WO2022215242A1 - Outdoor unit and air-conditioning device - Google Patents

Outdoor unit and air-conditioning device Download PDF

Info

Publication number
WO2022215242A1
WO2022215242A1 PCT/JP2021/014989 JP2021014989W WO2022215242A1 WO 2022215242 A1 WO2022215242 A1 WO 2022215242A1 JP 2021014989 W JP2021014989 W JP 2021014989W WO 2022215242 A1 WO2022215242 A1 WO 2022215242A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
temperature
outdoor
control device
Prior art date
Application number
PCT/JP2021/014989
Other languages
French (fr)
Japanese (ja)
Inventor
哲二 七種
洋次 尾中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/014989 priority Critical patent/WO2022215242A1/en
Publication of WO2022215242A1 publication Critical patent/WO2022215242A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Definitions

  • This technology relates to outdoor units and air conditioners. In particular, it relates to heat exchangers with headers and the like.
  • a heat exchanger used in an air conditioner has both functions of a condenser and an evaporator.
  • the flow path of the refrigerant becomes long in the heat exchanger.
  • the pressure loss of the refrigerant increases in the heat exchanger functioning as an evaporator.
  • the heat exchanger has a passage length that allows for the pressure loss of the refrigerant flowing inside the heat exchanger without providing a partition plate or the like in the header, the refrigerant flowing through the heat transfer tube when functioning as a condenser flow velocity decreases, and the differential pressure of the refrigerant between the inlet and outlet of the heat transfer tubes becomes smaller.
  • the differential pressure of the refrigerant between the inlet and outlet of the heat transfer tubes becomes smaller than the liquid head of the condensed liquid refrigerant (liquid refrigerant) in the heat transfer tubes, the liquid refrigerant may accumulate in a part of the heat exchanger. . Therefore, when the heat exchanger functions as a condenser, the heat exchange performance is lowered, and the efficiency of the refrigeration cycle device is deteriorated.
  • the outdoor unit is an outdoor unit that is connected to a load-side heat exchanger and an expansion device to form a refrigerant circuit, and includes a compressor that compresses and discharges the sucked refrigerant, a cooling operation and a heating operation. and an outdoor heat exchanger that exchanges heat between the refrigerant passing through the inside and the external fluid, and the refrigerant flowing out from the outdoor heat exchanger in cooling operation. and an auxiliary heat exchanger for supercooling the refrigerant flowing through the main refrigerant circuit, the outdoor heat exchanger being arranged vertically apart from each other, a pair of headers through which the refrigerant passes through the pipes, and a flat cross section.
  • the flat heat transfer tubes are arranged in a plurality of rows along the flow direction of the external fluid, and the pair of headers One of them is a folded header that bridges the refrigerant from one row of flat heat transfer tubes to another row of flat heat transfer tubes, and the number of times that the refrigerant is bridged by the folded header is one.
  • an air conditioner includes the outdoor unit described above, and an indoor unit that has a load-side heat exchanger and an expansion device and conditions air in an air-conditioned space.
  • the outdoor unit includes an outdoor heat exchanger in which a pair of headers, one of which is a folded header, is arranged in the vertical direction, and an auxiliary heat exchanger that supercools the refrigerant flowing out of the outdoor heat exchanger.
  • an auxiliary heat exchanger that supercools the refrigerant flowing out of the outdoor heat exchanger.
  • the auxiliary heat exchanger eliminates the need to supercool the refrigerant in the outdoor heat exchanger, thereby preventing the refrigerant from stagnation in the outdoor heat exchanger. Therefore, high heat exchange performance can be maintained in both cases where the outdoor heat exchanger functions as an evaporator and a condenser.
  • FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger 10 according to Embodiment 1;
  • FIG. FIG. 4 is a diagram for explaining the relationship between the refrigerant pressure loss and COP in the heat exchanger according to Embodiment 1, and the number of turns;
  • FIG. 4 is a diagram for explaining a staying state of liquid refrigerant in a heat exchanger;
  • FIG. 4 is a diagram showing the relationship between the differential pressure between the refrigerant inlet/outlet pipe 12 on the refrigerant inflow side and the refrigerant inlet/outlet pipe 12 on the refrigerant outflow side and the rate at which the liquid refrigerant stays.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger 10 according to Embodiment 1;
  • FIG. FIG. 4 is a diagram for explaining the relationship between the refrigerant pressure loss and COP in the heat exchange
  • FIG. 4 is a diagram showing the relationship between the degree of subcooling of liquid refrigerant and the condensation performance of a heat exchanger; 2 is a Ph diagram in the air conditioner according to Embodiment 1.
  • FIG. It is a figure which shows the relationship between a supercooling degree and COP.
  • FIG. 4 is a diagram showing the configuration of an air conditioner according to Embodiment 2; 2 is a Ph diagram of the air conditioner in Embodiment 2.
  • FIG. FIG. 10 is a diagram showing the configuration of an air conditioner according to Embodiment 3;
  • FIG. 11 is a diagram illustrating the flow of opening/closing control of a two-way valve 290 performed by a control device 400 according to Embodiment 3;
  • FIG. 13 is a diagram illustrating the flow of opening degree control of a diaphragm device 120 performed by a control device 400 according to Embodiment 4;
  • FIG. 12 is a diagram illustrating the flow of opening degree control of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 5;
  • FIG. 12 is a diagram illustrating the flow of control of the degree of opening of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 6;
  • FIG. 21 is a diagram for explaining the flow of control of the degree of opening of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 7;
  • FIG. 21 is a diagram for explaining the flow of opening degree control of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 8;
  • FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1.
  • the air conditioner of Embodiment 1 has an outdoor unit 200 , an indoor unit 100 and two refrigerant pipes 300 .
  • the compressor 210, the four-way valve 220, and the outdoor heat exchanger 230 of the outdoor unit 200 and the indoor heat exchanger 110 and the expansion device 120 of the indoor unit 100 are connected by refrigerant pipes 300 to form a refrigerant circuit.
  • one outdoor unit 200 and one indoor unit 100 are connected by pipes.
  • the number of connected devices is not limited to this.
  • the indoor unit 100 has an indoor fan 130 in addition to the indoor heat exchanger 110 and the expansion device 120 .
  • the expansion device 120 is a device having an expansion valve or the like for decompressing and expanding the refrigerant.
  • the indoor-side heat exchanger 110 is a load-side heat exchanger that exchanges heat between the indoor air, which is the space to be air-conditioned, and the refrigerant.
  • indoor heat exchanger 110 functions as a condenser to condense and liquefy refrigerant.
  • indoor heat exchanger 110 functions as an evaporator to evaporate and vaporize the refrigerant.
  • the indoor fan 130 passes the indoor air through the indoor heat exchanger 110 and supplies the air that has passed through the indoor heat exchanger 110 to the room.
  • the indoor-side heat exchanger 110 is described as one that directly exchanges heat between the refrigerant and the indoor air, but is not limited to this.
  • Indoor heat exchanger 110 may, for example, exchange heat between the refrigerant and water through water, and the water may exchange heat with indoor air.
  • the outdoor unit 200 is equipment installed outside the air-conditioned space.
  • the outdoor unit 200 of Embodiment 1 will be described as being of the top-flow type.
  • the outdoor unit 200 of Embodiment 1 includes a compressor 210, a four-way valve 220, an outdoor heat exchanger 230, an auxiliary heat exchanger 240, a refrigerant amount adjustment valve 250, a bypass pipe 260, and an accumulator as devices constituting a refrigerant circuit. 270.
  • the outdoor unit 200 also has an outdoor fan 280 .
  • Compressor 210 compresses and discharges the sucked refrigerant.
  • Compressor 210 is, for example, a scroll compressor, a reciprocating compressor, or a vane compressor.
  • the air conditioner of Embodiment 1 has inverter device 215 or the like, for example, and can arbitrarily change the driving frequency of electric power supplied to compressor 210 .
  • the motor (not shown) of compressor 210 can change the number of revolutions and the drive capacity of compressor 210 can be changed.
  • Compressor 210 may also have inverter device 215 .
  • the four-way valve 220 which serves as a refrigerant flow switching device, is a valve that switches the refrigerant flow depending on, for example, cooling operation and heating operation.
  • Four-way valve 220 connects the discharge side of compressor 210 and indoor heat exchanger 110 and also connects the suction side of compressor 210 and outdoor heat exchanger 230 when heating operation is performed. Further, the four-way valve 220 connects the discharge side of the compressor 210 to the outdoor heat exchanger 230 and connects the suction side of the compressor 210 to the indoor heat exchanger 110 during cooling operation.
  • the channel switching device is not limited to this.
  • a flow path switching device may be formed by combining a plurality of two-way valves.
  • the outdoor heat exchanger 230 exchanges heat between the refrigerant and the outdoor air.
  • outdoor heat exchanger 230 of Embodiment 1 functions as an evaporator during heating operation, and evaporates and vaporizes the refrigerant.
  • outdoor heat exchanger 230 functions as a condenser to condense and liquefy the refrigerant.
  • the outdoor heat exchanger 230 here has two heat exchangers 10A and 10B. In the refrigerant circuit, it is assumed that the heat exchanger 10A and the heat exchanger 10B are pipe-connected so as to be parallel to each other. Details of the heat exchanger 10 (heat exchanger 10A and heat exchanger 10B) will be described later.
  • the outdoor heat exchanger 230 is described as exchanging heat between the refrigerant and the outdoor air, but it may exchange heat between the refrigerant and another external fluid.
  • the outdoor blower 280 is driven to pass air from the outside of the outdoor unit 200 through the outdoor heat exchanger 230 to form an air flow that flows out from the inside of the outdoor unit 200 .
  • the auxiliary heat exchanger 240 has, for example, a double tube or plate heat exchanger.
  • Auxiliary heat exchanger 240 subcools the refrigerant flowing out of outdoor heat exchanger 230 during cooling operation.
  • Auxiliary heat exchanger 240 exchanges heat between the refrigerant that flows out of outdoor heat exchanger 230 and flows through the main refrigerant circuit toward indoor heat exchanger 110 and the refrigerant that has passed through bypass pipe 260 and refrigerant amount adjustment valve 250. It is a heat exchanger between refrigerants.
  • a bypass pipe 260 is a pipe that forms a bypass flow path.
  • Refrigerant amount adjustment valve 250 is a refrigerant amount adjustment device that is arranged in bypass pipe 260 and adjusts the amount of refrigerant that passes through bypass pipe 260 .
  • the refrigerant amount adjustment valve 250 reduces the pressure of a part of the refrigerant that has passed through the auxiliary heat exchanger 240 and branches, and allows the refrigerant to pass through the bypass flow path side of the auxiliary heat exchanger 240 .
  • the accumulator 270 is installed on the suction side of the compressor 210 .
  • the accumulator 270 passes gaseous refrigerant (hereinafter referred to as gas refrigerant) and accumulates liquid refrigerant (hereinafter referred to as liquid refrigerant).
  • the control device 400 controls the equipment of the air conditioner.
  • Control device 400 controls, for example, expansion device 120, compressor 210, refrigerant amount adjustment valve 250, and the like.
  • the control device 400 can be configured with hardware such as a circuit device that implements its functions. Moreover, it can be composed of an arithmetic unit having a microcomputer, a CPU, and the like, and software. Control is realized by the arithmetic unit executing software.
  • the air conditioner also has a detection unit 500.
  • the detection unit 500 of Embodiment 1 has a discharge side pressure sensor 510 , a suction side pressure sensor 511 , an inter-heat exchanger temperature sensor 520 , an auxiliary heat exchanger temperature sensor 521 and a bypass pipe temperature sensor 522 .
  • Discharge-side pressure sensor 510 is a detection device that detects the pressure of the refrigerant on the discharge side of compressor 210 .
  • the suction side pressure sensor 511 is a detection device that detects the pressure of the refrigerant on the suction side of the compressor 210 .
  • Inter-heat exchanger temperature sensor 520 is a detection device that detects the temperature of the refrigerant between outdoor heat exchanger 230 and auxiliary heat exchanger 240 .
  • inter-heat-exchanger temperature sensor 520 detects the temperature of the refrigerant flowing out of outdoor heat exchanger 230 during cooling operation.
  • Auxiliary heat exchanger temperature sensor 521 detects the temperature of the refrigerant that has passed through auxiliary heat exchanger 240 .
  • the auxiliary heat exchanger temperature sensor 521 detects the temperature of supercooled refrigerant flowing out of the auxiliary heat exchanger 240 during cooling operation.
  • Bypass pipe temperature sensor 522 is a detection device that detects the temperature of the refrigerant passing through bypass pipe 260 .
  • the bypass pipe temperature sensor 522 detects the temperature of the refrigerant after passing through the refrigerant amount adjustment valve 250 and the bypass passage side of the auxiliary heat exchanger 240 .
  • FIG. 2 is a diagram illustrating the configuration of the heat exchanger 10 according to Embodiment 1.
  • FIG. The outdoor heat exchanger 230 has a corrugated fin tube type heat exchanger 10 of parallel pipe type. As described above, the outdoor heat exchanger 230 of the outdoor unit 200 has two heat exchangers 10 (heat exchanger 10A and heat exchanger 10B). The heat exchanger 10A and the heat exchanger 10B are pipe-connected in parallel in the refrigerant circuit. However, the number and form of connections in the refrigerant circuit of Embodiment 1 are not limited to this.
  • Each heat exchanger 10 has two distribution headers 11 (distribution header 11A and distribution header 11B), a folded header 13, a plurality of flat heat transfer tubes 14 and a plurality of corrugated fins 15.
  • a pair of headers consisting of two distribution headers 11 and a folded header 13 are arranged separately vertically in the height direction.
  • the distance between the pair of headers is 800 mm or more.
  • the return header 13 is positioned above due to piping connections and the like, and the two distribution headers 11 It is arranged below the folded header 13 .
  • a plurality of flat heat transfer tubes 14 are arranged so that their flat surfaces face each other so as to be perpendicular to the distribution headers 11 and the return headers 13 and parallel to each other. are arranged in two rows. A group of flat heat transfer tubes 14 in one row is connected to one distribution header 11 . As described above, since the distance between the pair of headers is 800 mm or more, the length of the flat heat transfer tubes 14 in the heat exchanger 10 of the outdoor heat exchanger 230 in Embodiment 1 is 800 mm or more.
  • the distribution headers 11 are pipes that are pipe-connected to other devices that constitute the refrigeration cycle device, flow in and out of the refrigerant, which is a fluid that serves as a heat exchange medium, and branch or join the refrigerant.
  • the distribution headers 11 each have refrigerant inlet/outlet pipes 12 (refrigerant inlet/outlet pipe 12A and refrigerant inlet/outlet pipe 12B) through which refrigerant flows in and out from the outside.
  • the turn-back header 13 is a header that serves as a bridge that turns back a group of flat heat transfer tubes 14 in one row to a group of flat heat transfer tubes 14 in the other row.
  • the flat heat transfer tube 14 has a flat shape in cross section, and has a planar outer surface on the longitudinal side of the flat shape along the depth direction, which is the direction of air flow.
  • the heat transfer tube has curved side surfaces.
  • the flat heat transfer tube 14 of Embodiment 1 is a multi-hole flat heat transfer tube having a plurality of holes serving as refrigerant flow paths inside the tube.
  • the holes of the flat heat transfer tubes 14 are formed to face the height direction so as to form flow paths between the distribution headers 11 and the folded headers 13 .
  • the flat heat transfer tubes 14 are arranged at equal intervals in the horizontal direction so that the outer surfaces on the longitudinal sides face each other.
  • each flat heat transfer tube 14 is inserted into an insertion hole (not shown) of the distribution header 11 and the folded header 13, Brazed and joined.
  • a brazing material for brazing for example, a brazing material containing aluminum is used.
  • Corrugated fins 15 are arranged between the flat surfaces of the arranged flat heat transfer tubes 14 facing each other.
  • the corrugated fins 15 are arranged to expand the heat transfer area between the refrigerant and the outside air.
  • the corrugated fins 15 are corrugated on a plate material, and are bent into a wavy bellows shape by repeating mountain folds and valley folds. Here, the bent portion due to the unevenness formed in the wavy shape becomes the apex of the wavy shape.
  • the tops of the corrugated fins 15 are aligned in the height direction.
  • the corrugated fins 15 are in surface contact with the flat surfaces of the flat heat transfer tubes 14 and the corrugated tops.
  • the contact portion is brazed and joined with a brazing material.
  • the plate material of the corrugated fins 15 is made of, for example, an aluminum alloy.
  • the surface of the plate material is clad with a brazing material layer.
  • the clad braze layer is based on, for example, an aluminum-containing braze material of the aluminum-silicon system.
  • control device 400 closes refrigerant amount adjustment valve 250 .
  • Solid line arrows in FIG. 1 indicate the flow of the refrigerant in the heating operation.
  • the high-temperature and high-pressure gas refrigerant compressed by compressor 210 and discharged passes through four-way valve 220 and flows into indoor heat exchanger 110 .
  • the gas refrigerant condenses and liquefies by exchanging heat with the air in the air-conditioned space while passing through the indoor heat exchanger 110 .
  • the condensed and liquefied refrigerant passes through the throttle device 120 .
  • the refrigerant is depressurized as it passes through the expansion device 120 .
  • the refrigerant depressurized by the expansion device 120 and brought into a gas-liquid two-phase state passes through the auxiliary heat exchanger 240 and the outdoor heat exchanger 230 .
  • the refrigerant amount adjustment valve 250 is closed, heat exchange between refrigerants is not performed in the auxiliary heat exchanger 240 .
  • the refrigerant evaporated and gasified by exchanging heat with the outdoor air sent from the outdoor blower 280 passes through the four-way valve 220 and the accumulator 270, and is returned to the compressor 210. inhaled.
  • the refrigerant in the air conditioner circulates to perform air conditioning for heating.
  • control device 400 adjusts refrigerant amount adjustment valve 250 to allow a portion of the refrigerant passing through the main refrigerant circuit to pass through bypass pipe 260 .
  • Dotted arrows in FIG. 1 indicate the flow of the refrigerant in the cooling operation.
  • the high-temperature and high-pressure gas refrigerant compressed by compressor 210 and discharged passes through four-way valve 220 and flows into outdoor heat exchanger 230 . Then, the refrigerant passes through the outdoor heat exchanger 230 and exchanges heat with the outdoor air supplied by the outdoor fan 280 to be condensed and liquefied.
  • the liquefied refrigerant passes through the throttle device 120 .
  • the refrigerant passes through the expansion device 120, it is decompressed and becomes a gas-liquid two-phase state.
  • the refrigerant depressurized by the expansion device 120 and in a gas-liquid two-phase state passes through the indoor heat exchanger 110 . Then, in the indoor heat exchanger 110, for example, the refrigerant evaporated and gasified by exchanging heat with the air in the air-conditioned space passes through the four-way valve 220 and is sucked into the compressor 210 again. As described above, the refrigerant in the air conditioner circulates to perform air conditioning for cooling.
  • FIG. 3 is a diagram for explaining the relationship between the refrigerant pressure loss and COP in the heat exchanger according to Embodiment 1 and the number of turns.
  • the number of turns is the number of times the refrigerant passing through the heat exchanger 1 of the outdoor heat exchanger 230 is turned back at the distribution header 11 .
  • the inside of the distribution header 11 and the return header 13 are partitioned by a partition plate or the like to divide the inside of the heat exchanger 1 into a plurality of blocks, the refrigerant can be bridged between the blocks inside the header.
  • the heat exchanger 1 has a turn configuration in which the refrigerant is folded back several times and flows back and forth in the vertical direction.
