JP7065681B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP7065681B2
JP7065681B2 JP2018085217A JP2018085217A JP7065681B2 JP 7065681 B2 JP7065681 B2 JP 7065681B2 JP 2018085217 A JP2018085217 A JP 2018085217A JP 2018085217 A JP2018085217 A JP 2018085217A JP 7065681 B2 JP7065681 B2 JP 7065681B2
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
outlet
inlet
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085217A
Other languages
Japanese (ja)
Other versions
JP2019190760A (en
Inventor
道治 渡部
浩之 豊田
恒 台坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2018085217A priority Critical patent/JP7065681B2/en
Priority to TW107117462A priority patent/TWI724302B/en
Priority to CN201810528759.5A priority patent/CN110411052B/en
Publication of JP2019190760A publication Critical patent/JP2019190760A/en
Application granted granted Critical
Publication of JP7065681B2 publication Critical patent/JP7065681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Description

本発明は空気調和装置に関する。 The present invention relates to an air conditioner.

空気調和装置は、建屋内を加熱する暖房運転の際に建屋外から熱を吸収し、建屋内を冷却する冷房運転の際に建屋外へ熱を放出する装置である。このため、空気調和装置には、空気と冷媒を熱交換させる熱交換器、空気の流れを生み出す送風装置、冷媒を高温高圧に圧縮する圧縮装置、および冷媒を減圧する膨張装置が備わっている。 The air conditioner is a device that absorbs heat from the outside of the building during a heating operation that heats the inside of the building and releases heat to the outside of the building during a cooling operation that cools the inside of the building. Therefore, the air conditioner includes a heat exchanger that exchanges heat between air and the refrigerant, a blower that creates an air flow, a compression device that compresses the refrigerant to a high temperature and a high pressure, and an expansion device that reduces the pressure of the refrigerant.

空気調和装置の動作安定性を高める方法として、蒸発器の出口の冷媒を気化させて圧縮機へ流入させる方法がある。しかしこの場合、蒸発器の出口近傍にて伝熱面が気相域となるため、冷却能力が低くなるという課題があった。 As a method of improving the operational stability of the air conditioner, there is a method of vaporizing the refrigerant at the outlet of the evaporator and flowing it into the compressor. However, in this case, since the heat transfer surface is in the gas phase region near the outlet of the evaporator, there is a problem that the cooling capacity is lowered.

上記の課題に対し、特許文献1では、蒸発器出口の冷媒を凝縮器出口の冷媒で加熱することで、圧縮機へ流入する冷媒を気化しつつ、蒸発器出口の冷媒乾き度を低減して冷却能力を高めている。また、特許文献2では、凝縮器を流出した冷媒を2つの経路AとBに分岐し、経路Aを減圧させたのちに、経路Bと熱交換させることで蒸発させ、蒸発器から気液二相状態で流出した経路Bの冷媒と合流させることで、蒸発器での冷却能力を高めつつ圧縮機の吸込冷媒を気化している。 In response to the above problems, in Patent Document 1, by heating the refrigerant at the outlet of the evaporator with the refrigerant at the outlet of the condenser, the refrigerant flowing into the compressor is vaporized and the dryness of the refrigerant at the outlet of the evaporator is reduced. The cooling capacity is increased. Further, in Patent Document 2, the refrigerant flowing out of the condenser is branched into two paths A and B, the path A is depressurized, and then heat is exchanged with the path B to evaporate the refrigerant. By merging with the refrigerant of the path B that has flowed out in the phase state, the suction refrigerant of the compressor is vaporized while increasing the cooling capacity of the evaporator.

特開平9-60989号公報Japanese Unexamined Patent Publication No. 9-60989 特開2002-156161号公報Japanese Unexamined Patent Publication No. 2002-156161

前述の通り、空気調和装置は冷房と暖房の2つのモードで運転する。このため、冷凍サイクルの2つの熱交換器の役割を、一方を凝縮器、もう一方を蒸発器に切り替えるための四方弁が備わっている。四方弁では、圧縮機から流入する高温高圧の冷媒と、蒸発器から流入する低温低圧の冷媒が隣り合って流通するために熱交換が生しる。これにより、高温の冷媒が低温の冷媒によって冷却されることによってサイクル性能に損失が生じる。 As mentioned above, the air conditioner operates in two modes, cooling and heating. For this reason, it is equipped with a four-way valve for switching the roles of the two heat exchangers of the refrigeration cycle, one to the condenser and the other to the evaporator. In the four-way valve, heat exchange occurs because the high-temperature and high-pressure refrigerant flowing from the compressor and the low-temperature and low-pressure refrigerant flowing from the evaporator flow side by side. As a result, the high temperature refrigerant is cooled by the low temperature refrigerant, resulting in a loss in cycle performance.

四方弁のある冷凍サイクルに対して、従来技術を適用することを考えると、冷房と暖房の両方で容易に効果が得られるため、四方弁出口から圧縮機吸込口の間に冷媒を加熱する領域を設けることとなる。しかし、この場合、四方弁を流通する低温冷媒は気液二相流となるため、蒸発を伴う熱伝達となり、熱伝達率が高くなる。すなわち、四方弁に気液二相流を流通させることで熱損失が大きくなる。よって、冷凍サイクルのCOPを高めるには、蒸発器の出口を気液二相としつつも、四方弁に流入する低圧冷媒を気相単相状態とする必要がある。 Considering the application of conventional techniques to a refrigeration cycle with a four-way valve, the area where the refrigerant is heated between the four-way valve outlet and the compressor suction port because the effects can be easily obtained in both cooling and heating. Will be provided. However, in this case, since the low-temperature refrigerant flowing through the four-way valve has a gas-liquid two-phase flow, heat transfer is accompanied by evaporation, and the heat transfer coefficient is high. That is, the heat loss is increased by circulating the gas-liquid two-phase flow through the four-way valve. Therefore, in order to increase the COP of the refrigeration cycle, it is necessary to make the outlet of the evaporator gas-liquid two-phase, but to make the low-pressure refrigerant flowing into the four-way valve into a gas-phase single-phase state.

そこで本発明は、蒸発器から流出した気液二相の冷媒を、四方弁へ到達する前に気相単相へ加熱することで、四方弁の熱損失を低減し、COPを向上することができる空気調和装置を提供することを目的とする。 Therefore, the present invention can reduce the heat loss of the four-way valve and improve the COP by heating the gas-liquid two-phase refrigerant flowing out of the evaporator to the gas-phase single phase before reaching the four-way valve. The purpose is to provide a capable air conditioner.

上記課題を達成するために、本発明の一態様による空気調和装置は、圧縮機、凝縮器、膨張弁、蒸発器、および四方弁を、冷媒を流すための配管で接続して冷凍サイクルを構成し、前記凝縮器の出口と前記蒸発器の入口との間の第1流路と、前記蒸発器の出口と前記四方弁の入口との間の第2流路と、を有し、前記膨張弁は、前記第1流路に配置され、前記第2流路を流れる冷媒を、前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒により加熱する加熱部を備える。 In order to achieve the above object, the air conditioner according to one aspect of the present invention comprises a refrigeration cycle in which a compressor, a condenser, an expansion valve, an evaporator, and a four-way valve are connected by a pipe for flowing a refrigerant. It has a first flow path between the outlet of the condenser and the inlet of the evaporator, and a second flow path between the outlet of the evaporator and the inlet of the four-way valve, and the expansion. The valve is arranged in the first flow path, and the refrigerant flowing in the second flow path is heated by the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path. Equipped with a part.

