JP5882152B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP5882152B2 JP5882152B2 JP2012156072A JP2012156072A JP5882152B2 JP 5882152 B2 JP5882152 B2 JP 5882152B2 JP 2012156072 A JP2012156072 A JP 2012156072A JP 2012156072 A JP2012156072 A JP 2012156072A JP 5882152 B2 JP5882152 B2 JP 5882152B2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- defrosting
- refrigerant
- outdoor
- outdoor heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Air Conditioning Control Device (AREA)
Description
本発明は室外熱交換器の除霜と室内の暖房とを同時に行う空気調和機に関する。 The present invention relates to an air conditioner that simultaneously performs defrosting of an outdoor heat exchanger and room heating.
本技術分野の背景技術として、特許文献1は、「室外熱交換器を複数に分けて並列に接続し、並列接続された各室外熱交換器の冷媒回路に対応して暖房運転入口側に主回路開閉弁を設け、圧縮機の吐出側と各室外熱交換器の冷媒回路の暖房運転入口側と連結するホットガスバイパス回路を設け、ホットガスバイパス回路に各室外熱交換器の冷媒回路に対応してバイパス開閉弁を設け、開閉弁と冷凍サイクルの各構成要素を制御する制御装置を設けた空気調和機であって、制御装置は、暖房運転中に室外熱交換器の除霜を開始する場合、主回路開閉弁およびバイパス開閉弁の一部を開閉制御し、複数の室外熱交換器の内の一部を除霜しつつ他の室外熱交換器で暖房する除霜・暖房運転を行い、除霜・暖房運転を複数の室外熱交換器の全てについて繰り返した後に、暖房運転に復帰するように制御する」ことを開示する(請求項1参照)。 As background art of this technical field, Patent Document 1 states that “the outdoor heat exchangers are divided into a plurality of units and connected in parallel, and the heating operation inlet side is mainly connected to the refrigerant circuit of each of the outdoor heat exchangers connected in parallel. A circuit open / close valve is provided, a hot gas bypass circuit connected to the discharge side of the compressor and the heating operation inlet side of the refrigerant circuit of each outdoor heat exchanger is provided, and the hot gas bypass circuit corresponds to the refrigerant circuit of each outdoor heat exchanger The air conditioner is provided with a bypass on-off valve and a control device that controls each component of the on-off valve and the refrigeration cycle, and the control device starts defrosting of the outdoor heat exchanger during heating operation In this case, a part of the main circuit on / off valve and the bypass on / off valve are controlled to be opened / closed, and a part of the plurality of outdoor heat exchangers is defrosted and heated by other outdoor heat exchangers. , Defrosting / heating operation for all outdoor heat exchangers After repeating controls to return to the heating operation "that discloses (see claim 1).
ここで、複数の熱交換器のうち除霜されていない熱交換器は、着霜した霜により熱交換能力が低下するため、暖房能力も低下する。一方、複数の熱交換器のうち除霜された熱交換器は、着霜した霜が除かれて熱交換能力が向上するため、暖房能力も向上する。 Here, among heat exchangers that are not defrosted among the plurality of heat exchangers, the heat exchange capability is reduced due to the formation of frost, and thus the heating capability is also reduced. On the other hand, the defrosted heat exchanger among the plurality of heat exchangers is improved in heating capacity because frost formed is removed and heat exchange capacity is improved.
特許文献1の空気調和機では、除霜・暖房運転される並列に接続された複数の室外熱交換器は等しい大きさで構成される。このような特許文献1の空気調和機で除霜・暖房運転する場合、最初の熱交換器を除霜運転している間は他の着霜している熱交換器で暖房するために、暖房能力が低下する。一方、次の熱交換器を除霜運転している間は他の熱交換器で暖房することになるが、最初の熱交換器は除霜されているため、最初の熱交換器を除霜運転しているときよりも熱交換能力が向上し、暖房能力が向上する。さらに、最後の熱交換器を除霜運転している間も他の熱交換器で暖房することになるが、他の熱交換器は全て除霜されているため、熱交換能力がさらに向上し、最初の熱交換器を除霜運転しているときよりも暖房能力が大きく向上する。 In the air conditioner of Patent Document 1, a plurality of outdoor heat exchangers connected in parallel for defrosting / heating operation are configured to have the same size. When performing the defrosting / heating operation with such an air conditioner of Patent Document 1, while performing the defrosting operation on the first heat exchanger, heating is performed with the other frosting heat exchanger. Ability is reduced. On the other hand, while the next heat exchanger is defrosting, it is heated by another heat exchanger, but since the first heat exchanger is defrosted, the first heat exchanger is defrosted. The heat exchange capacity is improved and the heating capacity is improved as compared to when operating. Furthermore, while the last heat exchanger is being defrosted, it is heated by another heat exchanger. However, since all other heat exchangers are defrosted, the heat exchange capacity is further improved. The heating capacity is greatly improved compared to when the first heat exchanger is defrosting.
つまり、特許文献1の空気調和機で除霜・暖房運転する場合、除霜・暖房運転中の暖房能力が大きく変動し、特に、最初の熱交換器を除霜している間は暖房能力が低くなり空気調和機利用者の不快感が増大する。 That is, when performing the defrosting / heating operation with the air conditioner of Patent Document 1, the heating capacity during the defrosting / heating operation greatly fluctuates, and in particular, the heating capacity is reduced while the first heat exchanger is defrosted. It becomes low and the discomfort of the air conditioner user increases.
本発明は、除霜・暖房運転中においても、暖房能力の変動を抑制し、空気調和機利用者の不快感を低減することを課題とする。 An object of the present invention is to suppress the fluctuation of the heating capacity even during the defrosting / heating operation and to reduce the discomfort of the air conditioner user.
