JP5160303B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5160303B2
JP5160303B2 JP2008131853A JP2008131853A JP5160303B2 JP 5160303 B2 JP5160303 B2 JP 5160303B2 JP 2008131853 A JP2008131853 A JP 2008131853A JP 2008131853 A JP2008131853 A JP 2008131853A JP 5160303 B2 JP5160303 B2 JP 5160303B2
Authority
JP
Japan
Prior art keywords
heat exchanger
defrosting
outdoor heat
heating operation
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008131853A
Other languages
Japanese (ja)
Other versions
JP2009281607A (en
Inventor
和彦 毛塚
素生 森本
操 藤塚
喜作 金子
啓輔 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008131853A priority Critical patent/JP5160303B2/en
Publication of JP2009281607A publication Critical patent/JP2009281607A/en
Application granted granted Critical
Publication of JP5160303B2 publication Critical patent/JP5160303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機に係り、特に、室外熱交換器の除霜と室内の暖房とを同時に行う空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner that simultaneously performs defrosting of an outdoor heat exchanger and heating of a room.

空気熱源ヒートポンプ空気調和機を暖房運転した場合、室外空気の湿度が高いと室外熱交換器に着霜を生ずる。着霜が生ずると室外熱交換器の通風路が狭まるため、室外熱交換器を循環する室外空気の量が減少する。循環する室外空気の量が減少すると、熱交換量が少なくなるため、これを補償しようとするように室外熱交換器内を流れる冷媒の蒸発温度が下がる。冷媒の蒸発温度が下がると室外熱交換器の外気側の表面温度も下がり、益々着霜を生じやすくなり、着霜が進行する。   When the air heat source heat pump air conditioner is operated for heating, the outdoor heat exchanger forms frost if the humidity of the outdoor air is high. When frost formation occurs, the ventilation path of the outdoor heat exchanger is narrowed, so that the amount of outdoor air circulating through the outdoor heat exchanger is reduced. When the amount of circulating outdoor air decreases, the amount of heat exchange decreases, so that the evaporation temperature of the refrigerant flowing in the outdoor heat exchanger decreases so as to compensate for this. When the evaporation temperature of the refrigerant decreases, the surface temperature of the outdoor heat exchanger on the outside air side also decreases, and frost formation tends to occur more and more.

このままでは室外熱交換器で室外空気から汲み上げる熱量が減少するため室内熱交換器から放熱する熱量も減少するため暖房能力も減少し、室内の快適性が損なわれる。これを防ぐために、室外熱交換器の着霜の量が所定の量を超えた時には除霜運転をすることにより室外熱交換器の着霜を融解し、流下させて機外に排出させる。   If this is the case, the amount of heat pumped up from the outdoor air by the outdoor heat exchanger will decrease, so the amount of heat radiated from the indoor heat exchanger will also decrease, so the heating capacity will also decrease and indoor comfort will be impaired. In order to prevent this, when the amount of frost formation in the outdoor heat exchanger exceeds a predetermined amount, the frost formation in the outdoor heat exchanger is melted by the defrosting operation, and is allowed to flow down and discharged outside the apparatus.

従来から広く知られている除霜方式として逆サイクル除霜方式がある。これは、暖房運転中に除霜が必要になった場合には、冷凍サイクルを冷房サイクルに切換えて、圧縮機、室内機を熱源とし、圧縮機からの高温ガス冷媒を室外熱交換器に流して除霜するものである。   There is a reverse cycle defrosting method as a widely known defrosting method. If defrosting is required during heating operation, the refrigeration cycle is switched to the cooling cycle, the compressor and the indoor unit are used as heat sources, and the high-temperature gas refrigerant from the compressor is allowed to flow to the outdoor heat exchanger. To defrost.

また、室内の暖房をしながら室外熱交換器の除霜を行う空気調和機の従来技術として、特許文献1、特許文献2、特許文献3、特許文献4等が知られている。以下、これらの特許文献に記載の技術を紹介する。特許文献1には、暖房運転時には室外熱交換器が蒸発器となり、室内熱交換器が凝縮器となって室内を暖房するヒートポンプ式空気調和機において、室外熱交換器を上下方向に複数に分割し、分割された各室外熱交換器を室内熱交換器に並列に配管接続するとともに、それぞれ二方弁を介してコンプレッサの吸入口側に配管接続し、かつ、コンプレッサの吐出口側を分岐させて、各室外熱交換器にそれぞれ二方弁を介して配管接続し、暖房運転時に除霜を行うときは、コンプレッサからの吐出ガスの一部を分割された各室外熱交換器に上部側から下部側に順次切換えながら流して、暖房と除霜を並行して行うようにしたことが開示されている。   Moreover, patent document 1, patent document 2, patent document 3, patent document 4, etc. are known as a prior art of the air conditioner which defrosts an outdoor heat exchanger, heating indoors. The techniques described in these patent documents will be introduced below. In Patent Document 1, in a heat pump air conditioner that heats a room by using an outdoor heat exchanger as an evaporator and an indoor heat exchanger as a condenser during heating operation, the outdoor heat exchanger is divided into a plurality of parts in the vertical direction. The divided outdoor heat exchangers are connected to the indoor heat exchanger in parallel, connected to the inlet side of the compressor via two-way valves, and the outlet side of the compressor is branched. When each pipe is connected to each outdoor heat exchanger via a two-way valve and defrosting is performed during heating operation, a part of the discharge gas from the compressor is divided into each divided outdoor heat exchanger from the upper side. It is disclosed that heating and defrosting are performed in parallel while flowing while sequentially switching to the lower side.

特許文献2には、圧縮機と、四方弁と、室内熱交換器と、膨張弁と、室外熱交換器とを冷媒配管によって連結し冷凍サイクルを構成してなる空気調和機において、室外熱交換器を室外送風機の回転に伴って発生する空気流に対し前後二列に分離し、それぞれに膨張弁を連結した並列構成にするとともに、圧縮機の吐出側配管と、両室外熱交換器の暖房時入口側配管との間に開閉弁を備えたバイパス路を設け、高能力暖房運転、低能力暖房運転、除霜と暖房の同時運転等を行うように設定したことが開示されている
特許文献3には、複数に分割された熱交換器を並列に接続してなる室外側熱交換器と、この室外側熱交換器に圧縮機、四方弁、室内側熱交換器、減圧装置を接続して構成される暖房運転可能な冷凍サイクルと、圧縮機から吐出した吐出ガスを室外側熱交換器の暖房運転時、入口となる各熱交換器の入口部にそれぞれ導くためのバイパス路と、このバイパス路の各出口を開閉する開閉手段と、室外側熱交換器の各熱交換器に対する着霜を検知する検知手段と、暖房運転時、検知結果にしたがって開閉手段を制御し圧縮機からの吐出ガスを着霜した熱交換器へ流入させる手段とを具備したことが開示されている。
Patent Document 2 discloses an outdoor heat exchange in an air conditioner in which a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle. The compressor is separated into two rows before and after the air flow generated by the rotation of the outdoor blower and connected in parallel to each other, and the discharge side piping of the compressor and the heating of both outdoor heat exchangers It is disclosed that a bypass passage having an on-off valve is provided between the hour-inlet side piping and set so as to perform high-performance heating operation, low-capacity heating operation, simultaneous defrosting and heating operation, etc. 3, an outdoor heat exchanger formed by connecting a plurality of divided heat exchangers in parallel, and a compressor, a four-way valve, an indoor heat exchanger, and a pressure reducing device are connected to the outdoor heat exchanger. Refrigeration cycle that can be operated by heating and discharged from the compressor A bypass passage for guiding the discharge gas to the inlet portion of each heat exchanger that serves as an inlet during heating operation of the outdoor heat exchanger, an opening / closing means for opening and closing each outlet of the bypass passage, and the outdoor heat exchanger Detecting means for detecting frost formation on each of the heat exchangers, and means for controlling the opening / closing means according to the detection result during heating operation to flow the discharge gas from the compressor into the frosted heat exchanger Is disclosed.

特許文献4には、圧縮機と、流路切換用四方弁と、並列接続される2つの室外熱交換器と、冷暖切換可能な減圧装置と、室内熱交換器とを順次配管接続して冷凍サイクルを構成する空気調和機の冷凍装置において、2つの室外熱交換器とそれぞれ直列に冷暖兼用減圧器を配管接続すると共に、圧縮機の吐出側から開閉弁をそれぞれ備える2つのバイパス管を分岐し、この2つのバイパス管を室外熱交換器と冷暖兼用減圧器との間を配管接続する2つの接続配管にそれぞれ接続してなり、除霜運転時、各バイパス管に備える開閉弁を交互に開閉して、2つの室外熱交換器を交互に除霜するようにしたことが開示されている。
特開平09−318206号公報 特開2001−059664号公報 特開平04−110576号公報 特開2002−188873号公報
In Patent Document 4, a compressor, a four-way valve for switching a flow path, two outdoor heat exchangers connected in parallel, a pressure reducing device capable of switching between cooling and heating, and an indoor heat exchanger are sequentially piped and refrigerated. In an air conditioner refrigeration system that constitutes a cycle, a cooling / heating decompressor is connected in series with two outdoor heat exchangers, and two bypass pipes each provided with an on-off valve are branched from the discharge side of the compressor. These two bypass pipes are connected to two connecting pipes that connect between the outdoor heat exchanger and the cooling / heating decompressor, and the open / close valves provided in each bypass pipe are alternately opened and closed during the defrosting operation. Then, it is disclosed that two outdoor heat exchangers are alternately defrosted.
JP 09-318206 A JP 2001-059664 A Japanese Patent Laid-Open No. 04-110576 JP 2002-188873 A

寒い朝などの低温時に暖房運転を開始する場合、室温が設定温度に到達する前に除霜を開始することが必要となり、前述の逆サイクル除霜方式の空気調和機では、暖房運転を止めて逆サイクル除霜運転を始めるため、除霜中に室温が大きく低下して快適性が損なわれると共に、室温が設定温度に到達するまでの時間が長くなる、という課題があった。   When heating operation is started at a low temperature such as in the cold morning, it is necessary to start defrosting before the room temperature reaches the set temperature. In the above-mentioned reverse cycle defrosting type air conditioner, heating operation is stopped. Since the reverse cycle defrosting operation is started, there is a problem that the room temperature greatly decreases during the defrosting and the comfort is impaired, and the time until the room temperature reaches the set temperature is increased.

特許文献1の空気調和機では、暖房運転中に常時除霜を行うようにしているので、暖房能力が常時低下した状態で室内の暖房を行うことになる、という課題があった。また、3分割された室外熱交換器の最小部分の除霜を順次切換えて行うようにしているので、除霜時間が長くなる、という課題があった。   In the air conditioner of Patent Document 1, since defrosting is always performed during heating operation, there is a problem that indoor heating is performed in a state where the heating capacity is constantly reduced. Moreover, since the defrosting of the minimum part of the outdoor heat exchanger divided into three is performed by sequentially switching, there is a problem that the defrosting time becomes long.

特許文献2及び特許文献3の空気調和機では、室外熱交換器を空気流に対し、前後二列に分離して交互に除霜するようにしているので、分離された室外熱交換器における一方の除霜により生じた融解水を他方の霜の融解に利用できず、効率良く短時間で除霜することができない、という課題があった。   In the air conditioners of Patent Literature 2 and Patent Literature 3, the outdoor heat exchanger is separated into two front and rear rows of the air flow and alternately defrosted, so one of the separated outdoor heat exchangers There was a problem that the melted water generated by the defrosting of the water cannot be used for melting the other frost and cannot be efficiently defrosted in a short time.

特許文献4の空気調和機では、室外熱交換器を空気流に対し左右に分離して交互に除霜するようにしているので、分離された室外熱交換器における一方の除霜により生じた融解水を他方の霜の融解に利用できず、効率良く短時間で除霜できない、という課題があった。   In the air conditioner of Patent Document 4, since the outdoor heat exchanger is separated into the left and right with respect to the air flow and alternately defrosted, melting caused by one defrosting in the separated outdoor heat exchanger There was a problem that water could not be used for melting the other frost and could not be efficiently defrosted in a short time.

本発明の目的は、除霜を暖房と同時に行って室内の快適性を確保しつつ、除霜時間を短縮できる空気調和機を提供することにある。   The objective of this invention is providing the air conditioner which can shorten a defrost time, performing a defrost simultaneously with heating and ensuring indoor comfort.

前記課題を解決するために、本発明は主として次のような構成を採用する。
圧縮機、四方弁、室内熱交換器、減圧装置及び室外熱交換器を冷媒配管で連結して冷凍サイクルを形成し、前記室外熱交換器は、上側室外熱交換器と、前記上側熱交換器の下方に位置する下側室外熱交換器と、前記上側室外熱交換器と前記下側室外熱交換器との間に位置し、且つ、風下列の伝熱管を有するホットパイプ用熱交換器と、からなり、
前記室内熱交換器と前記減圧装置とを前記ホットパイプ用熱交換器を介して接続するホットパイプと、前記上側室外熱交換器及び前記下側室外熱交換器の冷媒回路の暖房運転時入口側に接続された主回路開閉機構と、前記圧縮機の吐出側と、前記上側室外熱交換器及び前記下側室外熱交換器の冷媒回路の暖房運転時入口側と、を連結し、バイパス開閉弁を有するホットガスバイパス回路と、各構成要素の運転を制御する制御装置と、を設け、
前記制御装置は、通常の暖房運転中に除霜を開始する場合、前記主回路開閉機構及び前記バイパス開閉弁を通常の暖房運転時とは逆に開閉制御して、前記上側室外熱交換器を除霜しつつ前記下側室外熱交換器で暖房する除霜・暖房運転をした後に、前記下側室外熱交換器を除霜しつつ前記上側室外熱交換器で暖房する除霜・暖房運転を行うように制御し、さらに、前記上側室外熱交換器及び前記下側室外熱交換器の除霜・暖房運転の終了後に前記通常の暖房運転に復帰するように制御する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are connected by a refrigerant pipe to form a refrigeration cycle. The outdoor heat exchanger includes an upper outdoor heat exchanger and the upper heat exchanger. A lower outdoor heat exchanger located below the upper outdoor heat exchanger, and a hot pipe heat exchanger that is located between the upper outdoor heat exchanger and the lower outdoor heat exchanger and includes a leeward heat transfer tube; Consists of
A hot pipe connecting the indoor heat exchanger and the pressure reducing device via the hot pipe heat exchanger, and an inlet side during heating operation of a refrigerant circuit of the upper outdoor heat exchanger and the lower outdoor heat exchanger a main circuit switch mechanism connected to said a discharge side of the compressor, and connecting the heating operation at the inlet side of the refrigerant circuit of the upper outdoor heat exchanger and the lower the outdoor heat exchanger, the bypass opening and closing valve A hot gas bypass circuit having a control device for controlling the operation of each component,
When starting the defrosting during the normal heating operation, the control device controls the opening and closing of the main circuit opening and closing mechanism and the bypass on-off valve in the opposite direction to that during the normal heating operation, so that the upper outdoor heat exchanger is controlled. After defrosting / heating operation for heating with the lower outdoor heat exchanger while defrosting, defrosting / heating operation for heating with the upper outdoor heat exchanger while defrosting the lower outdoor heat exchanger and controls to perform, further, a configuration for controlling to return to the normal heating operation after the end of defrosting, heating operation of the upper outdoor heat exchanger and the lower the outdoor heat exchanger.

また、前記空気調和機において、前記室内熱交換器からのホットパイプは、その一方が前記上側室外熱交換器と前記下側室外熱交換器の間に組み込まれ、その他方が前記下側室外熱交換器の下方部に組み込まれる構成とする。   In the air conditioner, one of the hot pipes from the indoor heat exchanger is incorporated between the upper outdoor heat exchanger and the lower outdoor heat exchanger, and the other is the lower outdoor heat. It is set as the structure integrated in the lower part of an exchanger.

本発明によれば、除霜を暖房と同時に行って室内の快適性を確保しつつ、除霜時間を短縮できる。   ADVANTAGE OF THE INVENTION According to this invention, defrosting time can be shortened, performing a defrost simultaneously with heating and ensuring indoor comfort.

本発明の実施形態に係る空気調和機について、図1と図2を参照しながら以下説明する。図1は本発明の実施形態に係る空気調和機の基本的な構成図である。図2は本発明の実施形態に係る空気調和機における冷凍サイクルを示す図である。   An air conditioner according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a basic configuration diagram of an air conditioner according to an embodiment of the present invention. FIG. 2 is a diagram showing a refrigeration cycle in the air conditioner according to the embodiment of the present invention.

図1と図2において、空気調和機1は、冷凍サイクルと、送風装置と、これらを制御する制御系とを備えて構成されている。なお、この空気調和機1は、室内機2と室外機6とを冷媒配管8、電気配線、信号配線などを介して接続されたセパレート形空気調和機である。   1 and 2, the air conditioner 1 includes a refrigeration cycle, a blower, and a control system that controls them. The air conditioner 1 is a separate air conditioner in which an indoor unit 2 and an outdoor unit 6 are connected via a refrigerant pipe 8, electrical wiring, signal wiring, and the like.

冷凍サイクルは、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713d,713e,減圧装置74、ホットパイプ713a,713b,713c,室内熱交換器33、バイパス開閉弁715a,715bを備え、これらを冷媒配管を介して接続することにより構成されている。冷媒配管は、吸込配管710、吐出配管711、利用側ガス管712、液管713、熱源側ガス管714、ホットガスバイパス管715、ホットパイプ713a,713b,713c,上側バイパス管716a、下側バイパス管716bなどで構成されている。   The refrigeration cycle includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on-off valves 713d and 713e, a pressure reducing device 74, hot pipes 713a, 713b and 713c, an indoor heat exchanger 33, and bypass on-off valves 715a and 715b. And connecting them through refrigerant piping. The refrigerant pipes are a suction pipe 710, a discharge pipe 711, a use side gas pipe 712, a liquid pipe 713, a heat source side gas pipe 714, a hot gas bypass pipe 715, hot pipes 713a, 713b, 713c, an upper bypass pipe 716a, and a lower bypass pipe. It consists of a tube 716b and the like.

室内熱交換器33は室内機2に収納され、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713d,713e、減圧装置74、ホットパイプ713a,713b,713c、バイパス開閉弁715a,715bは室外機6に収納されている。四方弁72は冷媒流路切換弁の一例である。この四方弁72は、冷房サイクルと暖房サイクルとを切換えるものである。ここで、冷房サイクルは、圧縮機75から吐出配管711を介して吐出された冷媒を室外熱交換器73へ導き、室内熱交換器33からの冷媒を圧縮機75に戻すサイクルである。暖房サイクルは、圧縮機75から吐出された冷媒を室内熱交換器33へ導き、室外熱交換器73からの冷媒を吸込配管710及びアキュムレータ76を介して圧縮機75に戻すサイクルである。   The indoor heat exchanger 33 is housed in the indoor unit 2, and includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on / off valves 713d and 713e, a pressure reducing device 74, hot pipes 713a, 713b and 713c, and a bypass on / off valve. 715a and 715b are accommodated in the outdoor unit 6. The four-way valve 72 is an example of a refrigerant flow path switching valve. The four-way valve 72 switches between a cooling cycle and a heating cycle. Here, the cooling cycle is a cycle in which the refrigerant discharged from the compressor 75 via the discharge pipe 711 is guided to the outdoor heat exchanger 73 and the refrigerant from the indoor heat exchanger 33 is returned to the compressor 75. The heating cycle is a cycle in which the refrigerant discharged from the compressor 75 is guided to the indoor heat exchanger 33 and the refrigerant from the outdoor heat exchanger 73 is returned to the compressor 75 via the suction pipe 710 and the accumulator 76.

従って、室外熱交換器73は、冷房サイクルの冷房運転時に高圧側熱交換器(凝縮器)を構成し、暖房サイクルの暖房運転時に低圧側熱交換器(蒸発器)を構成する。また、室内熱交換器33は、暖房サイクルの暖房運転時に高圧側熱交換器(凝縮器)を構成し、冷房サイクルの冷房運転時に低圧側熱交換器(蒸発器)を構成する。   Accordingly, the outdoor heat exchanger 73 constitutes a high-pressure side heat exchanger (condenser) during the cooling operation of the cooling cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the heating operation of the heating cycle. The indoor heat exchanger 33 constitutes a high-pressure side heat exchanger (condenser) during the heating operation of the heating cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the cooling operation of the cooling cycle.

室外熱交換器73は、冷媒配管と熱交換フィンとで構成され、その冷媒配管で形成される冷媒回路を複数に分割して並列に接続されている。この冷媒回路は上側の冷媒回路と下側冷媒回路との2つの冷媒回路に区分して構成されている。室外熱交換器73は、上側の冷媒回路を含む上側熱交換器731と、下側の冷媒回路を含む下側熱交換器732とからなっている。上側熱交換器731は、第1上側冷媒回路731a、第2上側冷媒回路731b、第3上側冷媒回路731cを有している。下側熱交換器732は、第1下側冷媒回路732a、第2下側冷媒回路732bを有している。   The outdoor heat exchanger 73 includes a refrigerant pipe and heat exchange fins, and a refrigerant circuit formed by the refrigerant pipe is divided into a plurality of pieces and connected in parallel. This refrigerant circuit is divided into two refrigerant circuits, an upper refrigerant circuit and a lower refrigerant circuit. The outdoor heat exchanger 73 includes an upper heat exchanger 731 including an upper refrigerant circuit and a lower heat exchanger 732 including a lower refrigerant circuit. The upper heat exchanger 731 includes a first upper refrigerant circuit 731a, a second upper refrigerant circuit 731b, and a third upper refrigerant circuit 731c. The lower heat exchanger 732 includes a first lower refrigerant circuit 732a and a second lower refrigerant circuit 732b.

上側熱交換器731及び下側熱交換器732の各々は、主回路開閉弁713d,713eを介して、減圧装置74に接続されている。また、上側熱交換器731、下側熱交換器732と主回路開閉弁713d,713eとの間から分岐し、バイパス開閉弁715a、715bを介して圧縮機75の吐出管711にホットガスバイパス管715で接続されるホットガスバイパス回路が設けられている。   Each of the upper heat exchanger 731 and the lower heat exchanger 732 is connected to the decompression device 74 via main circuit on-off valves 713d and 713e. Moreover, it branches from between the upper side heat exchanger 731 and the lower side heat exchanger 732, and main circuit on-off valve 713d, 713e, and it is a hot gas bypass pipe to the discharge pipe 711 of the compressor 75 via bypass on-off valve 715a, 715b. A hot gas bypass circuit connected at 715 is provided.

減圧装置74は、室外熱交換器73と室内熱交換器33との間に設けられ、冷房サイクルの冷房時に室外熱交換器73からの冷媒を減圧し、暖房サイクルの暖房運転時に室内熱交換器33からの冷媒を減圧する。なお、本実施形態では減圧装置74は絞り開度が制御可能な膨張弁、例えば電動式などで構成されている。主回路開閉弁713d,713e及びバイパス開閉弁715a,715bは、電磁式開閉弁で構成され、冷媒の主回路及びホットガスバイパス回路を開閉するものである。   The decompression device 74 is provided between the outdoor heat exchanger 73 and the indoor heat exchanger 33, depressurizes the refrigerant from the outdoor heat exchanger 73 during cooling of the cooling cycle, and the indoor heat exchanger during heating operation of the heating cycle. The refrigerant from 33 is depressurized. In the present embodiment, the decompression device 74 is configured by an expansion valve that can control the throttle opening, for example, an electric type. The main circuit on / off valves 713d and 713e and the bypass on / off valves 715a and 715b are constituted by electromagnetic on / off valves, and open and close the refrigerant main circuit and the hot gas bypass circuit.

空気調和機1における送風装置は、室外機6に収納された室外送風装置63と、室内機2に収納された室内送風装置31とからなっている。室外送風装置は、室外熱交換器73に室外空気を流通させる室外ファン631と、室外ファン631を駆動する室外送風モータ633とを備えている。室内送風装置は、室内熱交換器33に室内の空気を流通させる室内ファン311と、室内ファン311を駆動する室内送風モータ313とを備えている。本実施形態では、室外ファン631として軸流ファンを使用し、室内ファン311として横流ファンを使用している。   The air blower in the air conditioner 1 includes an outdoor air blower 63 accommodated in the outdoor unit 6 and an indoor air blower 31 accommodated in the indoor unit 2. The outdoor blower includes an outdoor fan 631 that causes outdoor air to flow through the outdoor heat exchanger 73 and an outdoor blower motor 633 that drives the outdoor fan 631. The indoor air blower includes an indoor fan 311 that causes indoor air to flow through the indoor heat exchanger 33, and an indoor air blower motor 313 that drives the indoor fan 311. In the present embodiment, an axial fan is used as the outdoor fan 631 and a cross fan is used as the indoor fan 311.

空気調和機1における制御系は、冷媒温検知センサ811a,811b,812と、制御装置10とを備えて構成されている。冷媒温検知センサ811a,811b,812は、暖房時の室外熱交換器73の上側熱交換器731、下側熱交換器732の出口温度を検出する冷媒温検知センサ811a,811bと、逆サイクル除霜時の室外熱交換器73の出口温度を検出する冷媒温検知センサ812とから構成されている。   The control system in the air conditioner 1 includes refrigerant temperature detection sensors 811a, 811b, and 812 and a control device 10. The refrigerant temperature detection sensors 811a, 811b, and 812 include refrigerant temperature detection sensors 811a and 811b that detect the outlet temperatures of the upper heat exchanger 731 and the lower heat exchanger 732 of the outdoor heat exchanger 73 during heating, and reverse cycle removal. It is comprised from the refrigerant | coolant temperature detection sensor 812 which detects the exit temperature of the outdoor heat exchanger 73 at the time of frost.

制御装置10は、冷媒温検知センサ811a,811b,812の検出結果や使用者の運転指令に基づいて、圧縮機75、四方弁72、室外送風モータ633、室内送風モータ313、減圧装置74、主回路開閉弁713d,713e,バイパス開閉弁715a,715bなどを制御する。なお、本実施形態では、制御装置10は、演算する機能を有する制御装置と、各機器を制御する機能を有する制御装置とを一つで示してあるが、これらが分けて構成されていても良く、或いは各機器を制御する機能を有する制御装置がさらに分けて構成されていても良い。   Based on the detection results of the refrigerant temperature detection sensors 811a, 811b, and 812 and the user's operation command, the control device 10 includes a compressor 75, a four-way valve 72, an outdoor air blowing motor 633, an indoor air blowing motor 313, a pressure reducing device 74, The circuit open / close valves 713d and 713e, bypass open / close valves 715a and 715b, and the like are controlled. In the present embodiment, the control device 10 is shown as a single control device having a function of calculating and a control device having a function of controlling each device. However, the control device 10 may be configured separately. Alternatively, a control device having a function of controlling each device may be further divided.

次に、本発明の実施形態に係る空気調和機1の運転動作について、図3〜図8を参照しながら以下詳細に説明する。先ず、冷房サイクルにおける冷房運転について図3を用いて説明する。図3は本実施形態に係る空気調和機の冷房運転時の冷媒の流れを示す冷凍サイクル図である。空気調和機1の冷房運転をする際には、四方弁72を図3のように切換え、主回路開閉弁713d,713eを開、バイパス開閉弁715a,715bを閉にして冷房運転サイクルを形成すると共に、圧縮機75、室外送風モータ633及び室内送風モータ313を運転する。   Next, the operation of the air conditioner 1 according to the embodiment of the present invention will be described in detail below with reference to FIGS. First, the cooling operation in the cooling cycle will be described with reference to FIG. FIG. 3 is a refrigeration cycle diagram showing the refrigerant flow during the cooling operation of the air conditioner according to the present embodiment. When the air conditioner 1 is in cooling operation, the four-way valve 72 is switched as shown in FIG. 3, the main circuit on / off valves 713d and 713e are opened, and the bypass on / off valves 715a and 715b are closed to form a cooling operation cycle. At the same time, the compressor 75, the outdoor fan motor 633, and the indoor fan motor 313 are operated.

圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図3の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室外熱交換器73の上側熱交換器731及び下側熱交換器732に入り、室外空気と熱交換し冷却されて凝縮され、液または気液混合の冷媒となる。   The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. It enters the upper heat exchanger 731 and the lower heat exchanger 732 of the heat exchanger 73, exchanges heat with outdoor air, is cooled and condensed, and becomes a refrigerant of liquid or gas-liquid mixture.

次いで、冷媒は、主回路開閉弁713d,713eを介して、減圧装置74に入り、膨張して減圧され、低圧の気液混合の冷媒となる。この気液混合冷媒は、図3で低圧冷媒の流れを示す破線の矢印の方向に流れ、ホットパイプ713a,713b,713cを通った後、室外機6を出て室内機2に入り、蒸発器となる室内熱交換器33に入り、室内空気と熱交換して室内を冷房し、自身は加熱され、ガス冷媒となって圧縮機75に戻る。   Next, the refrigerant enters the decompression device 74 via the main circuit on-off valves 713d and 713e, expands and is decompressed, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 3, passes through the hot pipes 713a, 713b, and 713c, then exits the outdoor unit 6 and enters the indoor unit 2. Enters the indoor heat exchanger 33 to exchange heat with room air to cool the room, and is heated to return to the compressor 75 as a gas refrigerant.

次に、暖房サイクルにおける暖房運転について図4を用いて説明する。図4は本実施形態に係る空気調和機の暖房運転時の冷媒の流れを示す冷凍サイクル図である。暖房運転する際には、四方弁72を図4のように切換え、主回路開閉弁713d,713eを開、バイパス開閉弁715a,715bを閉にして暖房運転サイクルを形成すると共に、圧縮機75、室外送風モータ633及び室内送風モータ313を運転する。   Next, the heating operation in the heating cycle will be described with reference to FIG. FIG. 4 is a refrigeration cycle diagram showing the refrigerant flow during the heating operation of the air conditioner according to the present embodiment. When the heating operation is performed, the four-way valve 72 is switched as shown in FIG. 4, the main circuit on / off valves 713d and 713e are opened, the bypass on / off valves 715a and 715b are closed to form a heating operation cycle, and the compressor 75, The outdoor fan motor 633 and the indoor fan motor 313 are operated.

圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図4の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室内熱交換器33に入り、室内空気と熱交換し冷却されて凝縮され、液または気液混合の冷媒となる。凝縮して液または気液混合の冷媒となった冷媒は、室内機2を出て室外機6に入り、室外熱交換器73の下部又は除霜水排出口近辺及び上側熱交換器731と下側熱交換器732に引回されたホットパイプ713a,713b,713cを流れ、除霜時に落下した氷片を融解して室外機6の外に完全に排出し、室外機6内に残霜が生じないようにしている。ホットパイプ713a,713b,713cを通った冷媒は、減圧装置74に入り、膨張して減圧され、低圧の気液混合の冷媒となる。   The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. It enters into the vessel 33, exchanges heat with room air, is cooled and condensed, and becomes a refrigerant of liquid or gas-liquid mixture. The refrigerant that has condensed to become a liquid or gas-liquid mixed refrigerant exits the indoor unit 2 and enters the outdoor unit 6, below the outdoor heat exchanger 73 or near the defrost water discharge port, and below the upper heat exchanger 731. It flows through the hot pipes 713a, 713b, and 713c routed to the side heat exchanger 732, melts the ice pieces that have fallen during defrosting, and exhausts them completely out of the outdoor unit 6, and residual frost is generated in the outdoor unit 6. It does not occur. The refrigerant that has passed through the hot pipes 713a, 713b, and 713c enters the decompression device 74, expands and is decompressed, and becomes a low-pressure gas-liquid mixed refrigerant.

敷衍して説明すると、ホットパイプ713aが上側熱交換器731と下側熱交換器732の境目(切れ目)に組み込まれており、ホットパイプ713bが下側熱交換器732の下方部に組み込まれている。熱交換器の境目では、どちらかの側の熱交換器を除霜している場合に他方側の熱交換器の低温の影響を受けて除霜のし難い状況となるので、ホットパイプ713aの高温冷媒によって境目における霜取りのし易さを図っている。また、ホットパイプ713bの機能は、熱交換器に付着した霜が溶けて流下してきた水が下側熱交換器の下方部で溜まって氷になり得るが、この氷を溶かすことである。このように、減圧装置の前流側に敷設されたホットパイプ713を上側室外熱交換器と下側室外熱交換器の中に組み込むように構成することで、除霜効率を向上させることが本発明の実施形態に係る空気調和機における主たる特徴をなしている(図5と図6の説明でも詳述する)。   In other words, the hot pipe 713 a is incorporated at the boundary (cut) between the upper heat exchanger 731 and the lower heat exchanger 732, and the hot pipe 713 b is incorporated at the lower part of the lower heat exchanger 732. Yes. At the boundary of the heat exchanger, when one side of the heat exchanger is defrosted, it is difficult to defrost due to the low temperature of the other side of the heat exchanger. Ease of defrosting at the boundary is aimed at by the high-temperature refrigerant. In addition, the function of the hot pipe 713b is to melt the ice that has flown through the frost adhering to the heat exchanger and can accumulate in the lower part of the lower heat exchanger and become ice. As described above, the configuration in which the hot pipe 713 laid on the upstream side of the decompression device is incorporated in the upper outdoor heat exchanger and the lower outdoor heat exchanger can improve the defrosting efficiency. The main features of the air conditioner according to the embodiment of the present invention are described (which will also be described in detail with reference to FIGS. 5 and 6).

この気液混合冷媒は、図4で低圧冷媒の流れを示す破線の矢印の方向に流れ、主回路開閉弁713d,713eを介して、蒸発器となる室外熱交換器73の上側熱交換器731及び下側熱交換器732に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。上述した暖房サイクルにおける暖房運転動作を繰り返すことにより、暖房運転が継続される。   This gas-liquid mixed refrigerant flows in the direction of the broken-line arrow indicating the flow of the low-pressure refrigerant in FIG. 4, and the upper heat exchanger 731 of the outdoor heat exchanger 73 serving as an evaporator via the main circuit on-off valves 713d and 713e. And enters the lower heat exchanger 732, exchanges heat with the outdoor air and is heated to return to the compressor 75 as a gas refrigerant. By repeating the heating operation in the heating cycle described above, the heating operation is continued.

上述した暖房運転時には、室外熱交換器73は室外空気から熱を奪うため低温になり、0℃以下となって伝熱面に着霜することがある。外気の温度が低く、湿気が高いとこの現象は顕著になり、室外空気の流通面に付着した霜により、室外空気の流通が妨げられて室外ファン631の風量が減少する。室外ファン631の風量が減少すると、これを補うようにして室外熱交換器73の温度が更に低下し、益々霜が着き易くなる。このようにして、室外熱交換器73の着霜は増え続け、空気調和機1が室外空気から汲み上げる熱量が減少し、暖房能力も減少して、室内を十分に暖房できなくなり、暖房の機能が喪失してしまうので、除霜運転が必要になる。   During the heating operation described above, the outdoor heat exchanger 73 takes a heat from the outdoor air, and thus becomes a low temperature. This phenomenon becomes remarkable when the temperature of the outside air is low and the humidity is high, and the flow of the outdoor air 631 is reduced due to the frost adhering to the outdoor air flow surface, thereby preventing the outdoor air flow. When the air volume of the outdoor fan 631 decreases, the temperature of the outdoor heat exchanger 73 further decreases to compensate for this, and frost is more likely to be formed. In this way, the frost formation of the outdoor heat exchanger 73 continues to increase, the amount of heat pumped up from the outdoor air by the air conditioner 1 decreases, the heating capacity also decreases, and the room cannot be heated sufficiently, and the heating function is reduced. Since it will be lost, defrosting operation is required.

次に、本発明の実施形態に係る空気調和機の暖房サイクルにおける除霜・暖房運転について、図5及び図6を用いて説明する。図5は本実施形態に係る空気調和機の室外熱交換器の上部を除霜する時の冷媒の流れを示す冷凍サイクル図であり、図6は本実施形態に係る空気調和機の室外熱交換器の下部を除霜する時の冷媒の流れを示す冷凍サイクル図である。   Next, the defrosting / heating operation in the heating cycle of the air conditioner according to the embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. 5 is a refrigeration cycle diagram showing the flow of refrigerant when the upper part of the outdoor heat exchanger of the air conditioner according to this embodiment is defrosted, and FIG. 6 is the outdoor heat exchange of the air conditioner according to this embodiment. It is a refrigeration cycle figure which shows the flow of the refrigerant | coolant at the time of defrosting the lower part of a container.

前述のように、暖房運転をしていると、湿気の多い日には、室外熱交換器73に霜が付き、暖房能力が落ちてくる。冷媒温検知センサ812が所定の温度を下回り、かつ、暖房サイクルでの暖房運転を所定の時間以上行っている場合に、着霜の量が所定の量に達したとみなし、暖房サイクルによる除霜運転を行う。この除霜運転は、四方弁72を図5のように暖房運転時と同じにし、主回路開閉弁713dを閉、主回路開閉弁713eを開、バイパス開閉弁715aを開、バイパス開閉弁715bを閉にして、室外熱交換器73の内の上側熱交換器731を凝縮器として機能させると共に、下側熱交換器732を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する(このように制御する理由は後述する)。   As described above, when heating operation is performed, frost is formed on the outdoor heat exchanger 73 on a humid day, and the heating capacity is reduced. When the refrigerant temperature detection sensor 812 is below the predetermined temperature and the heating operation in the heating cycle is performed for a predetermined time or more, it is considered that the amount of frost formation has reached the predetermined amount, and defrosting by the heating cycle is performed. Do the driving. In this defrosting operation, the four-way valve 72 is made the same as in the heating operation as shown in FIG. 5, the main circuit on-off valve 713d is closed, the main circuit on-off valve 713e is opened, the bypass on-off valve 715a is opened, and the bypass on-off valve 715b is opened. Defrosting and heating are performed by simultaneously closing the upper heat exchanger 731 in the outdoor heat exchanger 73 as a condenser and causing the lower heat exchanger 732 as an evaporator to perform defrosting and heating at the same time. Form an operating cycle. At this time, the outdoor air blowing motor 633 is operated at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher (the reason for this control will be described later).

ここで、圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、吐出管711に吐出され、途中で分岐して、一方の冷媒は四方弁72に入り、他方の冷媒はホットガスバイパス管715に入る。四方弁72に入った一方の冷媒は、図5の実線矢印の方向に流れ、室内熱交換器33に入り、室内空気と熱交換し冷却されて凝縮され、液または気液混合の冷媒となる。この際に室内の暖房が行われる。液または気液混合の冷媒となった冷媒は、室内機2を出て室外機6に入り、ホットパイプ713a,713b,713cを流れ、周辺の氷片を融解して室外機6の外に排出する。ホットパイプ713a,713b,713cを通った冷媒は、減圧装置74に入り、膨張して減圧され、低圧の気液混合の冷媒となる。この気液混合冷媒は、図6で低圧冷媒の流れを示す破線の矢印の方向に流れ、主回路開閉弁713eを介して、蒸発器となる室外熱交換器73の下側熱交換器732に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。   Here, the gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, is discharged to the discharge pipe 711, branches in the middle, and one refrigerant is the four-way valve 72. And the other refrigerant enters the hot gas bypass pipe 715. One refrigerant that has entered the four-way valve 72 flows in the direction of the solid arrow in FIG. 5, enters the indoor heat exchanger 33, exchanges heat with room air, is cooled and condensed, and becomes a refrigerant of liquid or gas-liquid mixture. . At this time, the room is heated. The refrigerant that has become a liquid or gas-liquid mixed refrigerant exits the indoor unit 2 and enters the outdoor unit 6, flows through the hot pipes 713 a, 713 b, and 713 c, melts the surrounding ice pieces, and discharges it outside the outdoor unit 6. To do. The refrigerant that has passed through the hot pipes 713a, 713b, and 713c enters the decompression device 74, expands and is decompressed, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken-line arrow indicating the flow of the low-pressure refrigerant in FIG. 6, and passes through the main circuit on-off valve 713e to the lower heat exchanger 732 of the outdoor heat exchanger 73 serving as an evaporator. It enters, heat-exchanges with outdoor air, is heated, becomes a gas refrigerant, and returns to the compressor 75.

他方、ホットガスバイパス管715に入った冷媒は、図5の実線矢印の方向に流れ、バイパス開閉弁715aを介して室外熱交換器73の上側熱交換器731に入る。上側熱交換器731に入った冷媒は、高温高圧であるので上側熱交換器731に付着した霜を融解して下方に流下させる。流下した融解水は、蒸発器として作用している下側熱交換器732に流れ込み、最初は下側熱交換器732の着霜を融かしながら流下し、流下するに従って低温になり、外気温が低い場合などは終りには再氷結するが、ホットパイプ713a,713b,713cが下側熱交換器732での再氷結を防止する。   On the other hand, the refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 5 and enters the upper heat exchanger 731 of the outdoor heat exchanger 73 via the bypass on-off valve 715a. Since the refrigerant that has entered the upper heat exchanger 731 has a high temperature and a high pressure, the frost adhering to the upper heat exchanger 731 is melted and flows downward. The molten water that has flowed down flows into the lower heat exchanger 732 acting as an evaporator, and flows down while melting the frost of the lower heat exchanger 732, and becomes lower temperature as it flows down. However, the hot pipes 713a, 713b, and 713c prevent re-freezing in the lower heat exchanger 732.

この時、融解水は下側熱交換器732に熱を与えながら流下し、その熱は下側熱交換器732内部の冷媒の気化を促進する。つまり、上側熱交換器731で着霜の融解に使われた熱の一部が下側熱交換器732の着霜を一部融解し、更に内部の冷媒の気化に寄与して回収され、除霜の熱量が有効に使われる。上側熱交換器731の霜を除霜した冷媒は上側熱交換器731を出たところで下側熱交換器732で気化した冷媒と合流し圧縮機75に戻る。上側熱交換器731の除霜運転を所定時間または上側熱交換器731の出口の冷媒温検知センサ811aが所定温度まで上昇すると、下側熱交換器732の除霜を次に行う。   At this time, the molten water flows down while applying heat to the lower heat exchanger 732, and the heat promotes vaporization of the refrigerant in the lower heat exchanger 732. That is, a part of the heat used for melting frost in the upper heat exchanger 731 partially melts the frost in the lower heat exchanger 732 and is further collected and contributed to vaporization of the internal refrigerant. The amount of frost heat is used effectively. The refrigerant from which the frost in the upper heat exchanger 731 has been defrosted joins the refrigerant vaporized in the lower heat exchanger 732 when it leaves the upper heat exchanger 731 and returns to the compressor 75. When the defrosting operation of the upper heat exchanger 731 is performed for a predetermined time or when the refrigerant temperature detection sensor 811a at the outlet of the upper heat exchanger 731 rises to a predetermined temperature, the lower heat exchanger 732 is defrosted next.

下側熱交換器732の除霜に切換えるには、主回路開閉弁713dを開、主回路開閉弁713eを閉、バイパス開閉弁715aを閉、バイパス開閉弁715bを開にして、室外熱交換器73の内の下側熱交換器732を凝縮器として機能させると共に、上側熱交換器731を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モータ633を低速運転し、室内送風モータ313は、吹出し温度が所定温度以上を保持できるように運転を制御する。   In order to switch to the defrosting of the lower heat exchanger 732, the main circuit on-off valve 713d is opened, the main circuit on-off valve 713e is closed, the bypass on-off valve 715a is closed, and the bypass on-off valve 715b is opened. The lower heat exchanger 732 of 73 is functioned as a condenser and the upper heat exchanger 731 is functioned as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. At this time, the outdoor air blowing motor 633 is operated at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.

ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、上側熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図6の破線の矢印の方向に流れ、主回路開閉弁713dを介して、蒸発器となる上側熱交換器731に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。   Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the upper heat exchanger 731 is defrosted. The refrigerant decompressed by the decompression device 74 flows in the direction of the broken arrow in FIG. 6, enters the upper heat exchanger 731 serving as an evaporator via the main circuit on-off valve 713d, and heats it by exchanging heat with outdoor air. Then, the gas refrigerant is returned to the compressor 75.

ホットガスバイパス管715に入った冷媒は、図6の実線矢印の方向に流れ、バイパス開閉弁715eを介して室外熱交換器73の下側熱交換器732に入る。下側熱交換器732に入った冷媒は、高温高圧であるので、下側熱交換器732に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。下側熱交換器732の霜を除霜した冷媒は、下側熱交換器732を出たところで上側熱交換器731で気化した冷媒と合流し圧縮機75に戻る。下側熱交換器732の除霜運転が所定時間経過すると、または下側熱交換器732の出口の冷媒温検知センサ811bが所定温度まで上昇すると、主回路開閉弁713d,713eを開、バイパス開閉弁715a,715bを閉にして、除霜・暖房運転を終了し、直ちに図4の暖房運転に復帰する。   The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 6 and enters the lower heat exchanger 732 of the outdoor heat exchanger 73 via the bypass on-off valve 715e. Since the refrigerant that has entered the lower heat exchanger 732 has a high temperature and pressure, the frost adhering to the lower heat exchanger 732 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant that has defrosted the frost in the lower heat exchanger 732 joins the refrigerant vaporized in the upper heat exchanger 731 when it leaves the lower heat exchanger 732, and returns to the compressor 75. When the defrosting operation of the lower heat exchanger 732 elapses for a predetermined time or when the refrigerant temperature detection sensor 811b at the outlet of the lower heat exchanger 732 rises to a predetermined temperature, the main circuit on-off valves 713d and 713e are opened, and the bypass open / close The valves 715a and 715b are closed, the defrosting / heating operation is finished, and the operation immediately returns to the heating operation of FIG.

上述したように、空気熱源ヒートポンプ空気調和機を暖房運転した場合、室外空気の湿度が高いと、室外熱交換器73に着霜を生ずる。着霜が生ずると室外熱交換器73の通風路が狭まるため、室外熱交換器73を循環する室外空気の量が減少する。循環する室外空気の量が減少すると、熱交換量が少なくなるため、これを補おうとするように室外熱交換器73内を流れる冷媒の蒸発温度が下がる。冷媒の蒸発温度が下がると室外熱交換器73の外気側の表面温度も下がり、益々着霜を生じやすくなり、着霜が進行する。   As described above, when the air heat source heat pump air conditioner is operated for heating, frost is generated in the outdoor heat exchanger 73 if the humidity of the outdoor air is high. When frost formation occurs, the ventilation path of the outdoor heat exchanger 73 is narrowed, so that the amount of outdoor air circulating through the outdoor heat exchanger 73 is reduced. If the amount of circulating outdoor air decreases, the amount of heat exchange decreases, so that the evaporation temperature of the refrigerant flowing in the outdoor heat exchanger 73 decreases so as to compensate for this. When the evaporation temperature of the refrigerant decreases, the surface temperature of the outdoor heat exchanger 73 on the outside air side also decreases, and frost formation is more likely to occur, and frost formation proceeds.

このままでは室外熱交換器73で室外空気から汲み上げる熱量が減少するため、室内熱交換器33から放熱する熱量も減少して暖房能力が減少し、室内の快適性が損なわれる。これを防ぐために、室外熱交換器73の着霜の量が所定の量を超えた時には除霜をすることにより、室外熱交換器73の着霜を融解して流下させて機外に排出させる。この時、室外熱交換器73の下部は上部から流れてきた融解水が通過するため、上部より水滴が残り易い。水滴が残った状態で除霜運転が終了して暖房運転が始まると、残った水滴が氷結して室外空気の通風を妨害する。室外空気の通風が妨害されると、前述のように着霜が成長し易くなり、暖房能力の低下が進行する。   In this state, the amount of heat pumped up from the outdoor air by the outdoor heat exchanger 73 decreases, so the amount of heat radiated from the indoor heat exchanger 33 also decreases, the heating capacity decreases, and indoor comfort is impaired. In order to prevent this, when the amount of frost formation in the outdoor heat exchanger 73 exceeds a predetermined amount, the frost formation in the outdoor heat exchanger 73 is melted down and discharged outside the apparatus by defrosting. . At this time, the molten water flowing from the upper part passes through the lower part of the outdoor heat exchanger 73, so that water droplets are likely to remain from the upper part. When the defrosting operation is finished and the heating operation is started with water droplets remaining, the remaining water droplets freeze and obstruct outdoor air flow. When the ventilation of the outdoor air is obstructed, frost formation is likely to grow as described above, and the heating capacity decreases.

ここで、圧縮機75の吐出側と暖房時の室外熱交換器73の入口側を連結するバイパス開閉弁715a,715bを備えたホットガスバイパス回路を有し、暖房運転時の室外熱交換器73の除霜をバイパス開閉弁715aまたは715bを開いて行う空気熱源ヒートポンプ空気調和機において、室外熱交換器73を上部より下部が面積の小さい複数の冷媒回路に上下方向に分割し、各回路を並列に接続すると共に、室内熱交換器33と複数の冷媒回路の各々との間に主回路開閉機構713d,713eを設け、主回路開閉機構713d,713eとバイパス開閉弁715a,715bとを交互に開閉して複数の冷媒回路の1回路を除霜しつつ他の回路で暖房運転を継続する。これにより、除霜していない下側熱交換器732又は上側熱交換器を蒸発器として暖房運転が継続できる。また、除霜のとき、圧縮機75からのホットガスで解氷しなければならない熱交換器の面積は、下側熱交換器732を除霜する時に狭く(小さく)なるようにしている。この狭い範囲の着霜を暖めれば良いため、除霜に要する時間が狭くしたことにより短縮される。   Here, it has a hot gas bypass circuit provided with bypass opening / closing valves 715a and 715b for connecting the discharge side of the compressor 75 and the inlet side of the outdoor heat exchanger 73 during heating, and the outdoor heat exchanger 73 during heating operation. In the air heat source heat pump air conditioner that performs the defrosting of this by opening the bypass on-off valve 715a or 715b, the outdoor heat exchanger 73 is vertically divided into a plurality of refrigerant circuits having a smaller area from the upper part to the lower part, and the circuits are arranged in parallel. Main circuit switching mechanisms 713d and 713e are provided between the indoor heat exchanger 33 and each of the plurality of refrigerant circuits, and the main circuit switching mechanisms 713d and 713e and the bypass switching valves 715a and 715b are alternately opened and closed. Then, the heating operation is continued in another circuit while defrosting one circuit of the plurality of refrigerant circuits. Thereby, heating operation can be continued using the lower heat exchanger 732 or the upper heat exchanger that has not been defrosted as an evaporator. In addition, the area of the heat exchanger that must be defrosted with hot gas from the compressor 75 during defrosting is made narrow (small) when the lower heat exchanger 732 is defrosted. Since it is only necessary to warm the frost in this narrow range, the time required for defrosting is shortened.

また、狭い範囲を暖めれば良いため、熱が行き渡り易く、解氷が十分行われ、解けて流下する水滴の温度も上がり、粘性が小さくなって流下し易くなると共に、一部が空気中へ蒸発しやすくなる。このようにして、下側熱交換器732に流下しないで残存する水滴の量が減少する。したがって、下側熱交換器732は除霜の都度、残存水の少ない、着霜しにくい状態になるので、着霜の進行が遅れる。着霜の進行が遅れると、その分、室外熱交換器73の除霜の開始を遅らせることができ、室内を除霜・暖房運転で十分に暖房することができる。このため、室内を暖房しながら除霜する除霜・暖房運転が可能で、除霜・暖房運転の所要時間を短縮でき、室内の快適性を長く保つことができる。   In addition, since it is only necessary to warm a narrow range, the heat is easily spread, the ice is sufficiently melted, the temperature of the water droplets that melt and flow down rises, the viscosity becomes small and the flow easily flows down, and part of it goes into the air Evaporates easily. In this way, the amount of water droplets remaining without flowing down to the lower heat exchanger 732 is reduced. Accordingly, since the lower heat exchanger 732 is in a state in which the remaining water is small and frost formation is difficult every time the defrosting is performed, the progress of the frost formation is delayed. If the progress of frost formation is delayed, the start of defrosting of the outdoor heat exchanger 73 can be delayed correspondingly, and the room can be sufficiently heated by defrosting / heating operation. For this reason, the defrosting / heating operation for defrosting while heating the room is possible, the time required for the defrosting / heating operation can be shortened, and the comfort in the room can be kept long.

また、一般に、着霜が生じるような温度条件での暖房時は、外気温が低いときが多く、温風の温度を上げるため、高い凝縮温度が要求され、また、圧縮機75の吸い込み圧力は外気温が低いため、低くなるので、圧縮比が上がり、圧縮機75の効率が下がってしまう。これを補うため、回転数制御圧縮機を使用するときなどは回転数を上げて、冷媒の循環量を確保する必要がある。また、圧縮機75の仕事量も暖房能力に加わるので、圧縮機75を存分に働かせて暖房能力を確保する。このため、圧縮機75は高負荷で駆動され、圧縮機75は高温に保持されている。この状態から除霜・暖房運転に入ると、圧縮機75が高温に保持されているので、圧縮機75から吐出される冷媒は高温状態でホットガスバイパス回路を流れ、上側熱交換器731に流入する。   In general, when heating under a temperature condition where frost formation occurs, the outside air temperature is often low, and a high condensing temperature is required to raise the temperature of the hot air, and the suction pressure of the compressor 75 is Since the outside air temperature is low, the temperature is lowered, so that the compression ratio is increased and the efficiency of the compressor 75 is decreased. In order to compensate for this, it is necessary to increase the number of rotations to ensure the circulation amount of the refrigerant when using a rotation number control compressor. Moreover, since the work amount of the compressor 75 is also added to the heating capacity, the compressor 75 is fully operated to ensure the heating capacity. For this reason, the compressor 75 is driven with a high load, and the compressor 75 is kept at a high temperature. When the defrosting / heating operation is started from this state, since the compressor 75 is kept at a high temperature, the refrigerant discharged from the compressor 75 flows through the hot gas bypass circuit at a high temperature and flows into the upper heat exchanger 731. To do.

また、一般に、室外熱交換器用73に送風する室外ファン631は外気を大量に循環させて、熱交換を効率よく行わせるため、軸流ファン631が使用される。軸流ファンは発生できる風圧がさほど大きくないため、室外機6の構造は外気吸込み口、室外熱交換器73、軸流ファン631、外気吹出し口をほぼ一直線に並べ、通風経路を単純な形にして、通風の圧力損失を抑えるように構成されている。   In general, the outdoor fan 631 that blows air to the outdoor heat exchanger 73 circulates a large amount of outside air so that heat exchange can be performed efficiently, so that an axial fan 631 is used. Since the wind pressure that can be generated by the axial fan is not so great, the structure of the outdoor unit 6 is that the outside air inlet, the outdoor heat exchanger 73, the axial fan 631, and the outside air outlet are arranged in a straight line, and the ventilation path is simplified. Thus, the pressure loss of ventilation is suppressed.

このように、わずかな風圧で、大量の外気を通風させるので、室外熱交換器73を通過する外気の量は通風経路の違いで場所によって変わる。室外熱交換器73を上下に分けた場合、室外熱交換器73の下部は上部に比べて地面の影響を強く受け、極わずかではあるが、通風抵抗が増すと考えられる。この僅かな差で、室外熱交換器73の下部を流れる外気の量がほんの少し減少する。   Thus, since a large amount of outside air is ventilated with a slight wind pressure, the amount of outside air passing through the outdoor heat exchanger 73 varies depending on the location due to the difference in the ventilation path. When the outdoor heat exchanger 73 is divided into an upper part and a lower part, the lower part of the outdoor heat exchanger 73 is strongly influenced by the ground as compared with the upper part, and it is considered that the ventilation resistance is increased although it is very small. With this slight difference, the amount of outside air flowing under the outdoor heat exchanger 73 is slightly reduced.

このため、室外熱交換器73の上部と下部を比較すると、下側熱交換器732は上側熱交換器731に比べて、風速が遅くなり、熱交換性能が低下する。このため、下側熱交換器732は上側熱交換器731に比べて、低温になり、着霜し易くなる。また、室外熱交換器73の下部は上部から流れてきた上側熱交換器731の除霜時の融解水が通過するため、上部より水滴が残り易い。水滴が残った状態で除霜・暖房運転が終了し、暖房運転が始まると、残った水滴が氷結し、室外空気の通風を妨害する。室外空気の通風が妨害されると前述のように、更に、着霜が成長し易くなる。   For this reason, when the upper part and the lower part of the outdoor heat exchanger 73 are compared, the lower heat exchanger 732 has a lower wind speed than the upper heat exchanger 731 and the heat exchange performance is deteriorated. For this reason, the lower heat exchanger 732 has a lower temperature than the upper heat exchanger 731 and is likely to be frosted. Moreover, since the molten water at the time of defrosting of the upper side heat exchanger 731 which flowed from the upper part passes through the lower part of the outdoor heat exchanger 73, a water droplet tends to remain from the upper part. When the defrosting / heating operation is completed with the water droplets remaining and the heating operation is started, the remaining water droplets are frozen to block the ventilation of the outdoor air. If the ventilation of the outdoor air is obstructed, as described above, frost formation is more likely to grow.

そこで、室外熱交換器73の除霜を行う時に、上側熱交換器731、下側熱交換器732の順に除霜を行うと共に、下側熱交換器732の除霜時間を、先に行った上側熱交換器731の除霜時間より長くしている(下側熱交換器の除霜時間を長くしたとしても、具体的に2倍程度位に抑えられることを後述する)。これにより、室外熱交換器73に着霜し、着霜量が除霜を必要とする所定量に達したときに、上側熱交換器731から順に除霜・暖房運転を行う。まず、上側の冷媒回路にホットガスバイパス回路からのガスを流し、除霜・暖房運転を行う。上側の冷媒回路にホットガスを流すので、室外熱交換器73の上側の冷媒回路の空気側伝熱面に付着した着霜が融解し、下方に流れ下る。   Therefore, when defrosting the outdoor heat exchanger 73, defrosting was performed in the order of the upper heat exchanger 731 and the lower heat exchanger 732, and the defrosting time of the lower heat exchanger 732 was performed first. It is longer than the defrosting time of the upper heat exchanger 731 (even if the defrosting time of the lower heat exchanger is made longer, it will be described later that it can be specifically suppressed to about twice). As a result, the outdoor heat exchanger 73 is frosted, and when the amount of frost reaches a predetermined amount that requires defrosting, the defrosting / heating operation is performed in order from the upper heat exchanger 731. First, gas from the hot gas bypass circuit is caused to flow through the upper refrigerant circuit to perform defrosting and heating operations. Since hot gas is allowed to flow through the upper refrigerant circuit, frost adhering to the air-side heat transfer surface of the upper refrigerant circuit of the outdoor heat exchanger 73 is melted and flows downward.

この融解水の温度が高い場合は、融解水は下側熱交換器732の空気側伝熱面の着霜に触れ、これを融解水自身の顕熱で溶かしながら更に流れ下る。このとき、下側熱交換器732で着霜が融解した部分は、熱伝達の妨害をしていた着霜が除かれるので、外気から、冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。流れ下る融解水の温度が融解点まで下がると、融解水はそれ以上着霜を融解することなく流下し、流下しながら下側熱交換器内を流れる下側冷媒回路の冷媒で冷却されて凝固する。   When the temperature of the molten water is high, the molten water touches the frost formation on the air side heat transfer surface of the lower heat exchanger 732 and further flows down while melting it with the sensible heat of the molten water itself. At this time, the portion where the frost is melted in the lower heat exchanger 732 is removed from the frost that has interfered with the heat transfer, so that heat is smoothly transferred from the outside air to the refrigerant, and the heat exchange capability Recovers and suppresses the decline in indoor heating capacity. When the temperature of the flowing molten water falls to the melting point, the molten water flows without melting the frost any more, and is cooled by the refrigerant in the lower refrigerant circuit that flows in the lower heat exchanger while flowing down and solidifies. To do.

このとき、融解水の凝固熱は下側冷媒回路の冷媒を温めるので、上側熱交換器で着霜の融解に使用された熱量が回収される。上側熱交換器731の除霜のための除霜・暖房運転が終了すると、次に、下側熱交換器732の除霜を行うための除霜・暖房運転が開始される。下側の冷媒回路に圧縮機75からのホットガスを流すので、室外熱交換器73の下側の冷媒回路の空気側伝熱面に付着した着霜が融解し、下方に流れ下り、下側熱交換器73の除霜が行われる。このとき、上側熱交換器731は除霜が終了した直後なので、熱伝達の妨害をしていた着霜が除かれているので、外気から、冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。このように、除霜・暖房運転時でも暖房能力の大幅な低下を抑制しつつ、暖房を継続することができる。   At this time, since the heat of solidification of the molten water warms the refrigerant in the lower refrigerant circuit, the amount of heat used for melting frost in the upper heat exchanger is recovered. When the defrosting / heating operation for defrosting the upper heat exchanger 731 is completed, the defrosting / heating operation for defrosting the lower heat exchanger 732 is then started. Since hot gas from the compressor 75 is caused to flow through the lower refrigerant circuit, frost adhering to the air-side heat transfer surface of the lower refrigerant circuit of the outdoor heat exchanger 73 is melted and flows downward, The heat exchanger 73 is defrosted. At this time, since the upper heat exchanger 731 is immediately after the defrosting is completed, the frost formation that has hindered the heat transfer is removed, so that heat transfer from the outside air to the refrigerant is performed smoothly, and heat exchange is performed. The capacity is restored and the decrease in indoor heating capacity is suppressed. Thus, heating can be continued while suppressing a significant decrease in heating capacity even during defrosting / heating operation.

また、上側熱交換器731の除霜時には、下側熱交換器732の着霜量が一時的に増加する。しかし、上側熱交換器731の除霜の終了に引き続いて下側熱交換器732の除霜のための除霜・暖房運転が行われるので、下側熱交換器732も除霜される。したがって、下側熱交換器732の着霜が増え続け、残霜が生ずることはない。このため、着霜を完全に除去でき、残霜を生じさせない。   Further, when the upper heat exchanger 731 is defrosted, the amount of frost formation on the lower heat exchanger 732 temporarily increases. However, since the defrosting / heating operation for defrosting the lower heat exchanger 732 is performed following the end of the defrosting of the upper heat exchanger 731, the lower heat exchanger 732 is also defrosted. Therefore, frost formation of the lower heat exchanger 732 continues to increase, and no residual frost is generated. For this reason, frost formation can be removed completely and residual frost is not produced.

また、最初の除霜・暖房運転では高温のホットガスを上側熱交換器731の除霜に使用できるので、除霜・暖房運転の時間は短かいが、広範な範囲を除霜することができる。この時、室内熱交換器33に送られる冷媒の温度も高温な状態であるので、暖房能力は減少するが、時間が短いため、室温の変動は少なく室内の快適性の低下を抑制することができる。   Moreover, since hot hot gas can be used for defrosting of the upper heat exchanger 731 in the first defrosting / heating operation, the defrosting / heating operation time is short, but a wide range can be defrosted. . At this time, since the temperature of the refrigerant sent to the indoor heat exchanger 33 is also in a high temperature state, the heating capacity is reduced. However, since the time is short, the fluctuation of the room temperature is small and the deterioration of the indoor comfort is suppressed. it can.

このように、除霜・暖房運転の開始からの短時間で、広範な範囲の上側熱交換器731の除霜が完了し、下側熱交換器732の除霜に切換えることができる。下側熱交換器732の除霜のための除霜・暖房運転では、除霜すべき下側熱交換器732の範囲は上側熱交換器731より狭くなるが、圧縮機75の吐出ガスの温度が直前に行われた上方の上側熱交換器731の除霜・暖房運転のために低下しているので、その除霜・暖房運転の所要時間は長くなる。   Thus, in a short time from the start of the defrosting / heating operation, the defrosting of the upper heat exchanger 731 in a wide range is completed and can be switched to the defrosting of the lower heat exchanger 732. In the defrosting / heating operation for defrosting the lower heat exchanger 732, the range of the lower heat exchanger 732 to be defrosted is narrower than that of the upper heat exchanger 731, but the temperature of the discharge gas of the compressor 75 is reduced. Is decreased due to the defrosting / heating operation of the upper upper heat exchanger 731 performed immediately before, the time required for the defrosting / heating operation becomes longer.

また、下側熱交換器732には霜が着きやすいので、その除霜・暖房運転の時間を残霜が生じないよう十分長くする必要がある。しかし、この時は、上側熱交換器731の除霜が完了しているので、上側熱交換器731はその熱交換能力を十分発揮でき、外気から熱を吸収し、圧縮機75の吐出温度の低下を抑制し、ホットガスの温度低下を抑えて、除霜・暖房運転できる。これによって、その除霜・暖房運転の所要時間は上方熱交換器の除霜所要時間の2倍程度に抑えられ、上側熱交換器731と下側熱交換器732の除霜・暖房運転の所要時間の合計を逆サイクル除霜運転した場合に比べて短縮することができる。また、この時、圧縮機75の吐出温度の低下が抑制されるので、暖房能力の低下も抑制することができる。このため、室内を暖房しながら除霜をすることが可能で、且つ、除霜・暖房運転の所要時間を短縮できる。   In addition, since frost easily forms on the lower heat exchanger 732, it is necessary to sufficiently lengthen the time for the defrosting / heating operation so that no residual frost is generated. However, at this time, since the defrosting of the upper heat exchanger 731 is completed, the upper heat exchanger 731 can sufficiently exhibit its heat exchange capability, absorbs heat from the outside air, and the discharge temperature of the compressor 75 The defrosting and heating operation can be performed by suppressing the decrease and suppressing the temperature decrease of the hot gas. Thereby, the time required for the defrosting / heating operation is suppressed to about twice the time required for the defrosting of the upper heat exchanger, and the defrosting / heating operation required for the upper heat exchanger 731 and the lower heat exchanger 732 is required. The total time can be shortened compared to the case where the reverse cycle defrosting operation is performed. Moreover, since the fall of the discharge temperature of the compressor 75 is suppressed at this time, the fall of heating capability can also be suppressed. For this reason, defrosting can be performed while heating the room, and the time required for the defrosting / heating operation can be shortened.

一般に、効率よく暖房運転するため、暖房運転時の圧縮機75の吐出温度は70℃前後に制御されている。高圧チャンバーを有する圧縮機75では、この吐出冷媒が高圧チャンバー内に充満するため、圧縮機75全体が高温に保たれる。また、室外熱交換器73の除霜を終了した後、暖房運転の立上がりを良くするため、除霜終了時の圧縮機75の吐出温度は室温以上であることが要求され、圧縮機75から室内熱交換器33までの温度低下を考慮すると、25℃以上であることが望ましい。   Generally, in order to efficiently perform the heating operation, the discharge temperature of the compressor 75 during the heating operation is controlled around 70 ° C. In the compressor 75 having the high-pressure chamber, the discharged refrigerant fills the high-pressure chamber, so that the entire compressor 75 is kept at a high temperature. In addition, after the defrosting of the outdoor heat exchanger 73 is finished, the discharge temperature of the compressor 75 at the end of the defrosting is required to be equal to or higher than room temperature in order to improve the start-up of the heating operation. Considering the temperature drop to the heat exchanger 33, it is desirable that the temperature is 25 ° C. or higher.

本発明の実施形態に係る空気調和機においては、除霜の禁止期間を短くし(除霜運転終了後に一定期間だけ除霜運転できない期間を設けて、この期間で室温を維持、上昇させるための暖房運転を持続させるようにしている。この除霜禁止期間が余り長いとその間に着霜した霜取りに時間が掛かるのでなるべくこの禁止期間を短くすることが求められる)、室外熱交換器73に付着する着霜の量を制限して(着霜量を少なくして)、圧縮機75に蓄えられた熱量で除霜を終了することにより、除霜の所要時間を短縮でき、暖房に復帰した後の暖房能力の回復を早くすることができる、と云う発想に基づいて成されたものである。   In the air conditioner according to the embodiment of the present invention, the defrosting prohibition period is shortened (a period during which the defrosting operation cannot be performed for a certain period after the defrosting operation is provided, and the room temperature is maintained and raised during this period. If the defrosting prohibition period is too long, it takes time to defrost during that period, so it is necessary to shorten this prohibition period as much as possible), and adhere to the outdoor heat exchanger 73. After limiting the amount of frost to be formed (decreasing the amount of frost formation) and ending the defrost with the amount of heat stored in the compressor 75, the time required for defrosting can be shortened and after returning to heating It was made based on the idea that the recovery of the heating capacity can be accelerated.

ここで、鋼鉄製の外殻を持つ圧縮機75、四方弁72、室内熱交換器33、減圧装置74、アルミニウム製のフィンを持つ室外熱交換器73を備え、外気温0℃以上のときの除霜禁止期間を、その目安として次の式(1)の数値以下とする。除霜禁止期間(分)=8×圧縮機の質量(kg)÷室外熱交換器の吸熱量(kW)…(1) なお、上記吸熱量はこの熱交換器に付着した霜を溶かすために必要な熱量である。   Here, a compressor 75 having a steel outer shell, a four-way valve 72, an indoor heat exchanger 33, a pressure reducing device 74, an outdoor heat exchanger 73 having aluminum fins, and an outdoor temperature of 0 ° C. or more are provided. The defrosting prohibition period is set to the numerical value of the following formula (1) as a guide. Defrosting prohibition period (minutes) = 8 × compressor mass (kg) ÷ outdoor heat exchanger heat absorption (kW) (1) The above heat absorption amount is used to dissolve frost adhering to the heat exchanger. The amount of heat required.

これにより、高温の圧縮機に蓄えられている70℃〜25℃の熱量を室外熱交換器73の除霜に使用し、室内から熱を奪わないようにできる。例えば、暖房能力6.7kWクラスの空気調和機では、圧縮機75の質量は12kg程度である。そのため、利用できる蓄熱量Qは、大略、12(質量)×0.435(比熱:概算のためすべて鋼鉄でできていると仮定する)×(70−25)=235kJである(圧縮機の中に蓄えられる熱量)。   Thereby, the amount of heat of 70 ° C. to 25 ° C. stored in the high-temperature compressor can be used for defrosting the outdoor heat exchanger 73 so that heat is not taken away from the room. For example, in an air conditioner with a heating capacity of 6.7 kW class, the mass of the compressor 75 is about 12 kg. Therefore, the amount of heat storage Q that can be used is approximately 12 (mass) × 0.435 (specific heat: assumed to be made entirely of steel for estimation) × (70−25) = 235 kJ (in the compressor) The amount of heat stored in the

しかしこのとき、室外熱交換器73の温度は−5℃程度になっているため、着霜と室外熱交換器73が0℃まで上昇するのに必要な熱量も加えてやる必要があり、その熱量はおよそ蓄熱量Qの1割と見て差し支えないので、着霜の融解に使用できる熱量は235−24=211kJとなる。   However, at this time, since the temperature of the outdoor heat exchanger 73 is about -5 ° C, it is necessary to add frosting and the amount of heat necessary for the outdoor heat exchanger 73 to rise to 0 ° C. Since the amount of heat can be regarded as about 10% of the amount of stored heat Q, the amount of heat that can be used for melting frost is 235-24 = 211 kJ.

一方、このクラスの空気調和機の室外送風装置63の風量は12.5m/min程度であり、外気温が5℃/4℃(DB/WB)(ISO規格に準拠する表示)付近の着霜量の多い運転では(最も霜の付き易い、例えば0℃〜5℃の外気温状況)、室外熱交換器73の吸熱量は4.0kWと見積もられる。その時の室外熱交換器73の平均温度は−4℃位で、顕熱比は0.65、着霜量は1.9kg/hとなる。この着霜の融解に必要な熱量は634kJとなる(上述した外気温と顕熱比と着霜量とを基に計算すると融解必要熱量が求まる)。これより、除霜禁止期間を(235−24)÷634=0.33時間=20分以内にすれば、圧縮機75の蓄熱だけで室外熱交換器73の除霜ができることになる。換言すると、20分で付着する霜量ならば、当該圧縮機に蓄えられた熱量で溶かすことができるのである。 On the other hand, the air volume of the outdoor blower 63 of this class of air conditioner is about 12.5 m 3 / min, and the outside air temperature is about 5 ° C / 4 ° C (DB / WB) (display conforming to ISO standards). In an operation with a large amount of frost (the frost is most easily formed, for example, an outside air temperature situation of 0 ° C. to 5 ° C.), the heat absorption amount of the outdoor heat exchanger 73 is estimated to be 4.0 kW. The average temperature of the outdoor heat exchanger 73 at that time is about −4 ° C., the sensible heat ratio is 0.65, and the amount of frost formation is 1.9 kg / h. The amount of heat necessary for melting this frost is 634 kJ (calculating based on the above-mentioned outside air temperature, sensible heat ratio, and amount of frost formation, the amount of heat necessary for melting is obtained). Thus, if the defrosting prohibition period is set within (235-24) ÷ 634 = 0.33 hours = 20 minutes, the outdoor heat exchanger 73 can be defrosted only by heat storage of the compressor 75. In other words, if it is the amount of frost that adheres in 20 minutes, it can be melted by the amount of heat stored in the compressor.

ここで、空気熱源ヒートポンプ空気調和機の暖房能力測定条件はISO規格で外気の状態を7℃/6℃(DB/WB)としているので(この条件では除霜運転をしないこととしている)、この条件では除霜運転に入らないように設計することにより、外気温度が5℃より高くなると室外熱交換器73の温度が上がり、ほとんど着霜しなくなる。他方、外気温度が5℃より下がると外気の絶対湿度が下がってくるため、着霜量が少なくなってくる。このため、計算例では着霜量が一番多くなる外気温度5℃付近を例に取った。   Here, the heating capacity measurement condition of the air heat source heat pump air conditioner is ISO standard and the outside air state is 7 ° C./6° C. (DB / WB) (the defrosting operation is not performed under this condition). By designing so as not to enter into the defrosting operation under the conditions, when the outside air temperature becomes higher than 5 ° C., the temperature of the outdoor heat exchanger 73 rises, and frost formation hardly occurs. On the other hand, when the outside air temperature falls below 5 ° C., the absolute humidity of the outside air falls, so the amount of frost formation decreases. For this reason, in the calculation example, the outside air temperature around 5 ° C. where the amount of frost formation is the largest is taken as an example.

また、室外送風装置63の送風量を12.5m/min程度としたが、風量が変わって、室外熱交換器73の温度が変化しても、この温度付近の飽和水蒸気線の傾きは、図7に示すように前述の顕熱比の値とほぼ同じであるので、変化した後の顕熱比も0.65となる。なお、図7は除霜時における室外空気の変化を示す空気線図である。従って、着霜量も変わらず、1.9kg/hとなる。つまり、吸熱量が一定であれば(暖房能力が一定であれば)、この温度付近での暖房運転では、着霜量が一定となる。 Moreover, although the air flow rate of the outdoor air blower 63 is set to about 12.5 m 3 / min, even if the air flow rate changes and the temperature of the outdoor heat exchanger 73 changes, the slope of the saturated water vapor line near this temperature is As shown in FIG. 7, since the value of the sensible heat ratio is almost the same as described above, the sensible heat ratio after the change is also 0.65. FIG. 7 is an air diagram showing changes in outdoor air during defrosting. Therefore, the amount of frost formation does not change and is 1.9 kg / h. That is, if the heat absorption amount is constant (if the heating capacity is constant), the amount of frost formation is constant in the heating operation near this temperature.

以上の説明から分かるように、圧縮機75の質量と暖房能力が判れば、圧縮機75の蓄熱量だけで除霜できる着霜量に達するまでの大略の暖房運転時間を求め、この運転時間と同等程度の時間を最長の除霜禁止期間とする。更に、室外熱交換器73を上下に複数の冷媒回路に分割し、除霜・暖房運転時に分割した少なくとも1つの冷媒回路を蒸発器として作用させる。これにより、除霜・暖房運転時も蒸発器として作用している室外熱交換器73の一部からの吸熱量と圧縮機75の電気入力分が室内の暖房に寄与することができ、室内機2の暖房能力の低下を抑制して、室内の温度低下を抑えることができる。このため、室内の快適感が失われるのを防止できる。   As can be seen from the above description, if the mass and heating capacity of the compressor 75 are known, the approximate heating operation time until the amount of frost that can be defrosted only by the heat storage amount of the compressor 75 is obtained, and this operation time and The equivalent time is the longest defrosting prohibition period. Furthermore, the outdoor heat exchanger 73 is vertically divided into a plurality of refrigerant circuits, and at least one refrigerant circuit divided during the defrosting / heating operation is caused to act as an evaporator. As a result, the amount of heat absorbed from a part of the outdoor heat exchanger 73 acting as an evaporator during defrosting / heating operation and the electric input of the compressor 75 can contribute to indoor heating. It is possible to suppress a decrease in the indoor temperature by suppressing a decrease in the heating capacity 2. For this reason, it is possible to prevent loss of comfort in the room.

換言すると、本来、暖房運転時に除霜禁止期間を長くして暖房運転を持続する時間を長くすることの方が暖房効率の観点からは良いことであるが、この長くなった禁止期間中に付着した多量の霜を取るために長い時間を要することとなり、結果的に暖房効率が低下することに繋がる。そこで、暖房と除霜の運転期間のバランスを取って、最適の除霜禁止期間を設定することで、暖房効率の向上を図るようにすることが本実施形態の特徴の1つである。そして、圧縮機の蓄熱量だけで除霜できる禁止期間を設定すると、この期間に暖房運転して付着した霜を圧縮機蓄熱量だけで除霜できることとなる。   In other words, it is better from the viewpoint of heating efficiency that the defrosting prohibition period is lengthened during the heating operation and the time for which the heating operation is continued is longer, but it adheres during this longer prohibition period. It takes a long time to remove a large amount of frost, which leads to a decrease in heating efficiency. Therefore, it is one of the features of this embodiment that the heating efficiency is improved by balancing the operation periods of heating and defrosting and setting the optimum defrosting prohibition period. And if the prohibition period which can defrost only by the heat storage amount of a compressor is set, the frost which carried out heating operation and adhered in this period can be defrosted only by the compressor heat storage amount.

また、除霜禁止期間を20分〜5分とすると、これにより、ほぼ全ての暖房能力クラスで、室外熱交換器73の着霜の量が制限され(上述した例では、暖房能力6.7kWクラスの空気調和機で20分の除霜禁止期間の設定)、圧縮機75の蓄熱だけで除霜・暖房運転時の除霜熱量を賄うことができる。このため、室内の快適感が失われるのを防止できる。   If the defrosting prohibition period is 20 minutes to 5 minutes, this limits the amount of frost formation on the outdoor heat exchanger 73 in almost all heating capacity classes (in the above-described example, the heating capacity is 6.7 kW). The setting of a 20-minute defrosting prohibition period with a class air conditioner) and the amount of defrosting heat during the defrosting / heating operation can be provided only by the heat storage of the compressor 75. For this reason, it is possible to prevent loss of comfort in the room.

また、外気温の低下に伴い、圧縮機75の吐出温度を高温側にシフトして制御する(減圧装置を絞り、又は圧縮機回転数を上げるように制御する)と共に、除霜禁止期間を短縮する。これにより、圧縮機75の蓄熱量が増加すると共に、除霜・暖房運転時間が短縮され、暖房運転に復帰した時の圧縮機75の吐出温度の回復が早くなって、暖房能力の落ち込み時間が短くなる。このため、低外気温でも除霜・暖房運転時の室温変化が抑制される。   In addition, as the outside air temperature decreases, the discharge temperature of the compressor 75 is controlled to be shifted to a higher temperature side (the decompression device is controlled to be throttled or the compressor rotational speed is increased), and the defrosting prohibition period is shortened. To do. As a result, the amount of heat stored in the compressor 75 increases, the defrosting / heating operation time is shortened, the recovery of the discharge temperature of the compressor 75 when the operation returns to the heating operation is accelerated, and the heating capacity fall time is reduced. Shorter. For this reason, the room temperature change at the time of defrosting and heating operation is suppressed even at a low outside temperature.

また、除霜・暖房運転時は暖房運転時よりも室外ファン631の回転数を低下させ、更に、外気温度が所定値より低い場合は除霜運転時に室外送風機の運転を停止する。このように、除霜・暖房運転時に室外ファン631の回転数を低下させることにより、除霜・暖房運転時に融解水やフィン、パイプから、室外ファン631による強制対流で外気に奪い去られる熱量が減少し、霜の融解が効率よく進む。また、外気の温度が更に低くなり、外気への放熱量が増加した場合は室外ファン631の運転を停止する。これにより、室外ファン631による強制対流で外気に奪い去られる熱量の大部分が霜の融解に有効に使用され、室外熱交換器73の除霜が効率よく進む。このため、除霜・暖房運転時間を短縮でき、また、低外気温の時でも除霜・暖房運転で残霜を生じることはない。   In addition, during the defrosting / heating operation, the rotational speed of the outdoor fan 631 is reduced as compared with that during the heating operation. Further, when the outside air temperature is lower than a predetermined value, the operation of the outdoor fan is stopped during the defrosting operation. Thus, by reducing the rotational speed of the outdoor fan 631 during the defrosting / heating operation, the amount of heat taken away from the melted water, fins, and pipes by forced convection by the outdoor fan 631 during the defrosting / heating operation. Decreases and frost melting progresses efficiently. Further, when the temperature of the outside air is further lowered and the amount of heat released to the outside air is increased, the operation of the outdoor fan 631 is stopped. As a result, most of the amount of heat removed to the outside air by forced convection by the outdoor fan 631 is effectively used for melting frost, and the defrosting of the outdoor heat exchanger 73 proceeds efficiently. For this reason, the defrosting / heating operation time can be shortened, and no residual frost is generated by the defrosting / heating operation even at a low outside air temperature.

また、除霜運転を最長の除霜運転時間に達するまで行っても室外熱交換器73の温度が所定値に達しない場合に四方弁72を切換えて逆サイクル除霜運転を行う。これにより、暖房サイクルでのホットガスバイパス除霜で融解し切れなかった室外熱交換器73の冷媒回路出口(冷房時の室外熱交換器入口)付近の残霜も、逆サイクル除霜運転を行うことにより、圧縮機75からの高温冷媒で融解させることができる。   If the temperature of the outdoor heat exchanger 73 does not reach a predetermined value even if the defrosting operation is performed until the longest defrosting operation time is reached, the reverse cycle defrosting operation is performed by switching the four-way valve 72. Thereby, the reverse frost defrosting operation is also performed on the residual frost in the vicinity of the refrigerant circuit outlet (outdoor heat exchanger inlet during cooling) of the outdoor heat exchanger 73 that was not completely melted by the hot gas bypass defrosting in the heating cycle. Thus, the high-temperature refrigerant from the compressor 75 can be melted.

このように、設置条件や、気象条件の悪化で通常の除霜・暖房運転では残霜が発生する場合でも、残霜無しの完全な除霜運転を行うことができる。このため、室内の暖房ができる設置条件や気象条件の範囲を広くすることができる。   Thus, even when residual frost is generated in normal defrosting / heating operation due to deterioration of installation conditions and weather conditions, complete defrosting operation without residual frost can be performed. For this reason, the range of the installation conditions and weather conditions which can be heated indoors can be widened.

次に、本実施形態による暖房の立上がり特性について、図8を参照しながら説明する。図8は図1の空気調和機の暖房の立上り運転時の室温変化を示す特性図である。ここでは、寒い朝を想定し、室温、外気温が共に−5℃の状態からスタートさせた。   Next, the rising characteristics of heating according to the present embodiment will be described with reference to FIG. FIG. 8 is a characteristic diagram showing a change in room temperature during the start-up operation of the air conditioner of FIG. Here, assuming a cold morning, both the room temperature and the outside temperature were started at −5 ° C.

図8の特性に示すように、本実施形態による暖房運転と除霜・暖房運転とによる方式では除霜の運転時間が約2分と短く(図8で室内温度が低下する横軸の経過時間)、また、除霜・暖房運転中も室外熱交換器の一部は蒸発器として作用して室内の暖房をしているため、室内温度の低下も約3℃程度に抑えられ、快適性が確保して暖房が継続される。また、室内温度の20℃までの到達時間は80分と短い。   As shown in the characteristics of FIG. 8, the defrosting operation time is as short as about 2 minutes in the heating operation and the defrosting / heating operation method according to the present embodiment (the elapsed time on the horizontal axis at which the room temperature decreases in FIG. 8). ) In addition, since a part of the outdoor heat exchanger acts as an evaporator to heat the room during defrosting and heating operations, the indoor temperature can be reduced to about 3 ° C. Secure and continue heating. Moreover, the arrival time to 20 degreeC of room temperature is as short as 80 minutes.

以上説明したように、本発明の実施形態は次のような構成を備えることを特徴とするものである。すなわち、圧縮機、四方弁、室内熱交換器、減圧装置及び室外熱交換器を冷媒配管で連結して冷凍サイクルを構成し、前記室外熱交換器を2つに分けて並列に接続するとともに、前記2つに分けられた各室外熱交換器の冷媒回路の暖房運転時入口側に主回路開閉弁を設け、前記圧縮機の吐出側と前記2つに分けられた各室外熱交換器の冷媒回路の暖房運転時入口側とを連結するホットガスバイパス回路を設けるとともに、ホットガスバイパス回路にバイパス開閉弁を設け、運転を制御する制御装置を備えた空気調和機において、前記室外熱交換器は、その冷媒回路を上下に2つに分けて、下側熱交換器とこの下側熱交換器より面積の大きい上側熱交換器と、この熱交換器の中にホットパイプを組み込んだ構成とし、前記制御装置は、暖房運転中に除霜を開始する場合に、前記主回路開閉弁及び前記バイパス開閉弁を逆に開閉制御して、前記上側熱交換器を除霜しつつ前記下側熱交換器で暖房する除霜・暖房運転をした後に、前記下側熱交換器を除霜しつつ前記上側熱交換器で暖房する除霜・暖房運転をし、この除霜・暖房運転の終了後に暖房運転に復帰するように制御することにあり、概して云えば、この制御装置は、上側熱交換器と下側熱交換器の各々の中にホットパイプを組み込んで、暖房運転中に除霜しつつ暖房運転を行うように制御することにある。   As described above, the embodiment of the present invention is characterized by having the following configuration. That is, a compressor, a four-way valve, an indoor heat exchanger, a decompressor and an outdoor heat exchanger are connected by refrigerant piping to form a refrigeration cycle, and the outdoor heat exchanger is divided into two and connected in parallel. A main circuit on-off valve is provided on the inlet side of the refrigerant circuit of each of the outdoor heat exchangers divided into two during heating operation, and the refrigerant of each of the outdoor heat exchangers divided into the discharge side of the compressor and the two In the air conditioner including a hot gas bypass circuit that connects the inlet side of the circuit during heating operation, a bypass opening / closing valve in the hot gas bypass circuit, and a control device that controls the operation, the outdoor heat exchanger includes: The refrigerant circuit is divided into two upper and lower parts, a lower heat exchanger, an upper heat exchanger having a larger area than the lower heat exchanger, and a hot pipe incorporated in the heat exchanger, The control device is for heating operation. When the defrosting is started, the main circuit on-off valve and the bypass on-off valve are controlled to open / close in reverse, and the upper heat exchanger is defrosted and heated by the lower heat exchanger. After the operation, the defrosting / heating operation for heating the upper heat exchanger while defrosting the lower heat exchanger is performed, and control is performed so as to return to the heating operation after the completion of the defrosting / heating operation. In particular, generally speaking, the control device incorporates a hot pipe in each of the upper heat exchanger and the lower heat exchanger, and controls to perform the heating operation while defrosting during the heating operation. There is.

本発明の実施形態に係る空気調和機の基本的な構成図である。1 is a basic configuration diagram of an air conditioner according to an embodiment of the present invention. 本発明の実施形態に係る空気調和機における冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle in the air conditioner which concerns on embodiment of this invention. 本実施形態に係る空気調和機の冷房運転時の冷媒の流れを示す冷凍サイクル図である。It is a refrigeration cycle figure which shows the flow of the refrigerant | coolant at the time of air_conditionaing | cooling operation of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の暖房運転時の冷媒の流れを示す冷凍サイクル図である。It is a refrigerating cycle figure which shows the flow of the refrigerant | coolant at the time of the heating operation of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の室外熱交換器の上部を除霜する時の冷媒の流れを示す冷凍サイクル図である。It is a refrigerating cycle figure which shows the flow of the refrigerant | coolant when defrosting the upper part of the outdoor heat exchanger of the air conditioner which concerns on this embodiment. 本実施形態に係る空気調和機の室外熱交換器の下部を除霜する時の冷媒の流れを示す冷凍サイクル図である。It is a refrigeration cycle figure which shows the flow of the refrigerant | coolant when defrosting the lower part of the outdoor heat exchanger of the air conditioner which concerns on this embodiment. 空気調和機における除霜時の室外空気の変化を示す湿り空気線図である。It is a moist air diagram which shows the change of the outdoor air at the time of defrosting in an air conditioner. 本発明の実施形態に係る空気調和機の暖房の立上り運転時の室温変化を示す特性図である。It is a characteristic view which shows the room temperature change at the time of start-up operation of the air conditioner according to the embodiment of the present invention.

符号の説明Explanation of symbols

1…空気調和機、2…室内機、5…リモコン、6…室外機、8…接続配管、10…制御装置、33…室内熱交換器、72…四方弁、73…室外熱交換器、74…減圧装置、75…圧縮機、76…アキュムレータ、311…室内ファン、313…室内送風モータ、631…室外ファン、633…室外送風モータ、710…吸込配管、711…吐出配管、712…利用側ガス管、713…液管、714…熱源側ガス管、715…ホットガスバイパス管、713a…上側ホットパイプ、713b…下側ホットパイプ、713c…ホットパイプ、713d…上側主回路開閉弁、713e…下側主回路開閉弁、715a…上側バイパス開閉弁、715b…下側バイパス開閉弁、716a…上側バイパス管、716b…下側バイパス管、731…上側熱交換器、731a…第1上側冷媒回路、731b…第2上側冷媒回路、731c…第3上側冷媒回路、732…下側熱交換器、732a…第1下側冷媒回路、732b…第2下側冷媒回路、811a…冷媒温検知センサ、811b…冷媒温検知センサ、812…冷媒温検知センサ   DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Indoor unit, 5 ... Remote control, 6 ... Outdoor unit, 8 ... Connection piping, 10 ... Control apparatus, 33 ... Indoor heat exchanger, 72 ... Four-way valve, 73 ... Outdoor heat exchanger, 74 DESCRIPTION OF SYMBOLS ... Pressure reducing device, 75 ... Compressor, 76 ... Accumulator, 311 ... Indoor fan, 313 ... Indoor fan motor, 631 ... Outdoor fan, 633 ... Outdoor fan motor, 710 ... Suction pipe, 711 ... Discharge pipe, 712 ... User side gas Pipe, 713 ... Liquid pipe, 714 ... Heat source side gas pipe, 715 ... Hot gas bypass pipe, 713a ... Upper hot pipe, 713b ... Lower hot pipe, 713c ... Hot pipe, 713d ... Upper main circuit on / off valve, 713e ... Lower Side main circuit opening / closing valve, 715a ... Upper bypass opening / closing valve, 715b ... Lower bypass opening / closing valve, 716a ... Upper bypass pipe, 716b ... Lower bypass pipe, 731 ... Upper heat exchange 731a ... first upper refrigerant circuit, 731b ... second upper refrigerant circuit, 731c ... third upper refrigerant circuit, 732 ... lower heat exchanger, 732a ... first lower refrigerant circuit, 732b ... second lower refrigerant. Circuit, 811a ... Refrigerant temperature detection sensor, 811b ... Refrigerant temperature detection sensor, 812 ... Refrigerant temperature detection sensor

Claims (8)

圧縮機、四方弁、室内熱交換器、減圧装置及び室外熱交換器を冷媒配管で連結して冷凍サイクルを形成し、
前記室外熱交換器は、上側室外熱交換器と、前記上側熱交換器の下方に位置する下側室外熱交換器と、前記上側室外熱交換器と前記下側室外熱交換器との間に位置し、且つ、風下列の伝熱管を有するホットパイプ用熱交換器と、からなり、
前記室内熱交換器と前記減圧装置とを前記ホットパイプ用熱交換器を介して接続するホットパイプと、
前記上側室外熱交換器及び前記下側室外熱交換器の冷媒回路の暖房運転時入口側に接続された主回路開閉機構と、
前記圧縮機の吐出側と、前記上側室外熱交換器及び前記下側室外熱交換器の冷媒回路の暖房運転時入口側と、を連結し、バイパス開閉弁を有するホットガスバイパス回路と、
各構成要素の運転を制御する制御装置と、を設け、
前記制御装置は、通常の暖房運転中に除霜を開始する場合、前記主回路開閉機構及び前記バイパス開閉弁を通常の暖房運転時とは逆に開閉制御して、前記上側室外熱交換器を除霜しつつ前記下側室外熱交換器で暖房する除霜・暖房運転をした後に、前記下側室外熱交換器を除霜しつつ前記上側室外熱交換器で暖房する除霜・暖房運転を行うように制御し、さらに、前記上側室外熱交換器及び前記下側室外熱交換器の除霜・暖房運転の終了後に前記通常の暖房運転に復帰するように制御する
ことを特徴とする空気調和機。
Compressor, four-way valve, indoor heat exchanger, decompression device and outdoor heat exchanger are connected by refrigerant piping to form a refrigeration cycle,
The outdoor heat exchanger includes an upper outdoor heat exchanger, a lower outdoor heat exchanger positioned below the upper heat exchanger, and the upper outdoor heat exchanger and the lower outdoor heat exchanger. And a heat exchanger for a hot pipe having a heat transfer tube in a leeward row,
A hot pipe that connects the indoor heat exchanger and the decompression device via the hot pipe heat exchanger;
A main circuit opening / closing mechanism connected to the inlet side during heating operation of the refrigerant circuit of the upper outdoor heat exchanger and the lower outdoor heat exchanger;
A hot gas bypass circuit that connects a discharge side of the compressor and an inlet side of the refrigerant circuit of the upper outdoor heat exchanger and the lower outdoor heat exchanger at the time of heating operation, and has a bypass on-off valve ;
A control device for controlling the operation of each component, and
When starting the defrosting during the normal heating operation, the control device controls the opening and closing of the main circuit opening and closing mechanism and the bypass on-off valve in the opposite direction to that during the normal heating operation, so that the upper outdoor heat exchanger is controlled. After defrosting / heating operation for heating with the lower outdoor heat exchanger while defrosting, defrosting / heating operation for heating with the upper outdoor heat exchanger while defrosting the lower outdoor heat exchanger Air conditioning, wherein the air conditioning is controlled to return to the normal heating operation after the defrosting / heating operation of the upper outdoor heat exchanger and the lower outdoor heat exchanger is completed. Machine.
請求項1において、
前記室内熱交換器からのホットパイプは、その一方が前記上側室外熱交換器と前記下側室外熱交換器の間に組み込まれ、その他方が前記下側室外熱交換器の下方部に組み込まれる
ことを特徴とする空気調和機。
In claim 1,
One of the hot pipes from the indoor heat exchanger is incorporated between the upper outdoor heat exchanger and the lower outdoor heat exchanger, and the other is incorporated in the lower part of the lower outdoor heat exchanger. An air conditioner characterized by that.
請求項1または2において、
前記上側室外熱交換器は前記下側室外熱交換器より面積が大きく、
前記制御装置は、前記上側室外熱交換器を除霜しつつ前記下側室外熱交換器で暖房する除霜・暖房運転の時間よりも、前記下側室外熱交換器を除霜しつつ前記上側室外熱交換器で暖房する除霜・暖房運転の時間を長くするように制御する
ことを特徴とする空気調和機。
In claim 1 or 2,
The upper outdoor heat exchanger has a larger area than the lower outdoor heat exchanger,
The control device is configured to defrost the lower outdoor heat exchanger while defrosting the lower outdoor heat exchanger, and to defrost the lower outdoor heat exchanger from the time of defrosting / heating operation for heating the lower outdoor heat exchanger while defrosting the upper outdoor heat exchanger. An air conditioner that is controlled so as to lengthen the time of defrosting and heating operation that is heated by an outdoor heat exchanger.
請求項1または2において、
鋼鉄製外殻をもつ圧縮機、送風フィンの付設された室外熱交換器を備え、外気温が0℃以上のときの、除霜・暖房運転終了後の一定期間だけ除霜運転できないように設定された除霜禁止期間を以下の式で示す数値以下とすることを特徴とする空気調和機。
除霜禁止期間(単位:分)=8×圧縮機の質量(単位:kg)/室外熱交換器の吸熱量(単位:kW)
In claim 1 or 2,
A compressor with a steel outer shell and an outdoor heat exchanger with air blowing fins are set so that the defrosting operation is not possible for a certain period after the defrosting / heating operation when the outside air temperature is 0 ° C or higher. An air conditioner characterized in that the defrosting prohibition period made is equal to or less than a numerical value represented by the following expression.
Defrosting prohibition period (unit: minute) = 8 × mass of compressor (unit: kg) / heat absorption amount of outdoor heat exchanger (unit: kW)
請求項4において、
前記除霜禁止期間を20分〜5分とすることを特徴とする空気調和機。
In claim 4,
The air conditioner characterized in that the defrosting prohibition period is 20 minutes to 5 minutes.
請求項1または2において、
前記制御装置は、外気温の低下に基づいて、前記圧縮機の吐出温度を高温側にシフトして制御するとともに、除霜・暖房運転終了後の一定期間だけ除霜運転できないように設定された除霜禁止期間を短縮するように制御する
ことを特徴とする空気調和機。
In claim 1 or 2,
The control device is set so that the discharge temperature of the compressor is shifted to a high temperature side based on a decrease in the outside air temperature, and the defrosting operation cannot be performed for a certain period after the completion of the defrosting / heating operation. An air conditioner that is controlled to shorten the defrosting prohibition period.
請求項1または2において、
前記制御装置は、前記除霜・暖房運転時に、通常の暖房運転時よりも室外送風装置の回転数を低下させ、さらに、外気温が所定値より低い場合の除霜・暖房運転時に前記室外送風装置の運転を停止するように制御する
ことを特徴とする空気調和機。
In claim 1 or 2,
The control device reduces the rotational speed of the outdoor air blower during the defrosting / heating operation than during normal heating operation, and further, the outdoor air blowing during the defrosting / heating operation when the outside air temperature is lower than a predetermined value. An air conditioner that is controlled to stop the operation of the apparatus.
請求項1または2において、
前記制御装置は、前記除霜・暖房運転を実施しても前記室外熱交換器の温度が所定値に達しない場合に、前記四方弁を切換え、逆サイクル除霜運転を行うように制御する
ことを特徴とする空気調和機。
In claim 1 or 2,
The control device controls to switch the four-way valve and perform a reverse cycle defrosting operation when the temperature of the outdoor heat exchanger does not reach a predetermined value even when the defrosting / heating operation is performed. Air conditioner characterized by.
JP2008131853A 2008-05-20 2008-05-20 Air conditioner Active JP5160303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131853A JP5160303B2 (en) 2008-05-20 2008-05-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131853A JP5160303B2 (en) 2008-05-20 2008-05-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2009281607A JP2009281607A (en) 2009-12-03
JP5160303B2 true JP5160303B2 (en) 2013-03-13

Family

ID=41452250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131853A Active JP5160303B2 (en) 2008-05-20 2008-05-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP5160303B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600082B1 (en) 2010-07-29 2018-09-26 Mitsubishi Electric Corporation Heat pump
CN104813123B (en) 2012-11-29 2017-09-12 三菱电机株式会社 Conditioner
US10161652B2 (en) 2014-04-04 2018-12-25 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016046927A1 (en) * 2014-09-25 2016-03-31 三菱電機株式会社 Refrigeration cycle device and air-conditioning device
US10508826B2 (en) * 2015-01-13 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10520233B2 (en) 2015-01-13 2019-12-31 Mitsubishi Electric Corporation Air-conditioning apparatus for a plurality of parallel outdoor units
JP6161741B2 (en) * 2016-01-20 2017-07-12 三菱電機株式会社 Air conditioner
CN110617643B (en) * 2018-07-08 2020-08-25 张宸浩 Self-defrosting type energy-saving environment-friendly air conditioning unit
CN113566465A (en) * 2021-06-30 2021-10-29 重庆海尔空调器有限公司 Defrosting structure and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338870A (en) * 1986-07-31 1988-02-19 佐藤 修康 Air cooler with two kind of refrigerant flow path
JPS6419873U (en) * 1987-07-27 1989-01-31
JP4114424B2 (en) * 2002-07-29 2008-07-09 松下電器産業株式会社 Ultrasonic transducer

Also Published As

Publication number Publication date
JP2009281607A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4272224B2 (en) Air conditioner
JP4990221B2 (en) Air conditioner
JP5160303B2 (en) Air conditioner
JP5619295B2 (en) Refrigeration cycle equipment
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
JP5213817B2 (en) Air conditioner
EP2211127A1 (en) Heat pump type air conditioner
WO2011092802A1 (en) Heat pump device and refrigerant bypass method
JP2012013363A (en) Air conditioner
JP4874223B2 (en) Air conditioner
JP2016031182A (en) Air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
CN108362027B (en) heat pump system and control method thereof
JP5882152B2 (en) Air conditioner
JP2010271011A (en) Air conditioner
JP6285172B2 (en) Air conditioner outdoor unit
CN101307964B (en) Refrigeration cycle apparatus
JP2011080733A (en) Air conditioner
JP6771302B2 (en) Air conditioner
JP2011075207A (en) Air conditioner
JP5641636B2 (en) Facility horticulture air heat source heat pump system and operation method thereof
JP2007127302A (en) Refrigeration unit
KR20070039282A (en) Heat pump system for vehicle
CN113266965A (en) Air conditioner
KR100794815B1 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5160303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250