JP4037863B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4037863B2
JP4037863B2 JP2004361136A JP2004361136A JP4037863B2 JP 4037863 B2 JP4037863 B2 JP 4037863B2 JP 2004361136 A JP2004361136 A JP 2004361136A JP 2004361136 A JP2004361136 A JP 2004361136A JP 4037863 B2 JP4037863 B2 JP 4037863B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
pipe
cooling
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361136A
Other languages
Japanese (ja)
Other versions
JP2006170489A (en
Inventor
道美 日下
孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2004361136A priority Critical patent/JP4037863B2/en
Priority to KR1020050031835A priority patent/KR100589912B1/en
Publication of JP2006170489A publication Critical patent/JP2006170489A/en
Application granted granted Critical
Publication of JP4037863B2 publication Critical patent/JP4037863B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の室内機を備え、冷房運転と暖房運転とを混在させて運転することが可能な空気調和装置に関する。   The present invention relates to an air conditioner that includes a plurality of indoor units and can be operated by mixing a cooling operation and a heating operation.

複数の室内機が1つの室外機に対して並列に接続された空気調和機としては、複数の室内機と室外機との間に冷暖切換装置を備えるものがある。冷暖切換装置には、室外機側から冷媒が通流する2本の接続配管が引き込まれ、これら接続配管のそれぞれが、高圧ガス冷媒が通流する接続配管と、低圧ガス冷媒が通流する接続配管と、液冷媒が通流する接続配管とに分岐させられ、分岐後の各接続配管が各室内機にそれぞれ接続される。冷房運転時には、液冷媒が室内機の熱交換器に流入して熱交換を行い、低圧ガス冷媒が室内機から排出される。暖房運転時には、ガス冷媒が室内機の熱交換器に流入して熱交換を行い、液冷媒が室内機から排出される。高圧ガス冷媒用の接続配管と、低圧ガス冷媒用の接続配管とは、冷暖切換装置内にて合流した後に室内機に接続されており、低圧ガス冷媒用の接続配管には、第1の開閉弁が設けられ、高圧ガス冷媒用の接続配管には、第2の開閉弁が設けられている。   Some air conditioners in which a plurality of indoor units are connected in parallel to one outdoor unit include a cooling / heating switching device between the plurality of indoor units and the outdoor unit. Two connection pipes through which the refrigerant flows from the outdoor unit side are drawn into the cooling / heating switching device, and each of these connection pipes is connected to a connection pipe through which the high-pressure gas refrigerant flows and a connection through which the low-pressure gas refrigerant flows. The pipe is branched into a pipe and a connection pipe through which the liquid refrigerant flows, and each branch pipe after branching is connected to each indoor unit. During the cooling operation, the liquid refrigerant flows into the heat exchanger of the indoor unit to exchange heat, and the low-pressure gas refrigerant is discharged from the indoor unit. During the heating operation, the gas refrigerant flows into the heat exchanger of the indoor unit to exchange heat, and the liquid refrigerant is discharged from the indoor unit. The connection pipe for the high-pressure gas refrigerant and the connection pipe for the low-pressure gas refrigerant are connected to the indoor unit after joining in the cooling / heating switching device, and the connection pipe for the low-pressure gas refrigerant has a first open / close state. A valve is provided, and a second open / close valve is provided in the connection pipe for the high-pressure gas refrigerant.

ここで、暖房運転から冷房運転時に切り換えるために、第2の開閉弁を閉じる同時に、第1の開閉弁を開くと、高圧ガス冷媒が低圧側の接続配管に流れ込んで、高圧冷媒が急減に減圧、膨張して、騒音が発生する。このような騒音の発生を防止するために、従来の空気調和機には、第1の開閉弁の両端をバイパスするように毛細管が接続され、さらに、第1の開閉弁の両端をバイパスするように第3の開閉弁が接続されているものがある(例えば、特許文献1参照)。暖房運転から冷房運転に切り換える際には、最初に第2の開閉弁を閉じ、第3の開閉弁を開いてその状態を所定時間の間保持し、その後に第1の開閉弁を開く。これによって、運転切換時の接続配管の間の急激な圧力変化が抑制され、冷媒音の発生が防止される。
特開平4−347467号公報
Here, in order to switch from the heating operation to the cooling operation, when the first on-off valve is opened simultaneously with closing the second on-off valve, the high-pressure gas refrigerant flows into the connection pipe on the low-pressure side, and the high-pressure refrigerant is suddenly reduced Swells and generates noise. In order to prevent the generation of such noise, a capillary tube is connected to the conventional air conditioner so as to bypass both ends of the first on-off valve, and further, both ends of the first on-off valve are bypassed. There is one to which a third on-off valve is connected (for example, see Patent Document 1). When switching from the heating operation to the cooling operation, the second on-off valve is first closed, the third on-off valve is opened, the state is maintained for a predetermined time, and then the first on-off valve is opened. Thereby, a rapid pressure change between the connecting pipes at the time of operation switching is suppressed, and generation of refrigerant noise is prevented.
JP-A-4-347467

しかしながら、このような空気調和機では低圧ガス冷媒用の接続配管のそれぞれに毛細管と、第3の開閉弁とを設ける必要があるので、部品点数が増大し、空気調和機全体としての大型化、高コスト化を招く原因となっていた。このような問題は、室内機の数が増えると特に顕著になる。
この発明は、このような事情に鑑みてなされたものであり、その目的とするところは、暖房運転から冷房運転に切り換える際の急激な圧力差を防止するように構成された空気調和機において、大型化、高コスト化を防止することである。
However, in such an air conditioner, since it is necessary to provide a capillary tube and a third on-off valve in each of the connection pipes for the low-pressure gas refrigerant, the number of parts increases, and the overall size of the air conditioner increases. This was a cause of high costs. Such a problem becomes particularly noticeable as the number of indoor units increases.
The present invention has been made in view of such circumstances, and an object thereof is an air conditioner configured to prevent a sudden pressure difference when switching from heating operation to cooling operation. This is to prevent an increase in size and cost.