本発明の空気調和機は、圧縮機、四方弁、室内熱交換器、減圧装置、並列に接続され大きさの異なる複数の室外熱交換器を順次冷媒配管で連結した冷凍サイクルと、冷凍サイクルにおける圧縮機の吐出側と四方弁との間で分岐して、減圧装置と複数の室外熱交換器それぞれの暖房運転時入口側との間に接続されたホットガスバイパス回路と、を備える空気調和機であって、冷凍サイクルにおいて、冷媒を、圧縮機、四方弁、室内熱交換器、減圧装置、室外熱交換器、圧縮機の順に循環させる暖房運転モードと、バイパス回路において、冷媒を、圧縮機、所定の室外熱交換器、圧縮機の順に循環させる除霜運転、及び、冷凍サイクルにおいて、冷媒を、圧縮機、四方弁、室内熱交換器、減圧装置、所定の前記室外機以外の室外熱交換器、圧縮機の順に循環させる暖房運転、を行う除霜・暖房モードと、を有し、除霜・暖房運転モードにおいて、常に小さい室外熱交換器から順に除霜運転を実施する。
An air conditioner according to the present invention includes a compressor, a four-way valve, an indoor heat exchanger, a decompression device, a refrigeration cycle in which a plurality of outdoor heat exchangers connected in parallel and different sizes are sequentially connected by a refrigerant pipe, and a refrigeration cycle An air conditioner comprising: a hot gas bypass circuit that branches between the discharge side of the compressor and the four-way valve and is connected between the decompression device and the inlet side of each of the plurality of outdoor heat exchangers during heating operation In the refrigeration cycle, in the heating operation mode in which the refrigerant is circulated in the order of the compressor, the four-way valve, the indoor heat exchanger, the pressure reducing device, the outdoor heat exchanger, and the compressor, and in the bypass circuit, the refrigerant is supplied to the compressor. In the defrosting operation in which the predetermined outdoor heat exchanger and the compressor are circulated in the order, and the refrigeration cycle, the refrigerant is used as the outdoor heat other than the compressor, the four-way valve, the indoor heat exchanger, the decompression device, and the predetermined outdoor unit. Exchanger, compressor A heating operation of circulating the order, and the defrosting and heating mode for performing the in defrosting, the heating operation mode, performing the defrosting operation from the always smaller outdoor heat exchanger in this order.
本発明によれば、並列に接続され大きさの異なる複数の室外熱交換器を備え、除霜・暖房運転モードにおいて小さい室外熱交換器から順に除霜運転を実施することにより、室外熱交換器を順に除霜運転する間、暖房運転する室外熱交換器(除霜運転する室外熱交換器以外の室外熱交換器)の大きさを徐々に減少させるが熱交換能力は徐々に増加する。従って、除霜・暖房運転中においても、暖房能力の変動を抑制することができ、特に、暖房能力が大きく低下する最初の熱交換器を除霜している間も暖房能力を維持することができるので、空気調和機利用者の不快感を低減するができる。 According to the present invention, the outdoor heat exchanger includes a plurality of outdoor heat exchangers connected in parallel and having different sizes, and the defrosting operation is sequentially performed from the small outdoor heat exchanger in the defrosting / heating operation mode. While the defrosting operation is sequentially performed, the size of the outdoor heat exchanger that performs the heating operation (the outdoor heat exchanger other than the outdoor heat exchanger that performs the defrosting operation) is gradually reduced, but the heat exchange capacity is gradually increased. Therefore, even during the defrosting / heating operation, fluctuations in the heating capacity can be suppressed, and in particular, the heating capacity can be maintained even while the first heat exchanger in which the heating capacity is greatly reduced is defrosted. As a result, the discomfort of the air conditioner user can be reduced.
以下、実施例について図を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
(実施例1)まず、空気調和機の全体構成を、図1を用いて説明する。図1は空気調和機の構成図である。 (Embodiment 1) First, the overall structure of an air conditioner will be described with reference to FIG. FIG. 1 is a configuration diagram of an air conditioner.
空気調和機1は、冷凍サイクルと、送風装置と、これらを制御する制御系とを備える。なお、空気調和機1は、室内機2と室外機6とを冷媒配管8、電気配線、信号配線などを介して接続されたセパレート形空気調和機である。 The air conditioner 1 includes a refrigeration cycle, a blower, and a control system that controls them. The air conditioner 1 is a separate type air conditioner in which the indoor unit 2 and the outdoor unit 6 are connected via a refrigerant pipe 8, electric wiring, signal wiring, and the like.
冷凍サイクルは、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713a、713b、713c、713d、減圧装置74、室内熱交換器33、バイパス開閉弁715a、715b、715c、715dを備え、これらを冷媒配管を介して接続することにより構成される。冷媒配管は、吸込配管710、吐出配管711、利用側ガス管712、液管713、熱源側ガス管714、ホットガスバイパス管715、主回路・バイパス共用管716a、716b、716cおよび716dなどで構成される。 The refrigeration cycle includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on / off valves 713a, 713b, 713c, 713d, a decompression device 74, an indoor heat exchanger 33, and bypass on / off valves 715a, 715b, 715c, 715d. And connecting them through refrigerant piping. The refrigerant pipe is composed of a suction pipe 710, a discharge pipe 711, a use side gas pipe 712, a liquid pipe 713, a heat source side gas pipe 714, a hot gas bypass pipe 715, a main circuit / bypass common pipe 716a, 716b, 716c and 716d, and the like. Is done.
室内熱交換器33は室内機2に収納され、圧縮機75、四方弁72、室外熱交換器73、主回路開閉弁713a、713b、713c、713d、減圧装置74、バイパス開閉弁715a、715b、715c、715dは、室外機6に収納される。 The indoor heat exchanger 33 is housed in the indoor unit 2, and includes a compressor 75, a four-way valve 72, an outdoor heat exchanger 73, main circuit on / off valves 713a, 713b, 713c, 713d, a pressure reducing device 74, bypass on / off valves 715a, 715b, 715c and 715d are accommodated in the outdoor unit 6.
