JP2007232265A - Refrigeration unit - Google Patents

Refrigeration unit Download PDF

Info

Publication number
JP2007232265A
JP2007232265A JP2006053531A JP2006053531A JP2007232265A JP 2007232265 A JP2007232265 A JP 2007232265A JP 2006053531 A JP2006053531 A JP 2006053531A JP 2006053531 A JP2006053531 A JP 2006053531A JP 2007232265 A JP2007232265 A JP 2007232265A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
air conditioning
refrigeration
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006053531A
Other languages
Japanese (ja)
Inventor
Masaaki Takegami
雅章 竹上
Kenji Tanimoto
憲治 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006053531A priority Critical patent/JP2007232265A/en
Priority to TW096106695A priority patent/TW200801416A/en
Priority to PCT/JP2007/053670 priority patent/WO2007102345A1/en
Publication of JP2007232265A publication Critical patent/JP2007232265A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of a heating capacity when heat amount of cooling heat exchangers exceed a necessary heat amount of an indoor heat exchanger. <P>SOLUTION: The refrigeration unit 1 is provided with a coolant circuit 1E connecting a compressor 2, an outdoor heat exchanger 4, an expansion mechanism, the indoor heat exchanger 41 for air-conditioning the indoors, and the cooling heat exchangers 45, 51 for cooling a chamber interior. The coolant circuit 1E is provided with a discharge side three-way valve 101 varying flow rates of a coolant distributed to the indoor heat exchanger 41 and the outdoor heat exchanger 4, of coolant discharged from the compressor 2. A distribution control part 82 is provided for controlling the discharge side three-way valve 101 to adjust the flow rates of the coolant distributed to the indoor heat exchanger 41 and the outdoor heat exchanger 4 such that a temperature difference between an indoor air temperature and a set indoor temperature becomes a predetermined value, during second heating/refrigeration operation using both the indoor heat exchanger 41 and the outdoor heat exchanger 4 as condensers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍装置に関し、特に、空調熱交換器と冷却熱交換器とを備えた冷凍装置に係るものである。     The present invention relates to a refrigeration apparatus, and particularly relates to a refrigeration apparatus including an air conditioning heat exchanger and a cooling heat exchanger.

従来より、冷凍サイクルを行う冷凍装置が知られており、室内を冷暖房する空調機や、食品等を貯蔵する冷蔵庫などの冷却機として広く利用されている。この冷凍装置には、空調と冷蔵との両方を行うものがあり、例えば、空調熱交換器及び冷却熱交換器などの複数の利用側熱交換器を備え、コンビニエンスストアなどに設置されている。この冷凍装置は、1つの冷凍装置を設置するだけで、店内の空調とショーケースなどの冷却との両方を行うことができる(例えば、特許文献1及び2参照)。     Conventionally, a refrigeration apparatus that performs a refrigeration cycle is known, and is widely used as an air conditioner that cools and heats a room and a refrigerator such as a refrigerator that stores food. Some of these refrigeration apparatuses perform both air conditioning and refrigeration. For example, the refrigeration apparatus includes a plurality of use side heat exchangers such as an air conditioning heat exchanger and a cooling heat exchanger, and is installed in a convenience store. This refrigeration apparatus can perform both air conditioning in a store and cooling of a showcase, etc. by installing only one refrigeration apparatus (see, for example, Patent Documents 1 and 2).

上記従来の冷凍装置では、空調の暖房時において、ショーケースなどの冷却熱交換器で吸収した熱量を空調熱交換器で有効利用することができる。
特許第3253283号公報 特開2003−75022号公報
In the conventional refrigeration apparatus, the amount of heat absorbed by a cooling heat exchanger such as a showcase can be effectively utilized by the air conditioning heat exchanger during heating of the air conditioning.
Japanese Patent No. 3253283 JP 2003-75022 A

しかしながら、上記従来の冷凍装置では、冷却熱交換器で吸収した熱量が空調熱交換器で必要な熱量を超える場合、冷凍装置の冷媒回路の圧縮機の吐出圧が高くなりすぎるので、余った熱を排出する必要がある。このような場合、従来、圧縮機の吐出管に設けた四路切換弁によって冷媒の流れる方向を切り換えて、圧縮機の吐出側の冷媒を熱源側熱交換器に流し、余った熱を排出する。このとき、単に四路切換弁によって冷媒の流れる方向を切り換えているだけのため、熱源側熱交換器に流す冷媒流量の微調整ができず、圧縮機の吐出圧が下がりすぎて暖房能力が低下し、快適な空調が行えないという問題があった。     However, in the conventional refrigeration apparatus, when the amount of heat absorbed by the cooling heat exchanger exceeds the amount of heat necessary for the air conditioning heat exchanger, the discharge pressure of the compressor of the refrigerant circuit of the refrigeration apparatus becomes too high, so excess heat Need to be discharged. In such a case, conventionally, the refrigerant flow direction is switched by a four-way switching valve provided in the discharge pipe of the compressor, the refrigerant on the discharge side of the compressor is caused to flow to the heat source side heat exchanger, and excess heat is discharged. . At this time, since the refrigerant flow direction is simply switched by the four-way switching valve, the flow rate of the refrigerant flowing to the heat source side heat exchanger cannot be finely adjusted, and the discharge pressure of the compressor is lowered too much to lower the heating capacity. However, there was a problem that comfortable air conditioning could not be performed.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、冷却熱交換器で得られた熱量が空調熱交換器で必要な熱量を超える場合に、圧縮機の吐出圧を下げすぎずに、余った熱を排出することにある。     The present invention has been made in view of the above points, and the object of the present invention is to provide a compressor discharge pressure when the amount of heat obtained by the cooling heat exchanger exceeds the amount of heat necessary for the air conditioning heat exchanger. It is to discharge the excess heat without lowering too much.

上記の目的を達成するために、この発明は、圧縮機(2)から吐出された冷媒を熱源側熱交換器(4)と空調熱交換器(41)とに調整可能に分配する流量調整手段(101,104)と分配量を制御する分配制御手段(82)とを設けている。     In order to achieve the above object, the present invention provides a flow rate adjusting means that adjustably distributes the refrigerant discharged from the compressor (2) to the heat source side heat exchanger (4) and the air conditioning heat exchanger (41). (101, 104) and distribution control means (82) for controlling the distribution amount are provided.

具体的に、第1の発明は、圧縮機(2)と、熱源側熱交換器(4)と、膨張機構(46,52,104)と、室内を空調するための空調熱交換器(41)と、庫内を冷却するための冷却熱交換器(45,51)とが接続された冷媒回路(1E)を備える冷凍装置を対象としている。そして、上記冷媒回路(1E)には、上記圧縮機(2)から吐出して上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を可変にする流量調整手段(101,104)が設けられている。加えて、上記空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時に、室内空気温度と設定室内温度との差温が所定値になるように上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を調整するために上記流量調整手段(101,104)を制御する分配制御手段(82)を備えている。     Specifically, the first invention relates to a compressor (2), a heat source side heat exchanger (4), an expansion mechanism (46, 52, 104), and an air conditioning heat exchanger (41) for air conditioning a room. ) And a cooling heat exchanger (45, 51) for cooling the inside of the refrigerator is a refrigeration apparatus including a refrigerant circuit (1E). In the refrigerant circuit (1E), the flow rate of the refrigerant discharged from the compressor (2) and distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) is made variable. Flow rate adjusting means (101, 104) is provided. In addition, during the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, the temperature difference between the indoor air temperature and the set indoor temperature becomes a predetermined value. Distributing control means (82) for controlling the flow rate adjusting means (101, 104) for adjusting the flow rate of the refrigerant distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4). ing.

また、第2の発明は、圧縮機(2)と、熱源側熱交換器(4)と、膨張機構(46,52,104)と、室内を空調するための空調熱交換器(41)と、庫内を冷却するための冷却熱交換器(45,51)とが接続された冷媒回路(1E)を備える冷凍装置を対象としている。そして、上記冷媒回路(1E)には、上記圧縮機(2)から吐出して上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を可変にする流量調整手段(101,104)が設けられている。加えて、上記空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時に、上記冷媒回路(1E)の高圧冷媒圧力上記冷媒回路(1E)の液冷媒温度が所定値になるように上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を調整するために上記流量調整手段(101,104)を制御する分配制御手段(82)を備えている。     The second invention also includes a compressor (2), a heat source side heat exchanger (4), an expansion mechanism (46, 52, 104), and an air conditioning heat exchanger (41) for air conditioning the room. The refrigeration apparatus includes a refrigerant circuit (1E) connected to a cooling heat exchanger (45, 51) for cooling the inside of the refrigerator. In the refrigerant circuit (1E), the flow rate of the refrigerant discharged from the compressor (2) and distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) is made variable. Flow rate adjusting means (101, 104) is provided. In addition, during the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, the refrigerant circuit (1E) has a high pressure refrigerant pressure and the refrigerant circuit (1E) liquid The flow rate adjusting means (101, 104) is controlled to adjust the flow rate of the refrigerant distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) so that the refrigerant temperature becomes a predetermined value. The distribution control means (82) is provided.

つまり、上記第1及び第2の発明では、空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時に冷却熱交換器(45,51)で吸収した熱量が空調熱交換器(41)で必要な熱量を超える場合、冷媒回路(1E)の圧縮機(2)の吐出圧が高くなりすぎるので、余った熱を排出する必要がある。このとき、上記流量調整手段(101,104)が、冷却熱交換器(45,51)で吸収した熱量と空調熱交換器(41)で必要な熱量とのバランスに合わせて、圧縮機(2)から吐出された冷媒を空調熱交換器(41)と熱源側熱交換器(4)とに適量に分配する。     That is, in the first and second inventions, the cooling heat exchanger (45, 51) absorbs the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers. When the amount of heat generated exceeds the amount of heat necessary for the air conditioning heat exchanger (41), the discharge pressure of the compressor (2) of the refrigerant circuit (1E) becomes too high, so that excess heat needs to be discharged. At this time, the flow rate adjusting means (101, 104) adjusts the compressor (2) according to the balance between the amount of heat absorbed by the cooling heat exchanger (45, 51) and the amount of heat necessary for the air conditioning heat exchanger (41). ) Is distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) in an appropriate amount.

そして、第1の発明では、上記分配制御手段(82)が上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を調整して室内空気温度と設定室内温度との差温が所定値になるように上記流量調整手段(101,104)を制御する。     In the first invention, the distribution control means (82) adjusts the flow rate of the refrigerant distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) to set the indoor air temperature. The flow rate adjusting means (101, 104) is controlled so that the temperature difference from the room temperature becomes a predetermined value.

また、第2の発明では、上記分配制御手段(82)が上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を調整して上記冷媒回路(1E)の高圧冷媒圧力又は上記冷媒回路(1E)の液冷媒温度が所定値になるように上記流量調整手段(101,104)を制御する。     In the second invention, the distribution control means (82) adjusts the flow rate of the refrigerant distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) to adjust the refrigerant circuit (1E The flow rate adjusting means (101, 104) is controlled such that the high-pressure refrigerant pressure of (1) or the liquid refrigerant temperature of the refrigerant circuit (1E) becomes a predetermined value.

また、第3の発明は、上記第1又は第2の発明において、上記空調熱交換器(41)のみが凝縮器となる熱回収運転時と空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時とに、上記冷却熱交換器(45,51)の冷媒温度と設定庫内温度との差温が所定値になるように上記冷媒回路(1E)の冷凍能力を制御する能力制御手段(81)を備えている。     Further, the third invention is the above-described first or second invention, in the heat recovery operation in which only the air conditioning heat exchanger (41) serves as a condenser, the air conditioning heat exchanger (41), and the heat source side heat exchanger. In the heat recovery operation in which both of (4) are condensers, the refrigerant circuit (45, 51) is adjusted so that the difference between the refrigerant temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. 1E) capacity control means (81) for controlling the refrigeration capacity.

また、第4の発明は、上記第1又は第2の発明において、上記空調熱交換器(41)のみが凝縮器となる熱回収運転時と空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時とに、上記冷却熱交換器(45,51)の冷媒圧力相当飽和温度と設定庫内温度との差温が所定値になるように上記冷媒回路(1E)の冷凍能力を制御する能力制御手段(81)を備えている。     In addition, the fourth invention is the above-described first or second invention, in the heat recovery operation in which only the air conditioning heat exchanger (41) serves as a condenser, the air conditioning heat exchanger (41), and the heat source side heat exchanger. When the heat recovery operation in which both of (4) are condensers, the temperature difference between the refrigerant pressure equivalent saturation temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. A capacity control means (81) for controlling the refrigerating capacity of the refrigerant circuit (1E) is provided.

また、第5の発明は、上記第1又は第2の発明において、上記空調熱交換器(41)のみが凝縮器となる熱回収運転時と空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時とに、上記冷却熱交換器(45,51)の吸込空気温度と設定庫内温度との差温が所定値になるように上記冷媒回路(1E)の冷凍能力を制御する能力制御手段(81)を備えている。     Further, the fifth invention is the above-described first or second invention, in the heat recovery operation in which only the air conditioning heat exchanger (41) serves as a condenser, the air conditioning heat exchanger (41), and the heat source side heat exchanger. In the heat recovery operation in which both of (4) are condensers, the refrigerant circuit is configured so that the difference between the intake air temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. A capacity control means (81) for controlling the refrigerating capacity of (1E) is provided.

つまり、上記第3〜第5の発明では、上記冷却熱交換器(45,51)の低圧冷媒圧力が重要であることから、能力制御手段(81)が冷媒回路(1E)の冷凍能力を制御する。     That is, in the third to fifth inventions, since the low pressure refrigerant pressure of the cooling heat exchanger (45, 51) is important, the capacity control means (81) controls the refrigeration capacity of the refrigerant circuit (1E). To do.

具体的に、第3の発明では、上記能力制御手段(81)が冷却熱交換器(45,51)の冷媒温度と設定庫内温度との差温が所定値になるように冷媒回路(1E)を制御する。例えば、上記冷却熱交換器(45,51)の冷媒温度Teが設定庫内温度Tsetより10°低くなるようにする(Tset−Te=10)。     Specifically, in the third aspect of the invention, the capacity control means (81) causes the refrigerant circuit (1E) so that the difference between the refrigerant temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. ) To control. For example, the refrigerant temperature Te of the cooling heat exchanger (45, 51) is set to be 10 ° lower than the set internal temperature Tset (Tset−Te = 10).

また、上記第4の発明では、上記能力制御手段(81)が冷却熱交換器(45,51)の冷媒圧力相当飽和温度と設定庫内温度との差温が所定値になるように冷媒回路(1E)を制御する。例えば、上記冷却熱交換器(45,51)の冷媒圧力Peの相当飽和温度が設定庫内温度Tsetより10°低くなるようにする(Tset−Peの相当飽和温度=10)。     In the fourth aspect of the invention, the capacity control means (81) causes the refrigerant circuit so that the temperature difference between the refrigerant pressure equivalent saturation temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. Control (1E). For example, the saturation temperature corresponding to the refrigerant pressure Pe of the cooling heat exchanger (45, 51) is set to be 10 ° lower than the set internal temperature Tset (equivalent saturation temperature of Tset−Pe = 10).

また、上記第5の発明では、上記能力制御手段(81)が冷却熱交換器(45,51)の吸込空気温度と設定庫内温度との差温が所定値になるように冷媒回路(1E)する。例えば、上記冷却熱交換器(45,51)の吸込空気温度Trが設定庫内温度Tsetになるようにする(Tset−Tr=0)。     In the fifth aspect of the invention, the capacity control means (81) allows the refrigerant circuit (1E) so that the difference between the intake air temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. ) For example, the intake air temperature Tr of the cooling heat exchanger (45, 51) is set to the set internal temperature Tset (Tset−Tr = 0).

また、第6の発明は、上記第4〜第6の発明の何れか1において、上記能力制御手段(81)が圧縮機(2)の容量を制御するように構成されている。     Further, a sixth invention is configured such that, in any one of the fourth to sixth inventions, the capacity control means (81) controls the capacity of the compressor (2).

また、第7の発明は、上記第4〜第6の発明の何れか1において、上記圧縮機(2)の吐出側と吸入側とで冷媒をバイパスさせる補助通路(90)が設けられ、上記能力制御手段(81)が補助通路(90)の冷媒流量を制御するように構成されている。     Further, according to a seventh invention, in any one of the fourth to sixth inventions, an auxiliary passage (90) for bypassing the refrigerant on the discharge side and the suction side of the compressor (2) is provided, The capacity control means (81) is configured to control the refrigerant flow rate in the auxiliary passage (90).

また、第8の発明は、上記第4〜第6の発明の何れか1において、上記能力制御手段(81)が上記冷却熱交換器(45,51)の冷却ファン(47,58)の風量を制御するように構成されている。     Further, according to an eighth invention, in any one of the fourth to sixth inventions, the capacity control means (81) is configured such that the air volume of the cooling fan (47, 58) of the cooling heat exchanger (45, 51). Is configured to control.

つまり、上記第6〜第8の発明では、圧縮機(2)の容量、バイパス冷媒量又は冷却ファン(47,58)の風量によって冷媒回路(1E)の冷凍能力を制御する。     That is, in the sixth to eighth inventions, the refrigeration capacity of the refrigerant circuit (1E) is controlled by the capacity of the compressor (2), the amount of bypass refrigerant, or the air volume of the cooling fans (47, 58).

また、第9の発明は、上記第1又は第2の発明において、上記空調熱交換器(41)のみが凝縮器となる熱回収運転時から空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転に切り換える前に、空調熱交換器(41)の空調ファン(43)の風量を増大させる補助制御手段(83)を備えている。     Further, the ninth invention is the air conditioning heat exchanger (41) and the heat source side heat exchanger from the heat recovery operation in which only the air conditioning heat exchanger (41) is a condenser in the first or second invention. The auxiliary control means (83) for increasing the air volume of the air-conditioning fan (43) of the air-conditioning heat exchanger (41) is provided before switching to the heat recovery operation in which both of (4) are condensers.

つまり、上記第9の発明では、暖房能力が余る場合に空調ファン(43)の風量を増大させる。     That is, in the ninth aspect of the invention, the air volume of the air conditioning fan (43) is increased when the heating capacity is excessive.

また、第10の発明は、上記第1又は第2の発明において、上記空調熱交換器(41)のみが凝縮器となる熱回収運転時から空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転に切り換える前に、室内の換気扇を運転させる補助制御手段(83)を備えている。     The tenth invention is the air conditioning heat exchanger (41) and the heat source side heat exchanger from the heat recovery operation in which only the air conditioning heat exchanger (41) serves as a condenser in the first or second invention. The auxiliary control means (83) for operating the indoor ventilation fan is provided before switching to the heat recovery operation in which both of (4) become a condenser.

つまり、上記第10の発明では、暖房能力が余る場合に換気扇を運転させる。     In other words, in the tenth aspect of the invention, the ventilation fan is operated when the heating capacity is excessive.

以上説明したように、上記第1及び第2の発明は、流量調整手段(101)が、圧縮機(2)から吐出された冷媒を空調熱交換器(41)と熱源側熱交換器(4)とに流量を調整して分配している。このため、熱回収運転時に冷却熱交換器(45,51)で吸収した熱量のうち、空調熱交換器(41)で必要な熱量のみを空調熱交換器(41)に供給し、余った熱量を熱源側熱交換器(4)で排出することができる。     As described above, in the first and second inventions described above, the flow rate adjusting means (101) converts the refrigerant discharged from the compressor (2) into the air conditioning heat exchanger (41) and the heat source side heat exchanger (4 ) And adjusting the flow rate. For this reason, of the amount of heat absorbed by the cooling heat exchanger (45, 51) during the heat recovery operation, only the amount of heat necessary for the air conditioning heat exchanger (41) is supplied to the air conditioning heat exchanger (41), and the excess heat amount Can be discharged by the heat source side heat exchanger (4).

したがって、圧縮機(2)の吐出冷媒圧力を下げすぎることはないので、快適な空調を行うことができる。     Therefore, since the discharge refrigerant pressure of the compressor (2) is not lowered too much, comfortable air conditioning can be performed.

また、上記冷却熱交換器(45,51)で吸収した熱を適切に回収できるため、熱効率を格段に向上させることができる。     Moreover, since the heat absorbed by the cooling heat exchanger (45, 51) can be recovered appropriately, the thermal efficiency can be significantly improved.

また、上記空調熱交換器(41)と熱源側熱交換器(4)との冷媒分配量を制御するので、空調熱交換器(41)の能力の微調整を行うことができることから、より快適な空調を行うことができる。     In addition, since the refrigerant distribution amount between the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) is controlled, the capacity of the air conditioning heat exchanger (41) can be finely adjusted, so it is more comfortable. Air conditioning can be performed.

また、上記第3〜第8の発明は、熱回収運転時における冷媒回路(1E)の冷凍能力を制御するので、冷却熱交換器(45,51)の低圧冷媒圧力を確実に所定値に保つことができることから、冷却熱交換器(45,51)の能力を確実に発揮させることができる。     Moreover, since the said 3rd-8th invention controls the refrigerating capacity of the refrigerant circuit (1E) at the time of heat recovery operation, the low-pressure refrigerant pressure of the cooling heat exchanger (45, 51) is reliably maintained at a predetermined value. Therefore, the capability of the cooling heat exchanger (45, 51) can be surely exhibited.

また、上記第9及び第10の発明は、空調熱交換器(41)のみが凝縮器となる熱回収運転を可能な限り継続させることができる。     In the ninth and tenth aspects of the invention, the heat recovery operation in which only the air conditioning heat exchanger (41) serves as a condenser can be continued as much as possible.

以下、本発明の実施形態を図面に基づいて説明する。     Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《実施形態1》
図1に示すように、本実施形態に係る冷凍装置(1)は、コンビニエンスストアやスーパーマーケットに設けられ、庫内であるショーケース(図示せず)の冷却と室内である店内の冷暖房とを行うためのものである。
Embodiment 1
As shown in FIG. 1, the refrigeration apparatus (1) according to the present embodiment is provided in a convenience store or a supermarket, and cools a showcase (not shown) that is in a warehouse and air-conditions in a store that is indoors. Is for.

上記冷凍装置(1)は、室外ユニット(1A)と室内ユニット(1B)と冷蔵ユニット(1C)と冷凍ユニット(1D)とを有し、蒸気圧縮式冷凍サイクルを行う冷媒回路(1E)を備えている。また、この冷媒回路(1E)は、ブースタユニット(1F)を備えている。冷媒回路(1E)は、冷蔵及び冷凍用の第1系統側回路と、空調用の第2系統側回路とを備えている。そして、上記冷媒回路(1E)は、冷房サイクルと暖房サイクルとに切り換わるように構成されている。     The refrigeration apparatus (1) includes an outdoor unit (1A), an indoor unit (1B), a refrigeration unit (1C), and a refrigeration unit (1D), and includes a refrigerant circuit (1E) that performs a vapor compression refrigeration cycle. ing. The refrigerant circuit (1E) includes a booster unit (1F). The refrigerant circuit (1E) includes a first system side circuit for refrigeration and freezing, and a second system side circuit for air conditioning. The refrigerant circuit (1E) is configured to switch between a cooling cycle and a heating cycle.

上記室内ユニット(1B)は、冷房運転と暖房運転とを切り換えて行うように構成され、例えば、売場などに設置される。また、上記冷蔵ユニット(1C)は、冷蔵用のショーケースに設置されて該ショーケースの庫内空気を冷却する。上記冷凍ユニット(1D)は、冷凍用のショーケースに設置されて該ショーケースの庫内空気を冷却する。     The indoor unit (1B) is configured to perform switching between a cooling operation and a heating operation, and is installed in a sales floor, for example. The refrigeration unit (1C) is installed in a refrigerated showcase to cool the air in the showcase. The refrigeration unit (1D) is installed in a freezer showcase to cool the air in the showcase.

〈室外ユニット〉
上記室外ユニット(1A)は、インバータ圧縮機(2)と、四路切換弁(3A)と、流量調整手段としての吐出側三方切換弁(101)と、吸入側三方切換弁(102)と、熱源側熱交換器である室外熱交換器(4)と、エコノマイザー用熱交換器(103)とを備えている。
<Outdoor unit>
The outdoor unit (1A) includes an inverter compressor (2), a four-way switching valve (3A), a discharge side three-way switching valve (101) as a flow rate adjusting means, a suction side three-way switching valve (102), An outdoor heat exchanger (4), which is a heat source side heat exchanger, and an economizer heat exchanger (103) are provided.

上記インバータ圧縮機(2)は、例えば、密閉型のスクリュー圧縮機で構成され、電動機がインバータ制御されて容量が段階的又は連続的に可変となるように構成されている。上記インバータ圧縮機(2)の吐出管(5)は、吐出側三方切換弁(101)の第1ポートに接続されている。インバータ圧縮機(2)の運転容量制御は、常時、第1系統側回路側の冷媒圧力が一定になるように制御される。室内熱交換器(41)及び室外熱交換器(4)が凝縮器となる熱回収運転時には、室内熱交換器(41)内の圧力を一定にするように、制御される。なお、インバータ圧縮機(2)はスクロール圧縮機で構成してもよい。     The inverter compressor (2) is constituted by, for example, a hermetic screw compressor, and the electric motor is inverter-controlled so that the capacity is variable stepwise or continuously. The discharge pipe (5) of the inverter compressor (2) is connected to the first port of the discharge side three-way switching valve (101). The operation capacity control of the inverter compressor (2) is always controlled so that the refrigerant pressure on the first system side circuit side is constant. During the heat recovery operation in which the indoor heat exchanger (41) and the outdoor heat exchanger (4) are condensers, the pressure in the indoor heat exchanger (41) is controlled to be constant. The inverter compressor (2) may be a scroll compressor.

上記室外熱交換器(4)のガス側端部(インバータ圧縮機(2)側端部)は、室外ガス管(9)によって、上記吐出側三方切換弁(101)の第2ポートから延びる配管及び四路切換弁(3A)の第2ポートから延びる配管の接続部に接続されている。上記室外熱交換器(4)の液側端部には、開度調整自在な電動膨張弁よりなる暖房用膨張弁(104)が設けられ、更にこの暖房用膨張弁(104)に液ラインである第1液管(10a)の一端と第2液管(10b)の一端とが接続されている。暖房用膨張弁(104)は、室外熱交換器(4)が蒸発器となる暖房時に冷媒が減圧される。その制御は、後述する吸入温度センサ(67)によって得られたインバータ圧縮機(2)の吸入加熱度に基づいて行われる。第1液管(10a)は、レシーバ(14)入口に接続されている。第2液管(10b)には、上記エコノマイザー用熱交換器(103)の第1流路(105)が接続されている。     The gas side end (inverter compressor (2) side end) of the outdoor heat exchanger (4) is a pipe extending from the second port of the discharge side three-way switching valve (101) by the outdoor gas pipe (9). And a pipe connection extending from the second port of the four-way selector valve (3A). At the liquid side end of the outdoor heat exchanger (4), there is provided a heating expansion valve (104) consisting of an electric expansion valve whose opening degree can be adjusted. Further, the heating expansion valve (104) is connected to a liquid line. One end of a certain first liquid pipe (10a) and one end of the second liquid pipe (10b) are connected. In the heating expansion valve (104), the refrigerant is decompressed during heating when the outdoor heat exchanger (4) serves as an evaporator. The control is performed based on the suction heating degree of the inverter compressor (2) obtained by the suction temperature sensor (67) described later. The first liquid pipe (10a) is connected to the receiver (14) inlet. A first flow path (105) of the economizer heat exchanger (103) is connected to the second liquid pipe (10b).

尚、上記室外熱交換器(4)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、熱源ファンである室外ファン(4F)が近接して配置されている。     The outdoor heat exchanger (4) is, for example, a cross fin type fin-and-tube heat exchanger, and an outdoor fan (4F), which is a heat source fan, is disposed close to the outdoor heat exchanger (4).

上記インバータ圧縮機(2)の吸入管(6)は、吸入側三方切換弁(102)の第1ポートに接続されている。吸入側三方切換弁(102)の第3ポートは、閉鎖弁(20)を介して低圧ガス管(15)に接続されている。     The suction pipe (6) of the inverter compressor (2) is connected to the first port of the suction side three-way switching valve (102). The third port of the suction side three-way switching valve (102) is connected to the low pressure gas pipe (15) via the closing valve (20).

上記四路切換弁(3A)の第1ポートは、吐出側三方切換弁(101)の第3ポートから延びる配管及び後述する連通管(21)の接続部に接続されている。四路切換弁(3A)の第3ポートから延びる配管は、吸入側三方切換弁(102)の第2ポートに接続されている。四路切換弁(3A)の第4ポートから延びる配管には、閉鎖弁(20)を介して連絡ガス管(17)が接続されている。     The first port of the four-way switching valve (3A) is connected to a pipe extending from the third port of the discharge side three-way switching valve (101) and a connection portion of a communication pipe (21) described later. A pipe extending from the third port of the four-way switching valve (3A) is connected to the second port of the suction side three-way switching valve (102). A communication gas pipe (17) is connected to a pipe extending from the fourth port of the four-way switching valve (3A) via a closing valve (20).

上記四路切換弁(3A)は、吐出側三方切換弁(101)の第3ポートから延びる配管及び連通管(21)の接続部と連絡ガス管(17)とが連通し、且つ室外ガス管(9)及び吐出側三方切換弁(101)の第2ポートから延びる配管の接続部と吸入側三方切換弁(102)の第2ポートから延びる配管とが連通するON状態(図2実線参照)と、吐出側三方切換弁(101)の第3ポートから延びる配管及び連通管(21)の接続部と室外ガス管(9)とが連通し、且つ連絡ガス管(17)と吸入側三方切換弁(102)の第2ポートから延びる配管とが連通するOFF状態(図2破線参照)とに切り換わるように構成されている。     The four-way switching valve (3A) includes a pipe extending from the third port of the discharge side three-way switching valve (101), a connection portion of the communication pipe (21) and the communication gas pipe (17), and an outdoor gas pipe. (9) and the ON state in which the connection portion of the pipe extending from the second port of the discharge side three-way switching valve (101) communicates with the pipe extending from the second port of the suction side three-way switching valve (102) (see the solid line in FIG. 2) And the pipe extending from the third port of the discharge side three-way switching valve (101) and the connection part of the communication pipe (21) and the outdoor gas pipe (9) communicate with each other, and the communication gas pipe (17) and the suction side three-way switching The valve (102) is configured to be switched to an OFF state (see a broken line in FIG. 2) in which a pipe extending from the second port communicates.

上記連絡ガス管(17)と低圧ガス管(15)と接続液管(19)とは、室外ユニット(1A)から外部に延長され、上記室外ユニット(1A)内に閉鎖弁(20)がそれぞれ設けられている。     The communication gas pipe (17), the low pressure gas pipe (15), and the connecting liquid pipe (19) are extended from the outdoor unit (1A) to the outside, and the shutoff valve (20) is provided in the outdoor unit (1A). Is provided.

上記エコノマイザー用熱交換器(103)は、第1流路(105)と第2流路(106)とを備えている。第1流路(105)の一端から延びる配管は上記レシーバ(14)の出口に接続され、他端は上記接続液管(19)及びレシーバ(14)の入口から延びる配管の接続部に接続されている。第2流路(106)の一端は逆止弁(7)を介してインバータ圧縮機(2)の中間圧力部(図示せず)に接続され、他端はエコノマイザー用電動膨張弁(107)を介してレシーバ(14)の入口から接続液管(19)に向かって延びる配管の接続部に接続されている。このように構成することで、レシーバ(14)の出口から出てきた液冷媒が、一度エコノマイザー用熱交換器(103)の第1流路(105)を通過した後、エコノマイザー用電動膨張弁(107)で減圧され、第2流路(106)を通過中に上記第1流路(105)内の冷媒によって、低圧状態で過冷却された後、この低圧冷媒がインバータ圧縮機(2)の中間圧力部に導かれるように構成されている。エコノマイザー用電動膨張弁(107)の制御は、過冷却度とインバータ圧縮機(2)の吐出管(5)の冷媒温度に合わせて行われる。なお、上記逆止弁(7)によってインバータ圧縮機(2)の中間圧力部からの冷媒の逆流が防がれる。この過冷却された低圧冷媒がインバータ圧縮機(2)の中間圧力部に導かれることで、インバータ圧縮機(2)の過熱が防止される。     The economizer heat exchanger (103) includes a first channel (105) and a second channel (106). The pipe extending from one end of the first flow path (105) is connected to the outlet of the receiver (14), and the other end is connected to the connection portion of the pipe extending from the connection liquid pipe (19) and the inlet of the receiver (14). ing. One end of the second flow path (106) is connected to an intermediate pressure portion (not shown) of the inverter compressor (2) via a check valve (7), and the other end is an electric expansion valve for economizer (107). Is connected to a pipe connection extending from the inlet of the receiver (14) toward the connection liquid pipe (19). With this configuration, the liquid refrigerant that has come out from the outlet of the receiver (14) once passes through the first flow path (105) of the economizer heat exchanger (103), and then is electrically expanded for the economizer. After being depressurized by the valve (107) and being supercooled in a low pressure state by the refrigerant in the first flow path (105) while passing through the second flow path (106), the low pressure refrigerant is converted into the inverter compressor (2 ) Is led to an intermediate pressure part. The control of the economizer electric expansion valve (107) is performed in accordance with the degree of supercooling and the refrigerant temperature of the discharge pipe (5) of the inverter compressor (2). The check valve (7) prevents the refrigerant from flowing back from the intermediate pressure portion of the inverter compressor (2). The supercooled low-pressure refrigerant is guided to the intermediate pressure portion of the inverter compressor (2), thereby preventing the inverter compressor (2) from being overheated.

上記レシーバ(14)の入口における第1液管(10a)側とエコノマイザー用熱交換器(103)の第1流路(105)側とには、それぞれ逆止弁(7)が設けられ、レシーバ(14)の入口に向かってのみ冷媒が流れるように構成されている。また、レシーバ(14)の入口から延びる配管とエコノマイザー用熱交換器(103)の第1流路(105)側との間には、凝縮圧力調整弁(108)が設けられている。この凝縮圧力調整弁(108)によって、暖房運転時で外気温度が低いときに、第1系統側回路の冷媒不足が防止される。     Check valves (7) are respectively provided on the first liquid pipe (10a) side at the inlet of the receiver (14) and the first flow path (105) side of the economizer heat exchanger (103), The refrigerant is configured to flow only toward the inlet of the receiver (14). Further, a condensing pressure adjusting valve (108) is provided between the pipe extending from the inlet of the receiver (14) and the first flow path (105) side of the economizer heat exchanger (103). The condensation pressure regulating valve (108) prevents the refrigerant shortage in the first system side circuit when the outside air temperature is low during heating operation.

上記四路切換弁(3A)の第1ポートから延びる配管及び吐出側三方切換弁(101)の第3ポートから延びる配管の接続部と接続液管(19)からレシーバ(14)に向かって延びる配管との間には、補助ラインである連通管(21)が接続されている。この連通管(21)には、バネ付逆止弁(109)が設けられている。バネ付逆止弁(109)は、通常は作動せず、運転停止時にレシーバ(14)が液状の冷媒で満タンのとき、各バルブを閉じたときの液漏れを防止するように構成されている。     A pipe extending from the first port of the four-way switching valve (3A) and a pipe connecting part extending from the third port of the discharge side three-way switching valve (101) and a connecting liquid pipe (19) extend from the connection liquid pipe (19) toward the receiver (14). A communication pipe (21) as an auxiliary line is connected between the pipes. The communication pipe (21) is provided with a spring check valve (109). The spring check valve (109) does not normally operate and is configured to prevent liquid leakage when each valve is closed when the receiver (14) is full of liquid refrigerant when operation is stopped. Yes.

〈室内ユニット〉
上記室内ユニット(1B)は、室内熱交換器(41)と膨張機構である室内膨張弁(42)とを備えている。上記室内熱交換器(41)のガス側は、連絡ガス管(17)が接続されている。一方、上記室内熱交換器(41)の液側は、室内膨張弁(42)を介して第2連絡液管(12)が接続され、この第2連絡液管(12)が室外ユニット(1A)に延びる接続液管(19)に接続されている。なお、上記室内熱交換器(41)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、空調ファンである室内ファン(43)が近接して配置されている。また、上記室内ユニット(1B)は、図1で1台のみ示しているが、複数台の室内ユニット(1B)が互いに並列に接続されていてもよい。
<Indoor unit>
The indoor unit (1B) includes an indoor heat exchanger (41) and an indoor expansion valve (42) that is an expansion mechanism. A communication gas pipe (17) is connected to the gas side of the indoor heat exchanger (41). On the other hand, the second communication liquid pipe (12) is connected to the liquid side of the indoor heat exchanger (41) via the indoor expansion valve (42), and the second communication liquid pipe (12) is connected to the outdoor unit (1A). ) Is connected to the connecting liquid pipe (19). The indoor heat exchanger (41) is, for example, a cross fin type fin-and-tube heat exchanger, and an indoor fan (43), which is an air conditioning fan, is disposed close to the indoor heat exchanger (41). Further, although only one indoor unit (1B) is shown in FIG. 1, a plurality of indoor units (1B) may be connected in parallel to each other.

〈冷蔵ユニット〉
上記冷蔵ユニット(1C)は、冷却熱交換器である冷蔵熱交換器(45)と膨張機構である冷蔵膨張弁(46)とを備えている。上記冷蔵熱交換器(45)の液側は、電磁弁(7a)及び冷蔵膨張弁(46)を介して第1連絡液管(11)が接続されている。一方、上記冷蔵熱交換器(45)のガス側は、低圧ガス管(15)が接続されている。
<Refrigerated unit>
The refrigeration unit (1C) includes a refrigeration heat exchanger (45) that is a cooling heat exchanger and a refrigeration expansion valve (46) that is an expansion mechanism. The liquid side of the refrigeration heat exchanger (45) is connected to the first communication liquid pipe (11) via a solenoid valve (7a) and a refrigeration expansion valve (46). On the other hand, a low-pressure gas pipe (15) is connected to the gas side of the refrigeration heat exchanger (45).

上記冷蔵熱交換器(45)は、低圧ガス管(15)を介して吸入側三方切換弁(102)の第3ポートに連通する一方、上記室内熱交換器(41)は、冷房運転時に連絡ガス管(17)を介して吸入側三方切換弁(102)の第2ポートに連通する。上記吸入側三方切換弁(102)の流量調整により、冷蔵熱交換器(45)の冷媒圧力(蒸発圧力)は室内熱交換器(41)の冷媒圧力(蒸発圧力)より低くなる。この結果、上記冷蔵熱交換器(45)の冷媒蒸発温度は、例えば、−10℃となり、室内熱交換器(41)の冷媒蒸発温度は、例えば、+5℃となって冷媒回路(1E)が異温度蒸発の回路を構成している。     The refrigeration heat exchanger (45) communicates with the third port of the suction side three-way switching valve (102) via the low pressure gas pipe (15), while the indoor heat exchanger (41) communicates during the cooling operation. It communicates with the second port of the suction side three-way switching valve (102) via the gas pipe (17). By adjusting the flow rate of the suction side three-way switching valve (102), the refrigerant pressure (evaporation pressure) of the refrigeration heat exchanger (45) becomes lower than the refrigerant pressure (evaporation pressure) of the indoor heat exchanger (41). As a result, the refrigerant evaporation temperature of the refrigeration heat exchanger (45) is, for example, −10 ° C., and the refrigerant evaporation temperature of the indoor heat exchanger (41) is, for example, + 5 ° C., so that the refrigerant circuit (1E) It forms a circuit for different temperature evaporation.

なお、上記冷蔵膨張弁(46)は、感温式膨張弁であって、感温筒が冷蔵熱交換器(45)のガス側に取り付けられている。上記冷蔵熱交換器(45)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、冷却ファンである冷蔵ファン(47)が近接して配置されている。     The refrigeration expansion valve (46) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (45). The refrigeration heat exchanger (45) is, for example, a cross-fin type fin-and-tube heat exchanger, and a refrigeration fan (47), which is a cooling fan, is disposed close to the refrigeration heat exchanger (45).

〈冷凍ユニット〉
上記冷凍ユニット(1D)は、冷却熱交換器である冷凍熱交換器(51)と膨張機構である冷凍膨張弁(52)とを備えている。上記冷凍熱交換器(51)の液側は、第1連絡液管(11)より分岐した分岐液管(13)が電磁弁(7b)及び冷凍膨張弁(52)を介して接続されている。
<Refrigeration unit>
The refrigeration unit (1D) includes a refrigeration heat exchanger (51) that is a cooling heat exchanger and a refrigeration expansion valve (52) that is an expansion mechanism. On the liquid side of the refrigeration heat exchanger (51), a branch liquid pipe (13) branched from the first communication liquid pipe (11) is connected via a solenoid valve (7b) and a refrigeration expansion valve (52). .

なお、上記冷凍膨張弁(52)は、感温式膨張弁であって、感温筒が冷凍熱交換器(51)のガス側に取り付けられている。上記冷凍熱交換器(51)は、例えば、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、冷却ファンである冷凍ファン(58)が近接して配置されている。     The refrigeration expansion valve (52) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (51). The refrigeration heat exchanger (51) is, for example, a cross-fin type fin-and-tube heat exchanger, and a refrigeration fan (58) that is a cooling fan is disposed close to the refrigeration heat exchanger (51).

〈ブースタユニット〉
上記ブースタユニット(1F)は、ブースタ圧縮機(53)と過冷却用熱交換器(210)とを備えている。
<Booster unit>
The booster unit (1F) includes a booster compressor (53) and a supercooling heat exchanger (210).

上記ブースタ圧縮機(53)は、冷凍熱交換器(51)の冷媒蒸発温度が冷蔵熱交換器(45)の冷媒蒸発温度より低くなるようにインバータ圧縮機(2)との間で冷媒を2段圧縮している。上記冷凍熱交換器(51)の冷媒蒸発温度は、例えば、−40℃に設定されている。     The booster compressor (53) is configured to supply refrigerant to and from the inverter compressor (2) so that the refrigerant evaporation temperature of the refrigeration heat exchanger (51) is lower than the refrigerant evaporation temperature of the refrigeration heat exchanger (45). The stage is compressed. The refrigerant evaporation temperature of the refrigeration heat exchanger (51) is set to, for example, −40 ° C.

上記冷凍熱交換器(51)のガス側とブースタ圧縮機(53)の吸込側とは、接続ガス管(54)によって接続されている。該ブースタ圧縮機(53)の吐出側には、低圧ガス管(15)より分岐した分岐ガス管(16)が接続されている。該分岐ガス管(16)には、逆止弁(7)とオイルセパレータ(55)とが設けられている。該オイルセパレータ(55)と接続ガス管(54)との間には、キャピラリチューブを有する油戻し管(57)が接続されている。     The gas side of the refrigeration heat exchanger (51) and the suction side of the booster compressor (53) are connected by a connection gas pipe (54). A branch gas pipe (16) branched from the low pressure gas pipe (15) is connected to the discharge side of the booster compressor (53). The branch gas pipe (16) is provided with a check valve (7) and an oil separator (55). An oil return pipe (57) having a capillary tube is connected between the oil separator (55) and the connection gas pipe (54).

また、上記ブースタ圧縮機(53)の吸込側である接続ガス管(54)とブースタ圧縮機(53)の吐出側である分岐ガス管(16)の逆止弁(7)の下流側との間には、逆止弁(7)を有するバイパス管(59)が接続されている。該バイパス管(59)は、ブースタ圧縮機(53)の故障などの停止時に該ブースタ圧縮機(53)をバイパスして冷媒が流れるように構成されている。     The connection gas pipe (54) on the suction side of the booster compressor (53) and the downstream side of the check valve (7) of the branch gas pipe (16) on the discharge side of the booster compressor (53) A bypass pipe (59) having a check valve (7) is connected between them. The bypass pipe (59) is configured so that the refrigerant flows by bypassing the booster compressor (53) when the booster compressor (53) is stopped due to a failure or the like.

上記過冷却用熱交換器(210)は、いわゆるプレート式熱交換器によって構成されている。過冷却用熱交換器(210)には、第1流路(211)と第2流路(212)とが複数ずつ形成されている。上記第1連絡液管(11)から第3連絡液管(18)が分岐している。上記過冷却用熱交換器(210)の第1流路(211)は、上記第1連絡液管(11)の一部を構成している。第2流路(212)は、上記第3連絡液管(18)の一部を構成している。     The supercooling heat exchanger (210) is a so-called plate heat exchanger. A plurality of first flow paths (211) and a plurality of second flow paths (212) are formed in the supercooling heat exchanger (210). A third communication liquid pipe (18) branches from the first communication liquid pipe (11). The first flow path (211) of the supercooling heat exchanger (210) constitutes a part of the first communication liquid pipe (11). The second channel (212) constitutes a part of the third communication liquid pipe (18).

上記第3連絡液管(18)における第1連絡液管(11)との分岐点から第2流路(212)までの間には、過冷却用膨張弁(223)が設けられている。この過冷却用膨張弁(223)は、感温式膨張弁によって構成されており、感温筒が第2流路(212)の反対側に取り付けられている。     A supercooling expansion valve (223) is provided between the branch point of the third communication liquid pipe (18) with the first communication liquid pipe (11) and the second flow path (212). The supercooling expansion valve (223) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the opposite side of the second flow path (212).

そして、上記過冷却用熱交換器(210)は、過冷却用膨張弁(223)が開いたときに、第1流路(211)を流れる冷媒と、第2流路(212)を流れる冷凍装置(10)の冷媒とを熱交換させる。この第1流路(211)を流れて過冷却された冷媒が第1連絡液管(11)を通って冷蔵熱交換器(45)と冷凍熱交換器(51)とに流れるように構成されている。     The supercooling heat exchanger (210) includes a refrigerant that flows through the first channel (211) and a refrigeration that flows through the second channel (212) when the expansion valve (223) for supercooling is opened. Heat exchange is performed with the refrigerant in the device (10). The refrigerant that is supercooled through the first flow path (211) flows through the first communication liquid pipe (11) to the refrigeration heat exchanger (45) and the refrigeration heat exchanger (51). ing.

〈制御系統〉
上記冷媒回路(1E)には、各種センサ及び各種スイッチが設けられている。上記室外ユニット(1A)の吐出側三方切換弁(101)の第3ポートの近傍には、高圧冷媒圧力を検出する高圧圧力センサ(61)が設けられている。インバータ圧縮機(2)には、高圧冷媒温度を検出する吐出温度センサ(62)が設けられている。
<Control system>
The refrigerant circuit (1E) is provided with various sensors and various switches. In the vicinity of the third port of the discharge side three-way switching valve (101) of the outdoor unit (1A), a high pressure sensor (61) for detecting a high pressure refrigerant pressure is provided. The inverter compressor (2) is provided with a discharge temperature sensor (62) for detecting the high-pressure refrigerant temperature.

上記インバータ圧縮機(2)の吸入管(6)の近傍には、低圧冷媒圧力を検出する低圧圧力センサ(65,66)と、低圧冷媒温度を検出する吸入温度センサ(67)とが設けられている。     Near the suction pipe (6) of the inverter compressor (2), a low pressure sensor (65, 66) for detecting the low pressure refrigerant pressure and a suction temperature sensor (67) for detecting the low pressure refrigerant temperature are provided. ing.

また、上記室外ユニット(1A)には、室外空気温度を検出する外気温センサ(70)が設けられている。     The outdoor unit (1A) is provided with an outdoor air temperature sensor (70) for detecting the outdoor air temperature.

上記室内熱交換器(41)には、室内熱交換器(41)における冷媒温度である凝縮温度又は蒸発温度を検出する室内熱交換センサ(71)が設けられると共に、ガス側にガス冷媒温度を検出するガス温センサ(72)が設けられている。また、上記室内ユニット(1B)には、室内空気温度を検出する室温センサ(73)が設けられている。     The indoor heat exchanger (41) is provided with an indoor heat exchange sensor (71) for detecting a condensation temperature or an evaporation temperature which is a refrigerant temperature in the indoor heat exchanger (41), and the gas refrigerant temperature is set on the gas side. A gas temperature sensor (72) for detection is provided. The indoor unit (1B) is provided with a room temperature sensor (73) for detecting the indoor air temperature.

上記冷蔵ユニット(1C)には、冷蔵用のショーケース内の庫内温度を検出する冷蔵温度センサ(74)が設けられている。上記冷凍ユニット(1D)には、冷凍用のショーケース内の庫内温度を検出する冷凍温度センサ(75)が設けられている。つまり、上記冷蔵温度センサ(74)及び冷凍温度センサ(75)は、冷蔵熱交換器(45)及び冷凍熱交換器(51)の吸込空気温度を検出するように構成されている。     The refrigeration unit (1C) is provided with a refrigeration temperature sensor (74) for detecting the internal temperature in the refrigeration showcase. The refrigeration unit (1D) is provided with a refrigeration temperature sensor (75) for detecting the internal temperature in the showcase for refrigeration. That is, the refrigeration temperature sensor (74) and the refrigeration temperature sensor (75) are configured to detect the intake air temperature of the refrigeration heat exchanger (45) and the refrigeration heat exchanger (51).

上記各種センサ及び各種スイッチの出力信号は、コントローラ(80)(図1にのみ示す)に入力されている。該コントローラ(80)は、インバータ圧縮機(2)の容量などを制御するように構成されている。     Output signals from the various sensors and switches are input to the controller (80) (shown only in FIG. 1). The controller (80) is configured to control the capacity of the inverter compressor (2).

また、上記コントローラ(80)は、冷媒回路(1E)の運転を制御し、冷房運転と冷凍運転と冷房冷凍運転と暖房運転と第1乃至第3暖房冷凍運転とを切り換えて制御するように構成されている。     The controller (80) is configured to control the operation of the refrigerant circuit (1E) and switch between the cooling operation, the refrigeration operation, the cooling refrigeration operation, the heating operation, and the first to third heating refrigeration operations. Has been.

上記コントローラ(80)の制御により、上記吐出側三方切換弁(101)は、室外熱交換器(4)が蒸発器となるときには、第2ポートが完全に閉じられ、第3ポート側に冷媒が全て流れる。一方、暖房運転中の室内熱交換器(41)が凝縮器となるときで且つサーモオフのときには、第3ポート側が完全に閉じられ、第2ポート側に冷媒が全て流れる。     Under the control of the controller (80), when the outdoor heat exchanger (4) is an evaporator, the discharge side three-way switching valve (101) is completely closed at the second port, and the refrigerant is supplied to the third port side. Everything flows. On the other hand, when the indoor heat exchanger (41) during the heating operation becomes a condenser and when the thermostat is off, the third port side is completely closed, and all the refrigerant flows to the second port side.

上記コントローラ(80)の制御により、吸入側三方切換弁(102)は、第1系統側回路が使用されないとき、すなわち、室内ユニット(1B)のみの運転時には、その第3ポートは常に閉じられる。     Under the control of the controller (80), the third port of the suction side three-way switching valve (102) is always closed when the first system side circuit is not used, that is, when only the indoor unit (1B) is operated.

また、上記コントローラ(80)には、上記冷媒回路(1E)の能力制御手段である能力制御部(81)と、冷媒の分配制御手段である分配制御部(82)と、補助制御手段である補助制御部(83)とが設けられている。     The controller (80) includes a capacity control unit (81) that is a capacity control unit of the refrigerant circuit (1E), a distribution control unit (82) that is a refrigerant distribution control unit, and an auxiliary control unit. And an auxiliary control unit (83).

上記分配制御部(82)は、室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる第2暖房冷凍運転時において、室温センサ(73)が検出する室内空気温度と設定室内温度との差温が予め設定された所定値(設定値0)になるように上記室内熱交換器(41)と室外熱交換器(4)とに分配される冷媒の流量を調整するために上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。     The distribution control unit (82) detects the indoor air temperature detected by the room temperature sensor (73) during the second heating / freezing operation in which both the indoor heat exchanger (41) and the outdoor heat exchanger (4) are condensers. The flow rate of the refrigerant distributed to the indoor heat exchanger (41) and the outdoor heat exchanger (4) is adjusted so that the difference between the temperature and the set room temperature becomes a predetermined value (set value 0) set in advance. Therefore, PID control is performed on the opening amounts of the second port and the third port of the discharge side three-way switching valve (101).

具体的に、上記分配制御部(82)は、図6に示すように、室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値1以下の場合、上記吐出側三方切換弁(101)の第2ポートを全閉とし、インバータ圧縮機(2)の吐出冷媒が全て室内熱交換器(41)に流れ、第1暖房冷凍運転が行われる。また、上記室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値2以上となると、上記吐出側三方切換弁(101)の第2ポートが開き、インバータ圧縮機(2)の吐出冷媒が第2ポートと第3ポートとを介して室内熱交換器(41)と室外熱交換器(4)と分配される。     Specifically, as shown in FIG. 6, when the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature are equal to or lower than a preset value 1, the distribution control unit (82) is configured to discharge the three-way switching valve on the discharge side. The second port of (101) is fully closed, all the refrigerant discharged from the inverter compressor (2) flows to the indoor heat exchanger (41), and the first heating and refrigeration operation is performed. Further, when the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature are equal to or higher than a preset set value 2, the second port of the discharge side three-way switching valve (101) is opened, and the inverter compressor (2) The discharged refrigerant is distributed to the indoor heat exchanger (41) and the outdoor heat exchanger (4) through the second port and the third port.

そして、上記分配制御部(82)は、吐出側三方切換弁(101)の第2ポートが開くと、室内空気温度Trと設定室内温度Tsetと差温が設定値0になるように上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。     When the second port of the discharge side three-way switching valve (101) is opened, the distribution control unit (82) is configured so that the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature become the set value 0. PID control is performed on the opening amounts of the second port and the third port of the three-way switching valve (101).

上記能力制御部(81)は、室内熱交換器(41)のみが凝縮器となる熱回収運転時(第1暖房冷凍運転時)と室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる熱回収運転時(第2暖房冷凍運転時)に、上記冷蔵熱交換器(45)の冷媒温度と設定庫内温度との差温が所定値になるように上記インバータ圧縮機(2)の容量を制御して冷媒回路(1E)の冷凍能力を制御する。具体的に、上記能力制御部(81)は、冷蔵熱交換器(45)の冷媒温度Teが設定庫内温度Tsetより10°低くなるようにする(Tset−Te=10)。     The capacity control unit (81) includes the indoor heat exchanger (41) and the outdoor heat exchanger (4) during the heat recovery operation (first heating and refrigeration operation) in which only the indoor heat exchanger (41) serves as a condenser. So that the difference between the refrigerant temperature of the refrigeration heat exchanger (45) and the set internal temperature becomes a predetermined value at the time of heat recovery operation (second heating / refrigeration operation) in which both of them become condensers The refrigerant capacity of the refrigerant circuit (1E) is controlled by controlling the capacity of the compressor (2). Specifically, the capacity control unit (81) causes the refrigerant temperature Te of the refrigeration heat exchanger (45) to be 10 ° lower than the set internal temperature Tset (Tset−Te = 10).

上記補助制御部(83)は、室内熱交換器(41)のみが凝縮器となる熱回収運転時(第1暖房冷凍運転時)において、室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる熱回収運転(第2暖房冷凍運転)に切り換える前に、室内熱交換器(41)の室内ファン(43)の風量を増大させる。     The auxiliary control unit (83) includes an indoor heat exchanger (41) and an outdoor heat exchanger (4) during a heat recovery operation (during the first heating / refrigeration operation) in which only the indoor heat exchanger (41) serves as a condenser. ) Increase the air volume of the indoor fan (43) of the indoor heat exchanger (41) before switching to the heat recovery operation (second heating / refrigeration operation) in which both of them become condensers.

−運転動作−
次に、上記冷凍装置(1)が行う上記運転動作のうち、本発明の特徴の現れる暖房モードについてのみ説明する。
-Driving action-
Next, only the heating mode in which the characteristics of the present invention appear will be described among the above-described operation operations performed by the refrigeration apparatus (1).

暖房モードは、上記コントローラ(80)の制御により、暖房運転と第1暖房冷凍運転と第2暖房冷凍運転と第3暖房冷凍運転のいずれに切り換わる。     The heating mode is switched to any one of the heating operation, the first heating / freezing operation, the second heating / freezing operation, and the third heating / freezing operation under the control of the controller (80).

〈暖房運転〉
この暖房運転は、室内ユニット(1B)の暖房のみを行う運転である。また、四路切換弁(3A)は、図2の実線で示すように、ON状態に切り換わる。吐出側三方切換弁(101)の第2ポートは閉じている。吸入側三方切換弁(102)の第3ポートは閉じている。更に、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(1D)の電磁弁(7b)が閉鎖している。
<Heating operation>
This heating operation is an operation for heating only the indoor unit (1B). Further, the four-way switching valve (3A) switches to the ON state as shown by the solid line in FIG. The second port of the discharge side three-way switching valve (101) is closed. The third port of the suction side three-way switching valve (102) is closed. Furthermore, the solenoid valve (7a) of the refrigeration unit (1C) and the solenoid valve (7b) of the refrigeration unit (1D) are closed.

この状態において、インバータ圧縮機(2)から吐出した冷媒は、吐出側三方切換弁(101)の第3ポートを通って、四路切換弁(3A)から連絡ガス管(17)を経て室内熱交換器(41)に流れて凝縮する。凝縮した液冷媒は、第2連絡液管(12)を流れ、レシーバ(14)に流れる。その後、上記液冷媒は、暖房用膨張弁(104)を経て室外熱交換器(4)に流れて蒸発する。蒸発したガス冷媒は、室外ガス管(9)から四路切換弁(3A)及び吸入側三方切換弁(102)を経て、インバータ圧縮機(2)に戻る。この循環を繰り返し、室内である店内を暖房する。     In this state, the refrigerant discharged from the inverter compressor (2) passes through the third port of the discharge side three-way switching valve (101), passes through the four-way switching valve (3A), the communication gas pipe (17), and the indoor heat. It flows into the exchanger (41) and condenses. The condensed liquid refrigerant flows through the second communication liquid pipe (12) and then flows into the receiver (14). Thereafter, the liquid refrigerant flows through the heating expansion valve (104) to the outdoor heat exchanger (4) and evaporates. The evaporated gas refrigerant returns from the outdoor gas pipe (9) to the inverter compressor (2) through the four-way switching valve (3A) and the suction side three-way switching valve (102). This circulation is repeated to heat the inside of the store.

また、上記暖房用膨張弁(104)の開度は、低圧圧力センサ(65,66)に基づく圧力相当飽和温度と吸入温度センサ(67)の検出温度によって過熱度制御される。上記室内膨張弁(42)の開度は、室内熱交換センサ(71)の検出温度に基づいて過冷却制御される。この暖房用膨張弁(104)及び室内膨張弁(42)の開度制御は、以下、暖房モードで同じである。     The opening degree of the heating expansion valve (104) is superheat controlled by the pressure equivalent saturation temperature based on the low pressure sensor (65, 66) and the temperature detected by the suction temperature sensor (67). The opening degree of the indoor expansion valve (42) is supercooled based on the temperature detected by the indoor heat exchange sensor (71). The opening control of the heating expansion valve (104) and the indoor expansion valve (42) is the same in the heating mode hereinafter.

〈第1暖房冷凍運転〉
この第1暖房冷凍運転は、室外熱交換器(4)を用いず、室内ユニット(1B)の暖房と冷蔵ユニット(1C)及び冷凍ユニット(1D)の冷却を行う運転である。
<First heating / freezing operation>
The first heating / freezing operation is an operation for heating the indoor unit (1B) and cooling the refrigeration unit (1C) and the refrigeration unit (1D) without using the outdoor heat exchanger (4).

図3の実線で示すように、四路切換弁(3A)は、ON状態に切り換わる。吸入側三方切換弁(102)の第2ポートは開いている。更に、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(1D)の電磁弁(7b)が開口する一方、暖房用膨張弁(104)が閉鎖している。     As shown by the solid line in FIG. 3, the four-way selector valve (3A) is switched to the ON state. The second port of the suction side three-way switching valve (102) is open. Further, the solenoid valve (7a) of the refrigeration unit (1C) and the solenoid valve (7b) of the refrigeration unit (1D) are opened, while the heating expansion valve (104) is closed.

また、本発明の特徴として、この第1暖房冷凍運転は、図6に示すように、室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値1以下の場合である。従って、上記分配制御部(82)は、上記吐出側三方切換弁(101)の第2ポートを全閉としている。     Further, as a feature of the present invention, the first heating and refrigeration operation is a case where the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature are equal to or lower than a preset set value 1 as shown in FIG. Therefore, the distribution control unit (82) fully closes the second port of the discharge side three-way switching valve (101).

この状態において、インバータ圧縮機(2)から吐出した冷媒は、吐出側三方切換弁(101)において、全て第3ポート側に送られる。この冷媒が四路切換弁(3A)から連絡ガス管(17)を経て室内熱交換器(41)に流れて凝縮する。凝縮した液冷媒は、第2連絡液管(12)から第1連絡液管(11)を流れる。     In this state, the refrigerant discharged from the inverter compressor (2) is all sent to the third port side in the discharge side three-way switching valve (101). This refrigerant flows from the four-way selector valve (3A) through the communication gas pipe (17) to the indoor heat exchanger (41) and condenses. The condensed liquid refrigerant flows from the second communication liquid pipe (12) to the first communication liquid pipe (11).

上記第1連絡液管(11)を流れる液冷媒は、その一部が冷蔵膨張弁(46)を経て冷蔵熱交換器(45)に流れて蒸発する。また、上記第1連絡液管(11)を流れる他の液冷媒は、分岐液管(13)を流れ、冷凍膨張弁(52)を経て冷凍熱交換器(51)に流れて蒸発する。この冷凍熱交換器(51)で蒸発したガス冷媒は、ブースタ圧縮機(53)に吸引されて圧縮され、分岐ガス管(16)に吐出される。     Part of the liquid refrigerant flowing through the first communication liquid pipe (11) flows through the refrigeration expansion valve (46) to the refrigeration heat exchanger (45) and evaporates. The other liquid refrigerant flowing through the first communication liquid pipe (11) flows through the branch liquid pipe (13), passes through the refrigeration expansion valve (52), flows into the refrigeration heat exchanger (51), and evaporates. The gas refrigerant evaporated in the refrigeration heat exchanger (51) is sucked into the booster compressor (53), compressed, and discharged to the branch gas pipe (16).

上記冷蔵熱交換器(45)で蒸発したガス冷媒とブースタ圧縮機(53)から吐出したガス冷媒とは、低圧ガス管(15)で合流し、インバータ圧縮機(2)に戻る。この循環を繰り返し、室内である店内を暖房すると同時に、冷蔵用のショーケースと冷凍用のショーケースである庫内を冷却する。つまり、冷蔵ユニット(1C)と冷凍ユニット(1D)との冷却能力(蒸発熱量)と、室内ユニット(1B)の暖房能力(凝縮熱量)とがバランスし、100%の熱回収が行われる。     The gas refrigerant evaporated in the refrigeration heat exchanger (45) and the gas refrigerant discharged from the booster compressor (53) are merged in the low-pressure gas pipe (15) and returned to the inverter compressor (2). This circulation is repeated to heat the interior of the store, and at the same time, cool the interior of the refrigerator, which is a showcase for refrigeration and a showcase for freezing. That is, the cooling capacity (evaporation heat amount) of the refrigeration unit (1C) and the refrigeration unit (1D) balances the heating capacity (condensation heat amount) of the indoor unit (1B), and 100% heat recovery is performed.

また、上記冷蔵膨張弁(46)及び冷凍膨張弁(52)の開度は、感温筒による過熱度制御が行われ、以下、各運転で同じである。     The opening degree of the refrigeration expansion valve (46) and the refrigeration expansion valve (52) is superheat controlled by a temperature sensing cylinder and is the same in each operation hereinafter.

また、この第1暖房冷凍運転において、能力制御部(81)は、冷蔵熱交換器(45)の冷媒温度と設定庫内温度との差温が所定値になるように上記インバータ圧縮機(2)の容量を制御して冷媒回路(1E)の冷凍能力を制御する。具体的に、上記能力制御部(81)は、冷蔵熱交換器(45)の冷媒温度Teが設定庫内温度Tsetより10°低くなるように上記インバータ圧縮機(2)の容量を制御している(Tset−Te=10)。     In the first heating / refrigeration operation, the capacity control unit (81) is configured so that the difference between the refrigerant temperature of the refrigeration heat exchanger (45) and the set internal temperature becomes a predetermined value. ) To control the refrigerating capacity of the refrigerant circuit (1E). Specifically, the capacity control unit (81) controls the capacity of the inverter compressor (2) so that the refrigerant temperature Te of the refrigeration heat exchanger (45) is 10 ° lower than the set internal temperature Tset. (Tset−Te = 10).

また、本発明の特徴として、この第1暖房冷凍運転は、図6に示すように、室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値2以上になると、分配制御部(82)が、吐出側三方切換弁(101)の第2ポートを開き、第2暖房冷凍運転に切り換わるが、補助制御部(83)は、上記第1暖房冷凍運転時から第2暖房冷凍運転に切り換える前に、室内熱交換器(41)の室内ファン(43)の風量を増大させる。この結果、上記第1暖房冷凍運転が可能な限り継続されることになる。     Further, as a feature of the present invention, as shown in FIG. 6, the first heating / freezing operation is performed when the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature are equal to or higher than a preset set value 2, as shown in FIG. (82) opens the second port of the discharge side three-way switching valve (101) and switches to the second heating / freezing operation, but the auxiliary control unit (83) starts the second heating / freezing operation from the time of the first heating / freezing operation. Before switching to operation, the air volume of the indoor fan (43) of the indoor heat exchanger (41) is increased. As a result, the first heating / freezing operation is continued as much as possible.

〈第2暖房冷凍運転〉
この第2暖房冷凍運転は、上記第1暖房冷凍運転時に室内ユニット(1B)の暖房能力が余る暖房の能力過剰運転である。
<Second heating and freezing operation>
This second heating / freezing operation is an overheating operation of heating in which the heating capacity of the indoor unit (1B) is excessive during the first heating / freezing operation.

図4に示すように、この第2暖房冷凍運転は、上記第1暖房冷凍運転時において、暖房能力が余る場合の熱回収運転である。     As shown in FIG. 4, the second heating / freezing operation is a heat recovery operation when the heating capacity is excessive during the first heating / freezing operation.

本発明の特徴として、この第2暖房冷凍運転は、図6に示すように、室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値2以上となった場合である。従って、上記分配制御部(82)は、上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。     As a feature of the present invention, the second heating and refrigeration operation is a case where the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature are equal to or higher than a preset set value 2 as shown in FIG. Accordingly, the distribution control unit (82) performs PID control on the opening amounts of the second port and the third port of the discharge side three-way switching valve (101).

具体的に、上記分配制御部(82)は、図6に示すように、室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値1以下になると、上記吐出側三方切換弁(101)の第2ポートを全閉とし、インバータ圧縮機(2)の吐出冷媒を全て室内熱交換器(41)に流し、第1暖房冷凍運転とする。また、上記分配制御部(82)は、室内空気温度Trと設定室内温度Tsetと差温が予め設定された設定値2以上となると、上記吐出側三方切換弁(101)の第2ポートが開き、インバータ圧縮機(2)の吐出冷媒が第2ポートと第3ポートとを介して室内熱交換器(41)と室外熱交換器(4)と分配され、第2暖房冷凍運転とする。     Specifically, as shown in FIG. 6, when the indoor air temperature Tr, the set indoor temperature Tset, and the temperature difference are equal to or lower than a preset set value 1, the distribution control unit (82) is configured to discharge the three-way switching valve on the discharge side. The second port of (101) is fully closed, and all the refrigerant discharged from the inverter compressor (2) is caused to flow into the indoor heat exchanger (41), so that the first heating / freezing operation is performed. The distribution control unit (82) opens the second port of the discharge side three-way switching valve (101) when the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature are equal to or higher than a preset set value 2. The refrigerant discharged from the inverter compressor (2) is distributed to the indoor heat exchanger (41) and the outdoor heat exchanger (4) through the second port and the third port, and the second heating / refrigeration operation is performed.

そして、この第2暖房冷凍運転において、上記分配制御部(82)は、上記吐出側三方切換弁(101)の第2ポートが開くと、室内空気温度Trと設定室内温度Tsetと差温が設定値0になるように上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。     In the second heating / refrigeration operation, when the second port of the discharge side three-way switching valve (101) is opened, the distribution control unit (82) sets the indoor air temperature Tr, the set indoor temperature Tset, and the differential temperature. The opening amounts of the second port and the third port of the discharge side three-way switching valve (101) are PID controlled so that the value becomes zero.

すなわち、室内熱交換器(41)で必要な凝縮熱を与えることのできる流量の冷媒のみを、その第3ポートを通して室内熱交換器(41)に流し、凝縮する。凝縮した液冷媒は、第2連絡液管(12)を通って第1連絡液管(11)に流れる。     That is, only the refrigerant having a flow rate capable of giving the necessary heat of condensation in the indoor heat exchanger (41) flows through the third port to the indoor heat exchanger (41) and is condensed. The condensed liquid refrigerant flows into the first communication liquid pipe (11) through the second communication liquid pipe (12).

一方、インバータ圧縮機(2)から吐出した残りの冷媒は、吐出側三方切換弁(101)で第2ポートを通って室外ガス管(9)側に分配される。そして、その冷媒は、室外熱交換器(4)で凝縮する。この凝縮した液冷媒は、第1液管(10a)を流れた後、レシーバ(14)に流れ、接続液管(19)を通って第1連絡液管(11)において上記室内熱交換器(41)を通過した冷媒と合流する。     On the other hand, the remaining refrigerant discharged from the inverter compressor (2) is distributed to the outdoor gas pipe (9) side through the second port by the discharge side three-way switching valve (101). The refrigerant condenses in the outdoor heat exchanger (4). The condensed liquid refrigerant flows through the first liquid pipe (10a), then flows into the receiver (14), passes through the connection liquid pipe (19), and passes through the indoor heat exchanger (11) in the first communication liquid pipe (11). It merges with the refrigerant that passed through 41).

その後、上記第1連絡液管(11)を流れる液冷媒の一部が冷蔵熱交換器(45)に流れて蒸発する。また、上記第1連絡液管(11)を流れる他の液冷媒は、冷凍熱交換器(51)に流れて蒸発する。上記冷蔵熱交換器(45)で蒸発したガス冷媒と、冷凍熱交換器(51)で蒸発した後ブースタ圧縮機(53)から吐出されたガス冷媒とは、低圧ガス管(15)で合流し、吸入側三方切換弁(102)の第3ポートを通ってインバータ圧縮機(2)に戻る。この循環を繰り返し、室内である店内を暖房すると同時に、冷蔵用のショーケースと冷凍用のショーケースである庫内を冷却する。つまり、冷蔵ユニット(1C)と冷凍ユニット(1D)との冷却能力(蒸発熱量)と、室内ユニット(1B)の暖房能力(凝縮熱量)とがバランスせず、余る凝縮熱のみを室外熱交換器(4)で室外に放出する。     Thereafter, a part of the liquid refrigerant flowing through the first communication liquid pipe (11) flows into the refrigeration heat exchanger (45) and evaporates. The other liquid refrigerant flowing through the first communication liquid pipe (11) flows to the refrigeration heat exchanger (51) and evaporates. The gas refrigerant evaporated in the refrigeration heat exchanger (45) and the gas refrigerant discharged from the booster compressor (53) after evaporating in the refrigeration heat exchanger (51) merge in the low-pressure gas pipe (15). Then, it returns to the inverter compressor (2) through the third port of the suction side three-way switching valve (102). This circulation is repeated to heat the interior of the store, and at the same time, cool the interior of the refrigerator, which is a showcase for refrigeration and a showcase for freezing. In other words, the cooling capacity (evaporation heat amount) of the refrigeration unit (1C) and refrigeration unit (1D) and the heating capacity (condensation heat amount) of the indoor unit (1B) are not balanced, and only the remaining condensation heat is transferred to the outdoor heat exchanger. Discharge to the outside in (4).

また、この第2暖房冷凍運転においても、能力制御部(81)は、冷蔵熱交換器(45)の冷媒温度と設定庫内温度との差温が所定値になるように上記インバータ圧縮機(2)の容量を制御して冷媒回路(1E)の冷凍能力を制御する。具体的に、上記能力制御部(81)は、冷蔵熱交換器(45)の冷媒温度Teが設定庫内温度Tsetより10°低くなるように上記インバータ圧縮機(2)の容量を制御している(Tset−Te=10)。     Also in this second heating / refrigeration operation, the capacity control unit (81) also uses the inverter compressor (81) so that the difference between the refrigerant temperature of the refrigeration heat exchanger (45) and the set internal temperature becomes a predetermined value. The capacity of 2) is controlled to control the refrigerating capacity of the refrigerant circuit (1E). Specifically, the capacity control unit (81) controls the capacity of the inverter compressor (2) so that the refrigerant temperature Te of the refrigeration heat exchanger (45) is 10 ° lower than the set internal temperature Tset. (Tset−Te = 10).

〈第3暖房冷凍運転〉
この第3暖房冷凍運転は、上記第1暖房冷凍運転時に室内ユニット(1B)の暖房能力が不足する暖房の能力不足運転である。つまり、蒸発熱量が不足している場合である。
<Third heating / freezing operation>
The third heating / freezing operation is a heating-deficient operation in which the heating capacity of the indoor unit (1B) is insufficient during the first heating / freezing operation. That is, the amount of heat of evaporation is insufficient.

図5の実線で示すように、四路切換弁(3A)は、ON状態に切り換わる。吐出側三方切換弁(101)の第2ポートは閉じている。吸入側三方切換弁(102)は第2ポート及び第3ポートが開いている。更に、冷蔵ユニット(1C)の電磁弁(7a)及び冷凍ユニット(1D)の電磁弁(7b)が開口している。     As shown by the solid line in FIG. 5, the four-way selector valve (3A) is switched to the ON state. The second port of the discharge side three-way switching valve (101) is closed. The suction side three-way switching valve (102) has the second port and the third port open. Furthermore, the solenoid valve (7a) of the refrigeration unit (1C) and the solenoid valve (7b) of the refrigeration unit (1D) are opened.

したがって、インバータ圧縮機(2)から吐出した冷媒は、上記第1暖房冷凍運転と同様に全て室内熱交換器(41)に流れて凝縮する。凝縮した液冷媒は、第2連絡液管(12)を通って第1連絡液管(11)とレシーバ(14)とに流れる。     Therefore, all of the refrigerant discharged from the inverter compressor (2) flows into the indoor heat exchanger (41) and condenses as in the first heating / refrigeration operation. The condensed liquid refrigerant flows through the second communication liquid pipe (12) to the first communication liquid pipe (11) and the receiver (14).

その後、上記第1連絡液管(11)を流れる液冷媒の一部が冷蔵熱交換器(45)に流れて蒸発する。また、上記第1連絡液管(11)を流れる他の液冷媒は、冷凍熱交換器(51)に流れて蒸発する。上記冷蔵熱交換器(45)で蒸発したガス冷媒と冷凍熱交換器(51)で蒸発した後ブースタ圧縮機(53)から吐出したガス冷媒とは、低圧ガス管(15)で合流し、吸入側三方切換弁(102)の第3ポートを通ってインバータ圧縮機(2)に戻る。     Thereafter, a part of the liquid refrigerant flowing through the first communication liquid pipe (11) flows to the refrigeration heat exchanger (45) and evaporates. The other liquid refrigerant flowing through the first communication liquid pipe (11) flows to the refrigeration heat exchanger (51) and evaporates. The gas refrigerant evaporated in the refrigeration heat exchanger (45) and the gas refrigerant discharged from the booster compressor (53) after evaporating in the refrigeration heat exchanger (51) are combined and sucked in the low-pressure gas pipe (15). It returns to the inverter compressor (2) through the third port of the side three-way switching valve (102).

一方、上記レシーバ(14)側に流れ込んだ他の液冷媒は、第2液管(10b)を経て暖房用膨張弁(104)を通って室外熱交換器(4)に流れ、蒸発する。蒸発したガス冷媒は、室外ガス管(9)を流れ、四路切換弁(3A)及び吸入側三方切換弁(102)を経てインバータ圧縮機(2)に戻る。     On the other hand, the other liquid refrigerant flowing into the receiver (14) flows through the second liquid pipe (10b) through the heating expansion valve (104) to the outdoor heat exchanger (4) and evaporates. The evaporated gas refrigerant flows through the outdoor gas pipe (9) and returns to the inverter compressor (2) through the four-way switching valve (3A) and the suction side three-way switching valve (102).

この循環を繰り返し、室内である店内を暖房すると同時に、冷蔵用のショーケースと冷凍用のショーケースである庫内を冷却する。つまり、冷蔵ユニット(1C)と冷凍ユニット(1D)との冷却能力(蒸発熱量)と、室内ユニット(1B)の暖房能力(凝縮熱量)とがバランスせず、不足する蒸発熱を室外熱交換器(4)から得る。     This circulation is repeated to heat the interior of the store, and at the same time, cool the interior of the refrigerator, which is a showcase for refrigeration and a showcase for freezing. In other words, the cooling capacity (evaporation heat amount) between the refrigeration unit (1C) and the refrigeration unit (1D) and the heating capacity (condensation heat amount) of the indoor unit (1B) are not balanced, and insufficient heat of evaporation is transferred to the outdoor heat exchanger. Get from (4).

−実施形態1の効果−
以上説明したように、上記実施形態の冷凍装置(1)によれば、分配制御部(82)によって三方切換弁(101)が、圧縮機(2)から吐出された冷媒を室内熱交換器(41)と室外熱交換器(4)とに流量を調整して分配している。このため、第2暖房冷凍運転時に冷蔵熱交換器(45)及び冷凍熱交換器(51)で吸収した熱量のうち、室内熱交換器(41)で必要な熱量のみを室内熱交換器(41)に供給し、余った熱量を室外熱交換器(4)で室外に排出することができる。したがって、圧縮機(2)の吐出圧を下げすぎることないので、快適な空調が行え、また、冷蔵熱交換器(45)及び冷凍熱交換器(51)で吸収した熱を適切に回収できるため、熱効率を格段に向上させることができる。
-Effect of Embodiment 1-
As described above, according to the refrigeration apparatus (1) of the above embodiment, the three-way switching valve (101) causes the refrigerant discharged from the compressor (2) to be transferred to the indoor heat exchanger (82) by the distribution control unit (82). 41) and the outdoor heat exchanger (4) are adjusted and distributed. For this reason, only the amount of heat necessary for the indoor heat exchanger (41) out of the amount of heat absorbed by the refrigeration heat exchanger (45) and the refrigeration heat exchanger (51) during the second heating and refrigeration operation is converted into the indoor heat exchanger (41 ) And the excess heat can be discharged to the outside by the outdoor heat exchanger (4). Therefore, since the discharge pressure of the compressor (2) is not reduced too much, comfortable air conditioning can be performed, and the heat absorbed by the refrigeration heat exchanger (45) and the refrigeration heat exchanger (51) can be recovered appropriately. , The thermal efficiency can be significantly improved.

また、上記室内熱交換器(41)と室外熱交換器(4)との冷媒分配量を制御するので、室内熱交換器(41)の能力の微調整を行うことができることから、より快適な空調を行うことができる。     In addition, since the refrigerant distribution amount between the indoor heat exchanger (41) and the outdoor heat exchanger (4) is controlled, the capacity of the indoor heat exchanger (41) can be finely adjusted. Air conditioning can be performed.

また、上記能力制御部(81)が第1暖房冷凍運転時及び第2暖房冷凍運転時における冷媒回路(1E)の冷凍能力を制御するので、冷蔵熱交換器(45)及び冷凍熱交換器(51)の低圧冷媒圧力を確実に所定値に保つことができることから、冷蔵熱交換器(45)及び冷凍熱交換器(51)の能力を確実に発揮させることができる。     Moreover, since the said capacity control part (81) controls the refrigerating capacity of the refrigerant circuit (1E) at the time of 1st heating refrigerating operation and 2nd heating refrigerating operation, a refrigerating heat exchanger (45) and refrigerating heat exchanger ( Since the low-pressure refrigerant pressure of 51) can be reliably maintained at a predetermined value, the capabilities of the refrigeration heat exchanger (45) and the refrigeration heat exchanger (51) can be reliably exhibited.

また、上記補助制御部(83)によって室内熱交換器(41)のみが凝縮器となる第1暖房冷凍運転を可能な限り継続させることができる。     In addition, the first heating and refrigeration operation in which only the indoor heat exchanger (41) serves as a condenser can be continued as much as possible by the auxiliary control unit (83).

《実施形態2》
本実施形態は、実施形態1の分配制御部(82)が室内空気温度と設定室内温度との差温に基づたのに代わり、分配制御部(82)が冷媒回路(1E)の高圧冷媒圧力に基づくようにしたものである。
<< Embodiment 2 >>
In this embodiment, the distribution control unit (82) of the first embodiment is based on the difference between the indoor air temperature and the set indoor temperature, and the distribution control unit (82) is a high-pressure refrigerant of the refrigerant circuit (1E). It is based on pressure.

具体的に、上記分配制御部(82)は、室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる第2暖房冷凍運転時において、図6に示すように、吐出温度センサ(62)が検出する高圧冷媒温度HPが所定値(設定値0)になるように上記室内熱交換器(41)と室外熱交換器(4)とに分配される冷媒の流量を調整するために上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。     Specifically, the distribution control unit (82), as shown in FIG. 6, during the second heating and refrigeration operation in which both the indoor heat exchanger (41) and the outdoor heat exchanger (4) are condensers, The flow rate of the refrigerant distributed to the indoor heat exchanger (41) and the outdoor heat exchanger (4) is adjusted so that the high-pressure refrigerant temperature HP detected by the discharge temperature sensor (62) becomes a predetermined value (set value 0). In order to adjust, the opening amounts of the second port and the third port of the discharge side three-way switching valve (101) are PID controlled.

具体的に、上記分配制御部(82)は、図6に示すように、高圧冷媒温度HPが予め設定された設定値1以下の場合、上記吐出側三方切換弁(101)の第2ポートを全閉とし、インバータ圧縮機(2)の吐出冷媒が全て室内熱交換器(41)に流れ、第1暖房冷凍運転が行われる。また、上記高圧冷媒温度HPが予め設定された設定値2以上となると、上記吐出側三方切換弁(101)の第2ポートが開き、インバータ圧縮機(2)の吐出冷媒が第2ポートと第3ポートとを介して室内熱交換器(41)と室外熱交換器(4)と分配される。     Specifically, as shown in FIG. 6, when the high-pressure refrigerant temperature HP is equal to or lower than a preset set value 1, the distribution control unit (82) sets the second port of the discharge side three-way switching valve (101). All the refrigerant discharged from the inverter compressor (2) flows to the indoor heat exchanger (41), and the first heating / freezing operation is performed. Further, when the high-pressure refrigerant temperature HP is equal to or higher than a preset set value 2, the second port of the discharge side three-way switching valve (101) is opened, and the discharge refrigerant of the inverter compressor (2) is connected to the second port and the second port. It distributes with an indoor heat exchanger (41) and an outdoor heat exchanger (4) via 3 ports.

そして、上記分配制御部(82)は、吐出側三方切換弁(101)の第2ポートが開くと、高圧冷媒温度HPが設定値0になるように上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。能力制御部(81)などその他の構成、作用及び効果は実施形態1と同様である。     The distribution control unit (82) is configured to switch the first three-way switching valve (101) so that the high-pressure refrigerant temperature HP becomes a set value 0 when the second port of the three-way switching valve (101) is opened. PID control is performed on the opening amounts of the second port and the third port. Other configurations, operations, and effects such as the capability control unit (81) are the same as those in the first embodiment.

《実施形態3》
本実施形態は、実施形態1の分配制御部(82)が室内空気温度と設定室内温度との差温に基づたのに代わり、分配制御部(82)が冷媒回路(1E)の液冷媒温度に基づくようにしたものである。
<< Embodiment 3 >>
In this embodiment, the distribution control unit (82) of the first embodiment is based on the difference between the indoor air temperature and the set indoor temperature, and the distribution control unit (82) is a liquid refrigerant of the refrigerant circuit (1E). It is based on temperature.

具体的に、上記分配制御部(82)は、室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる第2暖房冷凍運転時において、図6に示すように、室内熱交換センサ(71)が検出する液冷媒温度TL(室内凝縮温度)が所定値(設定値0)になるように上記室内熱交換器(41)と室外熱交換器(4)とに分配される冷媒の流量を調整するために上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。     Specifically, the distribution control unit (82), as shown in FIG. 6, during the second heating and refrigeration operation in which both the indoor heat exchanger (41) and the outdoor heat exchanger (4) are condensers, Distributing to the indoor heat exchanger (41) and the outdoor heat exchanger (4) so that the liquid refrigerant temperature TL (indoor condensation temperature) detected by the indoor heat exchange sensor (71) becomes a predetermined value (set value 0). In order to adjust the flow rate of the refrigerant, the opening amount of the second port and the third port of the discharge side three-way switching valve (101) is PID controlled.

具体的に、上記分配制御部(82)は、図6に示すように、液冷媒温度TLが予め設定された設定値1以下の場合、上記吐出側三方切換弁(101)の第2ポートを全閉とし、インバータ圧縮機(2)の吐出冷媒が全て室内熱交換器(41)に流れ、第1暖房冷凍運転が行われる。また、上記液冷媒温度TLが予め設定された設定値2以上となると、上記吐出側三方切換弁(101)の第2ポートが開き、インバータ圧縮機(2)の吐出冷媒が第2ポートと第3ポートとを介して室内熱交換器(41)と室外熱交換器(4)と分配される。     Specifically, as shown in FIG. 6, when the liquid refrigerant temperature TL is equal to or lower than a preset set value 1, the distribution control unit (82) turns on the second port of the discharge side three-way switching valve (101). All the refrigerant discharged from the inverter compressor (2) flows to the indoor heat exchanger (41), and the first heating / freezing operation is performed. Further, when the liquid refrigerant temperature TL is equal to or higher than a preset set value 2, the second port of the discharge side three-way switching valve (101) is opened, and the discharge refrigerant of the inverter compressor (2) is connected to the second port and the second port. It distributes with an indoor heat exchanger (41) and an outdoor heat exchanger (4) via 3 ports.

そして、上記分配制御部(82)は、吐出側三方切換弁(101)の第2ポートが開くと、液冷媒温度TLが設定値0になるように上記吐出側三方切換弁(101)の第2ポートと第3ポートとの開口量をPID制御する。能力制御部(81)などその他の構成、作用及び効果は実施形態1と同様である。     When the second port of the discharge side three-way switching valve (101) is opened, the distribution control unit (82) sets the first value of the discharge side three-way switching valve (101) so that the liquid refrigerant temperature TL becomes the set value 0. PID control is performed on the opening amounts of the second port and the third port. Other configurations, operations, and effects such as the capability control unit (81) are the same as those in the first embodiment.

《実施形態4》
本実施形態は、実施形態1の能力制御部(81)が冷蔵熱交換器(45)の冷媒温度に基づいてインバータ圧縮機(2)を制御するようにしたのに代わり、能力制御部(81)が冷蔵熱交換器(45)の冷媒圧力Peの相当飽和温度に基づいてインバータ圧縮機(2)を制御するように構成されている。
<< Embodiment 4 >>
In the present embodiment, instead of the capability control unit (81) of the first embodiment controlling the inverter compressor (2) based on the refrigerant temperature of the refrigeration heat exchanger (45), the capability control unit (81 ) Is configured to control the inverter compressor (2) based on the equivalent saturation temperature of the refrigerant pressure Pe of the refrigeration heat exchanger (45).

具体的に、上記能力制御部(81)は、室内熱交換器(41)のみが凝縮器となる第1暖房冷凍運転時と室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる第2暖房冷凍運転時とに、上記冷蔵熱交換器(45)の冷媒圧力Peの相当飽和温度と設定庫内温度との差温が所定値になるように上記インバータ圧縮機(2)の容量を制御して冷媒回路(1E)の冷凍能力を制御する。具体的に、上記能力制御部(81)は、冷蔵熱交換器(45)の冷媒圧力Peの相当飽和温度が設定庫内温度Tsetより10°低くなるようにする(Tset−Peの相当飽和温度=10)。分配制御部(82)などその他の構成、作用及び効果は実施形態1と同様である。     Specifically, the capacity control unit (81) includes both the indoor heat exchanger (41) and the outdoor heat exchanger (4) during the first heating / refrigeration operation in which only the indoor heat exchanger (41) serves as a condenser. The inverter compressor is configured so that a difference temperature between the equivalent saturation temperature of the refrigerant pressure Pe of the refrigeration heat exchanger (45) and the set internal temperature becomes a predetermined value during the second heating / refrigeration operation in which the is a condenser. The capacity of (2) is controlled to control the refrigerating capacity of the refrigerant circuit (1E). Specifically, the capacity controller (81) causes the equivalent saturation temperature of the refrigerant pressure Pe of the refrigeration heat exchanger (45) to be 10 ° lower than the set internal temperature Tset (equivalent saturation temperature of Tset-Pe). = 10). Other configurations, operations, and effects such as the distribution control unit (82) are the same as those in the first embodiment.

《実施形態5》
本実施形態は、実施形態1の能力制御部(81)が冷蔵熱交換器(45)の冷媒温度に基づいてインバータ圧縮機(2)を制御するようにしたのに代わり、能力制御部(81)が冷蔵熱交換器(45)の吸込空気温度に基づいてインバータ圧縮機(2)を制御するように構成されている。
<< Embodiment 5 >>
In the present embodiment, instead of the capability control unit (81) of the first embodiment controlling the inverter compressor (2) based on the refrigerant temperature of the refrigeration heat exchanger (45), the capability control unit (81 ) Is configured to control the inverter compressor (2) based on the intake air temperature of the refrigeration heat exchanger (45).

具体的に、上記能力制御部(81)は、室内熱交換器(41)のみが凝縮器となる第1暖房冷凍運転時と室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる第2暖房冷凍運転時とに、上記冷蔵熱交換器(45)の吸込空気温度と設定庫内温度との差温が所定値になるように上記インバータ圧縮機(2)の容量を制御して冷媒回路(1E)の冷凍能力を制御する。具体的に、上記能力制御部(81)は、冷蔵熱交換器(45)の吸込空気温度Trが設定庫内温度Tsetになるようにする(Tset−Peの相当飽和温度=0)。分配制御部(82)などその他の構成、作用及び効果は実施形態1と同様である。     Specifically, the capacity control unit (81) includes both the indoor heat exchanger (41) and the outdoor heat exchanger (4) during the first heating / refrigeration operation in which only the indoor heat exchanger (41) serves as a condenser. Of the inverter compressor (2) so that the difference between the intake air temperature of the refrigeration heat exchanger (45) and the set internal temperature becomes a predetermined value during the second heating / refrigeration operation in which the is a condenser. The refrigerating capacity of the refrigerant circuit (1E) is controlled by controlling the capacity. Specifically, the capacity control unit (81) causes the intake air temperature Tr of the refrigeration heat exchanger (45) to be the set internal temperature Tset (equivalent saturation temperature of Tset−Pe = 0). Other configurations, operations, and effects such as the distribution control unit (82) are the same as those in the first embodiment.

《実施形態6》
本実施形態は、実施形態1の能力制御部(81)がインバータ圧縮機(2)の容量を制御するようにしたのに代わり、能力制御部(81)が冷蔵熱交換器(45)の冷蔵ファン(47)及び冷凍熱交換器(51)の冷凍ファン(58)の風量を制御するように構成されている。
Embodiment 6
In this embodiment, instead of the capacity control unit (81) of the first embodiment controlling the capacity of the inverter compressor (2), the capacity control unit (81) is refrigerated by the refrigeration heat exchanger (45). The fan (47) and the refrigeration fan (58) of the refrigeration heat exchanger (51) are configured to control the air volume.

具体的に、上記能力制御部(81)が冷蔵熱交換器(45)の冷蔵ファン(47)及び冷凍熱交換器(51)の冷凍ファン(58)の風量を制御して冷媒回路(1E)の能力を制御し、冷蔵熱交換器(45)及び冷凍熱交換器(51)が所定の冷却能力を発揮させる。分配制御部(82)などその他の構成、作用及び効果は実施形態1と同様である。     Specifically, the capacity control unit (81) controls the air volume of the refrigeration fan (47) of the refrigeration heat exchanger (45) and the refrigeration fan (58) of the refrigeration heat exchanger (51) to control the refrigerant circuit (1E). The refrigeration heat exchanger (45) and the refrigeration heat exchanger (51) exhibit a predetermined cooling capacity. Other configurations, operations, and effects such as the distribution control unit (82) are the same as those in the first embodiment.

《実施形態7》
本実施形態は、実施形態1の能力制御部(81)がインバータ圧縮機(2)の容量を制御するようにしたのに代わり、能力制御部(81)がインバータ圧縮機(2)の吐出側と吸入側とをバイパスさせるように構成したものである。
<< Embodiment 7 >>
In this embodiment, instead of the capacity control unit (81) of the first embodiment controlling the capacity of the inverter compressor (2), the capacity control unit (81) is connected to the discharge side of the inverter compressor (2). And the suction side are bypassed.

本実施形態は、図7に示すように、インバータ圧縮機(2)の吐出管(5)と吸入管(6)との間に補助通路(90)が接続されている。該補助通路(90)には、開閉機構である開度可変の補助弁(91)が設けられている。そして、上記能力抑制部が補助弁(91)の開度を調整して補助通路(90)の冷媒流量を制御するように構成されている。分配制御部(82)などその他の構成、作用及び効果は実施形態1と同様である。     In this embodiment, as shown in FIG. 7, an auxiliary passage (90) is connected between the discharge pipe (5) and the suction pipe (6) of the inverter compressor (2). The auxiliary passage (90) is provided with a variable opening auxiliary valve (91) as an opening / closing mechanism. And the said capability suppression part is comprised so that the opening degree of an auxiliary valve (91) may be adjusted and the refrigerant | coolant flow rate of an auxiliary channel | path (90) may be controlled. Other configurations, operations, and effects such as the distribution control unit (82) are the same as those in the first embodiment.

《実施形態8》
本実施形態は、実施形態1の流量調整手段を吐出側三方切換弁(101)で構成したのに代わり、流量調整手段を開度可変な電動弁で構成したものである。
Embodiment 8
In this embodiment, the flow rate adjusting means of the first embodiment is constituted by a discharge side three-way switching valve (101), and the flow rate adjusting means is constituted by a motor valve having a variable opening.

具体的に、本実施形態は、図8に示すように、インバータ圧縮機(2)の吐出管(5)が分岐され、該インバータ圧縮機(2)の吐出管(5)と四路切換弁(3A)の第1ポートとを繋ぐ配管に第1電磁弁(101a)が設けられ、インバータ圧縮機(2)の吐出管(5)と室外熱交換器(4)のガス側端部とを繋ぐ配管に第2電磁弁(101b)が設けられている。そして、分配制御部(82)は、上記第1電磁弁(101a)と第2電磁弁(101b)との開口量をPID制御し、インバータ圧縮機(2)の吐出冷媒が室内熱交換器(41)と室外熱交換器(4)と分配される。能力制御部(81)などその他の構成、作用及び効果は実施形態1と同様である。     Specifically, in the present embodiment, as shown in FIG. 8, the discharge pipe (5) of the inverter compressor (2) is branched, and the discharge pipe (5) of the inverter compressor (2) and the four-way switching valve. The first solenoid valve (101a) is installed in the pipe connecting the first port of (3A), and the discharge pipe (5) of the inverter compressor (2) and the gas side end of the outdoor heat exchanger (4) A second solenoid valve (101b) is provided in the connecting pipe. The distribution control unit (82) performs PID control on the opening amounts of the first electromagnetic valve (101a) and the second electromagnetic valve (101b), and the refrigerant discharged from the inverter compressor (2) is transferred to the indoor heat exchanger ( 41) and outdoor heat exchanger (4). Other configurations, operations, and effects such as the capability control unit (81) are the same as those in the first embodiment.

《その他の実施形態》
本発明は、上記実施形態1〜7について、以下のような構成としてもよい。
<< Other Embodiments >>
This invention is good also as following structures about the said Embodiments 1-7.

すなわち、上記実施形態では、吐出側三方切換弁(101)を流量調整可能なものとして流量調整手段を構成したが、流量調整機能のない簡単な構造の三方切換弁(101)としてもよい。この場合には、流量調整手段が三方切換弁(101)と暖房用膨張弁(104)とで構成され、熱回収運転時に下流側となる端部に接続された暖房用膨張弁(104)の開き具合の調整によって、圧縮機(2)から吐出された冷媒を室内熱交換器(41)と室外熱交換器(4)とに適量に分配してもよい。この場合、流量調整機能のない簡単な構造の四方切換弁を流量調整手段としてもよく、いずれの場合にも、上記実施形態と同様に効率のよい冷凍装置(1)が得られる。     That is, in the above embodiment, the flow rate adjusting means is configured so that the discharge side three-way switching valve (101) can adjust the flow rate, but a three-way switching valve (101) having a simple structure without a flow rate adjusting function may be used. In this case, the flow rate adjusting means is composed of the three-way switching valve (101) and the heating expansion valve (104), and the heating expansion valve (104) connected to the downstream end during the heat recovery operation. By adjusting the degree of opening, the refrigerant discharged from the compressor (2) may be distributed in an appropriate amount to the indoor heat exchanger (41) and the outdoor heat exchanger (4). In this case, a four-way switching valve having a simple structure without a flow rate adjusting function may be used as the flow rate adjusting means, and in either case, an efficient refrigeration apparatus (1) can be obtained as in the above embodiment.

また、上記実施形態8において、第2電磁弁(101b)に代えて、上述したように暖房用膨張弁(104)を適用してもよい。     In the eighth embodiment, the heating expansion valve (104) may be applied as described above instead of the second electromagnetic valve (101b).

また、上記実施形態2に実施形態3〜7の能力制御部(81)を適用してもよく、上記実施形態8の流量調整手段に実施形態2の分配制御部(82)又は実施形態3〜7の能力制御部(81)を適用してもよい。     Further, the capacity control unit (81) of the third to seventh embodiments may be applied to the second embodiment, and the distribution control unit (82) of the second embodiment or the third to third embodiments may be applied to the flow rate adjusting means of the eighth embodiment. 7 capability control unit (81) may be applied.

また、上記実施形態1〜8において、補助制御部(82)は、室内熱交換器(41)のみが凝縮器となる熱回収運転時(第1暖房冷凍運転時)から室内熱交換器(41)及び室外熱交換器(4)の双方が凝縮器となる熱回収運転(第2暖房冷凍運転)に切り換える前に、室内の換気扇を運転させるようにしてもよい。     Moreover, in the said Embodiment 1-8, an auxiliary | assistant control part (82) is an indoor heat exchanger (41) from the time of the heat recovery operation (at the time of 1st heating-freezing operation) from which only an indoor heat exchanger (41) becomes a condenser. ) And the outdoor heat exchanger (4) may be operated before switching to the heat recovery operation (second heating / refrigeration operation) in which the condenser becomes a condenser.

以上説明したように、本発明は、コンビニエンスストアやスーパーマーケットなどに用いられる空調熱交換器と冷却熱交換器とを備えた冷凍装置について有用である。     As described above, the present invention is useful for a refrigeration apparatus including an air conditioning heat exchanger and a cooling heat exchanger used in a convenience store, a supermarket, and the like.

実施形態1に係る冷凍装置の冷媒回路を示す回路図である。3 is a circuit diagram illustrating a refrigerant circuit of the refrigeration apparatus according to Embodiment 1. FIG. 実施形態1の暖房運転時の冷媒流れを示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerant | coolant flow at the time of the heating operation of Embodiment 1. 実施形態1の第1暖房冷凍運転時の冷媒流れを示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow during a first heating / freezing operation of the first embodiment. 実施形態1の第2暖房冷凍運転時の冷媒流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant | coolant flow at the time of the 2nd heating refrigerating operation of Embodiment 1. 実施形態1の第3暖房冷凍運転時の冷媒流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant | coolant flow at the time of the 3rd heating refrigerating operation of Embodiment 1. 実施形態1の分配制御部の制御動作を示す説明図である。6 is an explanatory diagram illustrating a control operation of a distribution control unit according to the first embodiment. FIG. 実施形態7の補助通路を用いた冷媒回路図である。FIG. 10 is a refrigerant circuit diagram using an auxiliary passage according to a seventh embodiment. 実施形態8の流量調整手段を用いた冷媒回路図である。FIG. 10 is a refrigerant circuit diagram using the flow rate adjusting means of the eighth embodiment.

符号の説明Explanation of symbols

1 冷凍装置
1E 冷媒回路
2 圧縮機
4 室外熱交換器(熱源側熱交換器)
4F 室外ファン(熱源ファン)
5 吐出管
41 室内熱交換器(空調熱交換器)
43 室内ファン(空調ファン)
45 冷蔵熱交換器(冷却熱交換器)
47 冷蔵ファン(冷却ファン)
51 冷凍熱交換器(冷却熱交換器)
58 冷凍ファン(冷却ファン)
101 三方切換弁
104 膨張弁
80 コントローラ(制御手段)
81 能力制御部(能力制御手段)
82 分配制御部(分配制御手段)
83 補助制御部(補助制御手段)
90 補助通路
91 補助弁
101a,101b 電動弁
1 Refrigeration equipment 1E Refrigerant circuit 2 Compressor 4 Outdoor heat exchanger (heat source side heat exchanger)
4F outdoor fan (heat source fan)
5 Discharge pipe 41 Indoor heat exchanger (air conditioning heat exchanger)
43 Indoor fans (air conditioning fans)
45 Refrigerated heat exchanger (cooling heat exchanger)
47 Refrigerated fan (cooling fan)
51 Refrigeration heat exchanger (cooling heat exchanger)
58 Refrigeration fan (cooling fan)
101 Three-way selector valve 104 Expansion valve 80 Controller (control means)
81 Ability control unit (ability control means)
82 Distribution control unit (distribution control means)
83 Auxiliary control unit (auxiliary control means)
90 Auxiliary passage 91 Auxiliary valve 101a, 101b Motorized valve

Claims (10)

圧縮機(2)と、熱源側熱交換器(4)と、膨張機構(46,52,104)と、室内を空調するための空調熱交換器(41)と、庫内を冷却するための冷却熱交換器(45,51)とが接続された冷媒回路(1E)を備える冷凍装置であって、
上記冷媒回路(1E)に設けられ、上記圧縮機(2)から吐出して上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を可変にする流量調整手段(101,104)と、
上記空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時に、室内空気温度と設定室内温度との差温が所定値になるように上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を調整するために上記流量調整手段(101,104)を制御する分配制御手段(82)とを備えている
ことを特徴とする冷凍装置。
Compressor (2), heat source side heat exchanger (4), expansion mechanism (46, 52, 104), air conditioning heat exchanger (41) for air conditioning the room, and cooling the interior A refrigeration apparatus comprising a refrigerant circuit (1E) connected to a cooling heat exchanger (45, 51),
A flow rate that is provided in the refrigerant circuit (1E) and that varies the flow rate of the refrigerant discharged from the compressor (2) and distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4). Adjusting means (101, 104);
During the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, the air conditioning heat is adjusted so that the difference between the indoor air temperature and the set indoor temperature becomes a predetermined value. Distributing control means (82) for controlling the flow rate adjusting means (101, 104) for adjusting the flow rate of the refrigerant distributed to the exchanger (41) and the heat source side heat exchanger (4). A refrigeration apparatus characterized by that.
圧縮機(2)と、熱源側熱交換器(4)と、膨張機構(46,52,104)と、室内を空調するための空調熱交換器(41)と、庫内を冷却するための冷却熱交換器(45,51)とが接続された冷媒回路(1E)を備える冷凍装置であって、
上記冷媒回路(1E)に設けられ、上記圧縮機(2)から吐出して上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を可変にする流量調整手段(101,104)と、
上記空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時に、上記冷媒回路(1E)の高圧冷媒圧力又は上記冷媒回路(1E)の液冷媒温度が所定値になるように上記空調熱交換器(41)と熱源側熱交換器(4)とに分配される冷媒の流量を調整するために上記流量調整手段(101,104)を制御する分配制御手段(82)とを備えている
ことを特徴とする冷凍装置。
Compressor (2), heat source side heat exchanger (4), expansion mechanism (46, 52, 104), air conditioning heat exchanger (41) for air conditioning the room, and cooling the interior A refrigeration apparatus comprising a refrigerant circuit (1E) connected to a cooling heat exchanger (45, 51),
A flow rate that is provided in the refrigerant circuit (1E) and that varies the flow rate of the refrigerant discharged from the compressor (2) and distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4). Adjusting means (101, 104);
During the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, the high-pressure refrigerant pressure of the refrigerant circuit (1E) or the liquid refrigerant temperature of the refrigerant circuit (1E) Distribution for controlling the flow rate adjusting means (101, 104) in order to adjust the flow rate of refrigerant distributed to the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) so that becomes a predetermined value. A refrigeration apparatus comprising a control means (82).
請求項1又は2において、
上記空調熱交換器(41)のみが凝縮器となる熱回収運転時と空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時とに、上記冷却熱交換器(45,51)の冷媒温度と設定庫内温度との差温が所定値になるように上記冷媒回路(1E)の冷凍能力を制御する能力制御手段(81)を備えている
ことを特徴とする冷凍装置。
In claim 1 or 2,
In the heat recovery operation in which only the air conditioning heat exchanger (41) is a condenser and in the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, A capacity control means (81) is provided for controlling the refrigerating capacity of the refrigerant circuit (1E) so that the difference between the refrigerant temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. A refrigeration apparatus characterized by that.
請求項1又は2において、
上記空調熱交換器(41)のみが凝縮器となる熱回収運転時と空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時とに、上記冷却熱交換器(45,51)の冷媒圧力相当飽和温度と設定庫内温度との差温が所定値になるように上記冷媒回路(1E)の冷凍能力を制御する能力制御手段(81)を備えている
ことを特徴とする冷凍装置。
In claim 1 or 2,
In the heat recovery operation in which only the air conditioning heat exchanger (41) is a condenser and in the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, Capacity control means (81) for controlling the refrigerating capacity of the refrigerant circuit (1E) so that the difference between the refrigerant pressure equivalent saturation temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. A refrigeration apparatus comprising the refrigeration apparatus.
請求項1又は2において、
上記空調熱交換器(41)のみが凝縮器となる熱回収運転時と空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転時とに、上記冷却熱交換器(45,51)の吸込空気温度と設定庫内温度との差温が所定値になるように上記冷媒回路(1E)の冷凍能力を制御する能力制御手段(81)を備えている
ことを特徴とする冷凍装置。
In claim 1 or 2,
In the heat recovery operation in which only the air conditioning heat exchanger (41) is a condenser and in the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, A capacity control means (81) is provided for controlling the refrigerating capacity of the refrigerant circuit (1E) so that the difference between the intake air temperature of the cooling heat exchanger (45, 51) and the set internal temperature becomes a predetermined value. A refrigeration apparatus characterized by comprising:
請求項4〜6の何れか1項において、
上記能力制御手段(81)は、圧縮機(2)の容量を制御するように構成されている
ことを特徴とする冷凍装置。
In any one of Claims 4-6,
The said capacity control means (81) is comprised so that the capacity | capacitance of a compressor (2) may be controlled, The freezing apparatus characterized by the above-mentioned.
請求項4〜6の何れか1項において、
上記圧縮機(2)の吐出側と吸入側とで冷媒をバイパスさせる補助通路(90)が設けられ、
上記能力制御手段(81)は、補助通路(90)の冷媒流量を制御するように構成されている
ことを特徴とする冷凍装置。
In any one of Claims 4-6,
An auxiliary passage (90) for bypassing the refrigerant on the discharge side and suction side of the compressor (2) is provided,
The said capacity control means (81) is comprised so that the refrigerant | coolant flow volume of an auxiliary | assistant channel | path (90) may be controlled, The freezing apparatus characterized by the above-mentioned.
請求項4〜6の何れか1項において、
上記能力制御手段(81)は、上記冷却熱交換器(45,51)の冷却ファン(47,58)の風量を制御するように構成されている
ことを特徴とする冷凍装置。
In any one of Claims 4-6,
The said capacity control means (81) is comprised so that the air volume of the cooling fan (47,58) of the said cooling heat exchanger (45,51) may be controlled, The freezing apparatus characterized by the above-mentioned.
請求項1又は2において、
上記空調熱交換器(41)のみが凝縮器となる熱回収運転時から空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転に切り換える前に、空調熱交換器(41)の空調ファン(43)の風量を増大させる補助制御手段(83)を備えている
ことを特徴とする冷凍装置。
In claim 1 or 2,
Before switching from the heat recovery operation in which only the air conditioning heat exchanger (41) is a condenser to the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, A refrigeration apparatus comprising auxiliary control means (83) for increasing the air volume of an air conditioning fan (43) of an air conditioning heat exchanger (41).
請求項1又は2において、
上記空調熱交換器(41)のみが凝縮器となる熱回収運転時から空調熱交換器(41)及び熱源側熱交換器(4)の双方が凝縮器となる熱回収運転に切り換える前に、室内の換気扇を運転させる補助制御手段(83)を備えている
ことを特徴とする冷凍装置。
In claim 1 or 2,
Before switching from the heat recovery operation in which only the air conditioning heat exchanger (41) is a condenser to the heat recovery operation in which both the air conditioning heat exchanger (41) and the heat source side heat exchanger (4) are condensers, A refrigeration apparatus comprising auxiliary control means (83) for operating an indoor ventilation fan.
JP2006053531A 2006-02-28 2006-02-28 Refrigeration unit Pending JP2007232265A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006053531A JP2007232265A (en) 2006-02-28 2006-02-28 Refrigeration unit
TW096106695A TW200801416A (en) 2006-02-28 2007-02-27 Refrigeration unit
PCT/JP2007/053670 WO2007102345A1 (en) 2006-02-28 2007-02-27 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053531A JP2007232265A (en) 2006-02-28 2006-02-28 Refrigeration unit

Publications (1)

Publication Number Publication Date
JP2007232265A true JP2007232265A (en) 2007-09-13

Family

ID=38474783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053531A Pending JP2007232265A (en) 2006-02-28 2006-02-28 Refrigeration unit

Country Status (3)

Country Link
JP (1) JP2007232265A (en)
TW (1) TW200801416A (en)
WO (1) WO2007102345A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068344A (en) * 2011-09-21 2013-04-18 Daikin Industries Ltd Refrigerating apparatus
WO2013136368A1 (en) 2012-03-15 2013-09-19 三菱電機株式会社 Refrigeration cycling device
US10753645B2 (en) 2016-02-10 2020-08-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11268737B2 (en) 2017-09-26 2022-03-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877986B1 (en) * 2011-10-27 2018-07-12 엘지전자 주식회사 Air conditioner
JP2013217631A (en) * 2012-03-14 2013-10-24 Denso Corp Refrigeration cycle device
US11686489B2 (en) * 2021-06-10 2023-06-27 Johnson Controls Technology Company Modulating reheat functionality for HVAC system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280749A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
WO2006013834A1 (en) * 2004-08-02 2006-02-09 Daikin Industries, Ltd. Freezing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280749A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
WO2006013834A1 (en) * 2004-08-02 2006-02-09 Daikin Industries, Ltd. Freezing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068344A (en) * 2011-09-21 2013-04-18 Daikin Industries Ltd Refrigerating apparatus
WO2013136368A1 (en) 2012-03-15 2013-09-19 三菱電機株式会社 Refrigeration cycling device
US9644876B2 (en) 2012-03-15 2017-05-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10753645B2 (en) 2016-02-10 2020-08-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11268737B2 (en) 2017-09-26 2022-03-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
TW200801416A (en) 2008-01-01
WO2007102345A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP3925545B2 (en) Refrigeration equipment
EP1659348B1 (en) Freezing apparatus
JP3775358B2 (en) Refrigeration equipment
JP6005255B2 (en) Air conditioner
WO2006013938A1 (en) Freezing apparatus
JP3861912B2 (en) Refrigeration equipment
JP6033297B2 (en) Air conditioner
US8205464B2 (en) Refrigeration device
JP5968519B2 (en) Air conditioner
JP6880204B2 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JPWO2012085965A1 (en) Air conditioner
JP4665560B2 (en) Refrigeration equipment
JP2010002112A (en) Refrigerating device
JP6926460B2 (en) Refrigerator
WO2018034275A1 (en) Refrigeration cycle device
JP4023386B2 (en) Refrigeration equipment
JP5033337B2 (en) Refrigeration system and control method thereof
JP3661014B2 (en) Refrigeration equipment
JP2009115336A (en) Refrigeration system
JP2006300507A (en) Refrigeration device
JP3945523B2 (en) Refrigeration equipment
JP2002228284A (en) Refrigerating machine
JP4244900B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802