上記の課題を解決する本発明の請求項1に係る発明は、圧縮機、四方弁、室外熱交換器、複数の室内機と、前記室内機の運転モードを冷房運転、又は暖房運転に切り換える切換弁を備える冷暖切換装置とを液配管、ガス配管で接続した空気調和機において、前記冷暖切換装置には、前記圧縮機の吐出側につながる高圧ガス配管と、前記圧縮機の吸入側につながる低圧ガス配管とを接続する第1減圧手段と、開閉弁とを有する第1バイパス経路を設け、前記第1減圧手段は、冷房運転と暖房運転とを同時に行う際の前記室内機の運転容量が最小となるときに、前記切換弁を開いても前記低圧ガス配管側と前記高圧ガス配管側との間の圧力差に起因する騒音が発生しないように流路抵抗が設定されており、前記室外機には、前記圧縮機の吐出側の配管と、前記圧縮機の吸入側の配管とを接続する第2減圧手段と、開閉弁とを有する第2バイパス経路を設け、少なくとも1つの前記室内機を暖房運転から冷房運転に切り換えるにあたり、前記複数の室内機の運転容量の合計が所定容量未満の場合に前記第1バイパス経路を開き、前記複数の室内機の運転容量の合計が前記所定容量以上の場合に前記第1バイパス経路及び第2バイパス経路を開くように構成したことを特徴とする空気調和機とした。
この空気調和機では、第1バイパス経路を用いて高圧ガス配管と低圧ガス配管との間の圧力差を低減させてから切換弁を開閉して暖房運転から冷房運転に切り換える。また、第2バイパス経路が設けられており、これら2つのバイパス経路を使用すると、高圧ガス配管と低圧ガス配管との圧力差がさらに低減される。さらに、第1バイパス経路を優先的に使用し、容量差が所定容量以上の場合には、第2バイパス経路を併用することで、ガス配管間の圧力差をさらに減少させる。
The invention according to claim 1 of the present invention that solves the above-described problems includes a compressor, a four-way valve, an outdoor heat exchanger, a plurality of indoor units, and switching for switching the operation mode of the indoor units to a cooling operation or a heating operation. In an air conditioner in which a cooling / heating switching device including a valve is connected by liquid piping and gas piping, the cooling / heating switching device includes a high pressure gas piping connected to a discharge side of the compressor and a low pressure connected to a suction side of the compressor. A first bypass path having a first pressure reducing means for connecting to the gas pipe and an on-off valve is provided, and the first pressure reducing means has a minimum operating capacity of the indoor unit when performing a cooling operation and a heating operation simultaneously. When the switching valve is opened, the flow path resistance is set so that noise caused by the pressure difference between the low-pressure gas pipe side and the high-pressure gas pipe side is not generated, and the outdoor unit On the discharge side of the compressor A tube, a second pressure reducing means for connecting the compressor suction side of the pipe, a second bypass path having a closing valve is provided, when at least one of the indoor unit switched to the cooling operation from the heating operation, the The first bypass path is opened when the total operating capacity of the plurality of indoor units is less than a predetermined capacity, and the first bypass path and the second when the total operating capacity of the plurality of indoor units is equal to or greater than the predetermined capacity. It was set as the air conditioner characterized by having comprised so that a bypass route might be opened .
In this air conditioner, the pressure difference between the high pressure gas pipe and the low pressure gas pipe is reduced using the first bypass path, and then the switching valve is opened and closed to switch from the heating operation to the cooling operation. Further, a second bypass path is provided, and when these two bypass paths are used, the pressure difference between the high pressure gas pipe and the low pressure gas pipe is further reduced. Furthermore, when the first bypass path is preferentially used and the capacity difference is equal to or greater than a predetermined capacity, the pressure difference between the gas pipes is further reduced by using the second bypass path in combination.

請求項に係る発明は、請求項1に記載の空気調和機において、前記圧縮機の吐出側に吐出圧力を検出する吐出圧力センサを設け、前記圧縮機の吸入側に吸入圧力を検出する吸入圧力センサを設け、前記吐出圧力センサ及び前記吸入圧力センサのそれぞれの検出値から前記高圧ガス配管の内圧と前記低圧配管の内圧との圧力差を演算する演算手段を設けたことを特徴とする。
この空気調和機では、圧力センサの出力から高圧ガス配管と、低圧ガス配管との圧力差を演算し、これに応じてバイパス経路の開閉制御を行う。
According to a second aspect of the present invention, in the air conditioner according to the first aspect, a discharge pressure sensor for detecting a discharge pressure is provided on the discharge side of the compressor, and the suction for detecting the suction pressure on the suction side of the compressor A pressure sensor is provided, and calculation means is provided for calculating a pressure difference between the internal pressure of the high-pressure gas pipe and the internal pressure of the low-pressure pipe from the detected values of the discharge pressure sensor and the suction pressure sensor.
In this air conditioner, the pressure difference between the high-pressure gas pipe and the low-pressure gas pipe is calculated from the output of the pressure sensor, and the opening and closing control of the bypass path is performed accordingly.

請求項に係る発明は、請求項に記載の空気調和機において、少なくとも1つの前記室内機を暖房運転から冷房運転に切り換えるにあたり、前記圧縮機の吐出圧力と吸入圧力との圧力差が所定圧力未満の場合に、前記第1バイパス経路を開き、圧力差が前記所定圧力以上の場合に、前記第1バイパス経路、及び第2バイパス経路を開くように構成したことを特徴とする。
この空気調和機では、圧力差に応じて第2バイパス経路を併用し、ガス配管間の圧力差を減少させる。
According to a third aspect of the present invention, in the air conditioner according to the second aspect , when the at least one indoor unit is switched from the heating operation to the cooling operation, a pressure difference between the discharge pressure and the suction pressure of the compressor is predetermined. The first bypass path is opened when the pressure is less than the pressure, and the first bypass path and the second bypass path are opened when the pressure difference is equal to or greater than the predetermined pressure.
In this air conditioner, the second bypass path is used in combination according to the pressure difference to reduce the pressure difference between the gas pipes.

請求項に係る発明は、請求項に記載の空気調和機において、前記第1バイパス経路、及び前記第2バイパス経路を開いた後に、前記圧縮機の吐出圧力と吸入圧力との圧力差が前記所定圧力以上の場合に、前記圧縮機の運転容量を減少させるように構成されていることを特徴とする。
この空気調和機では、第1、第2バイパス経路だけでは圧力差を十分に低減できない場合に、圧縮機の運転容量を減少させることで、高圧ガス配管と、低圧ガス配管との圧力差を減少させる。
According to a fourth aspect of the present invention, in the air conditioner according to the third aspect , after opening the first bypass path and the second bypass path, a pressure difference between the discharge pressure and the suction pressure of the compressor is increased. When the pressure is equal to or higher than the predetermined pressure, the operation capacity of the compressor is reduced.
In this air conditioner, when the pressure difference cannot be sufficiently reduced only by the first and second bypass paths, the pressure difference between the high pressure gas pipe and the low pressure gas pipe is reduced by reducing the operating capacity of the compressor. Let

請求項に係る発明は、請求項1に記載の空気調和機において、前記圧縮機が、圧縮室内部の高圧側と低圧側とをバイパスして容量制御が可能な圧縮機であることを特徴とする。
この空気調和機では、圧縮機が高圧側の圧縮室と、低圧側の圧縮室とをバイパスさせることで、運転容量を減少させ、その結果として高圧ガス配管と、低圧ガス配管との圧力差を減少させる。
The invention according to claim 5 is the air conditioner according to claim 1, wherein the compressor is a compressor capable of capacity control by bypassing a high-pressure side and a low-pressure side of a compression chamber. And
In this air conditioner, the compressor bypasses the compression chamber on the high pressure side and the compression chamber on the low pressure side, thereby reducing the operating capacity. As a result, the pressure difference between the high pressure gas pipe and the low pressure gas pipe is reduced. Decrease.

本発明によれば、高圧ガス配管と、低圧ガス配管とを接続可能なバイパス経路を、冷暖切換装置と、室外機とに1つずつ設けたので、これら2つのバイパス経路を適宜使用することによって、暖房運転から冷房運転に切り換える際の切換弁間の圧力差を低減することができる。従来のように、室内機ごとにバイパス経路を設ける場合に比べて装置構成が簡略し、装置の小型化、低コスト化が図れる。また、冷媒切換装置側の第1バイパス経路を室内機の運転容量が最小となる組み合わせに適合するように設定すると、運転容量が少ないときや、圧力差が小さいときに騒音の発生を防止できる。また、室外機側の第2バイパス経路を併用することで、運転容量が大きいときや、圧力差が大きいときでも騒音を防止することが可能になる。さらに、圧縮機の吐出圧力を適宜制御することで、運転容量がさらに大きい場合や、圧力差がさらに大きい場合でも騒音の発生を防止することができる。   According to the present invention, one bypass path that can connect the high-pressure gas pipe and the low-pressure gas pipe is provided in each of the cooling / heating switching device and the outdoor unit, and therefore, by appropriately using these two bypass paths. The pressure difference between the switching valves when switching from the heating operation to the cooling operation can be reduced. Compared to the case where a bypass path is provided for each indoor unit as in the prior art, the apparatus configuration is simplified, and the apparatus can be reduced in size and cost. In addition, if the first bypass path on the refrigerant switching device side is set so as to match the combination that minimizes the operating capacity of the indoor unit, noise can be prevented when the operating capacity is small or when the pressure difference is small. Further, by using the second bypass path on the outdoor unit side in combination, it is possible to prevent noise even when the operation capacity is large or the pressure difference is large. Furthermore, by appropriately controlling the discharge pressure of the compressor, it is possible to prevent the generation of noise even when the operating capacity is larger or the pressure difference is larger.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1にシステム構成を示すように、この実施形態に係る空気調和装置1は、室外機2を1つ有し、この室外機2に高圧ガス配管3、液配管4、及び低圧ガス配管5を介して複数の室内機6が並列に接続され、室内機群7が形成されている。なお、図1には、室内機6の数が6台の場合が図示されているが、例えば、10機や、12機など、任意の数の室内機6を接続することが可能である。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the air conditioner 1 according to this embodiment includes one outdoor unit 2, and the outdoor unit 2 includes a high-pressure gas pipe 3, a liquid pipe 4, and a low-pressure gas pipe 5. A plurality of indoor units 6 are connected in parallel to form an indoor unit group 7. Although FIG. 1 shows the case where the number of indoor units 6 is six, any number of indoor units 6 such as ten or twelve units can be connected.