  • the outdoor heat exchanger 230 functions as an evaporator when the air conditioner performs heating operation. As shown in FIG. 3, when the number of turns increases, the refrigerant pressure loss increases and the COP in heating operation (hereinafter referred to as heating COP) decreases. When the inside of the distribution header 11 is not partitioned and the number of turns is 0, the heating COP is the highest. Therefore, in the heat exchanger 1, the outdoor heat exchanger 230 of Embodiment 1 has a configuration in which the inside of the header is not partitioned.
  • FIG. 4 is a diagram for explaining the stagnation state of the liquid refrigerant in the heat exchanger.
  • the outdoor heat exchanger 230 serves as a condenser.
  • the surface temperature is measured by thermography. Stagnation occurs.
  • FIG. 5 is a diagram showing the relationship between the differential pressure between the refrigerant inlet/outlet pipe 12 on the refrigerant inflow side and the refrigerant inlet/outlet pipe 12 on the refrigerant outflow side and the rate at which the liquid refrigerant stays.
  • FIG. 6 is a diagram showing the relationship between the degree of supercooling of the liquid refrigerant and the condensation performance of the heat exchanger.
  • the degree of subcooling of the liquid refrigerant when the degree of subcooling of the liquid refrigerant is increased, the rate at which the liquid refrigerant stays increases. Therefore, if the degree of supercooling of the refrigerant passing through the heat exchanger is increased, the condensation performance becomes worse than the condensation performance predicted under the condition where no liquid refrigerant is retained. Therefore, as shown in FIG. 6, if the degree of subcooling of the refrigerant passing through the heat exchanger is reduced, the effect of the liquid refrigerant stagnation is reduced, and condensing performance close to prediction can be ensured. .
  • FIG. 7 is a Ph diagram in the air conditioner according to Embodiment 1.
  • FIG. 7 when the degree of supercooling (SC) of the refrigerant is small, the refrigerating effect becomes small. For this reason, the cooling capacity that can be calculated by multiplying the cooling effect by the refrigerant circulation amount is reduced, and the air conditioner becomes insufficient in capacity.
  • SC supercooling
  • FIG. 8 is a diagram showing the relationship between the degree of supercooling and the COP. If the degree of subcooling of the refrigerant is reduced so that the liquid refrigerant does not stagnate, the COP in the cooling operation (hereinafter referred to as cooling COP) deviates from the peak point at which it reaches its maximum. Therefore, in the air conditioner of Embodiment 1, when the cooling operation is performed, the degree of supercooling of the liquid refrigerant passing through the outdoor heat exchanger 230 is reduced, and the auxiliary heat exchanger 240 supercools the refrigerant. Ensure degree.
  • the outdoor heat exchanger 230 has the distribution header 11 and the folded header 13 in the vertical direction, and the refrigerant is folded back to form a plurality of columns. It allows the flat heat transfer tubes 14 to pass through. It also has an auxiliary heat exchanger 240 that supercools the refrigerant flowing out of the outdoor heat exchanger 230 when the outdoor heat exchanger 230 functions as a condenser. Therefore, the degree of supercooling of the refrigerant with a small degree of supercooling flows out from the outdoor heat exchanger 230 , and the degree of supercooling can be added to the refrigerant in the auxiliary heat exchanger 240 .
  • Embodiment 2. 9 is a diagram showing a configuration of an air conditioner according to Embodiment 2.
  • the air conditioner of Embodiment 2 has a liquid receiver 285 .
  • the liquid receiver 285 stores liquid refrigerant.
  • the liquid receiver 285 is installed between the outdoor heat exchanger 230 and the auxiliary heat exchanger 240 in the main refrigerant circuit.
  • FIG. 10 is a Ph diagram of the air conditioner according to the second embodiment.
  • the liquid receiver 285 that stores the liquid refrigerant by having the liquid receiver 285 that stores the liquid refrigerant, the refrigerant flowing out from the outdoor heat exchanger 230 is saturated without being supercooled when the air conditioner performs cooling operation. becomes liquid. Therefore, the refrigerant flows out of the outdoor heat exchanger 230 without being supercooled even if the control device 400 does not perform control related to supercooling.
  • the air conditioner of Embodiment 2 is configured to include the liquid receiver 285 between the outdoor heat exchanger 230 and the auxiliary heat exchanger 240 . Therefore, the degree of supercooling of the refrigerant passing through the outdoor heat exchanger 230 can be suppressed without the control device 400 performing control related to supercooling by a device such as an actuator of the refrigerant circuit. Therefore, the liquid refrigerant does not stay in the outdoor heat exchanger 230, and deterioration of the condensation performance can be prevented. By ensuring the degree of subcooling of the refrigerant in the auxiliary heat exchanger 240, the cooling COP can be increased.
  • Embodiment 3. 11 is a diagram showing a configuration of an air conditioner according to Embodiment 3.
  • the air conditioner of Embodiment 3 has a two-way valve 290.
  • the two-way valve 290 is a valve serving as an opening/closing device that controls whether the passage of the refrigerant to the heat exchanger 10A is allowed or restricted.
  • the air conditioner is described as having an opening/closing device in order to suppress pressure loss, but the present invention is not limited to this.
  • a flow regulating device capable of regulating the flow rate of the refrigerant may be used instead of the opening/closing device.
  • the outdoor heat exchanger 230 functions as a condenser when the air conditioner performs cooling operation.
  • Control device 400 performs control to reduce drive capacity by driving compressor 210 at a low rotational speed when the air conditioning load is small. At this time, the refrigerant circulation amount in the refrigerant circuit is reduced. In such a case, if the refrigerant flows into and out of both the heat exchanger 10A and the heat exchanger 10B, the pressure loss of the refrigerant increases and the flow velocity of the refrigerant slows down. Therefore, the air conditioner of Embodiment 3 has two-way valve 290 .
  • FIG. 12 is a diagram explaining the flow of opening/closing control of the two-way valve 290 performed by the control device 400 according to the third embodiment.
  • the control device 400 determines whether to perform the cooling operation or the heating operation (step S1).
  • the control device 400 opens the two-way valve 290 (step S5).
  • control device 400 determines that the air conditioner will perform the cooling operation, it detects the rotation speed of the motor of the compressor 210 (step S2).
  • control device 400 detects the number of revolutions of the motor, for example, based on the drive frequency related to the control of inverter device 215 .
  • the control device 400 determines whether or not the detected rotation speed of the motor is equal to or higher than a preset rotation speed (step S3).
  • the control device 400 opens the two-way valve 290 (step S5).
  • step S4 when the controller 400 determines that the detected number of rotations of the motor is less than the set number of rotations, it closes the two-way valve 290 (step S4). During the cooling operation, the control device 400 returns to step S2 and continues opening/closing control of the two-way valve 290 until it determines that the operation has ended (step S6).
  • the air conditioner of Embodiment 3 has the two-way valve 290 that restricts passage of refrigerant in a part of the outdoor heat exchanger 230 . Then, when the control device 400 determines that the rotational speed of the compressor 210 is low and the drive capacity is low when the air conditioner performs the cooling operation, the control device 400 closes the two-way valve 290 . Therefore, when the air conditioner performs cooling operation and the outdoor heat exchanger 230 functions as a condenser, the pressure loss of the refrigerant can be suppressed and the flow velocity can be prevented from decreasing. Therefore, the air conditioner can suppress a decrease in the cooling COP. Further, when the air conditioner performs heating operation and the outdoor heat exchanger 230 functions as an evaporator, the control device 400 opens the two-way valve 290 . Therefore, the air conditioner can have the heating COP in a state suitable for operation.
  • Embodiment 4. 13A and 13B are diagrams for explaining the flow of opening degree control of the expansion device 120 performed by the control device 400 according to the fourth embodiment.
  • the equipment configuration of the air conditioner of Embodiment 4 is the same as that of the air conditioners described in Embodiments 1 to 3.
  • the control device 400 acquires the discharge pressure Pd detected by the discharge-side pressure sensor 510 (step S10). Then, the control device 400 calculates the condensation temperature CT of the refrigerant from the discharge pressure Pd (step S11).
  • the control device 400 determines whether or not the calculated supercooling degree SC is smaller than the preset supercooling degree lower limit SC1 (step S14). When the control device 400 determines that the supercooling degree SC is smaller than the set supercooling degree lower limit SC1, the control device 400 performs control to reduce the opening degree of the expansion device 120 (step S16).
  • the control device 400 determines that the degree of supercooling SC is not less than the set supercooling degree lower limit SC1 (is greater than or equal to the set supercooling degree lower limit SC1), the degree of supercooling SC reaches the preset set supercooling degree upper limit. It is determined whether it is greater than SC2 (step S15). When the controller 400 determines that the supercooling degree SC is not greater than the set supercooling degree upper limit SC2 (is equal to or less than the set supercooling degree upper limit SC2), it maintains the opening of the expansion device 120 (step S17). When the control device 400 determines that the supercooling degree SC is larger than the set supercooling degree upper limit SC2, it performs control to increase the opening of the expansion device 120 (step S18). When the preset time has elapsed (step S19), the control device 400 returns to step S10 and repeats the process.
  • control device 400 controls the degree of supercooling of the liquid refrigerant flowing out of outdoor heat exchanger 230 to be within the set temperature range during cooling operation. to control. Therefore, it is possible to prevent the deterioration of the condensation performance due to the liquid refrigerant remaining in the outdoor heat exchanger 230, and suppress the deterioration of the cooling COP.
  • FIG. 14 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjustment valve 250 performed by the control device 400 according to the fifth embodiment.
  • the equipment configuration of the air conditioner of Embodiment 5 is the same as that of the air conditioners described in Embodiments 1 to 3.
  • the control device 400 acquires the condensation outlet refrigerant temperature TCO detected by the inter-heat-exchanger temperature sensor 520 (step S21).
  • the control device 400 determines whether the calculated temperature difference ⁇ th is smaller than the preset temperature difference lower limit ⁇ T1 (step S24). When determining that the temperature difference ⁇ th is smaller than the temperature difference lower limit ⁇ T1, the control device 400 performs control to increase the opening degree of the refrigerant amount adjustment valve 250 (step S26).
  • control device 400 determines that temperature difference ⁇ th is not smaller than temperature difference lower limit ⁇ T1 (temperature difference ⁇ th is equal to or greater than temperature difference lower limit ⁇ T1), temperature difference ⁇ th is larger than preset temperature difference upper limit ⁇ T2. It is determined whether or not (step S25).
  • controller 400 determines that temperature difference ⁇ th is not greater than temperature difference upper limit ⁇ T2 (is equal to or less than temperature difference upper limit ⁇ T2)
  • control device 400 maintains the opening degree of refrigerant amount adjustment valve 250 (step S27).
  • the control device 400 determines that the temperature difference ⁇ th is larger than the temperature difference upper limit ⁇ T2, it performs control to reduce the opening degree of the refrigerant amount adjustment valve 250 (step S28).
  • the preset time has elapsed (step S29)
  • the control device 400 returns to step S21 and repeats the process.
  • control device 400 controls the temperature of the liquid refrigerant passing between outdoor heat exchanger 230 and auxiliary heat exchanger 240 and the temperature of auxiliary heat exchanger 240 control is performed so that the temperature difference from the temperature of the refrigerant flowing out from to the main refrigerant circuit is within a set range. Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
  • FIG. 15 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjusting valve 250 performed by the control device 400 according to the sixth embodiment.
  • the equipment configuration of the air conditioner of Embodiment 6 is the same as that of the air conditioners described in Embodiments 1 to 3.
  • the control device 400 acquires the suction pressure Ps detected by the suction side pressure sensor 511 (step S30). Then, the control device 400 calculates the evaporation temperature ET of the refrigerant from the suction pressure Ps (step S31).
  • the control device 400 determines whether or not the calculated auxiliary superheat SHho is smaller than the preset superheat lower limit SHho1 (step S34). When the control device 400 determines that the auxiliary superheat SHho is smaller than the set superheat lower limit SHho1, the control device 400 performs control to reduce the opening degree of the refrigerant amount adjusting valve 250 (step S36).
  • control device 400 determines whether the auxiliary superheat SHho is not less than the set superheat lower limit SHho1 (is greater than or equal to the set superheat lower limit SHho1), it further determines whether it is greater than a preset superheat upper limit SHho2. (step S35).
  • the control device 400 determines that the auxiliary degree of superheat SHho is not greater than the set superheat degree upper limit SHho2 (is equal to or less than the set superheat degree upper limit SHho2), it maintains the opening degree of the refrigerant amount control valve 250 (step S37).
  • control device 400 determines that the auxiliary degree of superheat SHho is greater than the set superheat degree upper limit SHho2, the control device 400 performs control to increase the degree of opening of the refrigerant amount adjustment valve 250 (step S38).
  • the control device 400 returns to step S30 and repeats the process.
  • the control device 400 controls the degree of superheat of the refrigerant flowing out from the auxiliary heat exchanger 240 to the bypass pipe 260 to be within the set range. Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
  • FIG. 16 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjustment valve 250 performed by the control device 400 according to the seventh embodiment.
  • the equipment configuration of the air conditioner of Embodiment 7 is the same as that of the air conditioners described in Embodiments 1 to 3.
  • the control device 400 acquires the discharge pressure Pd detected by the discharge side pressure sensor 510 (step S40). Then, the control device 400 calculates the condensation temperature CT of the refrigerant from the discharge pressure Pd (step S41).
  • the control device 400 determines whether or not the calculated auxiliary supercooling degree SChO is smaller than the preset auxiliary-side supercooling degree lower limit SChO1 (step S44). When the control device 400 determines that the auxiliary supercooling degree SChO is smaller than the set auxiliary-side supercooling degree lower limit SChO1, the control device 400 performs control to reduce the opening degree of the refrigerant amount adjusting valve 250 (step S46).
  • step S44 the control device 400 determines that the auxiliary supercooling degree SChO is not smaller than the set auxiliary-side supercooling degree lower limit SChO1 (is greater than or equal to the auxiliary-side supercooling degree lower limit SChO1). At this time, the control device 400 further determines whether or not the auxiliary degree of supercooling SChO is greater than a preset auxiliary-side supercooling degree upper limit SChO2 (step S45).
  • step S47 When the control device 400 determines that the auxiliary supercooling degree SChO is not greater than the set auxiliary supercooling degree upper limit SChO2 (below the set auxiliary supercooling degree upper limit SChO2), the control device 400 maintains the opening degree of the refrigerant amount adjustment valve 250. (step S47). When the control device 400 determines that the auxiliary supercooling degree SChO is larger than the set auxiliary supercooling degree upper limit SChO2, the control device 400 performs control to increase the opening degree of the refrigerant amount adjusting valve 250 (step S48). When the preset time has elapsed (step S49), the control device 400 returns to step S40 and repeats the process.
  • the control device 400 controls the degree of subcooling of the liquid refrigerant flowing out from the auxiliary heat exchanger 240 to the main refrigerant circuit to be within the set range. . Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
  • FIG. 17 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjusting valve 250 performed by the control device 400 according to the eighth embodiment.
  • the equipment configuration of the air conditioner of the eighth embodiment is the same as that of the air conditioners described in the first to third embodiments.
  • control device 400 controls the degree of opening of refrigerant amount adjustment valve 250 when outdoor heat exchanger 230 functions as a condenser. At this time, the control device 400 controls so that the degree of subcooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is within a set range.
  • the control device 400 acquires the discharge pressure Pd detected by the discharge side pressure sensor 510 (step S50). Then, the control device 400 calculates the condensation temperature CT of the refrigerant from the discharge pressure Pd (step S51).
  • the control device 400 determines whether or not the calculated supercooling degree SC is smaller than a preset supercooling degree lower limit SC1 (step S54). When the control device 400 determines that the subcooling degree SC is smaller than the set supercooling degree lower limit SC1, the controller 400 performs control to reduce the opening degree of the refrigerant amount adjusting valve 250 (step S56).
  • the control device 400 determines that the degree of supercooling SC is not less than the set supercooling degree lower limit SC1 (is greater than or equal to the set supercooling degree lower limit SC1), the degree of supercooling SC reaches the preset set supercooling degree upper limit. It is determined whether or not it is greater than SC2 (step S55).
  • the control device 400 determines that the degree of subcooling SC is not greater than the set supercooling degree upper limit SC2 (is equal to or less than the set supercooling degree upper limit SC2), the control device 400 maintains the opening degree of the refrigerant amount adjustment valve 250 (step S57).
  • control device 400 determines that the subcooling degree SC is larger than the set supercooling degree upper limit SC2, the control device 400 performs control to increase the opening degree of the refrigerant amount adjustment valve 250 (step S58).
  • the control device 400 returns to step S50 and repeats the process.
  • the control device 400 controls the degree of subcooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 to be within the set range. Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
  • Embodiment 9 Auxiliary heat exchanger 240 in Embodiments 1 to 8 described above has been described as a heat exchanger between refrigerants that exchanges heat between refrigerants circulating in the refrigerant circuit, but is not limited to this.
  • the heat exchanger may exchange heat with an external fluid, such as external air, to supercool the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This outdoor unit, which connects to a load-side heat exchanger and a throttle device with piping to configure a refrigerant circuit, is provided with a compressor, a refrigerant flow path switching device which switches the flow path, an outdoor-side heat exchanger which exchanges heat between an external fluid and the internally circulating refrigerant, and an auxiliary heat exchanger which, in cooling operation, supercools refrigerant flowing out of the outdoor-side heat exchanger, wherein the outdoor-side heat exchanger comprises a pair of headers which are arranged separated from each other in the vertical direction and through which the refrigerant passes, multiple flat heat transfer tubes which are arranged between the pair of headers and apart from each other, with the flat surfaces on the long side of the flat shapes facing each other, and multiple corrugated fins which are arranged between the mutually adjacent flat heat transfer tubes; the flat heat transfer tubes are arranged in multiple rows along the direction of flow of the external fluid, one of the pair of headers is a fold-back header which bridges the refrigerant from one row of the flat heat transfer tubes back to the other row of flat heat transfer tubes, and the refrigerant is bridged back by means of the return header one time.

