JP2522363B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2522363B2
JP2522363B2 JP63260763A JP26076388A JP2522363B2 JP 2522363 B2 JP2522363 B2 JP 2522363B2 JP 63260763 A JP63260763 A JP 63260763A JP 26076388 A JP26076388 A JP 26076388A JP 2522363 B2 JP2522363 B2 JP 2522363B2
Authority
JP
Japan
Prior art keywords
connection pipe
gas
refrigerant
pipe
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63260763A
Other languages
Japanese (ja)
Other versions
JPH02106668A (en
Inventor
等 飯島
直樹 田中
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63260763A priority Critical patent/JP2522363B2/en
Priority to KR1019890011915A priority patent/KR920008504B1/en
Priority to US07/417,207 priority patent/US4987747A/en
Priority to AU42562/89A priority patent/AU615347B2/en
Priority to EP89118584A priority patent/EP0364834B1/en
Priority to ES89118584T priority patent/ES2051338T3/en
Publication of JPH02106668A publication Critical patent/JPH02106668A/en
Application granted granted Critical
Publication of JP2522363B2 publication Critical patent/JP2522363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は室外機1台に対して複数台の室内機を接続
する多室形の空気調和装置に関するもので、特に、各室
内機毎に冷暖房を選択的に、または、同時に行なうこと
ができる空気調和装置に関するものである。
TECHNICAL FIELD The present invention relates to a multi-room type air conditioner in which a plurality of indoor units are connected to one outdoor unit, and in particular, for each indoor unit. The present invention relates to an air conditioner capable of performing heating and cooling selectively or simultaneously.

[従来の技術] 従来、この種の空気調和装置として、例えば、実開昭
47−22558号公報に掲載されたものがある。
[Prior Art] Conventionally, as an air conditioner of this type, for example,
Some are published in the 47-22558 publication.

第6図は上記公報に掲載された従来の空気調和装置の
冷媒系を中心とする全体構成図である。
FIG. 6 is an overall configuration diagram centering on the refrigerant system of the conventional air conditioner disclosed in the above publication.

図において、1は空気調和装置の室外機で、2は圧縮
機、3は四方弁、4は室外熱交換器、5は逆止弁、6は
膨張弁、7は受液器、8はアキュムレータで、これらは
前記室外機1を構成する。また、9a〜9cは前記室外機1
に接続された各々室内機で、10は室内熱交換器、11は逆
止弁、12は膨張弁で、これらは前記室内機9a〜9cを構成
する。そして、13及び14は室内機9a〜9cと室外機1とを
接続する第1及び第2の接続配管である。
In the figure, 1 is an outdoor unit of an air conditioner, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is a check valve, 6 is an expansion valve, 7 is a liquid receiver, and 8 is an accumulator. Then, these constitute the outdoor unit 1. Further, 9a to 9c are the outdoor units 1
Each of the indoor units is connected to the indoor unit, 10 is an indoor heat exchanger, 11 is a check valve, and 12 is an expansion valve, which constitute the indoor units 9a to 9c. Further, 13 and 14 are first and second connection pipes that connect the indoor units 9a to 9c and the outdoor unit 1.

上記のように構成された従来の空気調和装置は次のよ
うに動作する。
The conventional air conditioner configured as described above operates as follows.

まず、暖房運転状態において、圧縮機2から吐出され
た高温高圧冷媒ガスは第1の接続配管13から各室内機9a
〜9cに流入し、室内熱交換器10で室内空気と熱交換(暖
房)されて凝縮液化する。各室内機9a〜9cで液化された
冷媒液は、逆止弁11を通って第2の接続配管14で合流
し、さらに、受液器7を通って膨張弁6に流入し、ここ
で低温の気液二相状態まで減圧され、室外熱交換器4に
流入する。室外熱交換器4に流入した冷媒は外気と熱交
換されることによって蒸発し、ガス状態となって再び圧
縮機2に吸入される循環サイクルを形成する。
First, in the heating operation state, the high-temperature high-pressure refrigerant gas discharged from the compressor 2 is supplied from the first connecting pipe 13 to each indoor unit 9a.
To 9c, and the indoor heat exchanger 10 exchanges heat with the indoor air (heating) to condense and liquefy. The refrigerant liquid liquefied in each of the indoor units 9a to 9c merges in the second connection pipe 14 through the check valve 11 and further flows into the expansion valve 6 through the liquid receiver 7 where low temperature The pressure is reduced to the gas-liquid two-phase state and flows into the outdoor heat exchanger 4. The refrigerant flowing into the outdoor heat exchanger 4 evaporates by exchanging heat with the outside air, becomes a gas state, and forms a circulation cycle in which the refrigerant is sucked into the compressor 2 again.

一方、冷房運転状態においては、暖房運転と反対の循
環サイクルとなる。即ち、圧縮機2で高温高圧ガスとな
った冷媒は、室外熱交換器4で外気によって熱交換(冷
却)され、凝縮液化して、受液器7を通り接続配管14か
ら各室内機9a〜9cに流入する。そして、各室内機9a〜9c
に流入した冷媒液は、膨張弁12によって低温の気液二相
状態まで減圧され、室内熱交換器10で室内空気と熱交換
(冷房)されてガス状態となり、接続配管13で合流して
再び圧縮機2に吸入される。
On the other hand, in the cooling operation state, the circulation cycle is the opposite of the heating operation. That is, the refrigerant that has become the high-temperature high-pressure gas in the compressor 2 is heat-exchanged (cooled) by the outside air in the outdoor heat exchanger 4, condensed and liquefied, passes through the liquid receiver 7, and is connected to each indoor unit 9a through the connection pipe 14. Flow into 9c. And each indoor unit 9a-9c
The refrigerant liquid that has flown into is decompressed by the expansion valve 12 to a low-temperature gas-liquid two-phase state, is heat-exchanged (cooled) with the indoor air in the indoor heat exchanger 10, becomes a gas state, and merges again in the connecting pipe 13 It is sucked into the compressor 2.

[発明が解決しようとする課題] 従来の多室形の空気調和装置は、上記のようにに構成
されているので、全ての室内機9a〜9cが暖房運転または
冷房運転を行なう必要があるから、冷房が必要な場所で
暖房が行なわれたり、暖房が必要な場所で冷房が行なわ
れる可能性があった。
[Problems to be Solved by the Invention] Since the conventional multi-room air conditioner is configured as described above, all the indoor units 9a to 9c need to perform heating operation or cooling operation. , There is a possibility that heating will be performed in a place where cooling is required, or cooling may be performed in a place where heating is required.

特に、この種の多室形の空気調和装置を大規模なビル
に据付けた場合、インテリア部とペリメータ部、または
一般事務室とコンピュータルーム等のOA化された部屋で
は、空調負荷が著しく異なるために、このような事態が
予測される。また、テナントビル等のような場合では、
借用者が変わるたびに熱負荷が変わることから、予め、
冷房ゾーン、暖房ゾーン等にゾーニング分けすることは
不可能である。また、これに対応するために冷房室内機
と暖房室内機の2台を同一室に設置することは設備費が
高価となり実用的ではなかった。
In particular, when installing this type of multi-room air conditioner in a large building, the air-conditioning load is significantly different in the interior and perimeter sections, or in office rooms such as general offices and computer rooms. This situation is expected. In addition, in cases such as tenant buildings,
Since the heat load changes each time the borrower changes,
It is impossible to divide into zones such as cooling zone and heating zone. Further, it is not practical to install two cooling indoor units and two heating indoor units in the same room to cope with this, because the equipment cost is high.

そこで、この発明は1台の室外機に複数台の室内機を
接続しても、各室内機が設置された空間の冷暖房要求に
対応して、各室内機毎に冷暖房運転を選択的にまたは同
時にできる空気調和装置の提供を課題とするものであ
る。
Therefore, according to the present invention, even if a plurality of indoor units are connected to one outdoor unit, the cooling or heating operation is selectively or individually performed for each indoor unit in response to a cooling and heating request of a space in which each indoor unit is installed. It is an object to provide an air conditioner that can be simultaneously performed.

[課題を解決するための手段] 請求項1による空気調和装置においては、第1の接続
配管または第2の接続配管の途中に気液分離装置を設
け、上記複数台の室内機の一方を前記第1の接続配管ま
たは第2の接続配管と切替可能に接続し、他の一方を第
3の接続配管で流量制御装置を介して前記第1の接続配
管または第2の接続配管のいずれかに設けた気液分離装
置に接続し、前記気液分離装置と前記気液分離装置が設
けてない第1の接続配管または第2の接続配管とをバイ
パス配管で接続し、このバイパス配管に第3の接続配管
の気液分離装置と流量制御装置との間で熱交換を行なう
熱交換部を設けたものである。
[Means for Solving the Problem] In the air conditioner according to claim 1, a gas-liquid separator is provided in the middle of the first connection pipe or the second connection pipe, and one of the plurality of indoor units is provided with One of the first connection pipe and the second connection pipe is switchably connected to the first connection pipe or the second connection pipe, and the other one of the first connection pipe and the second connection pipe is connected to the third connection pipe via a flow control device. The gas-liquid separator provided is connected, and the gas-liquid separator and the first connection pipe or the second connection pipe not provided with the gas-liquid separator are connected by a bypass pipe, and a third pipe is connected to the bypass pipe. The heat exchange part for exchanging heat between the gas-liquid separation device of the connection pipe and the flow rate control device is provided.

請求項2による空気調和装置においては、気液分離装
置と気液分離装置が設けていない第1の接続配管または
第2の接続配管とを流量制御装置を介してバイパス配管
で接続し、このバイパス配管に第3の接続配管の気液分
離装置と流量制御装置との間で熱交換を行なう熱交換部
を設けたものである。
In the air conditioner according to claim 2, the gas-liquid separation device and the first connection pipe or the second connection pipe not provided with the gas-liquid separation device are connected by a bypass pipe via the flow control device, and the bypass pipe is connected. The pipe is provided with a heat exchange section for exchanging heat between the gas-liquid separation device of the third connection pipe and the flow rate control device.

[作用] この発明の空気調和装置においては、暖房主体の冷暖
房同時運転の場合は、高圧ガス冷媒を第2または第1の
接続配管から暖房運転状態にある各室内機に導入して暖
房を行なう。暖房を行なった冷媒は第3の接続配管から
一部は冷房運転状態にある室内機に流入して熱交換(冷
房)して第1または第2の接続配管に流入する。一方、
他の冷媒は第3の接続配管の流量制御装置を通って第1
または第2の接続配管に流入し、冷房運転状態にある室
内機を通った冷媒と合流して室外機に戻る。
[Operation] In the air conditioner of the present invention, in the case of heating-based simultaneous heating and cooling operation, high-pressure gas refrigerant is introduced from the second or first connection pipe to each indoor unit in the heating operation state to perform heating. . A part of the heated refrigerant flows into the indoor unit in the cooling operation state from the third connection pipe, exchanges heat (cooling), and then flows into the first or second connection pipe. on the other hand,
The other refrigerant passes through the flow rate control device of the third connecting pipe to the first
Alternatively, it flows into the second connection pipe, merges with the refrigerant that has passed through the indoor unit in the cooling operation state, and returns to the outdoor unit.

冷房主体の冷暖房同時運転の場合は、高圧ガスを室外
熱交換器で任意量熱交換し二相状態にして第1の接続配
管から気液分離装置に流入する。そして、この気液分離
装置で気体と液体とに分離し、気体状の冷媒ガスを暖房
運転状態にある室内機に導入して暖房を行ない第3の接
続配管に流入する。また、他の液体状の液冷媒はバイパ
ス配管と第3の接続配管とに流れ、バイパス配管に流入
した冷媒は、第3の接続配管に流入した冷媒と熱交換部
で熱交換後に、第2または第1の接続配管に流入する。
一方、第3の接続配管に流入した冷媒は、暖房運転状態
にある室内機からの冷媒と合流して冷房運転状態にある
各室内機に流入する。冷房運転状態にある室内機に流入
した冷媒は熱交換(冷房)を行ない熱交換後に第2また
は第1の接続配管を通って室外機側に導びかれて再び圧
縮機に戻る。
In the case of simultaneous cooling and heating operation mainly for cooling, the high-pressure gas is heat-exchanged in an arbitrary amount by the outdoor heat exchanger to be in a two-phase state and flow into the gas-liquid separation device from the first connecting pipe. Then, the gas-liquid separation device separates the gas and the liquid, introduces the gaseous refrigerant gas into the indoor unit in the heating operation state, performs heating, and flows into the third connection pipe. Further, the other liquid liquid refrigerant flows into the bypass pipe and the third connection pipe, and the refrigerant flowing into the bypass pipe is heat-exchanged with the refrigerant flowing into the third connection pipe in the heat exchanging portion, and then the second Or, it flows into the first connection pipe.
On the other hand, the refrigerant flowing into the third connection pipe merges with the refrigerant from the indoor unit in the heating operation state and flows into each indoor unit in the cooling operation state. The refrigerant that has flowed into the indoor unit in the cooling operation state performs heat exchange (cooling), and after heat exchange, is guided to the outdoor unit side through the second or first connection pipe and returns to the compressor again.

暖房運転のみの場合、冷媒は室外機より第2または第
1の接続配管を通り各室内機に導入される。そして、熱
交換(暖房)して第3の接続配管を通り室外機に戻る。
In the case of only the heating operation, the refrigerant is introduced into each indoor unit from the outdoor unit through the second or first connection pipe. Then, heat is exchanged (heated) and returns to the outdoor unit through the third connecting pipe.

また、冷房運転のみの場合は第1または第2の接続配
管、第3の接続配管を経て各室内機に導入されて熱交換
(冷房)される。そして、この熱交換した冷媒は第2ま
たは第1の接続配管により室外機に戻る。
Further, in the case of only the cooling operation, the heat is exchanged (cooled) by being introduced into each indoor unit through the first or second connecting pipe and the third connecting pipe. Then, the heat-exchanged refrigerant returns to the outdoor unit through the second or first connection pipe.

[実施例] 以下、この発明の実施例について説明する。[Examples] Examples of the present invention will be described below.

第1図はこの発明の一実施例を空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図乃至第4
図は第1図の実施例における冷暖房運転時の動作状態を
示したもので、第2図は冷房または暖房のみの運転動作
状態を示す冷媒循環図、第3図及び第4図は各々冷暖房
同時運転の動作を示すもので、第3図は暖房主体(暖房
運転容量が冷房運転容量より大きい場合)の、第4図は
冷房主体(冷房運転容量が暖房運転容量より大きい場
合)の運転動作状態を示す冷媒循環図である。そして、
第5図はこの発明の他の実施例の空気調和装置の冷媒系
を中心とする全体構成図である。図中、従来例と同一符
号及び同一記号は従来例と同一または相当部分を示すも
のであるので、ここでは重複する説明を省略する。
FIG. 1 is an overall configuration diagram centering on a refrigerant system of an air conditioner according to an embodiment of the present invention. Also, FIGS. 2 to 4
The figure shows the operating state during the heating and cooling operation in the embodiment of FIG. 1, FIG. 2 is a refrigerant circulation diagram showing the operating state of only cooling or heating, and FIGS. Fig. 3 shows the operation of operation, and Fig. 3 shows the operation state of heating (when the heating operation capacity is larger than the cooling operation capacity) and Fig. 4 shows the operation operation of the cooling mainly (when the cooling operation capacity is larger than the heating operation capacity). It is a refrigerant circulation diagram showing. And
FIG. 5 is an overall configuration diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention. In the figure, the same reference numerals and symbols as those of the conventional example indicate the same or corresponding portions as those of the conventional example, and therefore, duplicated description will be omitted here.

なお、この実施例についても、従来例と同様に、室外
機1台に室内機3台を接続した場合について説明する
が、4台以上の室内機を接続する場合も基本的に同様で
ある。
Also in this embodiment, as in the conventional example, a case where one outdoor unit and three indoor units are connected will be described, but the same is basically true when four or more indoor units are connected.

図において、19は第1の接続配管13の途中に設けた気
液分離器であり、冷媒を気体と液体とに分離する気液分
離装置としての機能を有する。20は室内熱交換器10の一
方を第1の接続配管13と第2の接続配管14とに切替可能
に接続する三方切替弁、21は室内熱交換器10の他の一方
に接続された第1の流量制御装置である第1の電気式膨
張弁である。この三方切替弁20、室内熱交換器10、及び
第1の電気式膨張弁21で各室内機9a〜9cが構成されてい
る。また、22は各室内機9a〜9cの第1の電気式膨張弁21
側と第1の接続配管13の気液分離器19の下部とを接続す
る第3の接続配管、23は第3の接続配管22に設けた第2
の流量制御装置である電気式膨張弁である。24は開閉装
置として機能する電磁弁、25は流量制御装置として機能
する毛細管、26は第3の接続配管22の気液分離器19と第
2の電気式膨張弁23との間で熱交換を行なう熱交換部、
27は気液分離器19の高さ方向のほぼ中央部から分岐し第
2の接続配管14に接続するバイパス配管である。このバ
イパス配管27の途中に上記の電磁弁24と毛細管25と熱交
換部26が設けてある。
In the figure, 19 is a gas-liquid separator provided in the middle of the first connection pipe 13, and has a function as a gas-liquid separator for separating the refrigerant into a gas and a liquid. Reference numeral 20 is a three-way switching valve that connects one of the indoor heat exchanger 10 to the first connecting pipe 13 and the second connecting pipe 14 in a switchable manner, and 21 is a first connecting pipe connected to the other one of the indoor heat exchanger 10. It is the 1st electric expansion valve which is the 1st flow control device. The three-way switching valve 20, the indoor heat exchanger 10, and the first electric expansion valve 21 constitute each indoor unit 9a-9c. Further, 22 is the first electric expansion valve 21 of each indoor unit 9a-9c.
Side is connected to the lower part of the gas-liquid separator 19 of the first connection pipe 13, and 23 is a second connection pipe provided in the third connection pipe 22.
It is an electric expansion valve which is a flow rate control device. 24 is a solenoid valve that functions as an opening / closing device, 25 is a capillary tube that functions as a flow rate control device, and 26 is heat exchange between the gas-liquid separator 19 of the third connecting pipe 22 and the second electric expansion valve 23. Heat exchange section,
Reference numeral 27 is a bypass pipe branching from a substantially central portion in the height direction of the gas-liquid separator 19 and connected to the second connection pipe 14. The solenoid valve 24, the capillary tube 25, and the heat exchange section 26 are provided in the middle of the bypass pipe 27.

このように構成されたこの発明の実施例の空気調和装
置の動作について説明する。
The operation of the air conditioner of the embodiment of the present invention thus configured will be described.

まず、第2図を用いて暖房運転のみの場合について説
明する。
First, the case of only the heating operation will be described with reference to FIG.

圧縮機2より吐出された高温高圧冷媒ガスは、第2の
接続配管14により室外から室内側に導かれ、各室内機9a
〜9cの各々の三方切替弁20を介して室内熱交換器10に流
入し、熱交換(暖房)して凝縮液化される。そして、こ
の液状態となった冷媒は、第1の電気式膨張弁21を通
り、第3の接続配管22に流入し合流して第2の流量制御
装置である電気式膨張弁23により低圧まで減圧される。
そして、低圧まで減圧された冷媒は気液分離器19を介し
て第1の接続配管13を経て、室外機1の室外熱交換器4
に流入し、そこで熱交換してガス状態となって再び圧縮
機2に吸入される。このようにして、循環サイクルを構
成し、暖房運転を行なう。
The high-temperature high-pressure refrigerant gas discharged from the compressor 2 is guided from the outdoor side to the indoor side by the second connecting pipe 14, and is discharged to each indoor unit 9a.
Through 9c, each of the three-way switching valves 20 flows into the indoor heat exchanger 10, and heat is exchanged (heated) to be condensed and liquefied. Then, the refrigerant in the liquid state passes through the first electric expansion valve 21, flows into the third connecting pipe 22, joins, and is reduced to a low pressure by the electric expansion valve 23 which is the second flow rate control device. The pressure is reduced.
Then, the refrigerant depressurized to a low pressure passes through the gas-liquid separator 19 and the first connection pipe 13, and then the outdoor heat exchanger 4 of the outdoor unit 1.
Into the gas state, where it is heat-exchanged to become a gas state and is again sucked into the compressor 2. In this way, the circulation cycle is configured and the heating operation is performed.

つぎに、同じく第2図を用いて冷房運転のみの場合に
ついて説明する。
Next, the case of only the cooling operation will be described with reference to FIG.

圧縮機2より吐出された高温高圧冷媒ガスは、室外熱
交換器4で熱交換され凝縮液化された後、第1の接続配
管13から気液分離器19を介して、第3の接続配管22に流
れ、全開状態の第2の電気式膨張弁23を経て各室内機9a
〜9cに流入する。各室内機9a〜9cに流入した冷媒は第1
の電気式膨張弁21により低圧まで減圧され室内熱交換器
10に流入し、室内空気と熱交換(冷房)して蒸発しガス
化される。そして、このガス状態となった冷媒は三方切
替弁20を介して、第2の接続配管14を経て再び圧縮機2
に吸入される循環サイクルを構成し、冷房運転を行な
う。
The high-temperature high-pressure refrigerant gas discharged from the compressor 2 is heat-exchanged in the outdoor heat exchanger 4 to be condensed and liquefied, and then from the first connection pipe 13 via the gas-liquid separator 19 to the third connection pipe 22. To the indoor unit 9a through the second electric expansion valve 23 in the fully opened state.
Flow into ~ 9c. The refrigerant flowing into each indoor unit 9a-9c is the first
Indoor heat exchanger is decompressed to low pressure by the electric expansion valve 21 of
It flows into 10, and exchanges heat with the indoor air (cooling), evaporates and is gasified. Then, the refrigerant in the gas state passes through the three-way switching valve 20, the second connection pipe 14, and the compressor 2 again.
It constitutes a circulation cycle that is sucked into and performs cooling operation.

つぎに、暖房主体の冷暖房同時運転について第3図を
用いて説明する。
Next, the heating-based simultaneous cooling and heating operation will be described with reference to FIG.

まず、圧縮機2より吐出された冷媒は、第2の接続配
管14から暖房運転状態にある各室内機9b,9cに三方切替
弁20を介して流入し、室内熱交換器10で熱交換(暖房)
し、冷媒を凝縮液化する。そして、この凝縮液化した冷
媒は第1の電気式膨張弁21で若干過冷却状態となるよう
に通過流量が制御され、第3の接続配管22に流入する。
この冷媒の一部は冷房運転状態にある室内機9aに入り、
第1の電気式膨張弁21によって減圧された後に、室内熱
交換器10に入って熱交換(冷房)され、蒸発してガス状
態となって三方切替弁20を介して第1の接続配管13に流
入する。
First, the refrigerant discharged from the compressor 2 flows from the second connection pipe 14 into the indoor units 9b, 9c in the heating operation state via the three-way switching valve 20, and the heat exchange in the indoor heat exchanger 10 ( heating)
Then, the refrigerant is condensed and liquefied. Then, the flow rate of the condensed and liquefied refrigerant is controlled by the first electric expansion valve 21 so as to be in a slightly supercooled state, and flows into the third connection pipe 22.
Part of this refrigerant enters the indoor unit 9a in the cooling operation state,
After being decompressed by the first electric expansion valve 21, it enters the indoor heat exchanger 10 to undergo heat exchange (cooling), evaporate and become a gas state, and the first connection pipe 13 via the three-way switching valve 20. Flow into.

一方、他の冷媒液は第2の電気式膨張弁23で低圧まで
減圧された後に、第3の接続配管22から気液分離器19に
流入する。ここで、冷房運転状態にある室内機9aからの
冷媒と合流して第1の接続配管13を経て室外熱交換器4
に流入し、熱交換され蒸発してガス状態となって再び圧
縮機2に戻る循環サイクルを形成して暖房主体運転を行
なう。なお、第2の電気式膨張弁23の通過流量は室外熱
交換器4の出口冷媒の過熱度を検知して所定の過熱度と
なるように制御される。
On the other hand, the other refrigerant liquid is depressurized to a low pressure by the second electric expansion valve 23, and then flows into the gas-liquid separator 19 from the third connecting pipe 22. Here, the outdoor heat exchanger 4 merges with the refrigerant from the indoor unit 9a in the cooling operation state, and passes through the first connection pipe 13.
To the compressor 2 to form a circulation cycle in which heat is exchanged and vaporized into a gas state, and the heating main operation is performed. The flow rate of passage through the second electric expansion valve 23 is controlled so as to reach a predetermined superheat level by detecting the superheat degree of the outlet refrigerant of the outdoor heat exchanger 4.

また、冷房主体の冷暖房同時運転の場合、第4図に示
すように圧縮機2より吐出された冷媒は室外熱交換器4
に流入し、任意の量だけ熱交換され気液二相の高温高圧
状態となり、第1の接続配管13の気液分離器19に流入す
る。そして、ここで気体と液体に分離された後、室内側
に送られる。気液分離器19で分離された気体状の冷媒ガ
スは暖房運転状態にある室内機9aに三方切替弁20を介し
て導入され、室内熱交換器10で熱交換(暖房)して凝縮
液化され、第1の電気式膨張弁21より第3の接続配管22
に流入する。
Further, in the simultaneous cooling and heating operation mainly for cooling, the refrigerant discharged from the compressor 2 is the outdoor heat exchanger 4 as shown in FIG.
Flow into the gas-liquid separator 19 of the first connecting pipe 13 after heat exchange by an arbitrary amount into a gas-liquid two-phase high-temperature high-pressure state. Then, after being separated into gas and liquid here, they are sent to the inside of the room. The gaseous refrigerant gas separated by the gas-liquid separator 19 is introduced into the indoor unit 9a in the heating operation state via the three-way switching valve 20, and heat-exchanged (heating) in the indoor heat exchanger 10 to be condensed and liquefied. , The third connecting pipe 22 from the first electric expansion valve 21
Flows into.

一方、気液分離器19で分離された液体状の液冷媒はバ
イパス配管27と第3の接続配管22に流入する。バイパス
配管27に流入した冷媒液は毛細管25により低圧まで減圧
後に、第3の接続配管22と熱交換部26で熱交換(第3の
接続配管22の冷媒を冷却)してガス化され第2の接続配
管14に流入する。また、第3の接続配管22に流入した冷
媒液は熱交換部26でバイパス配管27を流れる冷媒により
冷却され、若干過冷却された状態となって第2の電気式
膨張弁23を経て暖房運転状態にある室内機9aからの冷媒
と合流して冷房運転状態にある各室内機9b,9cに流入す
る。そして、冷房運転状態にある各室内機9b,9cに流入
した冷媒は第1の電気式膨張弁21によって低圧まで減圧
され、室内熱交換器10で熱交換(冷房)して蒸発する。
このガス状態となった冷媒は三方切替弁20を介して第2
の接続配管14に流入し、再び圧縮機2に戻る循環サイク
ルを形成して冷房主体運転を行なう。
On the other hand, the liquid liquid refrigerant separated by the gas-liquid separator 19 flows into the bypass pipe 27 and the third connection pipe 22. The refrigerant liquid that has flowed into the bypass pipe 27 is decompressed to a low pressure by the capillary pipe 25, and then heat-exchanged (cooling the refrigerant in the third connection pipe 22) in the third connection pipe 22 and the heat exchange section 26 to be gasified and Flows into the connection pipe 14 of. Further, the refrigerant liquid flowing into the third connecting pipe 22 is cooled by the refrigerant flowing through the bypass pipe 27 in the heat exchanging portion 26, becomes a slightly supercooled state, and goes through the second electric expansion valve 23 to perform the heating operation. It joins the refrigerant from the indoor unit 9a in the state and flows into each indoor unit 9b, 9c in the cooling operation state. Then, the refrigerant flowing into each indoor unit 9b, 9c in the cooling operation state is depressurized to a low pressure by the first electric expansion valve 21, and is heat-exchanged (cooled) in the indoor heat exchanger 10 to be evaporated.
The refrigerant in this gas state passes through the three-way switching valve 20 to the second
A cooling cycle is performed by flowing into the connecting pipe 14 and returning to the compressor 2 again.

上記のように、この実施例の空気調和装置の冷房主体
の冷暖房同時運転においては、第3の接続配管22に流れ
る冷媒とバイパス配管27を流れる冷媒との熱交換によ
り、気液分離器19で分離された第3の接続配管22を通る
冷媒液を過冷却状態にしている。したがって、気液分離
器19から各室内機9a〜9cまでの第3の接続配管22の経路
が長くなり圧力損失等がある場合であっても、冷媒が気
液二相状態となることはない。このため、冷房運転状態
にある室内機9b,9cの第1の電気式膨張弁21の入口付近
の冷媒状態を第3の接続配管22の長さ如何に拘らず、常
に、液体状態とすることができる。この結果、第1の電
気式膨張弁21の流量制御性がよく、効率のよい冷暖房同
時運転ができる。
As described above, in the cooling / heating simultaneous operation mainly of cooling of the air conditioner of this embodiment, the heat exchange between the refrigerant flowing through the third connecting pipe 22 and the refrigerant flowing through the bypass pipe 27 causes the gas-liquid separator 19 to operate. The refrigerant liquid passing through the separated third connecting pipe 22 is in a supercooled state. Therefore, even if the path of the third connecting pipe 22 from the gas-liquid separator 19 to each of the indoor units 9a to 9c becomes long and there is a pressure loss or the like, the refrigerant will not be in a gas-liquid two-phase state. . Therefore, the refrigerant state near the inlet of the first electric expansion valve 21 of the indoor units 9b, 9c in the cooling operation state is always in the liquid state regardless of the length of the third connection pipe 22. You can As a result, the flow rate controllability of the first electric expansion valve 21 is good, and efficient cooling / heating simultaneous operation can be performed.

また、バイパス配管27には冷媒の気液状態に応じて流
動抵抗が変化する流量制御装置として機能する毛細管25
を設けているので、気液分離器19の冷媒液面が低下した
場合にも、ガス状の冷媒がバイパス配管27内に大量に流
れるということはない。したがって、暖房運転状態にあ
る室内機9aには適量のガス冷媒の供給が維持され、暖房
能力が大きく低下することはない。
Further, in the bypass pipe 27, a capillary pipe 25 that functions as a flow rate control device whose flow resistance changes according to the gas-liquid state of the refrigerant.
Therefore, even if the refrigerant liquid level of the gas-liquid separator 19 is lowered, a large amount of the gaseous refrigerant does not flow into the bypass pipe 27. Therefore, the indoor unit 9a in the heating operation state is kept supplied with an appropriate amount of gas refrigerant, and the heating capacity is not significantly reduced.

さらに、バイパス配管27により気液分離器19内の冷媒
の液面を一定の位置に維持でき、余剰冷媒をアキュムレ
ータ8に貯溜することができるので、第3の接続配管22
の途中にレシーバ等を設ける必要性もない。
Furthermore, since the liquid level of the refrigerant in the gas-liquid separator 19 can be maintained at a constant position by the bypass pipe 27 and the surplus refrigerant can be stored in the accumulator 8, the third connecting pipe 22
There is no need to install a receiver or the like on the way.

なお、上記実施例では三方切替弁20を設けて第1の接
続配管13と第2の接続配管14とを切替可能に接続した
が、第5図に示すように2つの電磁弁30,31等の開閉弁
を設けて切替可能に接続してもよい。さらに、上記実施
例では室内機9a〜9cに第1の流量制御装置である電気式
膨張弁21を設けたものについて説明したが、第5図に示
すように温度式膨張弁12、毛細管32、逆止弁11等により
構成し、室内機が冷房の場合は温度式膨張弁12で低圧ま
で減圧するようにし、暖房の場合は室内熱交換器10から
毛細管32、逆止弁11を通り、第3の接続配管22に冷媒が
流入するようにしてもよい。そして、上記実施例では第
3の接続配管22に第2の電気式膨張弁23を設けたが、こ
れと同等の動作を行なうものであればよく、第5図に示
すように、例えば、電気式流量調整弁33(例えば、ボー
ルバルブ)等の開閉弁であってもよい。このほか、上記
実施例ではバイパス配管27を気液分離器19の高さのほぼ
中間部から分岐するものについて説明をしたが、第3の
接続配管22の接続位置と第1の接続配管13の開口部との
間であれば任意に選定することができる。
In the above embodiment, the three-way switching valve 20 is provided and the first connecting pipe 13 and the second connecting pipe 14 are switchably connected. However, as shown in FIG. 5, two solenoid valves 30, 31, etc. An on-off valve may be provided to switchably connect. Further, in the above embodiment, the indoor unit 9a to 9c is described as being provided with the electric expansion valve 21 which is the first flow control device, but as shown in FIG. 5, the temperature expansion valve 12, the capillary tube 32, If the indoor unit is air-cooled, the temperature expansion valve 12 is used to reduce the pressure to a low pressure, and in the case of heating, the indoor heat exchanger 10 is passed through the capillary tube 32 and the check valve 11, The refrigerant may flow into the third connecting pipe 22. Further, in the above embodiment, the second electric expansion valve 23 is provided in the third connection pipe 22, but any operation equivalent to this may be used, and as shown in FIG. It may be an on-off valve such as a flow control valve 33 (for example, a ball valve). Besides, in the above embodiment, the bypass pipe 27 is described as being branched from the substantially middle portion of the height of the gas-liquid separator 19, but the connection position of the third connection pipe 22 and the first connection pipe 13 are described. It can be arbitrarily selected as long as it is between the opening.

ところで、上記の各実施例では室内機9a〜9cを三方切
替弁20、室内熱交換器10、及び第1の電気式膨張弁21等
により構成したものについて説明したが、室内熱交換器
10のみを室内機9a〜9cとし、この室内機9a〜9cの空気条
件により三方切替弁20及び第1の電気式膨張弁21を制御
してもよい。また、上記実施例では室外熱交換器4及び
室内熱交換器10を空気と冷媒とで熱交換するものについ
て述べたが、どちらか一方が水と冷媒または両熱交換器
が水と冷媒とで熱交換するものであってもよい。
By the way, in each of the above-described embodiments, the indoor units 9a to 9c are described as being constituted by the three-way switching valve 20, the indoor heat exchanger 10, the first electric expansion valve 21, and the like.
Only 10 may be the indoor units 9a to 9c, and the three-way switching valve 20 and the first electric expansion valve 21 may be controlled by the air conditions of the indoor units 9a to 9c. In the above embodiment, the outdoor heat exchanger 4 and the indoor heat exchanger 10 exchange heat with air and a refrigerant. However, one of them is water and a refrigerant or both heat exchangers are water and a refrigerant. It may be heat-exchanged.

[発明の効果] 以上説明したとおり、この発明の空気調和装置は、1
台の室外機と複数台の室内機とを並列に接続する第1の
接続配管または第2の接続配管の途中に気液分離装置を
設け、室内熱交換器の一方を第1の接続配管と第2の接
続配管とに切換可能に接続し、室内熱交換器のもう一方
を第3の接続配管で流量制御装置を介して第1の接続配
管または第2の接続配管のいずれかに設けた気液分離装
置に接続し、この気液分離装置と気液分離装置が設けて
ない第1の接続配管または第2の接続配管とをバイパス
配管で接続し、このバイパス配管に第3の接続配管の気
液分離装置と流量制御装置との間で熱交換を行なう熱交
換部を設けたことにより、並列に接続された複数台の各
室内機の冷房運転と暖房運転とを同時にまたは選択的に
行なうことができ、しかも、冷媒の流量及び気液状態を
適正に制御できるので、各室内機が設置されている空間
の冷暖房要求に対応した冷暖房運転ができ、利用範囲が
拡大する。
[Advantages of the Invention] As described above, the air conditioner of the present invention is
A gas-liquid separator is provided in the middle of the first connection pipe or the second connection pipe that connects the outdoor unit of the stand and the plurality of indoor units in parallel, and one of the indoor heat exchangers serves as the first connection pipe. Switchably connected to the second connection pipe, and the other of the indoor heat exchangers was provided as the third connection pipe to either the first connection pipe or the second connection pipe via the flow control device. A gas-liquid separator is connected, and the gas-liquid separator and the first connection pipe or the second connection pipe not provided with the gas-liquid separator are connected by a bypass pipe, and the bypass pipe is connected to a third connection pipe. By providing the heat exchanging section for exchanging heat between the gas-liquid separator and the flow rate controller, the cooling operation and the heating operation of the plurality of indoor units connected in parallel can be performed simultaneously or selectively. Can be performed, and moreover, the flow rate of the refrigerant and the gas-liquid state can be properly controlled. In, it is cooling and heating operations corresponding to the heating and cooling requirements of the space in which each indoor unit is installed, to expand the use range.

また、冷房主体の冷暖房同時運転において、第3の接
続配管が長く圧力損失が大きい場合でも、この第3の接
続配管を流れる冷媒を液体状態の単相冷媒とすることが
でき、しかも、バイパス配管を大量のガス冷媒が流れる
こともないので、安定した効率のよい冷暖房運転ができ
る。
Further, in the cooling / heating simultaneous operation mainly for cooling, even when the third connecting pipe is long and has a large pressure loss, the refrigerant flowing through the third connecting pipe can be made into a single-phase refrigerant in a liquid state, and further, the bypass pipe can be used. Since a large amount of gas refrigerant does not flow in, the stable and efficient cooling and heating operation can be performed.

さらに、室内機間を接続する第3の接続配管の追加だ
けで、室内外機間を接続する長い接続配管も従来の2本
で良く設置工事性も良く、費用も安いというメリットが
ある。
Further, only by adding the third connecting pipe for connecting the indoor units, the long connecting pipe for connecting the indoor unit and the outdoor unit can be two conventional ones, and the installation workability is good, and the cost is low.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図、第2図は第1図の空気調和装
置の冷房または暖房のみの運転動作状態を示す冷媒循環
図、第3図は第1図の空気調和装置の暖房主体の運転動
作状態を示す冷媒循環図、第4図は第1図の空気調和装
置の冷房主体の運転動作状態を示す冷媒循環図、第5図
はこの発明の他の実施例の空気調和装置の冷媒系を中心
とする全体構成図、第6図は従来の空気調和装置の冷媒
系を中心とする全体構成図である。 図において、 1:室外機、2:圧縮機 3:四方弁、4:室外熱交換器 8:アキュムレータ、9a〜9c:室内機 10:室内熱交換器、13:第1の接続配管 14:第2の接続配管、19:気液分離器 21:第1の流量制御装置である電気式膨張弁 22:第3の接続配管 23:第2の流量制御装置である電気式膨張弁 26:熱交換部、27:バイパス配管 33:電気式流量調整弁 である。 なお、図中、同一符号及び同一記号は、同一または相当
部分を示す。
FIG. 1 is an overall configuration diagram centering on the refrigerant system of the air conditioner of the first embodiment of the present invention, and FIG. 2 is a refrigerant circulation showing the operating state of only cooling or heating of the air conditioner of FIG. Fig. 3 is a refrigerant circulation diagram showing the operation state of the heating-based main body of the air conditioner of Fig. 1, and Fig. 4 is a refrigerant circulation diagram showing the operating state of the cooling-main body of the air conditioner of Fig. 1. FIG. 5 is an overall block diagram centering on the refrigerant system of the air conditioner of another embodiment of the present invention, and FIG. 6 is an overall block diagram centering on the refrigerant system of the conventional air conditioner. In the figure, 1: outdoor unit, 2: compressor 3: four-way valve, 4: outdoor heat exchanger 8: accumulator, 9a to 9c: indoor unit 10: indoor heat exchanger, 13: first connection pipe 14: first 2 connection pipe, 19: gas-liquid separator 21: first expansion control valve that is the first flow control device 22: third connection pipe 23: second expansion valve that is the electric expansion valve 26: heat exchange Part, 27: bypass piping 33: electrical flow control valve. In the drawings, the same reference numerals and symbols indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、切換弁、室外熱交換器等を有する
1台の室外機と、各々流量制御装置を接続した室内熱交
換器を有する複数台の室内機と、前記室外機と室内機間
を第1の接続配管及び第2の接続配管を介して並列接続
してなる空気調和装置において、 上記第1の接続配管または第2の接続配管の途中に気液
分離装置を設け、上記複数台の室内機の一方を前記第1
の接続配管または第2の接続配管と切替可能に接続し、
他の一方を第3の接続配管で流量制御装置を介して前記
第1の接続配管または第2の接続配管のいずれかに設け
た気液分離装置に接続し、前記気液分離装置と前記気液
分離装置が設けてない第1の接続配管または第2の接続
配管とをバイパス配管で接続し、前記バイパス配管に第
3の接続配管の気液分離装置と流量制御装置との間で熱
交換を行なう熱交換部を設けたことを特徴とする空気調
和装置。
1. An outdoor unit having a compressor, a switching valve, an outdoor heat exchanger, etc., and a plurality of indoor units having an indoor heat exchanger to which a flow rate control device is connected, respectively, the outdoor unit and the indoor unit. In an air conditioner in which machines are connected in parallel via a first connection pipe and a second connection pipe, a gas-liquid separator is provided in the middle of the first connection pipe or the second connection pipe, One of a plurality of indoor units is the first
Switchable connection with the connection pipe of or the second connection pipe,
The other one is connected to a gas-liquid separation device provided in either the first connection pipe or the second connection pipe via a flow control device through a third connection pipe, and the gas-liquid separation device and the gas-liquid separation device are connected. The first connection pipe or the second connection pipe, which is not provided with the liquid separation device, is connected by a bypass pipe, and the bypass pipe is heat-exchanged between the gas-liquid separation device of the third connection pipe and the flow control device. An air conditioner comprising a heat exchange section for performing the above.
【請求項2】前記バイパス配管には、流量制御装置を設
けたことを特徴とする請求項1に記載の空気調和装置。
2. The air conditioner according to claim 1, wherein the bypass pipe is provided with a flow rate control device.
JP63260763A 1988-10-17 1988-10-17 Air conditioner Expired - Lifetime JP2522363B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63260763A JP2522363B2 (en) 1988-10-17 1988-10-17 Air conditioner
KR1019890011915A KR920008504B1 (en) 1988-10-17 1989-08-22 Air conditioner
US07/417,207 US4987747A (en) 1988-10-17 1989-10-04 Air conditioning device
AU42562/89A AU615347B2 (en) 1988-10-17 1989-10-04 Air conditioning device
EP89118584A EP0364834B1 (en) 1988-10-17 1989-10-06 Air conditioning device
ES89118584T ES2051338T3 (en) 1988-10-17 1989-10-06 AIR CONDITIONING DEVICE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63260763A JP2522363B2 (en) 1988-10-17 1988-10-17 Air conditioner

Publications (2)

Publication Number Publication Date
JPH02106668A JPH02106668A (en) 1990-04-18
JP2522363B2 true JP2522363B2 (en) 1996-08-07

Family

ID=17352391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63260763A Expired - Lifetime JP2522363B2 (en) 1988-10-17 1988-10-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP2522363B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708854B2 (en) * 1989-03-02 1998-02-04 三洋電機株式会社 Air conditioner
JP2760577B2 (en) * 1989-06-19 1998-06-04 三洋電機株式会社 Air conditioner
US9605885B2 (en) 2013-03-14 2017-03-28 Mitsubishi Electric Corporation Air conditioning system including pressure control device and bypass valve
JP6805759B2 (en) * 2016-11-29 2020-12-23 富士電機株式会社 Refrigerant circuit device

Also Published As

Publication number Publication date
JPH02106668A (en) 1990-04-18

Similar Documents

Publication Publication Date Title
KR100437805B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
EP1391660B1 (en) Multi-unit air conditioner and method for controlling operation of outdoor unit fan thereof
JP4331544B2 (en) Heating and cooling simultaneous multi air conditioner
EP1391664B1 (en) Multi-unit air conditioner and method for controlling operation of outdoor unit fan thereof
JPH0754217B2 (en) Air conditioner
JP2004219046A (en) Multiple air conditioner
JP4785508B2 (en) Air conditioner
JPH0743187B2 (en) Air conditioner
KR20140139240A (en) An air conditioning system
JP2522363B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2522362B2 (en) Air conditioner
JP2616525B2 (en) Air conditioner
JP2010261713A (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2522371B2 (en) Air conditioner
US11913680B2 (en) Heat pump system
JPH0752044B2 (en) Air conditioner
JP2525927B2 (en) Air conditioner
JPH04254167A (en) Multi-room type air-contiditioning machine
JPH086980B2 (en) Air conditioner
JPH05172432A (en) Air conditioning apparatus
JPH0765825B2 (en) Air conditioner
JP2503668B2 (en) Air conditioner
JP2508310B2 (en) Air conditioner and air conditioner control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13