室外機2は、圧縮機10を有している。圧縮機10は、容量可変型圧縮機が用いられている。このような圧縮機10としては、圧縮室内部の高圧側の圧縮室と、低圧側の圧縮室とをバイパス可能に構成され、バイパスの開度に応じて段階的に容量を減少可能なものが好適である。圧縮機10の吐出配管11は、オイルセパレータ12を介して、切換弁である四方弁13の第1のポート13Aに接続されている。   The outdoor unit 2 has a compressor 10. The compressor 10 is a variable capacity compressor. Such a compressor 10 is configured to be able to bypass the high-pressure side compression chamber and the low-pressure side compression chamber inside the compression chamber, and can reduce the capacity stepwise in accordance with the opening degree of the bypass. Is preferred. The discharge pipe 11 of the compressor 10 is connected via an oil separator 12 to a first port 13A of a four-way valve 13 that is a switching valve.

四方弁13は、不図示の制御装置の切り替え制御によって流路を切り替え可能になっており、図1では第1のポート13Aと、第2のポート13Bとが接続し、第3のポート13Cと第4のポート13Dとが接続しているが、第1のポート13Aと、第3のポート13Cとを接続させ、第2のポート13Bと、第4のポート13Dとを接続させることも可能である。四方弁13の第2のポート13Bには、配管14が接続されており、この配管14の途中には、バイパス配管15が接続されており、このバイパス配管15は、順番に、電磁弁からなる第1開閉弁16と、逆止弁17とが設けられた後に、高圧ガス配管3に接続されている。逆止弁17は、高圧ガス配管3側からのガス冷媒の逆流を防止するように設定されている。   The four-way valve 13 can switch the flow path by switching control of a control device (not shown). In FIG. 1, the first port 13A and the second port 13B are connected, and the third port 13C Although the fourth port 13D is connected, it is also possible to connect the first port 13A and the third port 13C and connect the second port 13B and the fourth port 13D. is there. A pipe 14 is connected to the second port 13B of the four-way valve 13, and a bypass pipe 15 is connected in the middle of the pipe 14, and the bypass pipe 15 is composed of an electromagnetic valve in order. After the first on-off valve 16 and the check valve 17 are provided, they are connected to the high-pressure gas pipe 3. The check valve 17 is set so as to prevent the backflow of the gas refrigerant from the high-pressure gas pipe 3 side.

さらに、配管14には、第1の配管18と、第2の配管19とが接続されている。第1の配管18には、室外熱交換器21が設けられ、配管22に接続されている。第2の配管19には、室外熱交換器23が設けられ、配管22に接続されている。配管22には、膨張弁24が設けられると共に、レシーバタンク25を介して液配管4に接続されている。さらに、配管22には、膨張弁24をバイパスするバイパス配管50が設けられている。バイパス配管50は、流量調整弁としての電磁弁51と、逆止弁52とが直列に配管接続されており、冷房運転時等には第1、第2室外熱交換器21,23から出た液冷媒がこれらバイパス配管50を経て膨張弁24をバイパス可能、かつ暖房運転時等にはこのバイパス配管50が閉止されて冷媒が膨張弁24を通過可能とされている。   Further, a first pipe 18 and a second pipe 19 are connected to the pipe 14. The first pipe 18 is provided with an outdoor heat exchanger 21 and connected to the pipe 22. The second pipe 19 is provided with an outdoor heat exchanger 23 and connected to the pipe 22. The pipe 22 is provided with an expansion valve 24 and is connected to the liquid pipe 4 via a receiver tank 25. Further, the piping 22 is provided with a bypass piping 50 that bypasses the expansion valve 24. In the bypass pipe 50, a solenoid valve 51 as a flow rate adjusting valve and a check valve 52 are connected in series. The bypass pipe 50 exits from the first and second outdoor heat exchangers 21 and 23 during cooling operation or the like. Liquid refrigerant can bypass the expansion valve 24 through these bypass pipes 50, and the bypass pipe 50 is closed during heating operation or the like so that the refrigerant can pass through the expansion valve 24.

なお、四方弁13の第3のポート13Cには、高圧ガス配管3が接続されている。高圧ガス配管3には、第3のポート13Cへの接続点と、バイパス配管15の合流点との間に逆支弁26が設けられている。この逆止弁26は、室内機6側からのガス冷媒の逆流を防止するように設定されている。また、第4のポート13Dには、配管30が接続されており、この配管30は、低圧ガス配管5と合流した後に、アキュームレータ31を介して圧縮機10の吸入配管32に接続されている。ここで、圧縮機10の吐出配管11には吐出圧力センサ33Aが設けられており、吸入配管32には吸入圧力センサ33Bが設けられている。これらセンサ33A,33Bの出力は、空気調和機1の制御を行う制御装置34に接続されている。なお、制御装置34は、各センサ33A,33Bの検出結果に応じて高圧ガス配管3の圧力と、低圧ガス配管5の圧力との圧力差を演算する演算手段、各弁の開閉制御をする切換制御手段として機能する。   The high pressure gas pipe 3 is connected to the third port 13C of the four-way valve 13. The high-pressure gas pipe 3 is provided with a reverse valve 26 between the connection point to the third port 13 </ b> C and the junction point of the bypass pipe 15. The check valve 26 is set so as to prevent the backflow of the gas refrigerant from the indoor unit 6 side. Further, a pipe 30 is connected to the fourth port 13D, and this pipe 30 is connected to the suction pipe 32 of the compressor 10 via the accumulator 31 after joining the low-pressure gas pipe 5. Here, the discharge pipe 11 of the compressor 10 is provided with a discharge pressure sensor 33A, and the suction pipe 32 is provided with a suction pressure sensor 33B. The outputs of these sensors 33A and 33B are connected to a control device 34 that controls the air conditioner 1. The control device 34 is a calculation means for calculating a pressure difference between the pressure of the high-pressure gas pipe 3 and the pressure of the low-pressure gas pipe 5 according to the detection results of the sensors 33A and 33B, and switching for controlling the opening and closing of the valves. It functions as a control means.