Description

室外機および空気調和装置Outdoor unit and air conditioner
 この技術は、室外機および空気調和装置に関するものである。特に、ヘッダを有する熱交換器などに関するものである。 This technology relates to outdoor units and air conditioners. In particular, it relates to heat exchangers with headers and the like.
 近年、冷媒量削減および熱交換器の高性能化をはかるため、空気調和装置用の熱交換器において、伝熱管の細管化が進められている。伝熱管の細管化が進む中で、冷媒の圧力損失増加を抑制するために、熱交換器は分岐数が増加する。このような多分岐分配に対応するために、高さ方向に、上下にヘッダを有するヘッダ型の冷媒分配器を用いた熱交換器が開発されている(たとえば、特許文献1参照)。 In recent years, in order to reduce the amount of refrigerant and improve the performance of heat exchangers, heat exchanger tubes for air conditioners have been made thinner. As heat transfer tubes become narrower, the number of branches in heat exchangers increases in order to suppress an increase in refrigerant pressure loss. In order to cope with such multi-branch distribution, a heat exchanger using a header-type refrigerant distributor having headers on top and bottom in the height direction has been developed (see, for example, Patent Document 1).
特開2014-194339号公報JP 2014-194339 A
 ここで、空気調和装置は、冷媒回路における冷媒の流れが運転形態によって異なる。このため、空気調和装置に用いられる熱交換器は、凝縮器および蒸発器の両方の機能が用いられる。ここで、ヘッダ内に仕切板などを設け、ヘッダ間で冷媒を複数回折り返して熱交換器内部を通過させる熱交換器では、熱交換器内において、冷媒が流れる流路が長くなる。冷媒の流路が長くなると、蒸発器として機能する熱交換器では、冷媒の圧力損失が増加する。冷媒の圧力損失が増加すると、圧縮機の吸入側における吸入圧力が低下するため、冷凍サイクル装置全体の効率が悪化する。 Here, in the air conditioner, the refrigerant flow in the refrigerant circuit differs depending on the operation mode. Therefore, a heat exchanger used in an air conditioner has both functions of a condenser and an evaporator. Here, in a heat exchanger in which a partition plate or the like is provided in the header and the refrigerant is folded back multiple times between the headers to pass through the inside of the heat exchanger, the flow path of the refrigerant becomes long in the heat exchanger. As the flow path of the refrigerant becomes longer, the pressure loss of the refrigerant increases in the heat exchanger functioning as an evaporator. When the pressure loss of the refrigerant increases, the suction pressure on the suction side of the compressor decreases, so the efficiency of the entire refrigeration cycle apparatus deteriorates.
 一方、ヘッダ内に仕切板などを設けずに、熱交換器内部を流れる冷媒の圧力損失が許容できる流路長さの熱交換器にすると、凝縮器として機能する場合に、伝熱管を流れる冷媒の流速が低下して、伝熱管の出入口間における冷媒の差圧が小さくなる。伝熱管の出入口間における冷媒の差圧が、伝熱管内で凝縮した液状の冷媒(液冷媒)の液ヘッドよりも小さくなることで、熱交換器の一部に液冷媒が滞留することがある。このため、熱交換器を凝縮器として機能させたときに熱交換性能が低下し、冷凍サイクル装置の効率が悪化する。 On the other hand, if the heat exchanger has a passage length that allows for the pressure loss of the refrigerant flowing inside the heat exchanger without providing a partition plate or the like in the header, the refrigerant flowing through the heat transfer tube when functioning as a condenser flow velocity decreases, and the differential pressure of the refrigerant between the inlet and outlet of the heat transfer tubes becomes smaller. When the differential pressure of the refrigerant between the inlet and outlet of the heat transfer tubes becomes smaller than the liquid head of the condensed liquid refrigerant (liquid refrigerant) in the heat transfer tubes, the liquid refrigerant may accumulate in a part of the heat exchanger. . Therefore, when the heat exchanger functions as a condenser, the heat exchange performance is lowered, and the efficiency of the refrigeration cycle device is deteriorated.
 そこで、上記のような課題を解決し、冷媒の蒸発および凝縮の両方を行う場合でも、熱交換性能を高く維持することができる室外側熱交換器を有する室外機および空気調和装置を得ることを目的とする。 Therefore, it is desirable to solve the above problems and provide an outdoor unit and an air conditioner having an outdoor heat exchanger capable of maintaining high heat exchange performance even when both evaporating and condensing refrigerant. aim.
 この開示に係る室外機は、負荷側熱交換器および絞り装置と配管接続して冷媒回路を構成する室外機であって、吸入した冷媒を圧縮して吐出する圧縮機と、冷房運転と暖房運転とで冷媒の流路を切り替える冷媒流路切替装置と、内部を通過する冷媒と外部流体との間で熱交換を行う室外側熱交換器と、冷房運転において室外側熱交換器から流出して主冷媒回路を流れる冷媒を過冷却する補助熱交換器とを備え、室外側熱交換器は、互いに離間して上下方向に配置され、管内を冷媒が通過する一対のヘッダと、断面が扁平形状を有し、扁平形状の長手側における扁平面がそれぞれ対向して間を隔てて一対のヘッダの間に配置され、冷媒が流れる流路を内部に有する複数の扁平伝熱管と、隣り合う2つの扁平伝熱管の間に配置され、扁平面において扁平伝熱管と接合される複数のコルゲートフィンとを有し、外部流体の流れる方向に沿って複数列に扁平伝熱管が配置され、一対のヘッダのいずれか一方が、ある列の扁平伝熱管から他の列の扁平伝熱管へ冷媒を橋渡しする折り返しヘッダであり、折り返しヘッダによって冷媒が橋渡しされる回数が1回である。 The outdoor unit according to this disclosure is an outdoor unit that is connected to a load-side heat exchanger and an expansion device to form a refrigerant circuit, and includes a compressor that compresses and discharges the sucked refrigerant, a cooling operation and a heating operation. and an outdoor heat exchanger that exchanges heat between the refrigerant passing through the inside and the external fluid, and the refrigerant flowing out from the outdoor heat exchanger in cooling operation. and an auxiliary heat exchanger for supercooling the refrigerant flowing through the main refrigerant circuit, the outdoor heat exchanger being arranged vertically apart from each other, a pair of headers through which the refrigerant passes through the pipes, and a flat cross section. and a plurality of flat heat transfer tubes arranged between a pair of headers with the flat surfaces on the longitudinal sides of the flat shapes opposed to each other with a gap therebetween, and having a flow path in which a refrigerant flows, and two adjacent heat transfer tubes It has a plurality of corrugated fins arranged between the flat heat transfer tubes and joined to the flat heat transfer tubes on the flat surface, the flat heat transfer tubes are arranged in a plurality of rows along the flow direction of the external fluid, and the pair of headers One of them is a folded header that bridges the refrigerant from one row of flat heat transfer tubes to another row of flat heat transfer tubes, and the number of times that the refrigerant is bridged by the folded header is one.
 また、この開示に係る空気調和装置は、上記の室外機と、負荷側熱交換器および絞り装置を有し、空調対象空間の空気を調和する室内機とを備えるものである。 In addition, an air conditioner according to this disclosure includes the outdoor unit described above, and an indoor unit that has a load-side heat exchanger and an expansion device and conditions air in an air-conditioned space.
 この開示によれば、室外機は、いずれか一方が折り返しヘッダである一対のヘッダが上下方向に配置された室外側熱交換器と室外側熱交換器から流出する冷媒を過冷却する補助熱交換器を有する。折り返しヘッダにおける折り返しの回数を1回とすることで、室外側熱交換器における冷媒の流路が短くなり、冷媒の圧力損失を抑えることができる。そして補助熱交換器により、室外側熱交換器で冷媒を過冷却させる必要がなくなり、室外側熱交換器内における冷媒の滞留を防止することができる。このため、室外側熱交換器が蒸発器および凝縮器として機能するいずれの場合も、熱交換性能を高く維持することができる。 According to this disclosure, the outdoor unit includes an outdoor heat exchanger in which a pair of headers, one of which is a folded header, is arranged in the vertical direction, and an auxiliary heat exchanger that supercools the refrigerant flowing out of the outdoor heat exchanger. have a vessel By setting the number of turns in the turn-back header to one, the flow path of the refrigerant in the outdoor heat exchanger is shortened, and the pressure loss of the refrigerant can be suppressed. The auxiliary heat exchanger eliminates the need to supercool the refrigerant in the outdoor heat exchanger, thereby preventing the refrigerant from stagnation in the outdoor heat exchanger. Therefore, high heat exchange performance can be maintained in both cases where the outdoor heat exchanger functions as an evaporator and a condenser.
実施の形態1に係る空気調和装置の構成を示す図である。1 is a diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る熱交換器10の構成を説明する図である。1 is a diagram illustrating a configuration of a heat exchanger 10 according to Embodiment 1; FIG. 実施の形態1に係る熱交換器内の冷媒圧力損失およびCOPとターン数との関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between the refrigerant pressure loss and COP in the heat exchanger according to Embodiment 1, and the number of turns; 熱交換器における液冷媒の滞留状態について説明する図である。FIG. 4 is a diagram for explaining a staying state of liquid refrigerant in a heat exchanger; 冷媒の流入側の冷媒出入口管12および流出側の冷媒出入口管12の間における差圧と液冷媒が滞留する割合との関係を示す図である。FIG. 4 is a diagram showing the relationship between the differential pressure between the refrigerant inlet/outlet pipe 12 on the refrigerant inflow side and the refrigerant inlet/outlet pipe 12 on the refrigerant outflow side and the rate at which the liquid refrigerant stays. 液冷媒の過冷却度と熱交換器の凝縮性能との関係を示す図である。FIG. 4 is a diagram showing the relationship between the degree of subcooling of liquid refrigerant and the condensation performance of a heat exchanger; 実施の形態1に係る空気調和装置におけるP-h線図である。2 is a Ph diagram in the air conditioner according to Embodiment 1. FIG. 過冷却度とCOPとの関係を示す図である。It is a figure which shows the relationship between a supercooling degree and COP. 実施の形態2に係る空気調和装置の構成を示す図である。FIG. 4 is a diagram showing the configuration of an air conditioner according to Embodiment 2; 実施の形態2における空気調和装置のP-h線図である。2 is a Ph diagram of the air conditioner in Embodiment 2. FIG. 実施の形態3に係る空気調和装置の構成を示す図である。FIG. 10 is a diagram showing the configuration of an air conditioner according to Embodiment 3; 実施の形態3に係る制御装置400が行う二方弁290の開閉制御の流れを説明する図である。FIG. 11 is a diagram illustrating the flow of opening/closing control of a two-way valve 290 performed by a control device 400 according to Embodiment 3; 実施の形態4に係る制御装置400が行う絞り装置120の開度制御の流れを説明する図である。FIG. 13 is a diagram illustrating the flow of opening degree control of a diaphragm device 120 performed by a control device 400 according to Embodiment 4; 実施の形態5に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。FIG. 12 is a diagram illustrating the flow of opening degree control of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 5; 実施の形態6に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。FIG. 12 is a diagram illustrating the flow of control of the degree of opening of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 6; 実施の形態7に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。FIG. 21 is a diagram for explaining the flow of control of the degree of opening of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 7; 実施の形態8に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。FIG. 21 is a diagram for explaining the flow of opening degree control of a refrigerant amount adjustment valve 250 performed by a control device 400 according to Embodiment 8;
 以下、実施の形態に係る室外機および空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に、構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、図における上方を「上」とし、下方を「下」として説明する。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 Below, the outdoor unit and the air conditioner according to the embodiment will be described with reference to the drawings. In the following drawings, the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below. Also, in the drawings, the size relationship of each component may differ from the actual size. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification. In particular, the combination of components is not limited to only the combinations in each embodiment, and components described in other embodiments can be applied to other embodiments. Also, the upper side in the drawing is referred to as "upper" and the lower side as "lower". Further, the levels of pressure and temperature are not determined in relation to absolute values, but relatively determined by the state, operation, etc. of the apparatus. In addition, when there is no need to distinguish or specify a plurality of devices of the same type that are distinguished by subscripts, the subscripts may be omitted.
実施の形態1.
<空気調和装置の構成>
 図1は、実施の形態1に係る空気調和装置の構成を示す図である。ここでは、冷凍サイクル装置の一例として、空気調和装置について説明する。図1に示すように、実施の形態1の空気調和装置は、室外機200、室内機100および2本の冷媒配管300を有する。そして、室外機200が有する圧縮機210、四方弁220および室外側熱交換器230と室内機100が有する室内側熱交換器110および絞り装置120が、冷媒配管300により配管接続され、冷媒回路を構成する。ここで、実施の形態1の空気調和装置は、1台の室外機200と1台の室内機100が配管接続されているものとする。ただし、接続台数は、これに限定するものではない。
Embodiment 1.
<Configuration of air conditioner>
FIG. 1 is a diagram showing the configuration of an air conditioner according to Embodiment 1. FIG. Here, an air conditioner will be described as an example of a refrigeration cycle device. As shown in FIG. 1 , the air conditioner of Embodiment 1 has an outdoor unit 200 , an indoor unit 100 and two refrigerant pipes 300 . The compressor 210, the four-way valve 220, and the outdoor heat exchanger 230 of the outdoor unit 200 and the indoor heat exchanger 110 and the expansion device 120 of the indoor unit 100 are connected by refrigerant pipes 300 to form a refrigerant circuit. Configure. Here, in the air conditioner of Embodiment 1, one outdoor unit 200 and one indoor unit 100 are connected by pipes. However, the number of connected devices is not limited to this.
 室内機100は、室内側熱交換器110および絞り装置120の他に、室内送風機130を有する。絞り装置120は、冷媒を減圧して膨張させる膨張弁などを有する装置である。絞り装置120は、たとえば、電子式膨張弁などで構成した場合は、後述する制御装置400などの指示に基づいて開度調整を行う。また、室内側熱交換器110は、空調対象空間である室内の空気と冷媒との熱交換を行う負荷側熱交換器である。たとえば、暖房運転時においては、室内側熱交換器110は、凝縮器として機能し、冷媒を凝縮して液化させる。また、冷房運転時においては、室内側熱交換器110は、蒸発器として機能し、冷媒を蒸発させ、気化させる。室内送風機130は、室内側熱交換器110に室内の空気を通過させ、室内側熱交換器110を通過させた空気を室内に供給する。ここでは、室内側熱交換器110は、冷媒と室内の空気とを直接的に熱交換するものとして説明するが、これに限定しない。室内側熱交換器110は、たとえば、水を媒介して、冷媒と水とを熱交換し、水が室内の空気と熱交換を行うようにしてもよい。 The indoor unit 100 has an indoor fan 130 in addition to the indoor heat exchanger 110 and the expansion device 120 . The expansion device 120 is a device having an expansion valve or the like for decompressing and expanding the refrigerant. For example, when the throttle device 120 is configured by an electronic expansion valve or the like, the degree of opening is adjusted based on an instruction from a control device 400 or the like, which will be described later. The indoor-side heat exchanger 110 is a load-side heat exchanger that exchanges heat between the indoor air, which is the space to be air-conditioned, and the refrigerant. For example, during heating operation, indoor heat exchanger 110 functions as a condenser to condense and liquefy refrigerant. During cooling operation, indoor heat exchanger 110 functions as an evaporator to evaporate and vaporize the refrigerant. The indoor fan 130 passes the indoor air through the indoor heat exchanger 110 and supplies the air that has passed through the indoor heat exchanger 110 to the room. Here, the indoor-side heat exchanger 110 is described as one that directly exchanges heat between the refrigerant and the indoor air, but is not limited to this. Indoor heat exchanger 110 may, for example, exchange heat between the refrigerant and water through water, and the water may exchange heat with indoor air.
 室外機200は、空調対象空間外に設置される機器である。ここで、実施の形態1の室外機200は、トップフロー型であるものとして説明する。実施の形態1の室外機200は、冷媒回路を構成する機器として、圧縮機210、四方弁220、室外側熱交換器230、補助熱交換器240、冷媒量調整弁250、バイパス配管260およびアキュムレータ270を有する。また、室外機200は、室外送風機280を有する。圧縮機210は、吸入した冷媒を圧縮して吐出する。圧縮機210は、たとえば、スクロール型圧縮機、レシプロ型圧縮機またはベーン型圧縮機などである。ここで、実施の形態1の空気調和装置は、たとえば、インバータ装置215などを有し、圧縮機210に供給する電力の駆動周波数を任意に変化させることができる。駆動周波数を変化させることにより、圧縮機210が有するモータ(図示せず)は、回転数を変え、圧縮機210の駆動容量を変化させることができる。ただし、これに限定するものではない。また、圧縮機210がインバータ装置215を有してもよい。 The outdoor unit 200 is equipment installed outside the air-conditioned space. Here, the outdoor unit 200 of Embodiment 1 will be described as being of the top-flow type. The outdoor unit 200 of Embodiment 1 includes a compressor 210, a four-way valve 220, an outdoor heat exchanger 230, an auxiliary heat exchanger 240, a refrigerant amount adjustment valve 250, a bypass pipe 260, and an accumulator as devices constituting a refrigerant circuit. 270. The outdoor unit 200 also has an outdoor fan 280 . Compressor 210 compresses and discharges the sucked refrigerant. Compressor 210 is, for example, a scroll compressor, a reciprocating compressor, or a vane compressor. Here, the air conditioner of Embodiment 1 has inverter device 215 or the like, for example, and can arbitrarily change the driving frequency of electric power supplied to compressor 210 . By changing the drive frequency, the motor (not shown) of compressor 210 can change the number of revolutions and the drive capacity of compressor 210 can be changed. However, it is not limited to this. Compressor 210 may also have inverter device 215 .
 冷媒流路切替装置となる四方弁220は、たとえば、冷房運転時と暖房運転時とによって冷媒の流れを切り換える弁である。四方弁220は、暖房運転が行われる際、圧縮機210の吐出側と室内側熱交換器110とを接続するとともに、圧縮機210の吸引側と室外側熱交換器230と接続する。また、四方弁220は、冷房運転が行われる際、圧縮機210の吐出側と室外側熱交換器230とを接続するとともに、圧縮機210の吸引側を室内側熱交換器110と接続する。ここでは、四方弁220を用いた場合について例示しているが、流路切替装置はこれに限定されるものではない。たとえば、複数の二方弁などを組み合わせて流路切替装置としてもよい。 The four-way valve 220, which serves as a refrigerant flow switching device, is a valve that switches the refrigerant flow depending on, for example, cooling operation and heating operation. Four-way valve 220 connects the discharge side of compressor 210 and indoor heat exchanger 110 and also connects the suction side of compressor 210 and outdoor heat exchanger 230 when heating operation is performed. Further, the four-way valve 220 connects the discharge side of the compressor 210 to the outdoor heat exchanger 230 and connects the suction side of the compressor 210 to the indoor heat exchanger 110 during cooling operation. Here, the case of using the four-way valve 220 is illustrated, but the channel switching device is not limited to this. For example, a flow path switching device may be formed by combining a plurality of two-way valves.
 室外側熱交換器230は、冷媒と室外の空気との熱交換を行う。ここで、実施の形態1の室外側熱交換器230は、暖房運転時においては蒸発器として機能し、冷媒を蒸発させ、気化させる。一方、冷房運転時においては、室外側熱交換器230は、凝縮器として機能し、冷媒を凝縮して液化させる。また、図1に示すように、ここでは、室外側熱交換器230は、2つの熱交換器10Aおよび熱交換器10Bを有する。冷媒回路において、熱交換器10Aおよび熱交換器10Bが互いに並列になるように配管接続されているものとする。熱交換器10(熱交換器10Aおよび熱交換器10B)の詳細については、後述する。ここでは、室外側熱交換器230は、冷媒と室外の空気との熱交換を行うものとして説明するが、他の外部流体と冷媒との熱交換を行ってもよい。また、室外送風機280は、駆動により、室外機200外部からの空気を室外側熱交換器230に通過させ、室外機200内から流出させる空気の流れを形成する。 The outdoor heat exchanger 230 exchanges heat between the refrigerant and the outdoor air. Here, outdoor heat exchanger 230 of Embodiment 1 functions as an evaporator during heating operation, and evaporates and vaporizes the refrigerant. On the other hand, during cooling operation, outdoor heat exchanger 230 functions as a condenser to condense and liquefy the refrigerant. Also, as shown in FIG. 1, the outdoor heat exchanger 230 here has two heat exchangers 10A and 10B. In the refrigerant circuit, it is assumed that the heat exchanger 10A and the heat exchanger 10B are pipe-connected so as to be parallel to each other. Details of the heat exchanger 10 (heat exchanger 10A and heat exchanger 10B) will be described later. Here, the outdoor heat exchanger 230 is described as exchanging heat between the refrigerant and the outdoor air, but it may exchange heat between the refrigerant and another external fluid. In addition, the outdoor blower 280 is driven to pass air from the outside of the outdoor unit 200 through the outdoor heat exchanger 230 to form an air flow that flows out from the inside of the outdoor unit 200 .
 補助熱交換器240は、たとえば、二重管、またはプレート熱交換器を有する。補助熱交換器240は、冷房運転時において、室外側熱交換器230から流出した冷媒を過冷却する。補助熱交換器240は、室外側熱交換器230から流出して室内側熱交換器110に向かって主冷媒回路を流れる冷媒とバイパス配管260および冷媒量調整弁250を通過した冷媒とを熱交換する冷媒間熱交換器である。バイパス配管260は、バイパス流路を形成する配管である。バイパス流路は、冷房運転時に、補助熱交換器240の主冷媒回路側を通過した冷媒の一部が分岐し、冷媒量調整弁250および補助熱交換器240のバイパス流路側を通過して、アキュムレータ270の冷媒流入側の配管に流れる流路である。冷媒量調整弁250は、バイパス配管260に配置され、バイパス配管260を通過する冷媒の冷媒量を調整する冷媒量調整装置である。このとき、冷媒量調整弁250は、補助熱交換器240を通過して分岐した冷媒の一部を減圧して、補助熱交換器240のバイパス流路側を通過させる。 The auxiliary heat exchanger 240 has, for example, a double tube or plate heat exchanger. Auxiliary heat exchanger 240 subcools the refrigerant flowing out of outdoor heat exchanger 230 during cooling operation. Auxiliary heat exchanger 240 exchanges heat between the refrigerant that flows out of outdoor heat exchanger 230 and flows through the main refrigerant circuit toward indoor heat exchanger 110 and the refrigerant that has passed through bypass pipe 260 and refrigerant amount adjustment valve 250. It is a heat exchanger between refrigerants. A bypass pipe 260 is a pipe that forms a bypass flow path. In the bypass flow path, part of the refrigerant that has passed through the main refrigerant circuit side of the auxiliary heat exchanger 240 branches during cooling operation, passes through the refrigerant amount adjustment valve 250 and the bypass flow path side of the auxiliary heat exchanger 240, This is the flow path through which the coolant flows into the accumulator 270 . Refrigerant amount adjustment valve 250 is a refrigerant amount adjustment device that is arranged in bypass pipe 260 and adjusts the amount of refrigerant that passes through bypass pipe 260 . At this time, the refrigerant amount adjustment valve 250 reduces the pressure of a part of the refrigerant that has passed through the auxiliary heat exchanger 240 and branches, and allows the refrigerant to pass through the bypass flow path side of the auxiliary heat exchanger 240 .
 アキュムレータ270は、圧縮機210の吸入側に設置される。アキュムレータ270は、気体状の冷媒(以下、ガス冷媒という)を通過させ、液状の冷媒(以下、液冷媒という)を溜める。 The accumulator 270 is installed on the suction side of the compressor 210 . The accumulator 270 passes gaseous refrigerant (hereinafter referred to as gas refrigerant) and accumulates liquid refrigerant (hereinafter referred to as liquid refrigerant).
 制御装置400は、空気調和装置の機器を制御する。制御装置400は、たとえば、絞り装置120、圧縮機210、冷媒量調整弁250などを制御する。制御装置400は、その機能を実現する回路デバイスのようなハードウェアで構成することができる。また、マイコン、CPUなどを有する演算装置とソフトウェアとで構成することができる。演算装置がソフトウェアを実行処理することで、制御を実現する。 The control device 400 controls the equipment of the air conditioner. Control device 400 controls, for example, expansion device 120, compressor 210, refrigerant amount adjustment valve 250, and the like. The control device 400 can be configured with hardware such as a circuit device that implements its functions. Moreover, it can be composed of an arithmetic unit having a microcomputer, a CPU, and the like, and software. Control is realized by the arithmetic unit executing software.
 また、空気調和装置は、検出部500を有する。実施の形態1の検出部500は、吐出側圧力センサ510、吸入側圧力センサ511、熱交換器間温度センサ520、補助熱交換器温度センサ521およびバイパス配管温度センサ522を有する。吐出側圧力センサ510は、圧縮機210の吐出側における冷媒の圧力を検出する検出装置である。また、吸入側圧力センサ511は、圧縮機210の吸入側における冷媒の圧力を検出する検出装置である。熱交換器間温度センサ520は、室外側熱交換器230と補助熱交換器240との間における冷媒の温度を検出する検出装置である。したがって、熱交換器間温度センサ520は、冷房運転時に室外側熱交換器230から流出した冷媒の温度を検出する。また、補助熱交換器温度センサ521は補助熱交換器240を通過した冷媒の温度を検出する。ここでは、補助熱交換器温度センサ521は、冷房運転時に補助熱交換器240から流出した過冷却された冷媒の温度を検出する。また、バイパス配管温度センサ522は、バイパス配管260を通過する冷媒の温度を検出する検出装置である。ここでは、バイパス配管温度センサ522は、冷媒量調整弁250および補助熱交換器240のバイパス流路側を通過した後の冷媒の温度を検出する。 The air conditioner also has a detection unit 500. The detection unit 500 of Embodiment 1 has a discharge side pressure sensor 510 , a suction side pressure sensor 511 , an inter-heat exchanger temperature sensor 520 , an auxiliary heat exchanger temperature sensor 521 and a bypass pipe temperature sensor 522 . Discharge-side pressure sensor 510 is a detection device that detects the pressure of the refrigerant on the discharge side of compressor 210 . Also, the suction side pressure sensor 511 is a detection device that detects the pressure of the refrigerant on the suction side of the compressor 210 . Inter-heat exchanger temperature sensor 520 is a detection device that detects the temperature of the refrigerant between outdoor heat exchanger 230 and auxiliary heat exchanger 240 . Therefore, inter-heat-exchanger temperature sensor 520 detects the temperature of the refrigerant flowing out of outdoor heat exchanger 230 during cooling operation. Auxiliary heat exchanger temperature sensor 521 detects the temperature of the refrigerant that has passed through auxiliary heat exchanger 240 . Here, the auxiliary heat exchanger temperature sensor 521 detects the temperature of supercooled refrigerant flowing out of the auxiliary heat exchanger 240 during cooling operation. Bypass pipe temperature sensor 522 is a detection device that detects the temperature of the refrigerant passing through bypass pipe 260 . Here, the bypass pipe temperature sensor 522 detects the temperature of the refrigerant after passing through the refrigerant amount adjustment valve 250 and the bypass passage side of the auxiliary heat exchanger 240 .
<熱交換器10の構成>
 図2は、実施の形態1に係る熱交換器10の構成を説明する図である。室外側熱交換器230は、パラレル配管形となるコルゲートフィンチューブ型の熱交換器10を有する。前述したように、室外機200の室外側熱交換器230は、2台の熱交換器10(熱交換器10Aおよび熱交換器10B)を有する。熱交換器10Aおよび熱交換器10Bは、冷媒回路において、それぞれ並列に配管接続される。ただし、実施の形態1の冷媒回路における接続数および形態は、これに限定するものではない。
<Configuration of heat exchanger 10>
FIG. 2 is a diagram illustrating the configuration of the heat exchanger 10 according to Embodiment 1. FIG. The outdoor heat exchanger 230 has a corrugated fin tube type heat exchanger 10 of parallel pipe type. As described above, the outdoor heat exchanger 230 of the outdoor unit 200 has two heat exchangers 10 (heat exchanger 10A and heat exchanger 10B). The heat exchanger 10A and the heat exchanger 10B are pipe-connected in parallel in the refrigerant circuit. However, the number and form of connections in the refrigerant circuit of Embodiment 1 are not limited to this.
 各熱交換器10は、それぞれ2本の分配ヘッダ11(分配ヘッダ11Aおよび分配ヘッダ11B)、折り返しヘッダ13、複数の扁平伝熱管14および複数のコルゲートフィン15を有する。 Each heat exchanger 10 has two distribution headers 11 (distribution header 11A and distribution header 11B), a folded header 13, a plurality of flat heat transfer tubes 14 and a plurality of corrugated fins 15.
 実施の形態1における室外側熱交換器230の熱交換器10は、2本の分配ヘッダ11と折り返しヘッダ13とによる一対のヘッダが、高さ方向に上下に分かれて配置される。ここで、一対のヘッダの間隔は、800mm以上である。室外機200においては、圧縮機210などの装置が室外機200の下側に設置されているため、配管接続などの関係で、折り返しヘッダ13が上側に位置し、2本の分配ヘッダ11が、折り返しヘッダ13よりも下側の位置に配置される。 In the heat exchanger 10 of the outdoor heat exchanger 230 according to Embodiment 1, a pair of headers consisting of two distribution headers 11 and a folded header 13 are arranged separately vertically in the height direction. Here, the distance between the pair of headers is 800 mm or more. In the outdoor unit 200, since devices such as the compressor 210 are installed below the outdoor unit 200, the return header 13 is positioned above due to piping connections and the like, and the two distribution headers 11 It is arranged below the folded header 13 .
 そして、2本の分配ヘッダ11と折り返しヘッダ13との間には、分配ヘッダ11と折り返しヘッダ13とに対して垂直となり、互いに平行となるように扁平面を対向させた複数の扁平伝熱管14の群が、2列に並んで配置されている。1つの列における扁平伝熱管14の群は、1本の分配ヘッダ11に接続される。前述したように、一対のヘッダの間隔が800mm以上であるため、実施の形態1における室外側熱交換器230の熱交換器10における扁平伝熱管14の長さは800mm以上である。 Between the two distribution headers 11 and the return headers 13, a plurality of flat heat transfer tubes 14 are arranged so that their flat surfaces face each other so as to be perpendicular to the distribution headers 11 and the return headers 13 and parallel to each other. are arranged in two rows. A group of flat heat transfer tubes 14 in one row is connected to one distribution header 11 . As described above, since the distance between the pair of headers is 800 mm or more, the length of the flat heat transfer tubes 14 in the heat exchanger 10 of the outdoor heat exchanger 230 in Embodiment 1 is 800 mm or more.
 分配ヘッダ11は、それぞれ、冷凍サイクル装置を構成する他の装置と配管接続され、熱交換媒体となる流体である冷媒が流入出し、冷媒を分岐または合流させる管である。分配ヘッダ11は、それぞれ、外部からの冷媒が流入出する冷媒出入口管12(冷媒出入口管12Aおよび冷媒出入口管12B)を有する。また、折り返しヘッダ13は、一方の列における扁平伝熱管14の群から、他方の列における扁平伝熱管14の群に折り返す橋渡し(ブリッジ)としての役割を果たすヘッダである。 The distribution headers 11 are pipes that are pipe-connected to other devices that constitute the refrigeration cycle device, flow in and out of the refrigerant, which is a fluid that serves as a heat exchange medium, and branch or join the refrigerant. The distribution headers 11 each have refrigerant inlet/outlet pipes 12 (refrigerant inlet/outlet pipe 12A and refrigerant inlet/outlet pipe 12B) through which refrigerant flows in and out from the outside. Moreover, the turn-back header 13 is a header that serves as a bridge that turns back a group of flat heat transfer tubes 14 in one row to a group of flat heat transfer tubes 14 in the other row.
 扁平伝熱管14は、断面が扁平形状を有し、空気の流通方向である奥行き方向に沿った扁平形状の長手側における外側面が平面状であり、当該長手方向に直交する短手側における外側面が曲面状である伝熱管である。実施の形態1の扁平伝熱管14は、管の内部において、冷媒の流路となる複数の穴を有する多穴扁平伝熱管である。実施の形態1において、扁平伝熱管14の穴は、分配ヘッダ11と折り返しヘッダ13との間の流路となるため、高さ方向を向いて形成されている。そして、前述したように、扁平伝熱管14は、長手側における外側面が対向して、水平方向に等間隔に配列される。実施の形態1における室外側熱交換器230の熱交換器10を製造する際、各扁平伝熱管14は、分配ヘッダ11と折り返しヘッダ13とが有する挿入穴(図示せず)に挿し込まれ、ろう付けされ、接合される。ろう付けのろう材は、たとえば、アルミニウムを含むろう材が使用される。これにより、分配ヘッダ11と折り返しヘッダ13と各扁平伝熱管14の内部とが連通する。 The flat heat transfer tube 14 has a flat shape in cross section, and has a planar outer surface on the longitudinal side of the flat shape along the depth direction, which is the direction of air flow. The heat transfer tube has curved side surfaces. The flat heat transfer tube 14 of Embodiment 1 is a multi-hole flat heat transfer tube having a plurality of holes serving as refrigerant flow paths inside the tube. In Embodiment 1, the holes of the flat heat transfer tubes 14 are formed to face the height direction so as to form flow paths between the distribution headers 11 and the folded headers 13 . As described above, the flat heat transfer tubes 14 are arranged at equal intervals in the horizontal direction so that the outer surfaces on the longitudinal sides face each other. When manufacturing the heat exchanger 10 of the outdoor heat exchanger 230 in Embodiment 1, each flat heat transfer tube 14 is inserted into an insertion hole (not shown) of the distribution header 11 and the folded header 13, Brazed and joined. As a brazing material for brazing, for example, a brazing material containing aluminum is used. Thereby, the distribution header 11, the folded header 13, and the inside of each flat heat transfer tube 14 communicate with each other.
 また、配列された扁平伝熱管14の互いに対向する扁平面間には、コルゲートフィン15が配列される。コルゲートフィン15は、冷媒と外気との伝熱面積を広げるために配列される。コルゲートフィン15は、板材に対してコルゲート加工が行われ、山折りおよび谷折りを繰返すつづら折りにより、折り曲げられて波形状に、蛇腹となって形成される。ここで、波形状に形成されてできた凹凸による折り曲げ部分は、波形状の頂部となる。実施の形態1において、コルゲートフィン15の頂部は、高さ方向にわたって並んでいる。コルゲートフィン15は、波形状の頂部と扁平伝熱管14の扁平面とが面接触している。そして、接触部分は、ろう材によってろう付けされ、接合される。コルゲートフィン15の板材は、たとえば、アルミニウム合金を材質とする。そして、板材表面には、ろう材層がクラッドされる。クラッドされたろう材層は、たとえば、アルミシリコン系のアルミニウムを含むろう材を基本とする。 Corrugated fins 15 are arranged between the flat surfaces of the arranged flat heat transfer tubes 14 facing each other. The corrugated fins 15 are arranged to expand the heat transfer area between the refrigerant and the outside air. The corrugated fins 15 are corrugated on a plate material, and are bent into a wavy bellows shape by repeating mountain folds and valley folds. Here, the bent portion due to the unevenness formed in the wavy shape becomes the apex of the wavy shape. In Embodiment 1, the tops of the corrugated fins 15 are aligned in the height direction. The corrugated fins 15 are in surface contact with the flat surfaces of the flat heat transfer tubes 14 and the corrugated tops. Then, the contact portion is brazed and joined with a brazing material. The plate material of the corrugated fins 15 is made of, for example, an aluminum alloy. Then, the surface of the plate material is clad with a brazing material layer. The clad braze layer is based on, for example, an aluminum-containing braze material of the aluminum-silicon system.
<空気調和装置の動作>
 次に、空気調和装置の各機器の動作について、冷媒の流れに基づいて説明する。まず、暖房運転における冷媒回路の各機器の動作を、冷媒の流れに基づいて説明する。暖房運転のときには、制御装置400は、冷媒量調整弁250を閉止させる。図1の実線矢印は、暖房運転における冷媒の流れを示している。圧縮機210により圧縮されて吐出した高温および高圧のガス冷媒は、四方弁220を通過し、室内側熱交換器110に流入する。ガス冷媒は、室内側熱交換器110を通過中に、たとえば、空調対象空間の空気と熱交換することで凝縮し、液化する。凝縮し、液化した冷媒は、絞り装置120を通過する。冷媒は、絞り装置120を通過する際、減圧される。絞り装置120で減圧されて気液二相状態となった冷媒は、補助熱交換器240および室外側熱交換器230を通過する。ここで、冷媒量調整弁250が閉止しているため、補助熱交換器240では、冷媒間での熱交換は行われない。室外側熱交換器230において、室外送風機280から送られた室外の空気と熱交換することで蒸発し、ガス化した冷媒は、四方弁220およびアキュムレータ270を通過して、再度、圧縮機210に吸入される。以上のようにして、空気調和装置の冷媒が循環し、暖房に係る空気調和を行う。
<Operation of air conditioner>
Next, the operation of each device of the air conditioner will be described based on the flow of refrigerant. First, the operation of each device in the refrigerant circuit in heating operation will be described based on the flow of the refrigerant. During heating operation, control device 400 closes refrigerant amount adjustment valve 250 . Solid line arrows in FIG. 1 indicate the flow of the refrigerant in the heating operation. The high-temperature and high-pressure gas refrigerant compressed by compressor 210 and discharged passes through four-way valve 220 and flows into indoor heat exchanger 110 . The gas refrigerant condenses and liquefies by exchanging heat with the air in the air-conditioned space while passing through the indoor heat exchanger 110 . The condensed and liquefied refrigerant passes through the throttle device 120 . The refrigerant is depressurized as it passes through the expansion device 120 . The refrigerant depressurized by the expansion device 120 and brought into a gas-liquid two-phase state passes through the auxiliary heat exchanger 240 and the outdoor heat exchanger 230 . Here, since the refrigerant amount adjustment valve 250 is closed, heat exchange between refrigerants is not performed in the auxiliary heat exchanger 240 . In the outdoor heat exchanger 230, the refrigerant evaporated and gasified by exchanging heat with the outdoor air sent from the outdoor blower 280 passes through the four-way valve 220 and the accumulator 270, and is returned to the compressor 210. inhaled. As described above, the refrigerant in the air conditioner circulates to perform air conditioning for heating.
 次に、冷房運転について説明する。冷房運転のときには、制御装置400は、冷媒量調整弁250を調整し、主冷媒回路を通過する冷媒の一部をバイパス配管260に通過させる。図1の点線矢印は、冷房運転における冷媒の流れを示している。圧縮機210により圧縮されて吐出した高温および高圧のガス冷媒は、四方弁220を通過し、室外側熱交換器230に流入する。そして、冷媒は、室外側熱交換器230を通過して、室外送風機280が供給する室外の空気と熱交換することで凝縮し、液化する。補助熱交換器240の主冷媒回路側を通過した冷媒の一部は、バイパス配管260を通過し、冷媒量調整弁250において減圧され、低温および低圧の冷媒となって補助熱交換器240のバイパス配管側を通過する。このため、冷媒間の熱交換が行われ、補助熱交換器240の主冷媒回路側を通過した冷媒が過冷却される。液化した冷媒は、絞り装置120を通過する。ここで、冷媒は、絞り装置120を通過する際、減圧され、気液二相状態となる。絞り装置120で減圧されて気液二相状態となった冷媒は、室内側熱交換器110を通過する。そして、室内側熱交換器110において、たとえば、空調対象空間の空気と熱交換することで蒸発し、ガス化した冷媒は、四方弁220を通過して、再度、圧縮機210に吸入される。以上のようにして空気調和装置の冷媒が循環し、冷房に係る空気調和を行う。 Next, I will explain the cooling operation. During cooling operation, control device 400 adjusts refrigerant amount adjustment valve 250 to allow a portion of the refrigerant passing through the main refrigerant circuit to pass through bypass pipe 260 . Dotted arrows in FIG. 1 indicate the flow of the refrigerant in the cooling operation. The high-temperature and high-pressure gas refrigerant compressed by compressor 210 and discharged passes through four-way valve 220 and flows into outdoor heat exchanger 230 . Then, the refrigerant passes through the outdoor heat exchanger 230 and exchanges heat with the outdoor air supplied by the outdoor fan 280 to be condensed and liquefied. A part of the refrigerant that has passed through the main refrigerant circuit side of the auxiliary heat exchanger 240 passes through the bypass pipe 260, is decompressed in the refrigerant amount adjustment valve 250, becomes a low-temperature and low-pressure refrigerant, and bypasses the auxiliary heat exchanger 240. Pass through the piping side. Therefore, heat is exchanged between the refrigerants, and the refrigerant passing through the main refrigerant circuit side of the auxiliary heat exchanger 240 is subcooled. The liquefied refrigerant passes through the throttle device 120 . Here, when the refrigerant passes through the expansion device 120, it is decompressed and becomes a gas-liquid two-phase state. The refrigerant depressurized by the expansion device 120 and in a gas-liquid two-phase state passes through the indoor heat exchanger 110 . Then, in the indoor heat exchanger 110, for example, the refrigerant evaporated and gasified by exchanging heat with the air in the air-conditioned space passes through the four-way valve 220 and is sucked into the compressor 210 again. As described above, the refrigerant in the air conditioner circulates to perform air conditioning for cooling.
 図3は、実施の形態1に係る熱交換器内の冷媒圧力損失およびCOPとターン数との関係を説明する図である。ここで、ターン数は、室外側熱交換器230の熱交換器1を通過する冷媒が分配ヘッダ11において折り返される回数であるものとする。たとえば、分配ヘッダ11および折り返しヘッダ13内を仕切板などで仕切って、熱交換器1内を複数のブロックに分けると、ヘッダ内において、ブロック間で冷媒の橋渡しをすることができる。このため、熱交換器1が、冷媒が複数回折り返して上下方向に往復して流れるターン構成となる。 FIG. 3 is a diagram for explaining the relationship between the refrigerant pressure loss and COP in the heat exchanger according to Embodiment 1 and the number of turns. Here, the number of turns is the number of times the refrigerant passing through the heat exchanger 1 of the outdoor heat exchanger 230 is turned back at the distribution header 11 . For example, if the inside of the distribution header 11 and the return header 13 are partitioned by a partition plate or the like to divide the inside of the heat exchanger 1 into a plurality of blocks, the refrigerant can be bridged between the blocks inside the header. For this reason, the heat exchanger 1 has a turn configuration in which the refrigerant is folded back several times and flows back and forth in the vertical direction.
 空気調和装置が暖房運転を行う際、室外側熱交換器230は、蒸発器として機能する。図3に示すように、ターン数が増加すると、冷媒圧力損失が増加し、暖房運転におけるCOP(以下、暖房COPという)は低下する。そして、分配ヘッダ11内を仕切らず、ターン数が0の場合が、最も暖房COPが高い。したがって、実施の形態1の室外側熱交換器230は、熱交換器1において、ヘッダ内を仕切らない構成とする。 The outdoor heat exchanger 230 functions as an evaporator when the air conditioner performs heating operation. As shown in FIG. 3, when the number of turns increases, the refrigerant pressure loss increases and the COP in heating operation (hereinafter referred to as heating COP) decreases. When the inside of the distribution header 11 is not partitioned and the number of turns is 0, the heating COP is the highest. Therefore, in the heat exchanger 1, the outdoor heat exchanger 230 of Embodiment 1 has a configuration in which the inside of the header is not partitioned.
