JP4804396B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4804396B2
JP4804396B2 JP2007089851A JP2007089851A JP4804396B2 JP 4804396 B2 JP4804396 B2 JP 4804396B2 JP 2007089851 A JP2007089851 A JP 2007089851A JP 2007089851 A JP2007089851 A JP 2007089851A JP 4804396 B2 JP4804396 B2 JP 4804396B2
Authority
JP
Japan
Prior art keywords
refrigeration
air
refrigerant
heat exchanger
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007089851A
Other languages
Japanese (ja)
Other versions
JP2008249219A (en
Inventor
裕士 佐多
佳宏 高橋
浩司 山下
航祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007089851A priority Critical patent/JP4804396B2/en
Publication of JP2008249219A publication Critical patent/JP2008249219A/en
Application granted granted Critical
Publication of JP4804396B2 publication Critical patent/JP4804396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンビニエンスストア等の店舗等に使用する冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner used in a store such as a convenience store.

従来の冷凍空調装置は、店内に設置された食品を冷蔵あるいは冷凍するショーケースと冷凍機とが接続され、店内の空調を行う空調室内機と空調室外機とが接続され、それぞれが完全に独立して設けられていた。   Conventional refrigeration and air-conditioning equipment is connected to a showcase that refrigerates or freezes food installed in the store and a freezer, and is connected to an air-conditioning indoor unit and an air-conditioning outdoor unit that perform air-conditioning in the store. Was provided.

また、圧縮機、凝縮器、蒸発器をそれぞれ有した2つの独立した流路を持ち、それぞれの流路を通る冷媒が流路の途中で互いに熱交換をするように冷媒−冷媒熱交換器を備えることが知られている(例えば特許文献1、特許文献2および特許文献3)。   In addition, the refrigerant-refrigerant heat exchanger has two independent flow paths each having a compressor, a condenser, and an evaporator so that the refrigerant passing through the flow paths exchange heat with each other in the middle of the flow path. It is known to include (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

さらに、空調機の運転モード変更時に、複数の開閉弁を切替えて冷媒−冷媒熱交換器での熱交換状態およびシステムの運転状態を最適に保つことも知られている(例えば特許文献2、特許文献3)。   Furthermore, it is also known that when the operation mode of the air conditioner is changed, the heat exchange state in the refrigerant-refrigerant heat exchanger and the operation state of the system are kept optimal by switching a plurality of on-off valves (for example, Patent Document 2, Patent) Reference 3).

特開2003−4321号公報(図1)Japanese Patent Laying-Open No. 2003-4321 (FIG. 1) 特開2004−170001号公報(図1)Japanese Patent Laying-Open No. 2004-170001 (FIG. 1) 特開2006−189237号公報(図3)JP 2006-189237 A (FIG. 3)

従来の冷凍空調装置は、空調、冷蔵、冷凍が完全に独立した冷凍サイクルにて運転されており、熱の有効利用による省エネ化が図られていないという問題があった。   Conventional refrigeration and air-conditioning apparatuses are operated in a refrigeration cycle in which air-conditioning, refrigeration, and refrigeration are completely independent, and there is a problem that energy is not saved by effective use of heat.

また、特許文献1に示す構成では、空調側冷凍サイクルと冷凍機側冷凍サイクルがそれぞれ独立して運転可能であり、空調機が暖房時に冷凍機の排熱を回収する冷媒−冷媒熱交換器と外気から吸熱する熱交換器の両方が設置されているため、蒸発温度を外気温度よりも高くすることができずそれ程効率がよくならないという問題がある。   Moreover, in the structure shown in patent document 1, the air-conditioning side refrigeration cycle and the refrigerator side refrigeration cycle can each operate | move independently, and the air-conditioner collect | recovers the exhaust heat of a refrigerator at the time of heating, and the refrigerant | coolant-refrigerant heat exchanger Since both of the heat exchangers that absorb heat from the outside air are installed, there is a problem that the evaporating temperature cannot be made higher than the outside air temperature and the efficiency is not improved so much.

また、特許文献2に示す構成では、最適な運転状態を維持するために必要な開閉弁の数が多く、機器コストが高くなり、かつ制御も煩雑になるとともに、モード切り替え時の安定性や機器の信頼性に欠けるという問題がある。   In addition, in the configuration shown in Patent Document 2, the number of on-off valves necessary for maintaining an optimal operating state is large, the equipment cost is high, the control is complicated, and the stability and equipment at the time of mode switching are increased. There is a problem of lack of reliability.

さらに、特許文献3に示す構成では、特許文献2のような開閉弁の数が多く、機器コストが高くなり、かつ制御も煩雑という問題点はないが、機器の運転状態に応じた制御性に欠けるという問題点がある。   Further, in the configuration shown in Patent Document 3, there is no problem that the number of on-off valves is large as in Patent Document 2, the device cost is high, and the control is complicated, but the controllability according to the operation state of the device is improved. There is a problem of lacking.

また、特許文献3に示す構成では、空調機と冷凍機が同時に稼動していないと省エネ運転ができず、特に空調機の運転率が低い中間期に省エネ向上率が少ないという問題がある。また、冷凍機の冷凍能力が大きくなると圧縮機の騒音が大きくなり室外に設置した場合騒音問題を引き起こす可能性があるという問題もある。   Moreover, in the structure shown in patent document 3, if an air conditioner and a refrigerator are not operating simultaneously, an energy-saving operation cannot be performed, and there exists a problem that there is little an energy-saving improvement rate especially in the intermediate period when the operation rate of an air conditioner is low. In addition, when the refrigeration capacity of the refrigerator increases, the noise of the compressor increases, which may cause a noise problem when installed outdoors.

本発明は、このような課題を解決するためになされたもので、開閉弁等を少なくし機器を安価に構成しながら、簡単な制御で安定性、信頼性の高い運転を実現し、かつ年間を通じて省エネ向上率の高い冷凍空調装置を得ることを主目的としている。   The present invention has been made to solve such a problem, and realizes stable and reliable operation with simple control while reducing the number of on-off valves and the like and configuring the equipment at a low cost. The main purpose is to obtain a refrigeration air conditioner with a high energy saving rate.

また併せて、移設時に冷媒回収する手間を極力すくなくすることができ、冷媒を廃棄することなく流用できて、移設時のコストを低減することができる冷凍空調装置を得ることも目的としている。
また併せて、低騒音の冷凍空調装置を得ることも目的としている。
In addition, another object of the present invention is to provide a refrigeration air conditioner that can minimize the labor of collecting the refrigerant at the time of transfer, can be used without discarding the refrigerant, and can reduce the cost at the time of transfer.
In addition, another object is to obtain a low-noise refrigeration air conditioner.

本発明の冷凍空調装置は、空調用圧縮機、空調用室外熱交換器、空調用絞り装置、および室内の空調を行う空調用室内熱交換器が接続され、第一の冷媒が流れる第一の冷凍サイクルと、冷蔵用圧縮機、冷蔵用室外熱交換器、冷蔵用絞り装置、および物品の冷蔵または冷凍を行う冷蔵用室内熱交換器が接続され、第二の冷媒が流れる第二の冷凍サイクルと、前記空調用室外熱交換器と前記空調用室内熱交換器との間に配置された前記空調用絞り装置で減圧された前記第一の冷媒を前記空調用圧縮機の冷媒吸入側に流すバイパス回路と、前記第一の冷凍サイクルの前記バイパス回路を流れる第一の冷媒と、前記第二の冷凍サイクルの冷媒回路を流れる第二の冷媒との間で熱交換する少なくとも1つの冷媒−冷媒熱交換器とを備え、前記空調用室内熱交換器の空気吸込み温度が設定温度に到達した後であって、該吸込み温度から該設定温度を引いた温度差が、前記空調用圧縮機を停止させるように設定されている停止温度差に至る前の所定の値に達した場合に、前記空調用室内熱交換器の出力能力を減少させて、前記第一の冷媒と前記第二の冷媒とを前記冷媒−冷媒熱交換器により熱交換させること、または、前記冷蔵用室内熱交換器の空気吸込み温度が設定温度に到達した後であって、該吸込み温度から該設定温度を引いた温度差が、前記冷蔵用圧縮機を停止させるように設定されている停止温度差に至る前の所定の値に達した場合に、前記冷蔵用室内熱交換器の出力能力を減少させて、前記第一の冷媒と前記第二の冷媒とを前記冷媒−冷媒熱交換器により熱交換させるものである。 The refrigeration air conditioner of the present invention is connected to an air conditioning compressor, an air conditioning outdoor heat exchanger, an air conditioning throttle device, and an air conditioning indoor heat exchanger that performs indoor air conditioning, and the first refrigerant flows. A refrigeration cycle, a refrigeration compressor, a refrigeration outdoor heat exchanger, a refrigeration expansion device, and a refrigeration indoor heat exchanger for refrigeration or freezing of articles are connected, and a second refrigeration cycle through which a second refrigerant flows And the first refrigerant decompressed by the air-conditioning expansion device disposed between the air-conditioning outdoor heat exchanger and the air-conditioning indoor heat exchanger flows to the refrigerant suction side of the air-conditioning compressor a bypass circuit, said a first refrigerant flowing through the bypass circuit of the first refrigeration cycle, at least one refrigerant heat exchange between the second refrigerant flowing through the refrigerant circuit of the second refrigeration cycle - refrigerant and a heat exchanger, the room the air-conditioning After the air intake temperature of the exchanger reaches the set temperature, a temperature difference obtained by subtracting the set temperature from the intake temperature reaches a stop temperature difference set to stop the air conditioning compressor. When the previous predetermined value is reached, the output capacity of the air conditioning indoor heat exchanger is decreased, and the first refrigerant and the second refrigerant are heat-exchanged by the refrigerant-refrigerant heat exchanger. Or after the air intake temperature of the indoor heat exchanger for refrigeration reaches a set temperature, a temperature difference obtained by subtracting the set temperature from the intake temperature stops the refrigeration compressor. When the predetermined value before reaching the set stop temperature difference is reached, the output capacity of the refrigeration indoor heat exchanger is decreased, and the first refrigerant and the second refrigerant are changed to the refrigerant. -Heat exchange is performed by a refrigerant heat exchanger.

本発明の冷凍空調装置は、開閉弁等を少なくして機器を安価に構成しながら、簡単な制御で安定性、信頼性の高い運転を実現し、かつ年間を通じて省エネ向上率の高い冷凍空調装置を得ることができる。   The refrigerating and air-conditioning apparatus of the present invention realizes stable and reliable operation with simple control while reducing the number of on-off valves and the like, and realizing a high-energy-saving improvement rate throughout the year. Can be obtained.

実施の形態1.
図1はコンビニエンスストア等の店舗の空調・冷蔵機器接続図で、店舗14内に空調用室内吹出口12cと冷蔵用または冷凍用ショーケース13がそれぞれ複数台配置されている。空調用吹出口12cは室内に空気を搬送する空調用吹出ダクト12bを介して空調用室内機12aに接続され、空調用室内機12aは空調用室外機10および空調冷蔵複合機11に接続され、そして冷蔵用または冷凍用ショーケース13は空調冷蔵複合機11にそれぞれ接続されている。空調用室内機12aは室内を冷房あるいは暖房し、冷蔵用または冷凍用ショーケース13は食品や飲料を冷蔵あるいは冷凍している。
Embodiment 1 FIG.
FIG. 1 is a connection diagram of air-conditioning / refrigeration equipment in a store such as a convenience store. In the store 14, a plurality of air-conditioning indoor outlets 12c and a plurality of refrigeration / freezing showcases 13 are arranged. The air-conditioning outlet 12c is connected to the air-conditioning indoor unit 12a via the air-conditioning blow-out duct 12b that conveys air into the room, and the air-conditioning indoor unit 12a is connected to the air-conditioning outdoor unit 10 and the air-conditioning refrigerated multifunction device 11. The refrigerated or refrigerated showcase 13 is connected to the air-conditioning refrigerated multifunction device 11. The indoor unit 12a for air conditioning cools or heats the room, and the showcase 13 for refrigeration or freezing refrigerates or freezes food and beverages.

空調冷蔵複合機11は空調部分が空調用室外機11a、冷蔵または冷凍部分が冷蔵用室外機11bとして別々の筐体に収められている。空調用室外機11a、冷蔵用室外機11bは通常サービス性を考慮して約1m離して設置され、空調用室外機11a、冷蔵用室外機11b間を店舗搬入後に接続し、冷媒回路として成立させる。このように空調部分、冷蔵部分を別々の筐体とすれば組み立てやメンテナンスが簡単になるばかりか、各箱体の重量が軽くなるため、設備の搬入が非常に楽になり、設備の拡張や変更に簡単に対処できる。なお、図1では、空調用室外機10および空調冷蔵複合機11が1つの空調用室内機12aに接続され空調された空気を室内に搬送する構成を示したが、図2のように空調用室内機12aを直接天井などに設置する構成としてもよく、また、空調用室内機12aの台数は1台以上の適宜の台数としてよい。   The air-conditioning refrigerated multifunction machine 11 is housed in separate housings in which the air-conditioning part is an air-conditioning outdoor unit 11a and the refrigeration or freezing part is a refrigeration outdoor unit 11b. The outdoor unit for air conditioning 11a and the outdoor unit for refrigeration 11b are usually installed about 1 m apart from each other in consideration of serviceability, and the outdoor unit for air conditioning 11a and the outdoor unit for refrigeration 11b are connected after the store is brought in to form a refrigerant circuit. . In this way, if the air-conditioning part and the refrigeration part are separate casings, not only will assembly and maintenance be easier, but the weight of each box will be reduced, making it easier to carry in equipment and expanding or changing equipment. Easy to deal with. 1 shows a configuration in which the air-conditioning outdoor unit 10 and the air-conditioning refrigerated multifunction device 11 are connected to one air-conditioning indoor unit 12a and convey the air-conditioned air into the room, but as shown in FIG. The indoor unit 12a may be directly installed on a ceiling or the like, and the number of air conditioning indoor units 12a may be an appropriate number of one or more.

図3は空調冷蔵複合機11を備えた本発明の実施の形態1に係る冷凍空調装置の構成図である。実施の形態1に係る冷凍空調装置は、空調用室外機11a、空調用室内機12a、冷蔵用室外機11b、および冷蔵用または冷凍用ショーケース13(以下、冷蔵用室内機13または冷蔵用ショーケース13と称す)を備えている。そして、空調用室外機11aと空調用室内機12aとにより第一の冷凍サイクル(空調用冷凍サイクル;空調機)が構成され、冷蔵用室外機11bと冷蔵用室内機13とにより第二の冷凍サイクル(冷蔵用冷凍サイクル;冷凍機)が構成されている。なお、空調用室外機11aと冷蔵用室外機11bは、それぞれ別々の筐体に納められている。   FIG. 3 is a configuration diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention provided with the air-conditioning / refrigeration multifunction machine 11. The refrigerating and air-conditioning apparatus according to Embodiment 1 includes an air-conditioning outdoor unit 11a, an air-conditioning indoor unit 12a, a refrigeration outdoor unit 11b, and a refrigeration or refrigeration showcase 13 (hereinafter, refrigeration indoor unit 13 or refrigeration show). (Referred to as case 13). The air conditioning outdoor unit 11a and the air conditioning indoor unit 12a constitute a first refrigeration cycle (air conditioning refrigeration cycle; air conditioner), and the refrigeration outdoor unit 11b and the refrigeration indoor unit 13 provide the second refrigeration. A cycle (refrigeration cycle for refrigeration; refrigerator) is configured. The air conditioner outdoor unit 11a and the refrigerator outdoor unit 11b are housed in separate housings.

空調用室外機11aには、空調用圧縮機21a、冷房と暖房の際に流路を切り替える四方弁31、空調用室外熱交換器27a、空調用室外熱交換器用ファン28a、第一の冷凍サイクルの余剰冷媒を溜める空調用レシーバ26a、膨張手段である空調用絞り装置23a(1)〜(3)、空調用逆止弁32などが備えられている。また、空調用レシーバ26a内の第一の冷媒を空調用圧縮機21aに流すバイパス回路が設けられていて、上記第一の冷凍サイクルの一部を構成している。上記バイパス回路の途中には、第二の冷凍サイクルの第二の冷媒との間で熱交換を行う、冷媒−冷媒熱交換器である空調−冷蔵熱交換器41(1),(2)が配置されている。
一方、冷蔵用室外機11bには、冷蔵用圧縮機21b、冷蔵用室外熱交換器27b、冷蔵用室外熱交換器用ファン28b、第二の冷凍サイクルの余剰冷媒を溜める冷蔵用レシーバ26bなどが備えられている。
The air conditioner outdoor unit 11a includes an air conditioner compressor 21a, a four-way valve 31 for switching the flow path during cooling and heating, an air conditioner outdoor heat exchanger 27a, an air conditioner outdoor heat exchanger fan 28a, and a first refrigeration cycle. Air-conditioning receiver 26a for storing excess refrigerant, air-conditioning expansion devices 23a (1) to (3) as expansion means, air-conditioning check valve 32, and the like. Further, a bypass circuit is provided for flowing the first refrigerant in the air conditioning receiver 26a to the air conditioning compressor 21a, and constitutes a part of the first refrigeration cycle. In the middle of the bypass circuit, there are air-conditioning-refrigeration heat exchangers 41 (1), (2) that are refrigerant-refrigerant heat exchangers that exchange heat with the second refrigerant of the second refrigeration cycle. Has been placed.
On the other hand, the refrigerating outdoor unit 11b includes a refrigerating compressor 21b, a refrigerating outdoor heat exchanger 27b, a refrigerating outdoor heat exchanger fan 28b, a refrigerating receiver 26b for accumulating excess refrigerant in the second refrigeration cycle, and the like. It has been.

冷凍空調複合機11には、空調用冷媒回路と冷蔵用冷媒回路の2つの独立した冷媒回路があり、双方の冷媒回路が空調−冷蔵熱交換器41(ここでは41(1),42(2)の2台が直列に配置されている)に接続され、そこで双方の冷媒が混じることなく、熱交換をするように構成されている。なお、図3では空調用室内機12aが1台の例で説明しているがそれを複数としてもよい。また、空調−冷蔵熱交換器41についても1つ以上の適宜の数としてよい。
図3のように構成することで、各筐体の外部で筐体間の配管や配線を接続する構成を採用すれば組み立てやメンテナンスが簡単になるばかりか、各筐体の重量が軽くなるため、設備の搬入が非常に楽になり、設備の拡張や変更に簡単に対処できる。なお、図1〜図3ではショーケースが2台の例を示したが1台あるいは3台以上でも構わない。また、設備の搬入性等を考慮しなくても良い場合には、空調用と冷蔵用の筐体を一体にしてもよい。
The refrigerating and air-conditioning multifunctional machine 11 has two independent refrigerant circuits, an air conditioning refrigerant circuit and a refrigeration refrigerant circuit, and both refrigerant circuits are air conditioning-refrigeration heat exchangers 41 (here 41 (1), 42 (2 2) are connected in series, and are configured to exchange heat without mixing both refrigerants. In addition, although FIG. 3 demonstrated the example of the indoor unit 12a for an air conditioning with 1 unit | set, it is good also as multiple. Moreover, it is good also as one or more appropriate numbers about the air-conditioning-refrigeration heat exchanger 41.
By adopting a configuration as shown in FIG. 3, if a configuration in which piping and wiring between the casings are connected outside each casing is adopted, not only assembly and maintenance are simplified, but the weight of each casing is reduced. This makes it very easy to carry in equipment and can easily cope with expansion and change of equipment. 1 to 3 show an example in which two showcases are used, but one or three or more showcases may be used. In addition, when it is not necessary to consider the facility carry-in property, the air conditioning and refrigeration housings may be integrated.

また、空調用室内熱交換器22aには空調用室内熱交換器用ファン25aが設けられ室内14へ空気を吹き出す役割を果たしている。室内用熱交換器22aおよび空調用室内熱交換器用ファン25aは、図1のように天井裏などに設置してもよく、図2のように天井に埋め込まれたり壁掛けや床面据え付けタイプとしてもよい。空調用絞り装置23a(1)は熱源側に設けるものとするが、場合によっては室内側、すなわち天井裏などに設けてもよい。
冷蔵用室内機13を構成している冷蔵用室内熱交換器(ショーケース熱交換器)22bは、店内に配置されたオープンショーケースやリーチインショーケースの内部に収納され、絞り装置23bや冷蔵用室内熱交換器用ファン25bはその近くに設置されている。
The air conditioning indoor heat exchanger 22 a is provided with an air conditioning indoor heat exchanger fan 25 a and plays a role of blowing air into the room 14. The indoor heat exchanger 22a and the air conditioning indoor heat exchanger fan 25a may be installed on the back of the ceiling as shown in FIG. 1, or may be embedded in the ceiling as shown in FIG. Good. The air conditioning throttle device 23a (1) is provided on the heat source side, but may be provided on the indoor side, that is, on the back of the ceiling, depending on circumstances.
A refrigeration indoor heat exchanger (showcase heat exchanger) 22b constituting the refrigeration indoor unit 13 is housed inside an open showcase or reach-in showcase arranged in the store, and is used for the expansion device 23b or refrigeration. The indoor heat exchanger fan 25b is installed in the vicinity thereof.

図3の構成による空調用の冷媒回路の動作は次の通りである。なお、回路の動作は室内の負荷状態、外気温などによって異なるが、それについては後述するとして、ここでは、基本的な動作のみにつき説明する。空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31によって暖房運転の場合と冷房運転の場合に流路を切り替えられる。
暖房運転の場合、冷媒は四方弁31を通った後、空調用室内熱交換器22aへ送られて凝縮し、空調用絞り装置23aにて膨張して低温低圧冷媒になり、空調用室外熱交換器27aにて空調用室外熱交換器用ファン28aの作用により外気と熱交換して蒸発し、または空調−冷蔵熱交換器41にて冷蔵用冷媒回路を流れる高温の冷媒と熱交換をして蒸発し、空調用圧縮機21aへ戻る。
また、冷房運転の場合は、冷媒は四方弁31を通った後、空調用室外熱交換器27aにて空調用室外熱交換器用ファン28aの作用により外気と熱交換して凝縮し、空調用絞り装置23aにて膨張し低温低圧冷媒になり、空調用室内熱交換器22aにて空調用室内熱交換器用ファン25aの作用にて蒸発し、または空調−冷蔵熱交換器41にて冷蔵用冷媒回路を流れる高温の冷媒と熱交換をして蒸発し、空調用圧縮機21aへ戻る。この際、余剰冷媒は、暖房においても冷房においても、空調用室外熱交換器27aと空調用室内熱交換器22aとを繋ぐ冷媒回路間に挿入設置された空調用レシーバ26aに中圧状態で溜められる。
The operation of the air conditioning refrigerant circuit configured as shown in FIG. 3 is as follows. The operation of the circuit varies depending on the load state in the room, the outside air temperature, and the like. As will be described later, only the basic operation will be described here. The refrigerant that has been compressed by the air-conditioning compressor 21a to high temperature and pressure can be switched by the four-way valve 31 in the heating operation and the cooling operation.
In the case of heating operation, the refrigerant passes through the four-way valve 31, and then is sent to the air conditioning indoor heat exchanger 22a to condense and expand in the air conditioning expansion device 23a to become a low-temperature and low-pressure refrigerant. Evaporate by exchanging heat with the outside air by the action of the air-conditioning outdoor heat exchanger fan 28a in the condenser 27a, or by exchanging heat with the high-temperature refrigerant flowing through the refrigeration refrigerant circuit in the air-conditioning-refrigeration heat exchanger 41. The process then returns to the air conditioning compressor 21a.
In the case of cooling operation, after passing through the four-way valve 31, the refrigerant is condensed by exchanging heat with the outside air by the action of the air-conditioning outdoor heat exchanger 27a in the air-conditioning outdoor heat exchanger 27a. The refrigerant expands in the device 23a to become a low-temperature and low-pressure refrigerant, evaporates by the action of the air-conditioning indoor heat exchanger fan 25a in the air-conditioning indoor heat exchanger 22a, or refrigeration refrigerant circuit in the air-conditioning-refrigeration heat exchanger 41. The heat exchanges with the high-temperature refrigerant flowing through evaporates and returns to the air-conditioning compressor 21a. At this time, the surplus refrigerant is stored in the air conditioning receiver 26a inserted between the refrigerant circuits connecting the outdoor heat exchanger 27a for air conditioning and the indoor heat exchanger 22a for air conditioning in a medium pressure state, both in heating and in cooling. It is done.

図3の構成による冷蔵用の冷媒回路の動作は次の通りである。冷蔵用圧縮機21bにより圧縮され高温高圧になった冷媒は、冷蔵用室外熱交換器27bにて冷蔵用室外熱交換器用ファン28bの作用により冷媒の一部が凝縮した後、空調−冷蔵熱交換器41へ送られ、空調用冷媒回路を流れる低温の冷媒と熱交換をして残りの冷媒が凝縮し過冷却され、冷蔵用絞り装置23bにて膨張し低温低圧冷媒になり、冷蔵用室内熱交換器22bにて蒸発し、冷蔵用圧縮機21bへ戻る。この際、余剰冷媒は冷蔵用レシーバ26bに高圧の飽和液状態にて溜められる。   The operation of the refrigeration refrigerant circuit configured as shown in FIG. 3 is as follows. The refrigerant that has been compressed by the refrigeration compressor 21b to a high temperature and high pressure is partially condensed by the action of the refrigeration outdoor heat exchanger fan 28b in the refrigeration outdoor heat exchanger 27b, and then air-conditioning-refrigeration heat exchange. Heat is exchanged with the low-temperature refrigerant flowing through the air-conditioning refrigerant circuit, and the remaining refrigerant is condensed and supercooled, and expands in the refrigeration expansion device 23b to become a low-temperature and low-pressure refrigerant. It evaporates in the exchanger 22b and returns to the refrigeration compressor 21b. At this time, surplus refrigerant is stored in the refrigeration receiver 26b in a high-pressure saturated liquid state.

ここで、空調、冷蔵の単体機と空調冷蔵複合機との動作の違いを、空調機が暖房運転をしている場合について、図4に示すモリエル線図にて説明する。なお、以下の説明において、店舗内の空気の温度は20℃程度、外気温度は10℃程度、ショーケース内の空気温度は5℃程度であるものとする。また、空調機および冷蔵用冷凍機の配管内を流れている冷媒にはR410Aを使用しているものとし、冷媒の飽和圧力は、社団法人日本冷凍空調学会が1998年5月26日に発行したThermodynamic Properties of Pure and Blended Hydrofluorocarbon(HFC)Refrigerantsに基づき算出した。   Here, the difference in operation between the air-conditioning and refrigeration single machine and the air-conditioning and refrigeration composite machine will be described with reference to the Mollier diagram shown in FIG. In the following description, the air temperature in the store is about 20 ° C., the outside air temperature is about 10 ° C., and the air temperature in the showcase is about 5 ° C. Also, R410A is used for the refrigerant flowing in the piping of the air conditioner and the refrigerator for refrigeration, and the saturation pressure of the refrigerant was issued on May 26, 1998 by the Japan Society of Refrigerating and Air Conditioning. Calculation was based on Thermodynamic Properties of Pure and Blended Hydrofluorocarbon (HFC) Refrigerants.

空調機において、暖房運転時に空調用室内熱交換器22a内に流れる冷媒の凝縮温度(CT)は店内空気温度と十分な温度差を確保するため50℃程度、空調用室外熱交換器27aに流れる冷媒の蒸発温度(ET)は外気温度と十分な温度差を確保するため−6℃程度となる。この時、空調用圧縮機21aの高圧および低圧はそれぞれ凝縮温度、蒸発温度の飽和圧力として求まり、高圧3.0535MPa、低圧0.65558MPaとなる。従って、空調用圧縮機21aの高圧と低圧の比である圧縮比は、3.0535MPaと低圧0.65558MPaの比で求められ、4.66となる。   In the air conditioner, the condensation temperature (CT) of the refrigerant flowing in the air conditioning indoor heat exchanger 22a during the heating operation flows to the air conditioning outdoor heat exchanger 27a at about 50 ° C. in order to ensure a sufficient temperature difference from the store air temperature. The evaporation temperature (ET) of the refrigerant is about −6 ° C. to ensure a sufficient temperature difference from the outside air temperature. At this time, the high pressure and the low pressure of the air conditioning compressor 21a are obtained as the saturation pressure of the condensation temperature and the evaporation temperature, respectively, and become a high pressure of 3.0535 MPa and a low pressure of 0.65558 MPa. Therefore, the compression ratio, which is the ratio between the high pressure and the low pressure of the air conditioning compressor 21a, is obtained by the ratio of 3.0535 MPa and the low pressure of 0.65558 MPa, and is 4.66.

また、冷蔵用冷凍機において、冷蔵用室外熱交換器27b内を流れる冷媒の凝縮温度(CT)は外気温度と十分な温度差を確保するため30℃程度、冷蔵用室内熱交換器22bに流れる冷媒の蒸発温度(ET)はショーケース内の空気温度と十分な温度差を確保するため−10℃程度となる。この時、冷蔵用圧縮機21bの高圧および低圧はそれぞれ凝縮温度、蒸発温度の飽和圧力として求まり、高圧1.8797MPa、低圧0.57228MPaとなる。また、圧縮比は、1.8797MPaと0.57228MPaの比で求められ、3.28となる。   In the refrigeration refrigerator, the condensation temperature (CT) of the refrigerant flowing in the refrigeration outdoor heat exchanger 27b flows to the refrigeration indoor heat exchanger 22b at about 30 ° C. to ensure a sufficient temperature difference from the outside air temperature. The evaporation temperature (ET) of the refrigerant is about −10 ° C. to ensure a sufficient temperature difference from the air temperature in the showcase. At this time, the high pressure and the low pressure of the refrigeration compressor 21b are obtained as the saturation pressure of the condensation temperature and the evaporation temperature, respectively, and become a high pressure of 1.8797 MPa and a low pressure of 0.57228 MPa. Moreover, a compression ratio is calculated | required by ratio of 1.8797 MPa and 0.57228 MPa, and is set to 3.28.

一方、空調冷蔵複合機においては、空調側回路が暖房運転を行う際、空調用室内熱交換器22a内に流れる冷媒の凝縮温度(CT)は店内空気温度と十分な温度差を確保するため50℃程度となる。また、冷蔵用冷凍機において、冷蔵用室内熱交換器22bに流れる冷媒の蒸発温度(ET)はショーケース内の空気温度と十分な温度差を確保するため−10℃程度となる。   On the other hand, in the air-conditioning refrigerated multifunction peripheral, when the air-conditioning side circuit performs the heating operation, the condensation temperature (CT) of the refrigerant flowing in the air-conditioning indoor heat exchanger 22a is 50 to ensure a sufficient temperature difference from the store air temperature. It becomes about ℃. In the refrigeration refrigerator, the evaporation temperature (ET) of the refrigerant flowing in the refrigeration indoor heat exchanger 22b is about −10 ° C. to ensure a sufficient temperature difference from the air temperature in the showcase.

また、空調側の冷媒は空調用室外熱交換器27aへ流さず、空調−冷蔵熱交換器41にて全部蒸発させる場合を考えると、空調−冷蔵熱交換器41の空調側回路を流れる空調用冷媒と冷蔵側回路を流れる冷蔵用冷媒とが熱交換を行うため、空調用冷媒の蒸発温度(ET1)と冷蔵用冷媒の凝縮温度(CT2)は空調−冷蔵熱交換器41の熱交換性能によって決まるが、仮にET1が4℃、CT2が26℃なったとする。すると、空調用圧縮機21bの高圧および低圧はそれぞれ凝縮温度CT1、蒸発温度ET1の飽和圧力として求まり、高圧Pd1=3.0535MPa、低圧Ps1=0.90396MPa、圧縮比Pd1/Ps1=3.38となる。また、冷蔵用圧縮機21bの高圧および低圧はそれぞれ凝縮温度CT2、蒸発温度ET2の飽和圧力として求まり、高圧Pd2=1.6935MPa、低圧Ps2=0.57228MPa、圧縮比Pd2/Ps2=2.966となる。   Further, considering that the air-conditioning side refrigerant is not allowed to flow to the air-conditioning outdoor heat exchanger 27a but is completely evaporated by the air-conditioning-refrigeration heat exchanger 41, the air-conditioning-side refrigerant flows through the air-conditioning side circuit of the air-conditioning-refrigeration heat exchanger 41. Since the refrigerant and the refrigeration refrigerant flowing in the refrigeration side circuit exchange heat, the evaporation temperature (ET1) of the air conditioning refrigerant and the condensation temperature (CT2) of the refrigeration refrigerant depend on the heat exchange performance of the air conditioning-refrigeration heat exchanger 41. However, it is assumed that ET1 is 4 ° C. and CT2 is 26 ° C. Then, the high pressure and low pressure of the air conditioning compressor 21b are obtained as the saturation pressure of the condensation temperature CT1 and the evaporation temperature ET1, respectively, and the high pressure Pd1 = 3.0535 MPa, the low pressure Ps1 = 0.90396 MPa, and the compression ratio Pd1 / Ps1 = 3.38. Become. Further, the high pressure and the low pressure of the refrigeration compressor 21b are obtained as the saturation pressures of the condensation temperature CT2 and the evaporation temperature ET2, respectively: high pressure Pd2 = 1.6935 MPa, low pressure Ps2 = 0.572228 MPa, compression ratio Pd2 / Ps2 = 2.966. Become.