室外機2から室内機6に向かって延びる高圧ガス配管3、液配管4、及び低圧ガス配管5は、冷暖切換装置35内で分岐した後に各室内機6に接続されている。
高圧ガス配管3の分岐配管3Aには、電磁弁からなる暖房用切換弁36が設けられている。低圧ガス配管5の分岐配管5Aには、電磁弁からなる冷房用切換弁37が設けられている。これら分岐配管3Aと、分岐配管5Aとは、一本ずつ合流し、室内機6の室内熱交換器38の一端側に接続されている。液配管4の分岐配管4Aには、室内機6内で膨張弁39が設けられており、室内熱交換機38の他端側に接続されている。
The high-pressure gas pipe 3, the liquid pipe 4, and the low-pressure gas pipe 5 extending from the outdoor unit 2 toward the indoor unit 6 are connected to the indoor units 6 after branching in the cooling / heating switching device 35.
The branch pipe 3A of the high-pressure gas pipe 3 is provided with a heating switching valve 36 composed of an electromagnetic valve. The branch pipe 5A of the low-pressure gas pipe 5 is provided with a cooling switching valve 37 made of an electromagnetic valve. These branch pipes 3 </ b> A and branch pipes 5 </ b> A join one by one and are connected to one end side of the indoor heat exchanger 38 of the indoor unit 6. The branch pipe 4 </ b> A of the liquid pipe 4 is provided with an expansion valve 39 in the indoor unit 6 and is connected to the other end side of the indoor heat exchanger 38.

さらに、冷暖切換装置35には、高圧ガス配管3から各分岐配管3Aに分岐する分岐点の室外機2側と、低圧ガス配管5から各分岐配管5Aに分岐する分岐点の室外機2側とを接続可能な第1バイパス経路40が設けられている。第1バイパス経路40は、高圧ガス配管3と低圧ガス配管5とを接続させる配管41を有し、配管41には高圧ガス配管3側から、第1バイパス開閉弁42と、第1減圧手段であるキャピラリチューブ43とが配設されている。第1バイパス開閉弁42は、全閉可能な減圧機構であれば良く、例えば、全閉可能な電子膨張弁(電動膨張弁)を用いることができる。キャピラリチューブ43は、高圧ガス配管3と、低圧ガス配管5との間の圧力差を小さくする観点からは、流路面積が大きく、大きな流量を確保を確保できるものが望ましいが、第1バイパス経路40を通流するガス冷媒の騒音を抑制する観点からは、できるだけ流路抵抗が大きいものが望ましい。したがって、この実施の形態では、室内機6の運転容量が、冷暖同時運転時の最小となる組み合わせ、つまり、冷房運転している室内機6が1台で、暖房運転している室内機6が1台のときに、第1バイパス経路40に高圧ガス冷媒を通流させたときに騒音が発生しないように、流路抵抗等を設定している。   Further, the cooling / heating switching device 35 includes a branch point outdoor unit 2 branching from the high pressure gas pipe 3 to each branch pipe 3A, and a branch point outdoor unit 2 branching from the low pressure gas pipe 5 to each branch pipe 5A. A first bypass path 40 is provided. The first bypass path 40 has a pipe 41 that connects the high-pressure gas pipe 3 and the low-pressure gas pipe 5, and the pipe 41 includes a first bypass on-off valve 42 and a first pressure reducing means from the high-pressure gas pipe 3 side. A certain capillary tube 43 is provided. The first bypass opening / closing valve 42 may be any pressure-reducing mechanism that can be fully closed. For example, an electronic expansion valve (electric expansion valve) that can be fully closed can be used. From the viewpoint of reducing the pressure difference between the high-pressure gas pipe 3 and the low-pressure gas pipe 5, the capillary tube 43 preferably has a large flow path area and can ensure a large flow rate. From the viewpoint of suppressing the noise of the gas refrigerant flowing through 40, it is desirable that the flow path resistance is as large as possible. Therefore, in this embodiment, the indoor unit 6 has a minimum operating capacity at the time of simultaneous cooling and heating, that is, one indoor unit 6 that is performing cooling operation and one indoor unit 6 that is performing heating operation. The flow path resistance and the like are set so that no noise is generated when the high pressure gas refrigerant is passed through the first bypass path 40 in the case of one unit.

また、室外機2には、吐出配管11と、吸入配管32とを接続可能な第2バイパス経路45が設けられている。第2バイパス経路45は、配管46と、配管46に吐出配管11側から配設される第2バイパス開閉弁47と、第2減圧手段であるキャピラリチューブ48とを有している。第2バイパス開閉弁47は、全閉可能な減圧機構であれば良く、例えば、全閉可能な電子膨張弁(電動膨張弁)を用いることができる。   The outdoor unit 2 is provided with a second bypass path 45 that can connect the discharge pipe 11 and the suction pipe 32. The second bypass path 45 includes a pipe 46, a second bypass on-off valve 47 disposed on the pipe 46 from the discharge pipe 11 side, and a capillary tube 48 serving as a second decompression unit. The second bypass on-off valve 47 may be any pressure-reducing mechanism that can be fully closed. For example, an electronic expansion valve (electric expansion valve) that can be fully closed can be used.

次に、この実施の形態の作用について説明する。なお、この空気調和装置1では、複数の室内機6の全てが冷房となる冷房運転と、全てが暖房となる暖房運転と、室内機6ごとに冷房運転と暖房運転とが混在する冷暖混在運転とを実施することができる。冷暖混在運転の場合には、主に冷房主体運転、又は暖房主体運転を実施することができる。冷房主体運転とは、冷房運転が支配的、つまり室内機群7の蒸発能力の合計値の方が凝縮能力の合計値よりも大きくなる運転である。暖房主体運転とは、暖房運転が支配的、つまり室内機群7の凝縮能力の合計値の方が蒸発能力の合計値よりも大きくなる運転である。   Next, the operation of this embodiment will be described. In the air conditioner 1, a cooling operation in which all of the plurality of indoor units 6 are cooled, a heating operation in which all of the indoor units 6 are heated, and a cooling / heating mixed operation in which the cooling operation and the heating operation are mixed for each indoor unit 6. And can be implemented. In the case of the cooling and heating mixed operation, the cooling main operation or the heating main operation can be mainly performed. The cooling main operation is an operation in which the cooling operation is dominant, that is, the total value of the evaporation capacity of the indoor unit group 7 is larger than the total value of the condensation capacity. The heating main operation is an operation in which the heating operation is dominant, that is, the total value of the condensation capacity of the indoor unit group 7 is larger than the total value of the evaporation capacity.

まず、全ての室内機6を冷房運転する場合には、四方弁13の第1のポート13Aと、第2のポート13Bとを接続させ、第3のポート13Cと第4のポート13Dとを接続させ、バイパス配管50の電磁弁51を開く。冷暖切換装置35では、全ての暖房用切換弁36を閉じ、全ての冷房用切換弁37を開く。圧縮機10からの高圧のガス冷媒は、四方弁13から両室外熱交換器21,23を通って液冷媒となり、バイパス配管50を介して液配管4から分岐管4Aを通り、膨張弁39で減圧された後に各室内熱交換機38に流入し、ここで熱交換によって室内を冷房し、低圧のガス冷媒となり、分岐管5Aから低圧ガス配管5を通り、アキュームレータ31から吸入配管32を通って圧縮機10に吸入される。   First, when cooling all the indoor units 6, the first port 13A and the second port 13B of the four-way valve 13 are connected, and the third port 13C and the fourth port 13D are connected. The electromagnetic valve 51 of the bypass pipe 50 is opened. In the cooling / heating switching device 35, all the heating switching valves 36 are closed, and all the cooling switching valves 37 are opened. The high-pressure gas refrigerant from the compressor 10 passes through the outdoor heat exchangers 21 and 23 from the four-way valve 13 to become liquid refrigerant, passes through the branch pipe 4A from the liquid pipe 4 via the bypass pipe 50, and is expanded by the expansion valve 39. After being depressurized, the refrigerant flows into each indoor heat exchanger 38, where the room is cooled by heat exchange to become a low-pressure gas refrigerant, and is compressed from the branch pipe 5A through the low-pressure gas pipe 5 and from the accumulator 31 through the suction pipe 32. Inhaled by the machine 10.