 図4は、熱交換器における液冷媒の滞留状態について説明する図である。空気調和装置が冷房運転を行う場合、室外側熱交換器230は凝縮器となる。室外側熱交換器230の分配ヘッダ11内を仕切らずにターン数を0としたとき、サーモグラフィーによる表面温度を計測すると、冷媒出入口管12に対し奥側に位置する扁平伝熱管14に液冷媒の滞留が発生する。 FIG. 4 is a diagram for explaining the stagnation state of the liquid refrigerant in the heat exchanger. When the air conditioner performs cooling operation, the outdoor heat exchanger 230 serves as a condenser. When the inside of the distribution header 11 of the outdoor heat exchanger 230 is not partitioned and the number of turns is set to 0, the surface temperature is measured by thermography. Stagnation occurs.
 図5は、冷媒の流入側の冷媒出入口管12および流出側の冷媒出入口管12の間における差圧と液冷媒が滞留する割合との関係を示す図である。室外側熱交換器230の分配ヘッダ11内を仕切らずにターン数を0としたとき、扁平伝熱管14を流れる冷媒の流速が遅くなって、冷媒出入口管12の差圧が小さくなる。このため、図5に示すように、扁平伝熱管14内で凝縮した液冷媒の液ヘッドよりも冷媒出入口管12間の差圧の方が小さく、液冷媒が滞留する割合が大きくなることがわかる。 FIG. 5 is a diagram showing the relationship between the differential pressure between the refrigerant inlet/outlet pipe 12 on the refrigerant inflow side and the refrigerant inlet/outlet pipe 12 on the refrigerant outflow side and the rate at which the liquid refrigerant stays. When the inside of the distribution header 11 of the outdoor heat exchanger 230 is not partitioned and the number of turns is set to 0, the flow velocity of the refrigerant flowing through the flat heat transfer tubes 14 slows down, and the differential pressure of the refrigerant inlet/outlet pipes 12 decreases. Therefore, as shown in FIG. 5, the differential pressure between the refrigerant inlet/outlet pipes 12 is smaller than the liquid head of the liquid refrigerant condensed in the flat heat transfer tubes 14, and the liquid refrigerant stays at a higher rate. .
 図6は、液冷媒の過冷却度と熱交換器の凝縮性能との関係を示す図である。図6に示すように、液冷媒の過冷却度を大きくすると、液冷媒が滞留する割合が大きくなる。したがって、熱交換器を通過する冷媒の過冷却度を大きくすると、液冷媒の滞留がない条件で予測したときの凝縮性能に対し、凝縮性能が悪くなる。このため、図6に示すように、熱交換器を通過する冷媒の過冷却度が小さくなるようにすれば、液冷媒の滞留による影響が小さくなり、予測に近い凝縮性能を確保することができる。 FIG. 6 is a diagram showing the relationship between the degree of supercooling of the liquid refrigerant and the condensation performance of the heat exchanger. As shown in FIG. 6, when the degree of subcooling of the liquid refrigerant is increased, the rate at which the liquid refrigerant stays increases. Therefore, if the degree of supercooling of the refrigerant passing through the heat exchanger is increased, the condensation performance becomes worse than the condensation performance predicted under the condition where no liquid refrigerant is retained. Therefore, as shown in FIG. 6, if the degree of subcooling of the refrigerant passing through the heat exchanger is reduced, the effect of the liquid refrigerant stagnation is reduced, and condensing performance close to prediction can be ensured. .
 図7は、実施の形態1に係る空気調和装置におけるP-h線図である。図7に示すように、冷媒の過冷却度(SC)が小さいと、冷凍効果が小さくなる。このため、冷凍効果×冷媒循環量として算出することができる冷房能力が減少し、空気調和装置は能力不足となる。 FIG. 7 is a Ph diagram in the air conditioner according to Embodiment 1. FIG. As shown in FIG. 7, when the degree of supercooling (SC) of the refrigerant is small, the refrigerating effect becomes small. For this reason, the cooling capacity that can be calculated by multiplying the cooling effect by the refrigerant circulation amount is reduced, and the air conditioner becomes insufficient in capacity.
 図8は、過冷却度とCOPとの関係を示す図である。液冷媒が滞留しないように、冷媒の過冷却度を小さくすると、冷房運転におけるCOP(以下、冷房COPという)が最大となるピークポイントからずれることにある。そこで、実施の形態1の空気調和装置では、冷房運転を行うときに、室外側熱交換器230を通過する液冷媒の過冷却度は小さくした上で、補助熱交換器240が冷媒の過冷却度を確保する。 FIG. 8 is a diagram showing the relationship between the degree of supercooling and the COP. If the degree of subcooling of the refrigerant is reduced so that the liquid refrigerant does not stagnate, the COP in the cooling operation (hereinafter referred to as cooling COP) deviates from the peak point at which it reaches its maximum. Therefore, in the air conditioner of Embodiment 1, when the cooling operation is performed, the degree of supercooling of the liquid refrigerant passing through the outdoor heat exchanger 230 is reduced, and the auxiliary heat exchanger 240 supercools the refrigerant. Ensure degree.
 以上のように、実施の形態1の空気調和装置によれば、室外側熱交換器230は、分配ヘッダ11と折り返しヘッダ13とを上下方向に有し、冷媒の折り返しを行って、複数列の扁平伝熱管14を通過させるものである。そして、室外側熱交換器230が凝縮器として機能するときに、室外側熱交換器230から流出する冷媒を過冷却する補助熱交換器240を有する。このため、室外側熱交換器230からは過冷却度が小さい冷媒の過冷却度が流出し、補助熱交換器240において冷媒に過冷却度をつけることができる。したがって、室外側熱交換器230における液冷媒の滞留を防止することができる。一方で、室外側熱交換器230が蒸発器として機能する暖房運転時などにおいては、室外側熱交換器230におけるターン数が0となる。このため、冷媒の圧力損失の増加を抑制させることができる。 As described above, according to the air conditioner of Embodiment 1, the outdoor heat exchanger 230 has the distribution header 11 and the folded header 13 in the vertical direction, and the refrigerant is folded back to form a plurality of columns. It allows the flat heat transfer tubes 14 to pass through. It also has an auxiliary heat exchanger 240 that supercools the refrigerant flowing out of the outdoor heat exchanger 230 when the outdoor heat exchanger 230 functions as a condenser. Therefore, the degree of supercooling of the refrigerant with a small degree of supercooling flows out from the outdoor heat exchanger 230 , and the degree of supercooling can be added to the refrigerant in the auxiliary heat exchanger 240 . Therefore, it is possible to prevent the liquid refrigerant from staying in the outdoor heat exchanger 230 . On the other hand, during heating operation in which outdoor heat exchanger 230 functions as an evaporator, the number of turns in outdoor heat exchanger 230 is zero. Therefore, it is possible to suppress an increase in the pressure loss of the refrigerant.
実施の形態2.
 図9は、実施の形態2に係る空気調和装置の構成を示す図である。図9において、図1と同じ符号を付している機器などについては、実施の形態1で説明したことと同様の機能および動作を行う。図9に示すように、実施の形態2の空気調和装置は、受液器285を有する。受液器285は、液冷媒を貯留する。受液器285は、主冷媒回路において、室外側熱交換器230と補助熱交換器240との間に設置される。
Embodiment 2.
9 is a diagram showing a configuration of an air conditioner according to Embodiment 2. FIG. In FIG. 9, devices and the like denoted by the same reference numerals as in FIG. 1 perform the same functions and operations as those described in the first embodiment. As shown in FIG. 9 , the air conditioner of Embodiment 2 has a liquid receiver 285 . The liquid receiver 285 stores liquid refrigerant. The liquid receiver 285 is installed between the outdoor heat exchanger 230 and the auxiliary heat exchanger 240 in the main refrigerant circuit.
 図10は、実施の形態2における空気調和装置のP-h線図である。図10に示すように、液冷媒を貯留する受液器285を有することで、空気調和装置が冷房運転を行うときに、室外側熱交換器230から流出する冷媒は、過冷却されずに飽和液となる。このため、制御装置400が過冷却に係る制御を行わなくても、冷媒は、過冷却されずに室外側熱交換器230から流出する。 FIG. 10 is a Ph diagram of the air conditioner according to the second embodiment. As shown in FIG. 10, by having the liquid receiver 285 that stores the liquid refrigerant, the refrigerant flowing out from the outdoor heat exchanger 230 is saturated without being supercooled when the air conditioner performs cooling operation. becomes liquid. Therefore, the refrigerant flows out of the outdoor heat exchanger 230 without being supercooled even if the control device 400 does not perform control related to supercooling.
 以上のように、実施の形態2の空気調和装置は、室外側熱交換器230と補助熱交換器240との間に受液器285を備える構成である。このため、制御装置400が、冷媒回路のアクチュエータなどの機器により過冷却に係る制御を行わなくても、室外側熱交換器230内を通過する冷媒の過冷却度を抑えることができる。したがって、室外側熱交換器230内に液冷媒が滞留せず、凝縮性能の低下を防止することができる。そして、補助熱交換器240で冷媒の過冷却度を確保することで、冷房COPを高めることができる。 As described above, the air conditioner of Embodiment 2 is configured to include the liquid receiver 285 between the outdoor heat exchanger 230 and the auxiliary heat exchanger 240 . Therefore, the degree of supercooling of the refrigerant passing through the outdoor heat exchanger 230 can be suppressed without the control device 400 performing control related to supercooling by a device such as an actuator of the refrigerant circuit. Therefore, the liquid refrigerant does not stay in the outdoor heat exchanger 230, and deterioration of the condensation performance can be prevented. By ensuring the degree of subcooling of the refrigerant in the auxiliary heat exchanger 240, the cooling COP can be increased.
実施の形態3.
 図11は、実施の形態3に係る空気調和装置の構成を示す図である。図11において、図1と同じ符号を付している機器などについては、実施の形態1で説明したことと同様の機能および動作を行う。図11に示すように、実施の形態3の空気調和装置は、二方弁290を有する。二方弁290は、熱交換器10Aへの冷媒の通過をさせるかまたは通過制限するかを制御する開閉装置となる弁である。ここで、空気調和装置は、圧力損失を抑制するために、開閉装置を有するものとして説明するが、これに限定しない。開閉装置の代わりに、冷媒の流量を調整することができる流量調整装置であってもよい。
Embodiment 3.
11 is a diagram showing a configuration of an air conditioner according to Embodiment 3. FIG. In FIG. 11, devices and the like denoted by the same reference numerals as in FIG. 1 perform the same functions and operations as those described in the first embodiment. As shown in FIG. 11, the air conditioner of Embodiment 3 has a two-way valve 290. In FIG. The two-way valve 290 is a valve serving as an opening/closing device that controls whether the passage of the refrigerant to the heat exchanger 10A is allowed or restricted. Here, the air conditioner is described as having an opening/closing device in order to suppress pressure loss, but the present invention is not limited to this. A flow regulating device capable of regulating the flow rate of the refrigerant may be used instead of the opening/closing device.
 空気調和装置が冷房運転を行うときには、室外側熱交換器230は、凝縮器として機能する。制御装置400は、空気調和の負荷が小さいときに、圧縮機210を少ない回転数で駆動させ、駆動容量を低減する制御を行う。このとき、冷媒回路における冷媒循環量が少なくなる。このようなときに、熱交換器10Aおよび熱交換器10Bの両方に冷媒を流入出させると、冷媒の圧力損失が高く、冷媒の流速が遅くなる。そこで、実施の形態3の空気調和装置は、二方弁290を有する。 The outdoor heat exchanger 230 functions as a condenser when the air conditioner performs cooling operation. Control device 400 performs control to reduce drive capacity by driving compressor 210 at a low rotational speed when the air conditioning load is small. At this time, the refrigerant circulation amount in the refrigerant circuit is reduced. In such a case, if the refrigerant flows into and out of both the heat exchanger 10A and the heat exchanger 10B, the pressure loss of the refrigerant increases and the flow velocity of the refrigerant slows down. Therefore, the air conditioner of Embodiment 3 has two-way valve 290 .
 図12は、実施の形態3に係る制御装置400が行う二方弁290の開閉制御の流れを説明する図である。制御装置400は、空気調和装置が運転を開始する際、冷房運転を行うか暖房運転を行うかどうかを判定する(ステップS1)。制御装置400は、空気調和装置が暖房運転を行うと判定すると、二方弁290を開放する(ステップS5)。 FIG. 12 is a diagram explaining the flow of opening/closing control of the two-way valve 290 performed by the control device 400 according to the third embodiment. When the air conditioner starts to operate, the control device 400 determines whether to perform the cooling operation or the heating operation (step S1). When the control device 400 determines that the air conditioner will perform the heating operation, the control device 400 opens the two-way valve 290 (step S5).
 制御装置400は、空気調和装置が冷房運転を行うと判定すると、圧縮機210が有するモータの回転数を検出する(ステップS2)。ここで、制御装置400は、たとえば、インバータ装置215の制御に係る駆動周波数に基づいて、モータの回転数を検出する。制御装置400は、検出したモータの回転数があらかじめ設定した設定回転数以上であるかどうかを判定する(ステップS3)。制御装置400は、検出したモータの回転数が設定回転数以上であると判定すると、二方弁290を開放する(ステップS5)。 When the control device 400 determines that the air conditioner will perform the cooling operation, it detects the rotation speed of the motor of the compressor 210 (step S2). Here, control device 400 detects the number of revolutions of the motor, for example, based on the drive frequency related to the control of inverter device 215 . The control device 400 determines whether or not the detected rotation speed of the motor is equal to or higher than a preset rotation speed (step S3). When the control device 400 determines that the detected rotation speed of the motor is equal to or higher than the set rotation speed, the control device 400 opens the two-way valve 290 (step S5).
 一方、制御装置400は、検出したモータの回転数が設定回転数未満であると判定すると、二方弁290を閉止する(ステップS4)。制御装置400は、冷房運転のときには、運転が終了したと判定するまで(ステップS6)、ステップS2に戻って、二方弁290の開閉制御を続ける。 On the other hand, when the controller 400 determines that the detected number of rotations of the motor is less than the set number of rotations, it closes the two-way valve 290 (step S4). During the cooling operation, the control device 400 returns to step S2 and continues opening/closing control of the two-way valve 290 until it determines that the operation has ended (step S6).
 以上のように、実施の形態3の空気調和装置は、室外側熱交換器230の一部における冷媒の通過制限をする二方弁290を有する。そして、制御装置400は、空気調和装置が冷房運転を行うときに、圧縮機210の回転数が少なく、駆動容量が少ないと判定すると、二方弁290を閉止させる。このため、空気調和装置が冷房運転を行い、室外側熱交換器230が凝縮器として機能するときには、冷媒の圧力損失を抑制し、流速の低下を防ぐことができる。このため、空気調和装置は、冷房COPの低下を抑制することができる。また、空気調和装置が暖房運転を行い、室外側熱交換器230が蒸発器として機能するときには、制御装置400は、二方弁290を開放する。このため、空気調和装置は、運転に適した状態の暖房COPとすることができる。 As described above, the air conditioner of Embodiment 3 has the two-way valve 290 that restricts passage of refrigerant in a part of the outdoor heat exchanger 230 . Then, when the control device 400 determines that the rotational speed of the compressor 210 is low and the drive capacity is low when the air conditioner performs the cooling operation, the control device 400 closes the two-way valve 290 . Therefore, when the air conditioner performs cooling operation and the outdoor heat exchanger 230 functions as a condenser, the pressure loss of the refrigerant can be suppressed and the flow velocity can be prevented from decreasing. Therefore, the air conditioner can suppress a decrease in the cooling COP. Further, when the air conditioner performs heating operation and the outdoor heat exchanger 230 functions as an evaporator, the control device 400 opens the two-way valve 290 . Therefore, the air conditioner can have the heating COP in a state suitable for operation.
実施の形態4.
 図13は、実施の形態4に係る制御装置400が行う絞り装置120の開度制御の流れを説明する図である。実施の形態4の空気調和装置における機器構成は、実施の形態1~実施の形態3で説明した空気調和装置と同様である。実施の形態4の空気調和装置は、室外側熱交換器230を凝縮器として機能させるときに、制御装置400が絞り装置120の開度を制御し、室外側熱交換器230から流出する液冷媒の過冷却度が設定範囲内となるように制御する。
Embodiment 4.
13A and 13B are diagrams for explaining the flow of opening degree control of the expansion device 120 performed by the control device 400 according to the fourth embodiment. The equipment configuration of the air conditioner of Embodiment 4 is the same as that of the air conditioners described in Embodiments 1 to 3. FIG. In the air conditioner of Embodiment 4, when the outdoor heat exchanger 230 functions as a condenser, the control device 400 controls the opening degree of the expansion device 120, and the liquid refrigerant flowing out from the outdoor heat exchanger 230 is controlled so that the degree of supercooling is within the set range.
 制御装置400は、吐出側圧力センサ510が検出した吐出圧力Pdを取得する(ステップS10)。そして、制御装置400は、吐出圧力Pdから冷媒の凝縮温度CTを算出する(ステップS11)。 The control device 400 acquires the discharge pressure Pd detected by the discharge-side pressure sensor 510 (step S10). Then, the control device 400 calculates the condensation temperature CT of the refrigerant from the discharge pressure Pd (step S11).
 また、制御装置400は、熱交換器間温度センサ520が検出した凝縮出口冷媒温度TCOを取得する(ステップS12)。そして、制御装置400は、凝縮温度CTと凝縮出口冷媒温度TCOとの差である過冷却度SC(=凝縮温度CT-凝縮出口冷媒温度TCO)を算出する(ステップS13)。 Also, the control device 400 acquires the condensation outlet refrigerant temperature TCO detected by the inter-heat-exchanger temperature sensor 520 (step S12). Then, the controller 400 calculates the degree of subcooling SC (=condensing temperature CT-condensing outlet refrigerant temperature TCO), which is the difference between the condensation temperature CT and the condensation outlet refrigerant temperature TCO (step S13).
 制御装置400は、算出した過冷却度SCがあらかじめ設定した設定過冷却度下限SC1よりも小さいかどうかを判定する(ステップS14)。制御装置400は、過冷却度SCが設定過冷却度下限SC1よりも小さいと判定すると、絞り装置120の開度を小さくさせる制御を行う(ステップS16)。 The control device 400 determines whether or not the calculated supercooling degree SC is smaller than the preset supercooling degree lower limit SC1 (step S14). When the control device 400 determines that the supercooling degree SC is smaller than the set supercooling degree lower limit SC1, the control device 400 performs control to reduce the opening degree of the expansion device 120 (step S16).
 一方、制御装置400は、過冷却度SCが設定過冷却度下限SC1よりも小さくない(設定過冷却度下限SC1以上である)と判定すると、過冷却度SCがあらかじめ設定した設定過冷却度上限SC2よりも大きいかどうかを判定する(ステップS15)。制御装置400は、過冷却度SCが設定過冷却度上限SC2よりも大きくない(設定過冷却度上限SC2以下である)と判定すると、絞り装置120の開度を維持させる(ステップS17)。制御装置400は、過冷却度SCが設定過冷却度上限SC2よりも大きいと判定すると、絞り装置120の開度を大きくさせる制御を行う(ステップS18)。制御装置400は、あらかじめ設定した設定時間が経過すると(ステップS19)、ステップS10に戻って、処理を繰り返す。 On the other hand, when the control device 400 determines that the degree of supercooling SC is not less than the set supercooling degree lower limit SC1 (is greater than or equal to the set supercooling degree lower limit SC1), the degree of supercooling SC reaches the preset set supercooling degree upper limit. It is determined whether it is greater than SC2 (step S15). When the controller 400 determines that the supercooling degree SC is not greater than the set supercooling degree upper limit SC2 (is equal to or less than the set supercooling degree upper limit SC2), it maintains the opening of the expansion device 120 (step S17). When the control device 400 determines that the supercooling degree SC is larger than the set supercooling degree upper limit SC2, it performs control to increase the opening of the expansion device 120 (step S18). When the preset time has elapsed (step S19), the control device 400 returns to step S10 and repeats the process.
 以上のように、実施の形態4の空気調和装置によれば、制御装置400は、冷房運転時において、室外側熱交換器230から流出する液冷媒の過冷却度が設定温度範囲内となるように制御する。このため、室外側熱交換器230内において液冷媒が滞留することによる凝縮性能の低下を防止し、冷房COPの低下を抑制することができる。 As described above, according to the air conditioner of Embodiment 4, control device 400 controls the degree of supercooling of the liquid refrigerant flowing out of outdoor heat exchanger 230 to be within the set temperature range during cooling operation. to control. Therefore, it is possible to prevent the deterioration of the condensation performance due to the liquid refrigerant remaining in the outdoor heat exchanger 230, and suppress the deterioration of the cooling COP.
実施の形態5.
 図14は、実施の形態5に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。実施の形態5の空気調和装置における機器構成は、実施の形態1~実施の形態3で説明した空気調和装置と同様である。実施の形態5の空気調和装置は、室外側熱交換器230を凝縮器として機能させるときに、制御装置400が冷媒量調整弁250の開度を制御する。このとき、制御装置400は、室外側熱交換器230と補助熱交換器240との間を通過する液冷媒の温度と補助熱交換器240から主冷媒回路に流出する冷媒の温度との温度差が設定範囲内となるように制御する。
Embodiment 5.
FIG. 14 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjustment valve 250 performed by the control device 400 according to the fifth embodiment. The equipment configuration of the air conditioner of Embodiment 5 is the same as that of the air conditioners described in Embodiments 1 to 3. FIG. In the air conditioner of Embodiment 5, control device 400 controls the degree of opening of refrigerant amount adjustment valve 250 when outdoor heat exchanger 230 functions as a condenser. At this time, the controller 400 controls the temperature difference between the temperature of the liquid refrigerant passing between the outdoor heat exchanger 230 and the auxiliary heat exchanger 240 and the temperature of the refrigerant flowing out from the auxiliary heat exchanger 240 to the main refrigerant circuit. is within the set range.
 制御装置400は、熱交換器間温度センサ520が検出した凝縮出口冷媒温度TCOを取得する(ステップS21)。また、制御装置400は、補助熱交換器温度センサ521が検出した過冷却冷媒温度ThOを取得する(ステップS22)。そして、制御装置400は、凝縮出口冷媒温度TCOと過冷却冷媒温度ThOとの温度差Δth(=凝縮出口冷媒温度TCO-過冷却冷媒温度ThO)を算出する(ステップS23)。 The control device 400 acquires the condensation outlet refrigerant temperature TCO detected by the inter-heat-exchanger temperature sensor 520 (step S21). The control device 400 also acquires the supercooled refrigerant temperature ThO detected by the auxiliary heat exchanger temperature sensor 521 (step S22). Then, the control device 400 calculates the temperature difference Δth between the condensation outlet refrigerant temperature TCO and the supercooled refrigerant temperature ThO (=condensation outlet refrigerant temperature TCO−supercooled refrigerant temperature ThO) (step S23).
 制御装置400は、算出した温度差Δthがあらかじめ設定した温度差下限ΔT1よりも小さいかどうかを判定する(ステップS24)。制御装置400は、温度差Δthが温度差下限ΔT1よりも小さいと判定すると、冷媒量調整弁250の開度を大きくさせる制御を行う(ステップS26)。 The control device 400 determines whether the calculated temperature difference Δth is smaller than the preset temperature difference lower limit ΔT1 (step S24). When determining that the temperature difference Δth is smaller than the temperature difference lower limit ΔT1, the control device 400 performs control to increase the opening degree of the refrigerant amount adjustment valve 250 (step S26).
 一方、制御装置400は、温度差Δthが温度差下限ΔT1よりも小さくない(温度差Δthが温度差下限ΔT1以上である)と判定すると、温度差Δthがあらかじめ設定した温度差上限ΔT2よりも大きいかどうかを判定する(ステップS25)。制御装置400は、温度差Δthが温度差上限ΔT2よりも大きくない(温度差上限ΔT2以下である)と判定すると、冷媒量調整弁250の開度を維持させる(ステップS27)。制御装置400は、温度差Δthが温度差上限ΔT2よりも大きいと判定すると、冷媒量調整弁250の開度を小さくさせる制御を行う(ステップS28)。制御装置400は、あらかじめ設定した設定時間が経過すると(ステップS29)、ステップS21に戻って、処理を繰り返す。 On the other hand, when control device 400 determines that temperature difference Δth is not smaller than temperature difference lower limit ΔT1 (temperature difference Δth is equal to or greater than temperature difference lower limit ΔT1), temperature difference Δth is larger than preset temperature difference upper limit ΔT2. It is determined whether or not (step S25). When controller 400 determines that temperature difference Δth is not greater than temperature difference upper limit ΔT2 (is equal to or less than temperature difference upper limit ΔT2), control device 400 maintains the opening degree of refrigerant amount adjustment valve 250 (step S27). When the control device 400 determines that the temperature difference Δth is larger than the temperature difference upper limit ΔT2, it performs control to reduce the opening degree of the refrigerant amount adjustment valve 250 (step S28). When the preset time has elapsed (step S29), the control device 400 returns to step S21 and repeats the process.
 以上のように、実施の形態5の空気調和装置によれば、制御装置400は、室外側熱交換器230と補助熱交換器240との間を通過する液冷媒の温度と補助熱交換器240から主冷媒回路に流出する冷媒の温度との温度差が設定範囲内となるように制御する。このため、室外側熱交換器230内から流出する液冷媒の過冷却度が小さくても、補助熱交換器240において過冷却度を確保することができるので、冷房COPの低下を抑制することができる。 As described above, according to the air conditioner of Embodiment 5, control device 400 controls the temperature of the liquid refrigerant passing between outdoor heat exchanger 230 and auxiliary heat exchanger 240 and the temperature of auxiliary heat exchanger 240 control is performed so that the temperature difference from the temperature of the refrigerant flowing out from to the main refrigerant circuit is within a set range. Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
実施の形態6.
 図15は、実施の形態6に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。実施の形態6の空気調和装置における機器構成は、実施の形態1~実施の形態3で説明した空気調和装置と同様である。実施の形態6の空気調和装置は、室外側熱交換器230を凝縮器として機能させるときに、制御装置400が冷媒量調整弁250の開度を制御する。このとき、制御装置400は、補助熱交換器240からバイパス配管260に流出する冷媒の過熱度が設定範囲内となるように制御する。
Embodiment 6.
FIG. 15 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjusting valve 250 performed by the control device 400 according to the sixth embodiment. The equipment configuration of the air conditioner of Embodiment 6 is the same as that of the air conditioners described in Embodiments 1 to 3. FIG. In the air conditioner of Embodiment 6, control device 400 controls the degree of opening of refrigerant amount adjustment valve 250 when outdoor heat exchanger 230 functions as a condenser. At this time, control device 400 controls so that the degree of superheat of the refrigerant flowing out from auxiliary heat exchanger 240 to bypass pipe 260 is within a set range.
 制御装置400は、吸入側圧力センサ511が検出した吸入圧力Psを取得する(ステップS30)。そして、制御装置400は、吸入圧力Psから冷媒の蒸発温度ETを算出する(ステップS31)。 The control device 400 acquires the suction pressure Ps detected by the suction side pressure sensor 511 (step S30). Then, the control device 400 calculates the evaporation temperature ET of the refrigerant from the suction pressure Ps (step S31).
 また、制御装置400は、バイパス配管温度センサ522が検出したバイパス配管温度Thboを取得する(ステップS32)。そして、制御装置400は、バイパス配管温度Thboと蒸発温度ETとの差である補助過熱度SHho(=バイパス配管温度Thbo-蒸発温度ET)を算出する(ステップS33)。 The control device 400 also acquires the bypass pipe temperature Thbo detected by the bypass pipe temperature sensor 522 (step S32). Then, the controller 400 calculates an auxiliary degree of superheat SHho (=bypass pipe temperature Thbo−evaporation temperature ET), which is the difference between the bypass pipe temperature Thbo and the evaporation temperature ET (step S33).
 制御装置400は、算出した補助過熱度SHhoがあらかじめ設定した設定過熱度下限SHho1よりも小さいかどうかを判定する(ステップS34)。制御装置400は、補助過熱度SHhoが設定過熱度下限SHho1よりも小さいと判定すると、冷媒量調整弁250の開度を小さくさせる制御を行う(ステップS36)。 The control device 400 determines whether or not the calculated auxiliary superheat SHho is smaller than the preset superheat lower limit SHho1 (step S34). When the control device 400 determines that the auxiliary superheat SHho is smaller than the set superheat lower limit SHho1, the control device 400 performs control to reduce the opening degree of the refrigerant amount adjusting valve 250 (step S36).
 制御装置400は、補助過熱度SHhoが設定過熱度下限SHho1よりも小さくない(設定過熱度下限SHho1以上である)と判定すると、あらかじめ設定した設定過熱度上限SHho2よりも大きいかどうかを、さらに判定する(ステップS35)。制御装置400は、補助過熱度SHhoが設定過熱度上限SHho2よりも大きくない(設定過熱度上限SHho2以下である)と判定すると、冷媒量調整弁250の開度を維持させる(ステップS37)。制御装置400は、補助過熱度SHhoが設定過熱度上限SHho2よりも大きいと判定すると、冷媒量調整弁250の開度を大きくさせる制御を行う(ステップS38)。制御装置400は、あらかじめ設定した設定時間が経過すると(ステップS39)、ステップS30に戻って、処理を繰り返す。 When the control device 400 determines that the auxiliary superheat SHho is not less than the set superheat lower limit SHho1 (is greater than or equal to the set superheat lower limit SHho1), it further determines whether it is greater than a preset superheat upper limit SHho2. (step S35). When the control device 400 determines that the auxiliary degree of superheat SHho is not greater than the set superheat degree upper limit SHho2 (is equal to or less than the set superheat degree upper limit SHho2), it maintains the opening degree of the refrigerant amount control valve 250 (step S37). When the control device 400 determines that the auxiliary degree of superheat SHho is greater than the set superheat degree upper limit SHho2, the control device 400 performs control to increase the degree of opening of the refrigerant amount adjustment valve 250 (step S38). When the preset time has elapsed (step S39), the control device 400 returns to step S30 and repeats the process.
 以上のように、実施の形態6の空気調和装置によれば、制御装置400は、補助熱交換器240からバイパス配管260に流出する冷媒の過熱度が設定範囲内となるように制御する。このため、室外側熱交換器230内から流出する液冷媒の過冷却度が小さくても、補助熱交換器240において過冷却度を確保することができるので、冷房COPの低下を抑制することができる。 As described above, according to the air conditioner of Embodiment 6, the control device 400 controls the degree of superheat of the refrigerant flowing out from the auxiliary heat exchanger 240 to the bypass pipe 260 to be within the set range. Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
実施の形態7.
 図16は、実施の形態7に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。実施の形態7の空気調和装置における機器構成は、実施の形態1~実施の形態3で説明した空気調和装置と同様である。実施の形態7の空気調和装置は、室外側熱交換器230を凝縮器として機能させるときに、制御装置400が冷媒量調整弁250の開度を制御する。このとき、制御装置400は、補助熱交換器240から主冷媒回路に流出する液冷媒の過冷却度が設定範囲内となるように制御する。
Embodiment 7.
FIG. 16 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjustment valve 250 performed by the control device 400 according to the seventh embodiment. The equipment configuration of the air conditioner of Embodiment 7 is the same as that of the air conditioners described in Embodiments 1 to 3. FIG. In the air conditioner of Embodiment 7, control device 400 controls the degree of opening of refrigerant amount adjustment valve 250 when outdoor heat exchanger 230 functions as a condenser. At this time, the control device 400 controls so that the degree of subcooling of the liquid refrigerant flowing out from the auxiliary heat exchanger 240 to the main refrigerant circuit is within a set range.
 制御装置400は、吐出側圧力センサ510が検出した吐出圧力Pdを取得する(ステップS40)。そして、制御装置400は、吐出圧力Pdから冷媒の凝縮温度CTを算出する(ステップS41)。 The control device 400 acquires the discharge pressure Pd detected by the discharge side pressure sensor 510 (step S40). Then, the control device 400 calculates the condensation temperature CT of the refrigerant from the discharge pressure Pd (step S41).
 また、制御装置400は、補助熱交換器温度センサ521が検出した過冷却冷媒温度ThOを取得する(ステップS42)。そして、制御装置400は、凝縮温度CTと過冷却冷媒温度ThOとの差である補助過冷却度SChO(=凝縮温度CT-過冷却冷媒温度ThO)を算出する(ステップS43)。 The control device 400 also acquires the supercooled refrigerant temperature ThO detected by the auxiliary heat exchanger temperature sensor 521 (step S42). Then, the control device 400 calculates an auxiliary supercooling degree SChO (=condensing temperature CT-supercooled refrigerant temperature ThO), which is the difference between the condensation temperature CT and the supercooled refrigerant temperature ThO (step S43).
 制御装置400は、算出した補助過冷却度SChOがあらかじめ設定した設定補助側過冷却度下限SChO1よりも小さいかどうかを判定する(ステップS44)。制御装置400は、補助過冷却度SChOが設定補助側過冷却度下限SChO1よりも小さいと判定すると、冷媒量調整弁250の開度を小さくさせる制御を行う(ステップS46)。 The control device 400 determines whether or not the calculated auxiliary supercooling degree SChO is smaller than the preset auxiliary-side supercooling degree lower limit SChO1 (step S44). When the control device 400 determines that the auxiliary supercooling degree SChO is smaller than the set auxiliary-side supercooling degree lower limit SChO1, the control device 400 performs control to reduce the opening degree of the refrigerant amount adjusting valve 250 (step S46).
 ステップS44において、制御装置400は、補助過冷却度SChOが設定補助側過冷却度下限SChO1よりも小さくない(設定補助側過冷却度下限SChO1以上である)と判定する。このとき、制御装置400は、さらに、補助過冷却度SChOがあらかじめ設定した設定補助側過冷却度上限SChO2よりも大きいかどうかを、さらに判定する(ステップS45)。 In step S44, the control device 400 determines that the auxiliary supercooling degree SChO is not smaller than the set auxiliary-side supercooling degree lower limit SChO1 (is greater than or equal to the auxiliary-side supercooling degree lower limit SChO1). At this time, the control device 400 further determines whether or not the auxiliary degree of supercooling SChO is greater than a preset auxiliary-side supercooling degree upper limit SChO2 (step S45).
 制御装置400は、補助過冷却度SChOが設定補助側過冷却度上限SChO2よりも大きくない(設定補助側過冷却度上限SChO2以下である)と判定すると、冷媒量調整弁250の開度を維持させる(ステップS47)。制御装置400は、補助過冷却度SChOが設定補助側過冷却度上限SChO2よりも大きいと判定すると、冷媒量調整弁250の開度を大きくさせる制御を行う(ステップS48)。制御装置400は、あらかじめ設定した設定時間が経過すると(ステップS49)、ステップS40に戻って、処理を繰り返す。 When the control device 400 determines that the auxiliary supercooling degree SChO is not greater than the set auxiliary supercooling degree upper limit SChO2 (below the set auxiliary supercooling degree upper limit SChO2), the control device 400 maintains the opening degree of the refrigerant amount adjustment valve 250. (step S47). When the control device 400 determines that the auxiliary supercooling degree SChO is larger than the set auxiliary supercooling degree upper limit SChO2, the control device 400 performs control to increase the opening degree of the refrigerant amount adjusting valve 250 (step S48). When the preset time has elapsed (step S49), the control device 400 returns to step S40 and repeats the process.
 以上のように、実施の形態7の空気調和装置によれば、制御装置400は、補助熱交換器240から主冷媒回路に流出する液冷媒の過冷却度が設定範囲内となるように制御する。このため、室外側熱交換器230内から流出する液冷媒の過冷却度が小さくても、補助熱交換器240において過冷却度を確保することができるので、冷房COPの低下を抑制することができる。 As described above, according to the air conditioner of Embodiment 7, the control device 400 controls the degree of subcooling of the liquid refrigerant flowing out from the auxiliary heat exchanger 240 to the main refrigerant circuit to be within the set range. . Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
実施の形態8.
 図17は、実施の形態8に係る制御装置400が行う冷媒量調整弁250の開度制御の流れを説明する図である。実施の形態8の空気調和装置における機器構成は、実施の形態1~実施の形態3で説明した空気調和装置と同様である。実施の形態8の空気調和装置は、室外側熱交換器230を凝縮器として機能させるときに、制御装置400が冷媒量調整弁250の開度を制御する。このとき、制御装置400は、室外側熱交換器230から流出する液冷媒の過冷却度が設定範囲内となるように制御する。
Embodiment 8.
FIG. 17 is a diagram illustrating the flow of control of the degree of opening of the refrigerant amount adjusting valve 250 performed by the control device 400 according to the eighth embodiment. The equipment configuration of the air conditioner of the eighth embodiment is the same as that of the air conditioners described in the first to third embodiments. In the air conditioner of Embodiment 8, control device 400 controls the degree of opening of refrigerant amount adjustment valve 250 when outdoor heat exchanger 230 functions as a condenser. At this time, the control device 400 controls so that the degree of subcooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is within a set range.
 制御装置400は、吐出側圧力センサ510が検出した吐出圧力Pdを取得する(ステップS50)。そして、制御装置400は、吐出圧力Pdから冷媒の凝縮温度CTを算出する(ステップS51)。 The control device 400 acquires the discharge pressure Pd detected by the discharge side pressure sensor 510 (step S50). Then, the control device 400 calculates the condensation temperature CT of the refrigerant from the discharge pressure Pd (step S51).
 また、制御装置400は、熱交換器間温度センサ520が検出した凝縮出口冷媒温度TCOを取得する(ステップS52)。そして、制御装置400は、凝縮温度CTと凝縮出口冷媒温度TCOとの差である過冷却度SC(=凝縮温度CT-凝縮出口冷媒温度TCO)を算出する(ステップS53)。 Also, the control device 400 acquires the condensation outlet refrigerant temperature TCO detected by the inter-heat-exchanger temperature sensor 520 (step S52). Then, the controller 400 calculates the degree of supercooling SC (=condensing temperature CT-condensing outlet refrigerant temperature TCO), which is the difference between the condensation temperature CT and the condensation outlet refrigerant temperature TCO (step S53).
 制御装置400は、算出した過冷却度SCがあらかじめ設定した設定過冷却度下限SC1よりも小さいかどうかを判定する(ステップS54)。制御装置400は、過冷却度SCが設定過冷却度下限SC1よりも小さいと判定すると、冷媒量調整弁250の開度を小さくさせる制御を行う(ステップS56)。 The control device 400 determines whether or not the calculated supercooling degree SC is smaller than a preset supercooling degree lower limit SC1 (step S54). When the control device 400 determines that the subcooling degree SC is smaller than the set supercooling degree lower limit SC1, the controller 400 performs control to reduce the opening degree of the refrigerant amount adjusting valve 250 (step S56).
 一方、制御装置400は、過冷却度SCが設定過冷却度下限SC1よりも小さくない(設定過冷却度下限SC1以上である)と判定すると、過冷却度SCがあらかじめ設定した設定過冷却度上限SC2よりも大きいかどうかを判定する(ステップS55)。制御装置400は、過冷却度SCが設定過冷却度上限SC2よりも大きくない(設定過冷却度上限SC2以下である)と判定すると、冷媒量調整弁250の開度を維持させる(ステップS57)。制御装置400は、過冷却度SCが設定過冷却度上限SC2よりも大きいと判定すると、冷媒量調整弁250の開度を大きくさせる制御を行う(ステップS58)。制御装置400は、あらかじめ設定した設定時間が経過すると(ステップS59)、ステップS50に戻って、処理を繰り返す。 On the other hand, when the control device 400 determines that the degree of supercooling SC is not less than the set supercooling degree lower limit SC1 (is greater than or equal to the set supercooling degree lower limit SC1), the degree of supercooling SC reaches the preset set supercooling degree upper limit. It is determined whether or not it is greater than SC2 (step S55). When the control device 400 determines that the degree of subcooling SC is not greater than the set supercooling degree upper limit SC2 (is equal to or less than the set supercooling degree upper limit SC2), the control device 400 maintains the opening degree of the refrigerant amount adjustment valve 250 (step S57). . When the control device 400 determines that the subcooling degree SC is larger than the set supercooling degree upper limit SC2, the control device 400 performs control to increase the opening degree of the refrigerant amount adjustment valve 250 (step S58). When the preset time has elapsed (step S59), the control device 400 returns to step S50 and repeats the process.
 以上のように、実施の形態8の空気調和装置によれば、制御装置400は、室外側熱交換器230から流出する液冷媒の過冷却度が設定範囲内となるように制御する。このため、室外側熱交換器230内から流出する液冷媒の過冷却度が小さくても、補助熱交換器240において過冷却度を確保することができるので、冷房COPの低下を抑制することができる。 As described above, according to the air conditioner of Embodiment 8, the control device 400 controls the degree of subcooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 to be within the set range. Therefore, even if the degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 230 is small, the degree of supercooling can be ensured in the auxiliary heat exchanger 240, so that a decrease in the cooling COP can be suppressed. can.
実施の形態9.
 上述した実施の形態1~実施の形態8における補助熱交換器240は、冷媒回路を循環する冷媒間で熱交換を行う冷媒間熱交換器であるものとして説明したが、これに限定しない。たとえば、熱交換器は、外部の空気など外部流体との間で熱交換を行って冷媒を過冷却するものであってもよい。
Embodiment 9.
Auxiliary heat exchanger 240 in Embodiments 1 to 8 described above has been described as a heat exchanger between refrigerants that exchanges heat between refrigerants circulating in the refrigerant circuit, but is not limited to this. For example, the heat exchanger may exchange heat with an external fluid, such as external air, to supercool the refrigerant.
 10,10A,10B 熱交換器、11,11A,11B 分配ヘッダ、12,12A,12B 冷媒出入口管、13 折り返しヘッダ、14 扁平伝熱管、15 コルゲートフィン、100 室内機、110 室内側熱交換器、120 絞り装置、130 室内送風機、200 室外機、210 圧縮機、215 インバータ装置、220 四方弁、230 室外側熱交換器、240 補助熱交換器、250 冷媒量調整弁、260 バイパス配管、270 アキュムレータ、280 室外送風機、285 受液器、290 二方弁、300 冷媒配管、400 制御装置、500 検出部、510 吐出側圧力センサ、511 吸入側圧力センサ、520 熱交換器間温度センサ、521 補助熱交換器温度センサ、522 バイパス配管温度センサ。 10, 10A, 10B heat exchangers, 11, 11A, 11B distribution headers, 12, 12A, 12B refrigerant inlet/outlet pipes, 13 return headers, 14 flat heat transfer tubes, 15 corrugated fins, 100 indoor units, 110 indoor heat exchangers, 120 expansion device, 130 indoor fan, 200 outdoor unit, 210 compressor, 215 inverter device, 220 four-way valve, 230 outdoor heat exchanger, 240 auxiliary heat exchanger, 250 refrigerant amount adjustment valve, 260 bypass pipe, 270 accumulator, 280 outdoor fan, 285 liquid receiver, 290 two-way valve, 300 refrigerant piping, 400 control device, 500 detector, 510 discharge side pressure sensor, 511 suction side pressure sensor, 520 temperature sensor between heat exchangers, 521 auxiliary heat exchange vessel temperature sensor, 522 bypass piping temperature sensor.