四方弁72は冷媒流路切換弁の一例である。四方弁72は、冷房サイクルと暖房サイクルとを切換えるものである。ここで、冷房サイクルは、圧縮機75から吐出配管711を介して吐出された冷媒を室外熱交換器73へ導き、室内熱交換器33からの冷媒を圧縮機75に戻すサイクルである。暖房サイクルは、圧縮機75から吐出された冷媒を室内熱交換器33へ導き、室外熱交換器73からの冷媒を吸込配管710及びアキュムレータ76を介して圧縮機75に戻すサイクルである。 The four-way valve 72 is an example of a refrigerant flow path switching valve. The four-way valve 72 switches between a cooling cycle and a heating cycle. Here, the cooling cycle is a cycle in which the refrigerant discharged from the compressor 75 via the discharge pipe 711 is guided to the outdoor heat exchanger 73 and the refrigerant from the indoor heat exchanger 33 is returned to the compressor 75. The heating cycle is a cycle in which the refrigerant discharged from the compressor 75 is guided to the indoor heat exchanger 33 and the refrigerant from the outdoor heat exchanger 73 is returned to the compressor 75 via the suction pipe 710 and the accumulator 76.
従って、室外熱交換器73は、冷房サイクルの冷房運転時に高圧側熱交換器(凝縮器)を構成し、暖房サイクルの暖房運転時に低圧側熱交換器(蒸発器)を構成する。また、室内熱交換器33は、暖房サイクルの暖房運転時に高圧側熱交換器(凝縮器)を構成し、冷房サイクルの冷房運転時に低圧側熱交換器(蒸発器)を構成する。 Accordingly, the outdoor heat exchanger 73 constitutes a high-pressure side heat exchanger (condenser) during the cooling operation of the cooling cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the heating operation of the heating cycle. The indoor heat exchanger 33 constitutes a high-pressure side heat exchanger (condenser) during the heating operation of the heating cycle, and constitutes a low-pressure side heat exchanger (evaporator) during the cooling operation of the cooling cycle.
室外熱交換器73は、冷媒配管と熱交換フィンとで構成され、冷媒配管で形成される冷媒回路を複数に分割して並列に接続される。この冷媒回路は複数に区分して構成される。室外熱交換器73は、第1熱交換器731、第2熱交換器732、第3熱交換器733及び第4熱交換器734とから構成される。前記複数に区分された冷媒回路の室外熱交換器の構成は、各々が分離した構造(第1〜4熱交換器が独立した構造)でも一体構造でもよい。 The outdoor heat exchanger 73 includes a refrigerant pipe and a heat exchange fin, and a refrigerant circuit formed by the refrigerant pipe is divided into a plurality of pieces and connected in parallel. This refrigerant circuit is divided into a plurality of parts. The outdoor heat exchanger 73 includes a first heat exchanger 731, a second heat exchanger 732, a third heat exchanger 733, and a fourth heat exchanger 734. The configuration of the outdoor heat exchanger of the refrigerant circuit divided into the plurality may be a structure in which each is separated (a structure in which the first to fourth heat exchangers are independent) or an integrated structure.
室外熱交換器731、732、733、734の各々は、主回路開閉弁713a、713b、713c、713dを介して、減圧装置74に接続される。また、熱交換器731、732、733、734と主回路開閉弁713a、713b、713c、713dとの間から分岐し、バイパス開閉弁715a、715b、715cおよび715dを介して圧縮機75の吐出管711にホットガスバイパス管715で接続されるホットガスバイパス回路が設けられる。 Each of the outdoor heat exchangers 731, 732, 733, 734 is connected to the decompression device 74 via main circuit on-off valves 713a, 713b, 713c, 713d. Further, the discharge pipe of the compressor 75 branches from between the heat exchangers 731, 732, 733, 734 and the main circuit on-off valves 713a, 713b, 713c, 713d, and passes through the bypass on-off valves 715a, 715b, 715c, and 715d. 711 is provided with a hot gas bypass circuit connected by a hot gas bypass pipe 715.
減圧装置74は、室外熱交換器73と室内熱交換器33との間に設けられ、冷房サイクルの冷房時に室外熱交換器73からの冷媒を減圧し、暖房サイクルの暖房運転時に室内熱交換器33からの冷媒を減圧する。なお、本実施例では減圧装置74は絞り開度が制御可能な膨張弁、例えば電動式などで構成される。 The decompression device 74 is provided between the outdoor heat exchanger 73 and the indoor heat exchanger 33, depressurizes the refrigerant from the outdoor heat exchanger 73 during cooling of the cooling cycle, and the indoor heat exchanger during heating operation of the heating cycle. The refrigerant from 33 is depressurized. In the present embodiment, the pressure reducing device 74 is constituted by an expansion valve whose throttle opening can be controlled, for example, an electric type.
主回路開閉弁713a、713b、713c、713dとバイパス開閉弁715a、715b、715c、715dは電磁式開閉弁で構成され、冷媒の主回路及びホットガスバイパス回路を開閉する。 The main circuit on / off valves 713a, 713b, 713c, 713d and the bypass on / off valves 715a, 715b, 715c, 715d are composed of electromagnetic on / off valves, and open / close the refrigerant main circuit and the hot gas bypass circuit.
空気調和機1における送風装置は、室外機6に収納された室外送風装置63と、室内機2に収納された室内送風装置31とから構成される。室外送風装置は、室外熱交換器73に室外空気を流通させる室外ファン631と、室外ファン631を駆動する室外送風モーター633とを備える。室内送風装置は、室内熱交換器33に室内の空気を流通させる室内ファン311と、室内ファン311を駆動する室内送風モーター313とを備える。本実施例では、室外ファン631として軸流ファンを使用し、室内ファン311として横流ファンを用いる。 The blower in the air conditioner 1 includes an outdoor blower 63 accommodated in the outdoor unit 6 and an indoor blower 31 accommodated in the indoor unit 2. The outdoor air blower includes an outdoor fan 631 that distributes outdoor air to the outdoor heat exchanger 73 and an outdoor air blower motor 633 that drives the outdoor fan 631. The indoor air blower includes an indoor fan 311 that causes indoor air to flow through the indoor heat exchanger 33, and an indoor air blower motor 313 that drives the indoor fan 311. In this embodiment, an axial fan is used as the outdoor fan 631 and a cross-flow fan is used as the indoor fan 311.
空気調和機1における制御系は、冷媒温検知センサー811a、811b、811c、811d、812と制御装置10とを備えて構成される。冷媒温検知センサー811a、811b、811c、811d、812は、暖房時の室外熱交換器73の熱交換器731、732、733、734の出口温度を検出する冷媒温検知センサー811a、811b、811c、811dと、逆サイクル除霜時の室外熱交換器73の出口温度を検出する冷媒温検知センサー812とから構成される。 The control system in the air conditioner 1 includes the refrigerant temperature detection sensors 811a, 811b, 811c, 811d, and 812 and the control device 10. Refrigerant temperature detection sensors 811a, 811b, 811c, 811d, and 812 are refrigerant temperature detection sensors 811a, 811b, 811c that detect the outlet temperatures of the heat exchangers 731, 732, 733, and 734 of the outdoor heat exchanger 73 during heating. 811d and a refrigerant temperature detection sensor 812 that detects the outlet temperature of the outdoor heat exchanger 73 during reverse cycle defrosting.
制御装置10は、冷媒温検知センサー811a、811b、811c、811d、812の検出結果や使用者の運転指令に基づいて、圧縮機75、四方弁72、室外送風モーター633、室内送風モーター313、減圧装置74、主回路開閉弁713a、713b、713c、713dとバイパス開閉弁715a、715b、715c、715dなどを制御する。なお、本実施例では、制御装置10は、演算する機能を有する制御装置と、各機器を制御する機能を有する制御装置とを一つで示すが、これらを分けて構成しても良く、又は各機器を制御する機能を有する制御装置がさらに分けて構成しても良い。 Based on the detection results of the refrigerant temperature detection sensors 811a, 811b, 811c, 811d, and 812 and the user's operation command, the control device 10 includes a compressor 75, a four-way valve 72, an outdoor fan motor 633, an indoor fan motor 313, a reduced pressure The device 74, the main circuit on-off valves 713a, 713b, 713c, 713d and the bypass on-off valves 715a, 715b, 715c, 715d are controlled. In the present embodiment, the control device 10 shows a control device having a function to calculate and a control device having a function to control each device, but these may be configured separately, or A control device having a function of controlling each device may be further divided.
次に、空気調和機1の運転動作を図3〜図8を参照しながら説明する。 Next, the operation of the air conditioner 1 will be described with reference to FIGS.
まず、冷房サイクルにおける冷房運転について図3を用いて説明する。図3において空気調和機1の冷房運転をする際には、四方弁72を図3のように切換え、主回路開閉弁713a、713b、713c、713dを開、バイパス開閉弁715a、715b、715c、715dを閉にして冷房運転サイクルを形成すると共に、圧縮機75、室外送風モーター633及び室内送風モーター313を運転する。 First, the cooling operation in the cooling cycle will be described with reference to FIG. 3, when the air conditioner 1 is cooled, the four-way valve 72 is switched as shown in FIG. 3, the main circuit on / off valves 713a, 713b, 713c, 713d are opened, the bypass on / off valves 715a, 715b, 715c, 715d is closed to form a cooling operation cycle, and the compressor 75, the outdoor fan motor 633, and the indoor fan motor 313 are operated.
圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図3の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室外熱交換器73の熱交換器731、732、733、734に入り、室外空気との熱交換で冷却されて凝縮し、液または気液混合の冷媒となる。 The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. Enters the heat exchangers 731, 732, 733, and 734 of the condenser 73, and is cooled and condensed by heat exchange with the outdoor air to become a refrigerant of liquid or gas-liquid mixture.
次いで、冷媒は、主回路開閉弁713a、713b、713c、713dを介して、減圧装置74に入り、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図3で低圧冷媒の流れを示す破線の矢印の方向に流れ、室外機6を出て室内機2に入り、蒸発器となる室内熱交換器33に入り、室内空気と熱交換して室内を冷房し、自身は加熱され、ガス冷媒となって圧縮機75に戻る。 Next, the refrigerant enters the decompression device 74 via the main circuit on-off valves 713a, 713b, 713c, and 713d, expands due to decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 3, exits the outdoor unit 6, enters the indoor unit 2, enters the indoor heat exchanger 33 serving as an evaporator, and The inside of the room is cooled by heat exchange with itself, and is heated to return to the compressor 75 as a gas refrigerant.
次に、暖房サイクルにおける暖房運転について図4を用いて説明する。図4において暖房運転する際には、四方弁72を図4のように切換え、主回路開閉弁713a、713b、713c、713dを開、バイパス開閉弁715a、715b、715c、715dを閉にして暖房運転サイクルを形成すると共に、圧縮機75、室外送風モーター633及び室内送風モーター313を運転する。 Next, the heating operation in the heating cycle will be described with reference to FIG. In the heating operation in FIG. 4, the four-way valve 72 is switched as shown in FIG. 4, the main circuit on / off valves 713a, 713b, 713c, 713d are opened, and the bypass on / off valves 715a, 715b, 715c, 715d are closed. While forming an operation cycle, the compressor 75, the outdoor air blowing motor 633, and the indoor air blowing motor 313 are operated.
圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、図4の実線矢印の方向に流れ、四方弁72を通って凝縮器となる室内熱交換器33に入り、室内空気と熱交換で冷却されて凝縮し、液または気液混合の冷媒となる。 The gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, flows in the direction of the solid line arrow in FIG. It enters into the vessel 33, is cooled and condensed by exchanging heat with room air, and becomes a refrigerant of liquid or gas-liquid mixture.
凝縮して液または気液混合の状態となった冷媒は、室内機2を出て室外機6を介して減圧装置74に流入し、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図4で低圧冷媒の流れを示す破線の矢印の方向に流れ、主回路開閉弁713a、713b、713c、713dを介して、蒸発器となる室外熱交換器73の熱交換器731、732、733、734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。 The refrigerant condensed into the liquid or gas-liquid mixed state exits the indoor unit 2 and flows into the decompression device 74 via the outdoor unit 6 and expands due to the decompression to become a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 4, and the heat of the outdoor heat exchanger 73 serving as an evaporator is passed through the main circuit on-off valves 713a, 713b, 713c, 713d. It enters the exchangers 731, 732, 733, and 734, is heated by exchanging heat with outdoor air, becomes a gas refrigerant, and returns to the compressor 75.
上述した暖房サイクルにおける暖房運転動作を繰り返すことにより、暖房運転が継続される。 By repeating the heating operation in the heating cycle described above, the heating operation is continued.
このような暖房運転時には、室外熱交換器73は室外空気から熱を奪うため低温になり、0℃以下となって伝熱面に着霜することがある。外気の温度が低く、湿度が高い時にこの現象は顕著になり、室外空気の流通面に付着した霜により、室外空気の流通が妨げられて室外ファン631の風量が減少する。室外ファン631の風量が減少すると室外熱交換器73の温度が更に低下し、益々霜が着きやすくなる。このようにして、室外熱交換器73の着霜量は増え続け、空気調和機1が室外空気から汲み上げる熱量が減少し、暖房能力も減少して、室内を十分に暖房できなくなり、暖房の機能が喪失してしまうので、除霜運転が必要になる。 During such a heating operation, the outdoor heat exchanger 73 takes a heat from the outdoor air and becomes low in temperature, and may become 0 ° C. or less and frost on the heat transfer surface. This phenomenon becomes conspicuous when the temperature of the outside air is low and the humidity is high, and the flow of the outdoor air 631 is reduced by the frost adhering to the outdoor air flow surface, thereby reducing the air volume of the outdoor fan 631. When the air volume of the outdoor fan 631 decreases, the temperature of the outdoor heat exchanger 73 further decreases, and frost is more likely to be formed. In this way, the amount of frost formation in the outdoor heat exchanger 73 continues to increase, the amount of heat pumped up from the outdoor air by the air conditioner 1 decreases, the heating capacity also decreases, and the room cannot be sufficiently heated. Will be lost, so defrosting operation is required.
次に、暖房サイクルにおける除霜・暖房運転について図5〜8を用いて説明する。図5は第1熱交換器を、図6は第2熱交換器を、図7は第3熱交換器を、図8は第4熱交換器をそれぞれ除霜する時の冷媒の流れを示す冷凍サイクル図である。 Next, defrosting / heating operation in the heating cycle will be described with reference to FIGS. 5 shows the first heat exchanger, FIG. 6 shows the second heat exchanger, FIG. 7 shows the third heat exchanger, and FIG. 8 shows the refrigerant flow when the fourth heat exchanger is defrosted. It is a refrigeration cycle diagram.
前述のように、暖房運転をしていると、温度が低く湿度が高い日には、室外熱交換器73に霜が付き、暖房能力が低下する。冷媒温検知センサー812が所定の温度を下回り、かつ、暖房サイクルでの暖房運転を所定の時間以上行う場合に、着霜の量が所定の量に達したとみなし、暖房サイクルのまま除霜運転を行う。この除霜運転は、四方弁72を図5のように暖房運転時と同じにして、第1主回路開閉弁713aを閉、第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713dを開、第1バイパス開閉弁715aを開、第2バイパス開閉弁715b・第3バイパス開閉弁715c・第4バイパス開閉弁715dを閉にして、室外熱交換器73の内の第1熱交換器731を凝縮器として機能させると共に第2熱交換器732・第3熱交換器733・第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モーター633を低速運転または停止し、室内送風モーター313は、吹出し温度が所定温度以上を保持できるように運転を制御する。 As described above, during the heating operation, on the day when the temperature is low and the humidity is high, the outdoor heat exchanger 73 is frosted and the heating capacity is reduced. When the refrigerant temperature detection sensor 812 falls below a predetermined temperature and the heating operation in the heating cycle is performed for a predetermined time or more, it is considered that the amount of frost formation has reached the predetermined amount, and the defrosting operation is performed while the heating cycle is performed. I do. In this defrosting operation, the four-way valve 72 is made the same as in the heating operation as shown in FIG. 5, the first main circuit on-off valve 713a is closed, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, 4 The main circuit on-off valve 713d is opened, the first bypass on-off valve 715a is opened, the second bypass on-off valve 715b, the third bypass on-off valve 715c, and the fourth bypass on-off valve 715d are closed, and the inside of the outdoor heat exchanger 73 The first heat exchanger 731 functions as a condenser, and the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 function as an evaporator to perform defrosting and heating simultaneously. Form a frost / heating cycle. At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.
ここで、圧縮機75に吸込まれたガス冷媒は、圧縮機75で圧縮され、高温高圧のガス冷媒となって、吐出管711に吐出され、途中で分岐して、一方の冷媒は四方弁72に入り、他方の冷媒はホットガスバイパス管715に入る。 Here, the gas refrigerant sucked into the compressor 75 is compressed by the compressor 75, becomes a high-temperature and high-pressure gas refrigerant, is discharged to the discharge pipe 711, branches in the middle, and one refrigerant is the four-way valve 72. And the other refrigerant enters the hot gas bypass pipe 715.
四方弁72に入った一方の冷媒は、図5の実線矢印の方向に流れ、室内熱交換器33に入り、室内空気と熱交換し凝縮され、液または気液混合の冷媒となる。この際に室内の暖房が行われる。液または気液混合の冷媒となった冷媒は、室内機2を出て室外機6を介して減圧装置74に流入し、減圧により膨張し、低圧の気液混合の冷媒となる。この気液混合冷媒は、図5で低圧冷媒の流れを示す破線の矢印の方向に流れ、第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第2熱交換器732・第3熱交換器733・第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻る。 One refrigerant that has entered the four-way valve 72 flows in the direction of the solid arrow in FIG. 5, enters the indoor heat exchanger 33, exchanges heat with the indoor air, and is condensed to become a refrigerant of liquid or gas-liquid mixture. At this time, the room is heated. The refrigerant that has become the liquid or gas-liquid mixed refrigerant exits the indoor unit 2 and flows into the decompression device 74 via the outdoor unit 6 and expands due to the decompression, and becomes a low-pressure gas-liquid mixed refrigerant. This gas-liquid mixed refrigerant flows in the direction of the broken arrow indicating the flow of the low-pressure refrigerant in FIG. 5 and passes through the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, and the fourth main circuit on-off valve 713d. , Enters the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 of the outdoor heat exchanger 73 serving as an evaporator, is heated by exchanging heat with outdoor air, and compressed as a gas refrigerant Return to machine 75.
他方、ホットガスバイパス管715に入った冷媒は、図5の実線矢印の方向に流れ、第1バイパス開閉弁715aを介して室外熱交換器73の第1熱交換器731に入る。第1熱交換器731に入った冷媒は、高温高圧であるので第1熱交換器731に付着した霜を融解して下方に流下させる。流下した融解水は、蒸発器として作用する下側に位置する第2熱交換器732・第3熱交換器733・第4熱交換器734に流れ込み、最初は第2熱交換器732・第3熱交換器733・第4熱交換器734の着霜を融かしながら流下し、流下するに従って低温になり、外気温が低い場合などは終りには再氷結する。 On the other hand, the refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 5 and enters the first heat exchanger 731 of the outdoor heat exchanger 73 via the first bypass on-off valve 715a. Since the refrigerant that has entered the first heat exchanger 731 is high temperature and pressure, the frost adhering to the first heat exchanger 731 is melted and allowed to flow downward. The molten water that has flowed down flows into the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 located on the lower side that acts as an evaporator, and initially the second heat exchanger 732 and the third heat exchanger 732. It flows down while melting the frost of the heat exchanger 733 and the fourth heat exchanger 734, becomes lower temperature as it flows down, and re-freezes at the end when the outside air temperature is low.
この時、融解水は第2熱交換器732・第3熱交換器733・第4熱交換器734に熱を与えながら流下し、その熱は第2熱交換器732・第3熱交換器733・第4熱交換器734内部の冷媒の気化を促進する。つまり、上側にある第1熱交換器731で着霜の融解に使われた熱の一部が下側にある第2熱交換器732・第3熱交換器733・第4熱交換器734の着霜を一部融解し、更に内部の冷媒の気化に寄与して回収され、除霜の熱量が有効に使われる。 At this time, the molten water flows down while applying heat to the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734, and the heat flows to the second heat exchanger 732 and the third heat exchanger 733. -The vaporization of the refrigerant | coolant inside the 4th heat exchanger 734 is accelerated | stimulated. That is, a part of the heat used for melting frost in the first heat exchanger 731 on the upper side of the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 on the lower side. Part of the frost is melted and recovered, contributing to the vaporization of the internal refrigerant, and the amount of heat from defrosting is used effectively.
第1熱交換器731の霜を除霜した冷媒は第1熱交換器731を出たところで第2熱交換器732・第3熱交換器733・第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第1熱交換器731の除霜運転を所定時間または第1熱交換器731の出口の冷媒温検知センサー811aが所定温度まで上昇すると、第2熱交換器732を除霜する。 The refrigerant defrosted from the first heat exchanger 731 merges with the refrigerant vaporized in the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 when leaving the first heat exchanger 731. Return to the compressor 75. The defrosting operation of the first heat exchanger 731 is performed for a predetermined time or when the refrigerant temperature detection sensor 811a at the outlet of the first heat exchanger 731 rises to a predetermined temperature, the second heat exchanger 732 is defrosted.
第2熱交換器732の除霜に切換えるには、第1主回路開閉弁713a・第3主回路開閉弁713c・第4主回路開閉弁713dを開、第2主回路開閉弁713bを閉、第1バイパス開閉弁715a・第3バイパス開閉弁715c・第4バイパス開閉弁715dを閉、第2バイパス開閉弁715bを開にして、室外熱交換器73の内の第2熱交換器732を凝縮器として機能させると共に、第1熱交換器731・第3熱交換器733・第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モーター633を低速運転または停止し、室内送風モーター313は、吹出し温度が所定温度以上を保持できるように運転を制御する。 To switch to defrosting of the second heat exchanger 732, the first main circuit on / off valve 713a, the third main circuit on / off valve 713c, the fourth main circuit on / off valve 713d are opened, the second main circuit on / off valve 713b is closed, The first bypass on / off valve 715a, the third bypass on / off valve 715c, and the fourth bypass on / off valve 715d are closed and the second bypass on / off valve 715b is opened to condense the second heat exchanger 732 in the outdoor heat exchanger 73. The first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 function as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. . At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.
ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜するときと同じである。減圧装置74で減圧された冷媒は、図6の破線の矢印の方向に流れ、第1主回路開閉弁713a・第3主回路開閉弁713c・第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第1熱交換器731・第3熱交換器733・第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。 Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 until the pressure is reduced by the pressure reducing device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant depressurized by the decompression device 74 flows in the direction of the broken arrow in FIG. 6, and passes through the first main circuit on / off valve 713a, the third main circuit on / off valve 713c, and the fourth main circuit on / off valve 713d. Enters the first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 of the outdoor heat exchanger 73 to be heated and exchanged heat with outdoor air, and becomes a gas refrigerant. The gas refrigerant returns to the compressor 75.
ホットガスバイパス管715に入った冷媒は、図6の実線矢印の方向に流れ、第2バイパス開閉弁715bを介して室外熱交換器73の第2熱交換器732に入る。第2熱交換器732に入った冷媒は、高温高圧であるので、第2熱交換器732に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第2熱交換器732の霜を除霜した冷媒は、第2熱交換器732を出たところで第1熱交換器731・第3熱交換器733・第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第2熱交換器732の除霜運転が所定時間経過すると、または第2熱交換器732の出口の冷媒温検知センサー811bが所定温度まで上昇すると、第3熱交換器733を除霜する。 The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 6 and enters the second heat exchanger 732 of the outdoor heat exchanger 73 via the second bypass on-off valve 715b. Since the refrigerant that has entered the second heat exchanger 732 has a high temperature and a high pressure, the frost adhering to the second heat exchanger 732 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant defrosted from the second heat exchanger 732 is vaporized in the first heat exchanger 731, the third heat exchanger 733, and the fourth heat exchanger 734 when leaving the second heat exchanger 732. The merger returns to the compressor 75. When the defrosting operation of the second heat exchanger 732 elapses for a predetermined time or when the refrigerant temperature detection sensor 811b at the outlet of the second heat exchanger 732 rises to a predetermined temperature, the third heat exchanger 733 is defrosted.
第3熱交換器733の除霜に切換えるには、第1主回路開閉弁713a・第2主回路開閉弁713b・第4主回路開閉弁713dを開、第3主回路開閉弁713cを閉、第1バイパス開閉弁715a・第2バイパス開閉弁715b・第4バイパス開閉弁715dを閉、第3バイパス開閉弁715cを開にして、室外熱交換器73の内の第3熱交換器733を凝縮器として機能させると共に、第1熱交換器731・第2熱交換器732・第4熱交換器734を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モーター633を低速運転または停止し、室内送風モーター313は、吹出し温度が所定温度以上を保持できるように運転を制御する。 To switch to defrosting of the third heat exchanger 733, the first main circuit on-off valve 713a, the second main circuit on-off valve 713b, the fourth main circuit on-off valve 713d are opened, the third main circuit on-off valve 713c is closed, The first bypass switching valve 715a, the second bypass switching valve 715b, and the fourth bypass switching valve 715d are closed, the third bypass switching valve 715c is opened, and the third heat exchanger 733 in the outdoor heat exchanger 73 is condensed. The first heat exchanger 731, the second heat exchanger 732, and the fourth heat exchanger 734 function as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. . At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.
ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図7の破線の矢印の方向に流れ、第1主回路開閉弁713a・第2主回路開閉弁713b・第4主回路開閉弁713dを介して、蒸発器となる室外熱交換器73の第1熱交換器731・第2熱交換器732・第4熱交換器734に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。 Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant decompressed by the decompression device 74 flows in the direction of the broken arrow in FIG. 7, and passes through the first main circuit on / off valve 713a, the second main circuit on / off valve 713b, and the fourth main circuit on / off valve 713d. It enters the first heat exchanger 731, the second heat exchanger 732, and the fourth heat exchanger 734 of the outdoor heat exchanger 73, and is heated by exchanging heat with the outdoor air and becomes a gas refrigerant to the compressor 75. The gas refrigerant returns to the compressor 75.
ホットガスバイパス管715に入った冷媒は、図7の実線矢印の方向に流れ、第3バイパス開閉弁715cを介して室外熱交換器73の第3熱交換器733に入る。第3熱交換器733に入った冷媒は、高温高圧であるので、第3熱交換器733に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第3熱交換器733の霜を除霜した冷媒は、第3熱交換器733を出たところで第1熱交換器731・第2熱交換器732・第4熱交換器734で気化した冷媒と合流し圧縮機75に戻る。第3熱交換器733の除霜運転が所定時間経過すると、または第3熱交換器733の出口の冷媒温検知センサー811cが所定温度まで上昇すると、第4熱交換器734を除霜する。 The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 7 and enters the third heat exchanger 733 of the outdoor heat exchanger 73 via the third bypass on-off valve 715c. Since the refrigerant that has entered the third heat exchanger 733 has high temperature and pressure, the frost adhering to the third heat exchanger 733 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant from which the frost of the third heat exchanger 733 has been defrosted is the refrigerant vaporized in the first heat exchanger 731, the second heat exchanger 732, and the fourth heat exchanger 734 when leaving the third heat exchanger 733. The merger returns to the compressor 75. When the defrosting operation of the third heat exchanger 733 elapses for a predetermined time or when the refrigerant temperature detection sensor 811c at the outlet of the third heat exchanger 733 rises to a predetermined temperature, the fourth heat exchanger 734 is defrosted.