冷房主体運転時には、四方弁13は冷房運転と同じままで、バイパス配管15の第1開閉弁16を開き、バイパス配管50の電磁弁51を閉じる。図2に例示するように、3台の室内機6A,6B,6Cが冷房運転し、室内機6Dが暖房運転をする場合には、冷暖切換装置35において、室内機6A,6B,6C側の冷房用切換弁37と、室内機6D側の暖房用切換弁36とを開き、他の切換弁36,37は全て閉じる。圧縮機10から吐出された冷媒は、四方弁13の第1、第2のポート13A,13Bを経て室外熱交換器21,23により凝縮して、高圧液冷媒として膨張弁24、レシーバタンク25を介し液配管4から室内機6C側に供給され、膨張弁39で減圧されて室内熱交換器38で蒸発することにより室内を冷房し、さらに低圧ガスとして低圧ガス配管5からを経て圧縮機10の吸入側に循環させられる。また、圧縮機10から吐出して四方弁13を経た冷媒の一部は、バイパス配管15を通って、高圧ガス配管3から圧縮機6Dに流入し、室内熱交換機38で凝縮することにより室内を暖房し、さらに膨張弁39を介し液配管4に供給されて、冷房運転する室内機6Cに供給される冷媒と合流して冷房に供された後、低圧ガス配管5から吸入配管32を通って圧縮機10に吸入される。   During the cooling main operation, the four-way valve 13 remains the same as the cooling operation, the first on-off valve 16 of the bypass pipe 15 is opened, and the electromagnetic valve 51 of the bypass pipe 50 is closed. As illustrated in FIG. 2, when the three indoor units 6A, 6B, and 6C are in the cooling operation and the indoor unit 6D is in the heating operation, the cooling / heating switching device 35 has the indoor units 6A, 6B, and 6C side. The cooling switching valve 37 and the heating switching valve 36 on the indoor unit 6D side are opened, and the other switching valves 36 and 37 are all closed. The refrigerant discharged from the compressor 10 is condensed by the outdoor heat exchangers 21 and 23 through the first and second ports 13A and 13B of the four-way valve 13, and the expansion valve 24 and the receiver tank 25 are used as high-pressure liquid refrigerant. Is supplied from the liquid pipe 4 to the indoor unit 6C side, depressurized by the expansion valve 39 and evaporated by the indoor heat exchanger 38, thereby cooling the room and further passing through the low-pressure gas pipe 5 as low-pressure gas. Circulated to the suction side. Further, a part of the refrigerant discharged from the compressor 10 and passing through the four-way valve 13 passes through the bypass pipe 15 and flows into the compressor 6D from the high-pressure gas pipe 3 and is condensed in the indoor heat exchanger 38 so that the room. After heating, the refrigerant is supplied to the liquid pipe 4 via the expansion valve 39, merged with the refrigerant supplied to the indoor unit 6C that performs the cooling operation, and supplied to the cooling, and then passes from the low-pressure gas pipe 5 through the suction pipe 32. It is sucked into the compressor 10.

また、全ての室内機6を暖房運転する場合には、四方弁13の第1のポート13Aと第3のポート13Cとを接続させ、第2のポート13Bと第4のポート13Dとを接続させる。冷暖切換装置35では、全ての暖房用切換弁36を開いて、全ての冷房用切換弁37を閉じる。圧縮機10からの高圧のガス冷媒は、四方弁13から高圧ガス配管3を通り、分岐管3Aを通って各室内熱交換機38に流入し、ここで熱交換によって室内を暖房し、液冷媒となり、分岐管4Aから液配管4を通り、第1、第2室外熱交換器21,23を通ってガス冷媒となる。この際に、逆止弁52の存在によりバイパス配管50に液冷媒が流れることない。そして、第1、第2室外熱交換器21,23から排出される低圧のガス冷媒は、四方弁13の第2のポート13B、第4のポート13Dを通り、吸入配管32から圧縮機10に吸入される。   When all the indoor units 6 are operated for heating, the first port 13A and the third port 13C of the four-way valve 13 are connected, and the second port 13B and the fourth port 13D are connected. . In the cooling / heating switching device 35, all the heating switching valves 36 are opened, and all the cooling switching valves 37 are closed. The high-pressure gas refrigerant from the compressor 10 passes through the high-pressure gas pipe 3 from the four-way valve 13 and flows into each indoor heat exchanger 38 through the branch pipe 3A, where the room is heated by heat exchange and becomes liquid refrigerant. From the branch pipe 4A through the liquid pipe 4, the first and second outdoor heat exchangers 21, 23 become gas refrigerant. At this time, the liquid refrigerant does not flow into the bypass pipe 50 due to the presence of the check valve 52. The low-pressure gas refrigerant discharged from the first and second outdoor heat exchangers 21 and 23 passes through the second port 13B and the fourth port 13D of the four-way valve 13 and passes from the suction pipe 32 to the compressor 10. Inhaled.

暖房主体運転時には、四方弁13は暖房運転と同じままで、バイパス配管15の第1開閉弁16を閉じる。図3に例示するように、室内機6Aが冷房運転し、室内機6B,6C,6Dが暖房運転をする場合には、冷暖切換装置35において、室内機6A側の冷房用切換弁37と、室内機6B,6C,6D側の暖房用切換弁36とを開き、他の切換弁36,37は全て閉じる。圧縮機10から吐出された冷媒は、四方弁13の第1、第3のポート13A,13Cを経て逆止弁26を介し高圧ガス配管3に供給され、さらに冷暖切換装置35の暖房用切換弁36から室内機6Bの室内熱交換器38に供給され、ここで凝縮することによって室内を暖房し、膨張弁39を介して高圧液管4に送られる。ここで、この高圧液管4に送られた冷媒の一部は、室内機6Aに供給され、その室内熱交換器38において蒸発することによって室内を冷房し、低圧ガス配管5を通り圧縮機10に吸入される。また、高圧液管4に送られた残りの冷媒も室外機2側に戻され、レシーバタンク25、膨張弁24を経て室外熱交換器21,23において蒸発し、四方弁13の第3、第4のポート13C,13Dを経て、圧縮機10に吸入される。   During the heating main operation, the four-way valve 13 remains the same as in the heating operation, and the first on-off valve 16 of the bypass pipe 15 is closed. As illustrated in FIG. 3, when the indoor unit 6A performs a cooling operation and the indoor units 6B, 6C, and 6D perform a heating operation, the cooling / heating switching device 35 includes a cooling switching valve 37 on the indoor unit 6A side, The switching valve 36 for heating on the indoor units 6B, 6C, and 6D side is opened, and the other switching valves 36 and 37 are all closed. The refrigerant discharged from the compressor 10 is supplied to the high-pressure gas pipe 3 via the check valve 26 via the first and third ports 13A and 13C of the four-way valve 13, and further, the heating switching valve of the cooling / heating switching device 35. The air is supplied from 36 to the indoor heat exchanger 38 of the indoor unit 6B, where it is condensed to heat the room and sent to the high-pressure liquid pipe 4 via the expansion valve 39. Here, a part of the refrigerant sent to the high-pressure liquid pipe 4 is supplied to the indoor unit 6 </ b> A, and is evaporated in the indoor heat exchanger 38 to cool the room, passes through the low-pressure gas pipe 5, and the compressor 10. Inhaled. The remaining refrigerant sent to the high-pressure liquid pipe 4 is also returned to the outdoor unit 2 side, evaporates in the outdoor heat exchangers 21 and 23 through the receiver tank 25 and the expansion valve 24, and the third and third of the four-way valve 13. 4 is sucked into the compressor 10 through the ports 13C and 13D.

なお、複数の室内機6間において冷房運転するものと暖房運転するものとが同数であるときに例示されるように、冷・暖房の負荷がバランスした運転を行う場合には、例えば室外気温が低いときには、室外機2側では四方弁13は暖房主体運転時と同じにしておいて、バイパス配管15の第1開閉弁16も閉じておき、室内機6側ではその冷・暖房運転に合わせて上記冷・暖房主体運転時と同様に切換弁36,37をそれぞれ開閉する。この場合、圧縮機10から吐出した冷媒は、四方弁13の第1、第3のポート13A,13Cを経て高圧ガス配管3、冷暖切換装置35を介し、まず暖房運転を行う室内機6に供給されて凝縮することにより室内の暖房に使用され、次いで冷暖切換装置35において高圧液管4を介し冷房運転を行う室内機6に供給されて蒸発することにより室内の冷房に使用されてから、低圧ガス配管5から圧縮機10に吸入される。また、逆に室外気温が高いときには、冷房主体運転時と同様の接続としておいてバランス運転を行うこともできる。そして、このように室外気温に応じて冷・暖いずれかの主体運転時と同様の接続としておけば、室外気温が高い場合に冷房負荷が増えたり、逆に室外気温が低い場合に暖房負荷が増えたりした場合でも、四方弁13を切り換えることなく速やかに冷房主体運転、又は暖房主体運転に移行することができる。   In addition, when performing the operation in which the load of cooling / heating is balanced, as exemplified when the number of cooling operations and the number of heating operations among the plurality of indoor units 6 are the same, for example, the outdoor air temperature is When the temperature is low, the four-way valve 13 on the outdoor unit 2 side is the same as that in the heating-main operation, the first on-off valve 16 of the bypass pipe 15 is also closed, and the indoor unit 6 side is adjusted to the cooling / heating operation. The switching valves 36 and 37 are opened and closed in the same manner as in the cooling / heating main operation. In this case, the refrigerant discharged from the compressor 10 is first supplied to the indoor unit 6 that performs the heating operation through the first and third ports 13A and 13C of the four-way valve 13 via the high-pressure gas pipe 3 and the cooling / heating switching device 35. Then, it is used for indoor heating by condensing, and then supplied to the indoor unit 6 that performs cooling operation via the high-pressure liquid pipe 4 in the cooling / heating switching device 35 and then used for indoor cooling by evaporating. The gas pipe 5 is sucked into the compressor 10. Conversely, when the outdoor air temperature is high, the balance operation can be performed with the same connection as in the cooling main operation. If the connection is made in the same manner as in the main operation of either cold or warm according to the outdoor temperature, the cooling load increases when the outdoor temperature is high, or conversely the heating load is low when the outdoor temperature is low. Even if it increases, it is possible to promptly shift to the cooling main operation or the heating main operation without switching the four-way valve 13.

ここで、暖房運転から冷房運転に切り換える際の動作について、図4のフローチャート、及び図5のタイミングチャートを主に参照して説明する。なお、図5では、圧縮機10、各バイパス経路40,45、各切換弁36,37の制御と、これに伴って変化する空気調和機1のシステム圧力の変化とが図示されており、システム圧力の高圧とは、高圧ガス配管3内のガス冷媒の圧力を示し、システム圧力の低圧とは、低圧ガス配管5内のガス冷媒の圧力を示している。これら圧力は、吐出圧力センサ33A、吸入圧力センサ33Bによってそれぞれ検出される。   Here, the operation when switching from the heating operation to the cooling operation will be described with reference mainly to the flowchart of FIG. 4 and the timing chart of FIG. FIG. 5 illustrates the control of the compressor 10, the bypass paths 40 and 45, and the switching valves 36 and 37, and the change in the system pressure of the air conditioner 1 that changes accordingly. The high pressure indicates the pressure of the gas refrigerant in the high pressure gas pipe 3, and the low pressure of the system pressure indicates the pressure of the gas refrigerant in the low pressure gas pipe 5. These pressures are detected by the discharge pressure sensor 33A and the suction pressure sensor 33B, respectively.

まず、暖房運転中に(ステップS1)、冷房運転への切換命令がなされると(ステップS2)、室内機6の合計容量、又は高圧ガス配管3と低圧ガス配管4との圧力差を取得し、室内機6の合計容量が所定容量以上、又は圧力差が所定値以上の場合には(ステップS3においてNo)、第1バイパス経路40の第1バイパス開閉弁42を開く(ステップS4A)。これによって、第1バイパス経路40において高圧ガス配管3中の高圧ガス冷媒が低圧ガス配管5に流れ込み、図5に一例を示すシステム圧力のように、高圧側のガス冷媒の圧力が下がり、低圧側のガス冷媒が上昇し、両者の差が小さくなる。   First, during a heating operation (step S1), when a command to switch to a cooling operation is issued (step S2), the total capacity of the indoor unit 6 or the pressure difference between the high pressure gas pipe 3 and the low pressure gas pipe 4 is acquired. When the total capacity of the indoor unit 6 is equal to or larger than the predetermined capacity or the pressure difference is equal to or larger than the predetermined value (No in Step S3), the first bypass opening / closing valve 42 of the first bypass path 40 is opened (Step S4A). As a result, the high-pressure gas refrigerant in the high-pressure gas pipe 3 flows into the low-pressure gas pipe 5 in the first bypass path 40, and the pressure of the high-pressure side gas refrigerant decreases as in the system pressure shown as an example in FIG. The gas refrigerant rises and the difference between the two becomes small.

さらに、第2バイパス経路45の第2バイパス開閉弁47を開いて(ステップS5)、第2バイパス経路45を高圧ガス冷媒が低圧ガス配管5に流れ込ませる。これによって、図5に例示するように、システム圧力の高圧側のガス冷媒の圧力が下がり、低圧側のガス冷媒が上昇し、両者の差がさらに小さくなる。システムの圧力差が所定値未満になるまで減少させた後に、暖房用切換弁36を閉じ(ステップS8)、次いで冷房用切換弁37を開き(ステップS9)、前記した冷房運転を開始する。   Further, the second bypass opening / closing valve 47 of the second bypass path 45 is opened (step S5), and the high-pressure gas refrigerant flows into the low-pressure gas pipe 5 through the second bypass path 45. As a result, as illustrated in FIG. 5, the pressure of the gas refrigerant on the high pressure side of the system pressure decreases, the gas refrigerant on the low pressure side increases, and the difference between the two decreases further. After the pressure difference of the system is decreased to less than a predetermined value, the heating switching valve 36 is closed (step S8), then the cooling switching valve 37 is opened (step S9), and the above-described cooling operation is started.

一方、ステップS3において、室内機6の合計容量が所定値未満、又は圧力差が所定値未満の場合には(ステップS3でYes)、第1バイパス経路40の第1バイパス開閉弁42を開いてから(ステップS4B)、ステップS8に進む。これは、容量差、又は圧力差が元々小さいために、第1バイパス経路40を開くのみで、冷房用切換弁37の前後の圧力差が騒音の発生が防止できる程度に小さくなるためである。   On the other hand, when the total capacity of the indoor unit 6 is less than the predetermined value or the pressure difference is less than the predetermined value in step S3 (Yes in step S3), the first bypass opening / closing valve 42 of the first bypass path 40 is opened. (Step S4B), the process proceeds to step S8. This is because the capacity difference or the pressure difference is originally small, so that the pressure difference before and after the cooling switching valve 37 is small enough to prevent the generation of noise simply by opening the first bypass path 40.

このような制御を行うにあたり、判定の閾値となる所定値と、第1バイパス経路40の設計値は、例えば、室内機6を12台備える場合には、冷暖混在運転の最小単位である2台の室内機6がそれぞれ冷房運転、暖房運転している条件下で、冷房用切換弁37を開いたときに、騒音が発生しない圧力差、又は容量が所定値となる。また、このときの容量差、及び圧力差で騒音が発生しないように、第1バイパス経路40、特にキャピラリチューブ43の流路面積や、長さ、形状が設計されている。   In performing such control, the predetermined value serving as the determination threshold and the design value of the first bypass path 40 are, for example, two units that are the minimum unit of the cooling and heating mixed operation when twelve indoor units 6 are provided. When the cooling switching valve 37 is opened under the condition that each of the indoor units 6 is in the cooling operation and the heating operation, the pressure difference or capacity at which no noise is generated becomes a predetermined value. In addition, the flow path area, length, and shape of the first bypass path 40, particularly the capillary tube 43, are designed so that no noise is generated due to the capacity difference and the pressure difference.

ここで、空気調和機1の圧縮機10が容量可変型であるので、ステップS5からステップS8に進まず、ステップS6、及びステップS7を経てからステップS8に進むように制御を行っても良い。すなわち、ステップS5において、システムの圧力差が所定値以上である場合には(ステップS6においてNo)、圧縮機10の容量を減少させる(ステップS7)。これによって、図5のシステム圧力の圧力差がさらに減少する。そして、ステップS6でシステムの圧力差が所定値未満であった場合、及びステップS7で圧縮機10の容量を変化させて、なお、ステップS3における圧力条件と、ステップS6における圧力条件とは、同じものが適用されている。   Here, since the compressor 10 of the air conditioner 1 is a variable capacity type, the control may be performed so that the process does not proceed from step S5 to step S8, but proceeds to step S8 after passing through step S6 and step S7. That is, when the system pressure difference is equal to or larger than the predetermined value in step S5 (No in step S6), the capacity of the compressor 10 is decreased (step S7). This further reduces the pressure difference in the system pressure of FIG. If the system pressure difference is less than the predetermined value in step S6 and the capacity of the compressor 10 is changed in step S7, the pressure condition in step S3 and the pressure condition in step S6 are the same. Things have been applied.

この実施の形態では、高圧ガス配管3と低圧ガス配管5とを接続可能な手段として、冷暖切換装置35に第1バイパス経路40を設けたので、従来のように冷房用切換弁37ごとにバイパスを設ける場合に比べて、装置構成が簡略化し、装置を小型化、低コスト化することができる。また、第1バイパス経路40に加えて、同様の構成を有する第2バイパス経路45を室外機2側に設けたので、多数の室内機6が運転している場合のように、第1バイパス経路40のみでは短時間に圧力差を減少させることができない場合であっても両バイパス経路40,45を協働させることで圧力差を低減させ、騒音の発生を防止することができる。また、このように構成すると、容量差が小さい場合や、圧力差が小さい場合に騒音が発生しないように第1バイパス経路40を設計することができる。また、圧力差を取得にするにあたり、圧縮機10側の吐出圧力センサ33Aと、吸入圧力センサ33Bとを用いるようにしたので、圧縮機10の吐出圧力の制御を行いつつ、各バイパス経路40,45の制御を行うことが可能になる。   In this embodiment, since the first bypass path 40 is provided in the cooling / heating switching device 35 as means for connecting the high-pressure gas pipe 3 and the low-pressure gas pipe 5, a bypass is provided for each cooling switching valve 37 as in the prior art. Compared with the case where the device is provided, the device configuration can be simplified, and the device can be reduced in size and cost. Since the second bypass path 45 having the same configuration is provided on the outdoor unit 2 side in addition to the first bypass path 40, the first bypass path is as in the case where many indoor units 6 are operating. Even if only 40 cannot reduce the pressure difference in a short time, the pressure difference can be reduced by cooperating both bypass paths 40 and 45, and the generation of noise can be prevented. Moreover, if comprised in this way, the 1st bypass path 40 can be designed so that a noise may not generate | occur | produce when a capacity | capacitance difference is small or a pressure difference is small. Further, since the discharge pressure sensor 33A and the suction pressure sensor 33B on the compressor 10 side are used for obtaining the pressure difference, each bypass path 40, while controlling the discharge pressure of the compressor 10, is used. 45 can be controlled.

さらに、圧縮機10を容量可変型にすることで、圧縮機10においても圧力差を低減させることが可能になり、第1、第2バイパス経路40,45でもシステムの圧力差が十分に下がらない場合には、圧縮機10において吐出圧力の調整を行うことで運転切換時の騒音の発生を防止できる。   Furthermore, by making the compressor 10 variable capacity type, it becomes possible to reduce the pressure difference even in the compressor 10, and the pressure difference of the system is not sufficiently reduced even in the first and second bypass paths 40 and 45. In this case, by adjusting the discharge pressure in the compressor 10, it is possible to prevent the generation of noise during operation switching.

なお、本発明は、前記の実施の形態に限定されずに広く応用することができる。
例えば、圧縮機10は、圧力差を低減し易い容量可変型を用いることが好ましいが、インバータ方式のものを用いることも可能である。この場合には、図4に示すステップS7では、周波数を下げてモータの回転数を落として圧力差を低減させる。
Note that the present invention can be widely applied without being limited to the above-described embodiment.
For example, the compressor 10 is preferably a variable capacity type that can easily reduce the pressure difference, but an inverter type can also be used. In this case, in step S7 shown in FIG. 4, the pressure difference is reduced by lowering the frequency and lowering the rotational speed of the motor.

本発明の実施の形態に係る空気調和装置のシステム構成図である。It is a system configuration figure of the air harmony device concerning an embodiment of the invention. 冷房主体運転時の冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant at the time of cooling main operation. 暖房主体運転時の冷媒の流れを説明する図である。It is a figure explaining the flow of the refrigerant at the time of heating main operation. 暖房運転から冷房運転に切り換える際の処理を説明するフローチャートである。It is a flowchart explaining the process at the time of switching from heating operation to cooling operation. 暖房運転から冷房運転に切り換える際のタイミングチャートである。It is a timing chart at the time of switching from heating operation to cooling operation.

符号の説明Explanation of symbols

1 空気調和機
2 室外機
3 高圧ガス配管
4 液配管
5 低圧ガス配管
6 室内機
13 四方弁
21,23 室外熱交換器
33A 吐出圧力センサ
33B 吸入圧力センサ
34 制御装置(演算手段)
35 冷暖切換装置
40 第1バイパス経路
42 第1バイパス開閉弁
43 キャピラリチューブ(第1減圧手段)
45 第2バイパス経路
47 第2バイパス開閉弁
48 キャピラリチューブ(第2減圧手段)

DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 High pressure gas piping 4 Liquid piping 5 Low pressure gas piping 6 Indoor unit 13 Four-way valve 21, 23 Outdoor heat exchanger 33A Discharge pressure sensor 33B Suction pressure sensor 34 Control device (calculation means)
35 Cooling / heating switching device 40 First bypass path 42 First bypass on-off valve 43 Capillary tube (first decompression means)
45 Second bypass path 47 Second bypass on-off valve 48 Capillary tube (second decompression means)

Claims (5)