Claims (11)

  1.  負荷側熱交換器および絞り装置と配管接続して主冷媒回路を構成する室外機であって、
     吸入した冷媒を圧縮して吐出する圧縮機と、
     冷房運転と暖房運転とで前記冷媒の流路を切り替える冷媒流路切替装置と、
     内部を通過する前記冷媒と外部流体との間で熱交換を行う室外側熱交換器と、
     前記冷房運転において前記室外側熱交換器から流出して前記主冷媒回路を流れる前記冷媒を過冷却する補助熱交換器と
    を備え、
     前記室外側熱交換器は、
     互いに離間して上下方向に配置され、管内を前記冷媒が通過する一対のヘッダと、
     断面が扁平形状を有し、前記扁平形状の長手側における扁平面がそれぞれ対向して間を隔てて一対の前記ヘッダの間に配置され、前記冷媒が流れる流路を内部に有する複数の扁平伝熱管と、
     隣り合う2つの前記扁平伝熱管の間に配置され、前記扁平面において前記扁平伝熱管と接合される複数のコルゲートフィンとを有し、
     前記外部流体の流れる方向に沿って複数列に前記扁平伝熱管が配置され、一対の前記ヘッダのいずれか一方が、ある列の前記扁平伝熱管から他の列の前記扁平伝熱管へ前記冷媒を橋渡しする折り返しヘッダであり、前記折り返しヘッダによって前記冷媒が橋渡しされる回数が1回である室外機。
    An outdoor unit configured to form a main refrigerant circuit by pipe connection with a load-side heat exchanger and an expansion device,
    a compressor that compresses and discharges the sucked refrigerant;
    a refrigerant flow switching device for switching the flow path of the refrigerant between cooling operation and heating operation;
    an outdoor heat exchanger that exchanges heat between the refrigerant passing through the interior and an external fluid;
    an auxiliary heat exchanger that supercools the refrigerant flowing out of the outdoor heat exchanger and flowing through the main refrigerant circuit in the cooling operation;
    The outdoor heat exchanger is
    a pair of headers spaced apart from each other in the vertical direction and through which the refrigerant passes;
    A plurality of flat transmission conductors each having a flat shape in cross section, arranged between a pair of the headers so that the flat surfaces on the longitudinal sides of the flat shape are opposed to each other and spaced apart from each other, and having flow passages in which the refrigerant flows. a heat tube;
    a plurality of corrugated fins disposed between two adjacent flat heat transfer tubes and joined to the flat heat transfer tubes at the flat surface;
    The flat heat transfer tubes are arranged in a plurality of rows along the direction of flow of the external fluid, and one of the pair of headers transfers the refrigerant from the flat heat transfer tubes of one row to the flat heat transfer tubes of another row. An outdoor unit comprising a bridging turn-back header, wherein the number of times the refrigerant is bridged by the turn-back header is one.
  2.  前記室外側熱交換器と前記補助熱交換器との間に設置され、液状の前記冷媒を貯留する受液器を備える請求項1に記載の室外機。 The outdoor unit according to claim 1, comprising a liquid receiver that is installed between the outdoor heat exchanger and the auxiliary heat exchanger and stores the liquid refrigerant.
  3.  前記室外側熱交換器は、並列に前記主冷媒回路に接続された複数の熱交換器を有し、
     複数の前記熱交換器のうち、一部の前記熱交換器に対して前記冷媒の通過または通過制限をする開閉装置を備える請求項1または請求項2に記載の室外機。
    The outdoor heat exchanger has a plurality of heat exchangers connected in parallel to the main refrigerant circuit,
    3. The outdoor unit according to claim 1, further comprising an opening/closing device that restricts or restricts passage of the refrigerant to some of the plurality of heat exchangers.
  4.  前記開閉装置の開閉制御を行う制御装置を備え、
     前記制御装置は、前記圧縮機の回転数があらかじめ設定した設定回転数よりも少ないと判定すると、前記開閉装置に前記冷媒の通過を制限させる請求項3に記載の室外機。
    A control device for controlling opening and closing of the opening and closing device,
    4. The outdoor unit according to claim 3, wherein, when the controller determines that the rotation speed of the compressor is lower than a preset rotation speed, the opening/closing device restricts passage of the refrigerant.
  5.  前記室外側熱交換器と前記補助熱交換器との間における前記冷媒の温度を凝縮出口冷媒温度として検出する熱交換器間温度センサと、
     前記圧縮機が吐出する前記冷媒の圧力を吐出圧力として検出する吐出側圧力センサと、
     前記凝縮出口冷媒温度と前記吐出圧力とに基づいて、前記絞り装置の開度を制御する制御装置と
    を備える請求項1~請求項4のいずれか一項に記載の室外機。
    an inter-heat-exchanger temperature sensor that detects the temperature of the refrigerant between the outdoor heat exchanger and the auxiliary heat exchanger as a condensation outlet refrigerant temperature;
    a discharge side pressure sensor that detects the pressure of the refrigerant discharged from the compressor as a discharge pressure;
    The outdoor unit according to any one of claims 1 to 4, further comprising a control device that controls the degree of opening of the expansion device based on the condensation outlet refrigerant temperature and the discharge pressure.
  6.  前記補助熱交換器は、2つの流路を流れる前記冷媒を熱交換する冷媒間熱交換器であり、
     一端が前記補助熱交換器と前記絞り装置との間の配管に接続され、他端が前記圧縮機の吸入側に接続する配管に接続されて、前記補助熱交換器の一方の流路に前記冷媒を通過させるバイパス流路となるバイパス配管と、
     前記バイパス配管を通過する前記冷媒を減圧し、冷媒量を調整する冷媒量調整装置と、
     前記室外側熱交換器と前記補助熱交換器との間における前記冷媒の温度を凝縮出口冷媒温度として検出する熱交換器間温度センサと、
     前記補助熱交換器が過冷却した前記冷媒の温度を過冷却冷媒温度として検出する補助熱交換器温度センサとを備え、
     前記凝縮出口冷媒温度と前記過冷却冷媒温度とに基づいて、前記冷媒量調整装置による前記バイパス配管を流れる前記冷媒の冷媒量調整を制御する制御装置と
    を備える請求項1~請求項5のいずれか一項に記載の室外機。
    The auxiliary heat exchanger is a heat exchanger between refrigerants that heat-exchanges the refrigerant flowing through two flow paths,
    One end is connected to the piping between the auxiliary heat exchanger and the expansion device, the other end is connected to the piping connected to the suction side of the compressor, and the a bypass pipe serving as a bypass flow path for passing the refrigerant;
    a refrigerant amount adjusting device that reduces the pressure of the refrigerant passing through the bypass pipe and adjusts the amount of refrigerant;
    an inter-heat-exchanger temperature sensor that detects the temperature of the refrigerant between the outdoor heat exchanger and the auxiliary heat exchanger as a condensation outlet refrigerant temperature;
    An auxiliary heat exchanger temperature sensor that detects the temperature of the refrigerant supercooled by the auxiliary heat exchanger as a supercooled refrigerant temperature,
    A control device for controlling the refrigerant amount adjustment of the refrigerant flowing through the bypass pipe by the refrigerant amount adjusting device based on the condensation outlet refrigerant temperature and the subcooled refrigerant temperature. or the outdoor unit according to item 1.
  7.  前記補助熱交換器は、2つの流路を流れる前記冷媒を熱交換する冷媒間熱交換器であり、
     一端が前記補助熱交換器と前記絞り装置との間の配管に接続され、他端が前記圧縮機の吸入側に接続する配管に接続されて、前記補助熱交換器の一方の流路に前記冷媒を通過させるバイパス流路となるバイパス配管と、
     前記バイパス配管を通過する前記冷媒を減圧し、冷媒量を調整する冷媒量調整装置と、
     前記バイパス配管を通過する前記冷媒の温度をバイパス配管温度として検出するバイパス配管温度センサと、
     前記圧縮機が吸入する前記冷媒の圧力を吸入圧力として検出する吸入側圧力センサと、
     前記バイパス配管温度と前記吸入圧力とに基づいて、前記冷媒量調整装置による前記バイパス配管を流れる前記冷媒の冷媒量調整を制御する制御装置と
    を備える請求項1~請求項5のいずれか一項に記載の室外機。
    The auxiliary heat exchanger is a heat exchanger between refrigerants that heat-exchanges the refrigerant flowing through two flow paths,
    One end is connected to the piping between the auxiliary heat exchanger and the expansion device, the other end is connected to the piping connected to the suction side of the compressor, and the a bypass pipe serving as a bypass flow path for passing the refrigerant;
    a refrigerant amount adjusting device that reduces the pressure of the refrigerant passing through the bypass pipe and adjusts the amount of refrigerant;
    a bypass pipe temperature sensor that detects the temperature of the refrigerant passing through the bypass pipe as a bypass pipe temperature;
    a suction side pressure sensor that detects the pressure of the refrigerant sucked by the compressor as a suction pressure;
    and a control device for controlling the refrigerant amount adjustment of the refrigerant flowing through the bypass pipe by the refrigerant amount adjusting device based on the bypass pipe temperature and the suction pressure. The outdoor unit described in .
  8.  前記補助熱交換器は、2つの流路を流れる前記冷媒を熱交換する冷媒間熱交換器であり、
     一端が前記補助熱交換器と前記絞り装置との間の配管に接続され、他端が前記圧縮機の吸入側に接続する配管に接続されて、前記補助熱交換器の一方の流路に前記冷媒を通過させるバイパス流路となるバイパス配管と、
     前記バイパス配管を通過する前記冷媒を減圧し、冷媒量を調整する冷媒量調整装置と、
     前記補助熱交換器が過冷却した前記冷媒の温度を過冷却冷媒温度として検出する補助熱交換器温度センサと、
     前記圧縮機が吐出する前記冷媒の圧力を吐出圧力として検出する吐出側圧力センサと、
     前記過冷却冷媒温度と前記吐出圧力とに基づいて、前記冷媒量調整装置による前記バイパス配管を流れる前記冷媒の冷媒量調整を制御する制御装置と
    を備える請求項1~請求項5のいずれか一項に記載の室外機。
    The auxiliary heat exchanger is a heat exchanger between refrigerants that heat-exchanges the refrigerant flowing through two flow paths,
    One end is connected to the piping between the auxiliary heat exchanger and the expansion device, the other end is connected to the piping connected to the suction side of the compressor, and the a bypass pipe serving as a bypass flow path for passing the refrigerant;
    a refrigerant amount adjusting device that reduces the pressure of the refrigerant passing through the bypass pipe and adjusts the amount of refrigerant;
    an auxiliary heat exchanger temperature sensor that detects the temperature of the refrigerant supercooled by the auxiliary heat exchanger as a supercooled refrigerant temperature;
    a discharge side pressure sensor that detects the pressure of the refrigerant discharged from the compressor as a discharge pressure;
    A control device for controlling the refrigerant amount adjustment of the refrigerant flowing through the bypass pipe by the refrigerant amount adjusting device based on the supercooled refrigerant temperature and the discharge pressure. The outdoor unit described in the paragraph.
  9.  前記補助熱交換器は、2つの流路を流れる前記冷媒を熱交換する冷媒間熱交換器であり、
     一端が前記補助熱交換器と前記絞り装置との間の配管に接続され、他端が前記圧縮機の吸入側に接続する配管に接続されて、前記補助熱交換器の一方の流路に前記冷媒を通過させるバイパス流路となるバイパス配管と、
     前記バイパス配管を通過する前記冷媒を減圧し、冷媒量を調整する冷媒量調整装置と、
     前記室外側熱交換器と前記補助熱交換器との間における前記冷媒の温度を凝縮出口冷媒温度として検出する熱交換器間温度センサと、
     前記圧縮機が吐出する前記冷媒の圧力を吐出圧力として検出する吐出側圧力センサと、
     前記凝縮出口冷媒温度と前記吐出圧力とに基づいて、前記冷媒量調整装置による前記バイパス配管を流れる前記冷媒の冷媒量調整を制御する制御装置と
    を備える請求項1~請求項5のいずれか一項に記載の室外機。
    The auxiliary heat exchanger is a heat exchanger between refrigerants that heat-exchanges the refrigerant flowing through two flow paths,
    One end is connected to the piping between the auxiliary heat exchanger and the expansion device, the other end is connected to the piping connected to the suction side of the compressor, and the a bypass pipe serving as a bypass flow path for passing the refrigerant;
    a refrigerant amount adjusting device that reduces the pressure of the refrigerant passing through the bypass pipe and adjusts the amount of refrigerant;
    an inter-heat-exchanger temperature sensor that detects the temperature of the refrigerant between the outdoor heat exchanger and the auxiliary heat exchanger as a condensation outlet refrigerant temperature;
    a discharge side pressure sensor that detects the pressure of the refrigerant discharged from the compressor as a discharge pressure;
    A control device for controlling the refrigerant amount adjustment of the refrigerant flowing through the bypass pipe by the refrigerant amount adjusting device based on the condensation outlet refrigerant temperature and the discharge pressure. The outdoor unit described in the paragraph.
  10.  前記室外側熱交換器における一対の前記ヘッダ間の距離が800mm以上である請求項1~請求項9のいずれか一項に記載の室外機。 The outdoor unit according to any one of claims 1 to 9, wherein the distance between the pair of headers in the outdoor heat exchanger is 800 mm or more.
  11.  請求項1~請求項10のいずれか一項に記載の室外機と、
     負荷側熱交換器および絞り装置を有し、空調対象空間の空気を調和する室内機と
    を備える空気調和装置。
    The outdoor unit according to any one of claims 1 to 10,
    An air conditioner comprising an indoor unit that has a load-side heat exchanger and an expansion device and that conditions air in a space to be air-conditioned.
PCT/JP2021/014989 2021-04-09 2021-04-09 Outdoor unit and air-conditioning device WO2022215242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014989 WO2022215242A1 (en) 2021-04-09 2021-04-09 Outdoor unit and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014989 WO2022215242A1 (en) 2021-04-09 2021-04-09 Outdoor unit and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2022215242A1 true WO2022215242A1 (en) 2022-10-13

Family

ID=83545291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014989 WO2022215242A1 (en) 2021-04-09 2021-04-09 Outdoor unit and air-conditioning device

Country Status (1)

Country Link
WO (1) WO2022215242A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141804A (en) * 1991-11-19 1993-06-08 Mitsubishi Electric Corp Air conditioning
JP3541394B2 (en) * 1993-03-11 2004-07-07 三菱電機株式会社 Air conditioner
JP2009166529A (en) * 2008-01-11 2009-07-30 Calsonic Kansei Corp Vehicular condenser
JP2010196985A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Multi-unit air conditioner, outdoor unit thereof, and method of controlling the multi-unit air conditioner
WO2014141373A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
JP5709844B2 (en) * 2010-03-29 2015-04-30 三菱電機株式会社 Air conditioner
WO2015162689A1 (en) * 2014-04-22 2015-10-29 三菱電機株式会社 Air conditioner
JP6391838B2 (en) * 2015-07-30 2018-09-19 三菱電機株式会社 Heat exchanger unit and refrigeration cycle system
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05141804A (en) * 1991-11-19 1993-06-08 Mitsubishi Electric Corp Air conditioning
JP3541394B2 (en) * 1993-03-11 2004-07-07 三菱電機株式会社 Air conditioner
JP2009166529A (en) * 2008-01-11 2009-07-30 Calsonic Kansei Corp Vehicular condenser
JP2010196985A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Multi-unit air conditioner, outdoor unit thereof, and method of controlling the multi-unit air conditioner
JP5709844B2 (en) * 2010-03-29 2015-04-30 三菱電機株式会社 Air conditioner
WO2014141373A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Air conditioner
WO2015162689A1 (en) * 2014-04-22 2015-10-29 三菱電機株式会社 Air conditioner
JP6391838B2 (en) * 2015-07-30 2018-09-19 三菱電機株式会社 Heat exchanger unit and refrigeration cycle system
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Similar Documents

Publication Publication Date Title
US10760832B2 (en) Air-conditioning apparatus
JP5611353B2 (en) heat pump
JP5241872B2 (en) Refrigeration cycle equipment
JP5594267B2 (en) Refrigeration equipment
JP6715929B2 (en) Refrigeration cycle device and air conditioner including the same
JP4036288B2 (en) Air conditioner
EP3492839B1 (en) Refrigeration cycle device
JP6884784B2 (en) Refrigeration cycle equipment
JP2002054836A (en) Indoor multi-air conditioner
WO2017221400A1 (en) Refrigerating cycle device and outdoor heat exchanger used in same
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP6888131B2 (en) Refrigeration cycle equipment
WO2018025934A1 (en) Heat source unit for refrigeration device
KR100539570B1 (en) multi airconditioner
US20220057100A1 (en) Air-conditioning apparatus
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP4767340B2 (en) Heat pump control device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
WO2022215242A1 (en) Outdoor unit and air-conditioning device
JP6846915B2 (en) Multi-chamber air conditioner
JP3719296B2 (en) Refrigeration cycle equipment
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP7065681B2 (en) Air conditioner
US20220136740A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936046

Country of ref document: EP

Kind code of ref document: A1