この時、空調用圧縮機21aの圧縮比3.38は単体の場合の圧縮比4.66に比べ27%、冷蔵用圧縮機21bの圧縮比2.96は単体の場合の圧縮比3.28に比べ10%小さい値になっている。圧縮機の入力は圧縮比と冷媒流量に依存し、冷媒流量が同じであれば圧縮比の小さい方が入力が少なくなる。従って、空調−冷蔵熱交換器41をここで示した圧力関係を実現できる仕様に設計すれば、空調冷蔵複合機は単体機に対し、空調側で27%、冷蔵側で10%の省エネになる。圧縮比すなわち圧縮機前後の冷媒のエンタルピー差を少なくすると、圧縮機の仕事量はエンタルピー差×冷媒流量であり、入力が小さくなりエネルギーを減らすことができる。   At this time, the compression ratio 3.38 of the air conditioning compressor 21a is 27% compared to the compression ratio 4.66 in the case of a single unit, and the compression ratio 2.96 of the refrigeration compressor 21b is 3.28 in the case of a single unit. The value is 10% smaller than. The input of the compressor depends on the compression ratio and the refrigerant flow rate. If the refrigerant flow rate is the same, the smaller the compression ratio, the less the input. Therefore, if the air-conditioning-refrigeration heat exchanger 41 is designed to a specification that can realize the pressure relationship shown here, the air-conditioning / refrigeration combined machine can save 27% on the air-conditioning side and 10% on the refrigeration side compared to a single unit. . If the compression ratio, that is, the enthalpy difference between the refrigerant before and after the compressor is reduced, the work of the compressor is enthalpy difference × refrigerant flow rate, and the input becomes smaller and energy can be reduced.

また、冷蔵用冷凍機の冷凍能力(冷却能力)は、蒸発器前後の冷媒のエンタルピー差×質量流量であるため、冷蔵用冷凍サイクルの過冷却を大きくして、蒸発器前後のエンタルピー差を大きくすれば、冷凍能力が大きくなり、同一冷凍能力にするための圧縮機の仕事量、すなわちエネルギーを減らすことができる。   In addition, since the refrigeration capacity of the refrigeration refrigerator (cooling capacity) is the enthalpy difference of refrigerant before and after the evaporator x mass flow rate, the supercooling of the refrigeration cycle for refrigeration is increased to increase the enthalpy difference before and after the evaporator. By doing so, the refrigeration capacity is increased, and the amount of work, that is, energy of the compressor for achieving the same refrigeration capacity can be reduced.

なお、ここでは、説明を分かりやすくするため、空調用冷媒と冷蔵用冷媒とが同じ冷媒である場合を例に説明を行ったが、それぞれ使用する温度帯が異なり、それぞれの温度帯に適した別々の冷媒を使用することもでき、同様の省エネ効果を得ることができる。空調用冷媒としては、R410A、R407Cなどのフロン系の冷媒やCO2冷媒などが使用でき、冷蔵用冷媒としては、R410A、R407C、R404Aなどのフロン系の冷媒やその他の冷媒が使用できるが、どちらもこれに限ったものではなく、どんな冷媒の組み合わせでもよい。また、それぞれの冷凍サイクルが独立しているため、冷凍機油もそれぞれの冷凍サイクルに適した冷凍機油を使用することができ、異なった冷凍機油を使用しても一向に構わない。   In addition, here, in order to make the explanation easy to understand, the case where the air-conditioning refrigerant and the refrigeration refrigerant are the same refrigerant has been described as an example. Separate refrigerants can be used, and the same energy saving effect can be obtained. As refrigerants for air conditioning, chlorofluorocarbon refrigerants such as R410A and R407C and CO2 refrigerants can be used, and as refrigeration refrigerants, chlorofluorocarbon refrigerants such as R410A, R407C and R404A and other refrigerants can be used. Is not limited to this, and any combination of refrigerants may be used. Moreover, since each refrigerating cycle is independent, refrigerating machine oil can use the refrigerating machine oil suitable for each refrigerating cycle, and it does not matter if it uses different refrigerating machine oil.

次に、本発明の実施の形態に係る冷凍空調装置の冷媒回路の詳細動作について、図5〜図9をもとに説明する。各図において、冷媒が流れている配管は太線で示し、冷媒の流れる流路は矢印で示してある。また、各図には、各運転モードでの空調用冷凍サイクルにおける四方弁、空調用絞り装置の制御方法についてもフローチャートにて示してある。なお、それら四方弁、空調用絞り装置の制御を含む冷凍空調装置の各種制御は、その制御動作を予めプログラムしたマイコン等の制御装置により行うことができる。   Next, detailed operation | movement of the refrigerant circuit of the refrigerating air-conditioning apparatus which concerns on embodiment of this invention is demonstrated based on FIGS. In each figure, the piping through which the refrigerant flows is indicated by a thick line, and the flow path through which the refrigerant flows is indicated by an arrow. Each figure also shows a flowchart of a control method for the four-way valve and the air conditioning throttle device in the air conditioning refrigeration cycle in each operation mode. Various controls of the refrigeration air conditioner including control of the four-way valve and the air conditioning throttle device can be performed by a control device such as a microcomputer in which the control operation is programmed in advance.

図5は、暖房時の基本的なモードである暖房熱回収モード1を示す図である。空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31を経て、空調用室内熱交換器22aへ送られて凝縮し、空調用絞り装置23a(1)にて絞られて中圧状態になる。その後、中圧の飽和液冷媒が空調用レシーバ26aを介してバイパス回路に入り、空調用絞り装置23a(3)で膨張して低温低圧冷媒になり、空調−冷蔵熱交換器41(1)および(2)にて、冷蔵用冷媒回路を流れる高温の冷媒と熱交換をして蒸発し、空調用圧縮機21aへ戻る。   FIG. 5 is a diagram showing a heating heat recovery mode 1 that is a basic mode during heating. The refrigerant compressed to high temperature and high pressure by the air conditioning compressor 21a passes through the four-way valve 31, is sent to the air conditioning indoor heat exchanger 22a, condenses, and is squeezed by the air conditioning throttle device 23a (1). Pressure state. Thereafter, the medium-pressure saturated liquid refrigerant enters the bypass circuit via the air-conditioning receiver 26a and expands in the air-conditioning expansion device 23a (3) to become a low-temperature / low-pressure refrigerant, and the air-conditioning-refrigeration heat exchanger 41 (1) and In (2), heat exchange with the high-temperature refrigerant flowing through the refrigeration refrigerant circuit evaporates and returns to the air-conditioning compressor 21a.

ここで、空調用レシーバ26aは中圧に設置されており、余剰冷媒をため、空調用絞り装置23a(3)に液冷媒を送る作用をしている。図には空調用レシーバ26aから空調用絞り装置23a(3)への接続配管は空調用レシーバ26aの下部に接続する場合を例に示しているが、液冷媒を取り出せればどこに接続してもよく、空調用レシーバ26aの上部あるいは側部に接続配管を取り付け空調用レシーバ26aの液冷媒を取り出せるよう内部で配管を伸ばす構造としてもよく、あるいは空調用レシーバ26aと空調用絞り装置23a(2)とを接続する配管に接続するようにしてもよい。   Here, the air-conditioning receiver 26a is installed at an intermediate pressure, and acts to send liquid refrigerant to the air-conditioning expansion device 23a (3) in order to use surplus refrigerant. In the figure, the connection pipe from the air conditioning receiver 26a to the air conditioning throttle device 23a (3) is connected to the lower part of the air conditioning receiver 26a as an example, but it can be connected anywhere as long as the liquid refrigerant can be taken out. Alternatively, a connection pipe may be attached to the upper part or the side part of the air conditioning receiver 26a so that the pipe is extended so that the liquid refrigerant of the air conditioning receiver 26a can be taken out. Alternatively, the air conditioning receiver 26a and the air conditioning throttle device 23a (2) You may make it connect to piping which connects.

このとき、四方弁31は暖房にし(ST211)、空調用絞り装置23a(1)は空調用室内飽和温度検出装置52での検出温度と空調用室内液管温度検出装置53での検出温度との温度差で表される過冷却度(SC)を制御する(ST213)のが望ましいが、一定の開度に保持するなどその他の制御方法でもよく、空調用絞り装置23a(2)は空調用室外熱交換器27aに冷媒を流さないため全閉にしておく。   At this time, the four-way valve 31 is heated (ST211), and the air conditioning throttle device 23a (1) has a detected temperature detected by the air conditioning indoor saturation temperature detecting device 52 and a detected temperature detected by the air conditioning indoor liquid pipe temperature detecting device 53. It is desirable to control the degree of supercooling (SC) represented by the temperature difference (ST213), but other control methods such as maintaining a constant opening degree may be used, and the air conditioning expansion device 23a (2) is outside the air conditioning room. The heat exchanger 27a is fully closed to prevent the refrigerant from flowing therethrough.

また、空調用絞り装置23a(3)は、以下の制御により開度を調整し、空調−冷蔵熱交換器41(1)および(2)での熱交換量を制御する。この熱交換量の制御方法、つまり空調用絞り装置23a(3)の制御方法としては、空調−冷蔵熱交換器出口温度検出装置59(1)での検出温度と空調−冷蔵熱交換器入口温度検出装置58での検出温度との温度差で表される過熱度(SH)を制御する(ST213)。この過熱度(SH)の量を変化させることで、空調用冷媒が空調−冷蔵熱交換器41(1)および(2)の両方で熱交換量を変化させることができる。例えば過熱度(SH)5K(ケルビン)に対し10K(ケルビン)とすると、空調用絞り装置23a(3)は過熱度(SH)5K(ケルビン)の場合に比べて開度が小さく制御され、空調−冷蔵熱交換器41(1)および(2)での熱交換量は小さくなる。   The air conditioning throttle device 23a (3) adjusts the opening degree by the following control, and controls the heat exchange amount in the air conditioning-refrigeration heat exchangers 41 (1) and (2). As a control method of this heat exchange amount, that is, a control method of the air conditioning expansion device 23a (3), the temperature detected by the air conditioning-refrigeration heat exchanger outlet temperature detection device 59 (1) and the air conditioning-refrigeration heat exchanger inlet temperature The degree of superheat (SH) represented by the temperature difference from the temperature detected by the detection device 58 is controlled (ST213). By changing the amount of superheat (SH), the air-conditioning refrigerant can change the heat exchange amount in both the air-conditioning-refrigeration heat exchangers 41 (1) and (2). For example, if the superheat degree (SH) is 5K (Kelvin) and 10K (Kelvin), the air conditioner expansion device 23a (3) is controlled to have a smaller opening than the case of the superheat degree (SH) 5K (Kelvin). -The amount of heat exchange in the refrigerated heat exchangers 41 (1) and (2) is small.

また、この熱交換量の制御方法、つまり空調用絞り装置23a(3)の制御方法として空調用圧縮機吐出温度検出装置50での検出温度と高圧用冷媒の飽和温度、例えば空調用室内飽和温度検出装置52での検出温度との温度差で表される過熱度(SH)を制御する方法がある。この場合は空調−冷蔵熱交換器41(2)出口での過熱度(SH)を制御する方法よりも空調用絞り装置23a(3)の開度を大きく制御することができる。つまり冷媒が空調−冷蔵熱交換器出口での過熱度がほぼゼロの状態、もしくは気液2相流状態(冷媒が蒸発しきれていない状態)で空調用圧縮機21aに冷媒を戻すことが可能となり、空調−冷蔵熱交換器41(1)および(2)の熱交換能力を最大限に発揮させることが可能となる。   Further, as a control method of this heat exchange amount, that is, a control method of the air conditioning throttle device 23a (3), the detected temperature in the air conditioning compressor discharge temperature detecting device 50 and the saturation temperature of the high pressure refrigerant, for example, the air conditioning indoor saturation temperature. There is a method of controlling the degree of superheat (SH) represented by the temperature difference from the temperature detected by the detection device 52. In this case, the opening degree of the air-conditioning expansion device 23a (3) can be controlled to be larger than the method of controlling the degree of superheat (SH) at the outlet of the air-conditioning / refrigeration heat exchanger 41 (2). In other words, the refrigerant can be returned to the air conditioning compressor 21a in a state where the degree of superheating at the outlet of the air-conditioning / refrigeration heat exchanger is almost zero, or in a gas-liquid two-phase flow state (a state where the refrigerant has not completely evaporated). Thus, the heat exchange capacity of the air-conditioning-refrigeration heat exchangers 41 (1) and (2) can be maximized.

また、空調用圧縮機21a吐出口での過熱度(SH)を制御することにより、気液2相流状態で液バック気味に空調用圧縮機21aに冷媒を戻すことが可能となり、空調−冷蔵熱交換器41(2)出口での過熱度(SH)を制御する方法よりも高圧縮比運転等による吐出ガスの上昇を防ぐことが可能となる。また空調用絞り装置23a(3)の開度を大きく制御することにより低圧を高めにすることができ、高圧縮比運転自体を緩和することが可能となる。
なお、過熱度に基づく空調用絞り装置23a(3)の制御は、運転状態に応じて変更することも可能である。図13は、運転状態に応じて過熱度の検出箇所を変更する処理を示すフローチャートである。例えば空調用圧縮機21a吐出口での過熱度(SH)が50℃を超え信頼性に影響がある運転となった場合(ステップS100)、制御装置は吐出温度検出装置50での検出温度と高圧用冷媒の飽和温度、例えば空調用室内飽和温度検出装置52での検出温度との温度差で表される過熱度(SH)を制御し、この過熱度が目標温度(例えば50℃)となるように空調用絞り装置23a(3)の開度を調整する(ステップS101)。この制御により、気液2相流状態で液バック気味に空調用圧縮機21aに冷媒を戻し吐出温度を低下させる。一方、吐出口での過熱度(SH)が50℃以下の場合は空調−冷蔵熱交換器出口温度検出装置59(1)での検出温度と空調−冷蔵熱交換器入口温度検出装置58での検出温度との温度差で表される過熱度(SH)を制御し、この過熱度が目標温度(例えば5℃)となるように空調用絞り装置23a(3)の開度を調整し液バックのない信頼性の高い運転を行う(ステップS102)。
Further, by controlling the degree of superheat (SH) at the discharge port of the air conditioning compressor 21a, it becomes possible to return the refrigerant to the air conditioning compressor 21a in a liquid-back manner in a gas-liquid two-phase flow state, and air conditioning-refrigeration. As compared with the method of controlling the degree of superheat (SH) at the outlet of the heat exchanger 41 (2), it is possible to prevent the discharge gas from rising due to high compression ratio operation or the like. Further, the low pressure can be increased by largely controlling the opening degree of the air conditioning throttle device 23a (3), and the high compression ratio operation itself can be relaxed.
Note that the control of the air conditioning throttle device 23a (3) based on the degree of superheat can be changed according to the operating state. FIG. 13 is a flowchart showing a process of changing the superheat degree detection location according to the operating state. For example, when the degree of superheat (SH) at the discharge port of the air conditioning compressor 21a exceeds 50 ° C. and the reliability is affected (step S100), the control device detects the detected temperature and the high pressure in the discharge temperature detection device 50. The degree of superheat (SH) represented by the temperature difference between the refrigerant refrigerant saturation temperature, for example, the temperature detected by the air conditioning indoor saturation temperature detector 52, is controlled so that this superheat degree becomes the target temperature (eg 50 ° C.). The opening degree of the air conditioning diaphragm 23a (3) is adjusted (step S101). With this control, the refrigerant is returned to the air conditioning compressor 21a in a gas-liquid two-phase flow state, and the discharge temperature is lowered. On the other hand, when the superheat degree (SH) at the discharge port is 50 ° C. or less, the detected temperature at the air-conditioning / refrigeration heat exchanger outlet temperature detection device 59 (1) and the detection temperature at the air-conditioning / refrigeration heat exchanger inlet temperature detection device 58 The degree of superheat (SH) represented by the temperature difference from the detected temperature is controlled, and the opening degree of the air conditioning throttle device 23a (3) is adjusted so that the degree of superheat becomes the target temperature (for example, 5 ° C.). A highly reliable operation is performed (step S102).

さらに、空調用絞り装置23a(3)の制御方法として空調−冷蔵熱交換器出口温度検出装置59(2)の検出温度と空調−冷蔵熱交換器入口温度検出装置58での検出温度との温度差で表される過熱度(SH)を制御する方法もある。この場合は空調用絞り装置23a(3)を通過した低圧2相流冷媒は空調−冷蔵熱交換器41(1)出口で蒸発し過熱度(SH)がつく程度の流量しか流れない。つまり空調−冷蔵熱交換器41(2)出口での過熱度(SH)を制御する方法よりも空調用絞り装置23a(3)の開度を小さく制御することが可能となる。   Further, as a control method of the air conditioning expansion device 23a (3), the temperature between the detected temperature of the air conditioning / refrigeration heat exchanger outlet temperature detection device 59 (2) and the detection temperature of the air conditioning / refrigeration heat exchanger inlet temperature detection device 58. There is also a method of controlling the degree of superheat (SH) represented by the difference. In this case, the low-pressure two-phase refrigerant that has passed through the air-conditioning expansion device 23a (3) evaporates at the outlet of the air-conditioning-refrigeration heat exchanger 41 (1), and flows only at a flow rate that gives a degree of superheat (SH). In other words, the opening degree of the air conditioning expansion device 23a (3) can be controlled to be smaller than the method of controlling the degree of superheat (SH) at the outlet of the air conditioning / refrigeration heat exchanger 41 (2).

続いて、暖房熱回収モード1での冷蔵用の冷媒回路の動作について説明する。冷蔵用圧縮機21bにより圧縮され高温高圧になった冷媒は、冷蔵用室外熱交換器27bにて冷媒の一部が凝縮した後、空調−冷蔵熱交換器41(2)にて空調用冷媒回路を流れる低温の冷媒と熱交換をして残りの冷媒が凝縮し、冷蔵用レシーバ26bを経て空調−冷蔵熱交換器41(1)にて再度低温の空調用冷媒と熱交換をして過冷却され、冷蔵用絞り装置23bにて膨張し低温低圧冷媒になり、冷蔵用室内熱交換器22bにて蒸発し、冷蔵用圧縮機21bへ戻る。
冷蔵用レシーバ26bは、空調−冷蔵熱交換器41(2)と空調−冷蔵熱交換器41(1)との間に挿入設置されており、余剰冷媒をためる作用があり、冷蔵用レシーバ26bにて冷蔵用冷媒はほぼ飽和液冷媒となる。
空調−冷蔵熱交換器41(1)は空調用冷媒との熱交換により冷蔵用冷媒を過冷却させて冷蔵側の冷凍効果(冷却能力)を大きくして冷却能力向上と運転効率向上を行う作用がある。
空調−冷蔵熱交換器41(2)は空調側の冷媒が蒸発するための十分な熱量を供給する作用、冷蔵用室外熱交換器用ファン28bの回転数を落とし入力を低減させる作用、外気温が高めの時は冷蔵用冷媒の凝縮温度を下げることで冷蔵用圧縮機21bの入力を低減させる作用がある。
なお、図中、符号61は冷蔵用低圧検出装置または蒸発温度検出装置を、符号62は冷蔵用高圧検出装置または凝縮温度検出装置を、符号63は冷蔵用圧縮機吐出温度検出装置を、符号64は庫内温度検出装置を、符号65は空調−冷蔵熱交換器41(1)出口での冷蔵用液管温度検出装置を、符号80は冷蔵負荷側開閉弁を、それぞれ表している。
Next, the operation of the refrigeration refrigerant circuit in the heating heat recovery mode 1 will be described. The refrigerant compressed to high temperature and high pressure by the refrigeration compressor 21b is partially condensed in the refrigeration outdoor heat exchanger 27b, and then air-conditioning refrigerant circuit in the air-conditioning-refrigeration heat exchanger 41 (2). Heat exchange with the low-temperature refrigerant flowing through the refrigerant, the remaining refrigerant condenses, and through the refrigeration receiver 26b, the air-conditioning-refrigeration heat exchanger 41 (1) again exchanges heat with the low-temperature air-conditioning refrigerant and supercools. Then, it expands in the refrigeration expansion device 23b to become a low-temperature and low-pressure refrigerant, evaporates in the refrigeration indoor heat exchanger 22b, and returns to the refrigeration compressor 21b.
The refrigeration receiver 26b is inserted and installed between the air-conditioning-refrigeration heat exchanger 41 (2) and the air-conditioning-refrigeration heat exchanger 41 (1), and has an action of accumulating excess refrigerant. Thus, the refrigeration refrigerant is almost a saturated liquid refrigerant.
The air-conditioning-refrigeration heat exchanger 41 (1) acts to improve cooling capacity and operating efficiency by supercooling the refrigeration refrigerant by exchanging heat with the air-conditioning refrigerant to increase the refrigeration effect (cooling capacity) on the refrigeration side. There is.
The air conditioning-refrigeration heat exchanger 41 (2) has an effect of supplying a sufficient amount of heat for the refrigerant on the air conditioning side to evaporate, an effect of reducing the rotational speed of the refrigeration outdoor heat exchanger fan 28b, and reducing the input, and the outside air temperature. When the temperature is high, there is an effect of reducing the input of the refrigeration compressor 21b by lowering the condensation temperature of the refrigeration refrigerant.
In the figure, reference numeral 61 denotes a refrigeration low-pressure detector or evaporation temperature detector, reference numeral 62 denotes a refrigeration high-pressure detector or condensation temperature detector, reference numeral 63 denotes a refrigeration compressor discharge temperature detector, and reference numeral 64. Denotes a temperature detecting device in the cabinet, 65 denotes a liquid pipe temperature detecting device for refrigeration at the outlet of the air-conditioning-refrigeration heat exchanger 41 (1), and 80 denotes a refrigeration load side opening / closing valve.

次に、冷蔵側の負荷が小さく、冷蔵側のインバータ周波数出力が最低レベルでも能力が余り気味の場合について説明する。この場合、空調−冷蔵熱交換器41(2)出口での過熱度(SH)を制御する方法、冷蔵用圧縮機21b吐出口での過熱度(SH)を制御する方法では、空調−冷蔵熱交換器41(1)および(2)の両方を用いるため冷蔵側能力が向上しすぎ、冷蔵用冷媒回路の低圧が低下する。低圧がある値まで低下すると冷蔵用圧縮機21bの停止、運転の繰り返しとなり冷蔵用圧縮機21bの消費電力の増加、冷凍機油の吐き出し量増加による油枯渇等により、最悪の場合、機器の故障に発展する可能性がある。それを避けるため、空調−冷蔵熱交換器41(1)出口での過熱度(SH)制御により空調−冷蔵熱交換器41(1)のみを用いることができ、冷蔵側の冷凍効果(冷却能力)を大きくして冷却能力向上と運転効率向上を行う作用を最低限に発揮しながら安定した運転とすることができる。   Next, the case where the load on the refrigeration side is small and the capacity is not so strong even when the inverter frequency output on the refrigeration side is at the lowest level will be described. In this case, in the method of controlling the degree of superheat (SH) at the outlet of the air conditioning-refrigeration heat exchanger 41 (2) and the method of controlling the degree of superheat (SH) at the outlet of the refrigeration compressor 21b, air conditioning-refrigeration heat is used. Since both of the exchangers 41 (1) and (2) are used, the refrigeration capacity is excessively improved, and the low pressure of the refrigeration refrigerant circuit is lowered. When the low pressure drops to a certain value, the refrigeration compressor 21b is stopped and the operation is repeated, resulting in an increase in power consumption of the refrigeration compressor 21b, oil depletion due to an increase in the discharge amount of refrigeration oil, etc. There is a possibility of development. In order to avoid this, only the air conditioning-refrigeration heat exchanger 41 (1) can be used by controlling the degree of superheat (SH) at the outlet of the air conditioning-refrigeration heat exchanger 41 (1). ) Can be increased to minimize the effects of improving the cooling capacity and operating efficiency, and stable operation can be achieved.

空調−冷蔵熱交換器41(1)の過熱度(SH)制御の場合、空調側の蒸発用熱交換器容量が小さくなる場合は、空調用絞り装置23a(2)を開き室外熱交換器27aにも冷媒を流し、熱交換容量不足を解消する。   In the case of the superheat degree (SH) control of the air conditioning-refrigeration heat exchanger 41 (1), when the capacity of the evaporating heat exchanger on the air conditioning side becomes small, the air conditioning expansion device 23a (2) is opened to open the outdoor heat exchanger 27a. The refrigerant is also flown to eliminate the shortage of heat exchange capacity.

このように、空調−冷蔵熱交換量、つまり空調用絞り装置23a(3)の開度は、過熱度(SH)の検出位置を空調−冷蔵熱交換器41(1)出口、空調−冷蔵熱交換器41(2)出口、空調用圧縮機21aの吐出口50の間で変更すること、また各検出位置での過熱度(SH)の量を変化させることにより自在に変更することが可能となる。基本的には空調−冷蔵熱交換器41(1)出口、空調−冷蔵熱交換器41(2)出口、圧縮機吐出口50になるにつれ、また各部の過熱度を小さくするにつれ、つまり熱交換量が多くなるにつれ省エネ性は向上する。冷蔵用圧縮機21bのインバータ周波数、冷蔵用冷媒回路の低圧圧力、高圧圧力条件、外気温度等により、冷蔵側の熱負荷を算出し、冷蔵−空調間等により冷蔵側の熱負荷を通信により空調側に伝え、空調用絞り装置23a(3)を適切に制御することにより、省エネ性と安定性、信頼性を両立させた運転とすることができる。   Thus, the air-conditioning-refrigeration heat exchange amount, that is, the opening degree of the air-conditioning expansion device 23a (3), the superheat degree (SH) detection position, the air-conditioning-refrigeration heat exchanger 41 (1) outlet, air-conditioning-refrigeration heat. It is possible to change freely by changing between the outlet of the exchanger 41 (2) and the discharge port 50 of the air conditioning compressor 21a and changing the amount of superheat (SH) at each detection position. Become. Basically, as the air-conditioning-refrigeration heat exchanger 41 (1) exit, air-conditioning-refrigeration heat exchanger 41 (2) exit, compressor discharge port 50, and as the degree of superheat of each part decreases, that is, heat exchange. As the amount increases, the energy-saving performance improves. The heat load on the refrigeration side is calculated based on the inverter frequency of the refrigeration compressor 21b, the low pressure of the refrigeration refrigerant circuit, the high pressure condition, the outside air temperature, etc. By transmitting to the side and appropriately controlling the air conditioning throttle device 23a (3), it is possible to achieve an operation in which energy saving performance, stability, and reliability are compatible.

また、通常冷凍機においては、冷蔵負荷側開閉弁80を冷蔵用ショーケースの庫内温度によって開閉し、庫内温度を一定範囲で制御している。つまり冷蔵用圧縮機21bの吸入冷媒圧力が一定値以下となると冷蔵負荷側開閉弁80を閉じ冷蔵用圧縮機21bを停止し、一定値以上となると冷蔵負荷側開閉弁80を開け冷蔵用圧縮機21bの運転を開始するようにしている。つまり、例えば冷蔵用ショーケースの庫内設定温度が5℃の場合、庫内温度検出装置64の検出温度が6℃となった場合に冷蔵負荷側開閉弁80を開く。これにより冷蔵用圧縮機21bの吸入圧力が上昇し、ある値以上となると冷蔵用圧縮機21bの運転を開始する。また庫内温度検出装置64の検出温度が3℃となった場合に冷蔵負荷側開閉弁80を閉じ冷蔵用圧縮機21bの吸入圧力が低下することにより冷蔵用圧縮機21bの運転を停止させる。このようにして冷蔵用ショーケースの設定温度5℃付近の庫内温度を保つような運転を行っている(図14参照)。   Further, in a normal refrigerator, the refrigeration load side opening / closing valve 80 is opened and closed according to the internal temperature of the refrigeration showcase, and the internal temperature is controlled within a certain range. In other words, when the suction refrigerant pressure of the refrigeration compressor 21b is below a certain value, the refrigeration load side on-off valve 80 is closed and the refrigeration compressor 21b is stopped. The operation of 21b is started. That is, for example, when the set temperature in the storage case of the refrigerated showcase is 5 ° C., the refrigeration load side opening / closing valve 80 is opened when the detected temperature of the internal temperature detection device 64 becomes 6 ° C. As a result, the suction pressure of the refrigeration compressor 21b rises, and when it reaches a certain value, the operation of the refrigeration compressor 21b is started. Further, when the temperature detected by the internal temperature detector 64 reaches 3 ° C., the refrigeration load side on-off valve 80 is closed to reduce the suction pressure of the refrigeration compressor 21b, thereby stopping the operation of the refrigeration compressor 21b. In this way, an operation is performed so as to maintain the inside temperature in the vicinity of the set temperature of 5 ° C. of the refrigerated showcase (see FIG. 14).

冷蔵用圧縮機21bのインバータ周波数制御については目標の吸入圧力を設定し、実際の吸入圧力が目標値に対して高い場合は運転周波数を増加させ、実際の吸入圧力が目標値に対して低い場合は運転周波数を減少させるのが一般的である。   For inverter frequency control of the refrigeration compressor 21b, a target suction pressure is set. When the actual suction pressure is higher than the target value, the operation frequency is increased, and when the actual suction pressure is lower than the target value. It is common to reduce the operating frequency.

本冷凍空調装置においては、例えば庫内温度検出装置64の検出温度が3℃となった場合に冷蔵負荷側開閉弁80を閉じ冷蔵用圧縮機21bの運転を停止させる上記設定の場合、冷凍機の運転により庫内温度が低下し、庫内温度検出装置64が4℃となった場合に冷蔵用圧縮機21bの周波数を最低周波数に減少させる。
以下、図15を用いて詳述すると、まず、制御装置は、庫内温度検出装置64の検出温度(吸込温度)と設定温度との差△Tが、所定温度(1℃)より大きいかを検出する(ステップS110)。そして、大きい場合は、温度差が所定値(−1℃)より下がるまで冷凍機の通常運転を続ける(ステップS111、S114)。一方、ステップS114で差△Tが所定値以下と判断された場合には、制御装置は、冷蔵用圧縮機21bの運転周波数を下げる。例えば、最低周波数に固定する制御を行う(ステップS115)。そして、この低能力での運転を所定の温度範囲を脱するまで続け、空気調和装置との熱交換を行う時間を長くとれるように制御する。ここで、温度差△Tが0℃以上となった場合には、所定の温度範囲を脱したと判断して、通常の運転制御に戻る(ステップS116)。一方、温度差△Tがさらに下がった場合には、制御装置は冷蔵用圧縮機21bを停止させる(ステップS113)。
In this refrigeration air conditioner, for example, in the case of the above setting in which the refrigeration load side opening / closing valve 80 is closed and the operation of the refrigeration compressor 21b is stopped when the temperature detected by the internal temperature detection device 64 reaches 3 ° C., the refrigerator When the internal temperature is lowered by the operation of and the internal temperature detection device 64 reaches 4 ° C., the frequency of the refrigeration compressor 21b is decreased to the lowest frequency.
The control device will be described in detail below with reference to FIG. 15. First, the control device determines whether the difference ΔT between the detected temperature (suction temperature) of the internal temperature detection device 64 and the set temperature is greater than a predetermined temperature (1 ° C.). It detects (step S110). And when large, the normal operation of a refrigerator is continued until a temperature difference falls below predetermined value (-1 degreeC) (step S111, S114). On the other hand, when it is determined in step S114 that the difference ΔT is equal to or less than the predetermined value, the control device lowers the operating frequency of the refrigeration compressor 21b. For example, control to fix to the lowest frequency is performed (step S115). Then, the low-capacity operation is continued until the predetermined temperature range is removed, and control is performed so that the time for heat exchange with the air conditioner can be increased. Here, when the temperature difference ΔT is 0 ° C. or more, it is determined that the predetermined temperature range has been exceeded, and the normal operation control is resumed (step S116). On the other hand, when the temperature difference ΔT further decreases, the control device stops the refrigeration compressor 21b (step S113).

上記制御により通常より冷蔵用室内熱交換器22bに流す冷媒量を減らし、冷凍能力を低下させる。これにより冷蔵用圧縮機21bを停止させる温度である3℃に到達するまでの時間を長くし、冷凍機の運転時間を長くする。このことにより暖房熱回収モードでの運転時間が長くなり、冷凍空調システム全体の消費電力量が低減でき、省エネ性が向上する。また冷房能力が低下することにより室内空気温度検出装置51の検出温度が上昇し5℃以上となった場合、通常制御にもどす。   With the control described above, the amount of refrigerant flowing to the refrigeration indoor heat exchanger 22b is reduced more than usual, and the refrigeration capacity is lowered. As a result, the time required to reach 3 ° C., which is the temperature at which the refrigeration compressor 21b is stopped, is lengthened, and the operation time of the refrigerator is lengthened. As a result, the operation time in the heating heat recovery mode becomes longer, the power consumption of the entire refrigeration air conditioning system can be reduced, and the energy saving performance is improved. Further, when the detected temperature of the indoor air temperature detecting device 51 rises to 5 ° C. or more due to a decrease in cooling capacity, the normal control is returned.

冷凍能力を低下させ、暖房熱回収モードでの運転時間を長くする上記のような方法としては冷蔵用室内熱交換器用ファン25bの風量を低下させる方法(図16参照)、目標の吸入冷媒圧力設定を上げ庫内温度と蒸発温度の差を小さくし冷凍能力を小さくするという方法もある(図17参照)。   As a method for reducing the refrigerating capacity and extending the operation time in the heating heat recovery mode, there are a method for reducing the air volume of the refrigeration indoor heat exchanger fan 25b (see FIG. 16), and a target intake refrigerant pressure setting. There is also a method in which the difference between the internal temperature and the evaporation temperature is reduced to reduce the refrigeration capacity (see FIG. 17).

図6は、暖房単独運転モードを示す図である。冷蔵用圧縮機21bが停止している場合にこのモードにて運転させる。このモードは、冷蔵用冷凍サイクルとの熱交換なしに空調用冷凍サイクルを単独で運転させるもので、空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31を経て空調用室内熱交換器22aへ送られて凝縮し、空調用絞り装置23a(1)にて絞られて中圧状態になる。さらに、冷媒は空調用レシーバ26aを経て、空調用絞り装置23a(2)へ送られ膨張して低温低圧冷媒になり、空調用室外熱交換器27aにて蒸発し、空調用圧縮機21aへ戻るという通常の空調機と暖房と同様の動作をする。   FIG. 6 is a diagram illustrating a heating single operation mode. When the refrigeration compressor 21b is stopped, the compressor is operated in this mode. In this mode, the air-conditioning refrigeration cycle is operated independently without heat exchange with the refrigeration refrigeration cycle. The refrigerant compressed to high temperature and high pressure by the air-conditioning compressor 21a passes through the four-way valve 31 to the air-conditioning room. It is sent to the heat exchanger 22a to condense and is throttled by the air conditioning throttle device 23a (1) to be in an intermediate pressure state. Further, the refrigerant passes through the air conditioning receiver 26a, is sent to the air conditioning throttle device 23a (2), expands to become a low-temperature and low-pressure refrigerant, evaporates in the outdoor heat exchanger 27a for air conditioning, and returns to the compressor 21a for air conditioning. It operates in the same way as a normal air conditioner and heating.

なお、空調用絞り装置23a(1)は空調用室内飽和温度検出装置52での検出温度と空調用室内液管温度検出装置53での検出温度との温度差で表される過冷却度(SC)を制御する(ST243)のが望ましいが、一定の開度に保持するなどその他の制御方法でもよい。空調用絞り装置23a(2)は空調用蒸発器出口温度検出装置57での検出温度と空調用室外飽和温度検出装置56での検出温度との温度差で表される過熱度(SH)を制御する(ST243)のが望ましいが、空調用圧縮機吐出温度検出装置50での検出温度を制御するように動作させてもよい。なお、空調用絞り装置23a(3)は冷媒が流れないため任意の開度に固定しておく(ST243)。   Note that the air conditioning throttle device 23a (1) has a degree of supercooling (SC) represented by a temperature difference between the temperature detected by the air conditioning indoor saturation temperature detecting device 52 and the temperature detected by the air conditioning indoor liquid pipe temperature detecting device 53. ) Is preferably controlled (ST243), but other control methods such as maintaining a constant opening may be used. The air conditioning throttle device 23 a (2) controls the degree of superheat (SH) represented by the temperature difference between the temperature detected by the air conditioning evaporator outlet temperature detection device 57 and the temperature detected by the air conditioning outdoor saturation temperature detection device 56. (ST243) is preferable, but the operation may be performed so as to control the temperature detected by the air-conditioning compressor discharge temperature detecting device 50. Note that the air conditioning throttle device 23a (3) is fixed at an arbitrary opening degree because the refrigerant does not flow (ST243).

図7は、冷房熱回収モードを示す図である。冷房熱回収モードでは、空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31を経て空調用室外熱交換器27aへ送られて凝縮し、空調用絞り装置23a(2)にて絞られて中圧状態になり、空調用レシーバ26aへ至る。そして、空調用絞り装置23a(1)へ送られる冷媒と空調用絞り装置23a(3)へ送られる冷媒とに分流される。空調用絞り装置23a(1)へ送られた冷媒は、空調用絞り装置23a(1)にて膨張して低温低圧冷媒になり、空調用室内熱交換器22aにて蒸発し、空調用圧縮機21aへ戻る。一方、空調用絞り装置23a(3)へ送られた冷媒は、空調用絞り装置23a(3)にて膨張して低温低圧冷媒になり、空調−冷蔵熱交換器41(1)にて冷蔵用冷媒回路を流れる高温の冷媒と熱交換をして蒸発し、室内熱交換器22aにて蒸発した冷媒と合流して空調用圧縮機21aへ戻る。ここで四方弁31は冷房にし(ST271)、空調用絞り装置23a(3)は過熱度の検出位置を空調−冷蔵熱交換器41(1)出口として過熱度(SH)により制御される。   FIG. 7 is a diagram illustrating a cooling heat recovery mode. In the cooling heat recovery mode, the refrigerant that has been compressed by the air conditioning compressor 21a into a high temperature and high pressure is sent to the air conditioning outdoor heat exchanger 27a through the four-way valve 31 to condense, and is supplied to the air conditioning expansion device 23a (2). The air pressure is reduced to an intermediate pressure state and reaches the air conditioning receiver 26a. Then, the refrigerant is divided into a refrigerant sent to the air conditioning throttle device 23a (1) and a refrigerant sent to the air conditioning throttle device 23a (3). The refrigerant sent to the air conditioning throttle device 23a (1) expands in the air conditioning throttle device 23a (1) to become a low-temperature and low-pressure refrigerant, evaporates in the air conditioning indoor heat exchanger 22a, and the air conditioning compressor. Return to 21a. On the other hand, the refrigerant sent to the air conditioning throttle device 23a (3) expands in the air conditioning throttle device 23a (3) to become a low-temperature and low-pressure refrigerant and is refrigerated in the air-conditioning-refrigeration heat exchanger 41 (1). The refrigerant exchanges heat with the high-temperature refrigerant flowing in the refrigerant circuit to evaporate, merges with the refrigerant evaporated in the indoor heat exchanger 22a, and returns to the air conditioning compressor 21a. Here, the four-way valve 31 is cooled (ST271), and the air conditioning throttle device 23a (3) is controlled by the degree of superheat (SH) with the superheat degree detection position as the outlet of the air conditioner-refrigeration heat exchanger 41 (1).

冷房熱回収モードでの、冷蔵用冷凍サイクルの動作は図5のモードと同様であり、その動作の説明は省略する。   The operation of the refrigeration cycle in the cooling heat recovery mode is the same as that in FIG. 5, and the description of the operation is omitted.

このモードでは、空調用冷凍サイクルにおいては、空調用室内熱交換器22aへ流れる冷媒の量が減少するため、空調機の冷房能力が減少し、結果として空調用圧縮機21aの周波数が大きくなり、効率が悪い運転となる。しかし、冷蔵用冷凍サイクルにおいて、過冷却度が大きくなるため、冷却能力向上、効率向上効果があり、その性能向上が空調用冷凍サイクルの性能悪化分よりも勝るため、全体としての効率がよくなることになる。ただし、空調−冷蔵熱交換器41(1)、(2)へ流す空調用冷媒の量は、冷蔵用冷凍サイクルの過冷却をつけられる程度の量があればよい。空調−冷蔵熱交換器41へ流す空調用冷媒の量が多すぎると、空調用冷凍サイクルの効率悪化分が大きくなりすぎ、かえって全体としての効率が悪くなる。   In this mode, in the air-conditioning refrigeration cycle, the amount of refrigerant flowing to the air-conditioning indoor heat exchanger 22a decreases, so the cooling capacity of the air-conditioner decreases, and as a result, the frequency of the air-conditioning compressor 21a increases. Inefficient operation. However, in the refrigeration cycle, the degree of supercooling increases, so there is an effect of improving the cooling capacity and efficiency, and the performance improvement is better than the deterioration of the performance of the air conditioning refrigeration cycle, so the overall efficiency is improved. become. However, the amount of the air-conditioning refrigerant that flows to the air-conditioning-refrigeration heat exchangers 41 (1) and (2) only needs to be large enough to allow the refrigeration cycle to be supercooled. If the amount of the air-conditioning refrigerant flowing to the air-conditioning-refrigeration heat exchanger 41 is too large, the efficiency deterioration of the air-conditioning refrigeration cycle becomes too large, and on the contrary, the overall efficiency deteriorates.

そのため、このモードにおいては、空調用絞り装置23a(3)は過熱度(SH)の検出位置を空調−冷蔵熱交換器41(1)出口とすることで、主に空調−冷蔵熱交換器41(1)のみで熱交換をさせるようにし、空調−冷蔵熱交換器41(2)出口の過熱度(SH)を制御するよりも少なく空調−冷蔵熱交換器41に冷媒が流れるようにしている。
また空調−冷蔵熱交換器41(1)出口の過熱度(SH)の量を変化させることで空調用絞り装置23a(3)の開度を変化させ、空調−冷蔵熱交換器41側へ冷媒が流れる冷媒量、つまり空調−冷蔵熱交換器41による熱交換量を変化させることができる。図18は、熱交換量を制御する処理を示すフローチャートである。空調機の能力が不足し、店内温度が30分以上目標値より2℃以上高くなっている場合(ステップS120)は、制御装置は過熱度(SH)を大きくすることで空調−冷蔵熱交換器41(1)側へ多く流れないようにする。すなわち、目標の過熱度(SH)を高い値(例えば15℃)に設定し、空調−冷蔵熱交換器41(1)に流れる冷媒の流量を低減させる(ステップS121)。逆に店内温度が目標値に達し、空調機の能力に余裕がある場合は過熱度(SH)を小さくすることで空調−冷蔵熱交換器41(1)側へ冷媒が多く流れるように制御する。すなわち、目標過熱度(SH)を低い値に設定することにより、空調−冷蔵熱交換器41(1)に流れる流量を増加させ、冷蔵側の冷却能力向上と運転効率向上効果を増加させることができる(ステップS122)。
Therefore, in this mode, the air-conditioning expansion device 23a (3) mainly uses the air-conditioning / refrigeration heat exchanger 41 by setting the superheat degree (SH) detection position as the outlet of the air-conditioning / refrigeration heat exchanger 41 (1). Heat is exchanged only by (1), and the refrigerant flows through the air conditioning-refrigeration heat exchanger 41 less than controlling the degree of superheat (SH) at the outlet of the air conditioning-refrigeration heat exchanger 41 (2). .
Moreover, the opening degree of the air-conditioning expansion device 23a (3) is changed by changing the amount of superheat (SH) at the outlet of the air-conditioning-refrigeration heat exchanger 41 (1), and refrigerant is supplied to the air-conditioning-refrigeration heat exchanger 41 side. The amount of refrigerant flowing through, that is, the amount of heat exchange by the air-conditioning-refrigeration heat exchanger 41 can be changed. FIG. 18 is a flowchart showing a process for controlling the heat exchange amount. When the capacity of the air conditioner is insufficient and the in-store temperature is higher than the target value by 2 ° C. or more for 30 minutes or more (step S120), the control device increases the superheat degree (SH) to increase the air conditioning / refrigeration heat exchanger. Do not flow too much to the 41 (1) side. That is, the target superheat degree (SH) is set to a high value (for example, 15 ° C.), and the flow rate of the refrigerant flowing through the air-conditioning / refrigeration heat exchanger 41 (1) is reduced (step S121). Conversely, if the in-store temperature reaches the target value and the air conditioner has sufficient capacity, control is performed so that a large amount of refrigerant flows to the air conditioning-refrigeration heat exchanger 41 (1) side by reducing the degree of superheat (SH). . That is, by setting the target superheat degree (SH) to a low value, the flow rate flowing through the air-conditioning-refrigeration heat exchanger 41 (1) can be increased, and the cooling capacity improvement on the refrigeration side and the operational efficiency improvement effect can be increased. Yes (step S122).

なお、空調用絞り装置23a(2)は空調用室外飽和温度検出装置56での検出温度と空調用室外液管温度検出装置54での検出温度との温度差で表される過冷却度(SC)を制御する(ST273)のが望ましいが、一定の開度に保持するなどその他の制御方法でもよい。また、空調用絞り装置23a(1)は空調用蒸発器出口温度検出装置57での検出温度と空調用室内飽和温度検出装置52での検出温度との温度差で表される過熱度(SH)を制御する(ST273)のが望ましいが、空調用圧縮機吐出温度検出装置50での検出温度を制御するように動作させてもよい。   The air conditioning throttle device 23 a (2) has a degree of supercooling (SC) represented by a temperature difference between the temperature detected by the air conditioning outdoor saturation temperature detecting device 56 and the temperature detected by the air conditioning outdoor liquid pipe temperature detecting device 54. ) Is preferably controlled (ST273), but other control methods such as maintaining a constant opening may be used. The air conditioning throttle device 23a (1) has a degree of superheat (SH) represented by the temperature difference between the temperature detected by the air conditioning evaporator outlet temperature detection device 57 and the temperature detected by the air conditioning indoor saturation temperature detection device 52. However, it may be operated so as to control the temperature detected by the air-conditioning compressor discharge temperature detecting device 50.

また、空調用圧縮機21aは、通常、室内の設定温度と室内空気温度検出装置51の検出温度との温度差に基づき周波数制御している。この制御を空調機が冷房設定で設定温度が25℃の場合を例に説明する。店内温度が増加し室内空気温度検出装置51の検出温度が26℃となったとき、空調用圧縮機21aを起動させ空調機の運転を開始する。そしてさらに、室内空気温度検出装置51の検出温度と設定温度25℃の差が大きくなった場合、例えば室内空気温度検出装置51の検出温度が27℃、つまり設定温度との差が2℃となった場合、空調用圧縮機21aの運転周波数を増速し冷房能力を上げる。また空調機の運転により室内空気温度検出装置51の検出温度と設定温度の差が小さくなるにつれ空調用圧縮機21aの運転周波数を減速する。そして室内空気温度検出装置51の検出温度が設定温度よりも数℃、例えば設定温度より1.5℃低くなった場合、つまり室内空気温度検出装置51の検出温度が23.5℃になった時点で、空調用圧縮機21aの運転を停止させる(図19参照)。   The air conditioning compressor 21a normally performs frequency control based on the temperature difference between the indoor set temperature and the detected temperature of the indoor air temperature detecting device 51. This control will be described by taking as an example a case where the air conditioner is in the cooling setting and the set temperature is 25 ° C. When the in-store temperature increases and the detected temperature of the indoor air temperature detecting device 51 reaches 26 ° C., the air conditioning compressor 21a is activated to start the operation of the air conditioner. Further, when the difference between the detected temperature of the indoor air temperature detecting device 51 and the set temperature 25 ° C. becomes large, for example, the detected temperature of the indoor air temperature detecting device 51 becomes 27 ° C., that is, the difference from the set temperature becomes 2 ° C. In this case, the operating frequency of the air conditioning compressor 21a is increased to increase the cooling capacity. Further, as the difference between the detected temperature of the indoor air temperature detecting device 51 and the set temperature becomes smaller due to the operation of the air conditioner, the operating frequency of the air conditioning compressor 21a is decelerated. When the detected temperature of the indoor air temperature detecting device 51 is several degrees C., for example, 1.5 ° C. lower than the set temperature, that is, when the detected temperature of the indoor air temperature detecting device 51 is 23.5 ° C. Thus, the operation of the air conditioning compressor 21a is stopped (see FIG. 19).

図20は、冷凍機と空調機との間の熱交換を時間を長くとる制御を示すフローチャートである。まず、制御装置は、室内空気温度検出装置51の検出温度(吸込温度)と設定温度との差△Tが、所定温度(1℃)より大きいかを検出する(ステップS130)。そして、大きい場合は、温度差が所定値(−1℃)より下がるまで空調機の通常運転を続ける(ステップS131、S134)。一方、ステップS134で差△Tが所定値以下と判断された場合には、制御装置は、空調用圧縮機21aの運転周波数を下げる。例えば、最低周波数に固定する制御を行う(ステップS135)。そして、この低能力での運転を所定の温度範囲を脱するまで続け、冷凍機との熱交換を行う時間を長くとれるように制御する。ここで、温度差△Tが0℃以上となった場合には、所定の温度範囲を脱したと判断して、通常の運転制御に戻る(ステップS136)。一方、温度差△Tがさらに下がった場合には、制御装置は空調用圧縮機21aを停止させる(ステップS133)。   FIG. 20 is a flowchart showing control for increasing the time for heat exchange between the refrigerator and the air conditioner. First, the control device detects whether the difference ΔT between the detected temperature (suction temperature) of the indoor air temperature detecting device 51 and the set temperature is greater than a predetermined temperature (1 ° C.) (step S130). And when large, the normal operation of an air conditioner is continued until a temperature difference falls below predetermined value (-1 degreeC) (step S131, S134). On the other hand, when it is determined in step S134 that the difference ΔT is equal to or less than the predetermined value, the control device decreases the operating frequency of the air conditioning compressor 21a. For example, control to fix to the lowest frequency is performed (step S135). Then, the low-capacity operation is continued until the predetermined temperature range is removed, and control is performed so that the time for heat exchange with the refrigerator can be increased. Here, when the temperature difference ΔT is 0 ° C. or more, it is determined that the predetermined temperature range has been removed, and the normal operation control is returned (step S136). On the other hand, when the temperature difference ΔT further decreases, the control device stops the air conditioning compressor 21a (step S133).

本冷凍空調装置においては、空調機の運転により室内空気温度検出装置51の検出温度と設定温度の差が小さくなり、室内空気温度検出装置51の検出温度が設定温度よりも例えば1℃低くなった場合、つまり上記例では室内空気温度検出装置51の検出温度が24.0℃となった場合に、空調用圧縮機21aの運転周波数を最低周波数とし、空調用室内熱交換器22a手前の空調用絞り装置23a(1)の開度を例えば10パルス減らし、開度を絞る。また空調用絞り装置23a(1)を制御するための目標過熱度の量を通常より高く設定する。このことにより空調用絞り装置23a(1)の開度はさらに絞られる。   In this refrigeration air conditioner, the difference between the detected temperature of the indoor air temperature detecting device 51 and the set temperature is reduced by the operation of the air conditioner, and the detected temperature of the indoor air temperature detecting device 51 is, for example, 1 ° C. lower than the set temperature. In this case, that is, in the above example, when the detected temperature of the indoor air temperature detection device 51 becomes 24.0 ° C., the operating frequency of the air conditioning compressor 21a is set to the lowest frequency, and the air conditioning indoor heat exchanger 22a is in front of the air conditioning. The opening degree of the expansion device 23a (1) is reduced by, for example, 10 pulses to reduce the opening degree. Further, the amount of target superheat for controlling the air conditioning throttle device 23a (1) is set higher than usual. As a result, the opening degree of the air conditioning throttle device 23a (1) is further throttled.

上記制御により、冷房運転において室内空気温度検出装置51の検出温度が空調用圧縮機21aを停止させる温度(上記例では23.5℃)に近づいた時点(上記例では24.0℃)に通常より空調用室内熱交換器22bに流す冷媒量を減らし、冷房能力を低下させる。これにより空調用圧縮機21aが停止するまでの時間を長くし、空調機の運転時間を長くする。このことにより冷房熱回収モードの運転時間が長くなり、冷凍空調装置全体の消費電力量が低減でき、省エネ性が向上する。また冷房能力が低下することにより室内空気温度検出装置51の検出温度が上昇し25℃以上となった場合通常制御にもどす。
なお、冷房能力を低下させ、冷房熱回収モードでの運転時間を長くする方法としては図21に示すように空調用室内機ファン25aの風量を低下させる、という方法もある。
Normally, when the temperature detected by the indoor air temperature detection device 51 approaches the temperature at which the air-conditioning compressor 21a is stopped (23.5 ° C. in the above example) by the above control (24.0 ° C. in the above example). The amount of refrigerant flowing through the indoor heat exchanger 22b for air conditioning is further reduced, and the cooling capacity is reduced. Thereby, the time until the air-conditioning compressor 21a stops is lengthened, and the operation time of the air-conditioner is lengthened. As a result, the operation time in the cooling heat recovery mode becomes longer, the power consumption of the entire refrigeration air conditioner can be reduced, and the energy saving performance is improved. Further, when the detected temperature of the indoor air temperature detecting device 51 rises due to a decrease in the cooling capacity and becomes 25 ° C. or higher, the normal control is returned.
As a method of reducing the cooling capacity and extending the operation time in the cooling heat recovery mode, there is a method of reducing the air volume of the air conditioning indoor unit fan 25a as shown in FIG.

図8は冷房単独運転モードを示す図である。冷蔵用圧縮機21bが停止している場合にこのモードにて運転させる。また、冷房熱回収モードにて空調用冷凍サイクルの効率が悪化し過ぎると想定される場合も、この運転モードにて運転させる。このモードは、冷蔵用冷凍サイクルとの熱交換なしに空調用冷凍サイクルを単独で運転させるもので、空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31を経て空調用室外熱交換器27aへ送られて凝縮し、空調用絞り装置23a(2)にて絞られて中圧状態になり、空調用レシーバ26aを経て、空調用絞り装置23a(1)へ送られ膨張して低温低圧冷媒になり、空調用室内熱交換器22aにて蒸発し、空調用圧縮機21aへ戻るという通常の空調機の冷房と同様の動作をする。   FIG. 8 is a diagram showing a cooling single operation mode. When the refrigeration compressor 21b is stopped, the compressor is operated in this mode. Further, when it is assumed that the efficiency of the air-conditioning refrigeration cycle is excessively deteriorated in the cooling heat recovery mode, the operation is performed in this operation mode. In this mode, the air conditioning refrigeration cycle is operated independently without heat exchange with the refrigeration refrigeration cycle, and the refrigerant compressed to high temperature and high pressure by the air conditioning compressor 21a passes through the four-way valve 31 to the outside of the air conditioning room. It is sent to the heat exchanger 27a to condense, is throttled by the air conditioning throttle device 23a (2) to reach an intermediate pressure state, is sent to the air conditioning throttle device 23a (1) through the air conditioning receiver 26a, and expands. Thus, the refrigerant becomes a low-temperature and low-pressure refrigerant, evaporates in the air-conditioning indoor heat exchanger 22a, and returns to the air-conditioning compressor 21a.

なお、空調用絞り装置23a(2)は空調用室外飽和温度検出装置56での検出温度と空調用室外液管温度検出装置54での検出温度との温度差で表される過冷却度(SC)を制御する(ST283)のが望ましいが、一定の開度に保持するなどその他の制御方法でもよい。また、空調用絞り装置23a(1)は空調用蒸発器出口温度検出装置57での検出温度と空調用室内飽和温度検出装置52での検出温度との温度差で表される過熱度(SH)を制御する(ST283)のが望ましいが、空調用圧縮機吐出温度検出装置50での検出温度を制御するように動作させてもよい。なお、空調用絞り装置23a(3)は一定開度に固定しておく。   The air conditioning throttle device 23 a (2) has a degree of supercooling (SC) represented by a temperature difference between the temperature detected by the air conditioning outdoor saturation temperature detecting device 56 and the temperature detected by the air conditioning outdoor liquid pipe temperature detecting device 54. ) Is preferably controlled (ST283), but other control methods such as maintaining a constant opening may be used. The air conditioning throttle device 23a (1) has a degree of superheat (SH) represented by the temperature difference between the temperature detected by the air conditioning evaporator outlet temperature detection device 57 and the temperature detected by the air conditioning indoor saturation temperature detection device 52. However, it may be operated so as to control the temperature detected by the air-conditioning compressor discharge temperature detecting device 50. Note that the air conditioning throttle device 23a (3) is fixed at a constant opening.

図9は冷房過冷却モードを示す図である。通常、空調機は室内の設定温度と室内空気温度検出装置51の検出温度である室内吸い込み温度との温度差に基づき運転、停止、また空調用圧縮機21aのインバータ周波数制御を行っている。この冷房過冷却モードは室内空気温度検出装置51の検出温度である室内吸い込み温度が空調用圧縮機21aを停止する温度以下となっている場合でも空調用圧縮機21aを運転させ、空調−冷蔵熱交換器41へ冷媒を流し、冷蔵側の冷却能力向上と運転効率向上効果、冷凍空調装置全体の省エネをはかるものである。   FIG. 9 is a diagram showing a cooling supercooling mode. Normally, the air conditioner is operated and stopped based on the temperature difference between the indoor set temperature and the indoor suction temperature, which is the temperature detected by the indoor air temperature detection device 51, and the inverter frequency control of the air conditioning compressor 21a is performed. This cooling supercooling mode operates the air conditioning compressor 21a even when the indoor suction temperature, which is the detected temperature of the indoor air temperature detecting device 51, is equal to or lower than the temperature at which the air conditioning compressor 21a is stopped. The refrigerant is flowed to the exchanger 41 to improve the cooling capacity and operating efficiency on the refrigeration side, and to save energy of the entire refrigeration air conditioner.

冷房過冷却モードでの空調用冷媒回路の動作について説明する。空調用圧縮機21aにより圧縮され高温高圧になった冷媒は、四方弁31を経て空調用室外熱交換器27aへ送られて凝縮し、空調用絞り装置23a(2)にて絞られて中圧状態になり、空調用絞り装置23a(1)が閉のため、室内熱交換器22aには冷媒は送られず、空調用絞り装置23a(3)へ送られる。そして、空調用絞り装置23a(3)にて膨張した冷媒は低温低圧になり、空調−冷蔵熱交換器41(1)にて冷蔵用冷媒回路を流れる高温の冷媒と熱交換をして蒸発し、空調用圧縮機21aへ戻る。   The operation of the air conditioning refrigerant circuit in the cooling supercooling mode will be described. The refrigerant compressed to high temperature and high pressure by the air conditioning compressor 21a is sent to the air conditioning outdoor heat exchanger 27a through the four-way valve 31, condenses, and is squeezed by the air conditioning expansion device 23a (2) to be medium pressure. Since the air conditioner expansion device 23a (1) is closed, the refrigerant is not sent to the indoor heat exchanger 22a but is sent to the air conditioning expansion device 23a (3). The refrigerant expanded in the air conditioning throttle device 23a (3) becomes low temperature and low pressure, and evaporates by exchanging heat with the high temperature refrigerant flowing in the refrigeration refrigerant circuit in the air conditioning-refrigeration heat exchanger 41 (1). Return to the air conditioning compressor 21a.

冷房過冷却モードでの、冷蔵用冷凍サイクルの動作は、図5、図7の場合と同様であり、その動作の説明は省略する。   The operation of the refrigeration cycle in the cooling supercooling mode is the same as in the case of FIGS. 5 and 7, and the description of the operation is omitted.

このモードでは、空調用冷凍サイクルにおいては、空調用室内熱交換器22aへ冷媒を送らないため、空調機は冷房能力を発揮せず電力のみ消費する。ただし冷蔵用冷凍サイクルでは空調−冷蔵熱交換器41(1)による空調用冷媒との熱交換により冷蔵用冷媒を過冷却させて冷蔵用室内熱交換器の冷凍効果(冷却能力)を大きくして冷却能力向上と運転効率向上を行う作用がある。特に夏場など冷蔵用室外機の高圧、運転周波数が高い時期には空調側の消費電力を考慮しても冷蔵側の冷却能力向上、運転効率向上の効果が大きく、冷凍空調全体として運転効率の向上ができる場合が多い。よってこの冷房過冷却モードにより年間トータルの運転効率を向上させることが可能となる。またこの過冷却モードによる運転効率向上効果が大きい条件、例えば外気温度がある値以上、冷蔵用圧縮機21bの周波数がある値以上、冷蔵用冷凍サイクルの高圧圧力値がある値以上等、冷房過冷却モードを実施する条件を決定し、条件を満たす場合のみ冷房過冷却モードを実施すれば、さらに冷凍空調装置の年間トータルの運転効率を向上させることが可能となる。   In this mode, in the air-conditioning refrigeration cycle, since the refrigerant is not sent to the air-conditioning indoor heat exchanger 22a, the air-conditioner does not exhibit cooling capability and consumes only electric power. However, in the refrigeration cycle, the refrigeration refrigerant is supercooled by heat exchange with the air-conditioning refrigerant by the air-conditioning-refrigeration heat exchanger 41 (1) to increase the refrigeration effect (cooling capacity) of the refrigeration indoor heat exchanger. It has the effect of improving cooling capacity and operating efficiency. Especially in summer, when the outdoor unit for refrigeration is at a high pressure and when the operating frequency is high, the cooling capacity on the refrigeration side is greatly improved and the operating efficiency is greatly improved even if the power consumption on the air conditioning side is taken into account. In many cases. Therefore, it is possible to improve the annual operation efficiency by this cooling supercooling mode. In addition, the condition where the effect of improving the operation efficiency by the supercooling mode is large, for example, the outside air temperature is more than a certain value, the frequency of the refrigeration compressor 21b is more than a certain value, and the high pressure value of the refrigeration cycle is more than a certain value. If conditions for implementing the cooling mode are determined and the cooling supercooling mode is implemented only when the conditions are met, it is possible to further improve the annual total operation efficiency of the refrigeration air conditioner.

ところで、実施の形態1の空調冷蔵複合機11は、図10に示すように、空調用室外機11aと冷蔵用室外機11bの2つの部分から構成され、それぞれが第一の筐体と第二の筐体に分かれている。そして、空調用室外機11aと冷蔵用室外機11bの間の配管、空調用室外機11aと空調用室内熱交換器22aの間の配管、冷蔵用室外機11bと冷蔵用室内熱交換器22b間の配管を接続することにより冷媒回路が成立する。この時、図10に示すように、冷蔵用室外機11bの回路上の少なくとも冷蔵用レシーバ26bの入口側と出口側に、それぞれ開閉弁36b(2)と36b(3)を設置する。それらの開閉弁は自動でも手動でもよい。
なお、図中の符号37a(1),(2)は空調用負荷側接続バルブを、37b(1),(2)は冷蔵用負荷側接続バルブを、それぞれ表している。
By the way, as shown in FIG. 10, the air-conditioning / refrigeration multifunction machine 11 of Embodiment 1 is composed of two parts, an air-conditioning outdoor unit 11a and a refrigeration outdoor unit 11b, each of which includes a first casing and a second casing. Divided into housings. And the piping between the outdoor unit 11a for air conditioning and the outdoor unit 11b for refrigeration, the piping between the outdoor unit 11a for air conditioning and the indoor heat exchanger 22a for air conditioning, and between the outdoor unit 11b for refrigeration and the indoor heat exchanger 22b for refrigeration A refrigerant circuit is established by connecting these pipes. At this time, as shown in FIG. 10, on-off valves 36b (2) and 36b (3) are installed at least on the inlet side and the outlet side of the refrigeration receiver 26b on the circuit of the refrigeration outdoor unit 11b. These on-off valves may be automatic or manual.
In addition, the code | symbol 37a (1), (2) in a figure represents the load side connection valve for an air conditioning, and 37b (1), (2) represents the load side connection valve for refrigeration, respectively.

これによって冷蔵室外機11bの移設前に、冷蔵側を運転しながら開閉弁36b(3)を閉じることで冷蔵用レシーバ26bに冷媒を回収し、低圧が設定値まで低下し冷蔵用圧縮機21bを停止させることができる。また、このとき36b(2)を閉じることで冷媒を冷蔵用室外機11b側に貯蔵しながら移設させることができる。よって冷蔵用室外機11b移設時に冷媒回収する手間を極力すくなくすることができ、また冷媒を廃棄することなく流用できるため移設時のコストを大幅に低減することができる。   Thus, before the refrigerating outdoor unit 11b is moved, the refrigerant is recovered in the refrigerating receiver 26b by closing the on-off valve 36b (3) while operating the refrigerating side, and the low pressure is reduced to the set value, so that the refrigerating compressor 21b is Can be stopped. At this time, by closing 36b (2), the refrigerant can be transferred while being stored on the refrigerating outdoor unit 11b side. Therefore, it is possible to reduce the labor for collecting the refrigerant as much as possible when the refrigeration outdoor unit 11b is moved, and it is possible to divert the refrigerant without discarding it, so that the cost for the relocation can be greatly reduced.

実施の形態2.
実施の形態1では空調用室内機12aと第一の筐体に納められた空調用室外機11aとを、冷蔵用室内機13と第二の筐体に納められた冷蔵用室外機11bとを、それぞれ配管で接続することにより冷凍空調装置を構成した例を説明したが、実施の形態2では別の構成例を図11、12を用いて説明する。
図11の例は、実施の形態1の第二の筐体を分割し、冷蔵用圧縮機21bと冷蔵用レシーバ26bを冷蔵用圧縮ユニット11cとして第二の筐体に収納し、冷蔵用室外熱交換器27と冷蔵用室外熱交換器用ファン28bを冷蔵用室外熱交換器ユニット11dとして第三の筐体に収納している。そして、冷蔵用圧縮ユニット11cは室内置きを可能にし、冷蔵用室外熱交換器ユニット11dは室外設置を可能としたものである。
Embodiment 2. FIG.
In the first embodiment, the air conditioner indoor unit 12a and the air conditioner outdoor unit 11a housed in the first housing are replaced with the refrigerator indoor unit 13 and the refrigerator outdoor unit 11b housed in the second housing. Although the example which comprised the refrigerating air-conditioning apparatus by connecting with each piping was demonstrated, in Embodiment 2, another structural example is demonstrated using FIG.
In the example of FIG. 11, the second casing of the first embodiment is divided, and the refrigeration compressor 21b and the refrigeration receiver 26b are housed in the second casing as the refrigeration compression unit 11c. The exchanger 27 and the refrigeration outdoor heat exchanger fan 28b are housed in the third casing as the refrigeration outdoor heat exchanger unit 11d. The refrigeration compression unit 11c can be placed indoors, and the refrigeration outdoor heat exchanger unit 11d can be installed outdoors.

上記のように外気との熱交換が必要な冷蔵室外熱交換器ユニット11dを室外に設置し、主な騒音源であった冷蔵用圧縮ユニット11cを室内置きとすることで、低騒音化が可能となり、かつ、簡単な制御で安定性、信頼性の高い運転を実現し、かつ年間を通じて省エネ向上率の高い冷凍空調装置を得ることができる。   The refrigeration outdoor heat exchanger unit 11d, which requires heat exchange with the outside air as described above, is installed outdoors, and the refrigeration compression unit 11c, which is the main noise source, is installed indoors, thereby reducing noise. In addition, it is possible to obtain a refrigeration air conditioner that achieves stable and reliable operation with simple control and has a high energy saving improvement rate throughout the year.

図12の例は、図11の構成のなかの冷蔵用圧縮ユニット11c内にあった冷蔵用室内熱交換器22bへの接続口である冷蔵用負荷側接続バルブ37b(1)を、空調用室外機11a側に設置したものである。このようにすることで、接続配管の長さを短くすることができるため、配管内での圧力損失が減少し能力損失を低減することが可能となる。また、配管の材料の削減、工事の簡略化が可能となり低コストで、簡単な制御で安定性、信頼性の高い運転を実現し、かつ年間を通じて省エネ向上率の高い冷凍空調装置を得ることができる。   In the example of FIG. 12, the refrigeration load side connection valve 37b (1), which is a connection port to the refrigeration indoor heat exchanger 22b in the refrigeration compression unit 11c in the configuration of FIG. It is installed on the machine 11a side. By doing in this way, since the length of connection piping can be shortened, the pressure loss in piping reduces and it becomes possible to reduce a capability loss. In addition, it is possible to reduce piping materials and simplify construction, and to achieve a low-cost, stable and reliable operation with simple control, and to obtain a refrigeration air conditioner with a high energy saving improvement rate throughout the year. it can.

以上のように、本発明の実施形態に係る冷凍空調装置は、第一冷凍サイクルの冷媒過熱度(SH)の検出位置を、空調−冷蔵熱交換器41(1)出口、空調−冷蔵熱交換器41(2)出口、または空調用圧縮機吐出口50に変更すること、また各検出位置での冷媒過熱度(SH)を変化させることにより、冷媒−冷媒熱交換器での熱交換量を変化させることで、省エネ性と安定性、信頼性を両立させた運転実施することが可能となる。   As described above, in the refrigeration air conditioner according to the embodiment of the present invention, the detection position of the refrigerant superheat degree (SH) of the first refrigeration cycle is set to the outlet of the air conditioning-refrigeration heat exchanger 41 (1), the air conditioning-refrigeration heat exchange. The amount of heat exchange in the refrigerant-refrigerant heat exchanger is changed by changing to the outlet 41 (2) or the compressor outlet 50 for air conditioning, and changing the refrigerant superheat degree (SH) at each detection position. By changing it, it becomes possible to carry out an operation that achieves both energy saving, stability and reliability.

また、第二の冷凍サイクルの停止直前、すなわち冷蔵用室内熱交換器22bの停止直前に、冷蔵用圧縮機21bの周波数を最低周波数に減少させる、冷蔵用室内熱交換器用ファン25bの風量を低下させる、あるいは目標の吸入冷媒圧力設定を上げ庫内温度と蒸発温度の差を小さくする等により第二の冷凍サイクルの運転時間を長くする。このことにより暖房熱回収モードでの運転時間が長くなり、冷凍空調システム全体の消費電力量が低減でき、省エネ性が向上する。   Further, immediately before the stop of the second refrigeration cycle, that is, immediately before the stop of the refrigeration indoor heat exchanger 22b, the air volume of the refrigeration indoor heat exchanger fan 25b, which reduces the frequency of the refrigeration compressor 21b to the lowest frequency, is reduced. The operating time of the second refrigeration cycle is lengthened by increasing the target suction refrigerant pressure setting or reducing the difference between the internal temperature and the evaporation temperature. As a result, the operation time in the heating heat recovery mode becomes longer, the power consumption of the entire refrigeration air conditioning system can be reduced, and the energy saving performance is improved.

また、第一の冷凍サイクルの停止直前、すなわち空調用室内熱交換器22aの停止直前に、空調用圧縮機21aの運転周波数を最低周波数とする、空調用絞り装置23(1)の開度を絞る、もしくは空調用室内熱交換器用ファン25aの風量を低下させる等を行い、通常より空調用室内熱交換器22aに流す冷媒量を減らし、冷房能力を低下させる。これにより空調用圧縮機21aが停止するまでの時間を長くし、空調機の運転時間を長くする。このことにより冷房熱回収モードの運転時間が長くなり、冷凍空調システム全体の消費電力量が低減でき、省エネ性が向上する。   Further, immediately before the stop of the first refrigeration cycle, that is, immediately before the stop of the air conditioning indoor heat exchanger 22a, the opening degree of the air conditioning expansion device 23 (1) having the lowest operating frequency of the air conditioning compressor 21a is set. The air flow of the fan 25a for air conditioning indoor heat exchanger is reduced or the like, and the amount of refrigerant flowing to the indoor heat exchanger 22a for air conditioning is reduced to reduce the cooling capacity. Thereby, the time until the air-conditioning compressor 21a stops is lengthened, and the operation time of the air-conditioner is lengthened. As a result, the operation time of the cooling heat recovery mode becomes longer, the power consumption of the entire refrigeration air conditioning system can be reduced, and the energy saving performance is improved.

また、冷房過冷却モードにより、冷媒は室内熱交換器22aには送られず、空調用絞り装置23a(3)へ送られる。空調用絞り装置23a(3)にて膨張した冷媒は低温低圧になり、空調−冷蔵熱交換器41(1)、(2)にて冷蔵用冷媒回路を流れる高温の冷媒と熱交換をして蒸発し、空調用圧縮機21aへ戻る。これにより空調・冷蔵システム年間トータルの運転効率を向上させることが可能となる。   In the cooling supercooling mode, the refrigerant is not sent to the indoor heat exchanger 22a, but is sent to the air conditioning expansion device 23a (3). The refrigerant expanded in the air-conditioning expansion device 23a (3) becomes low-temperature and low-pressure and exchanges heat with the high-temperature refrigerant flowing in the refrigeration refrigerant circuit in the air-conditioning-refrigeration heat exchangers 41 (1) and (2). It evaporates and returns to the air conditioning compressor 21a. This makes it possible to improve the total operating efficiency of the air conditioning / refrigeration system annually.

また、冷蔵用室外機11bの回路上の少なくとも余剰冷媒を溜めるレシーバの入口側、出口側に開閉弁を設置するため、冷蔵用室外機11b移設時に冷媒回収する手間を極力すくなくすることができ、また冷媒を廃棄することなく流用できるため移設時のコストを大幅に低減することができる。   In addition, since an on-off valve is installed on the inlet side and the outlet side of the receiver that stores at least excess refrigerant on the circuit of the refrigeration outdoor unit 11b, it is possible to minimize the labor of collecting the refrigerant when the refrigeration outdoor unit 11b is moved, In addition, since the refrigerant can be used without being discarded, the cost at the time of relocation can be greatly reduced.

さらに、冷蔵用室外機11b内に収められていた冷媒回路を、冷蔵用圧縮ユニット11cと、冷蔵用室外熱交換器ユニット11dに分割して、冷蔵用圧縮ユニット11cは室内置きを可能とし、冷蔵用室外熱交換器ユニット11dは室外設置を可能とすることで、低騒音で、かつ、簡単な制御で安定性、信頼性の高い運転を実現し、年間を通じて省エネ向上率の高い冷凍空調装置を得ることができる。
なお、上述の説明では、バイパス回路を空調用レシーバに接続したが、バイパス回路はレシーバ以外の位置、すなわち2つの膨張手段間の流路のいずれかの位置から分岐するように構成しても構わない。
さらにまた、空調用レシーバ自体を省略することもできる。
Further, the refrigerant circuit stored in the refrigeration outdoor unit 11b is divided into a refrigeration compression unit 11c and a refrigeration outdoor heat exchanger unit 11d, and the refrigeration compression unit 11c can be placed indoors. The outdoor heat exchanger unit 11d can be installed outdoors, realizing low noise, stable operation with high reliability through simple control, and a refrigeration air conditioner with a high energy saving rate throughout the year. Obtainable.
In the above description, the bypass circuit is connected to the air conditioning receiver, but the bypass circuit may be configured to branch from a position other than the receiver, that is, from any position of the flow path between the two expansion means. Absent.
Furthermore, the air conditioning receiver itself can be omitted.

コンビニエンスストアなどの店舗の空調・冷凍機接続構成図。Air conditioning / refrigerator connection configuration diagram of a store such as a convenience store. コンビニエンスストアなどの店舗の空調・冷凍機接続構成図。Air conditioning / refrigerator connection configuration diagram of a store such as a convenience store. 本発明の実施の形態1に係る冷凍空調装置の構成図。1 is a configuration diagram of a refrigeration air conditioner according to Embodiment 1 of the present invention. 実施の形態1に係る冷凍空調装置の動作を示すモリエル線図。The Mollier diagram which shows operation | movement of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の暖房熱回収モード1の動作説明図。Operation | movement explanatory drawing of the heating heat recovery mode 1 of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の暖房単独運転モードの動作説明図。Operation | movement explanatory drawing of the heating independent operation mode of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の冷房熱回収モードの動作説明図。Operation | movement explanatory drawing of the air_conditioning | cooling heat recovery mode of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の冷房単独運転モードの動作説明図。Operation | movement explanatory drawing of the air_conditioning | cooling independent operation mode of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の冷房過冷却モードの動作説明図。Operation | movement explanatory drawing of the air_conditioning | cooling supercooling mode of the refrigerating air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の熱源側冷媒回路図。FIG. 4 is a heat source side refrigerant circuit diagram of the refrigeration air-conditioning apparatus according to Embodiment 1. 本発明の実施の形態2に係る冷凍空調装置の熱源側冷媒回路図。The heat source side refrigerant circuit figure of the refrigerating and air-conditioning apparatus which concerns on Embodiment 2 of this invention. 実施の形態2に係る冷凍空調装置の別の熱源側冷媒回路図。FIG. 6 is another heat source side refrigerant circuit diagram of the refrigeration air-conditioning apparatus according to Embodiment 2. 図5に関連する冷凍空調装置の制御フローチャート。FIG. 6 is a control flowchart of the refrigeration air conditioner related to FIG. 5. 図5に関連する冷凍空調装置の制御フローチャート。FIG. 6 is a control flowchart of the refrigeration air conditioner related to FIG. 5. 図5に関連する冷凍空調装置の制御フローチャート。FIG. 6 is a control flowchart of the refrigeration air conditioner related to FIG. 5. 図5に関連する冷凍空調装置の制御フローチャート。FIG. 6 is a control flowchart of the refrigeration air conditioner related to FIG. 5. 図5に関連する冷凍空調装置の制御フローチャート。FIG. 6 is a control flowchart of the refrigeration air conditioner related to FIG. 5. 図7に関連する冷凍空調装置の制御フローチャート。FIG. 8 is a control flowchart of the refrigeration air conditioner related to FIG. 7. 図7に関連する冷凍空調装置の制御フローチャート。FIG. 8 is a control flowchart of the refrigeration air conditioner related to FIG. 7. 図7に関連する冷凍空調装置の制御フローチャート。FIG. 8 is a control flowchart of the refrigeration air conditioner related to FIG. 7. 図7に関連する冷凍空調装置の制御フローチャート。FIG. 8 is a control flowchart of the refrigeration air conditioner related to FIG. 7.

符号の説明Explanation of symbols

10 空調用室外機、11 空調冷蔵複合機、11a 空調用室外機、11b 冷蔵用室外機、11c 冷蔵用圧縮ユニット、11d 冷蔵用室外熱交換器ユニット、12a 空調用室内機、12b 空調用吹出ダクト、12c 空調用吹出口、13 冷蔵用または冷凍用ショーケース(冷蔵用室内機)、14 店舗、21a 空調用圧縮機、21b 冷蔵用圧縮機、22a 空調用室内熱交換器、 22b 冷蔵用室内熱交換器(ショーケース熱交換器)、23a(1)〜(3) 空調用絞り装置、23b 冷蔵用絞り装置、25a 空調用室内熱交換器用ファン、25b 冷蔵用室内熱交換器用ファン、26a 空調用レシーバ、26b 冷蔵用レシーバ、27a 空調用室外熱交換器、27b 冷蔵用室外熱交換器、28a 空調用室外熱交換器用ファン、28b 冷蔵用室外熱交換器用ファン、31 四方弁、32 逆止弁、36b(2)〜(3) 開閉弁、37a(1)〜(2) 空調用負荷側接続バルブ、37b(1)〜(2) 冷蔵用負荷側接続バルブ、41(1)〜(2) 空調−冷蔵熱交換器(冷媒−冷媒熱交換器)、50 空調用圧縮機吐出温度検出装置、51 室内空気温度検出装置、52 空調用室内飽和温度検出装置、53 空調用室内液管温度検出装置、54 空調用室外液管温度検出装置、55 外気温度検出装置、56 空調用室外飽和温度検出装置、57 空調用蒸発器出口温度検出装置、58 空調−冷蔵熱交換器入口温度検出装置、59 空調−冷蔵熱交換器出口温度検出装置、61 冷蔵用低圧検出装置または蒸発温度検出装置、62 冷蔵用高圧検出装置または凝縮温度検出装置、63 冷蔵用圧縮機吐出温度検出装置、64 庫内温度検出装置、65 冷蔵用液管温度検出装置、80 冷蔵負荷側開閉弁。   DESCRIPTION OF SYMBOLS 10 Air-conditioning outdoor unit, 11 Air-conditioning refrigeration compound machine, 11a Air-conditioning outdoor unit, 11b Refrigeration outdoor unit, 11c Refrigeration compression unit, 11d Refrigeration outdoor heat exchanger unit, 12a Air-conditioning indoor unit, 12b Air-conditioning outlet duct 12c Air outlet for air conditioning, 13 Showcase for refrigeration or freezing (indoor unit for refrigeration), 14 stores, 21a Compressor for air conditioning, 21b Compressor for refrigeration, 22a Indoor heat exchanger for air conditioning, 22b Indoor heat for refrigeration Exchanger (showcase heat exchanger), 23a (1) to (3) Air conditioning throttle device, 23b Refrigeration throttle device, 25a Air conditioning indoor heat exchanger fan, 25b Refrigerated indoor heat exchanger fan, 26a Air conditioning Receiver, 26b Refrigerating receiver, 27a Air-conditioning outdoor heat exchanger, 27b Refrigerating outdoor heat exchanger, 28a Air-conditioning outdoor heat exchanger 28b Refrigeration outdoor heat exchanger fan, 31 Four-way valve, 32 Check valve, 36b (2)-(3) On-off valve, 37a (1)-(2) Load side connection valve for air conditioning, 37b (1)- (2) Refrigeration load side connection valve, 41 (1) to (2) Air conditioning-refrigeration heat exchanger (refrigerant-refrigerant heat exchanger), 50 Air conditioning compressor discharge temperature detection device, 51 Indoor air temperature detection device, 52 air conditioning indoor saturation temperature detection device, 53 air conditioning indoor liquid pipe temperature detection device, 54 air conditioning outdoor liquid tube temperature detection device, 55 outdoor air temperature detection device, 56 air conditioning outdoor saturation temperature detection device, 57 air conditioning evaporator outlet Temperature detection device, 58 Air conditioning-refrigeration heat exchanger inlet temperature detection device, 59 Air conditioning-refrigeration heat exchanger outlet temperature detection device, 61 Refrigeration low pressure detection device or evaporation temperature detection device, 62 Refrigeration high pressure detection device or condensation temperature Detector, 63 refrigeration compressor discharge temperature detecting unit, 64-compartment temperature sensing device, 65 refrigerating liquid pipe temperature detecting device 80 refrigerating load side valve.

Claims (11)

空調用圧縮機、空調用室外熱交換器、空調用絞り装置、および室内の空調を行う空調用室内熱交換器が接続され、第一の冷媒が流れる第一の冷凍サイクルと、
冷蔵用圧縮機、冷蔵用室外熱交換器、冷蔵用絞り装置、および物品の冷蔵または冷凍を行う冷蔵用室内熱交換器が接続され、第二の冷媒が流れる第二の冷凍サイクルと、
前記空調用室外熱交換器と前記空調用室内熱交換器との間に配置された前記空調用絞り装置で減圧された前記第一の冷媒を前記空調用圧縮機の冷媒吸入側に流すバイパス回路と、
前記第一の冷凍サイクルの前記バイパス回路を流れる第一の冷媒と、前記第二の冷凍サイクルの冷媒回路を流れる第二の冷媒との間で熱交換する少なくとも1つの冷媒−冷媒熱交換器とを備え、
前記空調用室内熱交換器の空気吸込み温度が設定温度に到達した後であって、該吸込み温度から該設定温度を引いた温度差が、前記空調用圧縮機を停止させるように設定されている停止温度差に至る前の所定の値に達した場合に、前記空調用室内熱交換器の出力能力を減少させて、前記第一の冷媒と前記第二の冷媒とを前記冷媒−冷媒熱交換器により熱交換させること、または、
前記冷蔵用室内熱交換器の空気吸込み温度が設定温度に到達した後であって、該吸込み温度から該設定温度を引いた温度差が、前記冷蔵用圧縮機を停止させるように設定されている停止温度差に至る前の所定の値に達した場合に、前記冷蔵用室内熱交換器の出力能力を減少させて、前記第一の冷媒と前記第二の冷媒とを前記冷媒−冷媒熱交換器により熱交換させること、
を特徴とする冷凍空調装置。
A first air-conditioning compressor, an air-conditioning outdoor heat exchanger, an air-conditioning expansion device, and an air-conditioning indoor heat exchanger that performs indoor air-conditioning, and a first refrigeration cycle through which a first refrigerant flows;
A refrigeration compressor, a refrigeration outdoor heat exchanger, a refrigeration expansion device, and a refrigeration indoor heat exchanger for refrigeration or freezing of articles, and a second refrigeration cycle through which a second refrigerant flows;
A bypass circuit that causes the first refrigerant decompressed by the air conditioning expansion device disposed between the air conditioning outdoor heat exchanger and the air conditioning indoor heat exchanger to flow to the refrigerant suction side of the air conditioning compressor When,
A first refrigerant flowing through the bypass circuit of the first refrigeration cycle, at least one refrigerant heat exchange between the second refrigerant flowing through the refrigerant circuit of the second refrigeration cycle - and the refrigerant heat exchanger With
After the air suction temperature of the air conditioning indoor heat exchanger reaches a set temperature, a temperature difference obtained by subtracting the set temperature from the suction temperature is set to stop the air conditioning compressor. When reaching a predetermined value before reaching the stop temperature difference, the output capacity of the indoor heat exchanger for air conditioning is decreased, and the first refrigerant and the second refrigerant are exchanged between the refrigerant and the refrigerant. Heat exchange with a vessel, or
After the air suction temperature of the refrigeration indoor heat exchanger reaches a set temperature, a temperature difference obtained by subtracting the set temperature from the suction temperature is set to stop the refrigeration compressor. When a predetermined value before reaching the stop temperature difference is reached, the output capacity of the refrigeration indoor heat exchanger is reduced, and the first refrigerant and the second refrigerant are exchanged between the refrigerant and the refrigerant. Heat exchange with a vessel,
Refrigeration air conditioner characterized by.
前記空調用絞り装置を絞り、前記空調用室内熱交換器へ流入する冷媒量を減らして前記空調用室内熱交換器の出力能力を減少させることを特徴とする請求項1記載の冷凍空調装置。The refrigerating and air-conditioning apparatus according to claim 1, wherein the air-conditioning throttling device is throttled to reduce an amount of refrigerant flowing into the air-conditioning indoor heat exchanger to reduce an output capacity of the air-conditioning indoor heat exchanger. 前記冷蔵用室内熱交換器に流れる冷媒の蒸発温度を上げて、前記冷蔵用室内熱交換器の出力能力を減少させることを特徴とする請求項1記載の冷凍空調装置。The refrigerating and air-conditioning apparatus according to claim 1, wherein an evaporating temperature of the refrigerant flowing in the refrigeration indoor heat exchanger is increased to reduce an output capability of the refrigeration indoor heat exchanger. 前記空調用圧縮機の周波数を減らし、前記空調用室内熱交換器へ流入する冷媒量を減らして前記空調用室内熱交換器の出力能力を減少させることを特徴とする請求項1記載の冷凍空調装置。2. The refrigeration air conditioner according to claim 1, wherein the output capacity of the air conditioning indoor heat exchanger is reduced by reducing the frequency of the air conditioning compressor and reducing the amount of refrigerant flowing into the air conditioning indoor heat exchanger. apparatus. 前記冷蔵用圧縮機の周波数を減らし、前記冷蔵用室内熱交換器に流入する冷媒量を減らして前記冷蔵用室内熱交換器の出力能力を減少させることを特徴とする請求項1記載の冷凍空調装置。The refrigerating and air-conditioning according to claim 1, wherein the output capacity of the refrigeration indoor heat exchanger is reduced by reducing the frequency of the refrigeration compressor and reducing the amount of refrigerant flowing into the refrigeration indoor heat exchanger. apparatus. 前記冷媒−冷媒熱交換器の前記第一の冷凍サイクル側の各出口流路および前記空調用圧縮機の冷媒吐出口に設けられた出口温度検出装置を備え、
前記第一の冷凍サイクルの冷媒過熱度制御に用いる冷媒過熱度検出位置を、各冷媒−冷媒熱交換器出口および前記空調用圧縮機の冷媒吐出口のそれぞれの間で切り替えることにより、前記冷媒−冷媒熱交換器での熱交換量を変化させることを特徴とする請求項1〜5のいずれか1項に記載の冷凍空調装置。
Each outlet channel on the first refrigeration cycle side of the refrigerant-refrigerant heat exchanger and an outlet temperature detection device provided at a refrigerant discharge port of the air conditioning compressor,
By switching the refrigerant superheat degree detection position used for the refrigerant superheat degree control of the first refrigeration cycle between each refrigerant-refrigerant heat exchanger outlet and the refrigerant outlet of the air conditioning compressor, the refrigerant- The refrigerating and air-conditioning apparatus according to any one of claims 1 to 5, wherein the amount of heat exchange in the refrigerant heat exchanger is changed .
前記冷媒過熱度検出位置での、前記第一の冷凍サイクルを循環する冷媒の過熱度の量を切り替えることにより、前記冷媒−冷媒熱交換器での熱交換量を変化させることを特徴とする請求項6に記載の冷凍空調装置。 The amount of heat exchange in the refrigerant-refrigerant heat exchanger is changed by switching the amount of superheat of the refrigerant circulating in the first refrigeration cycle at the refrigerant superheat degree detection position. Item 7. The refrigeration air conditioner according to item 6 . 前記第二の冷凍サイクル内の前記冷媒−冷媒熱交換器の出口側または入り口側に、第二の冷凍サイクル内の余剰冷媒を溜める冷蔵用レシーバを備えたことを特徴とする請求項1〜7のいずれか1項に記載の冷凍空調装置。 8. A refrigeration receiver for storing excess refrigerant in the second refrigeration cycle is provided on an outlet side or an inlet side of the refrigerant-refrigerant heat exchanger in the second refrigeration cycle. The refrigerating and air-conditioning apparatus according to any one of the above. 前記第二の冷凍サイクル内の室外に設置された前記冷蔵用室外熱交換器から前記冷蔵用室内熱交換器手前の前記冷蔵用絞り装置に至るいずれかの位置に設置された余剰冷媒を溜める冷蔵用レシーバと、
前記第一の冷凍サイクルの少なくとも空調用圧縮機および空調用室外熱交換器と、前記冷媒−冷媒熱交換器とが第一の筐体に収められ、前記第二の冷凍サイクルの少なくとも冷蔵用圧縮機および冷蔵用室外熱交換器とが第二の筐体に収められ、前記第一の筐体内の前記第二の冷凍サイクルの配管と前記第二の筐体内の前記第二の冷凍サイクルの配管とが接続されており、
前記冷蔵用レシーバの入口側および出口側に少なくとも1つずつ開閉弁が設けられていることを特徴とする請求項1記載の冷凍空調装置。
Refrigeration for storing excess refrigerant installed at any position from the refrigeration outdoor heat exchanger installed outside the second refrigeration cycle to the refrigeration expansion device before the refrigeration indoor heat exchanger. Receiver for,
At least the air conditioning compressor and the air conditioning outdoor heat exchanger of the first refrigeration cycle and the refrigerant-refrigerant heat exchanger are housed in a first housing, and at least the refrigeration compression of the second refrigeration cycle. A refrigerator and an outdoor heat exchanger for refrigeration are housed in a second casing, and the second refrigeration cycle pipe in the first casing and the second refrigeration cycle pipe in the second casing And are connected,
The refrigerating and air-conditioning apparatus according to claim 1, wherein at least one open / close valve is provided on each of an inlet side and an outlet side of the refrigeration receiver .
前記第二の冷凍サイクル内の室外に設置された前記冷蔵用室外熱交換器から前記冷蔵用室内熱交換器手前の前記冷蔵用絞り装置に至るいずれかの位置に設置された余剰冷媒を溜める冷蔵用レシーバと、
前記第一の冷凍サイクルの少なくとも空調用圧縮機および空調用室外熱交換器と、前記冷媒−冷媒熱交換器とが第一の筐体に収められて室外に設置可能とされ、前記第二の冷凍サイクルの冷蔵用圧縮機が第二の筐体に収められて室内に設置可能とされ、前記第二の冷凍サイクルの冷蔵用室外熱交換器が第三の筐体に収められて室外に設置可能とされていることを特徴とする請求項1記載の冷凍空調装置。
Refrigeration for storing excess refrigerant installed at any position from the refrigeration outdoor heat exchanger installed outside the second refrigeration cycle to the refrigeration expansion device before the refrigeration indoor heat exchanger. Receiver for,
In the first refrigeration cycle, at least the air conditioning compressor and the air conditioning outdoor heat exchanger, and the refrigerant-refrigerant heat exchanger are housed in a first housing and can be installed outdoors, and the second The refrigeration compressor for the refrigeration cycle is housed in the second housing and can be installed indoors, and the refrigeration outdoor heat exchanger for the second refrigeration cycle is housed in the third housing and installed outdoors. The refrigerating and air-conditioning apparatus according to claim 1, wherein the refrigerating and air-conditioning apparatus is enabled .
前記第一の冷媒と前記第二の冷媒との種別を相違させていることを特徴とする請求項1〜9のいずれか1項に記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to any one of claims 1 to 9, wherein the first refrigerant and the second refrigerant are different in type .
JP2007089851A 2007-03-29 2007-03-29 Refrigeration air conditioner Active JP4804396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089851A JP4804396B2 (en) 2007-03-29 2007-03-29 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089851A JP4804396B2 (en) 2007-03-29 2007-03-29 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2008249219A JP2008249219A (en) 2008-10-16
JP4804396B2 true JP4804396B2 (en) 2011-11-02

Family

ID=39974376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089851A Active JP4804396B2 (en) 2007-03-29 2007-03-29 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4804396B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860950B1 (en) 2012-01-26 2018-05-24 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
KR101873595B1 (en) * 2012-01-10 2018-07-02 엘지전자 주식회사 A cascade heat pump and a driving method for the same
EP3862655A4 (en) * 2018-10-02 2021-11-17 Daikin Industries, Ltd. Refrigeration cycle device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761898B2 (en) * 2009-03-31 2015-08-12 三菱重工業株式会社 Two-chamber refrigeration equipment
JP5764734B2 (en) * 2010-11-30 2015-08-19 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN102425874A (en) * 2011-10-16 2012-04-25 大连三洋冷链有限公司 Integrated refrigeration energy-saving system for convenience stores
KR101859232B1 (en) 2012-01-09 2018-05-17 엘지전자 주식회사 A combined refrigerating and air conditioning system
JP5999499B2 (en) * 2012-11-09 2016-09-28 パナソニックIpマネジメント株式会社 Refrigeration equipment
WO2018096580A1 (en) * 2016-11-22 2018-05-31 三菱電機株式会社 Refrigeration cycle device
KR101909531B1 (en) 2017-04-28 2018-10-18 엘지전자 주식회사 Outdoor unit and Controlling method therefor
WO2020071300A1 (en) * 2018-10-02 2020-04-09 ダイキン工業株式会社 Refrigeration cycle device
JP2023177526A (en) * 2022-06-02 2023-12-14 コベルコ・コンプレッサ株式会社 Binary refrigeration device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346473B2 (en) * 2004-02-27 2009-10-21 三洋電機株式会社 Air-conditioning refrigeration equipment
JP2006057883A (en) * 2004-08-18 2006-03-02 Sanden Corp Refrigerating/air-conditioning system
JP4659521B2 (en) * 2004-12-08 2011-03-30 三菱電機株式会社 Refrigeration air conditioner, operation method of refrigeration air conditioner, method of manufacturing refrigeration air conditioner, refrigeration apparatus, method of manufacturing refrigeration apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873595B1 (en) * 2012-01-10 2018-07-02 엘지전자 주식회사 A cascade heat pump and a driving method for the same
KR101860950B1 (en) 2012-01-26 2018-05-24 엘지전자 주식회사 A combined refrigerating and freezing system and a control method the same
EP3862655A4 (en) * 2018-10-02 2021-11-17 Daikin Industries, Ltd. Refrigeration cycle device

Also Published As

Publication number Publication date
JP2008249219A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4804396B2 (en) Refrigeration air conditioner
JP5871959B2 (en) Air conditioner
JP4989511B2 (en) Air conditioner
JP6005255B2 (en) Air conditioner
JP4360203B2 (en) Refrigeration equipment
WO2014141375A1 (en) Air conditioner
JP2006071268A (en) Refrigerating plant
JP6880204B2 (en) Air conditioner
WO2014141373A1 (en) Air conditioner
JP2007057220A (en) Refrigeration device
JP5963971B2 (en) Air conditioner
JP2010276239A (en) Refrigerating air-conditioning device
JP2008175410A (en) Heat source-side unit and air conditioning system
JP4659521B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner, method of manufacturing refrigeration air conditioner, refrigeration apparatus, method of manufacturing refrigeration apparatus
JP2007232265A (en) Refrigeration unit
JPWO2014038059A1 (en) Air conditioner
JP2004271166A (en) Refrigeration air conditioning system and its operation method
JP2019066086A (en) Refrigeration device
JP5005011B2 (en) Air conditioner
KR101151529B1 (en) Refrigerant system
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP6042037B2 (en) Refrigeration cycle equipment
JP3966345B2 (en) Supercooling device
JP7241880B2 (en) air conditioner
JP4023386B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250