圧縮機、四方弁、室外熱交換器、複数の室内機と、前記室内機の運転モードを冷房運転、又は暖房運転に切り換える切換弁を備える冷暖切換装置とを液配管、ガス配管で接続した空気調和機において、
前記冷暖切換装置には、前記圧縮機の吐出側につながる高圧ガス配管と、前記圧縮機の吸入側につながる低圧ガス配管とを接続する第1減圧手段と、開閉弁とを有する第1バイパス経路を設け、前記第1減圧手段は、冷房運転と暖房運転とを同時に行う際の前記室内機の運転容量が最小となるときに、前記切換弁を開いても前記低圧ガス配管側と前記高圧ガス配管側との間の圧力差に起因する騒音が発生しないように流路抵抗が設定されており、前記室外機には、前記圧縮機の吐出側の配管と、前記圧縮機の吸入側の配管とを接続する第2減圧手段と、開閉弁とを有する第2バイパス経路を設け、少なくとも1つの前記室内機を暖房運転から冷房運転に切り換えるにあたり、前記複数の室内機の運転容量の合計が所定容量未満の場合に前記第1バイパス経路を開き、前記複数の室内機の運転容量の合計が前記所定容量以上の場合に前記第1バイパス経路及び第2バイパス経路を開くように構成したことを特徴とする空気調和機。
Air in which a compressor, a four-way valve, an outdoor heat exchanger, a plurality of indoor units, and a cooling / heating switching device including a switching valve for switching the operation mode of the indoor units to cooling operation or heating operation are connected by liquid piping and gas piping In the harmony machine,
The cooling / heating switching device has a first bypass path having a first pressure reducing means for connecting a high pressure gas pipe connected to the discharge side of the compressor, a low pressure gas pipe connected to the suction side of the compressor, and an on-off valve. The first pressure reducing means includes the low-pressure gas pipe side and the high-pressure gas even when the switching valve is opened when the operating capacity of the indoor unit when performing the cooling operation and the heating operation at the same time is minimized. The flow resistance is set so that noise caused by a pressure difference with the pipe side does not occur, and the outdoor unit includes a discharge side pipe of the compressor and a suction side pipe of the compressor. A second bypass path having a second pressure reducing means for connecting the two and the on-off valve is provided , and when the at least one indoor unit is switched from the heating operation to the cooling operation, the total operation capacity of the plurality of indoor units is predetermined. If the capacity is less than Open bypass passage, an air conditioner, wherein the sum of the operating capacity of the plurality of indoor units is configured to open the first bypass passage and the second bypass passage when the above predetermined capacity.
前記圧縮機の吐出側に吐出圧力を検出する吐出圧力センサを設け、前記圧縮機の吸入側に吸入圧力を検出する吸入圧力センサを設け、前記吐出圧力センサ及び前記吸入圧力センサのそれぞれの検出値から前記高圧ガス配管の内圧と前記低圧配管の内圧との圧力差を演算する演算手段を設けたことを特徴とする請求項1に記載の空気調和機。 A discharge pressure sensor for detecting a discharge pressure is provided on the discharge side of the compressor, a suction pressure sensor for detecting a suction pressure is provided on the suction side of the compressor, and the detection values of the discharge pressure sensor and the suction pressure sensor are respectively 2. The air conditioner according to claim 1, further comprising calculation means for calculating a pressure difference between an internal pressure of the high-pressure gas pipe and an internal pressure of the low-pressure pipe. 少なくとも1つの前記室内機を暖房運転から冷房運転に切り換えるにあたり、前記圧縮機の吐出圧力と吸入圧力との圧力差が所定圧力未満の場合に、前記第1バイパス経路を開き、圧力差が前記所定圧力以上の場合に、前記第1バイパス経路、及び第2バイパス経路を開くように構成したことを特徴とする請求項に記載の空気調和機。 When switching at least one indoor unit from a heating operation to a cooling operation, when the pressure difference between the discharge pressure and the suction pressure of the compressor is less than a predetermined pressure, the first bypass path is opened, and the pressure difference is The air conditioner according to claim 2 , wherein the air conditioner is configured to open the first bypass path and the second bypass path when the pressure is higher than the pressure. 前記第1バイパス経路、及び前記第2バイパス経路を開いた後に、前記圧縮機の吐出圧力と吸入圧力との圧力差が前記所定圧力以上の場合に、前記圧縮機の運転容量を減少させるように構成されていることを特徴とする請求項に記載の空気調和機。 After opening the first bypass path and the second bypass path, the operating capacity of the compressor is decreased when the pressure difference between the discharge pressure and the suction pressure of the compressor is equal to or higher than the predetermined pressure. It is comprised, The air conditioner of Claim 3 characterized by the above-mentioned. 前記圧縮機が、圧縮室内部の高圧側と低圧側とをバイパスして容量制御が可能な圧縮機であることを特徴とする請求項1に記載の空気調和機。   2. The air conditioner according to claim 1, wherein the compressor is a compressor capable of capacity control by bypassing a high pressure side and a low pressure side in a compression chamber.
JP2004361136A 2004-12-14 2004-12-14 Air conditioner Expired - Fee Related JP4037863B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004361136A JP4037863B2 (en) 2004-12-14 2004-12-14 Air conditioner
KR1020050031835A KR100589912B1 (en) 2004-12-14 2005-04-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361136A JP4037863B2 (en) 2004-12-14 2004-12-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006170489A JP2006170489A (en) 2006-06-29
JP4037863B2 true JP4037863B2 (en) 2008-01-23

Family

ID=36671437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361136A Expired - Fee Related JP4037863B2 (en) 2004-12-14 2004-12-14 Air conditioner

Country Status (2)

Country Link
JP (1) JP4037863B2 (en)
KR (1) KR100589912B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011957B2 (en) 2006-09-07 2012-08-29 ダイキン工業株式会社 Air conditioner
CN102192583B (en) * 2010-03-12 2013-04-03 珠海格力电器股份有限公司 Air-conditioner and method for switching working mode of air-conditioner
JP5445494B2 (en) * 2011-03-17 2014-03-19 株式会社富士通ゼネラル Air conditioner
CN104566699B (en) * 2013-10-10 2017-06-20 海尔集团公司 Accumulation of energy multi-variable air conditioning unit and its control method
KR101908305B1 (en) * 2017-01-02 2018-10-17 엘지전자 주식회사 Air conditioner
CN112013496B (en) * 2020-09-27 2024-06-14 珠海格力电器股份有限公司 Refrigerant circulation system, control method thereof and refrigeration equipment
KR20240054807A (en) * 2022-10-19 2024-04-26 삼성전자주식회사 Air conditioner and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611440B2 (en) * 1989-07-31 1997-05-21 ダイキン工業株式会社 Operation control device for air conditioner
JP2004020064A (en) 2002-06-18 2004-01-22 Fujitsu General Ltd Method for controlling multi-chamber type air conditioner
JP3953976B2 (en) 2003-04-30 2007-08-08 三星電子株式会社 Air conditioner

Also Published As

Publication number Publication date
KR100589912B1 (en) 2006-06-19
JP2006170489A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4752765B2 (en) Air conditioner
AU2004267299B2 (en) Refrigeration system
JP5324749B2 (en) Refrigeration equipment
JP3894221B1 (en) Air conditioner
US6883346B2 (en) Freezer
WO2019073621A1 (en) Air-conditioning device
JP6880204B2 (en) Air conditioner
US10724776B2 (en) Exhaust heat recovery type of air-conditioning apparatus
JPWO2003001129A1 (en) Refrigeration equipment
JP4553761B2 (en) Air conditioner
JP2002081767A (en) Air conditioner
KR101176632B1 (en) Multi-room type air conditioner
WO2017138108A1 (en) Air conditioning device
JP2001056159A (en) Air conditioner
KR100589912B1 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP2006170541A (en) Air conditioner
JP5601890B2 (en) Air conditioner
JP3829340B2 (en) Air conditioner
JP4832954B2 (en) Air conditioner
JP4023386B2 (en) Refrigeration equipment
JP4601392B2 (en) Refrigeration equipment
JP2718308B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
JP2007163011A (en) Refrigeration unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees