WO2017179166A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2017179166A1
WO2017179166A1 PCT/JP2016/061975 JP2016061975W WO2017179166A1 WO 2017179166 A1 WO2017179166 A1 WO 2017179166A1 JP 2016061975 W JP2016061975 W JP 2016061975W WO 2017179166 A1 WO2017179166 A1 WO 2017179166A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
unit
differential pressure
branch unit
Prior art date
Application number
PCT/JP2016/061975
Other languages
French (fr)
Japanese (ja)
Inventor
智一 川越
幸志 東
要平 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/061975 priority Critical patent/WO2017179166A1/en
Publication of WO2017179166A1 publication Critical patent/WO2017179166A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to an air conditioner equipped with a refrigeration cycle and capable of providing an air conditioning load.
  • air conditioners that are equipped with a refrigeration cycle and can provide an air conditioning load have been proposed.
  • a compressor, a heat exchanger, a throttling device, an indoor heat exchanger, and an accumulator as described in Patent Documents 1 and 2 are connected to simultaneously provide a cooling load and a heating load.
  • an air conditioning and hot water supply complex system that can do.
  • Patent Document 1 or Patent Document 2 enables a configuration in which a plurality of indoor units can be connected by connecting one parent branch unit and one or two child branch units. Yes.
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that can improve the degree of freedom in handling refrigerant piping from the branch unit to the indoor unit and reduce the amount of additional charged refrigerant. It is intended to provide.
  • An air conditioner includes at least one heat source unit on which a compressor and a first heat exchanger are mounted, and at least one indoor unit on which a second heat exchanger and an indoor expansion device are mounted.
  • a first branch unit connected between the heat source unit and the indoor unit and mounted with at least two first expansion devices; connected between the first branch unit and the indoor unit; and at least 1 And a second branch unit on which two second expansion devices are mounted.
  • a refrigeration cycle is formed by connecting the compressor, the first heat exchanger, the indoor expansion device, and the second heat exchanger.
  • the first throttle device and the second throttle device are arranged below the indoor side throttle device in the refrigerant flow during operation of supplying the refrigerant discharged from the compressor to the second heat exchanger. It provided on the side, by adjusting the opening degree of the first throttle device and said second throttle device, which controls the intermediate pressure of the refrigeration cycle.
  • the intermediate pressure of the refrigeration cycle is controlled by adjusting the opening degrees of the first throttle device and the second throttle device, so that a plurality of branch units are connected to the heat source unit. It is possible to reduce the construction cost and the additional refrigerant charging amount.
  • FIG. 1 is a refrigerant circuit diagram schematically showing an example of a refrigerant circuit configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the structure of the air conditioning apparatus 100 is demonstrated.
  • the air conditioner 100 is installed in, for example, a building, a condominium, or a hotel, and can supply a cooling load and a heating load simultaneously by using a refrigeration cycle (heat pump) that circulates refrigerant. It should be noted that the number of connected units constituting the air conditioner 100 is not limited to the number shown in FIG.
  • the air conditioner 100 is configured by connecting a heat source unit 110, a parent branch unit 210, a child branch unit 220, and an indoor unit 310. Among these, the indoor unit 310 is connected in parallel to the heat source unit 110.
  • the heat source unit 110 and the parent branch unit 210 are connected by two refrigerant pipes (a high pressure main pipe 001 and a low pressure main pipe 002).
  • the parent branch unit 210 and the child branch unit 220 are connected by three refrigerant pipes (liquid pipe 003, gas pipe 004, and low pressure pipe 005).
  • the parent branch unit 210 and the indoor unit 310, and the child branch unit 220 and the indoor unit 310 are connected by two refrigerant pipes (a liquid refrigerant pipe 010 and a gas refrigerant pipe 009).
  • the heat source unit 110 communicates with the indoor unit 310 via the parent branch unit 210 (or the parent branch unit 210 and the child branch unit 220).
  • the heat source unit 110 has a function of supplying hot or cold to the indoor unit 310 via the parent branch unit 210 or the parent branch unit 210 and the child branch unit 220.
  • the heat source unit 110 mainly includes a compressor 111, a flow path switching device 112, a heat exchanger 113, a check valve 114, and an accumulator (liquid reservoir container) 115. These are sequentially connected to constitute a part of the refrigerant circuit. In addition, what is necessary is just to comprise the selection of the refrigerant circuit components used inside a unit, and a refrigerant circuit by the use of the heat source unit 110.
  • the compressor 111 is not particularly limited as long as it sucks the refrigerant and compresses the refrigerant to bring it into a high temperature / high pressure state.
  • the compressor 111 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the compressor 111 may be of a type that can be variably controlled by an inverter.
  • the flow path switching device 112 is constituted by, for example, a four-way valve or the like, and switches the flow of the refrigerant according to a required operation mode.
  • the flow path switching device 112 may be configured by combining two-way valves or three-way valves.
  • the heat exchanger 113 has a role of mainly absorbing heat from a heat source (eg, air, water, brine, etc.) or radiating heat to the heat source.
  • the type of the heat exchanger 113 may be selected according to the heat source to be used. If the air is a heat source, the type is a pneumatic heat exchanger. If the water or brine is a heat source, the heat exchanger 113 is configured by a water heat exchanger. do it.
  • a heat source side blower such as a fan may be provided around the heat exchanger 113.
  • a pump for circulating water may be provided in the water side circuit.
  • the heat exchanger 113 corresponds to the “first heat exchanger” of the present invention.
  • the accumulator 115 may be any one provided on the suction side of the compressor 111 and capable of storing excess refrigerant.
  • the accumulator 115 is not essential for the refrigerant circuit configuration of the air conditioner 100.
  • the check valve 114 provided in the heat source unit 110 includes four check valves 114 (the check valve 114a to the check valve 114d).
  • two refrigerant pipes (refrigerant pipe 011 and refrigerant pipe 012) for connecting the high-pressure main pipe 001 and the low-pressure main pipe 002 are provided.
  • the refrigerant pipe 011 connects the low-pressure main pipe 002 on the upstream side of the check valve 114a and the high-pressure main pipe 001 on the upstream side of the check valve 114d.
  • the refrigerant pipe 012 connects the low-pressure main pipe 002 on the downstream side of the check valve 114a and the high-pressure main pipe 001 on the downstream side of the check valve 114d.
  • the check valve 114a is provided in the low-pressure main pipe 002 between the flow path switching device 112 and the parent branch unit 210, and allows the refrigerant to flow only in the direction from the parent branch unit 210 to the heat source unit 110. Yes.
  • the check valve 114d is provided in the high-pressure main pipe 001 between the heat exchanger 113 and the parent branch unit 210, and allows the refrigerant to flow only in the direction from the heat source unit 110 to the parent branch unit 210. .
  • the check valve 114b is provided in the refrigerant pipe 011 and allows the refrigerant to flow only from the low-pressure main pipe 002 to the heat exchanger 113 via the refrigerant pipe 011.
  • the check valve 114c is provided in the refrigerant pipe 012 and allows the refrigerant to flow only in the direction of the high-pressure main pipe 001 from the flow path switching device 112 via the refrigerant pipe 012.
  • the indoor unit 310 requires by providing the high-pressure main pipe 001, the low-pressure main pipe 002, the refrigerant pipe 011, the refrigerant pipe 012, the check valve 114a, the check valve 114b, the check valve 114c, and the check valve 114d. Regardless of the operation, the flow of the refrigerant flowing from the heat source unit 110 into the parent branch unit 210 can be in a certain direction. These are not essential for the refrigerant circuit configuration of the air conditioner 100.
  • the heat source unit 110 includes a high pressure sensor 116 and a low pressure sensor 117.
  • the high pressure sensor 116 is provided on the discharge side of the compressor 111 and detects the discharge pressure of the refrigerant discharged from the compressor 111.
  • the low pressure sensor 117 is provided on the suction side of the compressor 111 and detects the suction pressure of the refrigerant sucked into the compressor 111.
  • the refrigerant pressure information detected by the high pressure sensor 116 and the low pressure sensor 117 is sent to the heat source unit control means 410 mounted on the heat source unit 110.
  • a temperature sensor that detects the refrigerant discharge temperature a temperature sensor that detects the refrigerant suction temperature, a temperature sensor that detects the air conditioning refrigerant suction temperature, and the heat exchanger 113 flows out. You may provide the temperature sensor which detects the temperature of the refrigerant
  • the parent branch unit 210 has a function of supplying the indoor unit 310 and the child branch unit 220 with the heat or cold supplied from the heat source unit 110.
  • the parent branch unit 210 mainly includes a gas-liquid separator 211, a flow path switching device 214, a throttle device 212, and a throttle device 213.
  • the liquid pipe 003a, the gas pipe 004a, and the low pressure pipe 005a can be connected to the sub branch unit 220.
  • the parent branch unit 210 corresponds to the “first branch unit” of the present invention.
  • the liquid pipe 003 a is connected to the liquid distribution pipe 006 between the parent branch unit 210 and the child branch unit 220.
  • a liquid pipe 003b and a liquid pipe 003c are connected to the liquid pipe 006, and the refrigerant flowing through the liquid pipe 003a through the liquid pipe 006 is divided into the liquid pipe 003b and the liquid pipe 003c.
  • the liquid pipe 003b and the liquid pipe 003c are connected to the child branch unit 220.
  • FIG. 1 shows an example in which only the liquid pipe 003 c is connected to the child branch unit 220.
  • the gas pipe 004 a is connected to the gas distribution pipe 007 between the parent branch unit 210 and the child branch unit 220.
  • a gas pipe 004b and a gas pipe 004c are connected to the gas distribution pipe 007, and the refrigerant flowing through the gas pipe 004a by the gas distribution pipe 007 is divided into the gas pipe 004b and the gas pipe 004c.
  • the gas pipe 004 b and the gas pipe 004 c are connected to the child branch unit 220.
  • FIG. 1 shows an example in which only the gas pipe 004c is connected to the child branch unit 220.
  • the low pressure pipe 005a is connected to the low pressure junction pipe 008 between the parent branch unit 210 and the child branch unit 220.
  • a low pressure pipe 005b and a low pressure pipe 005c are connected to the low pressure joining pipe 008, and the refrigerant flowing through the low pressure pipe 005b and the low pressure pipe 005c is joined by the low pressure joining pipe 008.
  • the low pressure pipe 005 b and the low pressure pipe 005 c are connected to the child branch unit 220.
  • FIG. 1 shows an example in which only the low-pressure pipe 005c is connected to the child branch unit 220.
  • the flow path switching device 214 switches the flow of refrigerant supplied to the indoor unit 310. By switching the refrigerant flow path by this flow path switching device 214, the indoor unit 310 connected to the parent branch unit 210 can simultaneously perform cooling and heating.
  • the flow path switching device 214 is composed of, for example, a three-way valve, and one is connected to the low-pressure main pipe 002, the other is connected to the gas-liquid separator 211, and the other is connected to the indoor heat exchanger 312 of the indoor unit 310. It comes to connect.
  • the flow path switching device 214 is provided with a number (two in this case) corresponding to the number of indoor units 310 connected to the parent branch unit 210.
  • the one connected to the indoor unit 310a is illustrated as the flow path switching device 214a
  • the one connected to the indoor unit 310b is illustrated as the flow path switching device 214b.
  • the gas-liquid separator 211 is connected to the high-pressure main pipe 001 and to the inflow / outflow side of the indoor unit 310.
  • the gas-liquid separator 211 has a function of separating the inflowing refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 211 is mounted when the refrigerant pipe between the heat source unit 110 and the parent branch unit 210 is a two-pipe type.
  • the expansion device 212 is provided between the gas-liquid separator 211 and the indoor expansion device 311 and has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the expansion device 213 is provided in a connection pipe connecting the low-pressure main pipe 002 and the piping between the expansion device 212 and the indoor expansion device 311, and has a function as a pressure reducing valve or an expansion valve, and decompresses the refrigerant. And expand.
  • the throttling device 212 and the throttling device 213 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the diaphragm device 212 and the diaphragm device 213 correspond to the “first diaphragm device” of the present invention.
  • the parent branch unit 210 includes a high pressure sensor 215 and an intermediate pressure sensor 216.
  • the high-pressure sensor 215 is provided between the gas-liquid separator 211 and the expansion device 212 and detects the pressure of the refrigerant that has flowed out of the gas-liquid separator 211.
  • the intermediate pressure sensor 216 is provided on the downstream side of the expansion device 212 and detects the pressure of the refrigerant flowing out of the expansion device 212.
  • the refrigerant pressure information detected by the high pressure sensor 215 and the intermediate pressure sensor 216 is sent to the parent branch unit control means 420 a mounted on the parent branch unit 210.
  • the pressure information sent to the parent branch unit control means 420a is the difference between the high pressure sensor 215 and the intermediate pressure sensor 216 in order to supply the refrigerant appropriately to the indoor unit 310 for heating operation or the indoor unit 310 for cooling operation.
  • it is used to sense the intermediate differential pressure).
  • the value of the high pressure sensor 215 may be replaced with the value of the high pressure sensor 116 of the heat source unit 110 as necessary.
  • the parent branch unit 210 includes a temperature sensor 217.
  • the temperature sensor 217 is provided in a pipe that communicates from the parent branch unit 210 to the indoor unit 310, and detects the refrigerant temperature that is used to calculate the degree of supercooling of the refrigerant. That is, the degree of refrigerant supercooling can be detected by the temperature sensor 217 and the intermediate pressure sensor 216.
  • the degree of supercooling of the refrigerant is positive, the refrigerant is in a liquid refrigerant state, which means that the distribution of the liquid refrigerant to the indoor unit 310 and the child branch unit 220 that perform the cooling operation does not deteriorate.
  • the degree of supercooling is 0 ° C., it means that the refrigerant is in a two-phase refrigerant state and the refrigerant distribution is deteriorated. Therefore, it is possible to detect refrigerant distribution by calculating the degree of supercooling of the refrigerant.
  • the child branch unit 220 has a function of supplying the indoor unit 310 with hot or cold supplied from the heat source unit 110.
  • the child branch unit 220 is mainly composed of a flow path switching device 224 and an expansion device 223.
  • the child branch unit 220 corresponds to the “second branch unit” of the present invention.
  • the flow path switching device 224 switches the flow of the refrigerant supplied to the indoor unit 310. By switching the refrigerant flow path with this flow path switching device 224, the indoor unit 310 connected to the child branch unit 220 can simultaneously perform cooling and heating.
  • the flow path switching device 224 is composed of, for example, a three-way valve, and one is connected to the low-pressure pipe 005c, the other is connected to the gas pipe 004c, and the other is connected to the indoor heat exchanger 312 of the indoor unit 310. It is like that.
  • the flow path switching device 224 is provided in a number (two in this case) corresponding to the number of indoor units 310 connected to the child branch unit 220.
  • those connected to the indoor unit 310c are illustrated as flow path switching devices 224a
  • those connected to the indoor unit 310d are illustrated as flow path switching devices 224b.
  • the throttle device 223 is provided in a connection pipe connecting the low pressure pipe 005c and the pipe between the liquid pipe 003c and the indoor side throttle device 311.
  • the throttle device 223 functions as a pressure reducing valve or an expansion valve, and decompresses the refrigerant. And expand.
  • the throttling device 223 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the diaphragm device 223 corresponds to the “second diaphragm device” of the present invention.
  • the child branch unit includes an intermediate pressure sensor 226.
  • the intermediate pressure sensor 226 is provided in the liquid pipe 003a and detects the pressure of the refrigerant flowing through the liquid pipe 003a.
  • the refrigerant pressure information detected by the intermediate pressure sensor 226 is sent to the child branch unit control means 420b mounted on the child branch unit 220.
  • the pressure information sent to the sub-branch unit control means 420b uses the differential pressure between the high-pressure sensor 215 and the intermediate-pressure sensor 226 to appropriately supply the refrigerant to the indoor unit 310 for heating operation or the indoor unit 310 for cooling operation.
  • it is used to sense the intermediate differential pressure).
  • the value of the high pressure sensor 215 may be replaced with the value of the high pressure sensor 116 of the heat source unit 110 as necessary.
  • the child branch unit 220 includes a temperature sensor 227.
  • the temperature sensor 227 is provided in the liquid pipe 003a and detects the refrigerant temperature used for calculating the degree of supercooling of the refrigerant. That is, the degree of refrigerant supercooling can be detected by the temperature sensor 227 and the intermediate pressure sensor 226.
  • the degree of supercooling of the refrigerant is positive, the refrigerant is in a liquid refrigerant state, which means that the distribution of the liquid refrigerant to the indoor unit 310 that is performing the cooling operation does not deteriorate.
  • the degree of supercooling is 0 ° C., it means that the refrigerant is in a two-phase refrigerant state and the refrigerant distribution is deteriorated. Therefore, it is possible to detect refrigerant distribution by calculating the degree of supercooling of the refrigerant.
  • the indoor unit 310 has a function of receiving heating or cooling supply from the heat source unit 110 and taking charge of heating load or refrigerant load.
  • the indoor unit 310 mainly includes an indoor expansion device 311 and an indoor heat exchanger (load-side heat exchanger) 312. These are sequentially connected by piping to constitute a part of the refrigerant circuit.
  • FIG. 1 shows an example in which four indoor units 310 are connected. Of the four units, the indoor unit 310 a and the indoor unit 310 are connected in parallel to the parent branch unit 210. Of the four units, the indoor unit 310 c and the indoor unit 310 d are connected in parallel to the child branch unit 220.
  • the indoor unit 310 may be provided with an indoor fan such as a fan for supplying air to the indoor heat exchanger 312 in the vicinity of the indoor heat exchanger 312. Furthermore, the indoor unit 310 is an example of a load side unit.
  • the indoor expansion device 311 is provided in the liquid pipe 003a in the indoor unit 310, has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by decompressing it.
  • the indoor throttling device 311 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate adjustment means such as a capillary tube, or the like.
  • those mounted on the indoor unit 310 a are mounted on the indoor expansion device 311 a
  • those mounted on the indoor unit 310 b are mounted on the indoor expansion device 311 b and the indoor unit 310 c. What is mounted on the indoor side expansion device 311c and the indoor unit 310d is illustrated as an indoor side expansion device 311d.
  • the indoor heat exchanger 312 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and performs heat exchange between air supplied from an indoor blower (not shown) and the refrigerant. Is condensed or liquefied or gasified.
  • air-type heat exchanger is demonstrated here as an example, it is not limited to this, The heat exchanger which cools and heats water like a chiller or a hot water supply, ie, a water heat exchanger, is not limited to this. It may be changed.
  • the indoor heat exchanger 312 corresponds to the “second heat exchanger” of the present invention.
  • the indoor unit 310 is provided with a temperature sensor (not shown). This temperature sensor detects the load at the installation location, and is composed of, for example, a thermistor. In addition, since the installation location and type of the temperature detection element are not particularly limited, the installation location and type may be selected according to the characteristics of the indoor unit 310 and the load to be detected. The temperature information detected by the temperature sensor is sent to the indoor unit control means 430 mounted on the indoor unit 310.
  • indoor unit control means 430 those mounted on the indoor unit 310a are mounted on the indoor unit control means 430a, and those mounted on the indoor unit 310b are mounted on the indoor unit control means 430b and the indoor unit 310c.
  • the thing mounted in the indoor unit 310d is illustrated as the indoor unit control means 430d.
  • Two refrigerant pipes connecting the parent branch unit 210 and the indoor unit 310a are illustrated as a liquid refrigerant pipe 010a and a gas refrigerant pipe 009a.
  • Two refrigerant pipes connecting the parent branch unit 210 and the indoor unit 310b are illustrated as a liquid refrigerant pipe 010b and a gas refrigerant pipe 009b.
  • Two refrigerant pipes connecting the child branch unit 220 and the indoor unit 310c are illustrated as a liquid refrigerant pipe 010c and a gas refrigerant pipe 009c.
  • Two refrigerant pipes connecting the child branch unit 220 and the indoor unit 310d are illustrated as a liquid refrigerant pipe 010d and a gas refrigerant pipe 009d.
  • the air conditioner 100 has a system configuration in which the heat source unit 110 is connected to the indoor unit 310 via the parent branch unit 210 and the child branch unit 220.
  • the air conditioner 100 is provided with a control means 400 that performs overall control of the entire system of the air conditioner 100.
  • the control means 400 controls the drive frequency of the compressor 111, the rotation speed of the blower, the switching of the flow path switching device 112, the opening of each throttle means, the switching of the flow path switching device 214, the switching of the flow path switching device 224, and the like. Control. That is, the control means 400 controls each actuator (driving components such as the compressor 111, the flow path switching device 112, the blower, and the indoor-side throttle device 311) based on detection information from various sensors and instructions from the remote controller. It is like that.
  • the various sensors include sensors not shown.
  • the control means 400 will be described in detail with reference to FIG. 2.
  • the control means 400 includes a heat source unit control means 410, a parent branch unit control means 420a, a child branch unit control means 420b, and an indoor unit control means 430.
  • the air conditioner 100 is a two-tube type cooling and heating simultaneous type in which the heat source unit 110 and the indoor unit 310 are connected by two refrigerant pipes via the parent branch unit 210 is taken as an example.
  • the present invention is not limited to this, and the air-conditioning apparatus 100 may be configured by a three-tube type cooling / heating simultaneous type or a cooling / heating switching type connected by three refrigerant pipes.
  • FIG. 2 is a control block diagram showing an electrical configuration of the air conditioner 100. Based on FIG. 2, the control means 400 mounted in the air conditioning apparatus 100 will be described in detail.
  • the air conditioning apparatus 100 includes the control means 400.
  • the control means 400 is composed of a microcomputer, a DSP, etc., and has a function of controlling the entire system of the air conditioning apparatus 100.
  • the control means 400 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • control means 400 includes the heat source unit control means 410, the parent branch unit control means 420a, the child branch unit control means 420b, and the indoor unit control means 430.
  • a control means corresponding to each unit may be provided, and each unit may perform independent distributed cooperative control in which control is independently performed, and any one unit has all control means.
  • the unit having the control means may give a control command to another unit using communication or the like.
  • each unit can perform control independently.
  • Each control means can transmit information by wireless or wired communication means.
  • the heat source unit control means 410 has a function of controlling the refrigerant pressure state and the refrigerant temperature state in the heat source unit 110.
  • the heat source unit control unit 410 includes a heat source unit control unit 411, a sensor information storage unit 412, an arithmetic processing circuit 413, an actuator control signal output unit 414, and the like.
  • the heat source unit control unit 410 stores the information obtained by the heat source unit control unit 411 using the high pressure sensor 116, the low pressure sensor 117, etc. as data in the sensor information storage unit 412, and stores the stored information.
  • the actuator control signal output means 414 After performing the arithmetic processing in the heat source unit 110 on the basis of the arithmetic processing circuit 413, the actuator control signal output means 414 outputs the operating frequency of the compressor 111, outputs the fan rotation speed of the blower, It has a function of outputting the switching of the path switching device 112.
  • the heat source unit control means 410 defines the maximum number of indoor units 310 that can be connected to the parent branch unit 210 and the maximum value according to the capacity of the heat source unit 110, and transmits this information to the parent branch unit 210. It has a function.
  • the parent branch unit control unit 420a includes a branch unit control unit 421a, a sensor information storage unit 422a, an arithmetic processing circuit 423a, an actuator control signal output unit 424a, and the like.
  • the branch unit controller 421a operates the flow path switching device 214 of the parent branch unit 210, the high pressure sensor 215 of the parent branch unit 210 itself, the intermediate pressure sensor. 216, the information obtained by the temperature sensor 217 and the like is stored as data in the sensor information storage means 422a, and the arithmetic processing circuit 423a performs arithmetic processing in the parent branch unit 210 based on the stored information, and then the actuator control
  • the signal output means 424a has a function of controlling an electromagnetic valve output or an opening degree of an expansion valve (the expansion device 212, the expansion device 213).
  • the parent branch unit control means 420a also has a function of restricting the connection capacity and operation capacity of the indoor unit 310 based on the connection capacity and operation capacity information received from the heat source unit 110. It also has a function of transmitting restriction information on connection capacity and operation capacity to the branch unit control means 420b. Furthermore, if necessary, it also has means for transmitting the data stored in the sensor information storage means 422a.
  • the child branch unit control unit 420b includes a child branch unit control unit 421b, a sensor information storage unit 422b, an arithmetic processing circuit 423b, an actuator control signal output unit 424b, and the like.
  • the child branch unit controller 421b operates the flow path switching device 224 of the child branch unit 220, or the intermediate pressure / pressure sensor 226, temperature sensor of the child branch unit 220 itself.
  • the information obtained by 227 or the like is stored as data in the sensor information storage means 422b, and the arithmetic processing circuit 423b performs arithmetic processing in the child branch unit 220 based on the stored information, and then the actuator control signal output means 424b.
  • the function of controlling the solenoid valve output or the opening degree of the throttle device 223 is provided.
  • the child branch unit control means 420b also has means for storing the pressure sensor information and temperature sensor information received from the parent branch unit control means 420a in the sensor information storage means 422b.
  • the child branch unit control means 420b also has a function of restricting the connection capacity and operating capacity of the indoor unit 310 based on the connection capacity and operating capacity restriction information received from the parent branch unit 210.
  • the indoor unit control means 430 has a function of controlling the degree of superheating during the cooling operation of the indoor unit 310 and the degree of supercooling during the heating operation of the indoor unit 310. Specifically, the indoor unit control means 430 changes the heat exchange area of the indoor heat exchanger 312, controls the fan rotation speed of the indoor blower, and controls the opening of the indoor expansion device 311. It has a function to do.
  • a temperature sensor for detecting the refrigerant discharge temperature a sensor for detecting the refrigerant intake temperature, a temperature sensor for detecting the air-conditioning refrigerant suction temperature, heat exchange A temperature sensor for detecting the temperature of the refrigerant flowing into and out of the heat exchanger 113, a temperature sensor for detecting the outside air temperature taken into the heat source unit 110, and a temperature sensor for detecting the temperature of the refrigerant flowing into and out of the indoor heat exchanger 312. It is good to leave.
  • pressure information may be converted into saturation temperature information (in particular, a condensation temperature for a high pressure sensor, or an evaporation temperature for a low pressure sensor), or may be converted into specific enthalpy from pressure information and temperature information.
  • Information (measurement information such as temperature information and pressure information) detected by these various sensors is sent to the control means 400 and used for controlling each actuator.
  • One of the operation modes is a cooling operation mode in which all the indoor units 310 that are operating perform a cooling operation.
  • One of the operation modes is a heating operation mode in which all of the indoor units 310 that are operating perform the heating operation.
  • One of the operation modes is a cooling main operation mode in which the indoor unit 310 that is performing the heating operation and the indoor unit 310 that is performing the cooling operation are mixed, and the cooling load is larger.
  • One of the operation modes is a heating main operation mode in which the indoor unit 310 that is performing the heating operation and the indoor unit 310 that is performing the cooling operation are mixed and the heating load is larger.
  • the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows into the heat exchanger 113 through the flow path switching device 112.
  • the high-pressure gas refrigerant that has flowed into the heat exchanger 113 is condensed by exchanging heat with air (or a heat medium such as water) supplied to the heat exchanger 113 to become a high-pressure liquid refrigerant. leak.
  • the high-pressure liquid refrigerant flowing out from the heat exchanger 113 flows into the parent branch unit 210 through the check valve 114d and the high-pressure main pipe 001.
  • the refrigerant flows out from the main branch unit 210 to the indoor unit 310a or the indoor unit 310b
  • the high-pressure liquid refrigerant that has flowed from the high-pressure main pipe 001 passes through the gas-liquid separator 211 and the expansion device 212, and the liquid refrigerant pipe 010a or liquid It flows to the refrigerant pipe 010b.
  • the refrigerant flowing through the liquid refrigerant pipe 010a or the liquid refrigerant pipe 010b flows out from the parent branch unit 210 and then flows into the indoor unit 310a or the indoor unit 310b.
  • the refrigerant flowing from the high-pressure main pipe 001 is separated from the gas-liquid separator 211, the expansion device 212, and the liquid pipe. It flows out from the parent branch unit 210 via 003a.
  • the refrigerant flowing through the liquid pipe 003a flows through the liquid distribution pipe 006, the liquid pipe 003c, and the internal liquid pipe of the child branch unit 220 to the liquid refrigerant pipe 010c or the liquid refrigerant pipe 010d.
  • the refrigerant flowing through the liquid refrigerant pipe 010c or the liquid refrigerant pipe 010d flows out of the child branch unit 220 and then flows into the indoor unit 310c or the indoor unit 310d.
  • the low-pressure liquid and gas two-phase refrigerant or the low-pressure liquid refrigerant flows into the indoor heat exchanger 312 in the indoor expansion device 311.
  • the low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 312 evaporates in the indoor heat exchanger 312, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 312.
  • the air-conditioning target space is cooled.
  • the low-pressure gas refrigerant flows out of the indoor unit 310 and then flows into the parent branch unit 210 or the child branch unit 220.
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 312 flows through the gas refrigerant pipe 009a or the gas refrigerant pipe 009b and out of the indoor unit 310a or the indoor unit 310b, and then enters the parent branch unit 210. Inflow.
  • the low-pressure gas refrigerant that has flowed into the parent branch unit 210 is merged through the flow path switching device 214 (the flow path switching device 214a and the flow path switching device 214b) and flows to the low-pressure main pipe 002.
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 312 flows through the gas refrigerant pipe 009c or the gas refrigerant pipe 009d and out of the indoor unit 310a or the indoor unit 310b, and then the child branch unit. 220 flows.
  • the low-pressure gas refrigerant that has flowed into the child branch unit 220 passes through the flow path switching device 224 (the flow path switching device 224a and the flow path switching device 224b), passes through the low pressure pipe 005, and the low pressure merge pipe 008 to the parent branch unit 210. Inflow.
  • the low-pressure refrigerant that has flowed to the parent branch unit 210 is merged in the low-pressure main pipe 002 and flows into the heat source unit 110.
  • the low-pressure gas refrigerant flowing into the heat source unit 110 is again sucked into the compressor 111 via the check valve 114a, the flow path switching device 112, and the accumulator 115.
  • the circuit through which the refrigerant flows is used as the main circuit during the cooling operation.
  • the low-pressure gas refrigerant is sucked into the compressor 111 to become a high-temperature / high-pressure gas refrigerant, and flows into the parent branch unit 210 via the flow path switching device 112, the check valve 114c, and the high-pressure main pipe 001. .
  • the refrigerant flowing from the high-pressure main pipe 001 is separated from the gas-liquid separator 211, the flow path switching device 214 (the flow path switching device 214a, It flows to the gas refrigerant pipe 009a or the gas refrigerant pipe 009b via the flow path switching device 214b).
  • the refrigerant flowing through the gas refrigerant pipe 009a or the gas refrigerant pipe 009b flows out from the parent branch unit 210 and then flows into the indoor unit 310a or the indoor unit 310b.
  • the refrigerant flowing from the high-pressure main pipe 001 passes through the gas-liquid separator 211 and the gas pipe 004a, Outflow from the parent branch unit 210.
  • the refrigerant flowing through the gas pipe 004a flows to the gas refrigerant pipe 009c or the gas refrigerant pipe 009d via the gas distribution pipe 007, the gas pipe 004c, and the flow path switching device 224 (flow path switching device 224a, flow path switching device 224b).
  • the refrigerant flowing through the gas refrigerant pipe 009c or the gas refrigerant pipe 009d flows out from the child branch unit 220 and then flows into the indoor unit 310c or the indoor unit 310d.
  • the high-pressure gas refrigerant that has flowed into the indoor unit 310 flows into the indoor heat exchanger 312, is condensed in the indoor heat exchanger 312, and flows out of the indoor heat exchanger 312 as a high-pressure liquid refrigerant.
  • the air-conditioning target space is heated.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 312 becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant in the indoor expansion device 311, and flows to the liquid refrigerant pipe 010. After flowing out from 310, it flows into the parent branch unit 210 or the child branch unit 220.
  • the low-pressure refrigerant flowing in the liquid refrigerant pipe 010a or the liquid refrigerant pipe 010b is merged in the parent branch unit 210 and then flows to the low-pressure main pipe 002 via the expansion device 213.
  • the child branch unit 220 there are two flow paths in the low-pressure refrigerant flowing through the liquid refrigerant pipe 010c or the liquid refrigerant pipe 010d.
  • the first is that after the liquid pipe 003c, the liquid pipe 006, and the liquid pipe 003a are joined via the liquid pipe in the child branch unit 220, they are once merged in the parent branch unit 210, and then passed through the expansion device 213. , A flow path that flows to the low-pressure main pipe 002.
  • the other is a flow path that flows into the main branch unit 210 via the throttle device 223 in the child branch unit 220, the low pressure pipe 005c, the low pressure merge pipe 008, and the low pressure pipe 005a, and flows to the low pressure main pipe 002. is there.
  • the low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows out from the parent branch unit 210 and then flows into the heat source unit 110.
  • the low-pressure refrigerant flowing into the heat source unit 110 is again sucked into the compressor 111 via the check valve 114b, the heat exchanger 113, the flow path switching device 112, and the accumulator 115.
  • the circuit through which the refrigerant flows is used as a main circuit during heating operation.
  • an operation in which an evaporator (cooling operation indoor unit) and a condenser (heating operation indoor unit) are mixed in the load side unit will be described.
  • the mixed operation there are two types of operation modes, a cooling main operation mode and a heating main operation mode.
  • the operation mode is switched so that the capacity or efficiency is maximized by comparing the condensation temperature and the evaporation temperature of the refrigerant of the air conditioner 100 with the target values set in the heat source unit 110. It has become.
  • Each operation mode will be described below.
  • the refrigerant circuit in the cooling main operation mode in which the indoor unit 310 is performing the cooling / heating mixed operation and the cooling load is larger than the heating load, and the operation contents thereof will be described with reference to FIG.
  • the cooling main operation mode will be described by taking as an example the case where the indoor unit 310c is in the cooling operation, the indoor unit 310b is in the heating operation, and the remaining indoor units are stopped.
  • the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows into the heat exchanger 113 through the flow path switching device 112.
  • the high-pressure gas refrigerant that has flowed into the heat exchanger 113 is condensed by exchanging heat with air (or a heat medium such as water) supplied to the heat exchanger 113 to become a high-pressure liquid and gas two-phase refrigerant, It flows out from the heat exchanger 113.
  • the high-pressure two-phase refrigerant that has flowed out of the heat exchanger 113 flows into the parent branch unit 210 through the check valve 114d and the high-pressure main pipe 001.
  • the high-pressure two-phase refrigerant flowing from the high-pressure main pipe 001 is separated into a high-pressure saturated gas refrigerant and a high-pressure saturated liquid refrigerant by the gas-liquid separator 211.
  • the high-pressure saturated gas refrigerant separated by the gas-liquid separator 211 flows to the gas refrigerant pipe 009b via the flow path switching device 214b.
  • the high-pressure gas refrigerant flowing through the gas refrigerant pipe 009b flows out from the parent branch unit 210 and then flows into the indoor unit 310b.
  • the refrigerant flowing into the indoor unit 310b is condensed in the indoor heat exchanger 312b, becomes a high-pressure liquid refrigerant, and flows out of the indoor heat exchanger 312b. At this time, the air-conditioning target space is heated.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 312b becomes an intermediate-pressure liquid and gas two-phase refrigerant or an intermediate-pressure liquid refrigerant in the indoor expansion device 311b, and flows to the liquid refrigerant pipe 010b. After flowing out of the indoor unit 310b, it is reused as a refrigerant used during cooling.
  • the high-pressure saturated liquid refrigerant separated by the gas-liquid separator 211 merges with the refrigerant flowing from the indoor unit 310b via the expansion device 212, and the liquid pipe 003a, the liquid distribution pipe 006, the liquid pipe 003c,
  • the liquid flows through the internal liquid pipe of the branch unit 229 to the liquid refrigerant pipe 010 c and flows out of the child branch unit 220.
  • the refrigerant flowing out from the child branch unit 220 flows into the indoor unit 310c.
  • a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant flows into the indoor heat exchanger 312c.
  • the low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 312c evaporates in the indoor heat exchanger 312c, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 312c.
  • the air-conditioning target space is cooled.
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 312c flows through the gas refrigerant pipe 009c, flows out of the indoor unit 310c, and then flows into the child branch unit 220.
  • the liquid line pressure is adjusted by allowing the liquid accumulated in the liquid line to flow into the low-pressure main pipe 002 or the low-pressure pipe 005 by appropriately opening the expansion device 213 or the expansion device 223. .
  • the refrigerant flowing out from the expansion device 213 or the expansion device 223 becomes a low-pressure two-phase refrigerant by mixing with the low-pressure gas refrigerant flowing in from the indoor unit 310c and the flow path switching device 224c during the cooling operation.
  • the low-pressure two-phase refrigerant is joined and flows to the low-pressure main pipe 002.
  • the low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows out from the parent branch unit 210 and then flows into the heat source unit 110.
  • the low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows into the heat source unit 110.
  • the low-pressure two-phase refrigerant that has flowed into the heat source unit 110 is sucked into the compressor 111 again via the check valve 114a, the flow path switching device 112, and the accumulator 115.
  • the circuit through which the refrigerant flows is used as the main circuit during the cooling main operation.
  • Heating main operation mode the refrigerant circuit in the heating main operation mode in which the indoor unit 310 performs the cooling and heating mixed operation, the indoor unit 310c performs the heating operation, and the heating load is larger than the cooling load, and the operation
  • the heating main operation mode will be described by taking as an example the case where the indoor unit 310a is in the cooling operation and the indoor unit 310c is in the heating operation.
  • the low-pressure gas refrigerant is sucked into the compressor 111 to become a high-temperature / high-pressure gas refrigerant, and flows into the parent branch unit 210 via the flow path switching device 112, the check valve 114c, and the high-pressure main pipe 001. .
  • the high-pressure gas refrigerant flowing from the high-pressure main pipe 001 flows out of the parent branch unit 210 via the gas-liquid separator 211 and the gas pipe 004a.
  • the refrigerant flowing through the gas pipe 004a flows to the gas refrigerant pipe 009c via the gas distribution pipe 007, the gas pipe 004c, and the flow path switching device 224a.
  • the refrigerant flowing through the gas refrigerant pipe 009c flows out from the child branch unit 220 and then flows into the indoor unit 310c.
  • the high-pressure gas refrigerant that has flowed into the indoor unit 310c flows into the indoor heat exchanger 312c, is condensed in the indoor heat exchanger 312c, and flows out of the indoor heat exchanger 312c as high-pressure liquid refrigerant.
  • the air-conditioning target space is heated.
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 312c becomes an intermediate-pressure liquid and gas two-phase refrigerant or an intermediate-pressure liquid refrigerant in the indoor expansion device 311c, and flows to the liquid refrigerant pipe 010c.
  • the indoor unit 310c After flowing out of the indoor unit 310c, it flows into the parent branch unit 210 through the child branch unit 220, the internal liquid pipe of the child branch unit 220, the liquid pipe 003c, the liquid distribution pipe 006, and the liquid pipe 003a.
  • the intermediate-pressure refrigerant that has flowed into the main branch unit 210 flows to the liquid refrigerant pipe 010a.
  • the refrigerant flows out from the parent branch unit 210 and then flows into the indoor unit 310a.
  • the refrigerant flowing into the indoor unit 310a becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant in the indoor expansion device 311a and flows into the indoor heat exchanger 312a.
  • the low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 312a evaporates in the indoor heat exchanger 312a, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 312a. At this time, the air-conditioning target space is cooled.
  • the pressure in the liquid pipe rises and the differential pressure with the heating indoor unit decreases, so the amount of refrigerant circulating through the heating indoor unit decreases, and the heating capacity Decrease. Therefore, in order to release the liquid accumulated in the liquid line, the pressure of the liquid line is adjusted by allowing the liquid accumulated in the liquid line to flow into the low-pressure main pipe 002 by opening the expansion device 213 appropriately. Therefore, the refrigerant flowing out from the main branch unit 210 becomes a low-pressure two-phase refrigerant by mixing the low-pressure gas refrigerant flowing in from the indoor unit 310a and the liquid refrigerant flowing in from the expansion device 213.
  • the refrigerant that has flowed out of the indoor heat exchanger 312a flows into the gas refrigerant pipe 009a.
  • the low-pressure two-phase refrigerant flowing from the gas refrigerant pipe 009a flows out from the indoor unit 310a and then flows into the parent branch unit 210.
  • the low-pressure two-phase refrigerant that has flowed into the parent branch unit 210 flows to the low-pressure main pipe 002 via the flow path switching device 214 (flow path switching device 214a).
  • the low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows out from the parent branch unit 210 and then flows into the heat source unit 110 through the low-pressure main pipe 002.
  • the low-pressure gas refrigerant flowing into the heat source unit 110 is again sucked into the compressor 111 via the check valve 114b, the heat exchanger 113, the flow path switching device 112, and the accumulator 115.
  • the circuit through which the refrigerant flows is used as the main circuit during the driving operation.
  • FIG. 3 is a schematic diagram showing a trend of refrigerant pressure in the air conditioner 100. Based on FIG. 3, the refrigerant
  • the pressure becomes PH1.
  • the pressure becomes PH2 after receiving the pipe pressure loss of the gas pipe 004.
  • PM2 that is an intermediate pressure.
  • it flows into the liquid pipe line of the parent branch unit 210 via the liquid pipe 003 and becomes PM1.
  • the flow of the refrigerant described above describes the flow path when not passing through the expansion device 223 of the child branch unit 220.
  • the differential pressure between the high pressure PH1 and the intermediate pressure PM1 of the parent branch unit 210 is the first intermediate differential pressure dPHM1
  • the differential pressure between the high pressure PH2 and the intermediate pressure PM2 of the child branch unit 220 is the second intermediate differential pressure dPHM2.
  • dPHM1 ⁇ dPHM2.
  • the multi-air conditioner for buildings is designed where the size of the pipe diameter of the liquid pipe 003 with respect to the liquid refrigerant flow rate is smaller than the conventional one because the size of the liquid pipe diameter is related to the amount of additional charging refrigerant. Therefore, as shown in FIG. 3, the differential pressure between the intermediate pressures PM2 and PM1 becomes dominant due to the liquid pipe pressure loss. As a simple method for alleviating this phenomenon, it is conceivable to increase the diameter of the liquid pipe 003, but there is a risk that the additional refrigerant charging amount will increase as described above.
  • the air conditioning apparatus 100 approximates the second intermediate differential pressure dPHM2 to the first intermediate differential pressure dPHM1 by adjusting the opening degree of the expansion device 212, the expansion device 213, and the expansion device 223.
  • the expansion device 213 and the expansion device 223 are adjusted by the air conditioner 100 so that the intermediate differential pressure dPHM1 of the parent branch unit 210 and the intermediate differential pressure dPHM2 of the sub-branch unit 220 are arbitrarily set to the target intermediate differential pressure dPHMm. Control is sufficient.
  • the target intermediate differential pressure dPHMm is set to the same value here in the parent branch unit 210 and the child branch unit 220, but may be set separately if necessary.
  • the air conditioner 100 determines the expansion device 213 and the expansion device based on the differential pressure information between the pressure information of the intermediate pressure sensor 226 and the pressure information of the intermediate pressure sensor 216.
  • Intermediate pressure control is performed by adjusting the opening degree of H.223 so that the intermediate differential pressure dPHM2 is maintained high.
  • FIG. 4 is a flowchart showing the flow of control processing in the parent branch unit control means 420a of the parent branch unit 210 of the air conditioner 100.
  • the parent branch unit control means 420a After starting the control process (step S101), the parent branch unit control means 420a acquires information on the high pressure sensor 215 and information on the intermediate pressure sensor 216 in the parent branch unit 210 (step S102). The acquired information is stored in the sensor information storage means 422a as the value of the high pressure sensor 215 as PH1 and the value of the intermediate pressure sensor 216 as PM1. Thereafter, the parent branch unit control means 420a transmits the PH1 information to the child branch unit control means 420b of the child branch unit 220 (step S103).
  • the information on the high pressure and the intermediate pressure acquired in step S102 is converted into information on the intermediate differential pressure dPHM1 (step S104).
  • the parent branch unit control means 420a determines what processing should be performed using the intermediate differential pressure dPHM1 calculated in step S104. First, in step S105, the master branching unit control means 420a compares the intermediate differential pressure dPHM1 with a value obtained by subtracting the set value ⁇ from the target intermediate differential pressure dPHMm based on a mathematical formula (dPHM1> dPHMm ⁇ ).
  • step S105 When the determination result in step S105 is No, the parent branch unit control unit 420a performs a control operation for decreasing the opening degree of the expansion device 212 and a control operation for increasing the opening amount of the expansion device 213 (step S107).
  • throttle device 213 you may set arbitrarily and should just set suitably according to an operating condition.
  • step S105 When the determination result in step S105 is Yes, the parent branch unit control means 420a compares the intermediate differential pressure dPHM1 and the target intermediate differential pressure dPHMm plus the set value ⁇ based on the formula (dPHM1 ⁇ dPHMm + ⁇ ) ( Step S106).
  • the parent branch unit control unit 420a performs a control operation for increasing the opening degree of the expansion device 212 and a control operation for decreasing the opening amount of the expansion device 213 (step S108).
  • throttle device 213 you may set arbitrarily and should just set suitably according to an operating condition.
  • step S106 When the determination result in step S106 is Yes, the parent branch unit control means 420a maintains the opening degrees of the expansion device 212 and the expansion device 213 (step S109). The parent branch unit control means 420a determines whether the parent branch unit 210 is thermo-off or stopped after step S107, step S108, and step S109 are finished (step S110). If the determination result in step S110 is No, the parent branch unit control unit 420a sequentially re-executes the processing from step S102 at regular intervals, for example. If the determination result in step S110 is Yes, the control is terminated (step S111).
  • the set value ⁇ used in the mathematical formula is a value determined by a dead zone in the automatic control of the air conditioner 100. Inserting a dead zone improves control robustness. Therefore, the set value ⁇ may be selected as necessary.
  • the master branch unit 210 can perform refrigerant control of the intermediate differential pressure dPHM1.
  • Thermo-OFF is to stop driving the compressor 111 when the temperature of the air-conditioning target space reaches the set temperature. Further, the improvement in robustness means that the control of the air conditioner 100 is less likely to be influenced by disturbance. Furthermore, the dead zone is a range of setting values set so that no control is performed. These meanings are the same in the following description.
  • FIG. 5 is a flowchart showing a flow of control processing in the child branch unit control means 420b of the child branch unit 220 of the air conditioner 100.
  • the child branch unit control means 420b starts the control process (step S201), and acquires information on the intermediate pressure sensor 226 in the child branch unit 220 (step S202). Thereafter, the child branch unit control means 420b receives the PH1 information from the parent branch unit control means 420a of the parent branch unit 210 (step S203). The acquired information is stored in the sensor information storage unit 422b as PH1 as PH2 and intermediate pressure sensor 226 as PM2.
  • the information on the high pressure and the intermediate pressure acquired in steps S202 and S203 is converted into information on the intermediate differential pressure dPHM2 (step S204).
  • the child branch unit control means 420b determines what processing should be performed using the intermediate differential pressure dPHM2 calculated in step S204. First, in step S205, the sub-branch unit control means 420b compares the intermediate differential pressure dPHM2 and the value obtained by subtracting the set value ⁇ from the target intermediate differential pressure dPHMm based on the mathematical formula (dPHM2> dPHMm ⁇ ).
  • step S207 the child branch unit control unit 420b performs a control operation for increasing the opening degree of the expansion device 223.
  • the control amount of the opening degree of the expansion device 223 you may set arbitrarily and should just set suitably according to a driving
  • step S205 If the determination result in step S205 is Yes, the child branch unit control unit 420b
  • the intermediate differential pressure dPHM2 is compared with a value obtained by adding the set value ⁇ from the target intermediate differential pressure dPHMm (dPHM2 ⁇ dPHMm + ⁇ ) (step S206).
  • step S208 the child branch unit control unit 420b performs a control operation for reducing the opening degree of the expansion device 223 (step S208).
  • the control amount of the opening degree of the expansion device 223 here, you may set arbitrarily and should just set suitably according to a driving
  • step S206 determines whether or not the child branch unit 220 is thermo-off or stopped after step S207, step S208, and step S209 are completed (step S210). If the determination result in step S210 is No, the child branch unit control unit 420b sequentially re-executes the processing from step S202 at regular intervals, for example. If the determination result in step S210 is Yes, the control is terminated (step S211).
  • the set value ⁇ used in the mathematical formula is a value determined by a dead zone in the automatic control of the air conditioner 100. Inserting a dead zone improves control robustness. Therefore, the set value ⁇ may be selected as necessary.
  • the pressure value PH1 of the parent branch unit 210 is used as the pressure value PH2.
  • a high pressure sensor may be provided in the gas pipe in the child branch unit 220, and this sensor information may be set as PH2. If such a flowchart is used, refrigerant control of the intermediate differential pressure dPHM2 can be performed in the sub branch unit 220.
  • the refrigerant pressure can be appropriately controlled. Therefore, the pipe length from the parent branch unit 210 to the indoor unit 310 is increased. It becomes possible. As a result, a plurality of child branch units 220 can be connected, and the piping length between the child branch unit 220 and the indoor unit 310 can be shortened. Further, the pipe diameter between the parent branch unit 210 and the child branch unit 220 can be reduced.
  • Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • the pseudo azeotropic refrigerant mixture includes R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
  • the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle.
  • natural refrigerants such as carbon dioxide, propane, isobutane, and ammonia can be used.
  • R22 represents chlorodifluoromethane
  • R32 represents difluoromethane
  • R125 represents pentafluoromethane
  • R134a represents 1,1,1,2-tetrafluoromethane
  • R143a represents 1,1,1-trifluoroethane. Yes. Therefore, it is good to use the refrigerant
  • FIG. 6 is a schematic construction diagram schematically showing an example of a construction diagram of the air conditioner 100 in which a plurality of child branch units 220 are connected.
  • plays is demonstrated based on FIG.
  • an example of the construction drawing of the conventional air conditioning apparatus (henceforth the air conditioning apparatus 100X) is also shown in figure as a comparative example.
  • a state in which ten indoor units 310 are connected is shown as an example.
  • the configuration of the air conditioner 100X is indicated by adding “X” at the end.
  • the air conditioner 100X shown in FIG. 6 does not perform the intermediate pressure control as described in FIG. 3, the heating capacity of the indoor unit 310X for heating operation connected to the child branch unit 220X side is reduced. End up. This is because the intermediate differential pressure decreases due to pipe pressure loss as the child branch unit 220X moves away from the parent branch unit 210X.
  • the air conditioner 100 by adopting the control processing shown in FIGS. 4 and 5, intermediate pressure control is executed, and a plurality of child branch units 220 can be connected. That is, the child branch unit 220 can be connected to a position away from the heat source unit 110. Therefore, it becomes possible to install so that the piping length between the child branch unit 220 and the indoor unit 310 becomes short. Further, the pipe diameter between the parent branch unit 210 and the child branch unit 220 can be reduced.
  • the air conditioner 100 it is possible to design a pipe that can reduce the piping construction cost and the refrigerant additional charging amount.
  • the line arrangement of the child branch units 220 allows the pipe diameter to be smaller for the child branch unit 220 connected away from the parent branch unit 210 on the paper surface. Can be reduced.
  • the handling of the refrigerant piping connecting the parent branch unit 210, the child branch unit 220, and the indoor unit 310 can be simplified, a reduction in the amount of additional charge refrigerant can be expected, and the cost required for piping construction can be suppressed. Is possible.

Abstract

First throttle devices (212, 213) mounted in a first branch unit (210) and a second throttle device (223) mounted in a second branch unit (220) are provided downstream from indoor-side throttle devices (311) in the flow of refrigerant during an operation in which refrigerant discharged from a compressor is supplied to heat exchangers mounted in indoor units (310), and an intermediate pressure of a refrigeration cycle is controlled by adjusting the degree of opening of the first throttle devices (212, 213) and second throttle device (223).

Description

空気調和装置Air conditioner
 本発明は、冷凍サイクルを搭載し、空調負荷を提供することができる空気調和装置に関するものである。 The present invention relates to an air conditioner equipped with a refrigeration cycle and capable of providing an air conditioning load.
 従来から、冷凍サイクルを搭載し、空調負荷を提供することができる空気調和機が提案されている。そのようなものとして、例えば特許文献1、2に記載されているような圧縮機、熱交換器、絞り装置、室内熱交換器、及び、アキュムレータを接続することにより冷房負荷、暖房負荷を同時に提供することができる空調給湯複合システムが存在する。 Conventionally, air conditioners that are equipped with a refrigeration cycle and can provide an air conditioning load have been proposed. As such, for example, a compressor, a heat exchanger, a throttling device, an indoor heat exchanger, and an accumulator as described in Patent Documents 1 and 2 are connected to simultaneously provide a cooling load and a heating load. There is an air conditioning and hot water supply complex system that can do.
特許第2534926号公報Japanese Patent No. 2534926 特許第5106536号公報Japanese Patent No. 5106536
 特許文献1又は特許文献2に記載されている空調調和装置は、1台の親分岐ユニット及び1台又は2台の子分岐ユニットを接続することで、複数の室内ユニットが接続できる構成を可能としている。 The air conditioner described in Patent Document 1 or Patent Document 2 enables a configuration in which a plurality of indoor units can be connected by connecting one parent branch unit and one or two child branch units. Yes.
 通常、空気調和装置には、分岐ユニットの接続台数に制約がある。そのため、室内ユニットの配置によっては、分岐ユニットから室内ユニットまでの冷媒配管長の取り回しが複雑化してしまう可能性がある。また、分岐ユニットから室内ユニットまでの冷媒配管を延長する必要が生じる可能性がある。冷媒配管の取り回しが複雑化したり、冷媒配管を延長したりするような事態が発生すると、施工に要するコストの増加及び追加充填冷媒量の増加につながってしまうという問題があった。 Normally, there are restrictions on the number of branch units connected to an air conditioner. Therefore, depending on the arrangement of the indoor units, the handling of the refrigerant pipe length from the branch unit to the indoor unit may be complicated. Further, it may be necessary to extend the refrigerant pipe from the branch unit to the indoor unit. When the handling of the refrigerant pipes becomes complicated or the refrigerant pipes are extended, there is a problem that it leads to an increase in cost required for construction and an increase in the amount of additional charge refrigerant.
 本発明は、上記のような課題を解決するためになされたもので、分岐ユニットから室内ユニットまでの冷媒配管の取り回しの自由度の向上及び追加充填冷媒量の削減を可能とした空気調和装置を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and provides an air conditioner that can improve the degree of freedom in handling refrigerant piping from the branch unit to the indoor unit and reduce the amount of additional charged refrigerant. It is intended to provide.
 本発明に係る空気調和装置は、圧縮機及び第1熱交換器が搭載された少なくとも1台の熱源ユニットと、第2熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、前記熱源ユニットと前記室内ユニットとの間に接続され、少なくとも2つの第1絞り装置が搭載された第1分岐ユニットと、前記第1分岐ユニットと前記室内ユニットとの間に接続され、少なくとも1つの第2絞り装置が搭載された第2分岐ユニットと、を備え、前記圧縮機、前記第1熱交換器、前記室内側絞り装置、前記第2熱交換器を接続することにより冷凍サイクルが形成され、前記第1絞り装置及び前記第2絞り装置は、前記第2熱交換器に前記圧縮機から吐出された冷媒を供給する運転時における冷媒の流れにおいて前記室内側絞り装置の下流側に設けられており、前記第1絞り装置及び前記第2絞り装置の開度を調整することにより、前記冷凍サイクルの中間圧を制御するものである。 An air conditioner according to the present invention includes at least one heat source unit on which a compressor and a first heat exchanger are mounted, and at least one indoor unit on which a second heat exchanger and an indoor expansion device are mounted. A first branch unit connected between the heat source unit and the indoor unit and mounted with at least two first expansion devices; connected between the first branch unit and the indoor unit; and at least 1 And a second branch unit on which two second expansion devices are mounted. A refrigeration cycle is formed by connecting the compressor, the first heat exchanger, the indoor expansion device, and the second heat exchanger. The first throttle device and the second throttle device are arranged below the indoor side throttle device in the refrigerant flow during operation of supplying the refrigerant discharged from the compressor to the second heat exchanger. It provided on the side, by adjusting the opening degree of the first throttle device and said second throttle device, which controls the intermediate pressure of the refrigeration cycle.
 本発明に係る空気調和装置によれば、第1絞り装置及び第2絞り装置の開度を調整することにより、冷凍サイクルの中間圧を制御するので、熱源ユニットに対し複数の分岐ユニットを接続することができ、施工コストの抑制及び追加冷媒充填量の削減が可能となる。 According to the air conditioner of the present invention, the intermediate pressure of the refrigeration cycle is controlled by adjusting the opening degrees of the first throttle device and the second throttle device, so that a plurality of branch units are connected to the heat source unit. It is possible to reduce the construction cost and the additional refrigerant charging amount.
本発明の実施の形態に係る空気調和装置の冷媒回路構成の一例を概略的に示す冷媒回路図である。It is a refrigerant circuit figure showing roughly an example of the refrigerant circuit composition of the air harmony device concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和装置の電気的な構成を示す制御ブロック図である。It is a control block diagram which shows the electrical structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置における冷媒圧力のトレンドを示した模式図である。It is the schematic diagram which showed the trend of the refrigerant | coolant pressure in the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の親分岐ユニットの親分岐ユニット制御手段における制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing in the parent branch unit control means of the parent branch unit of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の子分岐ユニットの子分岐ユニット制御手段における制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing in the child branch unit control means of the child branch unit of the air conditioning apparatus which concerns on embodiment of this invention. 複数の子分岐ユニットを接続した本発明の実施の形態に係る空気調和装置の施工図の一例を概略的に示した概略施工図である。It is the schematic construction drawing which showed roughly an example of the construction drawing of the air conditioning apparatus which concerns on embodiment of this invention which connected the some child branch unit.
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 図1は、本発明の実施の形態1に係る空気調和装置100の冷媒回路構成の一例を概略的に示す冷媒回路図である。以下、図1に基づいて、空気調和装置100の構成について説明する。 FIG. 1 is a refrigerant circuit diagram schematically showing an example of a refrigerant circuit configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Hereinafter, based on FIG. 1, the structure of the air conditioning apparatus 100 is demonstrated.
 空気調和装置100は、例えばビル、マンション、又は、ホテル等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプ)を利用することで冷房負荷、暖房負荷を同時に供給できるものである。
 なお、空気調和装置100を構成している各ユニットの接続台数を、図1に示す台数に限定するものではない。
The air conditioner 100 is installed in, for example, a building, a condominium, or a hotel, and can supply a cooling load and a heating load simultaneously by using a refrigeration cycle (heat pump) that circulates refrigerant.
It should be noted that the number of connected units constituting the air conditioner 100 is not limited to the number shown in FIG.
<空気調和装置100の構成>
 空気調和装置100は、熱源ユニット110と、親分岐ユニット210と、子分岐ユニット220と、室内ユニット310と、が接続されて構成されている。このうち室内ユニット310は、熱源ユニット110に対して並列に接続されている。
<Configuration of Air Conditioner 100>
The air conditioner 100 is configured by connecting a heat source unit 110, a parent branch unit 210, a child branch unit 220, and an indoor unit 310. Among these, the indoor unit 310 is connected in parallel to the heat source unit 110.
 熱源ユニット110と親分岐ユニット210とは、2本の冷媒配管(高圧主管001、低圧主管002)で接続されている。
 親分岐ユニット210と子分岐ユニット220とは、3本の冷媒配管(液管003、ガス管004、低圧管005)で接続されている。
 親分岐ユニット210と室内ユニット310、及び、子分岐ユニット220と室内ユニット310は、2本の冷媒配管(液冷媒配管010、ガス冷媒配管009)で接続されている。
 熱源ユニット110は、親分岐ユニット210(又は親分岐ユニット210と子分岐ユニット220)を経由して室内ユニット310へ連絡するようになっている。
The heat source unit 110 and the parent branch unit 210 are connected by two refrigerant pipes (a high pressure main pipe 001 and a low pressure main pipe 002).
The parent branch unit 210 and the child branch unit 220 are connected by three refrigerant pipes (liquid pipe 003, gas pipe 004, and low pressure pipe 005).
The parent branch unit 210 and the indoor unit 310, and the child branch unit 220 and the indoor unit 310 are connected by two refrigerant pipes (a liquid refrigerant pipe 010 and a gas refrigerant pipe 009).
The heat source unit 110 communicates with the indoor unit 310 via the parent branch unit 210 (or the parent branch unit 210 and the child branch unit 220).
[熱源ユニット110]
 熱源ユニット110は、親分岐ユニット210、又は、親分岐ユニット210及び子分岐ユニット220を介して、室内ユニット310に温熱又は冷熱を供給する機能を有している。
 熱源ユニット110は、主に圧縮機111、流路切替装置112、熱交換器113、逆止弁114、アキュムレータ(液溜め容器)115を有している。これらを順次接続して冷媒回路の一部を構成している。
 なお、熱源ユニット110の用途により、ユニット内部で使用される冷媒回路部品の選定及び冷媒回路を構成すればよい。
[Heat source unit 110]
The heat source unit 110 has a function of supplying hot or cold to the indoor unit 310 via the parent branch unit 210 or the parent branch unit 210 and the child branch unit 220.
The heat source unit 110 mainly includes a compressor 111, a flow path switching device 112, a heat exchanger 113, a check valve 114, and an accumulator (liquid reservoir container) 115. These are sequentially connected to constitute a part of the refrigerant circuit.
In addition, what is necessary is just to comprise the selection of the refrigerant circuit components used inside a unit, and a refrigerant circuit by the use of the heat source unit 110. FIG.
 圧縮機111は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであればよく、特にタイプを限定するものではない。例えば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機111を構成することができる。この圧縮機111は、インバータにより回転数が可変に制御可能なタイプのもので構成するとよい。 The compressor 111 is not particularly limited as long as it sucks the refrigerant and compresses the refrigerant to bring it into a high temperature / high pressure state. For example, the compressor 111 can be configured using various types such as reciprocating, rotary, scroll, or screw. The compressor 111 may be of a type that can be variably controlled by an inverter.
 流路切替装置112は、例えば四方弁等で構成され、要求される運転モードに応じて冷媒の流れを切り替えるものである。なお、二方弁又は三方弁を組み合わせて流路切替装置112を構成してもよい。 The flow path switching device 112 is constituted by, for example, a four-way valve or the like, and switches the flow of the refrigerant according to a required operation mode. The flow path switching device 112 may be configured by combining two-way valves or three-way valves.
 熱交換器113は、主に熱源(例えば、空気や水、ブライン等)から熱を吸熱又は熱源に熱を放熱する役割を持つ。熱交換器113の種類は、使用される熱源に応じて選定すればよく、空気が熱源の場合であれば空気式熱交換器、水又はブラインが熱源の場合であれば水熱交換器で構成すればよい。熱交換器113が空気式熱交換器である場合には、熱交換器113の周辺にファン等の熱源側送風機を設けるとよい。熱交換器113が水熱交換器である場合には、水を循環させるポンプを水側回路に設けるとよい。
 なお、熱交換器113が、本発明の「第1熱交換器」に相当する。
The heat exchanger 113 has a role of mainly absorbing heat from a heat source (eg, air, water, brine, etc.) or radiating heat to the heat source. The type of the heat exchanger 113 may be selected according to the heat source to be used. If the air is a heat source, the type is a pneumatic heat exchanger. If the water or brine is a heat source, the heat exchanger 113 is configured by a water heat exchanger. do it. When the heat exchanger 113 is an air heat exchanger, a heat source side blower such as a fan may be provided around the heat exchanger 113. When the heat exchanger 113 is a water heat exchanger, a pump for circulating water may be provided in the water side circuit.
The heat exchanger 113 corresponds to the “first heat exchanger” of the present invention.
 アキュムレータ115は、圧縮機111の吸入側に設けられ、過剰な冷媒を貯留できるものであればよい。なお、アキュムレータ115は、空気調和装置100の冷媒回路構成に必須のものではない。 The accumulator 115 may be any one provided on the suction side of the compressor 111 and capable of storing excess refrigerant. The accumulator 115 is not essential for the refrigerant circuit configuration of the air conditioner 100.
 また、熱源ユニット110に設けられている逆止弁114は、4つの逆止弁114(逆止弁114a~逆止弁114d)で構成されている。
 なお、熱源ユニット110においては、高圧主管001と低圧主管002とを接続する2本の冷媒配管(冷媒配管011、冷媒配管012)が設けられている。冷媒配管011は、逆止弁114aの上流側における低圧主管002と逆止弁114dの上流側における高圧主管001とを接続している。冷媒配管012は、逆止弁114aの下流側における低圧主管002と逆止弁114dの下流側における高圧主管001とを接続している。
The check valve 114 provided in the heat source unit 110 includes four check valves 114 (the check valve 114a to the check valve 114d).
In the heat source unit 110, two refrigerant pipes (refrigerant pipe 011 and refrigerant pipe 012) for connecting the high-pressure main pipe 001 and the low-pressure main pipe 002 are provided. The refrigerant pipe 011 connects the low-pressure main pipe 002 on the upstream side of the check valve 114a and the high-pressure main pipe 001 on the upstream side of the check valve 114d. The refrigerant pipe 012 connects the low-pressure main pipe 002 on the downstream side of the check valve 114a and the high-pressure main pipe 001 on the downstream side of the check valve 114d.
 逆止弁114aは、流路切替装置112と親分岐ユニット210との間における低圧主管002に設けられ、親分岐ユニット210から熱源ユニット110への方向のみに冷媒の流れを許容するようになっている。
 逆止弁114dは、熱交換器113と親分岐ユニット210との間における高圧主管001に設けられ、熱源ユニット110から親分岐ユニット210への方向のみに冷媒の流れを許容するようになっている。
The check valve 114a is provided in the low-pressure main pipe 002 between the flow path switching device 112 and the parent branch unit 210, and allows the refrigerant to flow only in the direction from the parent branch unit 210 to the heat source unit 110. Yes.
The check valve 114d is provided in the high-pressure main pipe 001 between the heat exchanger 113 and the parent branch unit 210, and allows the refrigerant to flow only in the direction from the heat source unit 110 to the parent branch unit 210. .
 逆止弁114bは、冷媒配管011に設けられ、低圧主管002から冷媒配管011を経由して熱交換器113の方向のみに冷媒の流通を許容するようになっている。
 逆止弁114cは、冷媒配管012に設けられ、流路切替装置112から冷媒配管012を経由して高圧主管001の方向のみに冷媒の流通を許容するようになっている。
The check valve 114b is provided in the refrigerant pipe 011 and allows the refrigerant to flow only from the low-pressure main pipe 002 to the heat exchanger 113 via the refrigerant pipe 011.
The check valve 114c is provided in the refrigerant pipe 012 and allows the refrigerant to flow only in the direction of the high-pressure main pipe 001 from the flow path switching device 112 via the refrigerant pipe 012.
 よって、高圧主管001、低圧主管002、冷媒配管011、冷媒配管012、逆止弁114a、逆止弁114b、逆止弁114c、及び、逆止弁114dを設けることで、室内ユニット310の要求する運転に関わらず、熱源ユニット110から親分岐ユニット210に流入させる冷媒の流れを一定方向にすることができる。
 なお、これらは、空気調和装置100の冷媒回路構成に必須のものではない。
Therefore, the indoor unit 310 requires by providing the high-pressure main pipe 001, the low-pressure main pipe 002, the refrigerant pipe 011, the refrigerant pipe 012, the check valve 114a, the check valve 114b, the check valve 114c, and the check valve 114d. Regardless of the operation, the flow of the refrigerant flowing from the heat source unit 110 into the parent branch unit 210 can be in a certain direction.
These are not essential for the refrigerant circuit configuration of the air conditioner 100.
 熱源ユニット110は、高圧圧力センサ116及び低圧圧力センサ117を備えている。高圧圧力センサ116は、圧縮機111の吐出側に設けられ、圧縮機111から吐出された冷媒の吐出圧力を検知するものである。低圧圧力センサ117は、圧縮機111の吸入側に設けられ、圧縮機111に吸入される冷媒の吸入圧力を検知するものである。高圧圧力センサ116及び低圧圧力センサ117で検知された冷媒の圧力情報は、熱源ユニット110に搭載されている熱源ユニット制御手段410に送られるようになっている。 The heat source unit 110 includes a high pressure sensor 116 and a low pressure sensor 117. The high pressure sensor 116 is provided on the discharge side of the compressor 111 and detects the discharge pressure of the refrigerant discharged from the compressor 111. The low pressure sensor 117 is provided on the suction side of the compressor 111 and detects the suction pressure of the refrigerant sucked into the compressor 111. The refrigerant pressure information detected by the high pressure sensor 116 and the low pressure sensor 117 is sent to the heat source unit control means 410 mounted on the heat source unit 110.
 なお、図示はしていないが必要があれば、冷媒の吐出温度を検知する温度センサ、冷媒の吸入温度を検知する温度センサ、空調冷媒の吸引温度を検知する温度センサ、熱交換器113に流出入する冷媒の温度を検知する温度センサ、熱源ユニット110に取り込まれる外気温を検知する温度センサ等を設けてもよい。これらの温度センサで検知された冷媒及び空気の温度情報も、熱源ユニット制御手段410に送られるようになっている。 Although not shown, if necessary, a temperature sensor that detects the refrigerant discharge temperature, a temperature sensor that detects the refrigerant suction temperature, a temperature sensor that detects the air conditioning refrigerant suction temperature, and the heat exchanger 113 flows out. You may provide the temperature sensor which detects the temperature of the refrigerant | coolant to enter, the temperature sensor which detects the external temperature taken in into the heat-source unit 110, etc. The temperature information of the refrigerant and air detected by these temperature sensors is also sent to the heat source unit control means 410.
[親分岐ユニット210]
 親分岐ユニット210は、熱源ユニット110から供給された温熱又は冷熱を、室内ユニット310及び子分岐ユニット220に供給する機能を有している。
 親分岐ユニット210は、主に気液分離器211、流路切替装置214、絞り装置212、絞り装置213を有している。
 なお、親分岐ユニット210においては、液管003a、ガス管004a、低圧管005aが子分岐ユニット220に接続できるようになっている。
 また、親分岐ユニット210が、本発明の「第1分岐ユニット」に相当する。
[Parent branch unit 210]
The parent branch unit 210 has a function of supplying the indoor unit 310 and the child branch unit 220 with the heat or cold supplied from the heat source unit 110.
The parent branch unit 210 mainly includes a gas-liquid separator 211, a flow path switching device 214, a throttle device 212, and a throttle device 213.
In the main branch unit 210, the liquid pipe 003a, the gas pipe 004a, and the low pressure pipe 005a can be connected to the sub branch unit 220.
The parent branch unit 210 corresponds to the “first branch unit” of the present invention.
 液管003aは、親分岐ユニット210と子分岐ユニット220との間で液分配管006に接続される。液分配管006には液管003bと液管003cが接続されており、液分配管006により液管003aを流れてきた冷媒が液管003bと液管003cに分流される。液管003b及び液管003cは、子分岐ユニット220に接続されている。なお、図1では、液管003cのみが子分岐ユニット220に接続されている状態を例に示している。 The liquid pipe 003 a is connected to the liquid distribution pipe 006 between the parent branch unit 210 and the child branch unit 220. A liquid pipe 003b and a liquid pipe 003c are connected to the liquid pipe 006, and the refrigerant flowing through the liquid pipe 003a through the liquid pipe 006 is divided into the liquid pipe 003b and the liquid pipe 003c. The liquid pipe 003b and the liquid pipe 003c are connected to the child branch unit 220. FIG. 1 shows an example in which only the liquid pipe 003 c is connected to the child branch unit 220.
 ガス管004aは、親分岐ユニット210と子分岐ユニット220との間でガス分配管007に接続される。ガス分配管007にはガス管004bとガス管004cが接続されており、ガス分配管007によりガス管004aを流れてきた冷媒がガス管004bとガス管004cに分流される。ガス管004b及びガス管004cは、子分岐ユニット220に接続されている。なお、図1では、ガス管004cのみが子分岐ユニット220に接続されている状態を例に示している。 The gas pipe 004 a is connected to the gas distribution pipe 007 between the parent branch unit 210 and the child branch unit 220. A gas pipe 004b and a gas pipe 004c are connected to the gas distribution pipe 007, and the refrigerant flowing through the gas pipe 004a by the gas distribution pipe 007 is divided into the gas pipe 004b and the gas pipe 004c. The gas pipe 004 b and the gas pipe 004 c are connected to the child branch unit 220. FIG. 1 shows an example in which only the gas pipe 004c is connected to the child branch unit 220.
 低圧管005aは、親分岐ユニット210と子分岐ユニット220との間で低圧合流管008に接続される。低圧合流管008には低圧管005bと低圧管005cが接続されており、低圧合流管008により低圧管005bと低圧管005cを流れてきた冷媒が合流される。低圧管005b及び低圧管005cは、子分岐ユニット220に接続されている。なお、図1では、低圧管005cのみが子分岐ユニット220に接続されている状態を例に示している。 The low pressure pipe 005a is connected to the low pressure junction pipe 008 between the parent branch unit 210 and the child branch unit 220. A low pressure pipe 005b and a low pressure pipe 005c are connected to the low pressure joining pipe 008, and the refrigerant flowing through the low pressure pipe 005b and the low pressure pipe 005c is joined by the low pressure joining pipe 008. The low pressure pipe 005 b and the low pressure pipe 005 c are connected to the child branch unit 220. FIG. 1 shows an example in which only the low-pressure pipe 005c is connected to the child branch unit 220.
 流路切替装置214は、室内ユニット310に供給する冷媒の流れを切り替えるものである。この流路切替装置214によって、冷媒流路を切り替えることで、親分岐ユニット210に接続されている室内ユニット310が冷房、暖房を同時に実行することが可能である。流路切替装置214は、例えば三方弁等で構成され、一方が低圧主管002に接続し、他方が気液分離器211に接続し、更にもう他方が室内ユニット310の室内側熱交換器312に接続するようになっている。 The flow path switching device 214 switches the flow of refrigerant supplied to the indoor unit 310. By switching the refrigerant flow path by this flow path switching device 214, the indoor unit 310 connected to the parent branch unit 210 can simultaneously perform cooling and heating. The flow path switching device 214 is composed of, for example, a three-way valve, and one is connected to the low-pressure main pipe 002, the other is connected to the gas-liquid separator 211, and the other is connected to the indoor heat exchanger 312 of the indoor unit 310. It comes to connect.
 なお、流路切替装置214は、親分岐ユニット210に接続されている室内ユニット310の台数に対応した個数(ここでは2個)が設けられている。流路切替装置214のうち、室内ユニット310aに接続しているものを流路切替装置214a、室内ユニット310bに接続しているものを流路切替装置214bとして図示している。 In addition, the flow path switching device 214 is provided with a number (two in this case) corresponding to the number of indoor units 310 connected to the parent branch unit 210. Of the flow path switching devices 214, the one connected to the indoor unit 310a is illustrated as the flow path switching device 214a, and the one connected to the indoor unit 310b is illustrated as the flow path switching device 214b.
 気液分離器211は、高圧主管001に接続されるとともに、室内ユニット310の流出入側のそれぞれに接続される。気液分離器211は、流入した冷媒をガス冷媒と液冷媒とに分離する機能を有している。気液分離器211は、熱源ユニット110と親分岐ユニット210との間の冷媒配管が2管式である場合に搭載される。 The gas-liquid separator 211 is connected to the high-pressure main pipe 001 and to the inflow / outflow side of the indoor unit 310. The gas-liquid separator 211 has a function of separating the inflowing refrigerant into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 211 is mounted when the refrigerant pipe between the heat source unit 110 and the parent branch unit 210 is a two-pipe type.
 絞り装置212は、気液分離器211と室内側絞り装置311との間に設けられ、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。
 絞り装置213は、低圧主管002と、絞り装置212と室内側絞り装置311との間における配管と、を接続した接続配管に設けられ、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。
 絞り装置212及び絞り装置213は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 なお、絞り装置212及び絞り装置213が、本発明の「第1絞り装置」に相当する。
The expansion device 212 is provided between the gas-liquid separator 211 and the indoor expansion device 311 and has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
The expansion device 213 is provided in a connection pipe connecting the low-pressure main pipe 002 and the piping between the expansion device 212 and the indoor expansion device 311, and has a function as a pressure reducing valve or an expansion valve, and decompresses the refrigerant. And expand.
The throttling device 212 and the throttling device 213 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
The diaphragm device 212 and the diaphragm device 213 correspond to the “first diaphragm device” of the present invention.
 親分岐ユニット210は、高圧圧力センサ215及び中間圧圧力センサ216を備えている。高圧圧力センサ215は、気液分離器211と絞り装置212との間に設けられ、気液分離器211から流出した冷媒の圧力を検知するものである。中間圧圧力センサ216は、絞り装置212の下流側に設けられ、絞り装置212から流出した冷媒の圧力を検知するものである。高圧圧力センサ215及び中間圧圧力センサ216で検知された冷媒の圧力情報は、親分岐ユニット210に搭載されている親分岐ユニット制御手段420aに送られるようになっている。 The parent branch unit 210 includes a high pressure sensor 215 and an intermediate pressure sensor 216. The high-pressure sensor 215 is provided between the gas-liquid separator 211 and the expansion device 212 and detects the pressure of the refrigerant that has flowed out of the gas-liquid separator 211. The intermediate pressure sensor 216 is provided on the downstream side of the expansion device 212 and detects the pressure of the refrigerant flowing out of the expansion device 212. The refrigerant pressure information detected by the high pressure sensor 215 and the intermediate pressure sensor 216 is sent to the parent branch unit control means 420 a mounted on the parent branch unit 210.
 親分岐ユニット制御手段420aに送られた圧力情報は、暖房運転の室内ユニット310又は冷房運転の室内ユニット310に適切に冷媒を供給するため、高圧圧力センサ215と中間圧圧力センサ216の差圧(以下、中間差圧)をセンシングするために用いられる。なお、高圧圧力センサ215の値は、必要に応じて、熱源ユニット110の高圧圧力センサ116の値を代用してもよい。 The pressure information sent to the parent branch unit control means 420a is the difference between the high pressure sensor 215 and the intermediate pressure sensor 216 in order to supply the refrigerant appropriately to the indoor unit 310 for heating operation or the indoor unit 310 for cooling operation. Hereinafter, it is used to sense the intermediate differential pressure). Note that the value of the high pressure sensor 215 may be replaced with the value of the high pressure sensor 116 of the heat source unit 110 as necessary.
 また、親分岐ユニット210は、温度センサ217を備えている。温度センサ217は、親分岐ユニット210から室内ユニット310に連絡する配管に設けられ、冷媒の過冷却度の算出に利用される冷媒温度を検知するものである。つまり、温度センサ217と中間圧圧力センサ216より冷媒の過冷却度を検知できる。ここで冷媒の過冷却度が正であれば冷媒は液冷媒状態であるが、これは冷房運転する室内ユニット310や子分岐ユニット220への液冷媒の分配性が悪化しないことを意味する。逆に、過冷却度が0℃であれば二相冷媒状態であり冷媒分配の悪化を招くことを意味する。そのため、冷媒の過冷却度を算出することにより冷媒分配性の検知することが可能である。 The parent branch unit 210 includes a temperature sensor 217. The temperature sensor 217 is provided in a pipe that communicates from the parent branch unit 210 to the indoor unit 310, and detects the refrigerant temperature that is used to calculate the degree of supercooling of the refrigerant. That is, the degree of refrigerant supercooling can be detected by the temperature sensor 217 and the intermediate pressure sensor 216. Here, if the degree of supercooling of the refrigerant is positive, the refrigerant is in a liquid refrigerant state, which means that the distribution of the liquid refrigerant to the indoor unit 310 and the child branch unit 220 that perform the cooling operation does not deteriorate. Conversely, if the degree of supercooling is 0 ° C., it means that the refrigerant is in a two-phase refrigerant state and the refrigerant distribution is deteriorated. Therefore, it is possible to detect refrigerant distribution by calculating the degree of supercooling of the refrigerant.
[子分岐ユニット220]
 子分岐ユニット220は、熱源ユニット110から供給された温熱又は冷熱を、室内ユニット310に供給する機能を有している。
 子分岐ユニット220は、主に流路切替装置224、絞り装置223で構成されている。
 なお、子分岐ユニット220が、本発明の「第2分岐ユニット」に相当する。
[Sub-branch unit 220]
The child branch unit 220 has a function of supplying the indoor unit 310 with hot or cold supplied from the heat source unit 110.
The child branch unit 220 is mainly composed of a flow path switching device 224 and an expansion device 223.
The child branch unit 220 corresponds to the “second branch unit” of the present invention.
 流路切替装置224は、室内ユニット310に供給する冷媒の流れを切り替えるものである。この流路切替装置224によって、冷媒流路を切り替えることで、子分岐ユニット220に接続されている室内ユニット310が冷房、暖房を同時に実行することが可能である。流路切替装置224は、例えば三方弁等で構成され、一方が低圧管005cに接続し、他方がガス管004cに接続し、更にもう他方が室内ユニット310の室内側熱交換器312に接続するようになっている。 The flow path switching device 224 switches the flow of the refrigerant supplied to the indoor unit 310. By switching the refrigerant flow path with this flow path switching device 224, the indoor unit 310 connected to the child branch unit 220 can simultaneously perform cooling and heating. The flow path switching device 224 is composed of, for example, a three-way valve, and one is connected to the low-pressure pipe 005c, the other is connected to the gas pipe 004c, and the other is connected to the indoor heat exchanger 312 of the indoor unit 310. It is like that.
 なお、流路切替装置224は、子分岐ユニット220に接続されている室内ユニット310の台数に対応した個数(ここでは2個)が設けられている。流路切替装置224のうち、室内ユニット310cに接続しているものを流路切替装置224a、室内ユニット310dに接続しているものを流路切替装置224bとして図示している。 Note that the flow path switching device 224 is provided in a number (two in this case) corresponding to the number of indoor units 310 connected to the child branch unit 220. Of the flow path switching devices 224, those connected to the indoor unit 310c are illustrated as flow path switching devices 224a, and those connected to the indoor unit 310d are illustrated as flow path switching devices 224b.
 絞り装置223は、低圧管005cと、液管003cと室内側絞り装置311との間における配管と、を接続した接続配管に設けられ、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置223は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 なお、絞り装置223が、本発明の「第2絞り装置」に相当する。
The throttle device 223 is provided in a connection pipe connecting the low pressure pipe 005c and the pipe between the liquid pipe 003c and the indoor side throttle device 311. The throttle device 223 functions as a pressure reducing valve or an expansion valve, and decompresses the refrigerant. And expand. The throttling device 223 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
The diaphragm device 223 corresponds to the “second diaphragm device” of the present invention.
 子分岐ユニットは、中間圧圧力センサ226を備えている。中間圧圧力センサ226は、液管003aに設けられ、液管003aを流れる冷媒の圧力を検知するものである。中間圧圧力センサ226で検知された冷媒の圧力情報は、子分岐ユニット220に搭載されている子分岐ユニット制御手段420bに送られるようになっている。 The child branch unit includes an intermediate pressure sensor 226. The intermediate pressure sensor 226 is provided in the liquid pipe 003a and detects the pressure of the refrigerant flowing through the liquid pipe 003a. The refrigerant pressure information detected by the intermediate pressure sensor 226 is sent to the child branch unit control means 420b mounted on the child branch unit 220.
 子分岐ユニット制御手段420bに送られた圧力情報は、暖房運転の室内ユニット310又は冷房運転の室内ユニット310に適切に冷媒を供給するため、高圧圧力センサ215と中間圧圧力センサ226の差圧(以下、中間差圧)をセンシングするために用いられる。なお、高圧圧力センサ215の値は、必要に応じて、熱源ユニット110の高圧圧力センサ116の値を代用してもよい。 The pressure information sent to the sub-branch unit control means 420b uses the differential pressure between the high-pressure sensor 215 and the intermediate-pressure sensor 226 to appropriately supply the refrigerant to the indoor unit 310 for heating operation or the indoor unit 310 for cooling operation. Hereinafter, it is used to sense the intermediate differential pressure). Note that the value of the high pressure sensor 215 may be replaced with the value of the high pressure sensor 116 of the heat source unit 110 as necessary.
 また、子分岐ユニット220は、温度センサ227を備えている。温度センサ227は、液管003aに設けられ、冷媒の過冷却度の算出に利用される冷媒温度を検知するものである。つまり、温度センサ227と中間圧圧力センサ226より冷媒の過冷却度を検知できる。ここで冷媒の過冷却度が正であれば冷媒は液冷媒状態であるが、これは冷房運転する室内ユニット310への液冷媒の分配性が悪化しないことを意味する。逆に、過冷却度が0℃であれば二相冷媒状態であり冷媒分配の悪化を招くことを意味する。そのため、冷媒の過冷却度を算出することにより冷媒分配性の検知することが可能である。 Further, the child branch unit 220 includes a temperature sensor 227. The temperature sensor 227 is provided in the liquid pipe 003a and detects the refrigerant temperature used for calculating the degree of supercooling of the refrigerant. That is, the degree of refrigerant supercooling can be detected by the temperature sensor 227 and the intermediate pressure sensor 226. Here, if the degree of supercooling of the refrigerant is positive, the refrigerant is in a liquid refrigerant state, which means that the distribution of the liquid refrigerant to the indoor unit 310 that is performing the cooling operation does not deteriorate. Conversely, if the degree of supercooling is 0 ° C., it means that the refrigerant is in a two-phase refrigerant state and the refrigerant distribution is deteriorated. Therefore, it is possible to detect refrigerant distribution by calculating the degree of supercooling of the refrigerant.
[室内ユニット310]
 室内ユニット310は、熱源ユニット110からの温熱又は冷熱の供給を受けて暖房負荷又は冷媒負荷を担当する機能を有している。
 室内ユニット310は、主に室内側絞り装置311、室内側熱交換器(負荷側熱交換器)312を有している。これらを配管で順次接続して冷媒回路の一部を構成している。
 図1では、4台の室内ユニット310が接続されている状態を例に示している。4台のうちの室内ユニット310aと室内ユニット310が親分岐ユニット210に対して並列に接続されている。4台のうちの室内ユニット310cと室内ユニット310dが子分岐ユニット220に対して並列に接続されている。
[Indoor unit 310]
The indoor unit 310 has a function of receiving heating or cooling supply from the heat source unit 110 and taking charge of heating load or refrigerant load.
The indoor unit 310 mainly includes an indoor expansion device 311 and an indoor heat exchanger (load-side heat exchanger) 312. These are sequentially connected by piping to constitute a part of the refrigerant circuit.
FIG. 1 shows an example in which four indoor units 310 are connected. Of the four units, the indoor unit 310 a and the indoor unit 310 are connected in parallel to the parent branch unit 210. Of the four units, the indoor unit 310 c and the indoor unit 310 d are connected in parallel to the child branch unit 220.
 なお、室内ユニット310の接続台数を図示している台数に限定するものではなく、5台以上の室内ユニット310を同様に接続するようにしてもよい。また、室内ユニット310には、室内側熱交換器312に空気を供給するためのファン等の室内側送風機を室内側熱交換器312の近傍に設けるとよい。さらに、室内ユニット310は、負荷側ユニットの一例である。 Note that the number of indoor units 310 connected is not limited to the number shown, and five or more indoor units 310 may be similarly connected. The indoor unit 310 may be provided with an indoor fan such as a fan for supplying air to the indoor heat exchanger 312 in the vicinity of the indoor heat exchanger 312. Furthermore, the indoor unit 310 is an example of a load side unit.
 室内側絞り装置311は、室内ユニット310内における液管003aに設けられ、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。室内側絞り装置311は、開度が可変に制御可能なもの、例えば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調整手段等で構成するとよい。室内側絞り装置311のうち、室内ユニット310aに搭載されているものを室内側絞り装置311a、室内ユニット310bに搭載されているものを室内側絞り装置311b、室内ユニット310cに搭載されているものを室内側絞り装置311c、室内ユニット310dに搭載されているものを室内側絞り装置311dとして図示している。 The indoor expansion device 311 is provided in the liquid pipe 003a in the indoor unit 310, has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by decompressing it. The indoor throttling device 311 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate adjustment means such as a capillary tube, or the like. Among the indoor expansion devices 311, those mounted on the indoor unit 310 a are mounted on the indoor expansion device 311 a, and those mounted on the indoor unit 310 b are mounted on the indoor expansion device 311 b and the indoor unit 310 c. What is mounted on the indoor side expansion device 311c and the indoor unit 310d is illustrated as an indoor side expansion device 311d.
 室内側熱交換器312は、暖房サイクル時には放熱器(凝縮器)、冷房サイクル時には蒸発器として機能し、図示省略の室内側送風機から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化又は蒸発ガス化するものである。
 なお、ここでは、空気式熱交換器を例に説明しているが、これに限定するものではなく、チラー又は給湯のような、水を冷却、加熱させる熱交換器、つまり水熱交換器に変更してもよい。
 なお、室内側熱交換器312が、本発明の「第2熱交換器」に相当する。
The indoor heat exchanger 312 functions as a radiator (condenser) during the heating cycle and as an evaporator during the cooling cycle, and performs heat exchange between air supplied from an indoor blower (not shown) and the refrigerant. Is condensed or liquefied or gasified.
In addition, although the air-type heat exchanger is demonstrated here as an example, it is not limited to this, The heat exchanger which cools and heats water like a chiller or a hot water supply, ie, a water heat exchanger, is not limited to this. It may be changed.
The indoor heat exchanger 312 corresponds to the “second heat exchanger” of the present invention.
 また、室内ユニット310には、図示省略の温度センサが設けられている。この温度センサは、設置場所の負荷検知を行うものであり、例えばサーミスタ等で構成されている。なお、温度検知素子の設置場所や種類を、特に限定するものではないため、室内ユニット310の特性や、検知させたい負荷に応じて設置場所や種類を選定すればよい。温度センサで検知された温度情報は、室内ユニット310に搭載されている室内ユニット制御手段430に送られるようになっている。 The indoor unit 310 is provided with a temperature sensor (not shown). This temperature sensor detects the load at the installation location, and is composed of, for example, a thermistor. In addition, since the installation location and type of the temperature detection element are not particularly limited, the installation location and type may be selected according to the characteristics of the indoor unit 310 and the load to be detected. The temperature information detected by the temperature sensor is sent to the indoor unit control means 430 mounted on the indoor unit 310.
 なお、室内ユニット制御手段430のうち、室内ユニット310aに搭載されているものを室内ユニット制御手段430a、室内ユニット310bに搭載されているものを室内ユニット制御手段430b、室内ユニット310cに搭載されているものを室内ユニット制御手段430c、室内ユニット310dに搭載されているものを室内ユニット制御手段430dとして図示している。 Of the indoor unit control means 430, those mounted on the indoor unit 310a are mounted on the indoor unit control means 430a, and those mounted on the indoor unit 310b are mounted on the indoor unit control means 430b and the indoor unit 310c. The thing mounted in the indoor unit 310d is illustrated as the indoor unit control means 430d.
 親分岐ユニット210と室内ユニット310aとを接続している2本の冷媒配管は、液冷媒配管010a、ガス冷媒配管009aとして図示している。
 親分岐ユニット210と室内ユニット310bとを接続している2本の冷媒配管は、液冷媒配管010b、ガス冷媒配管009bとして図示している。
 子分岐ユニット220と室内ユニット310cとを接続している2本の冷媒配管は、液冷媒配管010c、ガス冷媒配管009cとして図示している。
 子分岐ユニット220と室内ユニット310dとを接続している2本の冷媒配管は、液冷媒配管010d、ガス冷媒配管009dとして図示している。
Two refrigerant pipes connecting the parent branch unit 210 and the indoor unit 310a are illustrated as a liquid refrigerant pipe 010a and a gas refrigerant pipe 009a.
Two refrigerant pipes connecting the parent branch unit 210 and the indoor unit 310b are illustrated as a liquid refrigerant pipe 010b and a gas refrigerant pipe 009b.
Two refrigerant pipes connecting the child branch unit 220 and the indoor unit 310c are illustrated as a liquid refrigerant pipe 010c and a gas refrigerant pipe 009c.
Two refrigerant pipes connecting the child branch unit 220 and the indoor unit 310d are illustrated as a liquid refrigerant pipe 010d and a gas refrigerant pipe 009d.
 以上のように、空気調和装置100は、熱源ユニット110を親分岐ユニット210及び子分岐ユニット220を介して室内ユニット310に接続したシステム構成となっている。 As described above, the air conditioner 100 has a system configuration in which the heat source unit 110 is connected to the indoor unit 310 via the parent branch unit 210 and the child branch unit 220.
 空気調和装置100には、空気調和装置100のシステム全体を統括制御する制御手段400が設けられている。この制御手段400は、圧縮機111の駆動周波数、送風機の回転数、流路切替装置112の切り替え、各絞り手段の開度、流路切替装置214の切り替え、流路切替装置224の切り替え等を制御する。つまり、制御手段400は、各種センサでの検出情報及びリモコンからの指示に基づいて、各アクチュエータ(圧縮機111、流路切替装置112、送風機、室内側絞り装置311等の駆動部品)を制御するようになっている。なお、各種センサには、図示省略のセンサも含んでいる。 The air conditioner 100 is provided with a control means 400 that performs overall control of the entire system of the air conditioner 100. The control means 400 controls the drive frequency of the compressor 111, the rotation speed of the blower, the switching of the flow path switching device 112, the opening of each throttle means, the switching of the flow path switching device 214, the switching of the flow path switching device 224, and the like. Control. That is, the control means 400 controls each actuator (driving components such as the compressor 111, the flow path switching device 112, the blower, and the indoor-side throttle device 311) based on detection information from various sensors and instructions from the remote controller. It is like that. The various sensors include sensors not shown.
 制御手段400については図2で詳細に説明するが、制御手段400は、熱源ユニット制御手段410、親分岐ユニット制御手段420a、子分岐ユニット制御手段420b、室内ユニット制御手段430、を備えている。 The control means 400 will be described in detail with reference to FIG. 2. The control means 400 includes a heat source unit control means 410, a parent branch unit control means 420a, a child branch unit control means 420b, and an indoor unit control means 430.
[その他対象システム構成]
 図1では、空気調和装置100が、熱源ユニット110と室内ユニット310とを親分岐ユニット210を介して2本の冷媒配管で接続した2管式の冷暖同時タイプである場合を例に挙げたが、これに限定するものではなく、3本の冷媒配管で接続した3管式の冷暖同時タイプ又は冷暖切替タイプで空気調和装置100を構成してもよい。
[Other target system configuration]
In FIG. 1, the case where the air conditioner 100 is a two-tube type cooling and heating simultaneous type in which the heat source unit 110 and the indoor unit 310 are connected by two refrigerant pipes via the parent branch unit 210 is taken as an example. However, the present invention is not limited to this, and the air-conditioning apparatus 100 may be configured by a three-tube type cooling / heating simultaneous type or a cooling / heating switching type connected by three refrigerant pipes.
 図2は、空気調和装置100の電気的な構成を示す制御ブロック図である。図2に基づいて、空気調和装置100に搭載されている制御手段400について詳細に説明する。 FIG. 2 is a control block diagram showing an electrical configuration of the air conditioner 100. Based on FIG. 2, the control means 400 mounted in the air conditioning apparatus 100 will be described in detail.
 上述したように、空気調和装置100は、制御手段400を備えている。制御手段400は、マイクロコンピュータやDSPなどで構成されており、空気調和装置100のシステム全体を制御する機能を有している。制御手段400は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコン又はCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 As described above, the air conditioning apparatus 100 includes the control means 400. The control means 400 is composed of a microcomputer, a DSP, etc., and has a function of controlling the entire system of the air conditioning apparatus 100. The control means 400 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
 上述したように、制御手段400は、熱源ユニット制御手段410、親分岐ユニット制御手段420a、子分岐ユニット制御手段420b、室内ユニット制御手段430、を備えている。そして、各制御手段の割り振りについては、各々のユニットに対応する制御手段を与え、各々のユニットが独立して制御を行なう自立分散協調制御でもよく、どれか一つのユニットが全制御手段を有し、その制御手段を有したユニットが通信等を用いて他ユニットに制御指令を与えるようにしてもよい。 As described above, the control means 400 includes the heat source unit control means 410, the parent branch unit control means 420a, the child branch unit control means 420b, and the indoor unit control means 430. For the allocation of each control means, a control means corresponding to each unit may be provided, and each unit may perform independent distributed cooperative control in which control is independently performed, and any one unit has all control means. The unit having the control means may give a control command to another unit using communication or the like.
 例えば、図1に示したように、熱源ユニット110に熱源ユニット制御手段410を、親分岐ユニット210に親分岐ユニット制御手段420aを、子分岐ユニット220に子分岐ユニット制御手段420bを、室内ユニット310に室内ユニット制御手段430を、それぞれ備えるようにすれば、各々のユニットが独立して制御を行なうことができる。なお、各制御手段は、無線又は有線の通信手段で情報伝達が可能となっている。 For example, as shown in FIG. 1, the heat source unit control means 410 for the heat source unit 110, the parent branch unit control means 420 a for the parent branch unit 210, the child branch unit control means 420 b for the child branch unit 220, and the indoor unit 310 If each of the indoor unit control means 430 is provided, each unit can perform control independently. Each control means can transmit information by wireless or wired communication means.
 熱源ユニット制御手段410は、熱源ユニット110における冷媒の圧力状態及び冷媒の温度状態を制御する機能を有している。熱源ユニット制御手段410は、熱源ユニット制御部411、センサ情報格納手段412、演算処理回路413、及び、アクチュエータ制御信号出力手段414等を有している。 The heat source unit control means 410 has a function of controlling the refrigerant pressure state and the refrigerant temperature state in the heat source unit 110. The heat source unit control unit 410 includes a heat source unit control unit 411, a sensor information storage unit 412, an arithmetic processing circuit 413, an actuator control signal output unit 414, and the like.
 具体的には、熱源ユニット制御手段410は、熱源ユニット制御部411が、高圧圧力センサ116、低圧圧力センサ117等で得た情報をデータとしてセンサ情報格納手段412で格納し、格納された情報を基にして熱源ユニット110内部で演算処理を演算処理回路413で実施した後、アクチュエータ制御信号出力手段414から、圧縮機111の運転周波数を出力したり、送風機のファン回転数を出力したり、流路切替装置112の切替を出力したりする機能を有している。 Specifically, the heat source unit control unit 410 stores the information obtained by the heat source unit control unit 411 using the high pressure sensor 116, the low pressure sensor 117, etc. as data in the sensor information storage unit 412, and stores the stored information. After performing the arithmetic processing in the heat source unit 110 on the basis of the arithmetic processing circuit 413, the actuator control signal output means 414 outputs the operating frequency of the compressor 111, outputs the fan rotation speed of the blower, It has a function of outputting the switching of the path switching device 112.
 さらに、熱源ユニット制御手段410は、熱源ユニット110の容量に応じて親分岐ユニット210に接続できる室内ユニット310の台数及び容量の最大値を規定しており、本情報を親分岐ユニット210へ送信する機能を有している。 Further, the heat source unit control means 410 defines the maximum number of indoor units 310 that can be connected to the parent branch unit 210 and the maximum value according to the capacity of the heat source unit 110, and transmits this information to the parent branch unit 210. It has a function.
 親分岐ユニット制御手段420aは、分岐ユニット制御部421a、センサ情報格納手段422a、演算処理回路423a、及び、アクチュエータ制御信号出力手段424a等を有している。 The parent branch unit control unit 420a includes a branch unit control unit 421a, a sensor information storage unit 422a, an arithmetic processing circuit 423a, an actuator control signal output unit 424a, and the like.
 具体的には、親分岐ユニット制御手段420aは、分岐ユニット制御部421aが、親分岐ユニット210の流路切替装置214を動作させたり、親分岐ユニット210自身の高圧圧力センサ215、中間圧圧力センサ216、温度センサ217等で得た情報をデータとしてセンサ情報格納手段422aで格納し、格納された情報を基にして親分岐ユニット210内部で演算処理を演算処理回路423aで実施した後、アクチュエータ制御信号出力手段424aから電磁弁出力又は膨張弁(絞り装置212、絞り装置213)の開度を制御したりする等の機能を有している。 Specifically, in the parent branch unit control means 420a, the branch unit controller 421a operates the flow path switching device 214 of the parent branch unit 210, the high pressure sensor 215 of the parent branch unit 210 itself, the intermediate pressure sensor. 216, the information obtained by the temperature sensor 217 and the like is stored as data in the sensor information storage means 422a, and the arithmetic processing circuit 423a performs arithmetic processing in the parent branch unit 210 based on the stored information, and then the actuator control The signal output means 424a has a function of controlling an electromagnetic valve output or an opening degree of an expansion valve (the expansion device 212, the expansion device 213).
 また、親分岐ユニット制御手段420aは、熱源ユニット110から受けた接続容量及び運転容量の情報を基に、室内ユニット310の接続容量及び運転容量の制約を行う機能も有しており、あわせて子分岐ユニット制御手段420bへの接続容量及び運転容量の制約情報を送信する機能も有している。さらに必要あれば、センサ情報格納手段422aで格納されたデータを送信する手段も有している。 The parent branch unit control means 420a also has a function of restricting the connection capacity and operation capacity of the indoor unit 310 based on the connection capacity and operation capacity information received from the heat source unit 110. It also has a function of transmitting restriction information on connection capacity and operation capacity to the branch unit control means 420b. Furthermore, if necessary, it also has means for transmitting the data stored in the sensor information storage means 422a.
 子分岐ユニット制御手段420bは、子分岐ユニット制御部421b、センサ情報格納手段422b、演算処理回路423b、及び、アクチュエータ制御信号出力手段424b等を有している。 The child branch unit control unit 420b includes a child branch unit control unit 421b, a sensor information storage unit 422b, an arithmetic processing circuit 423b, an actuator control signal output unit 424b, and the like.
 具体的には、子分岐ユニット制御手段420bは、子分岐ユニット制御部421bが、子分岐ユニット220の流路切替装置224を動作させたり、子分岐ユニット220自身の中間圧圧力センサ226、温度センサ227等で得た情報をデータとしてセンサ情報格納手段422bで格納し、格納された情報を基にして子分岐ユニット220内部で演算処理を演算処理回路423bで実施した後、アクチュエータ制御信号出力手段424bから電磁弁出力又は絞り装置223の開度を制御したりする等の機能を有している。 Specifically, in the child branch unit control means 420b, the child branch unit controller 421b operates the flow path switching device 224 of the child branch unit 220, or the intermediate pressure / pressure sensor 226, temperature sensor of the child branch unit 220 itself. The information obtained by 227 or the like is stored as data in the sensor information storage means 422b, and the arithmetic processing circuit 423b performs arithmetic processing in the child branch unit 220 based on the stored information, and then the actuator control signal output means 424b. The function of controlling the solenoid valve output or the opening degree of the throttle device 223 is provided.
 さらに必要あれば、親分岐ユニット制御手段420aより受信した圧力センサ情報及び温度センサ情報をセンサ情報格納手段422bに格納する手段も有している。
 また、子分岐ユニット制御手段420bは、親分岐ユニット210から受けた接続容量及び運転容量の制約情報を基に、室内ユニット310の接続容量及び運転容量の制約を行う機能も有している。
Furthermore, if necessary, it also has means for storing the pressure sensor information and temperature sensor information received from the parent branch unit control means 420a in the sensor information storage means 422b.
The child branch unit control means 420b also has a function of restricting the connection capacity and operating capacity of the indoor unit 310 based on the connection capacity and operating capacity restriction information received from the parent branch unit 210.
 室内ユニット制御手段430は、室内ユニット310の冷房運転時における過熱度、室内ユニット310の暖房運転時における過冷却度を制御する機能を有している。室内ユニット制御手段430は、具体的には、室内側熱交換器312の熱交換面積を変化させたり、室内側送風機のファン回転数を制御したり、室内側絞り装置311の開度を制御したりする機能を有している。 The indoor unit control means 430 has a function of controlling the degree of superheating during the cooling operation of the indoor unit 310 and the degree of supercooling during the heating operation of the indoor unit 310. Specifically, the indoor unit control means 430 changes the heat exchange area of the indoor heat exchanger 312, controls the fan rotation speed of the indoor blower, and controls the opening of the indoor expansion device 311. It has a function to do.
 また、上述したように、図示はしていないが必要があれば、冷媒の吐出温度を検知する温度センサ、冷媒の吸入温度を検知するセンサ、空調冷媒の吸引温度を検知する温度センサ、熱交換器113に流出入する冷媒の温度を検知する温度センサ、熱源ユニット110に取り込まれる外気温を検知する温度センサ、室内側熱交換器312に流出入する冷媒の温度を検知する温度センサを設けておくとよい。そして、圧力情報から飽和温度情報(特に高圧圧力センサであれば凝縮温度、低圧圧力センサであれば蒸発温度)へ変換したり、圧力情報及び温度情報から比エンタルピ等に換算したりしてもよい。これらの各種センサで検知された情報(温度情報や圧力情報等の計測情報)は、制御手段400に送られ、各アクチュエータの制御に利用されることになる。 As described above, although not shown, if necessary, a temperature sensor for detecting the refrigerant discharge temperature, a sensor for detecting the refrigerant intake temperature, a temperature sensor for detecting the air-conditioning refrigerant suction temperature, heat exchange A temperature sensor for detecting the temperature of the refrigerant flowing into and out of the heat exchanger 113, a temperature sensor for detecting the outside air temperature taken into the heat source unit 110, and a temperature sensor for detecting the temperature of the refrigerant flowing into and out of the indoor heat exchanger 312. It is good to leave. Then, pressure information may be converted into saturation temperature information (in particular, a condensation temperature for a high pressure sensor, or an evaporation temperature for a low pressure sensor), or may be converted into specific enthalpy from pressure information and temperature information. . Information (measurement information such as temperature information and pressure information) detected by these various sensors is sent to the control means 400 and used for controlling each actuator.
<空気調和装置100の動作>
 次に、空気調和装置100の動作について説明する。
 空気調和装置100が実行する運転モードには、4つの運転モードがある。運転モードの1つが、運転している室内ユニット310の全部が冷房運転を実行する冷房運転モードである。運転モードの1つが、運転している室内ユニット310の全部が暖房運転を実行する暖房運転モードである。運転モードの1つが、暖房運転している室内ユニット310と冷房運転している室内ユニット310が混在し、冷房負荷の方が大きい冷房主体運転モードである。運転モードの1つが、暖房運転している室内ユニット310と冷房運転している室内ユニット310が混在し、暖房負荷の方が大きい暖房主体運転モードである。
<Operation of Air Conditioner 100>
Next, the operation of the air conditioning apparatus 100 will be described.
There are four operation modes in the operation mode executed by the air conditioner 100. One of the operation modes is a cooling operation mode in which all the indoor units 310 that are operating perform a cooling operation. One of the operation modes is a heating operation mode in which all of the indoor units 310 that are operating perform the heating operation. One of the operation modes is a cooling main operation mode in which the indoor unit 310 that is performing the heating operation and the indoor unit 310 that is performing the cooling operation are mixed, and the cooling load is larger. One of the operation modes is a heating main operation mode in which the indoor unit 310 that is performing the heating operation and the indoor unit 310 that is performing the cooling operation are mixed and the heating load is larger.
[冷房運転モード]
 まず、運転している全部の室内ユニット310が冷房運転をしているときの冷房運転モード時における冷媒回路、及び、その運転内容について図1を参照しながら説明する。
[Cooling operation mode]
First, the refrigerant circuit in the cooling operation mode when all the indoor units 310 in operation are in the cooling operation and the operation contents will be described with reference to FIG.
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替装置112を経て、熱交換器113へ流入する。熱交換器113に流入した高圧のガス冷媒は、熱交換器113に供給される空気(又は水等の熱媒体)と熱交換することにより凝縮して高圧の液冷媒となり、熱交換器113から流出する。熱交換器113から流出した高圧の液冷媒は、逆止弁114d、高圧主管001を経て、親分岐ユニット210へ流入する。 In the heat source unit 110, the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows into the heat exchanger 113 through the flow path switching device 112. The high-pressure gas refrigerant that has flowed into the heat exchanger 113 is condensed by exchanging heat with air (or a heat medium such as water) supplied to the heat exchanger 113 to become a high-pressure liquid refrigerant. leak. The high-pressure liquid refrigerant flowing out from the heat exchanger 113 flows into the parent branch unit 210 through the check valve 114d and the high-pressure main pipe 001.
 親分岐ユニット210から室内ユニット310a又は室内ユニット310bへ冷媒が流出する場合、高圧主管001から流れてきた高圧の液冷媒は、気液分離器211及び絞り装置212を経て、液冷媒配管010a又は液冷媒配管010bへ流れる。液冷媒配管010a又は液冷媒配管010bを流れる冷媒は、親分岐ユニット210から流出した後、室内ユニット310a又は室内ユニット310bに流入する。 When the refrigerant flows out from the main branch unit 210 to the indoor unit 310a or the indoor unit 310b, the high-pressure liquid refrigerant that has flowed from the high-pressure main pipe 001 passes through the gas-liquid separator 211 and the expansion device 212, and the liquid refrigerant pipe 010a or liquid It flows to the refrigerant pipe 010b. The refrigerant flowing through the liquid refrigerant pipe 010a or the liquid refrigerant pipe 010b flows out from the parent branch unit 210 and then flows into the indoor unit 310a or the indoor unit 310b.
 一方、子分岐ユニット220に接続されている室内ユニット310c又は室内ユニット310dへ冷媒が流出する場合、高圧主管001から流れてきた高圧の液冷媒は、気液分離器211、絞り装置212、液管003aを経て親分岐ユニット210から流出する。液管003aを流れる冷媒は、液分配管006、液管003c、子分岐ユニット220の内部液管を経て、液冷媒配管010c又は液冷媒配管010dへ流れる。液冷媒配管010c又は液冷媒配管010dを流れる冷媒は、子分岐ユニット220から流出した後、室内ユニット310c又は室内ユニット310dに流入する。 On the other hand, when the refrigerant flows out to the indoor unit 310c or the indoor unit 310d connected to the child branch unit 220, the high-pressure liquid refrigerant flowing from the high-pressure main pipe 001 is separated from the gas-liquid separator 211, the expansion device 212, and the liquid pipe. It flows out from the parent branch unit 210 via 003a. The refrigerant flowing through the liquid pipe 003a flows through the liquid distribution pipe 006, the liquid pipe 003c, and the internal liquid pipe of the child branch unit 220 to the liquid refrigerant pipe 010c or the liquid refrigerant pipe 010d. The refrigerant flowing through the liquid refrigerant pipe 010c or the liquid refrigerant pipe 010d flows out of the child branch unit 220 and then flows into the indoor unit 310c or the indoor unit 310d.
 室内ユニット310では、室内側絞り装置311にて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、室内側熱交換器312へ流れる。室内側熱交換器312に流入した低圧二相冷媒又は低圧液冷媒は、室内側熱交換器312にて蒸発し、低圧のガス冷媒となり、室内側熱交換器312から流出する。ここで、空調対象空間が冷房されることになる。低圧のガス冷媒は、室内ユニット310から流出した後、親分岐ユニット210又は子分岐ユニット220に流入する。 In the indoor unit 310, the low-pressure liquid and gas two-phase refrigerant or the low-pressure liquid refrigerant flows into the indoor heat exchanger 312 in the indoor expansion device 311. The low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 312 evaporates in the indoor heat exchanger 312, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 312. Here, the air-conditioning target space is cooled. The low-pressure gas refrigerant flows out of the indoor unit 310 and then flows into the parent branch unit 210 or the child branch unit 220.
 親分岐ユニット210の場合、室内側熱交換器312から流出した低圧ガス冷媒は、ガス冷媒配管009a又はガス冷媒配管009bを流れて室内ユニット310a又は室内ユニット310bから流出した後、親分岐ユニット210に流入する。親分岐ユニット210に流入した低圧のガス冷媒は、流路切替装置214(流路切替装置214a、流路切替装置214b)を経て、合流されて低圧主管002に流れる。 In the case of the parent branch unit 210, the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 312 flows through the gas refrigerant pipe 009a or the gas refrigerant pipe 009b and out of the indoor unit 310a or the indoor unit 310b, and then enters the parent branch unit 210. Inflow. The low-pressure gas refrigerant that has flowed into the parent branch unit 210 is merged through the flow path switching device 214 (the flow path switching device 214a and the flow path switching device 214b) and flows to the low-pressure main pipe 002.
 一方、子分岐ユニット220の場合、室内側熱交換器312から流出した低圧ガス冷媒は、ガス冷媒配管009c又はガス冷媒配管009dを流れて室内ユニット310a又は室内ユニット310bから流出した後、子分岐ユニット220に流入する。子分岐ユニット220に流入した低圧のガス冷媒は、流路切替装置224(流路切替装置224a、流路切替装置224b)を経て、低圧管005、低圧合流管008を経て、親分岐ユニット210へ流入する。親分岐ユニット210へ流れた低圧冷媒は、低圧主管002で合流されて、熱源ユニット110へ流入する。 On the other hand, in the case of the child branch unit 220, the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 312 flows through the gas refrigerant pipe 009c or the gas refrigerant pipe 009d and out of the indoor unit 310a or the indoor unit 310b, and then the child branch unit. 220 flows. The low-pressure gas refrigerant that has flowed into the child branch unit 220 passes through the flow path switching device 224 (the flow path switching device 224a and the flow path switching device 224b), passes through the low pressure pipe 005, and the low pressure merge pipe 008 to the parent branch unit 210. Inflow. The low-pressure refrigerant that has flowed to the parent branch unit 210 is merged in the low-pressure main pipe 002 and flows into the heat source unit 110.
 熱源ユニット110に流入した低圧のガス冷媒は、逆止弁114a、流路切替装置112、アキュムレータ115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を冷房運転時の主回路とする。 The low-pressure gas refrigerant flowing into the heat source unit 110 is again sucked into the compressor 111 via the check valve 114a, the flow path switching device 112, and the accumulator 115. The circuit through which the refrigerant flows is used as the main circuit during the cooling operation.
[暖房運転モード]
 次に、運転している全部の室内ユニット310が暖房運転をしているときの暖房運転モード時における冷媒回路、及び、その運転内容について図1を参照しながら説明する。
[Heating operation mode]
Next, the refrigerant circuit in the heating operation mode when all the indoor units 310 being operated are in the heating operation, and the contents of the operation will be described with reference to FIG.
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替装置112、逆止弁114c、高圧主管001を経て、親分岐ユニット210へ流入する。 In the heat source unit 110, the low-pressure gas refrigerant is sucked into the compressor 111 to become a high-temperature / high-pressure gas refrigerant, and flows into the parent branch unit 210 via the flow path switching device 112, the check valve 114c, and the high-pressure main pipe 001. .
 親分岐ユニット210から室内ユニット310a又は室内ユニット310bへ冷媒が流出する場合、高圧主管001から流れてきた高圧のガス冷媒は、気液分離器211、流路切替装置214(流路切替装置214a、流路切替装置214b)を経て、ガス冷媒配管009a又はガス冷媒配管009bへ流れる。ガス冷媒配管009a又はガス冷媒配管009bを流れる冷媒は、親分岐ユニット210から流出した後、室内ユニット310a又は室内ユニット310bに流入する。 When the refrigerant flows out from the parent branch unit 210 to the indoor unit 310a or the indoor unit 310b, the high-pressure gas refrigerant flowing from the high-pressure main pipe 001 is separated from the gas-liquid separator 211, the flow path switching device 214 (the flow path switching device 214a, It flows to the gas refrigerant pipe 009a or the gas refrigerant pipe 009b via the flow path switching device 214b). The refrigerant flowing through the gas refrigerant pipe 009a or the gas refrigerant pipe 009b flows out from the parent branch unit 210 and then flows into the indoor unit 310a or the indoor unit 310b.
 一方、子分岐ユニット220に接続されている室内ユニット310c又は室内ユニット310dへ冷媒が流出する場合、高圧主管001から流れてきた高圧のガス冷媒は、気液分離器211、ガス管004aを経て、親分岐ユニット210から流出する。ガス管004aを流れる冷媒は、ガス分配管007、ガス管004c、流路切替装置224(流路切替装置224a、流路切替装置224b)を経て、ガス冷媒配管009c又はガス冷媒配管009dへ流れる。ガス冷媒配管009c又はガス冷媒配管009dを流れる冷媒は、子分岐ユニット220から流出した後、室内ユニット310c又は室内ユニット310dに流入する。 On the other hand, when the refrigerant flows out to the indoor unit 310c or the indoor unit 310d connected to the child branch unit 220, the high-pressure gas refrigerant flowing from the high-pressure main pipe 001 passes through the gas-liquid separator 211 and the gas pipe 004a, Outflow from the parent branch unit 210. The refrigerant flowing through the gas pipe 004a flows to the gas refrigerant pipe 009c or the gas refrigerant pipe 009d via the gas distribution pipe 007, the gas pipe 004c, and the flow path switching device 224 (flow path switching device 224a, flow path switching device 224b). The refrigerant flowing through the gas refrigerant pipe 009c or the gas refrigerant pipe 009d flows out from the child branch unit 220 and then flows into the indoor unit 310c or the indoor unit 310d.
 室内ユニット310に流入した高圧のガス冷媒は、室内側熱交換器312に流入し、室内側熱交換器312にて凝縮され、高圧の液冷媒となって室内側熱交換器312から流出する。ここで、空調対象空間が暖房されることになる。室内側熱交換器312から流出した高圧の液冷媒は、室内側絞り装置311にて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、液冷媒配管010へ流れ、室内ユニット310から流出した後、親分岐ユニット210又は子分岐ユニット220に流入する。 The high-pressure gas refrigerant that has flowed into the indoor unit 310 flows into the indoor heat exchanger 312, is condensed in the indoor heat exchanger 312, and flows out of the indoor heat exchanger 312 as a high-pressure liquid refrigerant. Here, the air-conditioning target space is heated. The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 312 becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant in the indoor expansion device 311, and flows to the liquid refrigerant pipe 010. After flowing out from 310, it flows into the parent branch unit 210 or the child branch unit 220.
 親分岐ユニット210の場合、液冷媒配管010a又は液冷媒配管010bを流れる低圧の冷媒は、親分岐ユニット210にて合流された後、絞り装置213を経て、低圧主管002へ流れる。 In the case of the parent branch unit 210, the low-pressure refrigerant flowing in the liquid refrigerant pipe 010a or the liquid refrigerant pipe 010b is merged in the parent branch unit 210 and then flows to the low-pressure main pipe 002 via the expansion device 213.
 一方、子分岐ユニット220の場合、液冷媒配管010c又は液冷媒配管010dを流れる低圧の冷媒には2つの流路が存在する。まず一つ目は、子分岐ユニット220内の液配管経由で、液管003c、液分配管006、液管003aを経由し、一旦親分岐ユニット210にて合流された後、絞り装置213を経て、低圧主管002へ流れる流路である。もう一つ目は、子分岐ユニット220内の絞り装置223を経て、低圧管005c、低圧合流管008、低圧管005aを経由し、親分岐ユニット210に流入し、低圧主管002へ流れる流路である。低圧主管002に流れた低圧の二相冷媒は、親分岐ユニット210から流出した後、熱源ユニット110へ流入する。 On the other hand, in the case of the child branch unit 220, there are two flow paths in the low-pressure refrigerant flowing through the liquid refrigerant pipe 010c or the liquid refrigerant pipe 010d. The first is that after the liquid pipe 003c, the liquid pipe 006, and the liquid pipe 003a are joined via the liquid pipe in the child branch unit 220, they are once merged in the parent branch unit 210, and then passed through the expansion device 213. , A flow path that flows to the low-pressure main pipe 002. The other is a flow path that flows into the main branch unit 210 via the throttle device 223 in the child branch unit 220, the low pressure pipe 005c, the low pressure merge pipe 008, and the low pressure pipe 005a, and flows to the low pressure main pipe 002. is there. The low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows out from the parent branch unit 210 and then flows into the heat source unit 110.
 熱源ユニット110に流入した低圧の冷媒は、逆止弁114b、熱交換器113、流路切替装置112、アキュムレータ115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を暖房運転時の主回路とする。 The low-pressure refrigerant flowing into the heat source unit 110 is again sucked into the compressor 111 via the check valve 114b, the heat exchanger 113, the flow path switching device 112, and the accumulator 115. The circuit through which the refrigerant flows is used as a main circuit during heating operation.
 次に、負荷側ユニットに蒸発器(冷房運転室内機)と凝縮器(暖房運転室内機)とが混在した運転について説明する。混在した運転としては冷房主体運転モードと暖房主体運転モードの2種類の運転モードが存在する。空気調和装置100では、空気調和装置100の冷媒の凝縮温度と蒸発温度を熱源ユニット110内で設定された目標値と比較することで、能力又は効率が最も高くなるように運転モードを切換えるようになっている。以下にそれぞれの運転モードについて説明する。 Next, an operation in which an evaporator (cooling operation indoor unit) and a condenser (heating operation indoor unit) are mixed in the load side unit will be described. As the mixed operation, there are two types of operation modes, a cooling main operation mode and a heating main operation mode. In the air conditioner 100, the operation mode is switched so that the capacity or efficiency is maximized by comparing the condensation temperature and the evaporation temperature of the refrigerant of the air conditioner 100 with the target values set in the heat source unit 110. It has become. Each operation mode will be described below.
[冷房主体運転モード]
 次に、室内ユニット310が冷房暖房混在運転をしており、暖房負荷よりも冷房負荷の方が大きい冷房主体運転モード時における冷媒回路、及び、その運転内容を図1を参照しながら説明する。なお、ここでは、室内ユニット310cが冷房運転、室内ユニット310bが暖房運転、残りの室内ユニットは停止しているときを例に冷房主体運転モードを説明する。
[Cooling operation mode]
Next, the refrigerant circuit in the cooling main operation mode in which the indoor unit 310 is performing the cooling / heating mixed operation and the cooling load is larger than the heating load, and the operation contents thereof will be described with reference to FIG. Here, the cooling main operation mode will be described by taking as an example the case where the indoor unit 310c is in the cooling operation, the indoor unit 310b is in the heating operation, and the remaining indoor units are stopped.
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替装置112を経て、熱交換器113へ流入する。熱交換器113に流入した高圧のガス冷媒は、熱交換器113に供給される空気(又は水等の熱媒体)と熱交換することにより凝縮して高圧の液とガスの二相冷媒となり、熱交換器113から流出する。熱交換器113から流出した高圧の二相冷媒は、逆止弁114d、高圧主管001を経て、親分岐ユニット210へ流入する。 In the heat source unit 110, the low-pressure gas refrigerant is sucked into the compressor 111, becomes a high-temperature / high-pressure gas refrigerant, and flows into the heat exchanger 113 through the flow path switching device 112. The high-pressure gas refrigerant that has flowed into the heat exchanger 113 is condensed by exchanging heat with air (or a heat medium such as water) supplied to the heat exchanger 113 to become a high-pressure liquid and gas two-phase refrigerant, It flows out from the heat exchanger 113. The high-pressure two-phase refrigerant that has flowed out of the heat exchanger 113 flows into the parent branch unit 210 through the check valve 114d and the high-pressure main pipe 001.
 親分岐ユニット210において、高圧主管001から流れてきた高圧の二相冷媒は、気液分離器211にて高圧の飽和ガス冷媒と高圧の飽和液冷媒に分離される。気液分離器211で分離された高圧の飽和ガス冷媒は、流路切替装置214bを経て、ガス冷媒配管009bへ流れる。ガス冷媒配管009bを流れる高圧のガス冷媒は、親分岐ユニット210から流出した後、室内ユニット310bに流入する。 In the main branching unit 210, the high-pressure two-phase refrigerant flowing from the high-pressure main pipe 001 is separated into a high-pressure saturated gas refrigerant and a high-pressure saturated liquid refrigerant by the gas-liquid separator 211. The high-pressure saturated gas refrigerant separated by the gas-liquid separator 211 flows to the gas refrigerant pipe 009b via the flow path switching device 214b. The high-pressure gas refrigerant flowing through the gas refrigerant pipe 009b flows out from the parent branch unit 210 and then flows into the indoor unit 310b.
 室内ユニット310bに流入した冷媒は、室内側熱交換器312bにて凝縮され、高圧の液冷媒となり、室内側熱交換器312bから流出する。このとき空調対象空間が暖房されることになる。室内側熱交換器312bから流出した高圧の液冷媒は、室内側絞り装置311bにて、中間圧の液とガスの二相冷媒、又は、中間圧の液冷媒となり、液冷媒配管010bへ流れ、室内ユニット310bから流出した後、冷房時に用いる冷媒として再利用される。 The refrigerant flowing into the indoor unit 310b is condensed in the indoor heat exchanger 312b, becomes a high-pressure liquid refrigerant, and flows out of the indoor heat exchanger 312b. At this time, the air-conditioning target space is heated. The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 312b becomes an intermediate-pressure liquid and gas two-phase refrigerant or an intermediate-pressure liquid refrigerant in the indoor expansion device 311b, and flows to the liquid refrigerant pipe 010b. After flowing out of the indoor unit 310b, it is reused as a refrigerant used during cooling.
 一方、気液分離器211で分離された高圧の飽和液冷媒は、絞り装置212を経て、室内ユニット310bから流れてきた冷媒と合流し、液管003a、液分配管006、液管003c、子分岐ユニット229の内部液管を経て、液冷媒配管010cへ流れ、子分岐ユニット220から流出する。子分岐ユニット220から流出した冷媒は、室内ユニット310cに流入する。 On the other hand, the high-pressure saturated liquid refrigerant separated by the gas-liquid separator 211 merges with the refrigerant flowing from the indoor unit 310b via the expansion device 212, and the liquid pipe 003a, the liquid distribution pipe 006, the liquid pipe 003c, The liquid flows through the internal liquid pipe of the branch unit 229 to the liquid refrigerant pipe 010 c and flows out of the child branch unit 220. The refrigerant flowing out from the child branch unit 220 flows into the indoor unit 310c.
 室内ユニット310cでは、室内側絞り装置311cにて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、室内側熱交換器312cへ流れる。室内側熱交換器312cに流入した低圧二相冷媒又は低圧液冷媒は、室内側熱交換器312cにて蒸発し、低圧のガス冷媒となり、室内側熱交換器312cから流出する。このとき、空調対象空間が冷房されることになる。室内側熱交換器312cから流出した低圧ガス冷媒は、ガス冷媒配管009cを流れて室内ユニット310cから流出した後、子分岐ユニット220に流入する。 In the indoor unit 310c, in the indoor expansion device 311c, a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant flows into the indoor heat exchanger 312c. The low-pressure two-phase refrigerant or low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 312c evaporates in the indoor heat exchanger 312c, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 312c. At this time, the air-conditioning target space is cooled. The low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 312c flows through the gas refrigerant pipe 009c, flows out of the indoor unit 310c, and then flows into the child branch unit 220.
 なお、液管の区間に溜まる液冷媒量が多くなると、液管の圧力が上昇し、暖房室内ユニットとの差圧が小さくなることから、暖房室内機に流れる冷媒循環量が少なくなり、暖房能力低下となる。そのため、液ラインに溜まった液を逃がすため、絞り装置213又は絞り装置223を適度に開くことで液ラインに溜まる液を低圧主管002又は低圧管005へ流すことで液ラインの圧力の調整をする。よって、絞り装置213又は絞り装置223から流出した冷媒は、冷房運転中の室内ユニット310c、流路切替装置224cから流入した低圧のガス冷媒と混合することで低圧の二相冷媒となる。 If the amount of liquid refrigerant that accumulates in the section of the liquid pipe increases, the pressure in the liquid pipe rises and the differential pressure with the heating indoor unit decreases, so the amount of refrigerant circulating through the heating indoor unit decreases, and the heating capacity Decrease. Therefore, in order to release the liquid accumulated in the liquid line, the liquid line pressure is adjusted by allowing the liquid accumulated in the liquid line to flow into the low-pressure main pipe 002 or the low-pressure pipe 005 by appropriately opening the expansion device 213 or the expansion device 223. . Therefore, the refrigerant flowing out from the expansion device 213 or the expansion device 223 becomes a low-pressure two-phase refrigerant by mixing with the low-pressure gas refrigerant flowing in from the indoor unit 310c and the flow path switching device 224c during the cooling operation.
 低圧の二相冷媒は、合流されて低圧主管002に流れる。低圧主管002に流れた低圧の二相冷媒は、親分岐ユニット210から流出した後、熱源ユニット110へ流入する。低圧主管002に流れた低圧の二相冷媒は、熱源ユニット110に流入する。熱源ユニット110に流入した低圧の二相冷媒は、逆止弁114a、流路切替装置112、アキュムレータ115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を冷房主体運転時の主回路とする。 The low-pressure two-phase refrigerant is joined and flows to the low-pressure main pipe 002. The low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows out from the parent branch unit 210 and then flows into the heat source unit 110. The low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows into the heat source unit 110. The low-pressure two-phase refrigerant that has flowed into the heat source unit 110 is sucked into the compressor 111 again via the check valve 114a, the flow path switching device 112, and the accumulator 115. The circuit through which the refrigerant flows is used as the main circuit during the cooling main operation.
[暖房主体運転モード]
 次に、室内ユニット310が冷房暖房混在運転をしており、室内ユニット310cが暖房運転をしており、冷房負荷よりも暖房負荷の方が大きい暖房主体運転モード時における冷媒回路、及び、その運転内容を図1を参照しながら説明する。なお、ここでは、室内ユニット310aが冷房運転、室内ユニット310cが暖房運転をしているときを例に暖房主体運転モードを説明する。
[Heating main operation mode]
Next, the refrigerant circuit in the heating main operation mode in which the indoor unit 310 performs the cooling and heating mixed operation, the indoor unit 310c performs the heating operation, and the heating load is larger than the cooling load, and the operation The contents will be described with reference to FIG. Here, the heating main operation mode will be described by taking as an example the case where the indoor unit 310a is in the cooling operation and the indoor unit 310c is in the heating operation.
 熱源ユニット110において、低圧のガス冷媒は、圧縮機111へ吸入され、高温・高圧のガス冷媒となり、流路切替装置112、逆止弁114c、高圧主管001を経て、親分岐ユニット210へ流入する。 In the heat source unit 110, the low-pressure gas refrigerant is sucked into the compressor 111 to become a high-temperature / high-pressure gas refrigerant, and flows into the parent branch unit 210 via the flow path switching device 112, the check valve 114c, and the high-pressure main pipe 001. .
 親分岐ユニット210において、高圧主管001から流れてきた高圧のガス冷媒は、気液分離器211、ガス管004aを経て、親分岐ユニット210から流出する。ガス管004aを流れる冷媒は、ガス分配管007、ガス管004c、流路切替装置224aを経て、ガス冷媒配管009cへ流れる。ガス冷媒配管009cを流れる冷媒は、子分岐ユニット220から流出した後、室内ユニット310cに流入する。 In the parent branch unit 210, the high-pressure gas refrigerant flowing from the high-pressure main pipe 001 flows out of the parent branch unit 210 via the gas-liquid separator 211 and the gas pipe 004a. The refrigerant flowing through the gas pipe 004a flows to the gas refrigerant pipe 009c via the gas distribution pipe 007, the gas pipe 004c, and the flow path switching device 224a. The refrigerant flowing through the gas refrigerant pipe 009c flows out from the child branch unit 220 and then flows into the indoor unit 310c.
 室内ユニット310cに流入した高圧のガス冷媒は、室内側熱交換器312cに流入し、室内側熱交換器312cにて凝縮され、高圧の液冷媒となって室内側熱交換器312cから流出する。ここで、空調対象空間が暖房されることになる。室内側熱交換器312cから流出した高圧の液冷媒は、室内側絞り装置311cにて、中間圧の液とガスの二相冷媒、又は、中間圧の液冷媒となり、液冷媒配管010cへ流れ、室内ユニット310cから流出した後、子分岐ユニット220、子分岐ユニット220の内部液管、液管003c、液分配管006、液管003aを経て、親分岐ユニット210に流入する。 The high-pressure gas refrigerant that has flowed into the indoor unit 310c flows into the indoor heat exchanger 312c, is condensed in the indoor heat exchanger 312c, and flows out of the indoor heat exchanger 312c as high-pressure liquid refrigerant. Here, the air-conditioning target space is heated. The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 312c becomes an intermediate-pressure liquid and gas two-phase refrigerant or an intermediate-pressure liquid refrigerant in the indoor expansion device 311c, and flows to the liquid refrigerant pipe 010c. After flowing out of the indoor unit 310c, it flows into the parent branch unit 210 through the child branch unit 220, the internal liquid pipe of the child branch unit 220, the liquid pipe 003c, the liquid distribution pipe 006, and the liquid pipe 003a.
 親分岐ユニット210に流入した中間圧の冷媒は、液冷媒配管010aへ流れる。この冷媒は、親分岐ユニット210から流出した後、室内ユニット310aに流入する。室内ユニット310aに流入した冷媒は、室内側絞り装置311aにて、低圧の液とガスの二相冷媒、又は、低圧の液冷媒となり、室内側熱交換器312aへ流入する。室内側熱交換器312aに流入した低圧の液冷媒は、室内側熱交換器312aにて蒸発し、低圧のガス冷媒となり、室内側熱交換器312aから流出する。このとき空調対象空間が冷房されることになる。 The intermediate-pressure refrigerant that has flowed into the main branch unit 210 flows to the liquid refrigerant pipe 010a. The refrigerant flows out from the parent branch unit 210 and then flows into the indoor unit 310a. The refrigerant flowing into the indoor unit 310a becomes a low-pressure liquid and gas two-phase refrigerant or a low-pressure liquid refrigerant in the indoor expansion device 311a and flows into the indoor heat exchanger 312a. The low-pressure liquid refrigerant that has flowed into the indoor heat exchanger 312a evaporates in the indoor heat exchanger 312a, becomes a low-pressure gas refrigerant, and flows out of the indoor heat exchanger 312a. At this time, the air-conditioning target space is cooled.
 なお、液管の区間に溜まる液冷媒量が多くなると、液管の圧力が上昇し、暖房室内ユニットとの差圧が小さくなることから、暖房室内機に流れる冷媒循環量が少なくなり、暖房能力低下となる。そのため、液ラインに溜まった液を逃がすため、絞り装置213を適度に開くことで液ラインに溜まる液を低圧主管002へ流すことで液ラインの圧力の調整をする。よって、親分岐ユニット210から流出した冷媒は室内ユニット310aから流入した低圧のガス冷媒と絞り装置213から流入した液冷媒が混合することで低圧の二相冷媒となる。 If the amount of liquid refrigerant that accumulates in the section of the liquid pipe increases, the pressure in the liquid pipe rises and the differential pressure with the heating indoor unit decreases, so the amount of refrigerant circulating through the heating indoor unit decreases, and the heating capacity Decrease. Therefore, in order to release the liquid accumulated in the liquid line, the pressure of the liquid line is adjusted by allowing the liquid accumulated in the liquid line to flow into the low-pressure main pipe 002 by opening the expansion device 213 appropriately. Therefore, the refrigerant flowing out from the main branch unit 210 becomes a low-pressure two-phase refrigerant by mixing the low-pressure gas refrigerant flowing in from the indoor unit 310a and the liquid refrigerant flowing in from the expansion device 213.
 室内側熱交換器312aから流出した冷媒は、ガス冷媒配管009aへ流れる。ガス冷媒配管009aから流れる低圧の二相冷媒は、室内ユニット310aから流出した後、親分岐ユニット210に流入する。親分岐ユニット210に流入した低圧の二相冷媒は、流路切替装置214(流路切替装置214a)を経て、低圧主管002に流れる。低圧主管002に流れた低圧の二相冷媒は、親分岐ユニット210から流出した後、低圧主管002を経て、熱源ユニット110へ流入する。 The refrigerant that has flowed out of the indoor heat exchanger 312a flows into the gas refrigerant pipe 009a. The low-pressure two-phase refrigerant flowing from the gas refrigerant pipe 009a flows out from the indoor unit 310a and then flows into the parent branch unit 210. The low-pressure two-phase refrigerant that has flowed into the parent branch unit 210 flows to the low-pressure main pipe 002 via the flow path switching device 214 (flow path switching device 214a). The low-pressure two-phase refrigerant that has flowed into the low-pressure main pipe 002 flows out from the parent branch unit 210 and then flows into the heat source unit 110 through the low-pressure main pipe 002.
 熱源ユニット110に流入した低圧のガス冷媒は、逆止弁114b、熱交換器113、流路切替装置112、アキュムレータ115を経て、再び圧縮機111へ吸入される。このように冷媒が流れる回路を運転主体運転時における主回路とする。 The low-pressure gas refrigerant flowing into the heat source unit 110 is again sucked into the compressor 111 via the check valve 114b, the heat exchanger 113, the flow path switching device 112, and the accumulator 115. The circuit through which the refrigerant flows is used as the main circuit during the driving operation.
[冷媒制御の目標]
 図3は、空気調和装置100における冷媒圧力のトレンドを示した模式図である。図3に基づいて、空気調和装置100における冷媒圧力について説明する。なお、図3では、親分岐ユニット210及び子分岐ユニット220のそれぞれに5台ずつ室内ユニット310が接続されている。
[Target of refrigerant control]
FIG. 3 is a schematic diagram showing a trend of refrigerant pressure in the air conditioner 100. Based on FIG. 3, the refrigerant | coolant pressure in the air conditioning apparatus 100 is demonstrated. In FIG. 3, five indoor units 310 are connected to each of the parent branch unit 210 and the child branch unit 220.
 熱源ユニット110から流れ出た冷媒圧力が最も高く、親分岐ユニット210に流入した場合に圧力PH1となる。ここで、親分岐ユニット210から子分岐ユニット220へ高圧のガス冷媒が移動する場合、ガス管004の配管圧損を受けた後、圧力がPH2となる。ここで子分岐ユニット220に接続された暖房運転する室内ユニット310を経由して、子分岐ユニット220に戻ってくると、中間圧であるPM2となる。その後、液管003を経由して、親分岐ユニット210の液管ラインへ流入しPM1となる。前述した冷媒の流れは子分岐ユニット220の絞り装置223を経由しない場合の流路を説明している。 When the refrigerant pressure flowing out from the heat source unit 110 is the highest and flows into the parent branch unit 210, the pressure becomes PH1. Here, when the high-pressure gas refrigerant moves from the parent branch unit 210 to the child branch unit 220, the pressure becomes PH2 after receiving the pipe pressure loss of the gas pipe 004. Here, when it returns to the child branch unit 220 via the indoor unit 310 that is connected to the child branch unit 220 for heating operation, it becomes PM2 that is an intermediate pressure. Then, it flows into the liquid pipe line of the parent branch unit 210 via the liquid pipe 003 and becomes PM1. The flow of the refrigerant described above describes the flow path when not passing through the expansion device 223 of the child branch unit 220.
 ここで、親分岐ユニット210の高圧PH1と中間圧PM1の差圧を第1中間差圧dPHM1とし、子分岐ユニット220の高圧PH2と中間圧PM2の差圧を第2中間差圧dPHM2とすると、圧力トレンドとしては、図3で示す通り、dPHM1≧dPHM2となる。これは子分岐ユニット220側に接続されている暖房運転用の室内ユニット310へ冷媒が流れづらいことを意味している。すなわち、親分岐ユニット210から子分岐ユニット220が遠ざかるほど配管圧損により中間差圧が小さくなり、子分岐ユニット220側に接続されている暖房運転用の室内ユニット310の暖房能力が低減してしまう。 Here, if the differential pressure between the high pressure PH1 and the intermediate pressure PM1 of the parent branch unit 210 is the first intermediate differential pressure dPHM1, and the differential pressure between the high pressure PH2 and the intermediate pressure PM2 of the child branch unit 220 is the second intermediate differential pressure dPHM2. As a pressure trend, as shown in FIG. 3, dPHM1 ≧ dPHM2. This means that it is difficult for the refrigerant to flow into the indoor unit 310 for heating operation connected to the child branch unit 220 side. That is, as the child branch unit 220 moves away from the parent branch unit 210, the intermediate differential pressure decreases due to pipe pressure loss, and the heating capacity of the indoor unit 310 for heating operation connected to the child branch unit 220 side is reduced.
 dPHM1≧dPHM2となる要因としては、親分岐ユニット210と子分岐ユニット220間にある液管003及びガス管004による圧損が考えられる。ビル用マルチエアコンとしては、液管径のサイズは追加充填冷媒量に関わってくるため、従来よりも液冷媒流量に対する液管003の配管径のサイズが小さいところで設計されている。そのため、図3に示すように液管圧損により中間圧PM2とPM1の差圧が支配的な状態となる。本現象を緩和するために簡単な手法として、液管003の径のサイズアップすることが考えられるが、前述のとおり追加冷媒充填量が増加してしまうというリスクがある。 As a factor satisfying dPHM1 ≧ dPHM2, pressure loss due to the liquid pipe 003 and the gas pipe 004 between the parent branch unit 210 and the child branch unit 220 can be considered. The multi-air conditioner for buildings is designed where the size of the pipe diameter of the liquid pipe 003 with respect to the liquid refrigerant flow rate is smaller than the conventional one because the size of the liquid pipe diameter is related to the amount of additional charging refrigerant. Therefore, as shown in FIG. 3, the differential pressure between the intermediate pressures PM2 and PM1 becomes dominant due to the liquid pipe pressure loss. As a simple method for alleviating this phenomenon, it is conceivable to increase the diameter of the liquid pipe 003, but there is a risk that the additional refrigerant charging amount will increase as described above.
 上記状態を回避するため、空気調和装置100においては、子分岐ユニット220の絞り装置223から子分岐ユニット220に滞留している冷媒を下流側へリリースするようにしている。こうすることで、空気調和装置100によれば、液管003のサイズアップすることなくdPHM1とdPHM2とを近くすることが可能になる。つまり、空気調和装置100は、絞り装置212、絞り装置213、絞り装置223の開度を調整することで第2中間差圧dPHM2を第1中間差圧dPHM1に近似させている。 In order to avoid the above state, in the air conditioner 100, the refrigerant staying in the child branch unit 220 is released downstream from the expansion device 223 of the child branch unit 220. By doing so, according to the air conditioning apparatus 100, it is possible to make dPHM1 and dPHM2 close without increasing the size of the liquid pipe 003. That is, the air conditioning apparatus 100 approximates the second intermediate differential pressure dPHM2 to the first intermediate differential pressure dPHM1 by adjusting the opening degree of the expansion device 212, the expansion device 213, and the expansion device 223.
 また、絞り装置213及び絞り装置223の開度を最大開度として、中間圧PM1と中間圧PM2を低圧ラインに下げることにより、dPHM1≒dPHM2とする手法も考えられる。しかしながら、逆に絞り装置側へ冷媒がバイパスすることで、暖房運転する室内ユニット310へ冷媒が流れなくなる。そのため、中間圧PM1及び中間圧PM2は、冷暖混在運転実施する場合には適切な圧力値として設定する必要がある。 Also, a method of setting dPHM1≈dPHM2 by reducing the intermediate pressure PM1 and the intermediate pressure PM2 to the low pressure line with the opening of the expansion device 213 and the expansion device 223 being the maximum opening is also conceivable. However, conversely, when the refrigerant bypasses to the expansion device side, the refrigerant does not flow to the indoor unit 310 that performs the heating operation. Therefore, it is necessary to set the intermediate pressure PM1 and the intermediate pressure PM2 as appropriate pressure values when the cooling / heating mixed operation is performed.
 上記の通り、空気調和装置100によって親分岐ユニット210の中間差圧dPHM1と子分岐ユニット220の中間差圧dPHM2を任意に設定した目標中間差圧dPHMmになるように絞り装置213及び絞り装置223を制御すればよい。また、目標中間差圧dPHMmは、ここでは親分岐ユニット210及び子分岐ユニット220で同じ値としているが、必要があれば別々に設定してもよい。 As described above, the expansion device 213 and the expansion device 223 are adjusted by the air conditioner 100 so that the intermediate differential pressure dPHM1 of the parent branch unit 210 and the intermediate differential pressure dPHM2 of the sub-branch unit 220 are arbitrarily set to the target intermediate differential pressure dPHMm. Control is sufficient. The target intermediate differential pressure dPHMm is set to the same value here in the parent branch unit 210 and the child branch unit 220, but may be set separately if necessary.
 つまり、制御処理の流れについては後段で詳述するが、空気調和装置100は、中間圧圧力センサ226の圧力情報と中間圧圧力センサ216の圧力情報との差圧情報から絞り装置213及び絞り装置223の開度調整により中間圧制御を実施し、中間差圧dPHM2を高く維持させるようにしている。 That is, the flow of the control process will be described in detail later, but the air conditioner 100 determines the expansion device 213 and the expansion device based on the differential pressure information between the pressure information of the intermediate pressure sensor 226 and the pressure information of the intermediate pressure sensor 216. Intermediate pressure control is performed by adjusting the opening degree of H.223 so that the intermediate differential pressure dPHM2 is maintained high.
[親分岐ユニット210の親分岐ユニット制御手段420aにおける制御処理]
 前述した冷媒制御の親分岐ユニット制御手段420aにおける処理内容を具体的に説明する。図4は、空気調和装置100の親分岐ユニット210の親分岐ユニット制御手段420aにおける制御処理の流れを示すフローチャートである。
[Control processing in parent branch unit control means 420a of parent branch unit 210]
The processing contents in the above-described refrigerant control parent branch unit control means 420a will be described in detail. FIG. 4 is a flowchart showing the flow of control processing in the parent branch unit control means 420a of the parent branch unit 210 of the air conditioner 100.
 親分岐ユニット制御手段420aは、制御処理を開始した後(ステップS101)、親分岐ユニット210における高圧圧力センサ215の情報、中間圧圧力センサ216の情報を取得する(ステップS102)。取得された情報は、センサ情報格納手段422aにおいて、高圧圧力センサ215の値はPH1、中間圧圧力センサ216の値はPM1として保管されることになる。その後、親分岐ユニット制御手段420aは、子分岐ユニット220の子分岐ユニット制御手段420bへPH1の情報を送信する(ステップS103)。 After starting the control process (step S101), the parent branch unit control means 420a acquires information on the high pressure sensor 215 and information on the intermediate pressure sensor 216 in the parent branch unit 210 (step S102). The acquired information is stored in the sensor information storage means 422a as the value of the high pressure sensor 215 as PH1 and the value of the intermediate pressure sensor 216 as PM1. Thereafter, the parent branch unit control means 420a transmits the PH1 information to the child branch unit control means 420b of the child branch unit 220 (step S103).
 ステップS102にて取得された高圧圧力及び中間圧力の情報は、中間差圧dPHM1の情報へと変換される(ステップS104)。具体的には、親分岐ユニット制御手段420aは、演算処理回路423aにて「dPHM1=PH1-PM1」の数式にて中間差圧dPHM1を算出する。 The information on the high pressure and the intermediate pressure acquired in step S102 is converted into information on the intermediate differential pressure dPHM1 (step S104). Specifically, the parent branch unit control means 420a calculates the intermediate differential pressure dPHM1 by the arithmetic processing circuit 423a using the formula “dPHM1 = PH1−PM1”.
 親分岐ユニット制御手段420aは、ステップS104にて算出された中間差圧dPHM1を用いてどのような処理を実施すべきか判断する。まず、ステップS105にて、親分岐ユニット制御手段420aは、中間差圧dPHM1と目標中間差圧dPHMmから設定値αを引いた値とを数式(dPHM1>dPHMm-α)に基づいて比較する。 The parent branch unit control means 420a determines what processing should be performed using the intermediate differential pressure dPHM1 calculated in step S104. First, in step S105, the master branching unit control means 420a compares the intermediate differential pressure dPHM1 with a value obtained by subtracting the set value α from the target intermediate differential pressure dPHMm based on a mathematical formula (dPHM1> dPHMm−α).
 ステップS105の判定結果がNoの場合、親分岐ユニット制御手段420aは、絞り装置212の開度を減少する制御動作及び絞り装置213の開度を増加する制御動作を実施する(ステップS107)。なお、ここでの絞り装置212及び絞り装置213の開度の制御量については、任意に設定してもよく、運転状況に応じ適切に設定すればよい。 When the determination result in step S105 is No, the parent branch unit control unit 420a performs a control operation for decreasing the opening degree of the expansion device 212 and a control operation for increasing the opening amount of the expansion device 213 (step S107). In addition, about the control amount of the opening degree of the diaphragm | throttle device 212 and the diaphragm | throttle device 213 here, you may set arbitrarily and should just set suitably according to an operating condition.
 ステップS105の判定結果がYesの場合、親分岐ユニット制御手段420aは、中間差圧dPHM1と目標中間差圧dPHMmから設定値αを足した値とを数式(dPHM1≦dPHMm+α)に基づいて比較する(ステップS106)。 When the determination result in step S105 is Yes, the parent branch unit control means 420a compares the intermediate differential pressure dPHM1 and the target intermediate differential pressure dPHMm plus the set value α based on the formula (dPHM1 ≦ dPHMm + α) ( Step S106).
 ステップS106の判定結果がNoの場合、親分岐ユニット制御手段420aは、絞り装置212の開度を増加する制御動作及び絞り装置213の開度を減少する制御動作を実施する(ステップS108)。なお、ここでの絞り装置212及び絞り装置213の開度の制御量については、任意に設定してもよく、運転状況に応じ適切に設定すればよい。 When the determination result in step S106 is No, the parent branch unit control unit 420a performs a control operation for increasing the opening degree of the expansion device 212 and a control operation for decreasing the opening amount of the expansion device 213 (step S108). In addition, about the control amount of the opening degree of the diaphragm | throttle device 212 and the diaphragm | throttle device 213 here, you may set arbitrarily and should just set suitably according to an operating condition.
 ステップS106の判定結果がYesの場合、親分岐ユニット制御手段420aは、絞り装置212及び絞り装置213の開度を維持する(ステップS109)。親分岐ユニット制御手段420aは、ステップS107、ステップS108、ステップS109終了後、親分岐ユニット210がサーモOFF又は停止しているか判断する(ステップS110)。そして、ステップS110での判定結果がNoの場合、親分岐ユニット制御手段420aは、ステップS102からの処理を、例えば定時間隔にて順次再実行していくことになる。ステップS110での判定結果がYesの場合、制御終了となる(ステップS111)。 When the determination result in step S106 is Yes, the parent branch unit control means 420a maintains the opening degrees of the expansion device 212 and the expansion device 213 (step S109). The parent branch unit control means 420a determines whether the parent branch unit 210 is thermo-off or stopped after step S107, step S108, and step S109 are finished (step S110). If the determination result in step S110 is No, the parent branch unit control unit 420a sequentially re-executes the processing from step S102 at regular intervals, for example. If the determination result in step S110 is Yes, the control is terminated (step S111).
 ここで、数式に用いられる設定値αは、空気調和装置100の自動制御における不感帯により定められた値である。不感帯を入れることで制御のロバスト性が向上する。そのため、必要に応じ設定値αの値を選定すればよい。このようなフローチャートを用いれば、親分岐ユニット210にて中間差圧dPHM1の冷媒制御が実施可能となる。 Here, the set value α used in the mathematical formula is a value determined by a dead zone in the automatic control of the air conditioner 100. Inserting a dead zone improves control robustness. Therefore, the set value α may be selected as necessary. Using such a flowchart, the master branch unit 210 can perform refrigerant control of the intermediate differential pressure dPHM1.
 サーモOFFとは、空調対象空間の温度が設定温度に達したことによって、圧縮機111の駆動を停止することである。また、ロバスト性が向上するとは、空気調和装置100の制御が外乱に左右されにくくなるということである。さらに、不感帯とは、制御を何も実施しないとして設定されている設定値の幅である。これらの意味については、以下の説明でも同様である。 “Thermo-OFF” is to stop driving the compressor 111 when the temperature of the air-conditioning target space reaches the set temperature. Further, the improvement in robustness means that the control of the air conditioner 100 is less likely to be influenced by disturbance. Furthermore, the dead zone is a range of setting values set so that no control is performed. These meanings are the same in the following description.
[子分岐ユニット220の子分岐ユニット制御手段420bにおける制御処理]
 前述した冷媒制御の子分岐ユニット制御手段420bにおける処理内容を具体的に説明する。図5は、空気調和装置100の子分岐ユニット220の子分岐ユニット制御手段420bにおける制御処理の流れを示すフローチャートである。
[Control Processing in Child Branch Unit Control Unit 420b of Child Branch Unit 220]
The processing contents in the above-described refrigerant control child branching unit control means 420b will be specifically described. FIG. 5 is a flowchart showing a flow of control processing in the child branch unit control means 420b of the child branch unit 220 of the air conditioner 100.
 子分岐ユニット制御手段420bは、制御処理を開始した後(ステップS201)、子分岐ユニット220における中間圧圧力センサ226の情報を取得する(ステップS202)。その後、子分岐ユニット制御手段420bは、親分岐ユニット210の親分岐ユニット制御手段420aよりPH1の情報を受信する(ステップS203)。取得された情報は、センサ情報格納手段422bにおいて、PH1の値はPH2、中間圧圧力センサ226の値はPM2として保管されることになる。 The child branch unit control means 420b starts the control process (step S201), and acquires information on the intermediate pressure sensor 226 in the child branch unit 220 (step S202). Thereafter, the child branch unit control means 420b receives the PH1 information from the parent branch unit control means 420a of the parent branch unit 210 (step S203). The acquired information is stored in the sensor information storage unit 422b as PH1 as PH2 and intermediate pressure sensor 226 as PM2.
 ステップS202及びステップS203にて取得された高圧圧力及び中間圧力の情報は、中間差圧dPHM2の情報へ変換される(ステップS204)。具体的には、子分岐ユニット制御手段420bは、演算処理回路423bにて「dPHM2=PH2-PM2」の数式にて中間差圧dPHM2を算出する。 The information on the high pressure and the intermediate pressure acquired in steps S202 and S203 is converted into information on the intermediate differential pressure dPHM2 (step S204). Specifically, the child branch unit control means 420b calculates the intermediate differential pressure dPHM2 by the arithmetic processing circuit 423b using the equation “dPHM2 = PH2−PM2”.
 子分岐ユニット制御手段420bは、ステップS204にて算出された中間差圧dPHM2用いてどのような処理を実施すべきか判断する。まず、ステップS205にて、子分岐ユニット制御手段420bは、中間差圧dPHM2と目標中間差圧dPHMmから設定値αを引いた値とを数式(dPHM2>dPHMm-α)に基づいて比較する。 The child branch unit control means 420b determines what processing should be performed using the intermediate differential pressure dPHM2 calculated in step S204. First, in step S205, the sub-branch unit control means 420b compares the intermediate differential pressure dPHM2 and the value obtained by subtracting the set value α from the target intermediate differential pressure dPHMm based on the mathematical formula (dPHM2> dPHMm−α).
 ステップS205の判定結果がNoの場合、子分岐ユニット制御手段420bは、絞り装置223の開度を増加する制御動作を実施する(ステップS207)。なお、ここでの絞り装置223の開度の制御量については、任意に設定してもよく、運転状況に応じ適切に設定すればよい。 When the determination result in step S205 is No, the child branch unit control unit 420b performs a control operation for increasing the opening degree of the expansion device 223 (step S207). In addition, about the control amount of the opening degree of the expansion device 223 here, you may set arbitrarily and should just set suitably according to a driving | running condition.
 ステップS205の判定結果がYesの場合、子分岐ユニット制御手段420bは、
中間差圧dPHM2と目標中間差圧dPHMmから設定値αを足した値とを数式(dPHM2≦dPHMm+α)を比較する(ステップS206)。
If the determination result in step S205 is Yes, the child branch unit control unit 420b
The intermediate differential pressure dPHM2 is compared with a value obtained by adding the set value α from the target intermediate differential pressure dPHMm (dPHM2 ≦ dPHMm + α) (step S206).
 ステップS206の判定結果がNoの場合、子分岐ユニット制御手段420bは、絞り装置223の開度を減少する制御動作を実施する(ステップS208)。なお、ここでの絞り装置223の開度の制御量については、任意に設定してもよく、運転状況に応じ適切に設定すればよい。 When the determination result in step S206 is No, the child branch unit control unit 420b performs a control operation for reducing the opening degree of the expansion device 223 (step S208). In addition, about the control amount of the opening degree of the expansion device 223 here, you may set arbitrarily and should just set suitably according to a driving | running condition.
 ステップS206の判定結果がYesの場合、子分岐ユニット制御手段420bは、絞り装置223の開度を維持する(ステップS209)。子分岐ユニット制御手段420bは、ステップS207、ステップS208、ステップS209終了後、子分岐ユニット220がサーモOFF又は停止しているか判断する(ステップS210)。そして、ステップS210での判定結果がNoの場合、子分岐ユニット制御手段420bは、ステップS202からの処理を、例えば定時間隔にて順次再実行していくことになる。ステップS210での判定結果がYesの場合、制御終了となる(ステップS211)。 If the determination result in step S206 is Yes, the child branch unit control means 420b maintains the opening degree of the expansion device 223 (step S209). The child branch unit control means 420b determines whether or not the child branch unit 220 is thermo-off or stopped after step S207, step S208, and step S209 are completed (step S210). If the determination result in step S210 is No, the child branch unit control unit 420b sequentially re-executes the processing from step S202 at regular intervals, for example. If the determination result in step S210 is Yes, the control is terminated (step S211).
 ここで、数式に用いられる設定値αは、空気調和装置100の自動制御における不感帯により定められた値である。不感帯を入れることで制御のロバスト性が向上する。そのため、必要に応じ設定値αの値を選定すればよい。またここでは、圧力値PH2としては親分岐ユニット210の圧力値PH1を代用している。必要があれば子分岐ユニット220内のガス管に高圧圧力センサを設け、このセンサ情報をPH2として設定してもよい。このようなフローチャートを用いれば、子分岐ユニット220にて中間差圧dPHM2の冷媒制御が実施可能となる。 Here, the set value α used in the mathematical formula is a value determined by a dead zone in the automatic control of the air conditioner 100. Inserting a dead zone improves control robustness. Therefore, the set value α may be selected as necessary. Here, the pressure value PH1 of the parent branch unit 210 is used as the pressure value PH2. If necessary, a high pressure sensor may be provided in the gas pipe in the child branch unit 220, and this sensor information may be set as PH2. If such a flowchart is used, refrigerant control of the intermediate differential pressure dPHM2 can be performed in the sub branch unit 220.
 以上のような親分岐ユニット制御手段420a、子分岐ユニット制御手段420bの制御処理を用いれば、冷媒圧力が適切に制御できることになるので、親分岐ユニット210から室内ユニット310までの配管長を拡大することが可能になる。その結果、複数の子分岐ユニット220を複数接続でき、子分岐ユニット220と室内ユニット310と間の配管長を短くできることにもなる。また、親分岐ユニット210と子分岐ユニット220との間の配管径を小さくすることもできる。 If the control processing of the parent branch unit control means 420a and the child branch unit control means 420b as described above is used, the refrigerant pressure can be appropriately controlled. Therefore, the pipe length from the parent branch unit 210 to the indoor unit 310 is increased. It becomes possible. As a result, a plurality of child branch units 220 can be connected, and the piping length between the child branch unit 220 and the indoor unit 310 can be shortened. Further, the pipe diameter between the parent branch unit 210 and the child branch unit 220 can be reduced.
 ここで、空気調和装置100に使用可能な冷媒について説明する。空気調和装置100の冷凍サイクルに使用できる冷媒には、非共沸混合冷媒や擬似共沸混合冷媒、単一冷媒等がある。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。擬似共沸混合冷媒には、HFC冷媒であるR410A(R32/R125)やR404A(R125/R143a/R134a)等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。 Here, the refrigerant that can be used for the air conditioner 100 will be described. Examples of the refrigerant that can be used in the refrigeration cycle of the air conditioner 100 include a non-azeotropic refrigerant mixture, a pseudo-azeotropic refrigerant mixture, and a single refrigerant. Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant. Since this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different. The pseudo azeotropic refrigerant mixture includes R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants. This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
 また、単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22やHFC冷媒であるR134a等がある。この単一冷媒は、混合物ではないので、取り扱いが容易であるという特性を有している。そのほか、自然冷媒である二酸化炭素やプロパン、イソブタン、アンモニア等を使用することもできる。なお、R22はクロロジフルオロメタン、R32はジフルオロメタン、R125はペンタフルオロメタンを、R134aは1,1,1,2-テトラフルオロメタンを、R143aは1,1,1-トリフルオロエタンをそれぞれ示している。したがって、空気調和装置100の用途や目的に応じた冷媒を使用するとよい。 Also, the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle. In addition, natural refrigerants such as carbon dioxide, propane, isobutane, and ammonia can be used. R22 represents chlorodifluoromethane, R32 represents difluoromethane, R125 represents pentafluoromethane, R134a represents 1,1,1,2-tetrafluoromethane, and R143a represents 1,1,1-trifluoroethane. Yes. Therefore, it is good to use the refrigerant | coolant according to the use and the objective of the air conditioning apparatus 100. FIG.
[空気調和装置100の奏する効果]
 図6は、複数の子分岐ユニット220を接続した空気調和装置100の施工図の一例を概略的に示した概略施工図である。図6に基づいて、空気調和装置100の奏する効果について説明する。なお、図6では、比較例として従来の空気調和装置(以下、空気調和装置100Xと称する)の施工図の一例を併せて図示している。また、いずれの空気調和装置においても、10台の室内ユニット310が接続されている状態を例に示している。さらに、空気調和装置100Xの構成には末尾に「X」を付記して表記している。
[Effects of the air conditioner 100]
FIG. 6 is a schematic construction diagram schematically showing an example of a construction diagram of the air conditioner 100 in which a plurality of child branch units 220 are connected. The effect which the air conditioning apparatus 100 show | plays is demonstrated based on FIG. In addition, in FIG. 6, an example of the construction drawing of the conventional air conditioning apparatus (henceforth the air conditioning apparatus 100X) is also shown in figure as a comparative example. Moreover, in any air conditioner, a state in which ten indoor units 310 are connected is shown as an example. Further, the configuration of the air conditioner 100X is indicated by adding “X” at the end.
 図6に示す空気調和装置100Xは、図3で説明したように中間圧制御を実施していないため、子分岐ユニット220X側に接続されている暖房運転用の室内ユニット310Xの暖房能力が低減してしまう。これは、親分岐ユニット210Xから子分岐ユニット220Xが遠ざかるほど配管圧損により中間差圧が小さくなるからである。 Since the air conditioner 100X shown in FIG. 6 does not perform the intermediate pressure control as described in FIG. 3, the heating capacity of the indoor unit 310X for heating operation connected to the child branch unit 220X side is reduced. End up. This is because the intermediate differential pressure decreases due to pipe pressure loss as the child branch unit 220X moves away from the parent branch unit 210X.
 それに対し、空気調和装置100では、図4及び図5で示した制御処理を採用することにより、中間圧制御が実行され、複数の子分岐ユニット220が接続できるようになる。つまり、熱源ユニット110から離れた位置にも子分岐ユニット220が接続可能になる。そのため、子分岐ユニット220と室内ユニット310と間の配管長が短くなるように設置することが可能となる。また、親分岐ユニット210と子分岐ユニット220と間の配管径を小さくすることもできる。 On the other hand, in the air conditioner 100, by adopting the control processing shown in FIGS. 4 and 5, intermediate pressure control is executed, and a plurality of child branch units 220 can be connected. That is, the child branch unit 220 can be connected to a position away from the heat source unit 110. Therefore, it becomes possible to install so that the piping length between the child branch unit 220 and the indoor unit 310 becomes short. Further, the pipe diameter between the parent branch unit 210 and the child branch unit 220 can be reduced.
 以上より、空気調和装置100によれば、配管施工コスト減及び冷媒追加充填量削減が可能な配管設計が可能となる。具合的には、図6に示すように子分岐ユニット220のライン配置により、紙面上で親分岐ユニット210から離れて接続される子分岐ユニット220ほど、配管径を小さくできるため、追加冷媒充填量の削減が実現できる。また、親分岐ユニット210、子分岐ユニット220、室内ユニット310を接続する冷媒配管の取り回しが簡素化できるので、これにより追加充填冷媒量の削減が期待できる他、配管施工に要するコストを抑制することが可能になる。 As described above, according to the air conditioner 100, it is possible to design a pipe that can reduce the piping construction cost and the refrigerant additional charging amount. Specifically, as shown in FIG. 6, the line arrangement of the child branch units 220 allows the pipe diameter to be smaller for the child branch unit 220 connected away from the parent branch unit 210 on the paper surface. Can be reduced. Moreover, since the handling of the refrigerant piping connecting the parent branch unit 210, the child branch unit 220, and the indoor unit 310 can be simplified, a reduction in the amount of additional charge refrigerant can be expected, and the cost required for piping construction can be suppressed. Is possible.
 001 高圧主管、002 低圧主管、003 液管、003a 液管、003b 液管、003c 液管、004 ガス管、004a ガス管、004b ガス管、004c ガス管、005 低圧管、005a 低圧管、005b 低圧管、005c 低圧管、006 液分配管、007 ガス分配管、008 低圧合流管、009 ガス冷媒配管、009a ガス冷媒配管、009b ガス冷媒配管、009c ガス冷媒配管、009d ガス冷媒配管、010 液冷媒配管、010a 液冷媒配管、010b 液冷媒配管、010c 液冷媒配管、010d 液冷媒配管、011 冷媒配管、012 冷媒配管、100 空気調和装置、100X 空気調和装置、110 熱源ユニット、111 圧縮機、112 流路切替装置、113 熱交換器、114 逆止弁、114a 逆止弁、114b 逆止弁、114c 逆止弁、114d 逆止弁、115 アキュムレータ、116 高圧圧力センサ、117 低圧圧力センサ、210 親分岐ユニット、210X 親分岐ユニット、211 気液分離器、212 絞り装置、213 絞り装置、214 流路切替装置、214a 流路切替装置、214b 流路切替装置、215 高圧圧力センサ、216 中間圧圧力センサ、217 温度センサ、220 子分岐ユニット、220X 子分岐ユニット、223 絞り装置、224 流路切替装置、224a 流路切替装置、224b 流路切替装置、224c 流路切替装置、226 中間圧圧力センサ、227 温度センサ、229 子分岐ユニット、310 室内ユニット、310X 室内ユニット、310a 室内ユニット、310b 室内ユニット、310c 室内ユニット、310d 室内ユニット、311 室内側絞り装置、311a 室内側絞り装置、311b 室内側絞り装置、311c 室内側絞り装置、311d 室内側絞り装置、312 室内側熱交換器、312a 室内側熱交換器、312b 室内側熱交換器、312c 室内側熱交換器、400 制御手段、410 熱源ユニット制御手段、411 熱源ユニット制御部、412 センサ情報格納手段、413 演算処理回路、414 アクチュエータ制御信号出力手段、420a 親分岐ユニット制御手段、420b 子分岐ユニット制御手段、421a 分岐ユニット制御部、421b 子分岐ユニット制御部、422a センサ情報格納手段、422b センサ情報格納手段、423a 演算処理回路、423b 演算処理回路、424a アクチュエータ制御信号出力手段、424b アクチュエータ制御信号出力手段、430 室内ユニット制御手段、430a 室内ユニット制御手段、430b 室内ユニット制御手段、430c 室内ユニット制御手段、430d 室内ユニット制御手段。 001 High pressure main pipe, 002 Low pressure main pipe, 003 liquid pipe, 003a liquid pipe, 003b liquid pipe, 003c liquid pipe, 004 gas pipe, 004a gas pipe, 004b gas pipe, 004c gas pipe, 005 low pressure pipe, 005a low pressure pipe, 005b low pressure Pipe, 005c low pressure pipe, 006 liquid distribution pipe, 007 gas distribution pipe, 008 low pressure merge pipe, 009 gas refrigerant pipe, 009a gas refrigerant pipe, 009b gas refrigerant pipe, 009c gas refrigerant pipe, 009d gas refrigerant pipe, 010 liquid refrigerant pipe 010a liquid refrigerant pipe, 010b liquid refrigerant pipe, 010c liquid refrigerant pipe, 010d liquid refrigerant pipe, 011 refrigerant pipe, 012 refrigerant pipe, 100 air conditioner, 100X air conditioner, 110 heat source unit, 111 compressor, 112 flow path Switching device, 13 heat exchanger, 114 check valve, 114a check valve, 114b check valve, 114c check valve, 114d check valve, 115 accumulator, 116 high pressure sensor, 117 low pressure sensor, 210 parent branch unit, 210X parent Branch unit, 211 gas-liquid separator, 212 throttle device, 213 throttle device, 214 channel switching device, 214a channel switching device, 214b channel switching device, 215 high pressure sensor, 216 intermediate pressure sensor, 217 temperature sensor, 220 child branch unit, 220X child branch unit, 223 throttling device, 224 flow path switching device, 224a flow path switching device, 224b flow path switching device, 224c flow path switching device, 226 intermediate pressure sensor, 227 temperature sensor, 229 child Branch unit, 310 rooms Unit, 310X indoor unit, 310a indoor unit, 310b indoor unit, 310c indoor unit, 310d indoor unit, 311 indoor side throttle device, 311a indoor side throttle device, 311b indoor side throttle device, 311c indoor side throttle device, 311d indoor side throttle Equipment, 312 indoor heat exchanger, 312a indoor heat exchanger, 312b indoor heat exchanger, 312c indoor heat exchanger, 400 control means, 410 heat source unit control means, 411 heat source unit control unit, 412 sensor information storage Means 413 arithmetic processing circuit 414 actuator control signal output means 420a parent branch unit control means 420b child branch unit control means 421a branch unit controller 421b child branch unit controller 422a Sensor information storage means, 422b Sensor information storage means, 423a arithmetic processing circuit, 423b arithmetic processing circuit, 424a actuator control signal output means, 424b actuator control signal output means, 430 indoor unit control means, 430a indoor unit control means, 430b indoor unit Control means, 430c indoor unit control means, 430d indoor unit control means.

Claims (6)

  1.  圧縮機及び第1熱交換器が搭載された少なくとも1台の熱源ユニットと、
     第2熱交換器及び室内側絞り装置が搭載された少なくとも1台の室内ユニットと、
     前記熱源ユニットと前記室内ユニットとの間に接続され、少なくとも2つの第1絞り装置が搭載された第1分岐ユニットと、
     前記第1分岐ユニットと前記室内ユニットとの間に接続され、少なくとも1つの第2絞り装置が搭載された第2分岐ユニットと、を備え、
     前記圧縮機、前記第1熱交換器、前記室内側絞り装置、前記第2熱交換器を接続することにより冷凍サイクルが形成され、
     前記第1絞り装置及び前記第2絞り装置は、前記第2熱交換器に前記圧縮機から吐出された冷媒を供給する運転時における冷媒の流れにおいて前記室内側絞り装置の下流側に設けられており、
     前記第1絞り装置及び前記第2絞り装置の開度を調整することにより、前記冷凍サイクルの中間圧を制御する
     空気調和装置。
    At least one heat source unit equipped with a compressor and a first heat exchanger;
    At least one indoor unit on which the second heat exchanger and the indoor expansion device are mounted;
    A first branch unit connected between the heat source unit and the indoor unit, and having at least two first expansion devices mounted thereon;
    A second branch unit connected between the first branch unit and the indoor unit and having at least one second throttle device mounted thereon,
    A refrigeration cycle is formed by connecting the compressor, the first heat exchanger, the indoor expansion device, and the second heat exchanger,
    The first throttling device and the second throttling device are provided downstream of the indoor throttling device in the flow of refrigerant during operation of supplying the refrigerant discharged from the compressor to the second heat exchanger. And
    An air conditioner that controls the intermediate pressure of the refrigeration cycle by adjusting the opening of the first throttle device and the second throttle device.
  2.  前記第1絞り装置及び前記第2絞り装置の開度を調整することで、前記第2分岐ユニットにおける高圧と中間圧との差圧である第2中間差圧を、前記第1分岐ユニットにおける高圧と中間圧との差圧である第1中間差圧に近似させる
      請求項1に記載の空気調和装置。
    By adjusting the opening degree of the first throttle device and the second throttle device, a second intermediate differential pressure, which is a differential pressure between the high pressure and the intermediate pressure in the second branch unit, is increased in the first branch unit. The air conditioning apparatus according to claim 1, wherein the air conditioner is approximated to a first intermediate differential pressure that is a differential pressure between the first pressure and the intermediate pressure.
  3.  前記第1絞り装置を2つ搭載するものにおいて、
     前記第1中間差圧が第1目標中間差圧から設定値を引いた値以下であるとき、前記第1絞り装置のうち一方の絞り装置の開度を減少させ、他方の絞り装置の開度を増加させることで前記第1中間差圧を前記第1目標中間差圧に近づけ、
     前記第1中間差圧が前記第1目標中間差圧から設定値を引いた値よりも大きく、前記第1目標中間差圧に設定値を足した値よりも大きいとき、前記一方の絞り装置の開度を増加させ、前記他方の絞り装置の開度を減少させることで前記第1中間差圧を前記第1目標中間差圧に近づけ、
     前記第1中間差圧が前記第1目標中間差圧から設定値を引いた値よりも大きく、前記第1目標中間差圧に設定値を足した値以下であるとき、前記第1絞り装置の開度を維持する
     請求項2に記載の空気調和装置。
    In the one equipped with the two first diaphragm devices,
    When the first intermediate differential pressure is equal to or less than a value obtained by subtracting a set value from the first target intermediate differential pressure, the opening of one of the first expansion devices is decreased and the opening of the other expansion device To increase the first intermediate differential pressure closer to the first target intermediate differential pressure,
    When the first intermediate differential pressure is greater than a value obtained by subtracting a set value from the first target intermediate differential pressure and greater than a value obtained by adding the set value to the first target intermediate differential pressure, Increasing the opening and decreasing the opening of the other throttle device brings the first intermediate differential pressure closer to the first target intermediate differential pressure,
    When the first intermediate differential pressure is greater than a value obtained by subtracting a set value from the first target intermediate differential pressure and is equal to or less than a value obtained by adding the set value to the first target intermediate differential pressure, The air conditioning apparatus according to claim 2, wherein the opening degree is maintained.
  4.  前記第2中間差圧が第2目標中間差圧から設定値を引いた値以下であるとき、前記第2絞り装置の開度を増加させることで前記第2中間差圧を前記第2目標中間差圧に近づけ、
     前記第2中間差圧が前記第2目標中間差圧から設定値を引いた値よりも大きく、前記第2目標中間差圧に設定値を足した値よりも大きいとき、前記第2絞り装置の開度を減少させることで前記第2中間差圧を前記第2目標中間差圧に近づけ、
     前記第2中間差圧が前記第2目標中間差圧から設定値を引いた値よりも大きく、前記第2目標中間差圧に設定値を足した値以下であるとき、前記第2絞り装置の開度を維持する
     請求項2又は3に記載の空気調和装置。
    When the second intermediate differential pressure is equal to or less than a value obtained by subtracting a set value from the second target intermediate differential pressure, the second intermediate differential pressure is increased by increasing the opening of the second expansion device. Close to the differential pressure,
    When the second intermediate differential pressure is greater than a value obtained by subtracting a set value from the second target intermediate differential pressure, and greater than a value obtained by adding the set value to the second target intermediate differential pressure, the second throttle device By reducing the opening, the second intermediate differential pressure approaches the second target intermediate differential pressure,
    When the second intermediate differential pressure is greater than a value obtained by subtracting a set value from the second target intermediate differential pressure, and is equal to or less than a value obtained by adding the set value to the second target intermediate differential pressure, The air conditioning apparatus according to claim 2 or 3, wherein the opening degree is maintained.
  5.  前記第1目標中間差圧と前記第2目標中間差圧とは同じ値である
     請求項3に従属する請求項4に記載の空気調和装置。
    The air conditioner according to claim 4, wherein the first target intermediate differential pressure and the second target intermediate differential pressure have the same value.
  6.  前記設定値は自動制御における不感帯により定められている
     請求項3又は4に記載の空気調和装置。
    The air conditioner according to claim 3 or 4, wherein the set value is determined by a dead zone in automatic control.
PCT/JP2016/061975 2016-04-14 2016-04-14 Air-conditioning device WO2017179166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061975 WO2017179166A1 (en) 2016-04-14 2016-04-14 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061975 WO2017179166A1 (en) 2016-04-14 2016-04-14 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2017179166A1 true WO2017179166A1 (en) 2017-10-19

Family

ID=60042427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061975 WO2017179166A1 (en) 2016-04-14 2016-04-14 Air-conditioning device

Country Status (1)

Country Link
WO (1) WO2017179166A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100234A1 (en) * 2019-11-18 2021-05-27 ダイキン工業株式会社 Intermediate unit for refrigeration device, and refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172433A (en) * 1991-12-09 1993-07-09 Mitsubishi Electric Corp Air conditioning apparatus
JP2004219061A (en) * 2003-01-16 2004-08-05 Lg Electronics Inc Multiple air conditioner equipped with a plurality of distributor capable of being blocked
WO2009122512A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air conditioning apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172433A (en) * 1991-12-09 1993-07-09 Mitsubishi Electric Corp Air conditioning apparatus
JP2004219061A (en) * 2003-01-16 2004-08-05 Lg Electronics Inc Multiple air conditioner equipped with a plurality of distributor capable of being blocked
WO2009122512A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air conditioning apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100234A1 (en) * 2019-11-18 2021-05-27 ダイキン工業株式会社 Intermediate unit for refrigeration device, and refrigeration device
JP2021081114A (en) * 2019-11-18 2021-05-27 ダイキン工業株式会社 Intermediate unit of refrigerating device and refrigerating device
EP4047289A4 (en) * 2019-11-18 2022-12-21 Daikin Industries, Ltd. Intermediate unit for refrigeration device, and refrigeration device

Similar Documents

Publication Publication Date Title
JP5774225B2 (en) Air conditioner
US9157649B2 (en) Air-conditioning apparatus
US9140459B2 (en) Heat pump device
US9494363B2 (en) Air-conditioning apparatus
JP5511983B2 (en) Air conditioning and hot water supply complex system
JP5759017B2 (en) Air conditioner
JP6138364B2 (en) Air conditioner
US9557083B2 (en) Air-conditioning apparatus with multiple operational modes
JP5518102B2 (en) Air conditioning and hot water supply complex system
JPWO2010109617A1 (en) Air conditioner
JP5893151B2 (en) Air conditioning and hot water supply complex system
KR101901540B1 (en) Air conditioning device
WO2013046269A1 (en) Combined air-conditioning/hot water supply system
JP5837099B2 (en) Air conditioner
JP6120943B2 (en) Air conditioner
WO2014083679A1 (en) Air conditioning device, and design method therefor
JP5005011B2 (en) Air conditioner
WO2017179166A1 (en) Air-conditioning device
JPWO2013046269A1 (en) Air conditioning and hot water supply complex system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898626

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP