JP4990221B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4990221B2
JP4990221B2 JP2008136702A JP2008136702A JP4990221B2 JP 4990221 B2 JP4990221 B2 JP 4990221B2 JP 2008136702 A JP2008136702 A JP 2008136702A JP 2008136702 A JP2008136702 A JP 2008136702A JP 4990221 B2 JP4990221 B2 JP 4990221B2
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
heating operation
refrigerant
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008136702A
Other languages
Japanese (ja)
Other versions
JP2009281698A (en
Inventor
誠 小栗
裕 丸山
裕 塚田
博之 羽生
弋 曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008136702A priority Critical patent/JP4990221B2/en
Priority to CN2008101308673A priority patent/CN101592414B/en
Publication of JP2009281698A publication Critical patent/JP2009281698A/en
Application granted granted Critical
Publication of JP4990221B2 publication Critical patent/JP4990221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機に係り、特に、室外熱交換器の除霜と室内の暖房とを同時に行う空気調和機に関する。   The present invention relates to an air conditioner, and more particularly, to an air conditioner that simultaneously performs defrosting of an outdoor heat exchanger and heating of a room.

空気熱源ヒートポンプ空気調和機を暖房運転した場合、室外空気の湿度が高いと室外熱交換器に着霜を生ずる。着霜が生ずると室外熱交換器の通風路が狭まるため、室外熱交換器を循環する室外空気の量が減少する。循環する室外空気の量が減少すると、熱交換量が少なくなるため、これに伴って室外熱交換器内を流れる冷媒の蒸発温度が下がる。冷媒の蒸発温度が下がると室外熱交換器の外側の表面温度も下がり、益々着霜を生じやすくなり、着霜が進行する。このままでは室外熱交換器で室外空気から汲み上げる熱量が減少し室内熱交換器から放熱できる熱量も減少するため暖房能力も減少し、室内の快適性が損なわれる。これを防ぐために室外熱交換器の着霜の量が所定の量を超えた時、除霜運転をすることにより室外熱交換器の霜を融解し、流下させて機外に排出させる。   When the air heat source heat pump air conditioner is operated for heating, the outdoor heat exchanger forms frost if the humidity of the outdoor air is high. When frost formation occurs, the ventilation path of the outdoor heat exchanger is narrowed, so that the amount of outdoor air circulating through the outdoor heat exchanger is reduced. When the amount of circulating outdoor air decreases, the amount of heat exchange decreases, and accordingly, the evaporation temperature of the refrigerant flowing in the outdoor heat exchanger decreases. When the evaporation temperature of the refrigerant decreases, the surface temperature on the outside of the outdoor heat exchanger also decreases, and frost formation tends to occur more and more. In this state, the amount of heat pumped from the outdoor air by the outdoor heat exchanger decreases, and the amount of heat that can be dissipated from the indoor heat exchanger also decreases. Therefore, the heating capacity also decreases and indoor comfort is impaired. In order to prevent this, when the amount of frost formation on the outdoor heat exchanger exceeds a predetermined amount, the frost of the outdoor heat exchanger is melted by defrosting operation and allowed to flow down and discharged outside the apparatus.

従来から広く知られている除霜方式として逆サイクル除霜方式がある。これは、暖房運転中に除霜が必要になった場合には、冷凍サイクルを冷房サイクルに切換えて、圧縮機を熱源とし、室内機を蒸発機として、圧縮機からの高温ガス冷媒を室外熱交換器に流して冷媒の顕熱および凝縮潜熱で除霜するものである。   There is a reverse cycle defrosting method as a widely known defrosting method. When defrosting is required during heating operation, the refrigeration cycle is switched to the cooling cycle, the compressor is used as a heat source, the indoor unit is used as an evaporator, and the high-temperature gas refrigerant from the compressor is used as outdoor heat. It flows through the exchanger and defrosts with sensible heat and latent heat of condensation of the refrigerant.

また、室内で暖房運転をしながら室外熱交換器の除霜を行う空気調和機の従来例として、例えば、特許文献1、特許文献2、特許文献3、特許文献4に開示された技術が知られている。以下、これらの従来例を紹介する。   Moreover, as a conventional example of an air conditioner that performs defrosting of an outdoor heat exchanger while performing heating operation indoors, for example, the techniques disclosed in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4 are known. It has been. These conventional examples are introduced below.

特許文献1には、暖房運転時には室外熱交換器が蒸発器となり、室内熱交換器が凝縮器となって室内を暖房するヒートポンプ式空気調和機において、室外熱交換器を上下方向に複数に分割し、分割された各室外熱交換器を室内熱交換器に並列に配管接続するとともに、それぞれ二方弁を介してコンプレッサの吸入口側に配管接続し、かつ、コンプレッサの吐出口側を分岐させて、各室外熱交換器にそれぞれ二方弁を介して配管接続し、暖房運転時に除霜を行うときは、コンプレッサからの吐出ガスの一部を分割された各室外熱交換器に上部側から下部側に順次切換えながら流して、暖房と徐霜を並行して行うようにしたことが開示されている。   In Patent Document 1, in a heat pump air conditioner that heats a room by using an outdoor heat exchanger as an evaporator and an indoor heat exchanger as a condenser during heating operation, the outdoor heat exchanger is divided into a plurality of parts in the vertical direction. The divided outdoor heat exchangers are connected to the indoor heat exchanger in parallel, connected to the inlet side of the compressor via two-way valves, and the outlet side of the compressor is branched. When each pipe is connected to each outdoor heat exchanger via a two-way valve and defrosting is performed during heating operation, a part of the discharge gas from the compressor is divided into each divided outdoor heat exchanger from the upper side. It is disclosed that heating and gradual frosting are performed in parallel by sequentially switching to the lower side.

特許文献2には、圧縮機と、四方弁と、室内熱交換器と、膨張弁と、室外熱交換器とを冷媒配管によって連結し冷凍サイクルを構成してなる空気調和機において、室外熱交換器を室外送風機の回転に伴って発生する空気流に対し前後二列に分離し、それぞれに膨張弁を連結した並列構成にするとともに、圧縮機の吐出側配管と、両室外熱交換器の暖房時入口側配管との間に開閉弁を備えたバイパス路を設け、高能力暖房運転、低能力暖房運転、除霜と暖房の同時運転等を行うように設定したことが開示されている。   Patent Document 2 discloses an outdoor heat exchange in an air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle. The compressor is separated into two rows before and after the air flow generated by the rotation of the outdoor blower and connected in parallel to each other, and the discharge side piping of the compressor and the heating of both outdoor heat exchangers It is disclosed that a bypass passage having an on-off valve is provided between the hour inlet side pipe and a high capacity heating operation, a low capacity heating operation, a simultaneous operation of defrosting and heating, and the like are performed.

特許文献3には、複数に分割された熱交換器を並列に接続してなる室外側熱交換器と、この室外側熱交換器に圧縮機、四方弁、室内側熱交換器、減圧装置を接続して構成される暖房運転可能な冷凍サイクルと、圧縮機から吐出した吐出ガスを前記室外側熱交換器の暖房運転時、各熱交換器の入口部にそれぞれ導くためのバイパス路と、このバイパス路の各出口を開閉する開閉手段と、室外側熱交換器の各熱交換器に対する着霜を検知する検知手段と、暖房運転時、着霜の検知結果にしたがって開閉手段を制御し圧縮機からの吐出ガスを着霜した熱交換器へ流入させる手段とを具備したことが開示されている。   In Patent Document 3, an outdoor heat exchanger formed by connecting a plurality of divided heat exchangers in parallel, and a compressor, a four-way valve, an indoor heat exchanger, and a pressure reducing device are connected to the outdoor heat exchanger. A refrigeration cycle configured to be connected and capable of heating operation, a bypass path for guiding the discharge gas discharged from the compressor to the inlet portion of each heat exchanger during heating operation of the outdoor heat exchanger, and this Opening / closing means for opening / closing each outlet of the bypass passage, detection means for detecting frost formation on each heat exchanger of the outdoor heat exchanger, and compressor for controlling the opening / closing means according to the detection result of frost formation during heating operation And a means for causing the discharge gas from the refrigerant to flow into a frosted heat exchanger.

特許文献4には、圧縮機と、流路切換用四方弁と、並列接続される2つの室外熱交換器と、冷暖切換可能な減圧装置と、室内熱交換器とを順次配管接続して冷凍サイクルを構成する空気調和機の冷凍装置において、2つの室外熱交換器とそれぞれ直列に冷暖兼用減圧器を配管接続すると共に、圧縮機の吐出側から開閉弁をそれぞれ備える2つのバイパス管を分岐し、この2つのバイパス管を室外熱交換器と冷暖兼用減圧器との間を配管接続する2つの接続配管にそれぞれ接続してなり、除霜運転時、各バイパス管に備える開閉弁を交互に開閉して、2つの室外熱交換器を交互に除霜するようにしたことが開示されている。
特開平09−318206号公報 特開2001−059664号公報 特開平04−110576号公報 特開2002−188873号公報
In Patent Document 4, a compressor, a four-way valve for switching a flow path, two outdoor heat exchangers connected in parallel, a pressure reducing device capable of switching between cooling and heating, and an indoor heat exchanger are sequentially piped and refrigerated. In an air conditioner refrigeration system that constitutes a cycle, a cooling / heating decompressor is connected in series with two outdoor heat exchangers, and two bypass pipes each provided with an on-off valve are branched from the discharge side of the compressor. These two bypass pipes are connected to two connecting pipes that connect between the outdoor heat exchanger and the cooling / heating decompressor, and the open / close valves provided in each bypass pipe are alternately opened and closed during the defrosting operation. Then, it is disclosed that two outdoor heat exchangers are alternately defrosted.
JP 09-318206 A JP 2001-059664 A Japanese Patent Laid-Open No. 04-110576 JP 2002-188873 A

冬の早朝などの外気温度低温時に暖房運転を開始する場合、室温が設定温度に到達する前に除霜を開始することが必要となり、従来知られた逆サイクル除霜方式の空気調和機では、暖房運転を止めて逆サイクル除霜運転を始めるため、除霜中に室温が大きく低下して快適性が損なわれると共に、室温が設定温度に到達するまでの時間が長くなる、という課題があった。   When starting the heating operation when the outside air temperature is low such as in the early morning of winter, it is necessary to start defrosting before the room temperature reaches the set temperature. In the conventionally known reverse cycle defrosting type air conditioner, Since the heating operation is stopped and the reverse cycle defrosting operation is started, there is a problem that the room temperature greatly decreases during the defrosting and the comfort is impaired, and the time until the room temperature reaches the set temperature is increased. .

特許文献1の空気調和機では、暖房運転中に常時除霜を行うようにしているので、暖房能力が常時低下した状態で室内の暖房を行うことになる、という課題があった。また、3分割された室外熱交換器の最小部分の除霜を順次切換えて行うようにしているので、除霜時間が長くなる、という課題があった。   In the air conditioner of Patent Document 1, since defrosting is always performed during heating operation, there is a problem that indoor heating is performed in a state where the heating capacity is constantly reduced. Moreover, since the defrosting of the minimum part of the outdoor heat exchanger divided into three is performed by sequentially switching, there is a problem that the defrosting time becomes long.

特許文献2及び特許文献3の空気調和機では、室外熱交換器を空気流に対し前後二列に分離して交互に除霜するようにしているので、分離された室外熱交換器における一方の除霜により生じた融解水を他方の霜の融解に利用できず、効率良く短時間で除霜することができない、という課題があった。   In the air conditioners of Patent Literature 2 and Patent Literature 3, since the outdoor heat exchanger is separated into two front and rear rows with respect to the air flow and alternately defrosted, one of the separated outdoor heat exchangers There was a problem that the melted water generated by defrosting could not be used for melting the other frost and could not be efficiently defrosted in a short time.

特許文献4の空気調和機では、室外熱交換器を空気流に対し左右に分離して交互に除霜するようにしているので、分離された室外熱交換器における一方の除霜により生じた融解水を他方の霜の融解に利用できず、効率良く短時間で除霜できない、という課題があった。   In the air conditioner of Patent Document 4, since the outdoor heat exchanger is separated into the left and right with respect to the air flow and alternately defrosted, melting caused by one defrosting in the separated outdoor heat exchanger There was a problem that water could not be used for melting the other frost and could not be efficiently defrosted in a short time.

本発明の目的は、除霜を暖房と同時に行って室内の快適性を確保しつつ、除霜時間を短縮できるようにするとともに、熱交換器の着霜量に顕著な差異が生じた場合には該当箇所のみを限定して除霜できるように、複数に分割された熱交換器を有する空気調和機を提供することにある。   The purpose of the present invention is to perform defrosting simultaneously with heating to ensure indoor comfort and to shorten the defrosting time, and when a significant difference occurs in the frosting amount of the heat exchanger. Is to provide an air conditioner having a heat exchanger divided into a plurality of parts so that defrosting can be performed by limiting only the relevant part.

前記課題を解決するために、本発明は主として次のような構成を採用する。
圧縮機、四方弁、室内熱交換器、減圧装置及び室外熱交換器を冷媒配管で連結して冷凍サイクルを形成し、前記室外熱交換器を複数に分けて並列に接続し、前記並列接続された各室外熱交換器の冷媒回路に対応して暖房運転時入口側に主回路開閉弁を設け、前記圧縮機の吐出側と前記各室外熱交換器の冷媒回路の暖房運転時入口側とを連結するホットガスバイパス回路を設け、前記ホットガスバイパス回路に前記各室外熱交換器の冷媒回路に対応してバイパス開閉弁を設け、前記開閉弁と前記冷凍サイクルの各構成要素を制御する制御装置を設けた空気調和機であって、
前記制御装置は、暖房運転中に前記室外熱交換器の除霜を開始する場合、前記主回路開閉弁及び前記バイパス開閉弁の一部を開閉制御し、前記複数の室外熱交換器の内の一部を除霜しつつ他の室外熱交換器で暖房する除霜・暖房運転を行い、前記除霜・暖房運転を前記複数の室外熱交換器の全てについて順に繰り返した後に、暖房運転に復帰するように制御し、
さらに、前記制御装置は、前記除霜・暖房運転が終了した後に、前記複数の室外熱交換器の内で着霜量の多い室外熱交換器を検知し判定して、該当する室外熱交換器に対応する主回路開閉弁及びバイパス開閉弁を開閉制御し、前記該当する室外熱交換器複数のみを限定して除霜しつつ他の室外熱交換器で暖房する限定除霜・暖房運転を行った後に、暖房運転に復帰するように制御する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle, and the outdoor heat exchanger is divided into a plurality of units and connected in parallel. Corresponding to the refrigerant circuit of each outdoor heat exchanger, a main circuit on-off valve is provided on the inlet side during heating operation, and the discharge side of the compressor and the inlet side during heating operation of the refrigerant circuit of each outdoor heat exchanger are provided. A control device for providing a hot gas bypass circuit to be connected, providing a bypass on-off valve corresponding to the refrigerant circuit of each outdoor heat exchanger in the hot gas bypass circuit, and controlling each component of the on-off valve and the refrigeration cycle An air conditioner provided with
When starting defrosting of the outdoor heat exchanger during heating operation, the control device controls opening and closing of the main circuit on-off valve and a part of the bypass on-off valve, and among the plurality of outdoor heat exchangers A defrosting / heating operation is performed in which a part is defrosted and heated by another outdoor heat exchanger, and the defrosting / heating operation is sequentially repeated for all of the plurality of outdoor heat exchangers, and then the heating operation is resumed. To control and
Further, the control device detects and determines an outdoor heat exchanger with a large amount of frost formation in the plurality of outdoor heat exchangers after the defrosting / heating operation is finished, and the corresponding outdoor heat exchanger The open / close control of the main circuit on / off valve and the bypass on / off valve corresponding to the above is performed, and limited defrosting / heating operation is performed in which only the plurality of the corresponding outdoor heat exchangers are defrosted and heated by other outdoor heat exchangers. After that, control is made to return to the heating operation.

また、前記空気調和機において、前記制御装置は、前記限定除霜・暖房運転への移行に際して、前記各室外熱交換器のそれぞれの冷媒温度を監視し、これらの冷媒温度に基づいて判定して移行制御する構成とする。さらに、前記制御装置は、前記限定除霜・暖房運転への移行判定として、前記各室外熱交換器の冷媒温度の内で最小値が0℃未満で、且つ前記冷媒温度が最小値となった室外熱交換器を除く他の室外熱交換器の冷媒温度の平均値と前記冷媒温度の最小値との差が5℃を超える場合に、前記限定除霜・暖房運転に移行するように制御する構成とする。   In the air conditioner, the control device monitors the refrigerant temperatures of the outdoor heat exchangers and makes a determination based on the refrigerant temperatures when shifting to the limited defrosting / heating operation. It is assumed that the transition control is performed. Further, the control device, as a determination of the transition to the limited defrosting and heating operation, the minimum value of the refrigerant temperature of each outdoor heat exchanger is less than 0 ℃, and the refrigerant temperature has become the minimum value When the difference between the average value of the refrigerant temperature of the other outdoor heat exchangers other than the outdoor heat exchanger and the minimum value of the refrigerant temperature exceeds 5 ° C., control is performed so as to shift to the limited defrosting / heating operation. The configuration.

本発明によれば、除霜と暖房とを同時に行う除霜・暖房運転により室内の快適性を確保しつつ、除霜時間を短縮できる。   ADVANTAGE OF THE INVENTION According to this invention, defrosting time can be shortened, ensuring indoor comfort by the defrost and heating operation which performs defrost and heating simultaneously.

また、複数に分けた冷媒回路の熱交換器の着霜量の差異が顕著になり着霜量の多い冷媒回路の熱交換器のみを限定して除霜を行う必要がある場合、限定除霜・暖房運転により室内の快適性を確保しつつ、除霜時間をさらに短縮できる。   Moreover, when the difference in the frost amount of the heat exchanger of the refrigerant circuit divided into a plurality becomes remarkable and it is necessary to defrost only by limiting the heat exchanger of the refrigerant circuit having a large amount of frost, the limited defrost -Defrosting time can be further shortened while ensuring indoor comfort by heating operation.

本発明の実施形態に係る空気調和機について、図面を参照しながら以下詳細に説明する。図1は本発明の実施形態に係る空気調和機の概略構成図である。図2は本実施形態に係る空気調和機の冷凍サイクルの構成を示す図である。   An air conditioner according to an embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention. FIG. 2 is a diagram showing the configuration of the refrigeration cycle of the air conditioner according to the present embodiment.

図1と図2において、空気調和機1は、冷凍サイクルと、送風装置と、これらを制御する制御系とを備えて構成されている。図示された空気調和機1は、室内機2と室外機6とを冷媒配管8、電気配線、信号配線などを介して接続されたセパレート形空気調和機である。   1 and 2, the air conditioner 1 includes a refrigeration cycle, a blower, and a control system that controls them. The illustrated air conditioner 1 is a separate type air conditioner in which an indoor unit 2 and an outdoor unit 6 are connected via a refrigerant pipe 8, electrical wiring, signal wiring, and the like.

冷凍サイクルは、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713a,713b,713c,713d、減圧装置74、ホットパイプ713e、室内熱交換器33、バイパス開閉弁715a,715b,715c,715d、を備え、これらを冷媒配管を介して接続することにより構成されている。冷媒配管は、吸込配管710、吐出配管711、利用側ガス管712、液管713、熱源側ガス管714、ホットガスバイパス管715、ホットパイプ713e、主回路・バイパス共用管716a,716b,716c,716d、などで構成されている。   The refrigeration cycle includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on-off valves 713a, 713b, 713c, 713d, a pressure reducing device 74, a hot pipe 713e, an indoor heat exchanger 33, and bypass on-off valves 715a, 715b. , 715c, 715d, and these are connected through a refrigerant pipe. The refrigerant pipes are a suction pipe 710, a discharge pipe 711, a use side gas pipe 712, a liquid pipe 713, a heat source side gas pipe 714, a hot gas bypass pipe 715, a hot pipe 713e, a main circuit / bypass common pipe 716a, 716b, 716c, 716d, etc.

室内熱交換器33は室内機2に収納されており、また、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713a,713b,713c,713d、減圧装置74、ホットパイプ713e、バイパス開閉弁715a,715b,715c,715dは室外機6に収納されている。   The indoor heat exchanger 33 is accommodated in the indoor unit 2, and also includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on / off valves 713a, 713b, 713c, 713d, a decompression device 74, and a hot pipe 713e. The bypass opening / closing valves 715a, 715b, 715c, and 715d are accommodated in the outdoor unit 6.

四方弁72は冷媒流路切換弁の一例である。この四方弁72は、冷房サイクルと暖房サイクルとを切換えるものである。ここで、冷房サイクルは、圧縮機75から吐出配管711を介して吐出された冷媒を室外熱交換器73へ導き、室内熱交換器33からの冷媒を圧縮機75に戻すサイクルである。暖房サイクルは、圧縮機75から吐出された冷媒を室内熱交換器33へ導き、室外熱交換器73からの冷媒を吸込配管710及びアキュムレータ76を介して圧縮機75に戻すサイクルである。   The four-way valve 72 is an example of a refrigerant flow path switching valve. The four-way valve 72 switches between a cooling cycle and a heating cycle. Here, the cooling cycle is a cycle in which the refrigerant discharged from the compressor 75 via the discharge pipe 711 is guided to the outdoor heat exchanger 73 and the refrigerant from the indoor heat exchanger 33 is returned to the compressor 75. The heating cycle is a cycle in which the refrigerant discharged from the compressor 75 is guided to the indoor heat exchanger 33 and the refrigerant from the outdoor heat exchanger 73 is returned to the compressor 75 via the suction pipe 710 and the accumulator 76.

従って、室外熱交換器73は、冷房サイクルの冷房運転時に高圧側熱交換器(凝縮器)を構成し、暖房サイクルの暖房運転時に低圧側熱交換器(蒸発器)を構成する。また、室内熱交換器33は、暖房サイクルの暖房運転時に高圧側熱交換器(凝縮器)を構成し、冷房サイクルの冷房運転時に低圧側熱交換器(蒸発器)を構成する。   Accordingly, the outdoor heat exchanger 73 constitutes a high-pressure side heat exchanger (condenser) during the cooling operation of the cooling cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the heating operation of the heating cycle. The indoor heat exchanger 33 constitutes a high-pressure side heat exchanger (condenser) during the heating operation of the heating cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the cooling operation of the cooling cycle.

室外熱交換器73は、冷媒配管と熱交換フィンとで構成され、その冷媒配管で形成される冷媒回路を複数に分割して並列に接続されている。この冷媒回路は複数に区分して構成されている。室外熱交換器73は、第1熱交換器731、第2熱交換器732、第3熱交換器733および第4熱交換器734とからなっている。この複数に区分された冷媒回路の室外熱交換器の構成は、各々が分離した構造(第1〜4熱交換器が独立した構造)でも一体構造でもよい。   The outdoor heat exchanger 73 includes a refrigerant pipe and heat exchange fins, and a refrigerant circuit formed by the refrigerant pipe is divided into a plurality of pieces and connected in parallel. This refrigerant circuit is divided into a plurality of parts. The outdoor heat exchanger 73 includes a first heat exchanger 731, a second heat exchanger 732, a third heat exchanger 733, and a fourth heat exchanger 734. The configuration of the outdoor heat exchanger of the refrigerant circuit divided into a plurality may be a structure in which each is separated (a structure in which the first to fourth heat exchangers are independent) or an integrated structure.

室外熱交換器731,732,733,734の各々は、主回路開閉弁713a,713b,713c,713dを介して、減圧装置74に接続されている。また、熱交換器731,732,733,734と主回路開閉弁713a,713b,713c,713dとの間から分岐し、バイパス開閉弁715a,715b,715c,715dを介して圧縮機75の吐出管711にホットガスバイパス管715で接続されるホットガスバイパス回路が設けられている。   Each of the outdoor heat exchangers 731, 732, 733, and 734 is connected to the decompression device 74 via main circuit on-off valves 713a, 713b, 713c, and 713d. Further, the heat exchangers 731, 732, 733, and 734 and the main circuit on / off valves 713a, 713b, 713c, and 713d are branched from each other, and the discharge pipes of the compressor 75 are connected via the bypass on / off valves 715a, 715b, 715c, and 715d. 711 is provided with a hot gas bypass circuit connected by a hot gas bypass pipe 715.

減圧装置74は、室外熱交換器73と室内熱交換器33との間に設けられ、冷房サイクルの冷房時に室外熱交換器73からの冷媒を減圧し、暖房サイクルの暖房運転時に室内熱交換器33からの冷媒を減圧する。ここで、本実施形態では、減圧装置74は絞り開度が制御可能な膨張弁、例えば電動式などで構成されている。   The decompression device 74 is provided between the outdoor heat exchanger 73 and the indoor heat exchanger 33, depressurizes the refrigerant from the outdoor heat exchanger 73 during cooling of the cooling cycle, and the indoor heat exchanger during heating operation of the heating cycle. The refrigerant from 33 is depressurized. Here, in the present embodiment, the decompression device 74 is configured by an expansion valve whose throttle opening is controllable, for example, an electric type.

主回路開閉弁713a,713b,713c,713dとバイパス開閉弁715a,715b,715c,715dは、電磁式開閉弁で構成され、冷媒の主回路及びホットガスバイパス回路を開閉するものである。   The main circuit on / off valves 713a, 713b, 713c, and 713d and the bypass on / off valves 715a, 715b, 715c, and 715d are composed of electromagnetic on / off valves, and open and close the refrigerant main circuit and the hot gas bypass circuit.

空気調和機1における送風装置は、室外機6に収納された室外送風装置63と、室内機2に収納された室内送風装置31とからなっている。室外送風装置は、室外熱交換器73に室外空気を流通させる室外ファン631と、室外ファン631を駆動する室外送風モータ633とを備えている。室内送風装置は、室内熱交換器33に室内の空気を流通させる室内ファン311と、室内ファン311を駆動する室内送風モータ313とを備えている。本実施形態では、室外ファン631として軸流ファンを使用し、室内ファン311として横流ファンを使用している。   The air blower in the air conditioner 1 includes an outdoor air blower 63 accommodated in the outdoor unit 6 and an indoor air blower 31 accommodated in the indoor unit 2. The outdoor blower includes an outdoor fan 631 that causes outdoor air to flow through the outdoor heat exchanger 73 and an outdoor blower motor 633 that drives the outdoor fan 631. The indoor air blower includes an indoor fan 311 that causes indoor air to flow through the indoor heat exchanger 33, and an indoor air blower motor 313 that drives the indoor fan 311. In the present embodiment, an axial fan is used as the outdoor fan 631 and a cross fan is used as the indoor fan 311.

空気調和機1における制御系は、冷媒温検知センサ811a,811b,811c,811d,812と制御装置10とを備えて構成されている。冷媒温検知センサ811a,811b,811c,811d,812は、暖房時の室外熱交換器73の熱交換器731,732,733,734の出口温度を検出する冷媒温検知センサ811a,811b,811c,811dと、逆サイクル除霜時の室外熱交換器73の出口温度を検出する冷媒温検知センサ812とから構成されている。   The control system in the air conditioner 1 includes refrigerant temperature detection sensors 811a, 811b, 811c, 811d, and 812 and a control device 10. Refrigerant temperature detection sensors 811a, 811b, 811c, 811d, and 812 are refrigerant temperature detection sensors 811a, 811b, 811c that detect the outlet temperatures of the heat exchangers 731, 732, 733, and 734 of the outdoor heat exchanger 73 during heating. 811d and the refrigerant | coolant temperature detection sensor 812 which detects the exit | outlet temperature of the outdoor heat exchanger 73 at the time of reverse cycle defrosting.

制御装置10は、冷媒温検知センサ811a,811b,811c,811d,812の検出結果や使用者の運転指令に基づいて、圧縮機75、四方弁72、室外送風モータ633、室内送風モータ313、減圧装置74、主回路開閉弁713a,713b,713c,713d、バイパス開閉弁715a,715b,715c,715d、などを制御する。ここで、本実施形態では、制御装置10は、演算する機能を有する制御装置と、各機器を制御する機能を有する制御装置とを一つで示してあるが、これらが分けて構成されていても良く、或いは各機器を制御する機能を有する制御装置がさらに分けて構成されていても良い。   Based on the detection results of the refrigerant temperature detection sensors 811a, 811b, 811c, 811d, and 812 and the user's operation command, the control device 10 includes a compressor 75, a four-way valve 72, an outdoor fan motor 633, an indoor fan motor 313, a reduced pressure The device 74, main circuit on / off valves 713a, 713b, 713c, 713d, bypass on / off valves 715a, 715b, 715c, 715d, and the like are controlled. Here, in the present embodiment, the control device 10 is shown as a single control device having a function of calculating and a control device having a function of controlling each device, but these are configured separately. Alternatively, a control device having a function of controlling each device may be further divided.

次に、本発明の実施形態に係る空気調和機における冷房と暖房の運転動作について、図3と図4を参照しながら以下説明する。図3は本実施形態に係る空気調和機の冷房運転時の冷媒の流れを示す冷凍サイクル図である。図4は本実施形態に係る空気調和機の暖房運転時の冷媒の流れを示す冷凍サイクル図である。   Next, cooling and heating operation operations in the air conditioner according to the embodiment of the present invention will be described below with reference to FIGS. 3 and 4. FIG. 3 is a refrigeration cycle diagram showing the refrigerant flow during the cooling operation of the air conditioner according to the present embodiment. FIG. 4 is a refrigeration cycle diagram showing the refrigerant flow during the heating operation of the air conditioner according to the present embodiment.

先ず、冷房サイクルにおける冷房運転について図3を用いて説明する。空気調和機1の冷房運転をする際には、四方弁72を図3のように切換え、主回路開閉弁713a,713b,713c,713dを開、バイパス開閉弁715a,715b,715c,715dを閉にして冷房運転サイクルを形成すると共に、圧縮機75、室外送風モータ633及び室内送風モータ313を運転する。   First, the cooling operation in the cooling cycle will be described with reference to FIG. When the air conditioner 1 is cooled, the four-way valve 72 is switched as shown in FIG. 3, the main circuit on / off valves 713a, 713b, 713c, 713d are opened, and the bypass on / off valves 715a, 715b, 715c, 715d are closed. Thus, the cooling operation cycle is formed, and the compressor 75, the outdoor air blowing motor 633, and the indoor air blowing motor 313 are operated.

圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図3の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室外熱交換器73の熱交換器731,732,733,734に入り、室外空気との熱交換で冷却されて凝縮し、液または気液混合の冷媒となる。   The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. Enters the heat exchangers 731, 732, 733, 734 of the heat exchanger 73, is cooled and condensed by heat exchange with the outdoor air, and becomes a refrigerant of liquid or gas-liquid mixture.

次いで、冷媒は、主回路開閉弁713a,713b,713c,713dを介して、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図3で低圧冷媒の流れを示す破線の矢印の方向に流れ、ホットパイプ713eを通った後、室外機6を出て室内機2に入り、蒸発器となる室内熱交換器33に入り、室内空気と熱交換して室内を冷房し、自身は加熱され、ガス冷媒となって圧縮機75に戻る。   Next, the refrigerant enters the decompression device 74 via the main circuit on-off valves 713a, 713b, 713c, and 713d, expands due to decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken-line arrow indicating the flow of the low-pressure refrigerant in FIG. 3, passes through the hot pipe 713e, exits the outdoor unit 6 and enters the indoor unit 2, and the indoor heat serving as an evaporator It enters the exchanger 33 and exchanges heat with room air to cool the room. It is heated and returns to the compressor 75 as a gas refrigerant.

次に、暖房サイクルにおける暖房運転について図4を用いて説明する。図4において、暖房運転する際には、四方弁72を図4のように切換え、主回路開閉弁713a,713b,713c,713dを開、バイパス開閉弁715a,715b,715c,715dを閉にして暖房運転サイクルを形成すると共に、圧縮機75、室外送風モータ633及び室内送風モータ313を運転する。   Next, the heating operation in the heating cycle will be described with reference to FIG. In FIG. 4, when the heating operation is performed, the four-way valve 72 is switched as shown in FIG. 4, the main circuit on / off valves 713a, 713b, 713c, 713d are opened, and the bypass on / off valves 715a, 715b, 715c, 715d are closed. While forming a heating operation cycle, the compressor 75, the outdoor air blowing motor 633, and the indoor air blowing motor 313 are operated.

圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図4の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室内熱交換器33に入り、室内空気と熱交換で冷却されて凝縮し、液または気液混合の冷媒となる。   The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. It enters into the vessel 33, is cooled and condensed by exchanging heat with room air, and becomes a refrigerant of liquid or gas-liquid mixture.

凝縮して液または気液混合の状態となった冷媒は、室内機2を出て室外機6に入り、室外熱交換器73の下部又は除霜水排出口近辺に引回されたホットパイプ713eを流れ、除霜時に落下した氷片を融解して室外機6の外に完全に排出し、室外機6内に残霜が生じないようにしている。ホットパイプ713eを通った冷媒は、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図4で低圧冷媒の流れを示す破線の矢印の方向に流れ、主回路開閉弁713a,713b,713c,713dを介して、蒸発器となる室外熱交換器73の熱交換器731,732,733,734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。上述した暖房サイクルにおける暖房運転動作を繰り返すことにより、暖房運転が継続される。   The refrigerant that has condensed and entered the liquid or gas-liquid mixture exits the indoor unit 2 and enters the outdoor unit 6, and the hot pipe 713 e routed near the lower portion of the outdoor heat exchanger 73 or near the defrost water discharge port. The ice pieces dropped during defrosting are melted and completely discharged out of the outdoor unit 6 so that no residual frost is generated in the outdoor unit 6. The refrigerant passing through the hot pipe 713e enters the decompression device 74, expands due to decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 4, and the heat of the outdoor heat exchanger 73 serving as an evaporator is passed through the main circuit on-off valves 713a, 713b, 713c, 713d. It enters the exchangers 731, 732, 733, and 734, is heated by exchanging heat with the outdoor air, returns to the compressor 75 as a gas refrigerant. By repeating the heating operation in the heating cycle described above, the heating operation is continued.

このような暖房運転時には、室外熱交換器73は室外空気から熱を奪うため低温になり、0℃以下となって伝熱面に着霜することがある。外気の温度が低く、湿度が高い時にこの現象は顕著になり、室外空気の流通面に付着した霜により、室外空気の流通が妨げられて室外ファン631の風量が減少する。室外ファン631の風量が減少すると室外熱交換器73の温度が更に低下し、益々霜が着きやすくなる。かくして、室外熱交換器73の着霜量は増え続け、空気調和機1が室外空気から汲み上げる熱量が減少し、暖房能力も減少して、室内を十分に暖房できなくなり、暖房の機能が喪失してしまうので、除霜運転が必要になる。   During such a heating operation, the outdoor heat exchanger 73 takes a heat from the outdoor air and becomes low in temperature, and may become 0 ° C. or less and frost on the heat transfer surface. This phenomenon becomes conspicuous when the temperature of the outside air is low and the humidity is high, and the flow of the outdoor air 631 is reduced by the frost adhering to the outdoor air flow surface, thereby reducing the air volume of the outdoor fan 631. When the air volume of the outdoor fan 631 decreases, the temperature of the outdoor heat exchanger 73 further decreases, and frost is more likely to be formed. Thus, the amount of frost formation in the outdoor heat exchanger 73 continues to increase, the amount of heat pumped from the outdoor air by the air conditioner 1 decreases, the heating capacity also decreases, the room cannot be heated sufficiently, and the heating function is lost. Therefore, defrosting operation is necessary.

次に、本実施形態に係る空気調和機の暖房サイクルにおける除霜・暖房運転について図5〜8を参照しながら以下説明する。図5は本実施形態に係る空気調和機の第1熱交換器を、図6は本実施形態に係る空気調和機の第2熱交換器を、図7は本実施形態に係る空気調和機の第3熱交換器を、図8は本実施形態に係る空気調和機の第4熱交換器を、それぞれ除霜する時の冷媒の流れを示す冷凍サイクル図である。   Next, the defrosting / heating operation in the heating cycle of the air conditioner according to the present embodiment will be described below with reference to FIGS. FIG. 5 shows the first heat exchanger of the air conditioner according to this embodiment, FIG. 6 shows the second heat exchanger of the air conditioner according to this embodiment, and FIG. 7 shows the air conditioner according to this embodiment. FIG. 8 is a refrigeration cycle diagram showing the flow of the refrigerant when the third heat exchanger and FIG. 8 each defrost the fourth heat exchanger of the air conditioner according to the present embodiment.

前述のように、暖房運転をしていると、温度が低く湿度が高い日には、室外熱交換器73に霜が付き、暖房能力が落ちてくる。冷媒温検知センサ812が所定の温度を下回り、かつ、暖房サイクルでの暖房運転を所定の時間以上行っている場合に、着霜の量が所定の量に達したとみなし、暖房サイクルのまま除霜運転を行う。   As described above, when the heating operation is performed, on the day when the temperature is low and the humidity is high, the outdoor heat exchanger 73 is frosted and the heating capacity is reduced. When the refrigerant temperature detection sensor 812 is below the predetermined temperature and the heating operation in the heating cycle is performed for a predetermined time or more, it is considered that the amount of frost formation has reached the predetermined amount, and the heating cycle is removed. Perform frost operation.

この除霜運転は、四方弁72を図5のように暖房運転時と同じにして、第1主回路開閉弁713aを閉、第2主回路開閉弁713bと第3主回路開閉弁713cと第4主回路開閉弁713dを開、第1バイパス開閉弁715aを開、第2バイパス開閉弁715bと第3バイパス開閉弁715cと第4バイパス開閉弁715dを閉にして、室外熱交換器73の内の第1熱交換器731を凝縮器として機能させると共に、第2熱交換器732と第3熱交換器733と第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転または停止し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   In this defrosting operation, the four-way valve 72 is made the same as in the heating operation as shown in FIG. 5, the first main circuit on-off valve 713a is closed, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, 4 The main circuit on-off valve 713d is opened, the first bypass on-off valve 715a is opened, the second bypass on-off valve 715b, the third bypass on-off valve 715c, and the fourth bypass on-off valve 715d are closed, and the inside of the outdoor heat exchanger 73 The first heat exchanger 731 functions as a condenser, and the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 function as an evaporator to perform defrosting and heating at the same time. Forms a defrosting / heating cycle. At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、吐出管711に吐出され、途中で分岐して、一方の冷媒は四方弁72に入り、他方の冷媒はホットガスバイパス管715に入る。   Here, the gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, is discharged to the discharge pipe 711, branches in the middle, and one refrigerant is the four-way valve 72. And the other refrigerant enters the hot gas bypass pipe 715.

四方弁72に入った一方の冷媒は、図6の実線矢印の方向に流れ、室内熱交換器33に入り、室内空気と熱交換し凝縮され、液または気液混合の冷媒となる。この際に室内の暖房が行われる。液または気液混合の冷媒となった冷媒は、室内機2を出て室外機6に入り、ホットパイプ713eを流れ、除霜時に落下した周辺の氷片を融解して室外機6の外に排出する。   One refrigerant that has entered the four-way valve 72 flows in the direction of the solid line arrow in FIG. 6, enters the indoor heat exchanger 33, exchanges heat with the indoor air, and is condensed to become a liquid or gas-liquid mixed refrigerant. At this time, the room is heated. The refrigerant that has become a liquid or gas-liquid mixed refrigerant exits the indoor unit 2 and enters the outdoor unit 6, flows through the hot pipe 713 e, melts the surrounding ice pieces that have fallen during defrosting, and then exits the outdoor unit 6. Discharge.

ホットパイプ713eを通った冷媒は、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図5で低圧冷媒の流れを示す破線の矢印の方向に流れ、第2主回路開閉弁713bと第3主回路開閉弁713cと第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第2熱交換器732と第3熱交換器733と第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。   The refrigerant passing through the hot pipe 713e enters the decompression device 74, expands due to decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 5, and passes through the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, and the fourth main circuit on-off valve 713d. , Enters the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 of the outdoor heat exchanger 73 serving as an evaporator, is heated by exchanging heat with outdoor air, and compressed as a gas refrigerant Return to machine 75.

他方、ホットガスバイパス管715に入った冷媒は、図5の実線矢印の方向に流れ、第1バイパス開閉弁715aを介して室外熱交換器73の第1熱交換器731に入る。第1熱交換器731に入った冷媒は、高温高圧であるので第1熱交換器731に付着した霜を融解して下方に流下させる。流下した融解水は、蒸発器として作用している下側に位置する第2熱交換器732と第3熱交換器733と第4熱交換器734に流れ込み、最初は第2熱交換器732と第3熱交換器733と第4熱交換器734の着霜を融かしながら流下し、流下するに従って低温になり、外気温が低いときなどは終りには再氷結する。   On the other hand, the refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 5 and enters the first heat exchanger 731 of the outdoor heat exchanger 73 via the first bypass on-off valve 715a. Since the refrigerant that has entered the first heat exchanger 731 is high temperature and pressure, the frost adhering to the first heat exchanger 731 is melted and allowed to flow downward. The molten water that has flowed down flows into the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 that are located on the lower side acting as an evaporator, and initially the second heat exchanger 732 The third heat exchanger 733 and the fourth heat exchanger 734 flow down while melting the frost, and as it flows down, the temperature becomes lower, and when the outside air temperature is low, the ice is frozen again at the end.

この時、融解水は第2熱交換器732と第3熱交換器733と第4熱交換器734に熱を与えながら流下し、その熱は第2熱交換器732と第3熱交換器733と第4熱交換器734内部の冷媒の気化を促進する。つまり、上側にある第1熱交換器731で着霜の融解に使われた熱の一部が下側にある第2熱交換器732と第3熱交換器733と第4熱交換器734の着霜を一部融解し、更に内部の冷媒の気化に寄与して回収され、除霜の熱量が有効に使われる。   At this time, the molten water flows down while applying heat to the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734, and the heat flows to the second heat exchanger 732 and the third heat exchanger 733. And the vaporization of the refrigerant | coolant inside the 4th heat exchanger 734 is accelerated | stimulated. That is, a part of the heat used for melting frost in the first heat exchanger 731 on the upper side of the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 on the lower side. Part of the frost is melted and recovered, contributing to the vaporization of the internal refrigerant, and the amount of heat from defrosting is used effectively.

第1熱交換器731の霜を除霜した冷媒は第1熱交換器731を出たところで第2熱交換器732と第3熱交換器733と第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第1熱交換器731の除霜運転を所定時間または第1熱交換器731の出口の冷媒温検知センサ811aが所定温度まで上昇すると、第2熱交換器732の除霜を次に行う。   The refrigerant defrosted from the first heat exchanger 731 merges with the refrigerant vaporized in the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 when leaving the first heat exchanger 731. Return to the compressor 75. When the defrosting operation of the first heat exchanger 731 is performed for a predetermined time or the refrigerant temperature detection sensor 811a at the outlet of the first heat exchanger 731 rises to a predetermined temperature, the second heat exchanger 732 is defrosted next.

第2熱交換器732の除霜に切換えるには、第1主回路開閉弁713aと第3主回路開閉弁713cと第4主回路開閉弁713dを開、第2主回路開閉弁713bを閉、第1バイパス開閉弁715aと第3バイパス開閉弁715cと第4バイパス開閉弁715dを閉、第2バイパス開閉弁715bを開にして、室外熱交換器73の内の第2熱交換器732を凝縮器として機能させると共に、第1熱交換器731と第3熱交換器733と第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転または停止し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   To switch to defrosting of the second heat exchanger 732, the first main circuit on / off valve 713a, the third main circuit on / off valve 713c and the fourth main circuit on / off valve 713d are opened, the second main circuit on / off valve 713b is closed, The first bypass on / off valve 715a, the third bypass on / off valve 715c and the fourth bypass on / off valve 715d are closed, the second bypass on / off valve 715b is opened, and the second heat exchanger 732 in the outdoor heat exchanger 73 is condensed. The first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 function as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. . At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図6の破線の矢印の方向に流れ、第1主回路開閉弁713aと第3主回路開閉弁713cと第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第1熱交換器731と第3熱交換器733と第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。   Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant decompressed by the decompression device 74 flows in the direction of the broken arrow in FIG. 6, and passes through the first main circuit on / off valve 713a, the third main circuit on / off valve 713c, and the fourth main circuit on / off valve 713d. The first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 of the outdoor heat exchanger 73, which enter the heat exchange with the outdoor air, are heated, become a gas refrigerant, and enter the compressor 75. The gas refrigerant returns to the compressor 75.

ホットガスバイパス管715に入った冷媒は、図6の実線矢印の方向に流れ、第2バイパス開閉弁715bを介して室外熱交換器73の第2熱交換器732に入る。第2熱交換器732に入った冷媒は、高温高圧であるので、第2熱交換器732に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第2熱交換器732の霜を除霜した冷媒は、第2熱交換器732を出たところで第1熱交換器731と第3熱交換器733と第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第2熱交換器732の除霜運転が所定時間経過すると、または第2熱交換器732の出口の冷媒温検知センサ811bが所定温度まで上昇すると、第3熱交換器733の除霜を次に行う。   The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 6 and enters the second heat exchanger 732 of the outdoor heat exchanger 73 via the second bypass on-off valve 715b. Since the refrigerant that has entered the second heat exchanger 732 has a high temperature and a high pressure, the frost adhering to the second heat exchanger 732 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant that has defrosted the frost of the second heat exchanger 732 is a refrigerant that has vaporized in the first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 when leaving the second heat exchanger 732. The merger returns to the compressor 75. When the defrosting operation of the second heat exchanger 732 elapses for a predetermined time or when the refrigerant temperature detection sensor 811b at the outlet of the second heat exchanger 732 rises to a predetermined temperature, the defrosting of the third heat exchanger 733 is next performed. Do.

第3熱交換器733の除霜に切換えるには、第1主回路開閉弁713aと第2主回路開閉弁713bと第4主回路開閉弁713dを開、第3主回路開閉弁713cを閉、第1バイパス開閉弁715aと第2バイパス開閉弁715bと第4バイパス開閉弁715dを閉、第3バイパス開閉弁715cを開にして、室外熱交換器73の内の第3熱交換器733を凝縮器として機能させると共に、第1熱交換器731と第2熱交換器732と第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転または停止し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   To switch to defrosting of the third heat exchanger 733, the first main circuit on / off valve 713a, the second main circuit on / off valve 713b and the fourth main circuit on / off valve 713d are opened, the third main circuit on / off valve 713c is closed, The first bypass opening / closing valve 715a, the second bypass opening / closing valve 715b, and the fourth bypass opening / closing valve 715d are closed, the third bypass opening / closing valve 715c is opened, and the third heat exchanger 733 in the outdoor heat exchanger 73 is condensed. The first heat exchanger 731, the second heat exchanger 732, and the fourth heat exchanger 734 function as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. . At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図7の破線の矢印の方向に流れ、第1主回路開閉弁713aと第2主回路開閉弁713bと第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第1熱交換器731と第2熱交換器732と第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。   Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant decompressed by the decompression device 74 flows in the direction of the broken arrow in FIG. 7, and passes through the first main circuit on / off valve 713a, the second main circuit on / off valve 713b, and the fourth main circuit on / off valve 713d. It enters the first heat exchanger 731, the second heat exchanger 732, and the fourth heat exchanger 734 of the outdoor heat exchanger 73, and is heated by exchanging heat with the outdoor air and becomes a gas refrigerant to the compressor 75. The gas refrigerant returns to the compressor 75.

ホットガスバイパス管715に入った冷媒は、図7の実線矢印の方向に流れ、第3バイパス開閉弁715cを介して室外熱交換器73の第3熱交換器733に入る。第3熱交換器733に入った冷媒は、高温高圧であるので、第3熱交換器733に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第3熱交換器733の霜を除霜した冷媒は、第3熱交換器733を出たところで第1熱交換器731と第2熱交換器732と第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第3熱交換器733の除霜運転が所定時間経過すると、または第3熱交換器733の出口の冷媒温検知センサ811cが所定温度まで上昇すると、第4熱交換器734の除霜を次に行う。   The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 7 and enters the third heat exchanger 733 of the outdoor heat exchanger 73 via the third bypass on-off valve 715c. Since the refrigerant that has entered the third heat exchanger 733 has high temperature and pressure, the frost adhering to the third heat exchanger 733 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant that has defrosted the frost of the third heat exchanger 733 is the refrigerant that has vaporized in the first heat exchanger 731, the second heat exchanger 732, and the fourth heat exchanger 734 when leaving the third heat exchanger 733. The merger returns to the compressor 75. When the defrosting operation of the third heat exchanger 733 elapses for a predetermined time or when the refrigerant temperature detection sensor 811c at the outlet of the third heat exchanger 733 rises to a predetermined temperature, the defrosting of the fourth heat exchanger 734 is next performed. Do.

第4熱交換器734の除霜に切換えるには、第1主回路開閉弁713aと第2主回路開閉弁713bと第3主回路開閉弁713cを開、第4主回路開閉弁713dを閉、第1バイパス開閉弁715aと第2バイパス開閉弁715bと第3バイパス開閉弁715cを閉、第4バイパス開閉弁715dを開にして、室外熱交換器73の内の第4熱交換器734を凝縮器として機能させると共に、第1熱交換器731と第2熱交換器732と第3熱交換器733を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転または停止し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   In order to switch to defrosting of the fourth heat exchanger 734, the first main circuit on / off valve 713a, the second main circuit on / off valve 713b and the third main circuit on / off valve 713c are opened, the fourth main circuit on / off valve 713d is closed, The first bypass opening / closing valve 715a, the second bypass opening / closing valve 715b, and the third bypass opening / closing valve 715c are closed, the fourth bypass opening / closing valve 715d is opened, and the fourth heat exchanger 734 in the outdoor heat exchanger 73 is condensed. The first heat exchanger 731, the second heat exchanger 732, and the third heat exchanger 733 function as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. . At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図8の破線の矢印の方向に流れ、第1主回路開閉弁713aと第2主回路開閉弁713bと第3主回路開閉弁713cを介して、蒸発器となる室外熱交換器73の第1熱交換器731と第2熱交換器732と第3熱交換器733に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。   Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant depressurized by the decompression device 74 flows in the direction of the broken arrow in FIG. 8, and passes through the first main circuit on / off valve 713a, the second main circuit on / off valve 713b, and the third main circuit on / off valve 713c. The first heat exchanger 731, the second heat exchanger 732, and the third heat exchanger 733 of the outdoor heat exchanger 73, which enter the heat exchange with the outdoor air, are heated and become a gas refrigerant to the compressor 75. The gas refrigerant returns to the compressor 75.

ホットガスバイパス管715に入った冷媒は、図8の実線矢印の方向に流れ、第4バイパス開閉弁715dを介して室外熱交換器73の第4熱交換器734に入る。第4熱交換器734に入った冷媒は、高温高圧であるので、第4熱交換器734に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第4熱交換器734の霜を除霜した冷媒は、第4熱交換器734を出たところで第1熱交換器731と第2熱交換器732と第3熱交換器733で気化した冷媒と合流し圧縮機75に戻る。第4熱交換器734の除霜運転が所定時間経過すると、または第4熱交換器734の出口の冷媒温検知センサ811dが所定温度まで上昇すると、第1主回路開閉弁713aと第2主回路開閉弁713bと第3主回路開閉弁713cと第4主回路開閉弁713dを開、第1バイパス開閉弁715aと第2バイパス開閉弁715bと第3バイパス開閉弁715cと第4バイパス開閉弁715dを閉にして、除霜・暖房運転を終了し、直ちに図4の暖房運転に復帰する。   The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 8 and enters the fourth heat exchanger 734 of the outdoor heat exchanger 73 via the fourth bypass on-off valve 715d. Since the refrigerant that has entered the fourth heat exchanger 734 has a high temperature and a high pressure, the frost adhering to the fourth heat exchanger 734 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant that has defrosted the frost of the fourth heat exchanger 734 is the refrigerant that has vaporized in the first heat exchanger 731, the second heat exchanger 732, and the third heat exchanger 733 after leaving the fourth heat exchanger 734. The merger returns to the compressor 75. When the defrosting operation of the fourth heat exchanger 734 elapses for a predetermined time or when the refrigerant temperature detection sensor 811d at the outlet of the fourth heat exchanger 734 rises to a predetermined temperature, the first main circuit on-off valve 713a and the second main circuit The on-off valve 713b, the third main circuit on-off valve 713c, and the fourth main circuit on-off valve 713d are opened, and the first bypass on-off valve 715a, the second bypass on-off valve 715b, the third bypass on-off valve 715c, and the fourth bypass on-off valve 715d are opened. It is closed, the defrosting / heating operation is finished, and it immediately returns to the heating operation of FIG.

ここで、室外熱交換器73の下部は上部から流れてきた除霜時の融解水が通過するため、上部より水滴が残り易い。水滴が残った状態で部分除霜・暖房運転が終了し、暖房運転が始まると、残った水滴が氷結し、室外空気の通風を妨害する。室外空気の通風が妨害されると前述のように、更に、霜が成長し易くなる。   Here, since the lower part of the outdoor heat exchanger 73 passes through the defrosted water flowing from the upper part, water droplets are likely to remain from the upper part. When the partial defrosting / heating operation is completed with the water droplets remaining and the heating operation is started, the remaining water droplets freeze and block the outdoor air flow. If the ventilation of the outdoor air is obstructed, as described above, it becomes easier for frost to grow.

そこで、室外熱交換器73の除霜を行う時に、第1熱交換器731と第2熱交換器732と第3熱交換器733と第4熱交換器734の順に上側から除霜を行うと共に、下側の除霜時間を、先に行った上側熱交換器731の除霜時間より長くしている。これにより、室外熱交換器73に着霜し、着霜量が除霜を必要とする所定量に達したときに、上側にある熱交換器から順に部分除霜・暖房運転を行う。上側にある冷媒回路にホットガス(ホットガスバイパス管からのホットガス)を流すので、室外熱交換器73の上側の冷媒回路の空気側伝熱面に付着した霜が融解し、下方に流れ下る。   Therefore, when defrosting the outdoor heat exchanger 73, the first heat exchanger 731, the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 are defrosted in this order from the upper side. The lower defrosting time is longer than the defrosting time of the upper heat exchanger 731 previously performed. Thus, when the outdoor heat exchanger 73 is frosted and the frost amount reaches a predetermined amount that requires defrosting, the partial defrosting / heating operation is performed in order from the heat exchanger on the upper side. Since hot gas (hot gas from the hot gas bypass pipe) flows through the refrigerant circuit on the upper side, frost attached to the air side heat transfer surface of the refrigerant circuit on the upper side of the outdoor heat exchanger 73 is melted and flows downward. .

この融解水の温度が高い場合は、融解水は下側にある熱交換器の空気側伝熱面の霜に触れ、これを融解水自身の顕熱で溶かしながら更に流れ下る。このとき、下側にある熱交換器で霜が融解した部分は、熱伝達の妨害をしていた霜が除かれるので、外気から、冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。流れ下る融解水の温度が融解点まで下がると、融解水はそれ以上霜を融解することなく流下し、流下しながら下側にある熱交換器内を流れる下側の冷媒回路の冷媒で冷却されて凝固する。   When the temperature of the molten water is high, the molten water touches the frost on the air side heat transfer surface of the heat exchanger on the lower side and further flows down while melting it with the sensible heat of the molten water itself. At this time, the portion where the frost has melted in the heat exchanger on the lower side is removed from the frost that was hindering heat transfer, so the heat transfer from the outside air to the refrigerant is performed smoothly, and the heat exchange capability is improved. It recovers and suppresses the decline in indoor heating capacity. When the temperature of the flowing molten water falls to the melting point, the molten water flows down without further melting of the frost, and is cooled by the refrigerant in the lower refrigerant circuit flowing in the lower heat exchanger while flowing down. Solidify.

このとき、融解水の凝固熱は下側の冷媒回路の冷媒を温めるので、上側にある熱交換器で霜の融解に使用された熱量が回収される。上側にある熱交換器の除霜のための除霜・暖房運転が終了すると、順に下側にある熱交換器の除霜を行うための除霜・暖房運転が開始される。除霜を行う冷媒回路に圧縮機75からのホットガスを流すので、該当する冷媒回路の空気側伝熱面に付着した霜が融解し、下方に流れ下る。   At this time, since the heat of solidification of the molten water warms the refrigerant in the lower refrigerant circuit, the amount of heat used to melt the frost is recovered by the heat exchanger on the upper side. When the defrosting / heating operation for defrosting the upper heat exchanger is completed, the defrosting / heating operation for defrosting the lower heat exchanger in order is started. Since hot gas from the compressor 75 is caused to flow through the refrigerant circuit that performs defrosting, the frost attached to the air-side heat transfer surface of the corresponding refrigerant circuit melts and flows downward.

このとき、除霜が終了した直後の熱交換器は、熱伝達の妨害をしていた霜が除かれているので、外気から冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。このように、除霜・暖房運転時でも暖房能力の大幅な低下を抑制しつつ、暖房を継続することができる。   At this time, the heat exchanger immediately after the completion of the defrosting removes the frost that has hindered the heat transfer, so the heat transfer from the outside air to the refrigerant is performed smoothly, and the heat exchange capacity is restored. , Suppresses the decrease in indoor heating capacity. Thus, heating can be continued while suppressing a significant decrease in heating capacity even during defrosting / heating operation.

また、除霜・暖房運転時には、除霜した熱交換器より下側にある熱交換器の着霜量が一時的に増加することがある。しかし、引き続いて下側にある熱交換器の除霜のための除霜・暖房運転が行われるので、下側にある熱交換器も除霜される。したがって、下側にある熱交換器の霜が上側の熱交換器の除霜の影響で増え続けることはない。   Further, during the defrosting / heating operation, the frosting amount of the heat exchanger below the defrosted heat exchanger may temporarily increase. However, since the defrosting / heating operation for defrosting the heat exchanger on the lower side is subsequently performed, the heat exchanger on the lower side is also defrosted. Therefore, the frost of the lower heat exchanger does not continue to increase due to the defrosting of the upper heat exchanger.

このようにして除霜・暖房運転の合計所要時間を逆サイクル除霜運転した場合に比べて短縮することができる。また、この時、圧縮機75の吐出温度の低下が抑制されるので、暖房能力の低下も抑制することができる。このため、室内を暖房しながら除霜をすることが可能で、且つ、除霜・暖房運転の所要時間を短縮できる。   In this way, the total time required for the defrosting / heating operation can be shortened compared to the case where the reverse cycle defrosting operation is performed. Moreover, since the fall of the discharge temperature of the compressor 75 is suppressed at this time, the fall of heating capability can also be suppressed. For this reason, defrosting can be performed while heating the room, and the time required for the defrosting / heating operation can be shortened.

次に、本実施形態に係る空気調和機の暖房サイクルにおける限定除霜・暖房運転について、以下説明する。実使用環境下では、室外熱交換器を取り巻く気象状況(気温の変化、降雨降雪の有無、風向風速の変化など)により室外熱交換器への着霜量が全体的に一定とならない場合がある。たとえば暴風雪などの悪天候の際は、室外機の据付状況(室外機の風雪保護構造の有無や周囲の建物の影響)によって室外機の熱交換器への着霜が必ずしも一定とはならず、一部に集中することがある。除霜・暖房運転は、冷媒温検知センサ812により冷媒温度が一定値を下回った場合に開始する制御となっているため、着霜量の多い熱交換器が一部であっても除霜・暖房運転を行う。したがって、本来除霜を行う必要がない熱交換器についても複数に分けた冷媒回路の熱交換器を上記制御にしたがって順に切り換えながら除霜・暖房運転を行うため、除霜効率は良好とは言えない。   Next, the limited defrosting / heating operation in the heating cycle of the air conditioner according to the present embodiment will be described below. Under actual usage conditions, the overall amount of frost on the outdoor heat exchanger may not be constant depending on the weather conditions surrounding the outdoor heat exchanger (changes in temperature, whether there is rainfall or snowfall, changes in wind direction and wind speed, etc.) . For example, during bad weather such as stormy snow, the frosting on the heat exchanger of the outdoor unit is not always constant depending on the installation status of the outdoor unit (the presence or absence of a wind and snow protection structure of the outdoor unit and the influence of surrounding buildings). May concentrate on the department. Since the defrosting / heating operation is controlled when the refrigerant temperature falls below a certain value by the refrigerant temperature detection sensor 812, the defrosting / heating operation is performed even if a part of the heat exchanger with a large amount of frost formation is included. Perform heating operation. Therefore, it can be said that the defrosting efficiency is good because the defrosting / heating operation is performed while sequentially switching the heat exchangers of the refrigerant circuits divided into a plurality according to the above control even for heat exchangers that do not need to be defrosted originally. Absent.

そこで、室外熱交換器の一部の着霜量が極端に多い場合に限り、除霜・暖房運転による順序立てて熱交換器を除霜していく方式に代わり、必要箇所のみを限定して除霜する限定除霜・暖房運転を行う。ここで着霜量が多い室外熱交換器を室外第2熱交換器732であると仮定し、第2熱交換器732の限定除霜・暖房運転について、図6を用いて説明する。   Therefore, only in the case where the amount of frost formation on the outdoor heat exchanger is extremely large, instead of defrosting the heat exchanger in order by defrosting / heating operation, only the necessary parts are limited. Perform limited defrosting and heating operation to defrost. Here, assuming that the outdoor heat exchanger with a large amount of frost formation is the outdoor second heat exchanger 732, the limited defrosting / heating operation of the second heat exchanger 732 will be described with reference to FIG.

暖房運転の状態から第2熱交換器732の限定除霜・暖房運転に切換えるには、第1主回路開閉弁713aと第3主回路開閉弁713cと第4主回路開閉弁713dを開、第2主回路開閉弁713bを閉、第1バイパス開閉弁715aと第3バイパス開閉弁715cと第4バイパス開閉弁715dを閉、第2バイパス開閉弁715bを開にして、室外熱交換器73の内の第2熱交換器732を凝縮器として機能させると共に、第1熱交換器731と第3熱交換器733と第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   In order to switch from the heating operation state to the limited defrosting / heating operation of the second heat exchanger 732, the first main circuit on / off valve 713a, the third main circuit on / off valve 713c, and the fourth main circuit on / off valve 713d are opened, 2 The main circuit on-off valve 713b is closed, the first bypass on-off valve 715a, the third bypass on-off valve 715c and the fourth bypass on-off valve 715d are closed, the second bypass on-off valve 715b is opened, and the inside of the outdoor heat exchanger 73 The second heat exchanger 732 functions as a condenser, and the first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 function as an evaporator to perform defrosting and heating at the same time. Forms a defrosting / heating cycle. At this time, the outdoor air blowing motor 633 is operated at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図6の破線の矢印の方向に流れ、第1主回路開閉弁713aと第3主回路開閉弁713cと第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第1熱交換器731と第3熱交換器733と第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。   Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant decompressed by the decompression device 74 flows in the direction of the broken arrow in FIG. 6, and passes through the first main circuit on / off valve 713a, the third main circuit on / off valve 713c, and the fourth main circuit on / off valve 713d. The first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 of the outdoor heat exchanger 73, which enter the heat exchange with the outdoor air, are heated, become a gas refrigerant, and enter the compressor 75. The gas refrigerant returns to the compressor 75.

ホットガスバイパス管715に入った冷媒は、図6の実線矢印の方向に流れ、第2バイパス開閉弁715bを介して室外熱交換器73の第2熱交換器732に入る。第2熱交換器732に入った冷媒は、高温高圧であるので、第2熱交換器732に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第2熱交換器732の霜を除霜した冷媒は、第2熱交換器732を出たところで第1熱交換器731と第3熱交換器733と第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第2熱交換器732の除霜運転が所定時間経過すると、または第2熱交換器732の出口の冷媒温検知センサ811bが所定温度まで上昇すると、第1主回路開閉弁713aと第2主回路開閉弁713bと第3主回路開閉弁713cと第4主回路開閉弁713dを開、第1バイパス開閉弁715aと第2バイパス開閉弁715bと第3バイパス開閉弁715cと第4バイパス開閉弁715dを閉にして、部分除霜・暖房運転を終了し、直ちに図4の暖房運転に復帰する。   The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 6 and enters the second heat exchanger 732 of the outdoor heat exchanger 73 via the second bypass on-off valve 715b. Since the refrigerant that has entered the second heat exchanger 732 has a high temperature and a high pressure, the frost adhering to the second heat exchanger 732 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant that has defrosted the frost of the second heat exchanger 732 is a refrigerant that has vaporized in the first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 when leaving the second heat exchanger 732. The merger returns to the compressor 75. When the defrosting operation of the second heat exchanger 732 elapses for a predetermined time or when the refrigerant temperature detection sensor 811b at the outlet of the second heat exchanger 732 rises to a predetermined temperature, the first main circuit on-off valve 713a and the second main circuit The on-off valve 713b, the third main circuit on-off valve 713c, and the fourth main circuit on-off valve 713d are opened, and the first bypass on-off valve 715a, the second bypass on-off valve 715b, the third bypass on-off valve 715c, and the fourth bypass on-off valve 715d are opened. It is closed, the partial defrosting / heating operation is terminated, and the operation immediately returns to the heating operation of FIG.

ここで、限定除霜・暖房運転への移行判定について説明する。限定除霜・暖房運転への移行判定は除霜・暖房運転の終了時点で制御装置10が行う。除霜・暖房運転では分割した複数の冷媒回路の熱交換器を順に除霜するため(一の熱交換器の除霜運転の所定時間経過後に、次の熱交換器の除霜を行うため)、各々の熱交換器に取り付けられた冷媒温検知センサ811により各々の熱交換器の除霜・暖房運転終了時点の温度の監視が可能である。各々の熱交換器への着霜量に極端な差異がない場合は、各熱交換器の除霜終了時点の冷媒温検知センサの温度差は小さい。   Here, the transition determination to the limited defrosting / heating operation will be described. The control device 10 determines whether to shift to the limited defrosting / heating operation at the end of the defrosting / heating operation. In order to defrost the heat exchangers of a plurality of divided refrigerant circuits in order in the defrosting / heating operation (to defrost the next heat exchanger after a predetermined time of the defrosting operation of one heat exchanger) The temperature at the end of the defrosting / heating operation of each heat exchanger can be monitored by the refrigerant temperature detection sensor 811 attached to each heat exchanger. When there is no extreme difference in the amount of frost formation on each heat exchanger, the temperature difference of the refrigerant temperature detection sensor at the end of defrosting of each heat exchanger is small.

しかし、熱交換器の着霜量の差異が大きくなると、着霜量の多い熱交換器の除霜終了時点の冷媒温検知センサの検知温度TMINは、他の着霜量の少ない熱交換器の除霜終了時点の冷媒温検知センサの検知温度の平均TAVEに比べ5乃至15℃程度低くなる。 However, when the difference in the frost amount of the heat exchanger becomes large, the detection temperature T MIN of the refrigerant temperature detection sensor at the time when the defrosting of the heat exchanger with the large frost amount ends is the other heat exchanger with the small frost amount. This is about 5 to 15 ° C. lower than the average T AVE of the detection temperature of the refrigerant temperature detection sensor at the end of defrosting.

したがって、限定除霜・暖房運転への移行判定条件は、除霜・暖房運転終了時点で着霜量の多い熱交換器の冷媒温検知センサの検知温度TMINと他の着霜量の少ない熱交換器の除霜終了時点の冷媒温検知センサの検知温度の平均TAVEとの温度差ΔTが5℃を越える場合で、且つ着霜量の多い熱交換器の除霜終了時点の冷媒温検知センサの検知温度TMINが0℃未満(TMIN<0)であった場合とする(冷媒温検知センサ811で検知した冷媒温度が0°未満の場合には霜の溶け残りのおそれがある)。このように除霜・暖房運転終了時に限定除霜・暖房運転への移行判定条件を満足した場合、除霜禁止時間だけ暖房運転を行った後(除霜・暖房運転終了後に何度も除霜運転を行うと暖房効率が低下するので、除霜・暖房運転終了直後に除霜運転の禁止時間を設けて、この禁止時間には除霜運転を行わない)、限定除霜・暖房運転を行う。 Therefore, only the defrosting-shift determination condition to the heating operation, less heat of the detected temperature T MIN and other frost amount of refrigerant temperature sensor of frost formation amount of large heat exchanger defrosting and heating operation at the end Refrigerant temperature detection at the end of defrosting of a heat exchanger when the temperature difference ΔT with respect to the average T AVE of the detection temperature of the refrigerant temperature detection sensor at the end of defrosting of the exchanger exceeds 5 ° C. It is assumed that the detection temperature T MIN of the sensor is less than 0 ° C. (T MIN <0) (if the refrigerant temperature detected by the refrigerant temperature detection sensor 811 is less than 0 °, frost may remain unmelted) . In this way, after satisfying the condition for determining the transition to the limited defrosting / heating operation at the end of the defrosting / heating operation, after performing the heating operation for the defrosting prohibition time (defrosting many times after the defrosting / heating operation is completed). Since the heating efficiency decreases when the operation is performed, a defrosting operation prohibition time is provided immediately after the completion of the defrosting / heating operation, and the defrosting operation is not performed during this prohibition time), and the limited defrosting / heating operation is performed. .

ここで、上記の着霜量の多い熱交換器を第2熱交換器732であると仮定し、限定除霜・暖房運転の判定例を図6を用いて説明する。除霜・暖房運転終了時点で、第1熱交換器731の冷媒温検知センサ811aの検知温度T=3℃、第2熱交換器732の冷媒温検知センサ811bの検知温度T=―3℃、第3熱交換器733の冷媒温検知センサ811cの検知温度T=5℃、第4熱交換器734の冷媒温検知センサ811dの検知温度T=4℃と仮定し、上記温度差ΔTを計算すると、次式の如くなる。 Here, it is assumed that the heat exchanger with a large amount of frost formation is the second heat exchanger 732, and a determination example of the limited defrosting / heating operation will be described with reference to FIG. At the end of the defrosting / heating operation, the detection temperature T a of the refrigerant temperature detection sensor 811a of the first heat exchanger 731 is 3 ° C., and the detection temperature T b of the refrigerant temperature detection sensor 811b of the second heat exchanger 732 is −3. Assuming that the detection temperature T c of the refrigerant temperature detection sensor 811c of the third heat exchanger 733 is 5 ° C., the detection temperature T d of the refrigerant temperature detection sensor 811d of the fourth heat exchanger 734 is 4 ° C. When ΔT is calculated, the following equation is obtained.

ΔT=TAVE―TMIN=(T+T+T)/3―T=7 [℃]
よって、ΔT>5、且つTMIN=T<0より、限定除霜・暖房運転の移行条件を満足するため、第2熱交換器732の限定除霜・暖房運転の移行が確定する。
ΔT = T AVE −T MIN = (T a + T c + T d ) / 3−T b = 7 [° C.]
Therefore, since ΔT> 5 and T MIN = T b <0, the limited defrosting / heating operation transition condition of the second heat exchanger 732 is determined in order to satisfy the limited defrosting / heating operation transition condition.

このように、必要に応じて限定箇所のみ除霜する限定除霜・暖房運転を行うことで、分割した複数の室外熱交換器を順に除霜していく除霜・暖房運転よりも更に除霜に要する時間を短縮することができ除霜効率が向上する。例えば、4分割された室外熱交換器を考慮した場合、除霜する熱交換器を含む冷媒回路一つあたりの除霜・暖房運転の時間がほぼ同一であると仮定すると、限定除霜・暖房運転に要する時間は除霜・暖房運転に要する時間の約4分の1となる。   In this way, by performing limited defrosting / heating operation that defrosts only limited places as necessary, defrosting is further performed than defrosting / heating operation that sequentially defrosts a plurality of divided outdoor heat exchangers. Can be shortened and the defrosting efficiency is improved. For example, when an outdoor heat exchanger divided into four parts is considered, assuming that the time of defrosting / heating operation per refrigerant circuit including the heat exchanger to be defrosted is almost the same, limited defrosting / heating The time required for operation is about a quarter of the time required for defrosting / heating operation.

次に、一般に着霜が生じるような温度条件での暖房時は、外気温が低いときが多く、温風の温度を上げるため、高い凝縮温度が要求され、また、圧縮機75の吸い込み圧力は外気温が低いため、低くなるので、圧縮比が上がり、圧縮機75の効率が下がってしまう。これを補うため、回転数制御圧縮機を使用するときなどは回転数を上げて、冷媒の循環量を確保する必要がある。また、圧縮機75の仕事量も暖房能力に加わるので、圧縮機75を存分に働かせて暖房能力を確保する。このため、圧縮機75は高負荷で駆動され、圧縮機75は高温に保持されている。この状態から除霜・暖房運転に入ると、圧縮機75が高温に保持されているので、圧縮機75から吐出される冷媒は高温状態でホットガスバイパス回路を流れ、室外熱交換器73に流入し除霜する。   Next, generally, when heating under a temperature condition where frost formation occurs, the outside air temperature is often low, and a high condensing temperature is required to raise the temperature of the hot air, and the suction pressure of the compressor 75 is Since the outside air temperature is low, the temperature is lowered, so that the compression ratio is increased and the efficiency of the compressor 75 is decreased. In order to compensate for this, it is necessary to increase the number of rotations to ensure the circulation amount of the refrigerant when using a rotation number control compressor. Moreover, since the work amount of the compressor 75 is also added to the heating capacity, the compressor 75 is fully operated to ensure the heating capacity. For this reason, the compressor 75 is driven with a high load, and the compressor 75 is kept at a high temperature. When the defrosting / heating operation is started from this state, since the compressor 75 is kept at a high temperature, the refrigerant discharged from the compressor 75 flows through the hot gas bypass circuit at a high temperature and flows into the outdoor heat exchanger 73. Then defrost.

また、一般に、室外熱交換器73に送風する室外ファン631は外気を大量に循環させて、熱交換を効率よく行わせるため、軸流ファン631が使用される。軸流ファンは発生できる風圧がさほど大きくないため、室外機6の構造は外気吸込み口、室外熱交換器73、軸流ファン631、外気吹出し口をほぼ一直線に並べ、通風経路を単純な形にして、通風の圧力損失を抑えるように構成されている。   In general, the outdoor fan 631 that blows air to the outdoor heat exchanger 73 circulates a large amount of outside air so that heat exchange can be performed efficiently, and thus an axial fan 631 is used. Since the wind pressure that can be generated by the axial fan is not so great, the structure of the outdoor unit 6 is that the outside air inlet, the outdoor heat exchanger 73, the axial fan 631, and the outside air outlet are arranged in a straight line, and the ventilation path is simplified. Thus, the pressure loss of ventilation is suppressed.

また、外気温の低下に伴い、圧縮機75の吐出温度を高温側にシフトして制御すると共に、除霜禁止期間を短縮する。換言すると、空気調和機の周囲温度すなわち外気温度を検知する温度検知センサを別に設け、このセンサによる温度低下に基づいて、圧縮機の回転数を高くし、又は減圧装置の絞りを絞る制御を行うことで圧縮機吐出温度を高温側にシフトして暖房能力を高めるとともに、外気温の低下が霜の成長を早めるので、除霜期間期間を短縮して除霜運転を実施でき得るようにしておく制御をする。これにより、圧縮機75の蓄熱量が増加すると共に、除霜・暖房運転または限定除霜・暖房運転時間が短縮され、暖房運転に復帰した時の圧縮機75の吐出温度の回復が早くなって、暖房能力の低下時間が短くなる。このため、低外気温でも除霜・暖房運転または限定除霜・暖房運転時の室温変化が抑制される。   Further, as the outside air temperature decreases, the discharge temperature of the compressor 75 is shifted to the high temperature side and controlled, and the defrosting prohibition period is shortened. In other words, a temperature detection sensor that detects the ambient temperature of the air conditioner, that is, the outside air temperature, is separately provided, and based on the temperature decrease by this sensor, the rotation speed of the compressor is increased or the throttle of the decompression device is throttled. Thus, the compressor discharge temperature is shifted to the high temperature side to increase the heating capacity, and the decrease in the outside air temperature accelerates the growth of frost, so that the defrosting period can be shortened so that the defrosting operation can be performed. Take control. As a result, the heat storage amount of the compressor 75 is increased, the defrosting / heating operation or the limited defrosting / heating operation time is shortened, and the recovery of the discharge temperature of the compressor 75 when returning to the heating operation is accelerated. , Heating capacity decline time is shortened. For this reason, the room temperature change at the time of defrosting / heating operation or limited defrosting / heating operation is suppressed even at a low outside temperature.

また、除霜・暖房運転または限定除霜・暖房運転時は暖房運転時よりも室外ファン631の回転数を低下させ、更に、外気温度が所定値より低い場合は除霜運転時に室外送風機の運転を停止する。このように、除霜・暖房運転または限定除霜・暖房運転時に室外ファン631の回転数を低下させることにより、除霜・暖房運転または限定除霜・暖房運転時に融解水やフィン、パイプから、室外ファン631による強制対流で外気に奪い去られる熱量が減少し、霜の融解が効率よく進む。   Further, during the defrosting / heating operation or the limited defrosting / heating operation, the rotational speed of the outdoor fan 631 is decreased as compared with the heating operation, and when the outdoor air temperature is lower than a predetermined value, the outdoor fan is operated during the defrosting operation. To stop. Thus, by reducing the rotational speed of the outdoor fan 631 during defrosting / heating operation or limited defrosting / heating operation, from the melted water, fins, and pipes during defrosting / heating operation or limited defrosting / heating operation, The amount of heat taken away by the outdoor air by forced convection by the outdoor fan 631 is reduced, and frost melting proceeds efficiently.

また、外気の温度が更に低くなり、外気への放熱量が増加した場合は室外ファン631の運転を停止する。これにより、室外ファン631による強制対流で外気に奪い去られる熱量の大部分が霜の融解に有効に使用され、室外熱交換器73の除霜が効率よく進む。このため、除霜・暖房運転または限定除霜・暖房運転時間を短縮でき、また、低外気温の時でも除霜・暖房運転または限定除霜・暖房運転が可能である。   Further, when the temperature of the outside air is further lowered and the amount of heat released to the outside air is increased, the operation of the outdoor fan 631 is stopped. As a result, most of the amount of heat removed to the outside air by forced convection by the outdoor fan 631 is effectively used for melting frost, and the defrosting of the outdoor heat exchanger 73 proceeds efficiently. Therefore, the defrosting / heating operation or the limited defrosting / heating operation time can be shortened, and the defrosting / heating operation or the limited defrosting / heating operation is possible even at a low outside temperature.

また、除霜・暖房運転を最長除霜運転時間に達するまで行っても室外熱交換器73の温度が所定値に達しない場合に限り、四方弁72を切換えて逆サイクル除霜運転を行う。すなわち、熱交換器冷媒温検知センサ811a〜811dが0℃以上にならないと残霜の可能性があるので、逆サイクル除霜運転を行う。これにより、暖房サイクルでのホットガスバイパス除霜で融解し切れなかった室外熱交換器73の冷媒回路出口(冷房時の室外熱交換器入口)付近の霜も、逆サイクル除霜運転を行うことにより、圧縮機75からの高温冷媒で融解させることができる。   Further, the reverse cycle defrosting operation is performed by switching the four-way valve 72 only when the temperature of the outdoor heat exchanger 73 does not reach a predetermined value even if the defrosting / heating operation is performed until the longest defrosting operation time is reached. That is, if the heat exchanger refrigerant temperature detection sensors 811a to 811d do not reach 0 ° C. or higher, there is a possibility of residual frost, and therefore the reverse cycle defrost operation is performed. As a result, the reverse cycle defrosting operation is also performed for the frost near the refrigerant circuit outlet (outdoor heat exchanger inlet) of the outdoor heat exchanger 73 that has not been completely melted by the hot gas bypass defrosting in the heating cycle. Thus, the high-temperature refrigerant from the compressor 75 can be melted.

このように、空気調和機の設置条件や、気象条件の悪化で通常の除霜・暖房運転または限定除霜・暖房運転では残霜が発生する場合でも、残霜無しの完全な除霜運転を行うことができる。このため、室内の暖房ができる設置条件や気象条件の範囲を広くすることができる。   In this way, complete defrosting operation without residual frost is performed even if residual frost is generated in normal defrosting / heating operation or limited defrosting / heating operation due to deterioration of air conditioner installation conditions and weather conditions. It can be carried out. For this reason, the range of the installation conditions and weather conditions which can be heated indoors can be widened.

次に、本発明の実施形態における他の構成例(熱交換器を2分割した場合の実測結果)による暖房の立上がり特性について、図9を参照しながら説明する。図9は図1に示す空気調和機の暖房の立上がり運転時の室温変化を示す特性図である。ここでは、寒い朝を想定し、室温、外気温が共に−5℃の状態からスタートさせた例である。   Next, the rising characteristics of heating according to another configuration example (actual measurement result when the heat exchanger is divided into two) according to the embodiment of the present invention will be described with reference to FIG. FIG. 9 is a characteristic diagram showing a change in room temperature during the start-up operation of the air conditioner shown in FIG. In this example, assuming a cold morning, both the room temperature and the outside air temperature are started at −5 ° C.

図9の特性に示すように、本実施形態による暖房運転と除霜・暖房運転による方式では除霜の運転時間が約2分と短く(第1〜第4の熱交換器におけるトータルの除霜時間、図9で室内温度が低下している時間)、また、除霜・暖房運転中も室外熱交換器の一部は蒸発器として作用して室内の暖房をしているため、室内温度の低下も室温立ち上げ時で約3℃、室温安定時で同程度に抑えられ、快適性を確保して暖房が継続される。更に、本実施形態による必要に応じて行う暖房運転と限定除霜・暖房運転による方式では、除霜の運転時間が前記除霜・暖房運転中よりも更に短く、また、限定除霜・暖房運転中も室外熱交換器の一部は蒸発器として作用して室内の暖房をしているため、室内温度の低下は前記除霜・暖房運転中よりも更に抑えられ、快適性が確保して暖房が継続される。図10より室内温度が、−5℃から20℃まで到達する時間は80分と短い。   As shown in the characteristics of FIG. 9, in the heating operation and the defrosting / heating operation method according to this embodiment, the defrosting operation time is as short as about 2 minutes (total defrosting in the first to fourth heat exchangers). Time, the time during which the room temperature is lowered in FIG. 9), and also during the defrosting / heating operation, a part of the outdoor heat exchanger acts as an evaporator to heat the room. The decrease is suppressed to about 3 ° C. when the room temperature is raised and to the same level when the room temperature is stable, and heating is continued while ensuring comfort. Furthermore, in the heating operation and the limited defrosting / heating operation method performed as necessary according to the present embodiment, the defrosting operation time is shorter than that during the defrosting / heating operation, and the limited defrosting / heating operation is performed. Since some of the outdoor heat exchangers also act as evaporators to heat the room, the decrease in room temperature is further suppressed than during the defrosting / heating operation, ensuring comfort and heating. Is continued. From FIG. 10, the time for the room temperature to reach from -5 ° C to 20 ° C is as short as 80 minutes.

以上説明したように、本発明の実施形態に係る空気調和機は、次のような制御装置を具備することを特徴とするものである。すなわち、制御装置は、暖房運転中に複数に分けた冷媒回路の一部熱交換器を除霜しつつ他熱交換器で暖房する除霜・暖房運転をし、全ての冷媒回路の除霜終了後、暖房運転に復帰するように制御し、また、暖房運転中に複数に分けた冷媒回路の熱交換器のうち、着霜量の多い冷媒回路の熱交換器のみを限定して除霜する必要がある場合には、着霜量の多い熱交換器のみを限定して除霜しつつ他熱交換器で暖房する限定除霜・暖房運転をし、暖房運転に復帰するように制御するものである。   As described above, the air conditioner according to the embodiment of the present invention includes the following control device. That is, the control device performs the defrosting / heating operation in which heating is performed by the other heat exchanger while defrosting the partial heat exchanger of the refrigerant circuit divided into a plurality during the heating operation, and the defrosting of all the refrigerant circuits is completed. Thereafter, control is performed so as to return to the heating operation, and among the heat exchangers of the refrigerant circuit divided into a plurality during the heating operation, only the heat exchanger of the refrigerant circuit having a large amount of frost formation is limited and defrosted. When it is necessary, only the heat exchanger with a large amount of frost formation is limited and defrosting and heating with other heat exchangers is performed, and control is performed to return to the heating operation. It is.

また、制御装置は、外気温の低下に基づいて、圧縮機の吐出温度を高温側にシフトして制御すると共に、除霜禁止期間を短縮するように制御するものであり、さらに、制御装置は、除霜・暖房運転時および限定除霜・暖房運転時に暖房運転時よりも室外送風装置の回転数を低下させ、更に外気温度が所定値より低い場合の除霜時に室外送風装置の運転を停止するように制御するものであり、さらに、制御装置は、除霜・暖房運転および限定除霜・暖房運転を除霜運転時間に達するまで行っても室外熱交換器の温度が所定値に達しない場合に四方弁を切換えて逆サイクル除霜運転を行うように制御するものである。   Further, the control device controls the discharge temperature of the compressor to be shifted to the high temperature side based on the decrease in the outside air temperature, and controls so as to shorten the defrosting prohibition period. , During the defrosting / heating operation and during the limited defrosting / heating operation, the rotational speed of the outdoor air blower is reduced more than during the heating operation, and the outdoor air blower operation is stopped during the defrosting when the outside air temperature is lower than the predetermined value. Furthermore, even if the control device performs defrosting / heating operation and limited defrosting / heating operation until the defrosting operation time is reached, the temperature of the outdoor heat exchanger does not reach a predetermined value. In this case, the control is performed so as to perform the reverse cycle defrosting operation by switching the four-way valve.

このように、本発明の実施形態に係る空気調和機は、次のような具体的構成例によって裏付けされることを特徴とするものである。すなわち、空気調和機は、除霜を暖房と同時に行って室内の快適性を確保しつつ除霜時間を短縮することを主旨として、圧縮機75、四方弁72、室内熱交換器33、減圧装置74及び室外熱交換器73を冷媒配管で連結した冷凍サイクルを形成し、圧縮機75の吐出側から室外熱交換器73にホットガスを流すバイパス回路715を設けている。室外熱交換器73は、その冷媒回路を上下に2〜4つに分割して、例えば、第1熱交換器731・第2熱交換器732・第3熱交換器733・第4熱交換器734を構成している。   As described above, the air conditioner according to the embodiment of the present invention is supported by the following specific configuration example. That is, the air conditioner performs the defrosting simultaneously with the heating to shorten the defrosting time while ensuring the indoor comfort, and the compressor 75, the four-way valve 72, the indoor heat exchanger 33, the pressure reducing device. 74 and an outdoor heat exchanger 73 are connected by a refrigerant pipe to form a refrigeration cycle, and a bypass circuit 715 is provided to flow hot gas from the discharge side of the compressor 75 to the outdoor heat exchanger 73. The outdoor heat exchanger 73 divides the refrigerant circuit vertically into two to four, for example, a first heat exchanger 731, a second heat exchanger 732, a third heat exchanger 733, and a fourth heat exchanger. 734 is configured.

暖房運転の際に、制御装置10は、第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713d及び第1バイパス開閉弁715a、第2バイパス開閉弁715b、第3バイパス開閉弁715c、第4バイパス715dをそれぞれ適宜に開閉して(上述したように)、第1熱交換器731を除霜しつつ、他の熱交換器732〜734で暖房する除霜・暖房運転をした後に、同様に第2〜第4熱交換器732〜734を除霜しつつ他の熱交換器で暖房する除霜・暖房運転を順番に行い、全ての熱交換器に対して除霜が完了した後、ただちに暖房運転に復帰する。また、暖房運転の際、制御装置10は、第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713d及び第1バイパス開閉弁715a、第2バイパス開閉弁715b、第3バイパス開閉弁715c、第4バイパス715dをそれぞれ適宜に開閉して(上述したように)、着霜量の多い冷媒回路の熱交換器のみを限定して除霜しつつ、他の熱交換器で暖房する限定除霜・暖房運転をした後、ただちに暖房運転に復帰するように制御する。   During the heating operation, the control device 10 includes the first main circuit on-off valve 713a, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, the fourth main circuit on-off valve 713d, and the first bypass on-off valve 715a, The second bypass opening / closing valve 715b, the third bypass opening / closing valve 715c, and the fourth bypass 715d are each appropriately opened and closed (as described above) to defrost the first heat exchanger 731 and another heat exchanger 732. After performing the defrosting / heating operation for heating at ˜734, the defrosting / heating operation for heating with other heat exchangers while defrosting the second to fourth heat exchangers 732 to 734 in the same manner is performed in order. Immediately after defrosting is completed for all heat exchangers, the heating operation is resumed. Further, during the heating operation, the control device 10 includes the first main circuit on-off valve 713a, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, the fourth main circuit on-off valve 713d, and the first bypass on-off valve 715a. The second bypass on / off valve 715b, the third bypass on / off valve 715c, and the fourth bypass 715d are appropriately opened and closed (as described above), and only the heat exchanger of the refrigerant circuit with a large amount of frost formation is limited and removed. Control is performed so as to immediately return to the heating operation after the limited defrosting / heating operation for heating with another heat exchanger while frosting.

本発明の実施形態に係る空気調和機の概略構成図である。1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention. 本実施形態に係る空気調和機における冷凍サイクルの構成を示す図である。It is a figure which shows the structure of the refrigerating cycle in the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の冷房運転時の冷媒の流れを示す冷凍サイクル図である。It is a refrigeration cycle figure which shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の暖房運転時の冷媒の流れを示す冷凍サイクル図である。It is a refrigerating cycle figure which shows the flow of the refrigerant | coolant at the time of the heating operation of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の第1熱交換器を除霜する時の冷媒の流れを示す冷凍サイクル図である。It is a refrigeration cycle figure which shows the flow of the refrigerant | coolant at the time of defrosting the 1st heat exchanger of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の第2熱交換器を除霜する時の冷媒の流れを示す冷凍サイクル図である。It is a refrigerating cycle figure which shows the flow of the refrigerant | coolant when defrosting the 2nd heat exchanger of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の第3熱交換器を除霜する時の冷媒の流れを示す冷凍サイクル図である。It is a refrigerating cycle figure which shows the flow of the refrigerant | coolant when defrosting the 3rd heat exchanger of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の第4熱交換器を除霜する時の冷媒の流れを示す冷凍サイクル図である。It is a refrigeration cycle figure which shows the flow of the refrigerant | coolant when defrosting the 4th heat exchanger of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の暖房の立上がり運転時の室温変化を示す特性図である。It is a characteristic view which shows the room temperature change at the time of the start-up operation of the air conditioner according to the present embodiment.

符号の説明Explanation of symbols

1…空気調和機
2…室内機
5…リモコン
6…室外機
8…接続配管
10…制御装置
33…室内熱交換器
72…四方弁
73…室外熱交換器
74…減圧装置
75…圧縮機
76…アキュムレータ
311…室内ファン
313…室内送風モータ
631…室外ファン
633…室外送風モータ
710…吸込配管
711…吐出配管
712…利用側ガス管
713…液管
713a…第1主回路開閉弁
713b…第2主回路開閉弁
713a…第3主回路開閉弁
713d…第4主回路開閉弁
713e…ホットパイプ
714…熱源側ガス管
715…ホットガスバイパス管
715a…第1バイパス開閉弁
715b…第2バイパス開閉弁
715c…第3バイパス開閉弁
715d…第4バイパス開閉弁
716a…第1主回路・バイパス共用管
716b…第2主回路・バイパス共用管
716c…第3主回路・バイパス共用管
716d…第4主回路・バイパス共用管
731…第1熱交換器
731a…第1熱交換器上側冷媒回路
731b…第1熱交換器下側冷媒回路
732…第2熱交換器
732a…第2熱交換器上側冷媒回路
732b…第2熱交換器下側冷媒回路
733…第3熱交換器
733a…第3熱交換器上側冷媒回路
733b…第3熱交換器下側冷媒回路
734…第4熱交換器
734a…第4熱交換器上側冷媒回路
734b…第4熱交換器下側冷媒回路
811a…第1熱交換器冷媒温検知センサ
811b…第2熱交換器冷媒温検知センサ
811c…第3熱交換器冷媒温検知センサ
811d…第4熱交換器冷媒温検知センサ
812…冷媒温検知センサ
DESCRIPTION OF SYMBOLS 1 ... Air conditioner 2 ... Indoor unit 5 ... Remote control 6 ... Outdoor unit 8 ... Connection piping 10 ... Control apparatus 33 ... Indoor heat exchanger 72 ... Four-way valve 73 ... Outdoor heat exchanger 74 ... Decompression unit 75 ... Compressor 76 ... Accumulator 311 ... Indoor fan 313 ... Indoor fan motor 631 ... Outdoor fan 633 ... Outdoor fan motor 710 ... Suction pipe 711 ... Discharge pipe 712 ... Usage side gas pipe 713 ... Liquid pipe 713a ... First main circuit on-off valve 713b ... Second main Circuit open / close valve 713a ... Third main circuit open / close valve 713d ... Fourth main circuit open / close valve 713e ... Hot pipe 714 ... Heat source side gas pipe 715 ... Hot gas bypass pipe 715a ... First bypass open / close valve 715b ... Second bypass open / close valve 715c ... third bypass on-off valve 715d ... fourth bypass on-off valve 716a ... first main circuit / bypass common pipe 716b ... first Main circuit / bypass common pipe 716c ... Third main circuit / bypass common pipe 716d ... Fourth main circuit / bypass common pipe 731 ... First heat exchanger 731a ... First heat exchanger upper refrigerant circuit 731b ... First heat exchanger Lower refrigerant circuit 732 ... second heat exchanger 732a ... second heat exchanger upper refrigerant circuit 732b ... second heat exchanger lower refrigerant circuit 733 ... third heat exchanger 733a ... third heat exchanger upper refrigerant circuit 733b 3rd heat exchanger lower refrigerant circuit 734 4th heat exchanger 734a 4th heat exchanger upper refrigerant circuit 734b 4th heat exchanger lower refrigerant circuit 811a 1st heat exchanger refrigerant temperature detection sensor 811b ... 2nd heat exchanger refrigerant temperature detection sensor 811c ... 3rd heat exchanger refrigerant temperature detection sensor 811d ... 4th heat exchanger refrigerant temperature detection sensor 812 ... Refrigerant temperature detection sensor

Claims (6)

圧縮機、四方弁、室内熱交換器、減圧装置及び室外熱交換器を冷媒配管で連結して冷凍サイクルを形成し、前記室外熱交換器を複数に分けて並列に接続し、前記並列接続された各室外熱交換器の冷媒回路に対応して暖房運転時入口側に主回路開閉弁を設け、前記圧縮機の吐出側と前記各室外熱交換器の冷媒回路の暖房運転時入口側とを連結するホットガスバイパス回路を設け、前記ホットガスバイパス回路に前記各室外熱交換器の冷媒回路に対応してバイパス開閉弁を設け、前記開閉弁と前記冷凍サイクルの各構成要素を制御する制御装置を設けた空気調和機であって、
前記制御装置は、暖房運転中に前記室外熱交換器の除霜を開始する場合、前記主回路開閉弁及び前記バイパス開閉弁の一部を開閉制御し、前記複数の室外熱交換器の内の一部を除霜しつつ他の室外熱交換器で暖房する除霜・暖房運転を行い、前記除霜・暖房運転を前記複数の室外熱交換器の全てについて順に繰り返した後に、暖房運転に復帰するように制御し、
さらに、前記制御装置は、前記除霜・暖房運転が終了した後に、前記複数の室外熱交換器の内で着霜量の多い室外熱交換器を検知し判定して、該当する室外熱交換器に対応する主回路開閉弁及びバイパス開閉弁を開閉制御し、前記該当する室外熱交換器複数のみを限定して除霜しつつ他の室外熱交換器で暖房する限定除霜・暖房運転を行った後に、暖房運転に復帰するように制御する
ことを特徴とする空気調和機。
A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle, and the outdoor heat exchanger is divided into a plurality of units and connected in parallel. Corresponding to the refrigerant circuit of each outdoor heat exchanger, a main circuit on-off valve is provided on the inlet side during heating operation, and the discharge side of the compressor and the inlet side during heating operation of the refrigerant circuit of each outdoor heat exchanger are provided. A control device for providing a hot gas bypass circuit to be connected, providing a bypass on-off valve corresponding to the refrigerant circuit of each outdoor heat exchanger in the hot gas bypass circuit, and controlling each component of the on-off valve and the refrigeration cycle An air conditioner provided with
When starting defrosting of the outdoor heat exchanger during heating operation, the control device controls opening and closing of the main circuit on-off valve and a part of the bypass on-off valve, and among the plurality of outdoor heat exchangers A defrosting / heating operation is performed in which a part is defrosted and heated by another outdoor heat exchanger, and the defrosting / heating operation is sequentially repeated for all of the plurality of outdoor heat exchangers, and then the heating operation is resumed. To control and
Further, the control device detects and determines an outdoor heat exchanger with a large amount of frost formation in the plurality of outdoor heat exchangers after the defrosting / heating operation is finished, and the corresponding outdoor heat exchanger The open / close control of the main circuit on / off valve and the bypass on / off valve corresponding to the above is performed, and limited defrosting / heating operation is performed in which only the plurality of the corresponding outdoor heat exchangers are defrosted and heated by other outdoor heat exchangers. After that, the air conditioner is controlled to return to the heating operation.
請求項1において、
前記制御装置は、前記限定除霜・暖房運転への移行に際して、前記各室外熱交換器のそれぞれの冷媒温度を監視し、これらの冷媒温度に基づいて判定して移行制御することを特徴とする空気調和機。
In claim 1,
The control device monitors the refrigerant temperature of each of the outdoor heat exchangers when making a transition to the limited defrosting / heating operation, and performs a transition control by determining based on these refrigerant temperatures. Air conditioner.
請求項2において、
前記制御装置は、前記限定除霜・暖房運転への移行判定として、前記各室外熱交換器の冷媒温度の内で最小値が0℃未満で、且つ前記冷媒温度が最小値となった室外熱交換器を除く他の室外熱交換器の冷媒温度の平均値と前記冷媒温度の最小値との差が5℃を超える場合に、前記限定除霜・暖房運転に移行するように制御する
ことを特徴とする空気調和機。
In claim 2,
The control device is configured to determine whether to move to the limited defrosting / heating operation, wherein the outdoor heat in which the minimum value is less than 0 ° C. and the refrigerant temperature is the minimum value among the refrigerant temperatures of the outdoor heat exchangers. When the difference between the average value of the refrigerant temperature of the outdoor heat exchanger other than the exchanger and the minimum value of the refrigerant temperature exceeds 5 ° C., control is performed so as to shift to the limited defrosting / heating operation. A featured air conditioner.
請求項1、2または3において、
前記制御装置は、検出した外気温度の低下に基づいて、前記圧縮機の吐出温度がより高温になるように前記圧縮機又は前記減圧装置を制御するとともに、前記除霜・暖房運転終了後の除霜運転禁止期間を短縮するように制御する
ことを特徴とする空気調和機。
In claim 1, 2 or 3,
The control device controls the compressor or the pressure reducing device so that the discharge temperature of the compressor becomes higher based on the detected decrease in the outside air temperature, and removes after the defrosting / heating operation is finished. An air conditioner that is controlled to shorten the frost operation prohibition period.
請求項1、2または3において、
前記制御装置は、前記除霜・暖房運転時または前記限定除霜・暖房運転時において、前記暖房運転時よりも前記室外熱交換器用の送風装置の回転数を低下、または前記送風装置を停止するように制御する
ことを特徴とする空気調和機。
In claim 1, 2 or 3,
The control device lowers the rotation speed of the blower for the outdoor heat exchanger or stops the blower during the defrosting / heating operation or during the limited defrosting / heating operation than in the heating operation. An air conditioner characterized by being controlled as follows.
請求項1において、
前記制御装置は、前記除霜・暖房運転または限定除霜・暖房運転を実施しても、前記室外熱交換器の冷媒温度が所定値に達しない場合に、前記四方弁を切り替えて逆サイクル除霜運転を行うように制御する
ことを特徴とする空気調和機。
In claim 1,
When the refrigerant temperature of the outdoor heat exchanger does not reach a predetermined value even after performing the defrosting / heating operation or the limited defrosting / heating operation, the control device switches the four-way valve to remove the reverse cycle. An air conditioner controlled to perform frost operation.
JP2008136702A 2008-05-26 2008-05-26 Air conditioner Active JP4990221B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008136702A JP4990221B2 (en) 2008-05-26 2008-05-26 Air conditioner
CN2008101308673A CN101592414B (en) 2008-05-26 2008-08-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136702A JP4990221B2 (en) 2008-05-26 2008-05-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2009281698A JP2009281698A (en) 2009-12-03
JP4990221B2 true JP4990221B2 (en) 2012-08-01

Family

ID=41407203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136702A Active JP4990221B2 (en) 2008-05-26 2008-05-26 Air conditioner

Country Status (2)

Country Link
JP (1) JP4990221B2 (en)
CN (1) CN101592414B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404471B2 (en) * 2010-02-26 2014-01-29 三菱電機株式会社 HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION CONTROL METHOD
CN102466296B (en) * 2010-11-10 2013-11-20 珠海格力电器股份有限公司 Defrosting control method applied to heat pump air conditioning unit
KR101319687B1 (en) 2011-10-27 2013-10-17 엘지전자 주식회사 Multi type air conditioner and method of controlling the same
JP5459303B2 (en) 2011-12-26 2014-04-02 ダイキン工業株式会社 Air conditioner
JP5882152B2 (en) * 2012-07-12 2016-03-09 日立アプライアンス株式会社 Air conditioner
CN103673438B (en) * 2012-09-20 2015-11-25 广东美的暖通设备有限公司 A kind of sustainable multi-connected air conditioner of heating and Defrost method thereof
CN104813123B (en) * 2012-11-29 2017-09-12 三菱电机株式会社 Conditioner
JP6150514B2 (en) * 2012-12-14 2017-06-21 三菱電機株式会社 Air conditioner
CN103411340B (en) * 2013-07-18 2016-09-21 Tcl空调器(中山)有限公司 Outdoor heat exchange device and Defrost method thereof
CN104089427B (en) * 2014-06-24 2017-01-18 珠海格力电器股份有限公司 Air conditioning system and control method thereof
CN105509261B (en) * 2014-09-26 2019-11-26 美的集团武汉制冷设备有限公司 The control method of air conditioner and air conditioner
JP6448780B2 (en) * 2015-05-28 2019-01-09 三菱電機株式会社 Air conditioner
CN106482241A (en) * 2015-08-31 2017-03-08 苏州三星电子有限公司 The heat exchange manifold of outdoor machine of air-conditioner and refrigeration system
JP6349013B1 (en) * 2017-05-26 2018-06-27 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN111201410B (en) 2017-10-12 2021-09-24 三菱电机株式会社 Air conditioning apparatus
JP6742634B2 (en) * 2017-12-11 2020-08-19 株式会社Fhアライアンス Air conditioning unit
CN108224602A (en) * 2018-01-31 2018-06-29 青岛海尔空调器有限总公司 For the branch pipe and air conditioner of outdoor heat exchanger of air conditioner
JP7065681B2 (en) * 2018-04-26 2022-05-12 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN110836493A (en) * 2018-08-17 2020-02-25 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836464A (en) * 2018-08-17 2020-02-25 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836494A (en) * 2018-08-17 2020-02-25 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836492B (en) * 2018-08-17 2021-09-21 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836506B (en) * 2018-08-17 2021-09-21 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836500B (en) * 2018-08-17 2021-10-29 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836463A (en) * 2018-08-17 2020-02-25 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
EP3922918A4 (en) * 2019-02-05 2022-02-23 Mitsubishi Electric Corporation Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
CN109798600A (en) * 2019-03-20 2019-05-24 珠海格力电器股份有限公司 Heat pump system, air conditioner, outdoor unit and control method of outdoor unit
CN110953674A (en) * 2019-12-19 2020-04-03 珠海格力电器股份有限公司 Multi-stage series fresh air handling unit and control method thereof
CN111486610B (en) * 2020-04-22 2021-10-08 青岛海信日立空调系统有限公司 Air source heat pump
CN111878891A (en) * 2020-06-16 2020-11-03 青岛海尔空调电子有限公司 Air conditioning system and control method thereof
CN112197412B (en) * 2020-10-22 2024-06-28 珠海格力电器股份有限公司 Air outlet duct structure, aircraft ground air conditioner and control method of aircraft ground air conditioner
CN112797682A (en) * 2020-12-30 2021-05-14 青岛海容商用冷链股份有限公司 Defrosting system and method and commercial refrigeration display cabinet
CN114608144A (en) * 2022-03-04 2022-06-10 宁波奥克斯电气股份有限公司 Outdoor unit defrosting detection method and device and air conditioner
CN115405993A (en) * 2022-09-01 2022-11-29 合肥美的暖通设备有限公司 Air source heat pump heating system, defrosting control method and defrosting control device
CN116906995A (en) * 2023-07-25 2023-10-20 重庆大学 Vibration dehumidification air conditioning system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179956A (en) * 1984-09-27 1986-04-23 株式会社東芝 Heat pump type air conditioner
JPH04110576A (en) * 1990-08-31 1992-04-13 Toshiba Corp Heat pump type air conditioner
JP2727790B2 (en) * 1991-05-17 1998-03-18 ダイキン工業株式会社 Defrosting operation control device for refrigeration equipment
JPH05223408A (en) * 1992-02-06 1993-08-31 Nippondenso Co Ltd Air conditioner
JP3271296B2 (en) * 1992-05-15 2002-04-02 ダイキン工業株式会社 Defrosting operation control device for refrigeration system
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner
JP2002081807A (en) * 2000-08-31 2002-03-22 Daikin Ind Ltd Refrigerating device
JP4272224B2 (en) * 2006-09-07 2009-06-03 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
CN101592414A (en) 2009-12-02
CN101592414B (en) 2011-10-26
JP2009281698A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4990221B2 (en) Air conditioner
JP4272224B2 (en) Air conditioner
JP5160303B2 (en) Air conditioner
CN113959010B (en) One-driving-multiple refrigerating and heating air conditioner
JP2012013363A (en) Air conditioner
JP4874223B2 (en) Air conditioner
US20090320504A1 (en) Method for Defrosting an Evaporator in a Refrigeration Circuit
JP2016031182A (en) Air conditioner
CN102272534A (en) Morimoto osamu [jp]; saito makoto [jp]; yanachi satoru [jp]; yamashita koji
CN105299797A (en) Heat accumulating type air conditioning plant and control method thereof
JP5882152B2 (en) Air conditioner
CN107084561A (en) Air conditioner and its defrosting control method
JP6771302B2 (en) Air conditioner
JP2011080733A (en) Air conditioner
JP5071100B2 (en) Air conditioner
US20070074523A1 (en) Refrigerating apparatus
JP2011075207A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2006183987A (en) Refrigerating device
JP2006162240A (en) Refrigerating device
JP4375393B2 (en) Refrigeration equipment
JP2011122801A (en) Air heat source heat pump system and method of operating the same
JP2008249268A (en) Air conditioner
KR100794815B1 (en) Air conditioning system
JP7341341B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4990221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250