JPH04335968A - Apparatus for air conditioning - Google Patents

Apparatus for air conditioning

Info

Publication number
JPH04335968A
JPH04335968A JP3107428A JP10742891A JPH04335968A JP H04335968 A JPH04335968 A JP H04335968A JP 3107428 A JP3107428 A JP 3107428A JP 10742891 A JP10742891 A JP 10742891A JP H04335968 A JPH04335968 A JP H04335968A
Authority
JP
Japan
Prior art keywords
control device
flow rate
rate control
indoor unit
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3107428A
Other languages
Japanese (ja)
Other versions
JP2601052B2 (en
Inventor
Setsu Nakamura
中村 節
Shuichi Tani
秀一 谷
Tomohiko Kasai
智彦 河西
Noriaki Hayashida
林田 徳明
Shigeo Takada
茂生 高田
Junichi Kameyama
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3107428A priority Critical patent/JP2601052B2/en
Publication of JPH04335968A publication Critical patent/JPH04335968A/en
Application granted granted Critical
Publication of JP2601052B2 publication Critical patent/JP2601052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Abstract

PURPOSE:To reduce the noise of flowing refrigerant at the transitional stage of the start-up, by a method wherein, after the start, the third flow-rate controlling device is controlled in such a manner as not to allow its opening to exceed a certain degree before the subcooling at the inlet to the third flow-rate controlling device, whose value is calculated from a detected pressure and a detected temperature, reaches a specified value. CONSTITUTION:A system has, between a heat-source unit A and a plurality of indoor units B, C, and D, a relay unit E which contains a first branching part 10, a second branching part 11, the second flow-rate controlling device 13, the third flow-rate controlling device 15, the second pressure-detecting means 26, and a temperature-detecting means 27. After the start of the compressor 1 in this system, the third flow-rate controlling device 15 is controlled in such a manner as not to allow its opening to exceed a certain degree before the subcooling at the inlet to the third flow-rate controlling device 15, whose value is calculated from the pressure detected by the second pressure-detecting means 26 and the temperature detected by the temperature-detecting means 27, reaches a preliminarily set value.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、熱源機1台に対して
複数台の室内機を接続する多室型ヒートポンプ空気調和
機に関するもので、特に各室内機毎に冷房を選択的に、
かつ一方の室内機では冷房、他方の室内機では暖房が同
時に行うことができる空気調和機に関するものである。
[Field of Industrial Application] This invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit.
The present invention also relates to an air conditioner that can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

【0002】0002

【従来の技術】従来、熱源機1台に対して複数台の室内
機をガス管と液管の2本の配管で接続し、冷暖房運転を
するヒートポンプ式空気調和装置は一般的であり各室内
機はすべて暖房、またはすべて冷房を行うように形成さ
れている。
[Prior Art] Conventionally, a heat pump type air conditioner is common, in which multiple indoor units are connected to one heat source unit through two pipes, a gas pipe and a liquid pipe, to perform heating and cooling operation. The machines are configured for either all heating or all cooling.

【0003】0003

【発明が解決しようとする課題】従来の多室型ヒートポ
ンプ式空気調和装置は以上のように構成されているので
すべての室内機が冷房または暖房にしか運転しないため
、冷房が必要な場所で暖房が行われたり、逆に暖房が必
要な場所で冷房が行われるような問題があった。特に、
大規模なビルに据え付けた場合、インテリア部とペリメ
ータ部、または一般事務室と、コンピュータルーム等の
OA化された部屋では空調の負荷が著しく異なるため、
特に問題となっている。なお、近似技術として、特開平
1−134172号公報がある。
[Problems to be Solved by the Invention] Since the conventional multi-room heat pump type air conditioner is configured as described above, all indoor units operate only for cooling or heating, so heating is performed only in places where cooling is required. There were problems such as air conditioning being used in places that needed heating, or cooling being used in places that needed heating. especially,
When installed in a large building, the air conditioning load will be significantly different between the interior and perimeter areas, or between general offices and computer rooms and other open air rooms.
This is a particular problem. Note that as an approximation technique, there is Japanese Patent Application Laid-Open No. 1-134172.

【0004】この発明は、上記のような問題点を解決す
るためになされたもので、熱源機1台に対して複数台の
室内機を接続し、各室内機毎に冷暖房を選択的に、かつ
一方の室内機では冷房、他方の室内機では暖房が同時に
行うことができるようにして大規模なビルに据え付けた
場合、インテリア部とペリメータ部、または一般事務室
と、コンピュータルーム等のOA化された部屋で空調の
負荷が著しく異なっても、それぞれに対応できる多室型
ヒートポンプ式空気調和装置を得ることを目的とする。 また、過渡時の冷媒流動音の低下を図ることを目的とす
るものである。
[0004] This invention was made to solve the above-mentioned problems, and it connects a plurality of indoor units to one heat source unit, and selectively controls heating and cooling for each indoor unit. In addition, if one indoor unit can perform cooling and the other indoor unit can perform heating at the same time and is installed in a large building, it will be possible to open the interior and perimeter areas, general offices, computer rooms, etc. To provide a multi-room heat pump type air conditioner that can handle each room even if the air conditioning load differs significantly between rooms. Another purpose is to reduce refrigerant flow noise during transient periods.

【0005】[0005]

【課題を解決するための手段】この発明に係わる空気調
和装置は圧縮機、4方弁、熱源機側熱交換器、及びアキ
ュムレータよりなる1台の熱源機と、室内側熱交換器、
第1の流量制御装置からなる複数台の室内機とを、第1
、第2の接続配管を介して接続し、上記複数台の室内機
の室内側熱交換器の一方を上記第1の接続配管または第
2の接続配管に切換可能に接続する弁装置を備えた第1
の分岐部と、上記複数台の室内機の室内側熱交換器の他
方に上記第1の流量制御装置を介して接続されかつ第2
の流量制御装置を介して上記第2の接続配管に接続して
なる第2の分岐部とを、上記第2の流量制御装置を介し
て接続し、一端が第2の分岐部に接続され他端が第3の
流量制御装置を介して第1の接続配管に接続されたバイ
パス配管を設け、上記第2の流量制御装置と上記第3の
流量制御装置の間に第2の圧力検出手段と温度検出手段
を設け、上記第1の分岐部、上記第2の分岐部、上記第
2の流量制御装置、上記第3の流量制御装置、上記第2
の圧力検出手段、上記温度検出手段を内蔵させた中継器
を、上記熱源機と上記複数台の室内機との間に介在させ
たものにおいて、上記圧縮機が起動後、上記第2の圧力
検出手段の検出圧力と上記温度検出手段の検出温度から
計算される上記第3の流量制御装置の入口のサブクール
が予め設定された値に達するまでの間は、上記第3の流
量制御装置の開度がある一定の開度以上にならないよう
に上記第3の流量制御装置を制御する過渡時流量制御装
置制御手段を設けたものである。
[Means for Solving the Problems] An air conditioner according to the present invention includes one heat source machine consisting of a compressor, a four-way valve, a heat exchanger on the heat source machine side, and an accumulator, an indoor heat exchanger,
a plurality of indoor units consisting of a first flow rate control device;
, a valve device connected via a second connection pipe to switchably connect one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or the second connection pipe. 1st
and the other of the indoor heat exchangers of the plurality of indoor units via the first flow rate control device, and a second
and a second branch section connected to the second connecting pipe via the flow rate control device, one end of which is connected to the second branch section, and the other end is connected to the second branch section via the second flow rate control device. A bypass pipe whose end is connected to the first connection pipe via a third flow rate control device is provided, and a second pressure detection means is provided between the second flow rate control device and the third flow rate control device. Temperature detection means is provided, and the first branch section, the second branch section, the second flow rate control device, the third flow rate control device, and the second branch section are provided.
A repeater having built-in pressure detecting means and temperature detecting means is interposed between the heat source device and the plurality of indoor units, wherein after the compressor is started, the second pressure detecting means is installed. Until the subcool at the inlet of the third flow rate control device, which is calculated from the detected pressure of the means and the temperature detected by the temperature detection means, reaches a preset value, the opening degree of the third flow rate control device is controlled. A transient flow rate control device control means is provided for controlling the third flow rate control device so that the opening degree does not exceed a certain certain level.

【0006】また、除霜運転が終了して各室内機が暖房
のみの運転、または各室内機が冷暖同時運転されると共
に上記熱源機側熱交換器が蒸発器となる運転に切り換わ
った後、上記第2の圧力検出手段の検出圧力と上記温度
検出手段の検出温度から計算される上記第3の流量制御
装置の入口のサブクールが予め設定された値に達するま
での間は、上記第3の流量制御装置の開度がある一定の
開度以上にならないように上記第3の流量制御装置を制
御する過渡時流量制御装置制御手段を設ける。
[0006] Also, after the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source side is switched to operation as an evaporator. , until the subcool at the inlet of the third flow rate control device calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means reaches a preset value. Transient flow rate control device control means is provided for controlling the third flow rate control device so that the opening degree of the third flow rate control device does not exceed a certain degree of opening.

【0007】また、各室内機が冷房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後、
上記第2の圧力検出手段の検出圧力と上記温度検出手段
の検出温度から計算される上記第3の流量制御装置の入
口のサブクールが予め設定された値に達するまでの間は
、上記第3の流量制御装置の開度がある一定の開度以上
にならないように上記第3の流量制御装置を制御する過
渡時流量制御装置制御手段を設ける。
[0007] In addition, each indoor unit is operated only for cooling, or each indoor unit is simultaneously operated for cooling and heating, and the heat exchanger on the heat source equipment side functions as a condenser, and each indoor unit is operated only for heating, or After each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source side is switched to operation as an evaporator,
Until the subcool at the inlet of the third flow rate control device, which is calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means, reaches a preset value, the third Transient flow rate control device control means is provided for controlling the third flow rate control device so that the opening degree of the flow rate control device does not exceed a certain opening degree.

【0008】また、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が蒸発器となる運転から、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後、
上記第2の圧力検出手段の検出圧力と上記温度検出手段
の検出温度から計算される上記第3の流量制御装置の入
口のサブクールが予め設定された値に達するまでの間は
、上記第3の流量制御装置の開度がある一定の開度以上
にならないように上記第3の流量制御装置を制御する過
渡時流量制御装置制御手段を設ける。
[0008] In addition, each indoor unit can be operated only for heating, or each indoor unit can be operated simultaneously for cooling and heating, and the heat exchanger on the heat source side functions as an evaporator, or each indoor unit can be operated only for cooling, or After each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source side is switched to operation as an evaporator,
Until the subcool at the inlet of the third flow rate control device, which is calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means, reaches a preset value, the third Transient flow rate control device control means is provided for controlling the third flow rate control device so that the opening degree of the flow rate control device does not exceed a certain opening degree.

【0009】[0009]

【作用】この発明において、圧縮機起動後の過渡時には
、高圧が充分に上昇していないので上記第3の流量制御
装置の入口の冷媒は過冷却液とはなっておらずフラッシ
ュ状態であり、サブクールが予め設定された値に達する
までの間は上記第3の流量制御装置の開度がある一定開
度以上にならないようにして、上記第3の流量制御装置
を流れる冷媒流動音を小さく抑える。
[Operation] In the present invention, during a transient period after starting the compressor, the high pressure has not risen sufficiently, so the refrigerant at the inlet of the third flow rate control device is not in a supercooled liquid state but in a flash state; Until the subcooling reaches a preset value, the opening of the third flow rate control device is prevented from exceeding a certain degree, thereby suppressing the sound of the refrigerant flowing through the third flow rate control device. .

【0010】また、除霜運転中には高圧が低く、上記第
2の流量制御装置と第3の流量制御装置の間の中間圧部
分の液冷媒が低圧部分にぬけてしまうので、除霜運転が
終了して各室内機が暖房のみの運転、または各室内機が
冷暖同時運転されると共に上記熱源機側熱交換器が蒸発
器となる運転に切り換わった後の過渡時には、上記第3
の流量制御装置の入口の冷媒は過冷却液とはなっておら
ずフラッシュ状態であり、サブクールが予め設定された
値に達するまでの間は、上記第3の流量制御装置の開度
がある一定開度以上にならないようにして、上記第3の
流量制御装置を流れる冷媒流動音を小さく抑える。
Furthermore, during defrosting operation, the high pressure is low and the liquid refrigerant in the intermediate pressure section between the second flow control device and the third flow control device leaks into the low pressure section. At the time of transition after the completion of the operation and each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source equipment side is switched to operation in which the heat exchanger on the heat source side functions as an evaporator, the third
The refrigerant at the inlet of the third flow rate control device is not a supercooled liquid but is in a flash state, and the opening of the third flow rate control device remains constant until the subcool reaches a preset value. The noise of the refrigerant flowing through the third flow rate control device is suppressed to a low level by not exceeding the opening degree.

【0011】また、各室内機が冷房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後の
過渡時には、4方弁が切り換わって高圧及び中間圧が一
時的に低下し、中間圧部分の液冷媒が蒸発して低圧部分
にぬけてしまうので、上記第3の流量制御装置の入口の
冷媒は過冷却液とはなっておらずフラッシュ状態であり
、サブクールが予め設定された値に達するまでの間は、
上記第3の流量制御装置の開度がある一定開度以上にな
らないようにして、上記第3の流量制御装置を流れる冷
媒流動音を小さく抑える。
[0011] In addition, each indoor unit is operated only for cooling, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source equipment side functions as a condenser, and each indoor unit is operated only for heating, or During a transition period after each indoor unit is operated simultaneously for cooling and heating and the heat exchanger on the heat source side is switched to operation as an evaporator, the four-way valve is switched and the high pressure and intermediate pressure are temporarily lowered. Since the liquid refrigerant in the intermediate pressure section evaporates and leaks into the low pressure section, the refrigerant at the inlet of the third flow rate control device is not in a supercooled liquid state but in a flash state, and subcooling is preset. Until the value is reached,
The opening degree of the third flow rate control device is prevented from exceeding a certain degree of opening, thereby suppressing the noise of refrigerant flowing through the third flow rate control device.

【0012】また、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が蒸発器となる運転から、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が凝縮器となる運転に切り換わった後の
過渡時には、切り換え前の第2の接続配管を満たしてい
る過熱ガス冷媒が切り換え後に中継器に供給されるので
、上記第3の流量制御装置の入口の冷媒は過冷却液とは
なっておらずフラッシュ状態であり、上記第3の流量制
御装置の開度がある一定開度以上にならないようにして
、上記第3の流量制御装置を流れる冷媒流動音を小さく
抑える。
[0012] In addition, each indoor unit can be operated only for heating, or each indoor unit can be operated simultaneously for cooling and heating, and the heat exchanger on the heat source side functions as an evaporator, or each indoor unit can be operated only for cooling, or At the time of transition after each indoor unit is operated simultaneously for cooling and heating and the heat exchanger on the heat source side is switched to operation as a condenser, the superheated gas refrigerant filling the second connection pipe before switching is Since the refrigerant is supplied to the repeater, the refrigerant at the inlet of the third flow rate control device is not a supercooled liquid but is in a flash state, and the opening of the third flow rate control device is above a certain opening degree. The noise of the refrigerant flowing through the third flow rate control device is suppressed to a low level.

【0013】[0013]

【実施例】 実施例1.以下、この発明の実施例について説明する。 図1はこの発明の一実施例による空気調和装置の冷媒系
を中心とする全体構成図である。また、図2乃至図4は
図1の一実施例における冷暖房運転時の動作状態を示し
たもので、図2は冷房または暖房のみの運転動作状態図
、図3及び図4は冷暖房同時運転の動作を示すもので、
図3は暖房主体(暖房運転容量が冷房運転容量より大き
い場合)を、図4は冷房主体(冷房運転容量が暖房運転
容量より大きい場合)を示す運転動作状態図、図5は除
霜運転の運転動作状態図である。そして、図8はこの発
明の他の実施例の空気調和装置の冷媒系を中心とする全
体構成図である。なお、この実施例では、熱源機1台に
室内機3台を接続した場合について説明するが、2台以
上の室内機を接続した場合も同様である。図1において
、Aは熱源機、B、C、Dは後述するように互いに並列
接続された室内機でそれぞれ同じ構成となっている。E
は後述するように、第1の分岐部、第2の流量制御装置
、第2の分岐部、気液分離装置、熱交換部、第3の流量
制御装置、第4の流量制御装置を内蔵した中継器である
。1は圧縮機、2は熱源機の冷媒流通方向を切換える4
方弁、3は熱源機側熱交換器、4はアキュムレータであ
り、上記機器が接続され、これらによって熱源機Aは構
成される。5は3台の室内機B,C,Dに設けられた室
内側熱交換器、6は熱源機Aの4方弁2と中継器Eを接
続する太い第1の接続配管、6b,6c,6dはそれぞ
れ室内機B,C,Dの室内側熱交換器5と中継器Eを接
続し、第1の接続配管6に対応する室内機側の第1の接
続配管、7は熱源機Aの熱源機側熱交換器3と中継器E
を接続する上記第1の接続配管より細い第2の接続配管
、7b,7c,7dはそれぞれ室内機B,C,Dの室内
側熱交換器5と中継器Eを第1の流量制御装置9を介し
て接続し第2の接続配管7に対応する室内機側の第2の
接続配管、8は室内機側の第1の接続配管6b,6c,
6dと、第1の接続配管6または、第2の接続配管7側
に切換可能に接続し、かつ室内機側の第1の接続配管6
b,6c,6dと第1の接続配管6、第2の接続配管7
のいずれとも流通を閉止することの可能な三方切換弁、
9は室内側熱交換器5に近接して接続され、冷房時室内
側熱交換器5の出口側のスーパーヒート量、暖房時はサ
ブクール量により制御される第1の流量制御装置で、室
内機側の第2の接続配管7b,7c,7dに接続される
。10は室内機側の第1の接続配管6b,6c,6dと
、第1の接続配管6または、第2の接続配管7に切換可
能に接続する三方切換弁8よりなる第1の分岐部、11
は室内機側の第2の接続配管7b,7c,7cと第2の
接続配管7よりなる第2の分岐部、12は第2の接続配
管7の途中に設けられた気液分離装置で、その気層部は
三方切換弁8の第1口8aに接続され、その液層部は第
2の分岐部11に接続されている。13は、気液分離装
置12と第2の分岐部11との間に接続する開閉自在な
第2の流量制御装置(ここでは電気式膨張弁)、14は
第2の分岐部11と上記第1の接続配管6とを結ぶバイ
パス配管、15はバイパス配管14の途中に設けられた
第3の流量制御装置(ここでは電気式膨張弁)、16a
はバイパス配管14の途中に設けられた第3の流量制御
装置15の下流に設けられ、第2の分岐部11における
各室内機側の第2の接続配管7b,7c,7dの会合部
との間でそれぞれ熱交換を行う第2の熱交換部、16b
,16c,16dはそれぞれバイパス配管14の途中に
設けられた第3の流量制御装置15の下流に設けられ、
第2の分岐部11における各室内機側の第2の接続配管
7b,7c,7dとの間でそれぞれ熱交換を行う第3の
熱交換部、19は、バイパス配管14の上記第3の流量
制御装置15の下流及び第2の熱交換部16aの下流に
設けられ気液分離装置12と第2の流量制御装置13と
を接続する配管との間で熱交換を行う第1の熱交換部、
17は第2の分岐部11と上記第1の接続配管6との間
に接続する開閉自在な第4の流量制御装置(ここでは電
気式膨張弁)、32は、上記熱源機側熱交換器3と上記
第2の接続配管7との間に設けられた第3の逆止弁であ
り、上記熱源機側熱交換器3から上記第2の接続配管7
へのみ冷媒流通を許容する。33は、上記熱源機Aの4
方弁2と上記第1の接続配管6との間に設けられた第4
の逆止弁であり、上記第1の接続配管6から上記4方弁
2へのみ冷媒流通を許容する。34は、上記熱源機Aの
4方弁2と上記第2の接続配管7との間に設けられた第
5の逆止弁であり、上記4方弁2から上記第2の接続配
管7へのみ冷媒流通を許容する。35は、上記熱源機側
熱交換器3と上記第1の接続配管6との間に設けられた
第6の逆止弁であり、上記第1の接続配管6から上記熱
源機側熱交換器3へのみ冷媒流通を許容する。上記第3
、第4、第5、第6の逆止弁32,33,34,35で
切換弁40を構成する。49は上記熱源機側切換弁40
と上記第2の接続配管7との間と上記熱源機側切換弁4
0と上記第1の接続配管6との間を接続する熱源機側バ
イパス路、48は上記熱源機側バイパス路49の配管途
中に設けられ上記熱源機側バイパス路49の開閉を制御
する第6の電磁開閉弁、25は上記第1の分岐部10と
第2の流量制御装置13の間に設けられた第1の圧力検
出手段、26は上記第2の流量制御装置13と第3の流
量制御装置15との間に設けられた第2の圧力検出手段
、27は第3の流量制御装置15の入口部分に設けられ
た温度検出手段である。
[Example] Example 1. Examples of the present invention will be described below. FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to an embodiment of the present invention. 2 to 4 show operating states during cooling/heating operation in one embodiment of Fig. 1. Fig. 2 is an operating state diagram for cooling or heating only, and Figs. 3 and 4 are for simultaneous cooling/heating operation. It shows the operation,
Figure 3 is a diagram showing the operating state of heating-dominant operation (when the heating operating capacity is larger than the cooling operating capacity), Figure 4 is the operating state diagram showing cooling-dominant operation (when the cooling operating capacity is larger than the heating operating capacity), and Figure 5 is a diagram of the defrosting operation. FIG. FIG. 8 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention. In this embodiment, a case will be described in which three indoor units are connected to one heat source device, but the same applies to a case in which two or more indoor units are connected. In FIG. 1, A is a heat source device, and B, C, and D are indoor units connected in parallel to each other, each having the same configuration as described later. E
As will be described later, the device has a built-in first branching section, a second flow rate control device, a second branching section, a gas-liquid separation device, a heat exchange section, a third flow rate control device, and a fourth flow rate control device. It is a repeater. 1 is a compressor, 2 is a heat source device that switches the refrigerant flow direction 4
3 is a heat exchanger on the heat source machine side, and 4 is an accumulator, to which the above-mentioned devices are connected, and the heat source machine A is configured by these. 5 is the indoor heat exchanger installed in the three indoor units B, C, and D; 6 is the thick first connection pipe that connects the four-way valve 2 of the heat source device A and the repeater E; 6b, 6c, 6d is the first connection pipe on the indoor unit side that connects the indoor heat exchanger 5 of the indoor units B, C, and D and the repeater E, and corresponds to the first connection pipe 6, and 7 is the first connection pipe of the heat source unit A. Heat source machine side heat exchanger 3 and repeater E
Second connection pipes 7b, 7c, and 7d, which are thinner than the first connection pipes, connect the indoor heat exchangers 5 of the indoor units B, C, and D and the repeater E to the first flow rate control device 9, respectively. A second connection pipe 8 on the indoor unit side that is connected to the second connection pipe 7 and corresponds to the second connection pipe 7, 8 is the first connection pipe 6b, 6c,
6d, and the first connection pipe 6 which is switchably connected to the first connection pipe 6 or the second connection pipe 7 side and which is on the indoor unit side.
b, 6c, 6d, first connection pipe 6, second connection pipe 7
A three-way switching valve that can close the flow with any of the following.
Reference numeral 9 denotes a first flow rate control device that is connected close to the indoor heat exchanger 5 and is controlled by the amount of superheat on the outlet side of the indoor heat exchanger 5 during cooling and the amount of subcooling during heating; It is connected to the second side connection pipes 7b, 7c, and 7d. Reference numeral 10 denotes a first branch part consisting of a three-way switching valve 8 that is switchably connected to the first connection pipes 6b, 6c, and 6d on the indoor unit side, and the first connection pipe 6 or the second connection pipe 7; 11
12 is a gas-liquid separation device provided in the middle of the second connection pipe 7; The gas layer portion is connected to the first port 8a of the three-way switching valve 8, and the liquid layer portion is connected to the second branch portion 11. 13 is a second flow rate control device (here, an electric expansion valve) that can be opened and closed and is connected between the gas-liquid separation device 12 and the second branch 11; A bypass pipe 15 connects the connecting pipe 6 of No. 1, and 15 is a third flow rate control device (here, an electric expansion valve) provided in the middle of the bypass pipe 14, 16a.
is provided downstream of the third flow rate control device 15 provided in the middle of the bypass pipe 14, and is connected to the meeting part of the second connection pipes 7b, 7c, 7d on each indoor unit side in the second branch part 11. a second heat exchange section, 16b, which performs heat exchange between the two;
, 16c, and 16d are each provided downstream of the third flow rate control device 15 provided in the middle of the bypass piping 14,
A third heat exchange section 19 that performs heat exchange with the second connection pipes 7b, 7c, and 7d on each indoor unit side in the second branch section 11 is configured to adjust the third flow rate of the bypass pipe 14. A first heat exchange section that exchanges heat between piping that is provided downstream of the control device 15 and downstream of the second heat exchange section 16a and connects the gas-liquid separation device 12 and the second flow rate control device 13. ,
17 is a fourth openable/closeable flow rate control device (here, an electric expansion valve) connected between the second branch portion 11 and the first connection pipe 6, and 32 is the heat exchanger on the heat source machine side. 3 and the second connection pipe 7, and is a third check valve provided between the heat source equipment side heat exchanger 3 and the second connection pipe 7.
Allow refrigerant flow only to 33 is 4 of the above heat source machine A
A fourth pipe provided between the direction valve 2 and the first connection pipe 6
This check valve allows refrigerant to flow only from the first connecting pipe 6 to the four-way valve 2. 34 is a fifth check valve provided between the four-way valve 2 of the heat source device A and the second connecting pipe 7; Only allow refrigerant flow. 35 is a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 6, and 35 is a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 6; Refrigerant flow is allowed only to 3. 3rd above
, fourth, fifth, and sixth check valves 32, 33, 34, and 35 constitute a switching valve 40. 49 is the heat source machine side switching valve 40
and the second connection pipe 7 and the heat source machine side switching valve 4.
0 and the first connecting pipe 6; 48 is a sixth heat source machine side bypass passage provided in the middle of the heat source machine side bypass passage 49 to control opening/closing of the heat source machine side bypass passage 49; 25 is a first pressure detection means provided between the first branch 10 and the second flow rate control device 13; 26 is a first pressure detection means provided between the second flow rate control device 13 and the third flow rate control device 13; A second pressure detection means 27 is provided between the control device 15 and the third flow rate control device 15, and a temperature detection device 27 is provided at the inlet portion of the third flow rate control device 15.

【0014】このように構成されたこの発明の実施例に
ついて説明する。まず、図2を用いて冷房運転のみの場
合について説明する。すなわち、同図に実線矢印で示す
ように圧縮機1より吐出された高温高圧冷媒ガスは4方
弁2を通り、熱源機側熱交換器3で空気と熱交換して凝
縮液化された後、第3の逆止弁32、第2の接続配管7
、気液分離装置12、第2の流量制御装置13の順に通
り、更に第2の分岐部11、室内機側の第2の接続配管
7b,7c,7dを通り、各室内機B,C,Dに流入す
る。そして、各室内機B,C,Dに流入した冷媒は、各
室内側熱交換器5出口のスーパーヒート量により制御さ
れる第1の流量制御装置9により低圧まで減圧されて室
内側熱交換器5で、室内空気と熱交換して蒸発しガス化
され室内を冷房する。そして、このガス状態となった冷
媒は、室内機側の第1の接続配管6b,6c,6d、三
方切換弁8、第1の分岐部10、第1の接続配管6、第
4の逆止弁33、熱源機の4方弁2、アキュムレータ4
を経て圧縮機1に吸入される循環サイクルを構成し、冷
房運転をおこなう。この時、三方切換弁8の第1口8a
は閉路、第2口8b及び第3口8cは開路されている。 この時、第1の接続配管6が低圧、第2の接続配管7が
高圧のため必然的に第3の逆止弁32、第4の逆止弁3
3へ流通する。また、このサイクルの時、第2の流量制
御装置13を通過した冷媒の一部がバイパス配管14へ
入り第3の流量制御装置15で低圧まで減圧されて第3
の熱交換部16b,16c,16dで第2の分岐部11
の各室内機側の第2の接続配管7b,7c,7dとの間
で、第2の熱交換部16aで第2の分岐部11の各室内
機側の第2の接続配管7b,7c,7dの会合部との間
で、更に第1の熱交換部19で第2の流量制御装置13
に流入する冷媒との間で熱交換を行い蒸発した冷媒は、
第1の接続配管6、第4の逆止弁33へ入り熱源機の4
方弁2、アキュムレータ4を経て圧縮機1に吸入される
。一方、第1、第2、第3の熱交換部19,16a,1
6b,16c,16dで熱交換し冷却されサブクールを
充分につけられた上記第2の分岐部11の冷媒は冷房し
ようとしている室内機B,C,Dへ流入する。
An embodiment of the invention configured as described above will be explained. First, the case of only cooling operation will be described using FIG. 2. That is, as shown by the solid arrow in the figure, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, exchanges heat with air in the heat exchanger 3 on the heat source equipment side, and is condensed and liquefied. Third check valve 32, second connection pipe 7
, the gas-liquid separator 12, and the second flow rate control device 13, and further passes through the second branch 11 and the second connection pipes 7b, 7c, and 7d on the indoor unit side, to each indoor unit B, C, Flows into D. The refrigerant flowing into each of the indoor units B, C, and D is then reduced to a low pressure by the first flow control device 9, which is controlled by the amount of superheat at the outlet of each indoor heat exchanger 5, and then transferred to the indoor heat exchanger 5. 5, it exchanges heat with indoor air and evaporates into gas, cooling the room. Then, the refrigerant in the gas state is transferred to the first connecting pipes 6b, 6c, 6d on the indoor unit side, the three-way switching valve 8, the first branch part 10, the first connecting pipe 6, and the fourth check valve. Valve 33, heat source machine 4-way valve 2, accumulator 4
The air is sucked into the compressor 1 through a circulation cycle to perform cooling operation. At this time, the first port 8a of the three-way switching valve 8
is closed, and the second port 8b and third port 8c are open. At this time, since the first connecting pipe 6 is under low pressure and the second connecting pipe 7 is under high pressure, the third check valve 32 and the fourth check valve 3 are inevitably closed.
Distribution to 3. Also, during this cycle, a part of the refrigerant that has passed through the second flow control device 13 enters the bypass pipe 14 and is reduced to a low pressure by the third flow control device 15.
The heat exchange parts 16b, 16c, 16d of the second branch part 11
The second connection pipes 7b, 7c, 7d on each indoor unit side of the second branch part 11 in the second heat exchange section 16a 7d and the second flow rate control device 13 at the first heat exchange section 19.
The refrigerant that evaporated through heat exchange with the refrigerant flowing into the
4 of the heat source device enters the first connection pipe 6 and the fourth check valve 33.
The air is sucked into the compressor 1 through the direction valve 2 and the accumulator 4. On the other hand, the first, second and third heat exchange parts 19, 16a, 1
The refrigerant in the second branch section 11, which has been cooled by heat exchange in 6b, 16c, and 16d and has been sufficiently subcooled, flows into the indoor units B, C, and D that are to be cooled.

【0015】次に、図2を用いて暖房運転のみの場合に
ついて説明する。すなわち、同図に点線矢印で示すよう
に圧縮機1より吐出された高温高圧冷媒ガスは、4方弁
2を通り、第5の逆止弁34、第1の接続配管7、気液
分離装置12を通り、第1の分岐部10、三方切換弁8
、室内機側の第1の接続配管6b,6c,6dの順に通
り、各室内機B,C,Dに流入し、室内空気と熱交換し
て凝縮液化し、室内を暖房する。そして、この液状態と
なった冷媒は、各室内側熱交換器5出口のサブクール量
により制御されてほぼ全開状態の第1の流量制御装置9
を通り、室内機側の第2の接続配管7b,7c,7dか
ら第2の分岐部11に流入して合流し、更に第4の流量
制御装置17を通る。ここで、第1の流量制御装置9、
又は第3、第4の流量制御装置13,17のどちらか一
方で低圧の気液二相状態まで減圧される。そして、低圧
まで減圧された冷媒は、第1の接続配管6を経て熱源機
Aの第6の逆止弁35、熱源機側熱交換器3に流入しこ
こで空気と熱交換して蒸発しガス状態となった冷媒は、
熱源機の4方弁2、アキュムレータ4を経て圧縮機1に
吸入される循環サイクルを構成し、暖房運転をおこなう
。この時、三方切換弁8は、第2口8bは閉路、第1口
8a及び第3口8cは開路されている。また、冷媒はこ
の時、第1の接続配管6が低圧、第2の接続配管7が高
圧のため必然的に第5の逆止弁34、第6の逆止弁35
へ流通する。
Next, the case of only heating operation will be explained using FIG. That is, as shown by the dotted arrow in the figure, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, the fifth check valve 34, the first connection pipe 7, and the gas-liquid separation device. 12, the first branch 10, the three-way switching valve 8
, first connection pipes 6b, 6c, and 6d on the indoor unit side, flow into each indoor unit B, C, and D, exchange heat with indoor air, condense and liquefy, and heat the room. The refrigerant in the liquid state is controlled by the sub-cooling amount at the outlet of each indoor heat exchanger 5, and the first flow rate control device 9 is in a substantially fully open state.
, flows into the second branch part 11 from the second connection pipes 7b, 7c, and 7d on the indoor unit side, joins together, and further passes through the fourth flow rate control device 17. Here, the first flow rate control device 9,
Alternatively, the pressure is reduced to a low pressure gas-liquid two-phase state by either the third or fourth flow rate control device 13 or 17. The refrigerant, which has been reduced in pressure to a low pressure, flows through the first connection pipe 6 to the sixth check valve 35 of the heat source device A and the heat exchanger 3 on the heat source device side, where it exchanges heat with air and evaporates. The refrigerant in the gas state is
A circulation cycle is configured in which air is sucked into the compressor 1 through the four-way valve 2 of the heat source device and the accumulator 4, and heating operation is performed. At this time, the second port 8b of the three-way switching valve 8 is closed, and the first port 8a and third port 8c are opened. Also, at this time, since the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure, the refrigerant is inevitably passed through the fifth check valve 34 and the sixth check valve 35.
distributed to.

【0016】冷暖房同時運転におる暖房主体の場合につ
いて図3を用いて説明する。すなわち、同図に点線矢印
で示すように圧縮機1より吐出された高温高圧冷媒ガス
は、第5の逆止弁34、第2の接続配管7を通して中継
器Eへ送られ、気液分離装置12を通り、そして第1の
分岐部10、三方切換弁8、室内機側の第1の接続配管
6b,6cの順に通り、暖房しようとする各室内機B,
Cに流入し、室内側熱交換器5で室内空気と熱交換して
凝縮液化され室内を暖房する。そして、この凝縮液化し
た冷媒は、各室内側熱交換器B,C出口のサブクール量
により制御されほぼ全開状態の第1の流量制御装置9を
通り少し減圧されて第2の分岐部11に流入する。そし
て、この冷媒の一部は、室内機側の第2の接続配管7d
を通り冷房しようとする室内機Dに入り、室内側熱交換
器D出口のスーパーヒート量により制御される第1の流
量制御装置9に入り減圧された後に、室内側熱交換器5
に入って熱交換して蒸発しガス状態となって室内を冷房
し、三方切換弁8を介して第1の接続配管6に流入する
。一方、他の冷媒は第1の圧力検出手段25の検出圧力
、第2の圧力検出手段26の検出圧力の圧力差が所定範
囲となるように制御される第4の流量制御装置17を通
って、冷房しようとする室内機Dを通った冷媒と合流し
て太い第1の接続配管6を経て熱源機Aの第6の逆止弁
35、熱源機側熱交換器3に流入しここで空気と熱交換
して蒸発しガス状態となる。そして、その冷媒は、熱源
機の4方弁2、アキュムレータ4を経て圧縮機1に吸入
される循環サイクルを構成し、暖房主体運転をおこなう
。この時、冷房する室内機Dの室内側熱交換器5の蒸発
圧力と熱源機側熱交換器3の圧力差が、太い第1の接続
配管6に切換えるために小さくなる。又、この時、室内
機B,Cに接続された三方切換弁8の第2口8bは閉路
、第1口8a及び第3口8cは開路されており、室内機
Dの第1口8aは閉路、第2口8b、第3口8cは開路
されている。また、冷媒はこの時、第1の接続配管6が
低圧、第2の接続配管7が高圧のため必然的に第5の逆
止弁34、第6の逆止弁35へ流通する。また、このサ
イクルの時、一部の液冷媒は第2の分岐部11の各室内
機側の第2の接続配管7b,7c,7dの会合部からバ
イパス配管14へ入り第3の流量制御装置15で低圧ま
で減圧されて第3の熱交換部16b,16c,16dで
第2の分岐部11の各室内機側の第2の接続配管7b,
7c,7dとの間で、第2の熱交換部16aで第2の分
岐部11の各室内機側の第2の接続配管7b,7c,7
dの会合部との間で熱交換を行い蒸発した冷媒は、第1
の接続配管6、第6の逆止弁35へ入り熱源機の4方弁
2、アキュムレータ4を経て圧縮機1に吸入される。一
方、第2、第3の熱交換部16a,16b,16c,1
6dで熱交換し冷却されサブクールを充分につけられた
上記第2の分岐部11の冷媒は冷房しようとしている室
内機Dへ流入する。
[0016] A case in which heating is the main component in simultaneous cooling and heating operation will be explained with reference to FIG. That is, as shown by the dotted line arrow in the same figure, the high temperature and high pressure refrigerant gas discharged from the compressor 1 is sent to the repeater E through the fifth check valve 34 and the second connection pipe 7, and then connected to the gas-liquid separation device. 12, and in this order the first branch part 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side, to each indoor unit B to be heated.
C, and exchanges heat with indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room. This condensed and liquefied refrigerant is controlled by the subcooling amount at the outlet of each of the indoor heat exchangers B and C, passes through the first flow rate control device 9 that is almost fully open, and is slightly depressurized before flowing into the second branch section 11. do. A part of this refrigerant is then transferred to the second connection pipe 7d on the indoor unit side.
, enters the indoor unit D to be cooled, enters the first flow rate control device 9 controlled by the amount of superheat at the outlet of the indoor heat exchanger D, and is depressurized, then enters the indoor heat exchanger 5
The gas exchanges heat with the air, evaporates, becomes a gas, cools the room, and flows into the first connection pipe 6 via the three-way switching valve 8. On the other hand, other refrigerants pass through a fourth flow rate control device 17 that is controlled so that the pressure difference between the pressure detected by the first pressure detection means 25 and the pressure detected by the second pressure detection means 26 is within a predetermined range. , joins with the refrigerant that has passed through the indoor unit D to be cooled, flows through the thick first connection pipe 6, into the sixth check valve 35 of the heat source unit A, and into the heat exchanger 3 on the heat source unit side, where the air It exchanges heat with and evaporates, becoming a gas. Then, the refrigerant forms a circulation cycle in which the refrigerant is sucked into the compressor 1 through the four-way valve 2 of the heat source device and the accumulator 4, thereby performing heating-dominant operation. At this time, the pressure difference between the evaporation pressure of the indoor heat exchanger 5 of the indoor unit D to be cooled and the pressure of the heat source device side heat exchanger 3 becomes small because the first connection pipe 6 is switched to the thick one. Also, at this time, the second port 8b of the three-way switching valve 8 connected to the indoor units B and C is closed, the first port 8a and the third port 8c are open, and the first port 8a of the indoor unit D is closed. The circuit is closed, and the second port 8b and third port 8c are open. Further, at this time, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 is under low pressure and the second connection pipe 7 is under high pressure. Also, during this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the meeting part of the second connection pipes 7b, 7c, and 7d on each indoor unit side of the second branch part 11 and enters the third flow rate control device. The pressure is reduced to low pressure at step 15, and the second connection pipe 7b on each indoor unit side of the second branch section 11 is connected to the third heat exchange section 16b, 16c, 16d.
7c, 7d, the second connection pipes 7b, 7c, 7 on each indoor unit side of the second branch part 11 in the second heat exchange part 16a.
The refrigerant that evaporated after exchanging heat with the meeting part of d is
The water enters the connecting pipe 6 and the sixth check valve 35, passes through the four-way valve 2 of the heat source device, and the accumulator 4, and is sucked into the compressor 1. On the other hand, the second and third heat exchange parts 16a, 16b, 16c, 1
The refrigerant in the second branch part 11, which has been cooled by heat exchange in step 6d and has been sufficiently subcooled, flows into the indoor unit D which is to be cooled.

【0017】冷暖房同時における冷房主体の場合につい
て図4を用いて説明する。すなわち、同図に実線矢印で
示すように圧縮機1より吐出された冷媒ガスは、熱源機
側熱交換器3に流入しここで空気と熱交換して気液二相
の高温高圧状態となる。その後この二相の高温高圧状態
の冷媒は第3の逆止弁32、第2の接続配管7を経て、
中継器Eの気液分離装置12へ送られる。そして、ここ
で、ガス状冷媒と液状冷媒に分離され、分離されたガス
状冷媒を第1の分岐部10、三方切換弁8、室内機側の
第1の接続配管6dの順に通り、暖房しようとする室内
機Dに流入し、室内側熱交換器5で室内空気と熱交換し
て凝縮液化し、室内を暖房する。更に、室内側熱交換器
5出口のサブクール量により制御されほぼ全開状態の第
1の流量制御装置9を通り少し減圧されて第2の分岐部
11に流入する。一方、残りの液状冷媒は第1の圧力検
出手段25の検出圧力、第2の圧力検出手段26の検出
圧力によって制御される第2の流量制御装置13を通っ
て第2の分岐部11に流入し、暖房しようとする室内機
Dを通った冷媒と合流する。そして、第2の分岐部11
、室内機側の第2の接続配管7b,7cの順に通り、各
室内機B,Cに流入する。そして、各室内機B,Cに流
入した冷媒は、室内側熱交換器B,C出口のスーパーヒ
ート量により制御される第1の流量制御装置9により低
圧まで減圧されて室内空気と熱交換して蒸発しガス化さ
れ室内を冷房する。更に、このガス状態となった冷媒は
、室内機側の第1の接続配管6b,6c,三方切換弁8
、第1の分岐部10を通り、第1の接続配管6、第4の
逆止弁33、熱源機の4方弁2、アキュムレータ4を経
て圧縮機1に吸入される循環サイクルを構成し、冷房主
体運転をおこなう。又、この時、室内機B,Cに接続さ
れた三方切換弁8の第1口8aは閉路、第2口8b及び
第3口8cは開路されており、室内機Dの第2口8bは
閉路、第1口8a、第3口8cは開路されている。また
、冷媒はこの時、第1の接続配管6が低圧、第2の接続
配管7が高圧のため必然的に第3の逆止弁32、第4の
逆止弁33へ流通する。また、このサイクルの時、一部
の液冷媒は第2の分岐部11の各室内機側の第2の接続
配管7b,7c,7dの会合部からバイパス配管14へ
入り第3の流量制御装置15で低圧まで減圧されて第3
の熱交換部16b,16c,16dで第2の分岐部11
の各室内機側の第2の接続配管7b,7c,7dとの間
で、第2の熱交換部16aで第2の分岐部11の各室内
機側の第2の接続配管7b,7c,7dの会合部との間
で、更に第1の熱交換部19で第2の流量制御装置13
に流入する冷媒との間で熱交換を行い蒸発した冷媒は、
第1の接続配管6、第4の逆止弁33へ入り熱源機の4
方弁2、アキュムレータ4を経て圧縮機1に吸入される
。一方、第1、第2、第3の熱交換部19,16a,1
6b,16c,16dで熱交換し冷却されサブクールを
充分につけられた上記第2の分岐部11の冷媒は冷房し
ようとしている室内機B,Cへ流入する。
[0017] A case in which air conditioning is mainly used for heating and air conditioning at the same time will be explained with reference to FIG. That is, as shown by the solid line arrow in the figure, the refrigerant gas discharged from the compressor 1 flows into the heat exchanger 3 on the heat source side, where it exchanges heat with the air and becomes a high temperature and high pressure state of gas-liquid two-phase. . After that, this two-phase high temperature and high pressure refrigerant passes through the third check valve 32 and the second connection pipe 7.
It is sent to the gas-liquid separator 12 of the repeater E. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is passed through the first branch part 10, the three-way switching valve 8, and the first connecting pipe 6d on the indoor unit side in this order to perform heating. It flows into the indoor unit D, exchanges heat with indoor air in the indoor heat exchanger 5, condenses and liquefies, and heats the room. Furthermore, it is controlled by the subcooling amount at the outlet of the indoor heat exchanger 5, and passes through the first flow rate control device 9, which is in an almost fully open state, and is slightly depressurized before flowing into the second branch section 11. On the other hand, the remaining liquid refrigerant flows into the second branch section 11 through the second flow control device 13 controlled by the pressure detected by the first pressure detection means 25 and the pressure detected by the second pressure detection means 26. Then, it merges with the refrigerant that has passed through the indoor unit D to be heated. And the second branch part 11
, the second connection pipes 7b and 7c on the indoor unit side in that order, and flow into each of the indoor units B and C. The refrigerant that has flowed into each of the indoor units B and C is then reduced to a low pressure by the first flow rate control device 9, which is controlled by the amount of superheat at the outlet of the indoor heat exchangers B and C, and exchanges heat with the indoor air. It evaporates and becomes gas, cooling the room. Furthermore, this refrigerant in a gas state is transferred to the first connection pipes 6b, 6c and the three-way switching valve 8 on the indoor unit side.
, constitutes a circulation cycle in which the water passes through the first branch part 10, passes through the first connection pipe 6, the fourth check valve 33, the four-way valve 2 of the heat source device, and the accumulator 4, and is sucked into the compressor 1, Performs cooling-based operation. Also, at this time, the first port 8a of the three-way switching valve 8 connected to the indoor units B and C is closed, the second port 8b and the third port 8c are open, and the second port 8b of the indoor unit D is closed. The circuit is closed, and the first port 8a and the third port 8c are open. Further, at this time, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 is under low pressure and the second connection pipe 7 is under high pressure. Also, during this cycle, a part of the liquid refrigerant enters the bypass pipe 14 from the meeting part of the second connection pipes 7b, 7c, and 7d on each indoor unit side of the second branch part 11 and enters the third flow rate control device. 15, the pressure is reduced to low pressure and the third
The heat exchange parts 16b, 16c, 16d of the second branch part 11
The second connection pipes 7b, 7c, 7d on each indoor unit side of the second branch part 11 in the second heat exchange section 16a 7d and the second flow rate control device 13 at the first heat exchange section 19.
The refrigerant that evaporated through heat exchange with the refrigerant flowing into the
4 of the heat source device enters the first connection pipe 6 and the fourth check valve 33.
The air is sucked into the compressor 1 through the direction valve 2 and the accumulator 4. On the other hand, the first, second and third heat exchange parts 19, 16a, 1
The refrigerant in the second branch section 11, which has been cooled by heat exchange in 6b, 16c, and 16d and has been sufficiently subcooled, flows into the indoor units B and C that are to be cooled.

【0018】次に、図5を用いて除霜運転の場合につい
て説明する。第6の電磁開閉弁48、第2、第3の流量
制御装置13,15が開となっているので、除霜運転開
始直後は同図に破線矢印で示すように第2の接続配管7
を満たしていた高温高圧のガス冷媒は大部分が熱源機側
バイパス路49を通って低圧側に流れ、第4の逆止弁3
3、4方弁2をへてアキュムレータ4に流入し、わずか
な残りが気液分離装置12、第2、第3の流量制御装置
13,15を通って低圧に減圧され、第1の接続配管6
、第4の逆止弁33、4方弁2を経てアキュムレータ4
に流入する。また、第2の接続配管7のガス冷媒が低圧
側に抜けた後には実線矢印で示すように圧縮機1より吐
出された高温高圧冷媒ガスは4方弁2を通り、熱源機側
熱交換器3で霜と熱交換して凝縮液化された後、第3の
逆止弁32を通って大部分は熱源機側バイパス路49を
経て低圧まで減圧され、わずかな残りの冷媒は第2の接
続配管7、気液分離装置12の順に通り、第2の流量制
御装置13または第3の流量制御装置15で低圧まで減
圧され第1の接続配管6を経て熱源機に流入する。熱源
機側バイパス路49を経た冷媒と中継器Eを経た冷媒は
第4の逆止弁33の入口部で合流後、第4の逆止弁33
、4方弁2、アキュムレータ4を通過して圧縮機1に流
入する。このように循環サイクルを形成するので、除霜
運転開始前に第2の接続配管7を満たしていた冷媒の熱
量、第2の接続配管7の熱量、中継器Eの熱量を採熱し
て早く、確実に熱源機側熱交換器3に着霜した霜をとか
す事ができる。また、除霜運転開始直後には第2の接続
配管7を満たしていた高温高圧のガス冷媒は大部分が熱
源機側バイパス路49を通って低圧側に流れ、第2、第
3の流量制御装置13,15を通る冷媒は少ないので高
温高圧のガス冷媒が第2、第3の流量制御装置13,1
5を通って抜ける音は小さい。また熱源機側熱交換器3
で霜と熱交換して凝縮液化された冷媒は大部分が熱源機
側バイパス路49を経て低圧まで減圧されるので第2の
流量制御装置13または第3の流量制御装置15で低圧
まで減圧される冷媒は少なく、かつ第2、第3の流量制
御装置13,15に流入する冷媒は第1、第2の熱交換
部19,16aで充分冷却されて液冷媒となっているの
で第2、第3の流量制御装置13,15を通過する冷媒
音は小さい。
Next, the case of defrosting operation will be explained using FIG. 5. Since the sixth electromagnetic on-off valve 48 and the second and third flow rate control devices 13 and 15 are open, immediately after the start of the defrosting operation, the second connection pipe 7 is opened as shown by the broken line arrow in the figure.
Most of the high-temperature, high-pressure gas refrigerant that had filled the air flowed through the heat source machine side bypass passage 49 to the low-pressure side, and then passed through the fourth check valve 3.
3, flows into the accumulator 4 through the 4-way valve 2, and a small amount of the remainder passes through the gas-liquid separator 12, the second and third flow control devices 13, 15, is reduced to low pressure, and is transferred to the first connecting pipe. 6
, the fourth check valve 33, and the accumulator 4 via the four-way valve 2.
flows into. In addition, after the gas refrigerant in the second connection pipe 7 escapes to the low-pressure side, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, as shown by the solid arrow, and passes through the heat exchanger on the heat source equipment side. After the refrigerant is condensed and liquefied by exchanging heat with the frost in step 3, most of the refrigerant passes through the third check valve 32 and is reduced to a low pressure via the bypass passage 49 on the heat source machine side, and a small amount of the remaining refrigerant is transferred to the second connection. It passes through the pipe 7 and the gas-liquid separator 12 in this order, is reduced to a low pressure by the second flow control device 13 or the third flow control device 15, and flows into the heat source device via the first connection pipe 6. The refrigerant that has passed through the heat source device side bypass path 49 and the refrigerant that has passed through the repeater E merge at the inlet of the fourth check valve 33 .
, the four-way valve 2, and the accumulator 4, and then flows into the compressor 1. Since a circulation cycle is formed in this way, the heat quantity of the refrigerant filling the second connection pipe 7, the heat quantity of the second connection pipe 7, and the heat quantity of the repeater E can be collected quickly before the defrosting operation starts. It is possible to reliably melt the frost formed on the heat exchanger 3 on the heat source machine side. Immediately after the start of the defrosting operation, most of the high-temperature, high-pressure gas refrigerant that filled the second connection pipe 7 flows to the low-pressure side through the heat source device side bypass passage 49, and the second and third flow rate controls are performed. Since the amount of refrigerant passing through the devices 13 and 15 is small, high temperature and high pressure gas refrigerant is passed through the second and third flow rate control devices 13 and 1.
The sound that passes through 5 is small. Also, the heat source machine side heat exchanger 3
Most of the refrigerant condensed and liquefied by exchanging heat with the frost is reduced to a low pressure through the heat source machine side bypass passage 49, and is therefore reduced to a low pressure by the second flow rate control device 13 or the third flow rate control device 15. The amount of refrigerant flowing into the second and third flow control devices 13 and 15 is sufficiently cooled in the first and second heat exchange parts 19 and 16a and becomes liquid refrigerant. The refrigerant noise passing through the third flow rate control devices 13 and 15 is small.

【0019】次に、圧縮機1起動後の過渡時の第3の流
量制御装置15の制御内容について説明する。圧縮機1
起動後の過渡時には、高圧が充分に上昇していないので
第3の流量制御装置15の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、第3の流量制御装置
15の開度がある一定開度以上になると第3の流量制御
装置15を通過する冷媒の流動音が大きくなる。そこで
、流動音を小さく抑えるために以下に説明するように第
3の流量制御装置15を制御する。図6は過渡時の第3
の流量制御装置15の制御内容を示すブロック図である
。41は、過渡時流量制御装置制御手段である。図7は
過渡時の第3の流量制御装置15の動作を示すフローチ
ャートである。ステップ50で第2の圧力検出手段26
の検出圧力と温度検出手段27の検出温度から第3の流
量制御装置15の入口部分のサブクールSCを計算する
。次に、ステップ51で計算したサブクールSCが予め
設定された値SC0よりも大きいか否かを判定する。 SC≧SC0ならば上記バイパス回路14から第1の接
続配管6への冷媒流入管部14aの過熱度が所定の値と
なる様に上記第3の流入制御装置15の開度Sを制御す
る。SC<SC0ならばステップ52へ進み、ここで第
3の流量制御装置15の開度Sがある一定の開度S0よ
りも大きいか否かを判定して、SC≦S0ならばステッ
プ50に戻る。一方、S>S0ならばステップ53でS
=S0としてステップ50に戻る。このように、第3の
流量制御装置15の入口で冷媒がフラッシュ状態の時に
は開度を制限して冷媒流動音を低減し、第3の流量制御
装置15の入口でサブクールが充分にとれて冷媒流動音
が小さくなってから開度の制限を解除しているので低騒
音化が図れる。
Next, the control contents of the third flow rate control device 15 during a transient period after the compressor 1 is started will be explained. Compressor 1
During the transition period after startup, the high pressure has not risen sufficiently, so the refrigerant at the inlet of the third flow rate control device 15 is not in a supercooled liquid state and is in a flash state, and the third flow rate control device 15 is not opened. When the degree of opening exceeds a certain level, the sound of the refrigerant flowing through the third flow rate control device 15 becomes louder. Therefore, in order to suppress the flow noise, the third flow rate control device 15 is controlled as described below. Figure 6 shows the third
FIG. 2 is a block diagram showing control details of the flow rate control device 15 of FIG. 41 is a transient flow rate control device control means. FIG. 7 is a flowchart showing the operation of the third flow rate control device 15 during a transient period. In step 50, the second pressure detection means 26
The subcool SC of the inlet portion of the third flow rate control device 15 is calculated from the detected pressure and the detected temperature of the temperature detection means 27. Next, it is determined whether the subcool SC calculated in step 51 is larger than a preset value SC0. If SC≧SC0, the opening degree S of the third inflow control device 15 is controlled so that the degree of superheat of the refrigerant inflow pipe portion 14a from the bypass circuit 14 to the first connection pipe 6 becomes a predetermined value. If SC<SC0, the process proceeds to step 52, where it is determined whether the opening degree S of the third flow rate control device 15 is larger than a certain opening degree S0, and if SC≦S0, the process returns to step 50. . On the other hand, if S>S0, S
=S0 and return to step 50. In this way, when the refrigerant is in a flash state at the inlet of the third flow rate control device 15, the opening degree is restricted to reduce the refrigerant flow noise, and sufficient subcooling is obtained at the inlet of the third flow rate control device 15, so that the refrigerant Since the restriction on the opening degree is lifted after the flow noise becomes low, noise can be reduced.

【0020】実施例2.次に、除霜運転が終了して各室
内機が暖房のみの運転、または各室内機が冷暖同時運転
されると共に熱源機側熱交換器3が蒸発器となる運転に
切り換わった後の過渡時の第3の流量制御装置15の制
御内容について説明する。除霜運転中には高圧が低く、
第2の流量制御装置13と第3の流量制御装置15の間
の中間圧部分の液冷媒が低圧部分にぬけてしまうので、
除霜運転が終了して各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に熱源機側熱交換器
3が蒸発器となる運転に切り換わった後の過渡時には、
第3の流量制御装置15の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、第3の流量制御装置
15の開度がある一定開度以上になると第3の流量制御
装置15を通過する冷媒の流動音が大きくなる。そこで
、流動音を小さく抑えるために第3の流量制御装置15
の入口で冷媒がフラッシュ状態の時には開度を制限して
、第3の流量制御装置15の入口でサブクールが充分に
とれて冷媒流動音が小さくなってから開度の制限を解除
する。具体的な第3の流量制御装置15の制御内容につ
いては圧縮機1起動後の過渡時と同じなのでここでは省
略する。
Example 2. Next, the transient state after the defrosting operation is finished and each indoor unit is operated only for heating, or each indoor unit is simultaneously operated for cooling and heating, and the heat exchanger 3 on the heat source side is switched to operation as an evaporator. The control contents of the third flow rate control device 15 at this time will be explained. During defrosting operation, the high pressure is low;
Since the liquid refrigerant in the intermediate pressure section between the second flow control device 13 and the third flow control device 15 leaks into the low pressure section,
During a transition period after the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger 3 on the heat source side is switched to operation as an evaporator,
The refrigerant at the inlet of the third flow rate control device 15 is not a supercooled liquid but is in a flash state, and when the opening of the third flow rate control device 15 reaches a certain opening degree or more, the third flow rate control device The flow noise of the refrigerant passing through 15 becomes louder. Therefore, in order to suppress the flow noise to a low level, a third flow rate control device 15 is installed.
When the refrigerant is in a flash state at the inlet of the third flow rate control device 15, the opening degree is restricted, and the restriction on the opening degree is canceled after sufficient subcooling is obtained at the inlet of the third flow rate control device 15 and the refrigerant flow noise becomes small. The specific control content of the third flow rate control device 15 is the same as that during the transient period after the compressor 1 is started, so a description thereof will be omitted here.

【0021】実施例3.次に、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に熱源機
側熱交換器3が凝縮器となる運転から、各室内機が暖房
のみの運転、または各室内機が冷暖同時運転されると熱
源機側熱交換器3が蒸発器となる運転に切り換わった後
の過渡時の第3の流量制御装置15の制御内容について
説明する。各室内機が冷房のみの運転、または各室内機
が冷暖同時運転されると共に熱源機側熱交換器3が凝縮
器となる運転から、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に熱源機側熱交換器
3が蒸発器となる運転に切り換わった後の過渡時には、
4方弁2が切り換わって高圧及び中間圧が一時的に低下
し、中間圧部分の液冷媒が蒸発して低圧部分にぬけてし
まうので、第3の流量制御装置15の入口の冷媒は過冷
却液とはなっておらずフラッシュ状態であり、第3の流
量制御装置15の開度がある一定開度以上になると第3
の流量制御装置15を通過する冷媒の流動音が大きくな
る。そこで、流動音を小さく抑えるために第3の流量制
御装置15の入口で冷媒がフラッシュ状態の時には開度
を制限して、第3の流量制御装置15の入口でサブクー
ルが充分にとれて冷媒流動音が小さくなってから開度の
制限を解除する。具体的な第3の流量制御装置15の制
御内容については圧縮機1起動後の過渡時と同じなので
ここでは省略する。
Example 3. Next, each indoor unit is operated only for cooling, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger 3 on the heat source equipment side functions as a condenser, and then each indoor unit is operated only for heating, or each indoor unit is operated for heating only, or The control contents of the third flow rate control device 15 during a transient period after switching to operation in which the heat source machine side heat exchanger 3 functions as an evaporator when the machine is simultaneously cooled and heated will be explained. Each indoor unit is operated only for cooling, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger 3 on the heat source side functions as a condenser. At the time of simultaneous operation and a transition after switching to operation in which the heat source machine side heat exchanger 3 functions as an evaporator,
The four-way valve 2 is switched, the high pressure and intermediate pressure are temporarily lowered, and the liquid refrigerant in the intermediate pressure part evaporates and leaks into the low pressure part, so the refrigerant at the inlet of the third flow rate control device 15 is overflowed. It is not a coolant and is in a flash state, and when the opening of the third flow control device 15 exceeds a certain opening, the third
The sound of the refrigerant flowing through the flow rate control device 15 becomes louder. Therefore, in order to suppress the flow noise, the opening degree is limited when the refrigerant is in a flash state at the inlet of the third flow rate control device 15, so that sufficient subcooling is obtained at the inlet of the third flow rate control device 15, and the refrigerant flows. Release the opening limit after the sound becomes quiet. The specific control content of the third flow rate control device 15 is the same as that during the transient period after the compressor 1 is started, so a description thereof will be omitted here.

【0022】実施例4.次に、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に熱源機
側熱交換器3が蒸発器となる運転から、各室内機が冷房
のみの運転、または各室内機が冷暖同時運転されると共
に熱源機側熱交換器3が凝縮器となる運転に切り換わっ
た後の過渡時の第3の流量制御装置15の制御内容につ
いて説明する。各室内機が暖房のみの運転、または各室
内機が冷暖同時運転されると共に上記熱源機側熱交換器
が蒸発器となる運転から、各室内機が冷房のみの運転、
または各室内機が冷暖同時運転されると共に熱源機側熱
交換器が凝縮器3となる運転に切り換わった後の過渡時
には、切り換え前の第2の接続配管7を満たしている過
熱ガス冷媒が切り換え後に中継器Eに供給されるので、
第3の流量制御装置15の入口の冷媒は過冷却液とはな
っておらずフラッシュ状態であり、第3の流量制御装置
15の開度がある一定開度以上になると第3の流量制御
装置15を通過する冷媒の流動音が大きくなる。そこで
、流動音を小さく抑えるために第3の流量制御装置15
の入口で冷媒がフラッシュ状態の時には開度を制限して
、第3の流量制御装置15の入口でサブクールが充分に
とれて冷媒流動音が小さくなってから開度の制限を解除
する。具体的な第3の流量制御装置15の制御内容につ
いては圧縮機1起動後の過渡時と同じなのでここでは省
略する。
Example 4. Next, each indoor unit is operated only for heating, or each indoor unit is simultaneously operated for cooling and heating, and the heat exchanger 3 on the heat source equipment side acts as an evaporator, and then each indoor unit is operated only for cooling, or each indoor unit is operated for cooling only, or each indoor unit is operated for cooling and heating at the same time. The control content of the third flow rate control device 15 during a transient period after the machine is simultaneously cooled and heated and the heat source machine side heat exchanger 3 switches to operation as a condenser will be described. Each indoor unit operates only for heating, or each indoor unit operates simultaneously for cooling and heating, and the heat exchanger on the heat source unit functions as an evaporator; each indoor unit operates only for cooling;
Or, during a transition period after each indoor unit is simultaneously cooled and heated and the heat exchanger on the heat source side is switched to the condenser 3, the superheated gas refrigerant filling the second connection pipe 7 before switching is After switching, it is supplied to repeater E, so
The refrigerant at the inlet of the third flow rate control device 15 is not a supercooled liquid but is in a flash state, and when the opening of the third flow rate control device 15 reaches a certain opening degree or more, the third flow rate control device The flow noise of the refrigerant passing through 15 becomes louder. Therefore, in order to suppress the flow noise to a low level, a third flow rate control device 15 is installed.
When the refrigerant is in a flash state at the inlet of the third flow rate control device 15, the opening degree is restricted, and the restriction on the opening degree is canceled after sufficient subcooling is obtained at the inlet of the third flow rate control device 15 and the refrigerant flow noise becomes small. The specific control content of the third flow rate control device 15 is the same as that during the transient period after the compressor 1 is started, so a description thereof will be omitted here.

【0023】実施例5.なお、上記実施例では三方切換
弁8を設けて室内機側の第1の接続配管6b,6c,6
dと、第1の接続配管6または、第2の接続配管7に切
換可能に接続しているが、第8図に示すように2つの電
磁弁30,31等の開閉弁を設けて上述したように切換
可能に接続しても同様な作用効果を奏す。
Example 5. In the above embodiment, a three-way switching valve 8 is provided to connect the first connection pipes 6b, 6c, 6 on the indoor unit side.
d, and is switchably connected to the first connecting pipe 6 or the second connecting pipe 7, and as shown in FIG. Even if they are connected in a switchable manner, similar effects can be obtained.

【0024】[0024]

【発明の効果】以上説明したとおり、この発明の空気調
和装置は、圧縮機、4方弁、熱源機側熱交換器、及びア
キュムレータよりなる1台の熱源機と、室内側熱交換器
、第1の流量制御装置からなる複数台の室内機とを、第
1、第2の接続配管を介して接続し、上記複数台の室内
機の室内側熱交換器の一方を上記第1の接続配管または
第2の接続配管に切換可能に接続する弁装置を備えた第
1の分岐部と、上記複数台の室内機の室内側熱交換器の
他方に上記第1の流量制御装置を介して接続されかつ第
2の流量制御装置を介して上記第2の接続配管に接続し
てなる第2の分岐部とを、上記第2の流量制御装置を介
して接続し、一端が第2の分岐部に接続され他端が第3
の流量制御装置を介して第1の接続配管に接続されたバ
イパス配管を設け、上記第2の流量制御装置と上記第3
の流量制御装置の間に第2の圧力検出手段と温度検出手
段を設け、上記第1の分岐部、上記第2の分岐部、上記
第2の流量制御装置、上記第3の流量制御装置、上記第
2の圧力検出手段、上記温度検出手段を内蔵させた中継
器を、上記熱源機と上記複数台の室内機との間に介在さ
せたものにおいて、上記圧縮機起動後の過渡時には、上
記第2の圧力検出手段の検出圧力と上記温度検出手段の
検出温度から計算される上記第3の流量制御装置の入口
のサブクールが予め設定された値に達するまで、上記第
3の流量制御装置の開度がある一定の開度以上にならな
いように上記第3の流量制御装置を制御する過渡時流量
制御装置制御手段を備えたので、圧縮機起動の過渡時に
、高圧が充分に上昇せず、その結果第3の流量制御装置
の入口の冷媒は過冷却液とはならずにフラッシュ状態で
あっても、上記第3の流量制御装置を流れる冷媒流動音
を小さく抑えることができ中継器の低騒音化がはかれる
Effects of the Invention As explained above, the air conditioner of the present invention includes one heat source machine consisting of a compressor, a four-way valve, a heat exchanger on the heat source machine side, and an accumulator, an indoor heat exchanger, and a second heat exchanger. A plurality of indoor units comprising one flow rate control device are connected via first and second connection pipes, and one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection pipe. or a first branching section equipped with a valve device that is switchably connected to the second connection pipe and connected to the other of the indoor heat exchangers of the plurality of indoor units via the first flow rate control device. and a second branch section connected to the second connection pipe via the second flow rate control device, and one end is connected to the second branch section via the second flow rate control device. and the other end is connected to the third
A bypass pipe is provided which is connected to the first connection pipe via a flow rate control device, and the second flow rate control device and the third connection pipe are connected to each other.
A second pressure detection means and a temperature detection means are provided between the flow control devices, the first branch section, the second branch section, the second flow control device, the third flow control device, A repeater incorporating the second pressure detection means and the temperature detection means is interposed between the heat source device and the plurality of indoor units, wherein the The third flow rate control device is operated until the subcool at the inlet of the third flow rate control device calculated from the detected pressure of the second pressure detection means and the detected temperature of the temperature detection device reaches a preset value. Since the transient flow rate control device control means is provided to control the third flow rate control device so that the opening does not exceed a certain opening, the high pressure does not rise sufficiently during the transition of starting the compressor. As a result, even if the refrigerant at the inlet of the third flow rate control device does not become a supercooled liquid and is in a flash state, the noise of the refrigerant flowing through the third flow rate control device can be suppressed to a low level, thereby reducing the noise of the repeater. The noise will be reduced.

【0025】また、除霜運転が終了して各室内機が暖房
のみの運転、または各室内機が冷暖同時運転されると共
に上記熱源機側熱交換器が蒸発器となる運転に切り換わ
った後の過渡時には、上記第2の圧力検出手段の検出圧
力と上記温度検出手段の検出温度から計算される上記第
3の流量制御装置の入口のサブクールが予め設定された
値に達するまで、上記第3の流量制御装置の開度がある
一定の開度以上にならないように上記第3の流量制御装
置を制御する過渡時流量制御装置制御手段を備えたので
、除霜運転中には高圧が低く、第2の流量制御装置13
と第3の流量制御装置15の間の中間圧部分の液冷媒が
低圧部分にぬけてしまって、除霜運転が終了して各室内
機が暖房のみの運転、または各室内機が冷暖同時運転さ
れると共に上記熱源機側熱交換器が蒸発器となる運転に
切り換わった後の過渡時には、第3の流量制御装置の入
口の冷媒は過冷却液とはならずにフラッシュ状態であっ
ても、上記第3の流量制御装置を流れる冷媒流動音を小
さく抑えることができ中継器の低騒音化がはかれる。
[0025] Also, after the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source side is switched to operation as an evaporator. During the transient period of , the third flow control device is operated until the subcool at the inlet of the third flow rate control device, which is calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means, reaches a preset value. Since the third flow rate control device is provided with a transient flow rate control device control means for controlling the third flow rate control device so that the opening degree of the flow rate control device does not exceed a certain opening degree, the high pressure is low during the defrosting operation. Second flow control device 13
The liquid refrigerant in the intermediate pressure section between the and the third flow rate control device 15 leaks into the low pressure section, and the defrosting operation ends and each indoor unit operates only for heating, or each indoor unit operates for cooling and heating at the same time. At the same time, during a transient period after the heat exchanger on the heat source equipment side switches to operation as an evaporator, the refrigerant at the inlet of the third flow rate control device does not become a supercooled liquid and may be in a flash state. , the noise of the refrigerant flowing through the third flow rate control device can be suppressed to a low level, and the noise of the repeater can be reduced.

【0026】また、各室内機が冷房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が凝縮器となる運転から、各室内機が暖房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が蒸発器となる運転に切り換わった後の
過渡時には、上記第2の圧力検出手段の検出圧力と上記
温度検出手段の検出温度から計算される上記第3の流量
制御装置の入口のサブクールが予め設定された値に達す
るまで、上記第3の流量制御装置の開度がある一定の開
度以上にならないように上記第3の流量制御装置を制御
する過渡時流量制御装置制御手段を備えたので、各室内
機が冷房のみの運転、または各室内機が冷暖同時運転さ
れると共に上記熱源機側熱交換器が凝縮器となる運転か
ら、各室内機が暖房のみの運転、または各室内機が冷暖
同時運転されると共に上記熱源機側熱交換器が蒸発器と
なる運転に切り換わった後の過渡時には、4方弁が切り
換わって高圧及び中間圧が一時的に低下し、中間圧部分
の液冷媒が蒸発して低圧部分にぬけてしまって、第3の
流量制御装置の入口の冷媒は過冷却液とはならずにフラ
ッシュ状態であっても、上記第3の流量制御装置を流れ
る冷媒流動音を小さく抑えることができ中継器の低騒音
化がはかれる。
In addition, each indoor unit can be operated only for cooling, or each indoor unit can be operated simultaneously for cooling and heating, and the heat exchanger on the heat source side functions as a condenser, or each indoor unit can be operated only for heating, or During a transient period after each indoor unit is simultaneously cooled and heated and the heat exchanger on the heat source side is switched to operation as an evaporator, the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means The third flow rate control device is configured to prevent the opening degree of the third flow rate control device from exceeding a certain opening degree until the subcooling at the inlet of the third flow rate control device calculated from the above reaches a preset value. Since the transient flow rate control device control means for controlling the flow rate control device is provided, each indoor unit is operated only for cooling, or each indoor unit is operated for cooling and heating at the same time, and the heat exchanger on the heat source side functions as a condenser. During a transition period after the operation switches from operation to operation in which each indoor unit performs only heating operation, or operation in which each indoor unit is operated at the same time as cooling and heating, and the heat exchanger on the heat source side functions as an evaporator, the four-way valve is turned off. In turn, the high pressure and intermediate pressure drop temporarily, and the liquid refrigerant in the intermediate pressure part evaporates and leaks into the low pressure part, and the refrigerant at the inlet of the third flow rate control device does not become a supercooled liquid. Even in the flush state, the noise of the refrigerant flowing through the third flow rate control device can be suppressed to a low level, and the noise of the repeater can be reduced.

【0027】また、各室内機が暖房のみの運転、または
各室内機が冷暖同時運転されると共に上記熱源機側熱交
換器が蒸発器となる運転から、各室内機が冷房のみの運
転、または各室内機が冷暖同時運転されると共に上記熱
源機側熱交換器が凝縮器となる運転に切り換わった後の
過渡時には、上記第2の圧力検出手段の検出圧力と上記
温度検出手段の検出温度から計算される上記第3の流量
制御装置の入口のサブクールが予め設定された値に達す
るまで、上記第3の流量制御装置の開度がある一定の開
度以上にならないように上記第3の流量制御装置を制御
する過渡時流量制御装置制御手段を備えたので、各室内
機が暖房のみの運転、または各室内機が冷暖同時運転さ
れると共に上記熱源機側熱交換器が蒸発器となる運転か
ら、各室内機が冷房のみの運転、または各室内機が冷暖
同時運転されると共に上記熱源機側熱交換器が凝縮器と
なる運転に切り換わった後の過渡時には、切り換え前の
第2の接続配管を満たしている過熱ガス冷媒が切り換え
後に中継器に供給されるので、4方弁が切り換わって高
圧及び中間圧が一時的に低下し、中間圧部分の液冷媒が
蒸発して低圧部分にぬけてしまって、第3の流量制御装
置の入口の冷媒は過冷却液とはならずにフラッシュ状態
であっても、上記第3の流量制御装置を流れる冷媒流動
音を小さく抑えることができ中継器の低騒音化がはかれ
る。
[0027] In addition, each indoor unit can be operated only for heating, or each indoor unit can be operated simultaneously for cooling and heating, and the heat exchanger on the heat source side functions as an evaporator, or each indoor unit can be operated only for cooling, or During a transient period after each indoor unit is simultaneously cooled and heated and the heat exchanger on the heat source side is switched to operation as a condenser, the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means are The third flow rate control device is configured to prevent the opening degree of the third flow rate control device from exceeding a certain opening degree until the subcooling at the inlet of the third flow rate control device calculated from the above reaches a preset value. Since the transient flow rate control device control means for controlling the flow rate control device is provided, each indoor unit is operated only for heating, or each indoor unit is operated for cooling and heating at the same time, and the heat exchanger on the heat source equipment side functions as an evaporator. During a transition period after the operation is switched from operation to operation in which each indoor unit performs cooling only, or operation in which each indoor unit is operated at the same time as cooling and heating and the heat source equipment side heat exchanger functions as a condenser, the second The superheated gas refrigerant filling the connecting pipe is supplied to the repeater after switching, so the four-way valve switches and the high and intermediate pressures temporarily drop, and the liquid refrigerant in the intermediate pressure part evaporates, reducing the low pressure. Even if the refrigerant at the inlet of the third flow rate control device does not become a supercooled liquid and is in a flash state, it is possible to suppress the noise of the refrigerant flowing through the third flow rate control device. As a result, the noise of the repeater can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例1による空気調和装置の冷媒
系を中心とする全体構成図である。
FIG. 1 is an overall configuration diagram centered on a refrigerant system of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例1による空気調和装置の冷房
、または暖房のみの運転状態を説明するための冷媒回路
図である。
FIG. 2 is a refrigerant circuit diagram for explaining the operating state of only cooling or heating of the air conditioner according to the first embodiment of the present invention.

【図3】この発明の実施例1による空気調和装置の、暖
房主体の運転状態を説明するための冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram for explaining the heating-based operating state of the air conditioner according to the first embodiment of the present invention.

【図4】この発明の実施例1による空気調和装置の、冷
房主体の運転状態を説明するための冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram for explaining the cooling-based operating state of the air conditioner according to the first embodiment of the present invention.

【図5】この発明の実施例1による空気調和装置の、除
霜運転の運転状態を説明するための冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram for explaining the operating state of the defrosting operation of the air conditioner according to the first embodiment of the present invention.

【図6】この発明の実施例1による空気調和装置の、過
渡時の第3の流量制御装置の制御内容を説明するための
ブロック図である。
FIG. 6 is a block diagram for explaining the control contents of the third flow rate control device during a transient period of the air conditioner according to the first embodiment of the present invention.

【図7】この発明の実施例1による空気調和装置の、過
渡時の第3の流量制御装置の制御内容を説明するための
フローチャートである。
FIG. 7 is a flowchart for explaining the control contents of the third flow rate control device during a transient period of the air conditioner according to the first embodiment of the present invention.

【図8】この発明の実施例2による空気調和装置の、冷
媒系を中心とする全体構成図である。
FIG. 8 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  圧縮機 2  四方切換弁 3  熱源機側熱交換器 4  アキュムレータ 5  室内側熱交換器 6、6b、6c、6d  第1の接続配管7、7b、7
c、7d  第2の接続配管8  弁装置 9  第1の流量制御装置 10  第1の分岐部 11  第2の分岐部 12  気液分離装置 13  第2の流量制御装置 14  バイパス配管 15  第3の流量制御装置 16a 、16b 、16c 、16d 、19  熱
交換部17  第4の流量制御装置 32、33、34、35  第3、第4、第5、第6の
逆止弁40  熱源機側切換弁 41  過渡時流量制御装置制御手段 25  第1の圧力検出手段 26  第2の圧力検出手段 27  温度検出手段 A  熱源機 B、C、D  室内機 E  中継器
1 Compressor 2 Four-way switching valve 3 Heat source machine side heat exchanger 4 Accumulator 5 Indoor side heat exchanger 6, 6b, 6c, 6d First connection pipe 7, 7b, 7
c, 7d Second connection pipe 8 Valve device 9 First flow rate control device 10 First branch section 11 Second branch section 12 Gas-liquid separation device 13 Second flow rate control device 14 Bypass piping 15 Third flow rate Control devices 16a, 16b, 16c, 16d, 19 Heat exchange section 17 Fourth flow rate control device 32, 33, 34, 35 Third, fourth, fifth, sixth check valve 40 Heat source machine side switching valve 41 Transient flow rate control device control means 25 First pressure detection means 26 Second pressure detection means 27 Temperature detection means A Heat source equipment B, C, D Indoor unit E Relay

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、4方弁、熱源機側熱交換器、
及びアキュムレータよりなる1台の熱源機と、室内側熱
交換器、第1の流量制御装置からなる複数台の室内機と
を、第1、第2の接続配管を介して接続し、上記複数台
の室内機の室内側熱交換器の一方を上記第1の接続配管
または第2の接続配管に切換可能に接続する弁装置を備
えた第1の分岐部と、上記複数台の室内機の室内側熱交
換器の他方に上記第1の流量制御装置を介して接続され
、かつ第2の流量制御装置を介して上記第2の接続配管
に接続してなる第2の分岐部とを、上記第2の流量制御
装置を介して接続し、一端が第2の分岐部に接続され他
端が第3の流量制御装置を介して第1の接続配管に接続
されたバイパス配管を設け、上記第2の流量制御装置と
上記第3の流量制御装置の間に第2の圧力検出手段と温
度検出手段を設け、上記第1の分岐部、上記第2の分岐
部、上記第2の流量制御装置、上記第3の流量制御装置
、上記第2の圧力検出手段、上記温度検出手段を内蔵さ
せた中継器を、上記熱源機と上記複数台の室内機との間
に介在させたものにおいて、上記圧縮機が起動後、上記
第2の圧力検出手段の検出圧力と上記温度検出手段の検
出温度から計算される上記第3の流量制御装置の入口の
サブクールが予め設定された値に達するまでの間は、上
記第3の流量制御装置の開度がある一定の開度以上にな
らないように上記第3の流量制御装置を制御する過渡時
流量制御装置制御手段を備えたことを特徴とする冷暖同
時運転可能な空気調和装置。
[Claim 1] A compressor, a four-way valve, a heat exchanger on the heat source machine side,
One heat source device consisting of an accumulator and a plurality of indoor units consisting of an indoor heat exchanger and a first flow rate control device are connected via first and second connection pipes, and the plurality of indoor units are connected via first and second connection pipes. a first branching section equipped with a valve device for switchably connecting one of the indoor heat exchangers of the indoor units to the first connection pipe or the second connection pipe; a second branch section connected to the other side of the inner heat exchanger via the first flow rate control device and connected to the second connection pipe via the second flow rate control device; A bypass pipe is provided which is connected to the first connecting pipe via the second flow rate control device, one end of which is connected to the second branch portion, and the other end of which is connected to the first connection pipe via the third flow rate control device. A second pressure detection means and a temperature detection means are provided between the second flow control device and the third flow control device, the first branch part, the second branch part, and the second flow control device. , wherein a repeater incorporating the third flow rate control device, the second pressure detection means, and the temperature detection means is interposed between the heat source device and the plurality of indoor units; After the compressor is started, until the subcool at the inlet of the third flow rate control device, which is calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means, reaches a preset value. The simultaneous heating and cooling system is characterized by comprising a transient flow rate control device control means for controlling the third flow rate control device so that the opening degree of the third flow rate control device does not exceed a certain opening degree. Operable air conditioner.
【請求項2】  除霜運転が終了して各室内機が暖房の
みの運転、または各室内機が冷暖同時運転されると共に
上記熱源機側熱交換器が蒸発器となる運転に切り換わっ
た後、上記第2の圧力検出手段の検出圧力と上記温度検
出手段の検出温度から計算される上記第3の流量制御装
置の入口のサブクールが予め設定された値に達するまで
の間は、上記第3の流量制御装置の開度がある一定の開
度以上にならないように上記第3の流量制御装置を制御
する過渡時流量制御装置制御手段を備えたことを特徴と
する請求項第1項記載の空気調和装置。
[Claim 2] After the defrosting operation is completed and each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source equipment side is switched to operation as an evaporator. , until the subcool at the inlet of the third flow rate control device calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means reaches a preset value. 2. The flow rate control device according to claim 1, further comprising transient flow rate control device control means for controlling said third flow rate control device so that the opening degree of said third flow rate control device does not exceed a certain opening degree. Air conditioner.
【請求項3】  各室内機が冷房のみの運転、または各
室内機が冷暖同時運転されると共に上記熱源機側熱交換
器が凝縮器となる運転から、各室内機が暖房のみの運転
、または各室内機が冷暖同時運転されると共に上記熱源
機側熱交換器が蒸発器となる運転に切り換わった後、上
記第2の圧力検出手段の検出圧力と上記温度検出手段の
検出温度から計算される上記第3の流量制御装置の入口
のサブクールが予め設定された値に達するまでの間は、
上記第3の流量制御装置の開度がある一定の開度以上に
ならないように上記第3の流量制御装置を制御する過渡
時流量制御装置制御手段を備えたことを特徴とする請求
項第1項記載の空気調和装置。
Claim 3: Each indoor unit is operated only for cooling, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source equipment side functions as a condenser, and each indoor unit is operated only for heating, or After each indoor unit is simultaneously cooled and heated and the heat exchanger on the heat source side is switched to operation as an evaporator, the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means are calculated. Until the subcool at the inlet of the third flow rate control device reaches a preset value,
Claim 1, further comprising transient flow rate control device control means for controlling said third flow rate control device so that the opening degree of said third flow rate control device does not exceed a certain opening degree. Air conditioner as described in section.
【請求項4】  各室内機が暖房のみの運転、または各
室内機が冷暖同時運転されると共に上記熱源機側熱交換
器が蒸発器となる運転から、各室内機が冷房のみの運転
、または各室内機が冷暖同時運転されると共に上記熱源
機側熱交換器が凝縮器となる運転に切り換わった後、上
記第2の圧力検出手段の検出圧力と上記温度検出手段の
検出温度から計算される上記第3の流量制御装置の入口
のサブクールが予め設定された値に達するまでの間は、
上記第3の流量制御装置の開度がある一定の開度以上に
ならないように上記第3の流量制御装置を制御する過渡
時流量制御装置制御手段を備えたことを特徴とする請求
項第1項記載の空気調和装置。
Claim 4: Each indoor unit is operated only for heating, or each indoor unit is operated simultaneously for cooling and heating, and the heat exchanger on the heat source side functions as an evaporator, and each indoor unit is operated only for cooling, or After each indoor unit is simultaneously cooled and heated and the heat exchanger on the heat source side is switched to operation as a condenser, the temperature is calculated from the pressure detected by the second pressure detection means and the temperature detected by the temperature detection means. Until the subcool at the inlet of the third flow rate control device reaches a preset value,
Claim 1, further comprising transient flow rate control device control means for controlling said third flow rate control device so that the opening degree of said third flow rate control device does not exceed a certain opening degree. Air conditioner as described in section.
JP3107428A 1991-05-13 1991-05-13 Air conditioner Expired - Lifetime JP2601052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107428A JP2601052B2 (en) 1991-05-13 1991-05-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107428A JP2601052B2 (en) 1991-05-13 1991-05-13 Air conditioner

Publications (2)

Publication Number Publication Date
JPH04335968A true JPH04335968A (en) 1992-11-24
JP2601052B2 JP2601052B2 (en) 1997-04-16

Family

ID=14458899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107428A Expired - Lifetime JP2601052B2 (en) 1991-05-13 1991-05-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP2601052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168681A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519171B (en) * 2011-12-31 2013-10-16 广东欧科空调制冷有限公司 Multi-functional multi-connected air conditioning unit
JP2018077037A (en) * 2016-10-25 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168681A1 (en) * 2016-03-31 2017-10-05 三菱電機株式会社 Air conditioner
GB2563170A (en) * 2016-03-31 2018-12-05 Mitsubishi Electric Corp Air conditioner
GB2563170B (en) * 2016-03-31 2020-10-21 Mitsubishi Electric Corp Air-conditioning apparatus

Also Published As

Publication number Publication date
JP2601052B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
WO2017138108A1 (en) Air conditioning device
JPH08291952A (en) Air conditioner
JP2944507B2 (en) Air conditioner
JP2006090683A (en) Multiple room type air conditioner
JP4037863B2 (en) Air conditioner
JPH04335968A (en) Apparatus for air conditioning
JP2598550B2 (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2718286B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP3138491B2 (en) Air conditioner
JP3092212B2 (en) Air conditioner
JP2718287B2 (en) Air conditioner
JPH0752044B2 (en) Air conditioner
JP2525927B2 (en) Air conditioner
JPH046364A (en) Air-conditioner
JP3092214B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner
JPH04353369A (en) Air conditioner
JPH05231749A (en) Air conditioner
JP3048658B2 (en) Refrigeration equipment
JP2800472B2 (en) Air conditioner
JPH0754218B2 (en) Air conditioner
JPH04110573A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15