける第1の接続配管6側の圧力が低下し、第1の接続配管6の圧力と第2の接続配管7の圧力とが均圧に向かう。また、タイミング制御手段73は、弁制御手段71を、室内機Bに接続された第1の冷房用電磁弁31aが開放されるように制御する(ステップST2)。 As shown in FIG. 10, for example, when the indoor units B and C are switched from the heating operation to the cooling operation, the timing control means 73 causes the valve control means 71 to keep the opening degree of the first flow control device 9 constant. (Step ST1). Thereby, the pressure in the first connection pipe 6 is released to the second connection pipe 7. Accordingly, the pressure on the first connection pipe 6 side in the first cooling solenoid valve 31a and the second cooling solenoid valve 31b is reduced, and the pressure of the first connection pipe 6 and the pressure of the second connection pipe 7 are reduced. And head for equal pressure. In addition, the timing control unit 73 controls the valve control unit 71 so that the first cooling electromagnetic valve 31a connected to the indoor unit B is opened (step ST2).
 図11は、本発明の実施の形態1に係る空気調和装置100の動作を示すフローチャートである。次に、判断手段72によって、弁制御手段71によって開放された第2の冷房用電磁弁31bに冷媒が流通する際に、ガス状態検出部80によって検出された冷媒の状態に基づいて、流動音が発生するか否かが判断される(ステップST3)。具体的には、図11に示すように、判断手段72によって、合流圧力検出センサ56によって検出された冷媒の圧力Pが、圧力閾値P以上であるか否かが判断される(ステップST31)。図10に示すように、冷媒の圧力Pが圧力閾値P未満の場合(ステップST3のNo)、第1の接続配管6の圧力と第2の接続配管7の圧力との差が小さいため、冷媒の流動音が発生しないと判断され、通常運転に戻る。一方、冷媒の圧力Pが圧力閾値P以上の場合(ステップST3のYes)、第1の接続配管6の圧力と第2の接続配管7の圧力との差が大きいため、冷媒の流動音が発生する虞があると判断され、ステップST4に進む。なお、判断手段72は、液流出圧力検出センサ25及び合流圧力検出センサ56によって検出された冷媒の圧力を使用して冷房用電磁弁31前後の圧力差が閾値以上の場合、冷媒の流動音が発生すると判断してもよい。 FIG. 11 is a flowchart showing the operation of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Next, when the refrigerant flows through the second cooling electromagnetic valve 31 b opened by the valve control means 71 by the judging means 72, the flow sound is determined based on the state of the refrigerant detected by the gas state detection unit 80. Is determined (step ST3). Specifically, as shown in FIG. 11, it is determined by the determination means 72 whether or not the refrigerant pressure P detected by the merged pressure detection sensor 56 is equal to or higher than the pressure threshold value P 0 (step ST31). . As shown in FIG. 10, when the pressure P of the refrigerant is less than the pressure threshold P 0 (No in step ST3), since the difference between the pressure and the pressure in the second connecting pipe 7 of the first connection pipe 6 is small, It is determined that no refrigerant flow noise is generated, and the normal operation is resumed. On the other hand, if the pressure P of the refrigerant is greater than the pressure threshold P 0 (Yes in step ST3), since the difference between the pressure of the pressure and the second connecting pipe 7 of the first connection pipe 6 is large, the refrigerant flow noise is It is determined that there is a risk of occurrence, and the process proceeds to step ST4. The determination means 72 uses the refrigerant pressure detected by the liquid outflow pressure detection sensor 25 and the combined pressure detection sensor 56, and if the pressure difference before and after the cooling electromagnetic valve 31 is greater than or equal to the threshold value, the flow sound of the refrigerant is generated. It may be determined that it occurs.
 ステップST4において、タイミング制御手段73によって、第2の冷房用電磁弁31bが開放されてから開放時間閾値が経過したかが確認される。開放時間閾値が経過していない場合(ステップST4のNo)、ステップST4が繰り返される。開放時間閾値が経過した場合(ステップST4のYes)、タイミング制御手段73によって、アドレスの若い室内機Bに接続される第2の冷房用電磁弁31bが選択される(ステップST5)。その後、選択された第2の冷房用電磁弁31bが開放される(ステップST6)。これにより、複数の冷房用電磁弁31が同時に開放されない。従って、冷媒が第1の接続配管6に勢いよく流れることを防止することができる。その後、冷房要求のある室内機において、閉止されている冷房用電磁弁31が存在するか否かが判断される(ステップST7)。閉止されている冷房用電磁弁31が存在する場合(ステップST7のYes)、ステップST3に戻る。一方、閉止されている冷房用電磁弁31が存在しない場合(ステップST7のNo)、制御が終了する。 In step ST4, the timing control means 73 confirms whether or not the opening time threshold has elapsed since the second cooling electromagnetic valve 31b was opened. If the open time threshold has not elapsed (No in step ST4), step ST4 is repeated. When the open time threshold has elapsed (Yes in step ST4), the timing control means 73 selects the second cooling electromagnetic valve 31b connected to the indoor unit B having a young address (step ST5). Thereafter, the selected second cooling electromagnetic valve 31b is opened (step ST6). As a result, the plurality of cooling electromagnetic valves 31 are not simultaneously opened. Therefore, it is possible to prevent the refrigerant from flowing vigorously into the first connection pipe 6. Thereafter, it is determined whether or not there is a cooling electromagnetic valve 31 that is closed in the indoor unit that has a cooling request (step ST7). If there is a cooling electromagnetic valve 31 that is closed (Yes in step ST7), the process returns to step ST3. On the other hand, if there is no closed cooling electromagnetic valve 31 (No in step ST7), the control ends.
 ここで、本実施の形態1では、室内機Bだけではなく、室内機Cも冷房要求している。このため、ステップST7において、閉止されている冷房用電磁弁31が存在し、ステップST3に戻る。そして、依然として、冷媒の圧力Pが圧力閾値P以上の場合、ステップST4に進む。ここで、例えば室内機Cに接続された第2の冷房用電磁弁31bが選択される。そして、他の分岐である室内機Bに接続された第2の冷房用電磁弁31bが開放されてから開放時間閾値が経過したかが確認され(ステップST5)、開放時間閾値が経過した場合、選択された室内機Cに接続された第2の冷房用電磁弁31bが開放される(ステップST6)。 Here, in the first embodiment, not only the indoor unit B but also the indoor unit C requests cooling. For this reason, in Step ST7, there is a cooling electromagnetic valve 31 that is closed, and the process returns to Step ST3. And still the pressure P of the refrigerant is not less than the pressure threshold P 0, flow of operation proceeds to step ST4. Here, for example, the second cooling electromagnetic valve 31b connected to the indoor unit C is selected. Then, it is confirmed whether the opening time threshold has elapsed since the opening of the second cooling electromagnetic valve 31b connected to the indoor unit B which is another branch (step ST5). The second cooling electromagnetic valve 31b connected to the selected indoor unit C is opened (step ST6).
 なお、室内機Dに接続された第2の冷房用電磁弁31bが閉止されているため、ステップST7にて再びステップST3に戻る。そして、依然として、冷媒の圧力Pが圧力閾値P以上の場合、ステップST4に進む。ここで、室内機Dに接続された第2の冷房用電磁弁31bが選択される。そして、直前に閉止された室内機Dに接続された第2の冷房用電磁弁31bが開放されてから開放時間閾値が経過したかが確認され(ステップST5)、開放時間閾値が経過した場合、選択された室内機Dに接続された第2の冷房用電磁弁31bが開放される(ステップST6)。そして、ステップST7において、閉止されている冷房用電磁弁31が存在しないため、制御が終了する。 Since the second cooling electromagnetic valve 31b connected to the indoor unit D is closed, the process returns to step ST3 again in step ST7. And still the pressure P of the refrigerant is not less than the pressure threshold P 0, flow of operation proceeds to step ST4. Here, the second cooling electromagnetic valve 31b connected to the indoor unit D is selected. Then, it is confirmed whether or not the opening time threshold has elapsed since the opening of the second cooling electromagnetic valve 31b connected to the indoor unit D that was closed immediately before (step ST5), and when the opening time threshold has elapsed, The second cooling electromagnetic valve 31b connected to the selected indoor unit D is opened (step ST6). In step ST7, since the cooling electromagnetic valve 31 is not present, the control ends.
 本実施の形態1によれば、除霜運転時に、第2の流量制御装置13又は第3の流量制御装置15に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30及び冷房用電磁弁31が順次開放される。これにより、第2の流量制御装置13又は第3の流量制御装置15に流れる冷媒の量が低減されるため、第2の流量制御装置13又は第3の流量制御装置15に流れる冷媒が流動音を発生することが抑制される。従って、空気調和装置100の静穏性が向上する。また、静穏性が向上するため、中継機Eの設置場所の自由度が増す。 According to the first embodiment, when it is determined that the refrigerant flowing through the second flow control device 13 or the third flow control device 15 generates a flow sound during the defrosting operation, the heating solenoid valve 30 and the cooling The electromagnetic valve 31 is opened sequentially. As a result, the amount of refrigerant flowing through the second flow control device 13 or the third flow control device 15 is reduced, so that the refrigerant flowing through the second flow control device 13 or the third flow control device 15 flows. Is suppressed. Therefore, the quietness of the air conditioner 100 is improved. Moreover, since quietness improves, the freedom degree of the installation place of the relay machine E increases.
 また、ガス枝管6b,6c,6dに流れる冷媒の状態を検出するガス状態検出部80を更に備え、判断手段72は、暖房用電磁弁30に冷媒が流通する際に、ガス状態検出部80によって検出された冷媒の状態に基づいて、暖房用電磁弁30に流れる冷媒が流動音を発生するか否かを判断する機能を有する。そして、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生しないと判断された場合、暖房用電磁弁30を開放し、時間閾値が経過したとき、冷房用電磁弁31を開放するように弁制御手段71を制御する。また、冷房用電磁弁31は、互いに並列に接続された複数の冷房用電磁弁31であり、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生しないと判断された場合、暖房用電磁弁30を開放し、時間閾値が経過したとき、複数の冷房用電磁弁31を開放するように弁制御手段71を制御する。これにより、第2の流量制御装置13、第3の流量制御装置15及び暖房用電磁弁30において、流動音の発生を抑制することができる。 Moreover, the gas state detection part 80 which detects the state of the refrigerant | coolant which flows into gas branch pipe 6b, 6c, 6d is further provided, and the judgment means 72 is the gas state detection part 80, when a refrigerant | coolant distribute | circulates to the solenoid valve 30 for heating. Based on the state of the refrigerant detected by the above, the refrigerant flowing through the heating solenoid valve 30 has a function of determining whether or not it generates a flow noise. The timing control means 73 opens the heating solenoid valve 30 when the judgment means 72 determines that the refrigerant flowing through the heating solenoid valve 30 does not generate a flow noise, and when the time threshold has elapsed, The valve control means 71 is controlled so that the electromagnetic valve 31 is opened. The cooling electromagnetic valves 31 are a plurality of cooling electromagnetic valves 31 connected in parallel to each other, and the timing control means 73 determines that the refrigerant flowing into the heating electromagnetic valve 30 by the determination means 72 does not generate a flow sound. If it is determined, the heating electromagnetic valve 30 is opened, and when the time threshold value has elapsed, the valve control means 71 is controlled so as to open the plurality of cooling electromagnetic valves 31. Thereby, in the 2nd flow control device 13, the 3rd flow control device 15, and the solenoid valve 30 for heating, generation | occurrence | production of a flow sound can be suppressed.
 タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を閉止すると共に冷房用電磁弁31を開放し、時間閾値が経過したとき、暖房用電磁弁30を開放するように弁制御手段71を制御する。タイミング制御手段73は、それぞれのガス枝管6b,6c,6dに接続された暖房用電磁弁30を順次開放するように弁制御手段71を制御する。これにより、暖房用電磁弁30及び冷房用電磁弁31に流れる冷媒を均圧化することができる。従って、冷媒の流動音を抑制することができる。 The timing control means 73 closes the heating solenoid valve 30 and opens the cooling solenoid valve 31 when the judgment means 72 determines that the refrigerant flowing through the heating solenoid valve 30 generates a flow noise, and the time threshold value is When the time has elapsed, the valve control means 71 is controlled to open the heating electromagnetic valve 30. The timing control means 73 controls the valve control means 71 so that the heating electromagnetic valves 30 connected to the gas branch pipes 6b, 6c, 6d are sequentially opened. Thereby, the refrigerant | coolant which flows into the solenoid valve 30 for heating and the solenoid valve 31 for cooling can be equalized. Therefore, the flow noise of the refrigerant can be suppressed.
 タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を開放すると共に冷房用電磁弁31を閉止し、時間閾値が経過したとき、冷房用電磁弁31を開放するように弁制御手段71を制御する。また、冷房用電磁弁31は、互いに並列に接続された複数の冷房用電磁弁31であり、タイミング制御手段73は、判断手段72によって暖房用電磁弁30に流れる冷媒が流動音を発生すると判断された場合、暖房用電磁弁30を開放すると共に冷房用電磁弁31のうち一つを開放し、時間閾値が経過したとき、閉止された冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御する。弁制御手段71は、それぞれのガス枝管6b,6c,6dに接続された冷房用電磁弁31を順次開放するように弁制御手段71を制御する。これにより、暖房用電磁弁30及び冷房用電磁弁31に流れる冷媒を均圧化することができる。従って、冷媒の流動音を抑制することができる。 The timing control unit 73 opens the heating electromagnetic valve 30 and closes the cooling electromagnetic valve 31 when the determination unit 72 determines that the refrigerant flowing in the heating electromagnetic valve 30 generates a flow noise. When the time has elapsed, the valve control means 71 is controlled so as to open the cooling electromagnetic valve 31. The cooling electromagnetic valve 31 is a plurality of cooling electromagnetic valves 31 connected in parallel to each other, and the timing control means 73 determines that the refrigerant flowing through the heating electromagnetic valve 30 generates a flow sound by the determination means 72. If so, the heating solenoid valve 30 is opened and one of the cooling solenoid valves 31 is opened. When the time threshold value has elapsed, one of the closed cooling solenoid valves 31 is opened. The valve control means 71 is controlled. The valve control means 71 controls the valve control means 71 to sequentially open the cooling electromagnetic valves 31 connected to the gas branch pipes 6b, 6c, 6d. Thereby, the refrigerant | coolant which flows into the solenoid valve 30 for heating and the solenoid valve 31 for cooling can be equalized. Therefore, the flow noise of the refrigerant can be suppressed.
 また、タイミング制御手段73が、室内機B、C、Dが暖房運転から冷房運転に切り替えたとき、複数の冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御し、また、冷媒の流動音が発生すると判断された場合、閉止された冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御する。このように、複数の冷房用電磁弁31が順次開放されるため、オリフィスを使用せずとも、冷媒の流動音を低減することができる。従って、冷媒漏洩に対する遮断機能を向上させて、且つ冷媒の流動音を軽減することができる。 Further, the timing control means 73 controls the valve control means 71 to open one of the plurality of cooling electromagnetic valves 31 when the indoor units B, C, D are switched from the heating operation to the cooling operation, Further, when it is determined that the flow noise of the refrigerant is generated, the valve control means 71 is controlled so as to open one of the closed electromagnetic valves 31 for cooling. In this way, since the plurality of cooling electromagnetic valves 31 are sequentially opened, the flow noise of the refrigerant can be reduced without using an orifice. Therefore, it is possible to improve the blocking function against refrigerant leakage and reduce the flow noise of the refrigerant.
 図12は、従来の空気調和装置200を示す回路図である。図12に示すように、従来の空気調和装置200は、第1の分岐部110が、第1の冷房用電磁弁a、第2の冷房用電磁弁c、オリフィスd及び暖房用電磁弁bを有している。従来の空気調和装置200は、暖房運転から冷房運転に切り替えられるとき、オリフィスd、第1の冷房用電磁弁a、第2の冷房用電磁弁cの順に段階的に冷媒が流れる。これにより、冷媒の流動音を低減しようとするものである。しかしながら、オリフィスdは、高圧圧力と低圧圧力とをバイパスすることによって、高圧側配管と低圧側配管とを均圧化して、冷媒の流動音を軽減しようとするものである。従って、オリフィスdでは、暖房運転時に室内機に供給する冷媒がバイパスされてしまうため、遮断機能としては悪い。 FIG. 12 is a circuit diagram showing a conventional air conditioner 200. As shown in FIG. 12, in the conventional air conditioner 200, the first branching section 110 includes a first cooling electromagnetic valve a, a second cooling electromagnetic valve c, an orifice d, and a heating electromagnetic valve b. Have. In the conventional air conditioner 200, when switching from the heating operation to the cooling operation, the refrigerant flows stepwise in the order of the orifice d, the first cooling electromagnetic valve a, and the second cooling electromagnetic valve c. As a result, the flow noise of the refrigerant is reduced. However, the orifice d attempts to reduce the refrigerant flow noise by equalizing the high-pressure side pipe and the low-pressure side pipe by bypassing the high pressure and the low pressure. Therefore, in the orifice d, the refrigerant supplied to the indoor unit during the heating operation is bypassed, so that the blocking function is bad.
 これに対し、本実施の形態1では、弁制御手段71が、複数の冷房用電磁弁31のうち一つを開放し、タイミング制御手段73が、冷媒の流動音が発生すると判断された場合、閉止された冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御する。このため、オリフィスを使用せずとも、冷媒の流動音を低減することができる。従って、冷媒漏洩に対する遮断機能を向上させて、且つ冷媒の流動音を軽減することができる。 On the other hand, in the first embodiment, when the valve control means 71 opens one of the plurality of cooling electromagnetic valves 31, and the timing control means 73 determines that the refrigerant flow noise is generated, The valve control means 71 is controlled so as to open one of the closed electromagnetic valves 31 for cooling. For this reason, the flow noise of the refrigerant can be reduced without using an orifice. Therefore, it is possible to improve the blocking function against refrigerant leakage and reduce the flow noise of the refrigerant.
 また、弁制御手段71は、室内機B、C、Dを暖房運転から冷房運転に切り替えたとき、第1の流量制御装置9の開度を一定にする機能を有する。これにより、第1の接続配管6と第2の接続配管7とが均圧化される。従って、冷媒が勢いよく流れることを抑制する。 Further, the valve control means 71 has a function of making the opening degree of the first flow control device 9 constant when the indoor units B, C, D are switched from the heating operation to the cooling operation. Thereby, the first connecting pipe 6 and the second connecting pipe 7 are equalized. Accordingly, the refrigerant is prevented from flowing vigorously.
 更に、タイミング制御手段73は、閉止された冷房用電磁弁31のうち一つが開放されてから開放時間閾値が経過したとき、閉止された冷房用電磁弁31のうち一つを開放するように弁制御手段71を制御するものである。従って、冷媒が勢いよく流れることを抑制する。このため、冷媒の流動音をより低減することができる。 Further, the timing control means 73 is configured to open one of the closed cooling electromagnetic valves 31 when the opening time threshold has elapsed after one of the closed cooling electromagnetic valves 31 is opened. The control means 71 is controlled. Accordingly, the refrigerant is prevented from flowing vigorously. For this reason, the flow noise of the refrigerant can be further reduced.
 更にまた、ガス状態検出部80は、液枝管7b、7c、7dと第1の接続配管6とが接続された部分に流通する冷媒の圧力を検出する合流圧力検出センサ56と、気液分離装置12の液流出側の冷媒の圧力を検出する液流出圧力検出センサ25と、を有し、判断手段72は、合流圧力検出センサ56及び液流出圧力検出センサ25によって検出された冷媒の圧力差が閾値以上の場合、冷媒の流動音が発生すると判断するものである。これにより、第1の接続配管6の圧力を適正化することができる。従って、冷媒の流動音をより低減することができる。 Furthermore, the gas state detection unit 80 includes a merged pressure detection sensor 56 that detects the pressure of the refrigerant flowing through the portion where the liquid branch pipes 7b, 7c, and 7d and the first connection pipe 6 are connected, and a gas-liquid separation. A liquid outflow pressure detection sensor 25 for detecting the pressure of the refrigerant on the liquid outflow side of the apparatus 12, and the judging means 72 is a pressure difference between the refrigerant detected by the combined pressure detection sensor 56 and the liquid outflow pressure detection sensor 25. Is equal to or greater than the threshold value, it is determined that refrigerant flow noise is generated. Thereby, the pressure of the 1st connection piping 6 can be optimized. Therefore, the flow noise of the refrigerant can be further reduced.
 (第1変形例)
 図13は、本発明の実施の形態1の第1変形例に係る空気調和装置100の動作を示すフローチャートである。次に、本実施の形態1の第1変形例について説明する。第1変形例では、図10のステップST3における動作が、実施の形態1と相違し、判断手段72は、冷房用電磁弁31の一方の圧力と冷房用電磁弁31の他方の圧力との差に基づいて、冷媒の流動音が発生するか否かを判断するものである。
(First modification)
FIG. 13 is a flowchart showing the operation of the air-conditioning apparatus 100 according to the first modification example of Embodiment 1 of the present invention. Next, a first modification of the first embodiment will be described. In the first modified example, the operation in step ST3 in FIG. 10 is different from that in the first embodiment, and the determination unit 72 determines the difference between one pressure of the cooling electromagnetic valve 31 and the other pressure of the cooling electromagnetic valve 31. Based on the above, it is determined whether or not the flow noise of the refrigerant is generated.
 図13に示すように、判断手段72によって、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bの一方の圧力と第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bの他方の圧力との差ΔPaが、圧力差閾値ΔP以上であるか否かが判断される(ステップST41)。具体的には、判断手段72は、合流圧力検出センサ56によって検出された冷媒の圧力と、ガス管温度検出センサ53によって検出された冷媒の温度に対応する冷媒の圧力との差ΔPaが、圧力差閾値ΔP以上である場合、冷媒の流動音が発生すると判断する。即ち、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bの一方の圧力は、合流圧力検出センサ56によって検出される。また、第1の冷房用電磁弁31a及び第2の冷房用電磁弁31bの他方の圧力は、ガス管温度検出センサ53によって検出された飽和温度に基づいて算出される。図10に示すように、圧力差ΔPが圧力差閾値ΔP未満の場合(ステップST3のNo)、通常運転に戻る。一方、圧力差ΔPが圧力差閾値ΔP以上の場合(ステップST3のYes)、ステップST4に進む。 As shown in FIG. 13, the judgment means 72 causes the pressure of one of the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve 31b and the first cooling electromagnetic valve 31a and the second cooling electromagnetic valve. It is determined whether or not the difference ΔPa between 31 b and the other pressure is equal to or greater than the pressure difference threshold value ΔP 0 (step ST41). Specifically, the determination unit 72 determines that the difference ΔPa between the refrigerant pressure detected by the merging pressure detection sensor 56 and the refrigerant pressure corresponding to the refrigerant temperature detected by the gas pipe temperature detection sensor 53 is a pressure. When the difference threshold value ΔP is equal to or greater than 0, it is determined that a refrigerant flow noise is generated. That is, the pressure of one of the first cooling electromagnetic valve 31 a and the second cooling electromagnetic valve 31 b is detected by the merged pressure detection sensor 56. The other pressure of the first cooling electromagnetic valve 31 a and the second cooling electromagnetic valve 31 b is calculated based on the saturation temperature detected by the gas pipe temperature detection sensor 53. As shown in FIG. 10, when the pressure difference ΔP is less than the pressure difference threshold ΔP 0 (No in step ST3), the normal operation is resumed. On the other hand, when the pressure difference ΔP is equal to or greater than the pressure difference threshold ΔP 0 (Yes in step ST3), the process proceeds to step ST4.
 このように、第1変形例において、ガス状態検出部80は、液枝管7b、7c、7dと第1の接続配管6とが接続された部分に流通する冷媒の圧力を検出する合流圧力検出センサ56と、ガス枝管6b,6c,6dに流通する冷媒の温度を検出するガス管温度検出センサ53と、を有し、判断手段72は、合流圧力検出センサ56によって検出された冷媒の圧力と、ガス管温度検出センサ53によって検出された冷媒の温度に対応する冷媒の圧力との差が、圧力差閾値以上である場合、冷媒の流動音が発生すると判断するものである。この第1変形例においても、実施の形態1と同様の効果を奏する。 Thus, in the first modification, the gas state detection unit 80 detects the pressure of the refrigerant flowing through the portion where the liquid branch pipes 7b, 7c, 7d and the first connection pipe 6 are connected. The sensor 56 and a gas pipe temperature detection sensor 53 that detects the temperature of the refrigerant flowing through the gas branch pipes 6b, 6c, and 6d, and the determination means 72 detects the refrigerant pressure detected by the merged pressure detection sensor 56. When the difference between the refrigerant pressure and the refrigerant pressure corresponding to the refrigerant temperature detected by the gas pipe temperature detection sensor 53 is equal to or greater than the pressure difference threshold, it is determined that the refrigerant flow noise is generated. This first modification also has the same effect as that of the first embodiment.
 (第2変形例)
 図14は、本発明の実施の形態1の第2変形例に係る空気調和装置100の動作を示すフローチャートである。次に、本実施の形態1の第2変形例について説明する。第2変形例では、図10のステップST3における動作が、実施の形態1と相違し、判断手段72は、暖房運転している室内機が有する室内側熱交換器5の出口側のサブクール値に基づいて、冷媒の流動音が発生するか否かを判断するものである。
(Second modification)
FIG. 14 is a flowchart showing the operation of the air-conditioning apparatus 100 according to the second modification of the first embodiment of the present invention. Next, a second modification of the first embodiment will be described. In the second modified example, the operation in step ST3 in FIG. 10 is different from that in the first embodiment, and the determination unit 72 sets the subcool value on the outlet side of the indoor heat exchanger 5 of the indoor unit that is performing the heating operation. Based on this, it is determined whether or not a refrigerant flow noise is generated.
 図14に示すように、判断手段72によって、暖房運転している室内機が有する室内側熱交換器5の出口側のサブクール値SCaが、サブクール閾値SC以上であるか否かが判断される(ステップST51)。なお、サブクール値SCaは、暖房運転時の室内機の飽和温度と、液管温度検出センサ54によって検出された冷媒の温度とに基づいて演算される。暖房運転時の室内機の飽和温度は、液流出圧力検出センサ25によって検出された圧力に基づいて演算される。図10に示すように、サブクール値SCaがサブクール閾値SC未満の場合(ステップST3のNo)、液冷媒が少ないため、冷媒の流動音が発生しないと判断され、通常運転に戻る。一方、サブクール値SCaがサブクール閾値SC以上の場合(ステップST3のYes)、液冷媒が多いため、冷媒の流動音が発生すると判断され、ステップST4に進む。 As shown in FIG. 14, the determination means 72, subcooled value SCa of the outlet side of the indoor heat exchanger 5 which indoor unit has that heating operation, whether it is subcooled threshold SC 0 or more is determined (Step ST51). The subcool value SCa is calculated based on the saturation temperature of the indoor unit during the heating operation and the refrigerant temperature detected by the liquid pipe temperature detection sensor 54. The saturation temperature of the indoor unit during the heating operation is calculated based on the pressure detected by the liquid outflow pressure detection sensor 25. As shown in FIG. 10, for subcooling value SCa is of less than subcooling threshold SC 0 (No in step ST3), a small liquid refrigerant, it is determined that flow noise of the refrigerant is not generated, the flow returns to normal operation. On the other hand, if the subcooling value SCa is more subcooling threshold SC 0 (Yes in step ST3), because there are many liquid refrigerant, it is determined that flow noise of the refrigerant is generated, before proceeding to a step ST4.
 このように、第2変形例において、中継機Eは、流入側が第2の接続配管7に接続され、ガス流出側が暖房用電磁弁30に接続され、液流出側が液枝管7b、7c、7dに接続され、ガス冷媒と液冷媒とを分離する気液分離装置12を更に有し、ガス状態検出部80は、気液分離装置12の液流出側の冷媒の圧力を検出する液流出圧力検出センサ25と、液枝管7b、7c、7dに流通する冷媒の温度を検出する液管温度検出センサ54と、を有し、判断手段72は、液流出圧力検出センサ25によって検出された冷媒の圧力に対応する冷媒の温度と、液管温度検出センサ54によって検出された冷媒の温度とに基づいて演算された室内側熱交換器5の出口側のサブクール値が、サブクール閾値以上である場合、冷媒の流動音が発生すると判断するものである。この第2変形例においても、実施の形態1と同様の効果を奏する。 Thus, in the second modification, the relay E has the inflow side connected to the second connection pipe 7, the gas outflow side connected to the heating solenoid valve 30, and the liquid outflow side liquid branch pipes 7b, 7c, 7d. The gas-liquid separator 12 is further connected to the gas-liquid separator 12 to separate the gas refrigerant and the liquid refrigerant, and the gas state detection unit 80 detects the pressure of the refrigerant on the liquid outlet side of the gas-liquid separator 12. A sensor 25 and a liquid pipe temperature detection sensor 54 for detecting the temperature of the refrigerant flowing through the liquid branch pipes 7b, 7c, and 7d, and the judging means 72 is configured to detect the refrigerant detected by the liquid outflow pressure detection sensor 25. When the subcool value on the outlet side of the indoor heat exchanger 5 calculated based on the refrigerant temperature corresponding to the pressure and the refrigerant temperature detected by the liquid pipe temperature detection sensor 54 is equal to or greater than the subcool threshold, When refrigerant flow noise occurs It is intended to cross. This second modification also has the same effect as that of the first embodiment.
 (第3変形例)
 図15は、本発明の実施の形態1の第3変形例に係る空気調和装置100の動作を示すフローチャートである。次に、本実施の形態1の第3変形例について説明する。第3変形例では、図10のステップST3における動作が、実施の形態1と相違し、判断手段72は、暖房運転している室内機が有する室内側熱交換器5が停止してから停止閾値時間が経過したか否かによって、冷媒の流動音が発生するか否かを判断するものである。
(Third Modification)
FIG. 15 is a flowchart showing the operation of the air-conditioning apparatus 100 according to the third modification of the first embodiment of the present invention. Next, a third modification of the first embodiment will be described. In the third modified example, the operation in step ST3 in FIG. 10 is different from that in the first embodiment, and the determination unit 72 is configured to stop the threshold value after the indoor heat exchanger 5 of the indoor unit that is performing the heating operation is stopped. It is determined whether or not a refrigerant flow noise is generated depending on whether or not time has elapsed.
 図15に示すように、判断手段72によって、暖房運転している室内機が有する室内側熱交換器5が停止してからの経過時間Taが、閾値経過時間T以下であるか否かが判断される(ステップST61)。図10に示すように、経過時間Taが閾値経過時間T以上の場合(ステップST3のNo)、第1の接続配管6の圧力と第2の接続配管7の圧力との差が小さくなったため、冷媒の流動音が発生しないと判断され、通常運転に戻る。一方、経過時間Taが閾値経過時間T未満の場合(ステップST3のYes)、第1の接続配管6の圧力と第2の接続配管7の圧力との差が大きいままであるため、冷媒の流動音が発生すると判断され、ステップST4に進む。 As shown in FIG. 15, whether or not the elapsed time Ta after the indoor side heat exchanger 5 of the indoor unit that is performing the heating operation is equal to or less than the threshold elapsed time T 0 is determined by the determining unit 72. Judgment is made (step ST61). As shown in FIG. 10, when the elapsed time Ta is elapsed time T 0 or larger than the threshold (No in step ST3), the difference between the pressure and the pressure in the second connecting pipe 7 of the first connection pipe 6 is reduced Then, it is determined that no refrigerant flow noise is generated, and the normal operation is resumed. On the other hand, when the elapsed time Ta is less than the threshold value the elapsed time T 0 (step ST3 Yes), it therefore, the refrigerant remains difference between the pressure of the pressure and the second connecting pipe 7 of the first connection pipe 6 is greater It is determined that a flowing sound is generated, and the process proceeds to step ST4.
 このように、第3変形例において、判断手段72は、暖房運転している室内機B、C、Dが有する室内側熱交換器5が停止してから停止閾値時間が経過するまでの間、冷媒の流動音が発生すると判断するものである。第3変形例においても、実施の形態1と同様の効果を奏する。 Thus, in the third modified example, the determination unit 72 is configured until the stop threshold time elapses after the indoor heat exchanger 5 of the indoor units B, C, and D that are performing the heating operation is stopped. It is determined that the flow noise of the refrigerant is generated. In the third modification, the same effect as in the first embodiment is obtained.
 1 圧縮機、2 流路切替弁、3 熱源側熱交換ユニット、4 アキュムレータ、5 室内側熱交換器、6 第1の接続配管、6b,6c,6d ガス枝管、7 第2の接続配管、7b,7c,7d 液枝管、8 熱交換部、9 第1の流量制御装置、10 第1の分岐部、11 第2の分岐部、12 気液分離装置、13 第2の流量制御装置、14 第1のバイパス配管、15 第3の流量制御装置、16 第2の熱交換部、18 吐出圧力検出センサ、19 第1の熱交換部、20 熱源側送風機、25 液流出圧力検出センサ、26 下流側液流出圧力検出センサ、30 暖房用電磁弁、31 冷房用電磁弁、31a 第1の冷房用電磁弁、31b 第2の冷房用電磁弁、32 第3の逆止弁、33 第4の逆止弁、34 第5の逆止弁、35 第6の逆止弁、40 熱源側流路調整ユニット、41 第1の熱源側熱交換器、42 第2の熱源側熱交換器、43 熱源側バイパス路、44 第1の電磁開閉弁、45 第2の電磁開閉弁、46 第3の電磁開閉弁、47 第4の電磁開閉弁、48 第5の電磁開閉弁、50b 第1の逆止弁、50c 第1の逆止弁、50d 第1の逆止弁、51 第2のバイパス配管、52b 第2の逆止弁、52c 第2の逆止弁、52d 第2の逆止弁、53 ガス管温度検出センサ、54 液管温度検出センサ、56 合流圧力検出センサ、70 制御部、71 弁制御手段、72 判断手段、73 タイミング制御手段、80 ガス状態検出部、81 液状態検出部、100 空気調和装置、110 第1の分岐部、111 第2の分岐部、112 気液分離装置、113 第2の流量制御装置、115 第3の流量制御装置、116 第2の熱交換部、119 第1の熱交換部、200 空気調和装置、A 熱源機、B 室内機、C 室内機、D 室内機、E 中継機。 1 compressor, 2 flow path switching valve, 3 heat source side heat exchange unit, 4 accumulator, 5 indoor side heat exchanger, 6 first connection pipe, 6b, 6c, 6d gas branch pipe, 7 second connection pipe, 7b, 7c, 7d Liquid branch pipe, 8 Heat exchange section, 9 First flow control device, 10 First branch section, 11 Second branch section, 12 Gas-liquid separation device, 13 Second flow control apparatus, 14 1st bypass piping, 15 3rd flow control device, 16 2nd heat exchange part, 18 discharge pressure detection sensor, 19 1st heat exchange part, 20 heat source side blower, 25 liquid outflow pressure detection sensor, 26 Downstream liquid outflow pressure detection sensor, 30 heating solenoid valve, 31 cooling solenoid valve, 31a first cooling solenoid valve, 31b second cooling solenoid valve, 32 third check valve, 33 fourth Check valve, 34th fifth Stop valve, 35 sixth check valve, 40 heat source side flow path adjustment unit, 41 first heat source side heat exchanger, 42 second heat source side heat exchanger, 43 heat source side bypass, 44 first electromagnetic On-off valve, 45 Second electromagnetic on-off valve, 46 Third electromagnetic on-off valve, 47 Fourth electromagnetic on-off valve, 48 Fifth electromagnetic on-off valve, 50 b First check valve, 50 c First check valve , 50d first check valve, 51 second bypass pipe, 52b second check valve, 52c second check valve, 52d second check valve, 53 gas pipe temperature detection sensor, 54 liquid pipe Temperature detection sensor, 56, confluence pressure detection sensor, 70 control unit, 71 valve control unit, 72 determination unit, 73 timing control unit, 80 gas state detection unit, 81 liquid state detection unit, 100 air conditioner, 110 first branch Part 111 112, gas-liquid separator, 113 second flow control device, 115 third flow control device, 116 second heat exchange unit, 119 first heat exchange unit, 200 air conditioner, A heat source machine , B indoor unit, C indoor unit, D indoor unit, E relay unit.

Claims (13)

  1.  圧縮機、流路切替弁及び熱源側熱交換器を有する熱源機と、
     それぞれ第1の流量制御装置及び室内側熱交換器を有し、冷房運転又は暖房運転する複数の室内機と、
     第1の接続配管及び第2の接続配管によって前記熱源機に接続され、複数のガス枝管及び複数の液枝管によって複数の前記室内機にそれぞれ接続され、前記熱源機から供給される冷媒を複数の前記室内機に分配する中継機と、
     前記中継機の動作を制御する制御部と、を備え、
     前記中継機は、
     前記液枝管と前記第2の接続配管との間に流れる冷媒の状態を検出する液状態検出部と、
     流入する冷媒をガス冷媒と液冷媒とに分離するものであって、流入側が前記第2の接続配管に接続され、ガス流出側が前記ガス枝管に接続され、液流出側が前記液枝管及び前記第1の接続配管に接続された気液分離装置と、
     前記気液分離装置の液流出側に設けられ、暖房運転時に閉止され、冷房運転時に開放され、冷媒の流量を調整する第2の流量制御装置と、
     前記第2の流量制御装置の下流側に設けられ、冷媒の流量を調整する第3の流量制御装置と、
     一方が前記ガス枝管に接続され、他方が前記第1の接続配管に接続され、冷房運転時に開放され、暖房運転時に閉止される冷房用電磁弁と、
     一方が前記ガス枝管に接続され、他方が前記気液分離装置のガス流出側に接続され、暖房運転時に開放され、冷房運転時に閉止される暖房用電磁弁と、を有し、
     前記制御部は、
     前記熱源機が暖房運転から除霜運転に切り替えたとき、前記流路切替弁を切り替え、前記暖房用電磁弁を閉止し、前記第2の流量制御装置を開放する弁制御手段と、
     前記第2の流量制御装置に冷媒が流通する際に、前記液状態検出部によって検出された冷媒の状態に基づいて、前記第2の流量制御装置又は前記第3の流量制御装置に流れる冷媒が流動音を発生するか否かを判断する判断手段と、
     前記判断手段によって前記第2の流量制御装置又は前記第3の流量制御装置に流れる冷媒が流動音を発生すると判断された場合、前記暖房用電磁弁及び前記冷房用電磁弁を順次開放するように前記弁制御手段を制御するタイミング制御手段と、を有する
     空気調和装置。
    A heat source machine having a compressor, a flow path switching valve and a heat source side heat exchanger;
    A plurality of indoor units each having a first flow control device and an indoor heat exchanger, and performing a cooling operation or a heating operation;
    A refrigerant that is connected to the heat source unit by a first connection pipe and a second connection pipe, is connected to the plurality of indoor units by a plurality of gas branch pipes and a plurality of liquid branch pipes, and is supplied from the heat source unit. A repeater that distributes the plurality of indoor units;
    A control unit for controlling the operation of the repeater,
    The repeater is
    A liquid state detector that detects the state of the refrigerant flowing between the liquid branch pipe and the second connection pipe;
    The refrigerant flowing in is separated into a gas refrigerant and a liquid refrigerant, the inflow side is connected to the second connection pipe, the gas outflow side is connected to the gas branch pipe, and the liquid outflow side is connected to the liquid branch pipe and the liquid refrigerant. A gas-liquid separator connected to the first connection pipe;
    A second flow rate control device that is provided on the liquid outflow side of the gas-liquid separator, is closed during heating operation, is opened during cooling operation, and adjusts the flow rate of refrigerant;
    A third flow control device that is provided downstream of the second flow control device and adjusts the flow rate of the refrigerant;
    One is connected to the gas branch pipe, the other is connected to the first connection pipe, is opened during cooling operation, and is closed during heating operation;
    One is connected to the gas branch pipe, the other is connected to the gas outflow side of the gas-liquid separator, and has a heating solenoid valve that is opened during heating operation and closed during cooling operation,
    The controller is
    When the heat source device is switched from heating operation to defrosting operation, valve control means for switching the flow path switching valve, closing the heating electromagnetic valve, and opening the second flow control device;
    When the refrigerant flows through the second flow control device, the refrigerant flowing through the second flow control device or the third flow control device is based on the state of the refrigerant detected by the liquid state detection unit. A judging means for judging whether or not to generate a flowing sound;
    When the determination means determines that the refrigerant flowing through the second flow control device or the third flow control device generates a flow noise, the heating solenoid valve and the cooling solenoid valve are sequentially opened. An air conditioner comprising: timing control means for controlling the valve control means.
  2.  前記ガス枝管に流れる冷媒の状態を検出するガス状態検出部を更に備え、
     前記判断手段は、
     前記暖房用電磁弁に冷媒が流通する際に、前記ガス状態検出部によって検出された冷媒の状態に基づいて、前記暖房用電磁弁に流れる冷媒が流動音を発生するか否かを判断する機能を有する
     請求項1記載の空気調和装置。
    A gas state detection unit for detecting a state of the refrigerant flowing in the gas branch pipe;
    The determination means includes
    A function for determining whether or not the refrigerant flowing through the heating solenoid valve generates a flow noise based on the refrigerant state detected by the gas state detection unit when the refrigerant flows through the heating solenoid valve. The air conditioner according to claim 1.
  3.  前記タイミング制御手段は、
     前記判断手段によって前記暖房用電磁弁に流れる冷媒が流動音を発生しないと判断された場合、前記暖房用電磁弁を開放し、時間閾値が経過したとき、前記冷房用電磁弁を開放するように前記弁制御手段を制御する
     請求項2記載の空気調和装置。
    The timing control means includes
    When it is determined by the determining means that the refrigerant flowing through the heating solenoid valve does not generate a flow noise, the heating solenoid valve is opened, and when the time threshold has elapsed, the cooling solenoid valve is opened. The air conditioning apparatus according to claim 2, wherein the valve control unit is controlled.
  4.  前記冷房用電磁弁は、互いに並列に接続された複数の冷房用電磁弁であり、
     前記タイミング制御手段は、
     前記判断手段によって前記暖房用電磁弁に流れる冷媒が流動音を発生しないと判断された場合、前記暖房用電磁弁を開放し、時間閾値が経過したとき、複数の前記冷房用電磁弁を開放するように前記弁制御手段を制御する
     請求項3記載の空気調和装置。
    The cooling solenoid valves are a plurality of cooling solenoid valves connected in parallel to each other,
    The timing control means includes
    When it is determined by the determining means that the refrigerant flowing through the heating solenoid valve does not generate a flow noise, the heating solenoid valve is opened, and when the time threshold has elapsed, the plurality of cooling solenoid valves are opened. The air conditioning apparatus according to claim 3, wherein the valve control means is controlled as follows.
  5.  前記タイミング制御手段は、
     前記判断手段によって前記暖房用電磁弁に流れる冷媒が流動音を発生すると判断された場合、前記暖房用電磁弁を閉止すると共に前記冷房用電磁弁を開放し、時間閾値が経過したとき、前記暖房用電磁弁を開放するように前記弁制御手段を制御する
     請求項2記載の空気調和装置。
    The timing control means includes
    When it is determined by the determination means that the refrigerant flowing through the heating solenoid valve generates a flow noise, the heating solenoid valve is closed and the cooling solenoid valve is opened. The air conditioning apparatus according to claim 2, wherein the valve control means is controlled so as to open a solenoid valve for operation.
  6.  前記タイミング制御手段は、
     それぞれの前記ガス枝管に接続された前記暖房用電磁弁を順次開放するように前記弁制御手段を制御する
     請求項5記載の空気調和装置。
    The timing control means includes
    The air conditioner according to claim 5, wherein the valve control means is controlled so as to sequentially open the heating solenoid valves connected to the gas branch pipes.
  7.  前記タイミング制御手段は、
     前記判断手段によって前記暖房用電磁弁に流れる冷媒が流動音を発生すると判断された場合、前記暖房用電磁弁を開放すると共に前記冷房用電磁弁を閉止し、時間閾値が経過したとき、前記冷房用電磁弁を開放するように前記弁制御手段を制御する
     請求項2記載の空気調和装置。
    The timing control means includes
    When it is determined by the determining means that the refrigerant flowing through the heating solenoid valve generates a flow noise, the heating solenoid valve is opened and the cooling solenoid valve is closed. The air conditioning apparatus according to claim 2, wherein the valve control means is controlled so as to open a solenoid valve for operation.
  8.  前記冷房用電磁弁は、互いに並列に接続された複数の冷房用電磁弁であり、
     前記タイミング制御手段は、
     前記判断手段によって前記暖房用電磁弁に流れる冷媒が流動音を発生すると判断された場合、前記暖房用電磁弁を開放すると共に前記冷房用電磁弁のうち一つを開放し、時間閾値が経過したとき、閉止された前記冷房用電磁弁のうち一つを開放するように前記弁制御手段を制御する
     請求項2記載の空気調和装置。
    The cooling solenoid valves are a plurality of cooling solenoid valves connected in parallel to each other,
    The timing control means includes
    When it is determined by the determining means that the refrigerant flowing through the heating solenoid valve generates a flow noise, the heating solenoid valve is opened and one of the cooling solenoid valves is opened, and a time threshold has elapsed. The air conditioning apparatus according to claim 2, wherein the valve control means is controlled to open one of the closed solenoid valves for cooling.
  9.  前記弁制御手段は、
     それぞれの前記ガス枝管に接続された前記冷房用電磁弁を順次開放するように前記弁制御手段を制御する
     請求項7又は8記載の空気調和装置。
    The valve control means includes
    The air conditioner according to claim 7 or 8, wherein the valve control means is controlled so as to sequentially open the cooling electromagnetic valves connected to the gas branch pipes.
  10.  前記ガス状態検出部は、
     前記液枝管と前記第1の接続配管とが接続された部分に流通する冷媒の圧力を検出する合流圧力検出センサと、
     前記気液分離装置の液流出側の冷媒の圧力を検出する液流出圧力検出センサと、を有し、
     前記判断手段は、
     前記合流圧力検出センサ及び前記液流出圧力検出センサによって検出された冷媒の圧力差が閾値以上の場合、前記冷房用電磁弁に流れる冷媒が流動音を発生すると判断するものである
     請求項2~9のいずれか1項に記載の空気調和装置。
    The gas state detector
    A combined pressure detection sensor for detecting a pressure of a refrigerant flowing through a portion where the liquid branch pipe and the first connection pipe are connected;
    A liquid outflow pressure detection sensor for detecting the pressure of the refrigerant on the liquid outflow side of the gas-liquid separator,
    The determination means includes
    If the refrigerant pressure difference detected by the merge pressure detection sensor and the liquid outflow pressure detection sensor is equal to or greater than a threshold value, it is determined that the refrigerant flowing through the cooling solenoid valve generates a flow noise. The air conditioning apparatus according to any one of the above.
  11.  前記ガス状態検出部は、
     前記気液分離装置の液流出側の冷媒の圧力を検出する液流出圧力検出センサと、
     前記液枝管に流通する冷媒の温度を検出する液管温度検出センサと、を有し、
     前記判断手段は、
     前記液流出圧力検出センサによって検出された冷媒の圧力に対応する冷媒の温度と、前記液管温度検出センサによって検出された冷媒の温度とに基づいて演算された前記室内側熱交換器の出口側のサブクール値が、サブクール閾値以上である場合、前記冷房用電磁弁に流れる冷媒が流動音を発生すると判断するものである
     請求項2~10のいずれか1項に記載の空気調和装置。
    The gas state detector
    A liquid outflow pressure detection sensor for detecting the pressure of the refrigerant on the liquid outflow side of the gas-liquid separator;
    A liquid pipe temperature detection sensor for detecting the temperature of the refrigerant flowing through the liquid branch pipe,
    The determination means includes
    The outlet side of the indoor heat exchanger calculated based on the refrigerant temperature corresponding to the refrigerant pressure detected by the liquid outflow pressure detection sensor and the refrigerant temperature detected by the liquid pipe temperature detection sensor The air conditioner according to any one of claims 2 to 10, wherein when the subcool value is equal to or greater than a subcool threshold, the refrigerant flowing through the cooling solenoid valve is determined to generate a flow noise.
  12.  前記ガス状態検出部は、
     前記液枝管と前記第1の接続配管とが接続された部分に流通する冷媒の圧力を検出する合流圧力検出センサと、
     前記ガス枝管に流通する冷媒の温度を検出するガス管温度検出センサと、を有し、
     前記判断手段は、
     前記合流圧力検出センサによって検出された冷媒の圧力と、前記ガス管温度検出センサによって検出された冷媒の温度に対応する冷媒の圧力との差が、圧力差閾値以上である場合、前記冷房用電磁弁に流れる冷媒が流動音を発生すると判断するものである
     請求項2~11のいずれか1項に記載の空気調和装置。
    The gas state detector
    A combined pressure detection sensor for detecting a pressure of a refrigerant flowing through a portion where the liquid branch pipe and the first connection pipe are connected;
    A gas pipe temperature detection sensor for detecting the temperature of the refrigerant flowing through the gas branch pipe,
    The determination means includes
    When the difference between the refrigerant pressure detected by the merging pressure detection sensor and the refrigerant pressure corresponding to the refrigerant temperature detected by the gas pipe temperature detection sensor is equal to or greater than a pressure difference threshold, the cooling electromagnetic The air conditioner according to any one of claims 2 to 11, wherein the refrigerant flowing through the valve is determined to generate a flow noise.
  13.  前記判断手段は、
     暖房運転している前記室内機が有する前記室内側熱交換器が停止してから停止閾値時間が経過するまでの間、前記冷房用電磁弁に流れる冷媒が流動音を発生すると判断するものである
     請求項1~12のいずれか1項に記載の空気調和装置。
    The determination means includes
    It is determined that the refrigerant flowing through the cooling solenoid valve generates a flow noise until the stop threshold time elapses after the indoor heat exchanger of the indoor unit that is performing the heating operation is stopped. The air conditioner according to any one of claims 1 to 12.
PCT/JP2016/072083 2016-07-27 2016-07-27 Air conditioning device WO2018020621A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/072083 WO2018020621A1 (en) 2016-07-27 2016-07-27 Air conditioning device
GB1819447.2A GB2567332B (en) 2016-07-27 2016-07-27 Air conditioning apparatus
JP2018530267A JP6591071B2 (en) 2016-07-27 2016-07-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072083 WO2018020621A1 (en) 2016-07-27 2016-07-27 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2018020621A1 true WO2018020621A1 (en) 2018-02-01

Family

ID=61015848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072083 WO2018020621A1 (en) 2016-07-27 2016-07-27 Air conditioning device

Country Status (3)

Country Link
JP (1) JP6591071B2 (en)
GB (1) GB2567332B (en)
WO (1) WO2018020621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019686A1 (en) * 2019-07-30 2021-02-04 三菱電機株式会社 Air-conditioning device and control method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835184B1 (en) * 2019-11-18 2021-02-24 ダイキン工業株式会社 Intermediate unit and refrigeration equipment for refrigeration equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291951A (en) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp Air conditioner
JPH0942804A (en) * 1995-07-25 1997-02-14 Mitsubishi Electric Corp Air conditioner
JP2007064510A (en) * 2005-08-29 2007-03-15 Daikin Ind Ltd Air conditioner
WO2014106900A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291951A (en) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp Air conditioner
JPH0942804A (en) * 1995-07-25 1997-02-14 Mitsubishi Electric Corp Air conditioner
JP2007064510A (en) * 2005-08-29 2007-03-15 Daikin Ind Ltd Air conditioner
WO2014106900A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019686A1 (en) * 2019-07-30 2021-02-04 三菱電機株式会社 Air-conditioning device and control method therefor

Also Published As

Publication number Publication date
GB201819447D0 (en) 2019-01-16
GB2567332B (en) 2021-04-21
JP6591071B2 (en) 2019-10-16
JPWO2018020621A1 (en) 2019-02-28
GB2567332A (en) 2019-04-10

Similar Documents

Publication Publication Date Title
WO2017168681A1 (en) Air conditioner
CN102112818B (en) Air conditioner
US10036562B2 (en) Air-conditioning apparatus
EP3062031B1 (en) Air conditioner
JP4675810B2 (en) Air conditioner
JP5213817B2 (en) Air conditioner
US9683768B2 (en) Air-conditioning apparatus
WO2014083867A1 (en) Air-conditioning device
WO2014141374A1 (en) Air conditioner
EP2927612B1 (en) Air conditioning device
WO2017138059A1 (en) Air conditioning device
JP5875710B2 (en) Air conditioner
US20170108249A1 (en) Air-conditioning apparatus
AU2019436796B2 (en) Air-conditioning apparatus
JP6576603B1 (en) Air conditioner
JP6591071B2 (en) Air conditioner
WO2016189739A1 (en) Air conditioning device
WO2021019686A1 (en) Air-conditioning device and control method therefor
JP5005011B2 (en) Air conditioner
JP6111663B2 (en) Air conditioner
JP6704520B2 (en) Repeaters and air conditioners
JP2005233451A (en) Air conditioner
JP2008145038A (en) Air conditioner
JP2014129977A (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530267

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201819447

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160727

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910524

Country of ref document: EP

Kind code of ref document: A1