本発明によれば、蒸発器から流出した気液二相の冷媒を、四方弁へ到達する前に気相単相へ加熱することで四方弁の熱損失を低減し、COPを向上することができる空気調和装置を提供することができる。 According to the present invention, it is possible to reduce the heat loss of the four-way valve and improve the COP by heating the gas-liquid two-phase refrigerant flowing out of the evaporator to the gas-phase single phase before reaching the four-way valve. A capable air conditioner can be provided.

第1の実施形態に係る空気調和装置の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the air conditioner which concerns on 1st Embodiment. 従来技術の空気調和装置の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the air conditioner of the prior art. 蒸発器内部の冷媒乾き度と熱伝達率の関係の模式図である。It is a schematic diagram of the relationship between the dryness of the refrigerant inside the evaporator and the heat transfer coefficient. 従来技術の冷凍サイクルにおける四方弁内部の流れの模式図である。It is a schematic diagram of the flow inside a four-way valve in the refrigeration cycle of the prior art. 第2の実施形態に係る空気調和装置の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the air conditioner which concerns on 2nd Embodiment. 第2の実施形態に係る室外機の断面の模式図である。It is a schematic diagram of the cross section of the outdoor unit which concerns on 2nd Embodiment. 第3の実施形態に係る空気調和装置の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the air conditioner which concerns on 3rd Embodiment.

以下、本発明の実施形態を図面に従って説明する。
<第1の実施形態>
本発明の第1の実施形態に係る空気調和装置200について図1から図4を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
The air conditioner 200 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1は、第1の実施形態に係る空気調和装置200の冷凍サイクルの構成図を示す。
図1に示した空気調和装置200は、家庭用ルームエアコンである。空気調和装置200は、建屋内を温調するための室内機110と、建屋外の空気と受放熱をおこなう室外機100と、室内機110と室外機100をつなぐ液相側接続配管113および気相側接続配管114とを備える。室内機110の内部には、室内熱交換器111と貫流ファン112が設けられている。室外機100の内部には、圧縮機101と、四方弁102と、室外熱交換器103と、プロペラファン105と、主膨張弁104と、副膨張弁3と、第1熱交換部4とが設けられている。
FIG. 1 shows a configuration diagram of a refrigeration cycle of the air conditioner 200 according to the first embodiment.
The air conditioner 200 shown in FIG. 1 is a home room air conditioner. The air conditioner 200 includes an indoor unit 110 for controlling the temperature inside the building, an outdoor unit 100 for receiving and radiating air from the outside of the building, a liquid phase side connecting pipe 113 connecting the indoor unit 110 and the outdoor unit 100, and air. It is provided with a phase side connection pipe 114. Inside the indoor unit 110, an indoor heat exchanger 111 and a once-through fan 112 are provided. Inside the outdoor unit 100, there are a compressor 101, a four-way valve 102, an outdoor heat exchanger 103, a propeller fan 105, a main expansion valve 104, a sub expansion valve 3, and a first heat exchange unit 4. It is provided.

本システムは、圧縮機101、四方弁102、気相側接続配管114、室内熱交換器111、液相側接続配管113、第1熱交換部4、主膨張弁104を経た後、室外熱交換器103を経由する主流路1と、主膨張弁104と室外熱交換器103の間から分岐して、副膨張弁3、第1熱交換部4を経由して四方弁102と室外熱交換器103の間に合流する副流路2で構成される。流路全体は開放部のない閉ループとなっており、流路の内部にR32冷媒が封入されている。なお、冷媒はR410aなど他のものでも構わない。 This system passes through a compressor 101, a four-way valve 102, a gas phase side connection pipe 114, an indoor heat exchanger 111, a liquid phase side connection pipe 113, a first heat exchange unit 4, and a main expansion valve 104, and then exchanges outdoor heat. The main flow path 1 passing through the vessel 103, branching from between the main expansion valve 104 and the outdoor heat exchanger 103, and passing through the sub-expansion valve 3 and the first heat exchanger 4, the four-way valve 102 and the outdoor heat exchanger It is composed of an auxiliary flow path 2 that joins between 103. The entire flow path is a closed loop without an open portion, and the R32 refrigerant is sealed inside the flow path. The refrigerant may be another refrigerant such as R410a.

四方弁102の弁体26は、運転設定に応じて図1の左右方向に移動可能である。具体的には、図1では、吐出配管20と室内機側配管22が、吸込配管21と室外機側配管23が連通した状態であるが、弁体26の位置を切り替えることで、吐出配管20と室外機側配管23が、吸込配管21と室内機側配管22が連通した状態に切り替えることができる。 The valve body 26 of the four-way valve 102 can move in the left-right direction in FIG. 1 according to the operation setting. Specifically, in FIG. 1, the discharge pipe 20 and the indoor unit side pipe 22 are in a state where the suction pipe 21 and the outdoor unit side pipe 23 are in communication with each other. However, by switching the position of the valve body 26, the discharge pipe 20 The outdoor unit side pipe 23 can be switched to a state in which the suction pipe 21 and the indoor unit side pipe 22 are in communication with each other.

主膨張弁104と副膨張弁3はそれぞれ電磁膨張弁であり、図示外の制御装置によって流路の開度を全閉から全開まで調整できる。なお、副膨張弁3は最低限の機能として、流路の開閉ができればよいため、電磁式のバルブなどでも代用可能である。 The main expansion valve 104 and the sub expansion valve 3 are electromagnetic expansion valves, respectively, and the opening degree of the flow path can be adjusted from fully closed to fully open by a control device (not shown). Since the sub-expansion valve 3 only needs to be able to open and close the flow path as a minimum function, an electromagnetic valve or the like can be used as a substitute.

室内熱交換器111と室外熱交換器103は、空気と冷媒が熱交換する形式のものである。具体的には、空気伝熱面となるフィンに対して、冷媒が流通する伝熱管が貫通する構造となるフィンチューブ型熱交換器となっている。 The indoor heat exchanger 111 and the outdoor heat exchanger 103 are of a type in which air and a refrigerant exchange heat. Specifically, it is a fin tube type heat exchanger having a structure in which a heat transfer tube through which a refrigerant flows penetrates through a fin serving as an air heat transfer surface.

第1熱交換部4は、室内熱交換器111と主膨張弁104の間の流路と、副膨張弁3から流路合流点5の間の流路を部分的に接触させた構造である。よって、第1熱交換部4は、過冷却熱交換器として機能する。 The first heat exchange unit 4 has a structure in which the flow path between the indoor heat exchanger 111 and the main expansion valve 104 and the flow path between the sub-expansion valve 3 and the flow path confluence point 5 are partially in contact with each other. .. Therefore, the first heat exchange unit 4 functions as a supercooling heat exchanger.

室内熱交換器111の出口と室外熱交換器103の入口との間の流路は第1流路Aである。主流路1は、第1流路Aの一部を構成する。室外熱交換器103の出口と四方弁102の入口との間の流路は第2流路Bである。第1流路Aにおける主膨張弁104と室外熱交換器103の入口との間の流路から分岐し、第2流路Bに接続される流路は第3流路Cであり、副流路2は第3流路Cに相当する。 The flow path between the outlet of the indoor heat exchanger 111 and the inlet of the outdoor heat exchanger 103 is the first flow path A. The main flow path 1 constitutes a part of the first flow path A. The flow path between the outlet of the outdoor heat exchanger 103 and the inlet of the four-way valve 102 is the second flow path B. The flow path that branches from the flow path between the main expansion valve 104 and the inlet of the outdoor heat exchanger 103 in the first flow path A and is connected to the second flow path B is the third flow path C, which is a side flow. The road 2 corresponds to the third flow path C.

第1の実施形態に係る空気調和装置200について、冷凍サイクルの動作を説明する。
図1に示した空気調和装置200では、暖房運転時の接続関係を示している。圧縮機101で高温高圧の気相状態に圧縮された冷媒は、四方弁102を経由した後、室内熱交換器111へ流入する。室内熱交換器111では貫流ファン112によって生み出された空気流へ冷媒が熱を放出し、建屋内の空気が加温される。この時、冷媒は冷却されることで気液二相状態を経て液単相状態に変化する。室内熱交換器111で放熱し終えた冷媒は室外機100へと戻り、第1熱交換部4で冷却された後、主膨張弁104を通過することで外気温度以下の気液二相状態に減圧する。
The operation of the refrigeration cycle will be described with respect to the air conditioner 200 according to the first embodiment.
The air conditioner 200 shown in FIG. 1 shows the connection relationship during the heating operation. The refrigerant compressed into a high-temperature and high-pressure gas phase state by the compressor 101 passes through the four-way valve 102 and then flows into the indoor heat exchanger 111. In the indoor heat exchanger 111, the refrigerant releases heat to the air flow generated by the through-flow fan 112, and the air in the building is heated. At this time, the refrigerant is cooled to change from a gas-liquid two-phase state to a liquid single-phase state. The refrigerant that has been radiated by the indoor heat exchanger 111 returns to the outdoor unit 100, is cooled by the first heat exchanger 4, and then passes through the main expansion valve 104 to enter a gas-liquid two-phase state below the outside air temperature. Reduce the pressure.

減圧後の冷媒は主流路1と副流路2に分岐する。主流路1の冷媒は、室外熱交換器103へ流入し、プロペラファン105によって生み出された空気流から熱を受け取ることで蒸発する。副流路2の冷媒は、第1熱交換部4で加熱された後、流路合流点5で主流路1の冷媒と合流する。なお、主流路1と副流路2の冷媒流量比は副膨張弁3の開度によって調整する。主流路1と副流路2の冷媒流量比は、例えば、主流路1:95%、副流路2:5%である。合流した冷媒は四方弁102を経由した後、圧縮機101の吸込側へと戻る。この閉ループにより建屋内空気の加温が継続的に行われる。 The reduced pressure refrigerant branches into the main flow path 1 and the sub flow path 2. The refrigerant in the main flow path 1 flows into the outdoor heat exchanger 103 and evaporates by receiving heat from the air flow generated by the propeller fan 105. The refrigerant in the sub-flow path 2 is heated by the first heat exchange unit 4, and then merges with the refrigerant in the main flow path 1 at the flow path confluence point 5. The refrigerant flow rate ratio between the main flow path 1 and the sub-flow path 2 is adjusted by the opening degree of the sub-expansion valve 3. The refrigerant flow rate ratio between the main flow path 1 and the sub-flow path 2 is, for example, 1: 95% for the main flow path and 2: 5% for the sub-flow path. The combined refrigerant passes through the four-way valve 102 and then returns to the suction side of the compressor 101. This closed loop continuously heats the air inside the building.

冷房運転の場合には、図1において弁体26を右側にシフトし、副膨張弁3を全閉とする。これにより、冷媒は暖房運転と逆回りで流動し、室外熱交換器103で熱を放出、室内熱交換器111で熱を受け取るため、建屋内の空気が冷却される。なお、冷房運転の場合には副膨張弁3を全閉とするため、副流路2の冷媒は流動しない。 In the case of cooling operation, the valve body 26 is shifted to the right in FIG. 1, and the sub-expansion valve 3 is fully closed. As a result, the refrigerant flows in the reverse direction of the heating operation, releases heat in the outdoor heat exchanger 103, and receives heat in the indoor heat exchanger 111, so that the air inside the building is cooled. In the case of cooling operation, the auxiliary expansion valve 3 is fully closed, so that the refrigerant in the auxiliary flow path 2 does not flow.

第1の実施形態に係る空気調和装置200の効果を説明するために、従来技術との相違点について説明する。
図2に従来技術の空気調和装置210の冷凍サイクルの構成図を示す。従来の冷凍サイクルは図1の空気調和装置200に対して第1熱交換部4、副膨張弁3、副流路2を有していない。また、副流路2がないため流路合流点5も存在しない。よって、暖房運転の場合、主膨張弁104を流出した冷媒は室外熱交換器103で外気から熱を得た後、四方弁102、圧縮機101の順に流動する。
In order to explain the effect of the air conditioner 200 according to the first embodiment, the differences from the prior art will be described.
FIG. 2 shows a configuration diagram of a refrigeration cycle of the conventional air conditioner 210. The conventional refrigeration cycle does not have the first heat exchange unit 4, the sub-expansion valve 3, and the sub-flow path 2 with respect to the air conditioner 200 of FIG. Further, since there is no sub-flow path 2, there is no flow path confluence point 5. Therefore, in the case of heating operation, the refrigerant flowing out of the main expansion valve 104 obtains heat from the outside air by the outdoor heat exchanger 103, and then flows in the order of the four-way valve 102 and the compressor 101.

図3は、室外熱交換器103を蒸発器として使用した時の冷媒の乾き度と熱伝達率の関係の模式図である。
蒸発過程では、気液二相の冷媒は入口から出口にかけて乾き度が増加し、下流へ行くほど気相域が占める割合が増える。この時、冷媒の熱伝達率は、乾き度の閾値x以上で急激に低下する。これは、閾値xを境に冷媒の流動様式が、伝熱管壁面に液相、伝熱管中心に気相の分布となる環状流から、気相の流れの中に液相が分布する流れへと変化することで、伝熱管壁面での冷媒の蒸発が起こりにくくなるためである。なお、閾値xは伝熱管内面の溝形状などに依存するため、定まった値は無いが、一般的には乾き度0.9~1.0である。
FIG. 3 is a schematic diagram of the relationship between the dryness of the refrigerant and the heat transfer coefficient when the outdoor heat exchanger 103 is used as an evaporator.
In the evaporation process, the dryness of the gas-liquid two-phase refrigerant increases from the inlet to the outlet, and the proportion occupied by the gas-phase region increases toward the downstream. At this time, the heat transfer coefficient of the refrigerant drops sharply above the threshold value x of the dryness. This is because the flow mode of the refrigerant with the threshold x as the boundary changes from a cyclic flow in which the liquid phase is distributed on the wall surface of the heat transfer tube and the gas phase in the center of the heat transfer tube to a flow in which the liquid phase is distributed in the flow of the gas phase. This is because the change makes it difficult for the refrigerant to evaporate on the wall surface of the heat transfer tube. Since the threshold value x depends on the shape of the groove on the inner surface of the heat transfer tube, there is no fixed value, but the dryness is generally 0.9 to 1.0.

冷媒の熱伝達率が低下すると、一定の交換熱量を得るために必要な空気と冷媒の温度差が拡大するが、流入空気温度は一定であるため、蒸発温度が低下、すなわち蒸発圧力が低下する。したがって、室外熱交換器103の出口の乾き度が増加するほど、熱伝達率が低い伝熱面の占める割合が増えることで、蒸発圧力が低下する。蒸発圧力が低下すると、吐出圧力との圧力差が増えることで理論圧縮動力が増加し、圧縮機入力電力の増加によってCOPが低下する。 When the heat transfer coefficient of the refrigerant decreases, the temperature difference between the air and the refrigerant required to obtain a constant amount of exchange heat increases, but since the inflow air temperature is constant, the evaporation temperature decreases, that is, the evaporation pressure decreases. .. Therefore, as the dryness of the outlet of the outdoor heat exchanger 103 increases, the proportion of the heat transfer surface having a low heat transfer coefficient increases, and the evaporation pressure decreases. When the evaporation pressure decreases, the theoretical compression power increases due to the increase in the pressure difference from the discharge pressure, and the COP decreases due to the increase in the compressor input power.

上記の理由から、従来技術ではCOPを最大化するために室外熱交換器103の出口乾き度を1未満として使用するが、この場合には四方弁102の熱損失に課題が生じる。 For the above reasons, in the prior art, the outlet dryness of the outdoor heat exchanger 103 is set to less than 1 in order to maximize the COP, but in this case, there is a problem in the heat loss of the four-way valve 102.

図4は、従来技術における四方弁102の内部の流動状態を模式的に示した図である。
図4では、吐出配管20から室内機側配管22へ圧縮機101から吐出された高温の冷媒が流通し、室外機側配管23から吸込配管21へ室外熱交換器103を流通した気液二相の冷媒が流通する状態を示したものである。
FIG. 4 is a diagram schematically showing a flow state inside the four-way valve 102 in the prior art.
In FIG. 4, the high-temperature refrigerant discharged from the compressor 101 flows from the discharge pipe 20 to the indoor unit side pipe 22, and the outdoor heat exchanger 103 flows from the outdoor unit side pipe 23 to the suction pipe 21. It shows the state in which the refrigerant of the above flows.

室外熱交換器103を流出した冷媒は気液二相であるため、気相冷媒25の内部に液相冷媒24が分布した状態となっている。ここで、四方弁102の内部において低温冷媒は弁体26内で流れが180度曲げられるが、密度の大きい液相冷媒24は慣性力が高いため、弁体26の壁面に付着して液膜を形成する。弁体26の壁面に液膜が形成された場合、弁体26を介して高温の冷媒と熱交換する際に、液膜が蒸発するために熱伝達率が高くなる。これにより、低温側の冷媒が気液二相の場合は気相単相の場合に比べて熱交換量が多くなる。 Since the refrigerant flowing out of the outdoor heat exchanger 103 is a gas-liquid two-phase, the liquid-phase refrigerant 24 is distributed inside the gas-phase refrigerant 25. Here, the flow of the low-temperature refrigerant is bent 180 degrees inside the valve body 26 inside the four-way valve 102, but the liquid phase refrigerant 24 having a high density has a high inertial force, so that it adheres to the wall surface of the valve body 26 and is a liquid film. To form. When a liquid film is formed on the wall surface of the valve body 26, the heat transfer coefficient increases because the liquid film evaporates when heat is exchanged with the high-temperature refrigerant through the valve body 26. As a result, when the refrigerant on the low temperature side has two phases of gas and liquid, the amount of heat exchange increases as compared with the case of single phase of gas phase.

四方弁102において高温冷媒と低温冷媒の熱交換量が増加した場合、暖房運転の際に室内熱交換器111の入口の冷媒温度が低下する。これにより室内熱交換器111の入口の冷媒の比エンタルピが低下するため、室内熱交換器111の出入口の比エンタルピ差が減少し、暖房能力の低下によってCOPが低下する。 When the amount of heat exchange between the high temperature refrigerant and the low temperature refrigerant in the four-way valve 102 increases, the refrigerant temperature at the inlet of the indoor heat exchanger 111 decreases during the heating operation. As a result, the specific enthalpy of the refrigerant at the inlet of the indoor heat exchanger 111 decreases, so that the difference in the specific enthalpy of the inlet and outlet of the indoor heat exchanger 111 decreases, and the COP decreases due to the decrease in the heating capacity.

以上の理由により、従来技術では、室外熱交換器103の出口を気液二相状態にして蒸発圧力を維持する一方で、四方弁102での熱交換量が高いために暖房能力に損失が生じて、COPが目減りする。 For the above reasons, in the prior art, the outlet of the outdoor heat exchanger 103 is in a gas-liquid two-phase state to maintain the evaporation pressure, but the heat exchange amount in the four-way valve 102 is high, so that the heating capacity is lost. Therefore, COP is reduced.

これに対して、第1の実施形態に係る空気調和装置200では、副流路2に分岐した冷媒を第1熱交換部4によって気相域に加熱した後、室外熱交換器103を流出した主流路1の冷媒と合流させる。これにより、副膨張弁3を用いて副流路2の流量を調整することで、第1熱交換部4を流出した副流路2の冷媒の乾き度1以上とし、当該乾き度1以上の冷媒により、室外熱交換器103を流出する気液二相の冷媒を加熱することが可能となる。このように、本実施形態において、第1熱交換部4および副流路2(第3流路C)は、第2流路Bを流れる冷媒を加熱する加熱部40として機能する。 On the other hand, in the air conditioner 200 according to the first embodiment, the refrigerant branched to the sub-flow path 2 is heated to the gas phase region by the first heat exchange unit 4, and then the outdoor heat exchanger 103 flows out. It merges with the refrigerant in the main flow path 1. As a result, by adjusting the flow rate of the sub-flow path 2 using the sub-expansion valve 3, the dryness of the refrigerant of the sub-flow path 2 that has flowed out of the first heat exchange unit 4 is set to 1 or more, and the dryness is 1 or more. The refrigerant makes it possible to heat the gas-liquid two-phase refrigerant flowing out of the outdoor heat exchanger 103. As described above, in the present embodiment, the first heat exchange unit 4 and the sub-flow path 2 (third flow path C) function as the heating unit 40 for heating the refrigerant flowing in the second flow path B.

したがって、第1熱交換部4の副流路2側の出口の冷媒乾き度を1以上とすることで、室外熱交換器103の出口の冷媒乾き度を1未満としつつ、四方弁102に流入する冷媒を気相単相にできる。よって、四方弁102における低温冷媒の熱伝達率を低減して熱損失を抑制し、COPを向上することができる。 Therefore, by setting the refrigerant dryness at the outlet on the side of the sub-flow path 2 of the first heat exchanger 4 to 1 or more, the refrigerant flows into the four-way valve 102 while keeping the refrigerant dryness at the outlet of the outdoor heat exchanger 103 less than 1. The refrigerant to be used can be a gas phase single phase. Therefore, the heat transfer coefficient of the low-temperature refrigerant in the four-way valve 102 can be reduced, heat loss can be suppressed, and COP can be improved.

以上の構成により、第1の実施形態に係る空気調和装置200は、従来の空気調和装置に比べてCOPを向上できる。なお、本実施形態は、暖房運転の場合に効果を得ることを目的とした構成となっているが、冷房運転で効果を得ることを目的とした構成とすることも可能である。 With the above configuration, the air conditioner 200 according to the first embodiment can improve the COP as compared with the conventional air conditioner. In addition, although this embodiment has a configuration for the purpose of obtaining an effect in the case of heating operation, it is also possible to have a configuration for the purpose of obtaining an effect in the cooling operation.

<第2の実施形態>
本発明の第2の実施形態に係る空気調和装置220について図5、図6を用いて説明する。
<Second embodiment>
The air conditioner 220 according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6.

図5は、第2の実施形態に係る空気調和装置220の冷凍サイクルの構成図を示す。
第2の実施形態に係る空気調和装置220は、第1の実施形態に係る空気調和装置200に対して、第1熱交換部4と流路合流点5の間の副流路2(第2流路B)が圧縮機101と接する第2熱交換部6を経由している点と、室外熱交換器103の前後に液相側分配器30と気相側分配器31を設けている点が異なる。
FIG. 5 shows a configuration diagram of a refrigeration cycle of the air conditioner 220 according to the second embodiment.
The air conditioner 220 according to the second embodiment has a sub-flow path 2 (second) between the first heat exchange unit 4 and the flow path confluence point 5 with respect to the air conditioner 200 according to the first embodiment. The point that the flow path B) passes through the second heat exchange section 6 in contact with the compressor 101, and the point that the liquid phase side distributor 30 and the gas phase side distributor 31 are provided before and after the outdoor heat exchanger 103. Is different.

第2熱交換部6は、圧縮機101の表面に副流路2が接する形状であり、温度が高い圧縮機101の表面によって副流路2の冷媒を加熱するものである。ただし、目的の作用が得られれば、圧縮機101の周囲に熱交換器を配置するなど、様々な構成があり得る。本実施形態では、第1熱交換部4、副流路2(第3流路C)、および第2熱交換部6は、第2流路Bを流れる冷媒を加熱する加熱部41として機能する。 The second heat exchange unit 6 has a shape in which the sub-flow path 2 is in contact with the surface of the compressor 101, and heats the refrigerant in the sub-flow path 2 by the surface of the compressor 101 having a high temperature. However, if the desired effect is obtained, there may be various configurations such as arranging a heat exchanger around the compressor 101. In the present embodiment, the first heat exchange unit 4, the sub-flow path 2 (third flow path C), and the second heat exchange unit 6 function as a heating unit 41 for heating the refrigerant flowing in the second flow path B. ..

暖房運転の場合には、主流路1の冷媒は液相側分配器30にて複数の流路へ分岐して室外熱交換器103で蒸発した後、気相側分配器31で合流する。一方、冷房運転の場合には、四方弁102を流出した冷媒は、気相側分配器31で複数の流路へ分岐して、室外熱交換器103で凝縮した後、液相側分配器30で合流する。 In the case of heating operation, the refrigerant in the main flow path 1 is branched into a plurality of flow paths by the liquid phase side distributor 30, evaporated by the outdoor heat exchanger 103, and then merged by the gas phase side distributor 31. On the other hand, in the case of cooling operation, the refrigerant flowing out of the four-way valve 102 is branched into a plurality of flow paths by the gas phase side distributor 31, condensed by the outdoor heat exchanger 103, and then the liquid phase side distributor 30. Meet at.

図6は、室外機100の断面の模式図を示す。 FIG. 6 shows a schematic cross-sectional view of the outdoor unit 100.

室外熱交換器103は、空気側の伝熱面となるフィン32と、扁平形状の断面に複数の孔を備えた扁平型伝熱管33を備える。室外熱交換器103の上下は、室外機100の筐体壁面34で閉じられ、室外機100の内部に設けたファンモータ35を駆動することでプロペラファン105を回転させて、図面の右から左へ向かう気流を発生させる。冷媒は、扁平型伝熱管33の内部を図面の手前と奥行方向に流動する。これによって空気と冷媒が熱交換する。なお、各扁平型伝熱管33は図5に示した液相側分配器30と気相側分配器31と接続しているが、詳細な経路については省略した。 The outdoor heat exchanger 103 includes fins 32 that serve as a heat transfer surface on the air side, and a flat heat transfer tube 33 having a plurality of holes in a flat cross section. The top and bottom of the outdoor heat exchanger 103 are closed by the housing wall surface 34 of the outdoor unit 100, and the propeller fan 105 is rotated by driving the fan motor 35 provided inside the outdoor unit 100 to rotate the propeller fan 105 from right to left in the drawing. Generates an air flow toward. The refrigerant flows inside the flat heat transfer tube 33 in the front and depth directions of the drawing. As a result, the air and the refrigerant exchange heat. Although each flat heat transfer tube 33 is connected to the liquid phase side distributor 30 and the gas phase side distributor 31 shown in FIG. 5, the detailed route is omitted.

図6に示した扁平型伝熱管33を用いた熱交換器は、流路の断面積が小さいために、使用に際しては冷媒流路を分岐させて複数の冷媒パスで熱交換させる必要がある。ここで、冷媒流路を複数の冷媒パスに分岐させた場合、各流路の圧力損失の違いや、流路出入口のヘッド差、流入風速の分布などによって、冷媒パスごとに冷媒の流量や交換熱量に差異が生じることがある。これが原因で、冷媒流路を多冷媒パス化した蒸発器では、条件によっては、流路出口側において冷媒の乾き度が1未満の冷媒パスと、1以上の冷媒パスが生じる。乾き度が1以上の冷媒パスでは冷媒の熱伝達率が低くなるが、合流後は全ての冷媒パスを総合した乾き度となる。このため、合流後の蒸発器出口は気液二相状態となるが、部分的に乾き面が発生して熱伝達率が低下するということが起こりうる。すなわち、蒸発器出口の乾き度分布が不均一な場合には、同じ出口乾き度でも蒸発圧力が低下することがある。 Since the heat exchanger using the flat heat transfer tube 33 shown in FIG. 6 has a small cross-sectional area of the flow path, it is necessary to branch the refrigerant flow path and exchange heat with a plurality of refrigerant paths when using the heat exchanger. Here, when the refrigerant flow path is branched into a plurality of refrigerant paths, the flow rate or replacement of the refrigerant for each refrigerant path depends on the difference in pressure loss of each flow path, the head difference between the flow path inlet / outlet, the distribution of the inflow wind speed, and the like. Differences in calorific value may occur. Due to this, in the evaporator in which the refrigerant flow path is made into multiple refrigerant paths, depending on the conditions, a refrigerant path having a dryness of less than 1 and a refrigerant path having a dryness of 1 or more are generated on the flow path outlet side. Refrigerant paths with a dryness of 1 or more have a low heat transfer coefficient of the refrigerant, but after merging, the total dryness of all the refrigerant paths is obtained. For this reason, the evaporator outlet after merging is in a gas-liquid two-phase state, but it is possible that a dry surface is partially generated and the heat transfer coefficient is lowered. That is, if the dryness distribution at the outlet of the evaporator is non-uniform, the evaporation pressure may decrease even with the same dryness at the outlet.

次に、第1の実施形態の空気調和装置200に対して、第2の実施形態の室外熱交換器103を適用した場合を考える。第1の実施形態では、室外熱交換器103の出口側と四方弁102の間は副流路2の冷媒で加熱されるため、四方弁102の入口を気相単相としつつ、室外熱交換器103の出口の乾き度を低減できる。そのため、室外熱交換器103の出口において、各冷媒パスの乾き度に多少の差異が生じた場合でも、副流路2による加熱量を最大限まで高めることで、蒸発圧力の低下を抑制することができる。 Next, consider a case where the outdoor heat exchanger 103 of the second embodiment is applied to the air conditioner 200 of the first embodiment. In the first embodiment, since the space between the outlet side of the outdoor heat exchanger 103 and the four-way valve 102 is heated by the refrigerant of the sub-flow path 2, the outdoor heat exchange is performed while the inlet of the four-way valve 102 is a gas phase single phase. The dryness of the outlet of the vessel 103 can be reduced. Therefore, even if there is a slight difference in the dryness of each refrigerant path at the outlet of the outdoor heat exchanger 103, the decrease in evaporation pressure is suppressed by maximizing the amount of heat generated by the sub-flow path 2. Can be done.

ただし、冷媒分配の不均一度が高い場合、第1の実施形態の副流路2の構成では、加熱量が不十分となり、室外熱交換器103の出口にて冷媒の熱伝達率が低下する冷媒パスが生じることがあり得る。 However, when the non-uniformity of the refrigerant distribution is high, the amount of heat is insufficient in the configuration of the sub-flow path 2 of the first embodiment, and the heat transfer coefficient of the refrigerant decreases at the outlet of the outdoor heat exchanger 103. Refrigerant paths can occur.

これに対して、第2の実施形態の空気調和装置220では、第1熱交換部4で加熱された副流路2の冷媒は、第2熱交換部6を経由することで、圧縮機101から熱を受け取ってさらに高い温度まで加熱される。そのため、流路合流点5における第2流路Bの冷媒に対する加熱量を高めることができ、結果、室外熱交換器103の出口における各冷媒パスの乾き度のばらつきに対する許容度を高めることができる。 On the other hand, in the air conditioner 220 of the second embodiment, the refrigerant in the sub-flow path 2 heated by the first heat exchange section 4 passes through the second heat exchange section 6, thereby passing through the compressor 101. It receives heat from and is heated to a higher temperature. Therefore, it is possible to increase the amount of heating of the second flow path B at the flow path confluence point 5 with respect to the refrigerant, and as a result, it is possible to increase the tolerance for variation in the dryness of each refrigerant path at the outlet of the outdoor heat exchanger 103. ..

以上の構成により、第2の実施形態に係る空気調和装置220は、冷媒分配が不均一となる場合でもCOPが向上するシステムを提供することができる。 With the above configuration, the air conditioner 220 according to the second embodiment can provide a system in which the COP is improved even when the refrigerant distribution becomes non-uniform.

<第3の実施形態>
本発明の第3の実施形態に係る空気調和装置230について図7を用いて説明する。
<Third embodiment>
The air conditioner 230 according to the third embodiment of the present invention will be described with reference to FIG. 7.

図7は、第3の実施形態に係る空気調和装置230の冷凍サイクルの構成図を示す。
第3の実施形態に係る空気調和装置230は、第2の実施形態に係る空気調和装置220から、副膨張弁3と副流路2を除き、第1熱交換部4の代わりに第3熱交換部10を設置した冷凍サイクルである。気相側分配器31の出口は、第1逆止弁11、第3熱交換部10、第4熱交換部16を経由した後、四方弁102に接続される。当該気相側分配器31の出口から、第1逆止弁11、第3熱交換部10、第4熱交換部16を経由し、四方弁102の入口に至る流路が第2流路Bに相当する。また、室外熱交換器103と第1逆止弁11の間と、第4熱交換部16と四方弁102の間は、第2逆止弁12を介してバイパス流路13で接続される。第3熱交換部10は、内部熱交換器であり、加熱部として機能する。また、第4熱交換部16の構成および機能は、第2熱交換部6と同じであり、加熱部として機能する。
FIG. 7 shows a block diagram of the refrigeration cycle of the air conditioner 230 according to the third embodiment.
The air conditioner 230 according to the third embodiment removes the sub-expansion valve 3 and the sub flow path 2 from the air conditioner 220 according to the second embodiment, and replaces the first heat exchange unit 4 with a third heat. It is a refrigeration cycle in which the exchange unit 10 is installed. The outlet of the gas phase distributor 31 is connected to the four-way valve 102 after passing through the first check valve 11, the third heat exchange section 10, and the fourth heat exchange section 16. The flow path from the outlet of the gas phase distributor 31 to the inlet of the four-way valve 102 via the first check valve 11, the third heat exchange section 10, and the fourth heat exchange section 16 is the second flow path B. Corresponds to. Further, the outdoor heat exchanger 103 and the first check valve 11 and the fourth heat exchange unit 16 and the four-way valve 102 are connected by a bypass flow path 13 via the second check valve 12. The third heat exchanger 10 is an internal heat exchanger and functions as a heating unit. Further, the configuration and function of the fourth heat exchange unit 16 are the same as those of the second heat exchange unit 6, and function as a heating unit.

暖房運転の場合には、冷媒は気相側分配器31を流出した後、第1逆止弁11を経由して、第3熱交換部10へ流入し、室内熱交換器111と主膨張弁104の間の冷媒によって加熱される。さらに第3熱交換部10を流出した冷媒は、第4熱交換部16にて圧縮機101から熱を得て加熱される。これにより、第2の実施形態と同様に、室外熱交換器103の出口側における各冷媒パスの乾き度のばらつきが大きい場合でも、室外熱交換器103の出口側の各冷媒パスの冷媒を気液二相状態としつつ、四方弁102に流入する冷媒を気相単相にすることができる。なお、暖房運転の場合には第2逆止弁12の作用により、バイパス流路13の冷媒は流動しない。 In the case of heating operation, the refrigerant flows out of the gas phase side distributor 31 and then flows into the third heat exchange unit 10 via the first check valve 11 to enter the indoor heat exchanger 111 and the main expansion valve. It is heated by the refrigerant between 104. Further, the refrigerant flowing out of the third heat exchange unit 10 is heated by obtaining heat from the compressor 101 in the fourth heat exchange unit 16. As a result, as in the second embodiment, even if the dryness of each refrigerant path on the outlet side of the outdoor heat exchanger 103 varies widely, the refrigerant in each refrigerant path on the outlet side of the outdoor heat exchanger 103 is vaporized. The refrigerant flowing into the four-way valve 102 can be made into a gas phase single phase while being in a liquid two-phase state. In the case of heating operation, the refrigerant in the bypass flow path 13 does not flow due to the action of the second check valve 12.

冷房運転の場合には、冷媒は四方弁102を流出したのち、バイパス流路13を経て気相側分配器31へと流入する。この時、第4熱交換部16および第3熱交換部10へ向かう流れは、第1逆止弁11の作用によって遮られる。これにより、圧縮機101から吐出した高温の冷媒による圧縮機101自身の加熱や、第3熱交換部10にて室内機110に流入する冷媒を加熱することによる冷却能力の低下を防ぐことができる。 In the case of cooling operation, the refrigerant flows out of the four-way valve 102 and then flows into the gas phase side distributor 31 via the bypass flow path 13. At this time, the flow toward the fourth heat exchange unit 16 and the third heat exchange unit 10 is blocked by the action of the first check valve 11. This makes it possible to prevent a decrease in the cooling capacity due to heating of the compressor 101 itself by the high-temperature refrigerant discharged from the compressor 101 and heating of the refrigerant flowing into the indoor unit 110 by the third heat exchange unit 10. ..

上記の構成により、暖房運転では室外熱交換器103の出口を気液二相流としつつ、四方弁102の熱損失を低減でき、冷房運転では損失の増加を抑制することができる。なお、上記構成は一例であり、第4熱交換部16が無い場合でも効果が得られる。また、本実施形態では暖房運転時と冷房運転時の冷媒経路を切り替える方法として2つの逆止弁を用いたが、バイパス流路13の出入口に三方弁を設置するなど、流路を直接切り替えるものでも同等の効果を得ることができる。 With the above configuration, the heat loss of the four-way valve 102 can be reduced while the outlet of the outdoor heat exchanger 103 is a gas-liquid two-phase flow in the heating operation, and the increase in the loss can be suppressed in the cooling operation. The above configuration is an example, and the effect can be obtained even when the fourth heat exchange unit 16 is not provided. Further, in the present embodiment, two check valves are used as a method of switching the refrigerant path during the heating operation and the cooling operation, but the flow path is directly switched by installing a three-way valve at the inlet / outlet of the bypass flow path 13. But the same effect can be obtained.

なお、本実施形態は、上述した実施例に限定されない。当業者であれば、本実施形態の範囲内で、種々の追加や変更等を行うことができる。 The present embodiment is not limited to the above-described embodiment. A person skilled in the art can make various additions and changes within the scope of the present embodiment.

1:主流路、 2:副流路、 4:第1熱交換部、 6:第2熱交換部、 10:第3熱交換器、 13:バイパス流路、 16:第4熱交換部、 30:液相側分配器、 31:気相側分配器、 33:扁平型伝熱管、 40、41:加熱部、 100:室外機、 101:圧縮機、 102:四方弁、 103:室外熱交換器、 104:主膨張弁、 110:室内機、 111:室内熱交換器、 200、220、230:空気調和装置、 A:第1流路、 B:第2流路、 C:第3流路 1: Main flow path, 2: Sub flow path, 4: 1st heat exchange section, 6: 2nd heat exchange section, 10: 3rd heat exchanger, 13: Bypass flow path, 16: 4th heat exchange section, 30 : Liquid phase distributor, 31: Gas phase distributor, 33: Flat heat transfer tube, 40, 41: Heating unit, 100: Outdoor unit, 101: Compressor, 102: Four-way valve, 103: Outdoor heat exchanger , 104: Main expansion valve, 110: Indoor unit, 111: Indoor heat exchanger, 200, 220, 230: Air conditioner, A: 1st flow path, B: 2nd flow path, C: 3rd flow path

Claims (6)

圧縮機、凝縮器、膨張弁、蒸発器、および四方弁を、冷媒を流すための配管で接続して冷凍サイクルを構成し、
前記凝縮器の出口と前記蒸発器の入口との間の第1流路と、前記蒸発器の出口と前記四方弁の入口との間の第2流路と、前記第1流路における前記膨張弁と前記蒸発器の入口との間の流路から分岐し、前記第2流路に接続される第3流路と、を有し、
前記膨張弁は、前記第1流路に配置され、
前記第2流路を流れる冷媒を、前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒により加熱する加熱部と、
前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒と、前記第3流路を流れる冷媒との間で熱交換を行う第1熱交換部と、
前記第3流路における前記第1熱交換部よりも前記第2流路側において、前記第3流路を流れる冷媒と、前記圧縮機との間で熱交換を行う第2熱交換部と、を備え
前記第1熱交換部および前記第3流路は、前記第2流路を流れる冷媒を加熱する前記加熱部として機能し、
前記第2熱交換部は、前記第2流路を流れる冷媒を加熱する前記加熱部として機能し、
前記蒸発器の出口における冷媒を気液二相状態とし、前記加熱部により前記四方弁の入口を気相状態として、冷凍サイクルを形成する、空気調和装置。
Compressors, condensers, expansion valves, evaporators, and four-way valves are connected by pipes for flowing refrigerant to form a refrigeration cycle.
The first flow path between the outlet of the condenser and the inlet of the evaporator, the second flow path between the outlet of the evaporator and the inlet of the four-way valve, and the expansion in the first flow path. It has a third flow path that branches off from the flow path between the valve and the inlet of the evaporator and is connected to the second flow path .
The expansion valve is arranged in the first flow path.
A heating unit that heats the refrigerant flowing through the second flow path with the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path.
A first heat exchange unit that exchanges heat between the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path and the refrigerant flowing through the third flow path.
A second heat exchange section that exchanges heat between the refrigerant flowing in the third flow path and the compressor on the second flow path side of the first heat exchange section in the third flow path. Prepare ,
The first heat exchange section and the third flow path function as the heating section for heating the refrigerant flowing through the second flow path.
The second heat exchange unit functions as the heating unit that heats the refrigerant flowing through the second flow path.
An air conditioner that forms a refrigeration cycle by setting the refrigerant at the outlet of the evaporator in a gas-liquid two-phase state and by setting the inlet of the four-way valve in a gas-phase state by the heating unit .
圧縮機、凝縮器、膨張弁、蒸発器、および四方弁を、冷媒を流すための配管で接続して冷凍サイクルを構成し、
前記凝縮器の出口と前記蒸発器の入口との間の第1流路と、前記蒸発器の出口と前記四方弁の入口との間の第2流路と、を有し、
前記膨張弁は、前記第1流路に配置され、
前記第2流路を流れる冷媒を、前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒により加熱する加熱部と、
前記第2流路を流れる冷媒と、前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒との間で熱交換を行う第3熱交換部と、
前記第2流路における前記第3熱交換部よりも前記四方弁側において、前記第2流路を流れる冷媒と、前記圧縮機との間で熱交換を行う第4熱交換部と、を備え、
前記第3熱交換部は、前記第2流路を流れる冷媒を加熱する前記加熱部として機能し、
前記第4熱交換部は、前記第2流路を流れる冷媒を加熱する前記加熱部として機能し、
前記蒸発器の出口における冷媒を気液二相状態とし、前記加熱部により前記四方弁の入口を気相状態として、冷凍サイクルを形成する、空気調和装置。
Compressors, condensers, expansion valves, evaporators, and four-way valves are connected by pipes for flowing refrigerant to form a refrigeration cycle.
It has a first flow path between the outlet of the condenser and the inlet of the evaporator, and a second flow path between the outlet of the evaporator and the inlet of the four-way valve.
The expansion valve is arranged in the first flow path.
A heating unit that heats the refrigerant flowing through the second flow path with the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path.
A third heat exchange unit that exchanges heat between the refrigerant flowing through the second flow path and the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path.
A fourth heat exchange unit that exchanges heat between the refrigerant flowing in the second flow path and the compressor is provided on the four-way valve side of the third heat exchange unit in the second flow path. ,
The third heat exchange unit functions as the heating unit that heats the refrigerant flowing through the second flow path.
The fourth heat exchange unit functions as the heating unit that heats the refrigerant flowing through the second flow path.
An air conditioner that forms a refrigeration cycle by setting the refrigerant at the outlet of the evaporator in a gas-liquid two-phase state and by setting the inlet of the four-way valve in a gas-phase state by the heating unit .
圧縮機、凝縮器、膨張弁、蒸発器、および四方弁を、冷媒を流すための配管で接続して冷凍サイクルを構成し、
前記凝縮器の出口と前記蒸発器の入口との間の第1流路と、前記蒸発器の出口と前記四方弁の入口との間の第2流路と、を有し、
前記膨張弁は、前記第1流路に配置され、
前記第2流路を流れる冷媒を、前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒により加熱する加熱部と、
前記第2流路を流れる冷媒と、前記第1流路のうち前記凝縮器の出口と前記膨張弁の入口との間を流れる冷媒との間で熱交換を行う第3熱交換部と、
前記第2流路における前記蒸発器の出口と前記第3熱交換部の入口との間の流路から分岐し、前記第2流路における前記第3熱交換部の出口と前記四方弁の入口との間の流路に合流するバイパス流路と、を備え
前記第3熱交換部は、前記第2流路を流れる冷媒を加熱する前記加熱部として機能し、
前記蒸発器の出口における冷媒を気液二相状態とし、前記加熱部により前記四方弁の入口を気相状態として、冷凍サイクルを形成す、空気調和装置。
Compressors, condensers, expansion valves, evaporators, and four-way valves are connected by pipes for flowing refrigerant to form a refrigeration cycle.
It has a first flow path between the outlet of the condenser and the inlet of the evaporator, and a second flow path between the outlet of the evaporator and the inlet of the four-way valve.
The expansion valve is arranged in the first flow path.
A heating unit that heats the refrigerant flowing through the second flow path with the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path.
A third heat exchange unit that exchanges heat between the refrigerant flowing through the second flow path and the refrigerant flowing between the outlet of the condenser and the inlet of the expansion valve in the first flow path.
Branching from the flow path between the outlet of the evaporator and the inlet of the third heat exchange section in the second flow path, the outlet of the third heat exchange section and the inlet of the four-way valve in the second flow path. A bypass flow path that joins the flow path between and
The third heat exchange unit functions as the heating unit that heats the refrigerant flowing through the second flow path.
An air conditioner that forms a refrigeration cycle by setting the refrigerant at the outlet of the evaporator in a gas-liquid two-phase state and by setting the inlet of the four-way valve in a gas-phase state by the heating unit .
前記蒸発器の冷媒流路の分岐数が複数である、請求項1から請求項のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 3 , wherein the refrigerant flow path of the evaporator has a plurality of branches. 前記蒸発器における冷媒流路が、略扁平型の断面に複数の孔を備えた形状である、請求項に記載の空気調和装置。 The air conditioner according to claim 4 , wherein the refrigerant flow path in the evaporator has a shape having a substantially flat cross section and a plurality of holes. 前記凝縮器は室内機に設けた室内熱交換器であり、前記蒸発器は室外機に設けた室外熱交換器である、請求項1から請求項のいずれか一項に記載の空気調和装置。 The air conditioner according to any one of claims 1 to 5 , wherein the condenser is an indoor heat exchanger provided in the indoor unit, and the evaporator is an outdoor heat exchanger provided in the outdoor unit. ..
JP2018085217A 2018-04-26 2018-04-26 Air conditioner Active JP7065681B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018085217A JP7065681B2 (en) 2018-04-26 2018-04-26 Air conditioner
TW107117462A TWI724302B (en) 2018-04-26 2018-05-23 Air-conditioning device
CN201810528759.5A CN110411052B (en) 2018-04-26 2018-05-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085217A JP7065681B2 (en) 2018-04-26 2018-04-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019190760A JP2019190760A (en) 2019-10-31
JP7065681B2 true JP7065681B2 (en) 2022-05-12

Family

ID=68357995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085217A Active JP7065681B2 (en) 2018-04-26 2018-04-26 Air conditioner

Country Status (3)

Country Link
JP (1) JP7065681B2 (en)
CN (1) CN110411052B (en)
TW (1) TWI724302B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024045788A (en) * 2021-02-18 2024-04-03 東芝キヤリア株式会社 Heat pump type heat source device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074991A (en) 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating unit
JP2014031930A (en) 2012-08-02 2014-02-20 Panasonic Corp Refrigeration cycle device
JP2015124992A (en) 2013-12-27 2015-07-06 ダイキン工業株式会社 Heat exchanger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571127B3 (en) * 1984-09-28 1986-11-21 Leroy Somer Moteurs REVERSIBLE REFRIGERANT MACHINE WITH VARIABLE QUANTITY OF USEFUL REFRIGERANT FLUID
JPH0533968A (en) * 1991-07-26 1993-02-09 Sharp Corp Air conditioner
CA2080219A1 (en) * 1991-11-04 1993-05-05 Leroy John Herbst Household refrigerator with improved refrigeration circuit
US6202428B1 (en) * 1998-09-14 2001-03-20 Fujitsu General Limited Air conditioner
CN1453532B (en) * 2002-04-25 2010-04-28 株式会社鹭宫制作所 Throttle valve and air conditioner
KR101409114B1 (en) * 2008-01-24 2014-06-17 한라비스테온공조 주식회사 Condenser having integrated receiver drier
CN201209923Y (en) * 2008-04-02 2009-03-18 Tcl集团股份有限公司 Dehumidifier
JP4990221B2 (en) * 2008-05-26 2012-08-01 日立アプライアンス株式会社 Air conditioner
TWI460380B (en) * 2012-09-28 2014-11-11 Nat Univ Chin Yi Technology A cross connected indoor and outdoor unit heat recovery air conditioning system
TWM496734U (en) * 2014-08-18 2015-03-01 Univ Kao Yuan Air conditioner compressor device with integrated utilization of heat and mechanical dynamic energy
WO2017009951A1 (en) * 2015-07-14 2017-01-19 株式会社エコファクトリー Air conditioner and air conditioning system
CN105783324B (en) * 2016-04-29 2019-05-31 广东美的制冷设备有限公司 Heating and air conditioner and its control method
CN106679111B (en) * 2017-01-23 2020-04-14 深圳创维空调科技有限公司 Automatic cleaning treatment method and system for heat exchanger of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074991A (en) 2001-08-31 2003-03-12 Daikin Ind Ltd Refrigerating unit
JP2014031930A (en) 2012-08-02 2014-02-20 Panasonic Corp Refrigeration cycle device
JP2015124992A (en) 2013-12-27 2015-07-06 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
CN110411052A (en) 2019-11-05
JP2019190760A (en) 2019-10-31
TWI724302B (en) 2021-04-11
CN110411052B (en) 2021-05-28
TW201945671A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP5611353B2 (en) heat pump
JP6058219B2 (en) Air conditioner
JP5968534B2 (en) Air conditioner
JP6644154B2 (en) Air conditioner
JP6033297B2 (en) Air conditioner
WO2019073621A1 (en) Air-conditioning device
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JPWO2018029817A1 (en) Refrigeration cycle device
JP2014105890A (en) Refrigeration cycle device and hot-water generating device including the same
JP2017161182A (en) Heat pump device
JP2021017991A (en) Heat exchanger, air conditioner, indoor machine and outdoor machine
JP2020073854A (en) Refrigeration cycle device
JP5855284B2 (en) Air conditioner
JP7065681B2 (en) Air conditioner
JP6549469B2 (en) Heat pump system
JP6846915B2 (en) Multi-chamber air conditioner
JP6664503B2 (en) Air conditioner
US20230101537A1 (en) Heat pump
JP2009293887A (en) Refrigerating device
JPH10176869A (en) Refrigeration cycle device
JP2013053849A (en) Heat pump device, and outdoor unit thereof
WO2022215242A1 (en) Outdoor unit and air-conditioning device
WO2023238181A1 (en) Air conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7065681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150