第4熱交換器734の除霜に切換えるには、第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713cを開、第4主回路開閉弁713dを閉、第1バイパス開閉弁715a・第2バイパス開閉弁715b・第3バイパス開閉弁715cを閉、第4バイパス開閉弁715dを開にして、室外熱交換器73の内の第4熱交換器734を凝縮器として機能させると共に、第1熱交換器731・第2熱交換器732・第3熱交換器733を蒸発器として機能させ、除霜と暖房とを同時に行う除霜・暖房運転サイクルを形成する。この時、室外送風モーター633を低速運転または停止し、室内送風モーター313は、吹出し温度が所定温度以上を保持できるように運転を制御する。 To switch to defrosting of the fourth heat exchanger 734, the first main circuit on-off valve 713a, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c are opened, the fourth main circuit on-off valve 713d is closed, The first bypass opening / closing valve 715a, the second bypass opening / closing valve 715b, the third bypass opening / closing valve 715c are closed, the fourth bypass opening / closing valve 715d is opened, and the fourth heat exchanger 734 in the outdoor heat exchanger 73 is condensed. The first heat exchanger 731, the second heat exchanger 732, and the third heat exchanger 733 function as an evaporator to form a defrosting / heating operation cycle in which defrosting and heating are performed simultaneously. . At this time, the outdoor air blowing motor 633 is operated or stopped at a low speed, and the indoor air blowing motor 313 controls the operation so that the blowing temperature can be maintained at a predetermined temperature or higher.
ここで、四方弁72から室内熱交換器33に流れ、減圧装置74で減圧されるまでの冷媒の流れは、第1熱交換器731を除霜する時と同じである。減圧装置74で減圧された冷媒は、図8の破線の矢印の方向に流れ、第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713cを介して、蒸発器となる室外熱交換器73の第1熱交換器731・第2熱交換器732・第3熱交換器733に入り、室外空気と熱交換して加熱され、ガス冷媒となって圧縮機75に戻るガス冷媒となって圧縮機75に戻る。 Here, the flow of the refrigerant from the four-way valve 72 to the indoor heat exchanger 33 and decompressed by the decompression device 74 is the same as when the first heat exchanger 731 is defrosted. The refrigerant depressurized by the decompression device 74 flows in the direction of the broken arrow in FIG. 8, and passes through the first main circuit on / off valve 713a, the second main circuit on / off valve 713b, and the third main circuit on / off valve 713c. It enters the first heat exchanger 731, the second heat exchanger 732, and the third heat exchanger 733 of the outdoor heat exchanger 73, and is heated by exchanging heat with the outdoor air and becomes a gas refrigerant. The gas refrigerant returns to the compressor 75.
ホットガスバイパス管715に入った冷媒は、図8の実線矢印の方向に流れ、第4バイパス開閉弁715dを介して室外熱交換器73の第4熱交換器734に入る。第4熱交換器734に入った冷媒は、高温高圧であるので、第4熱交換器734に付着した霜を融解して下方に流下させる。流下した融解水は、除霜水の排出口から室外機6の外に排出される。第4熱交換器734の霜を除霜した冷媒は、第4熱交換器734を出たところで第1熱交換器731・第2熱交換器732・第3熱交換器733で気化した冷媒と合流し圧縮機75に戻る。第4熱交換器734の除霜運転が所定時間経過すると、または第4熱交換器734の出口の冷媒温検知センサー811dが所定温度まで上昇すると、第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713dを開、第1バイパス開閉弁715a・第2バイパス開閉弁715b・第3バイパス開閉弁715c・第4バイパス開閉弁715dを閉にして、除霜・暖房運転を終了し、直ちに図4の暖房運転に復帰する。 The refrigerant that has entered the hot gas bypass pipe 715 flows in the direction of the solid line arrow in FIG. 8 and enters the fourth heat exchanger 734 of the outdoor heat exchanger 73 via the fourth bypass on-off valve 715d. Since the refrigerant that has entered the fourth heat exchanger 734 has a high temperature and a high pressure, the frost adhering to the fourth heat exchanger 734 is melted and allowed to flow downward. The molten water that has flowed down is discharged out of the outdoor unit 6 through the discharge port of the defrost water. The refrigerant that has defrosted the frost of the fourth heat exchanger 734 is the refrigerant that has vaporized in the first heat exchanger 731, the second heat exchanger 732, and the third heat exchanger 733 when the refrigerant leaves the fourth heat exchanger 734. The merger returns to the compressor 75. When the defrosting operation of the fourth heat exchanger 734 elapses for a predetermined time or when the refrigerant temperature detection sensor 811d at the outlet of the fourth heat exchanger 734 rises to a predetermined temperature, the first main circuit on-off valve 713a / second main circuit The on-off valve 713b, the third main circuit on-off valve 713c, and the fourth main circuit on-off valve 713d are opened, and the first bypass on-off valve 715a, the second bypass on-off valve 715b, the third bypass on-off valve 715c, and the fourth bypass on-off valve 715d are opened. It is closed, the defrosting / heating operation is finished, and it immediately returns to the heating operation of FIG.
ここで、室外熱交換器73の下部は上部から流れてきた除霜時の融解水が通過するため、融解水による除霜が行われる。そこで、室外熱交換器73の除霜を行う時に、第1熱交換器731・第2熱交換器732・第3熱交換器733・第4熱交換器734の順に上側から除霜を行う。これにより、室外熱交換器73に着霜し、着霜量が除霜を必要とする所定量に達したときに、上側にある熱交換器から順に部分除霜・暖房運転を行う。上側にある冷媒回路にホットガスを流すので、室外熱交換器73の上側の冷媒回路の空気側伝熱面に付着した霜が融解し、下方に流れる。 Here, since the defrosted water that has flowed from the upper part passes through the lower part of the outdoor heat exchanger 73, defrosting with the melted water is performed. Therefore, when the defrosting of the outdoor heat exchanger 73 is performed, the defrosting is performed from the upper side in the order of the first heat exchanger 731, the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734. Thus, when the outdoor heat exchanger 73 is frosted and the frost amount reaches a predetermined amount that requires defrosting, the partial defrosting / heating operation is performed in order from the heat exchanger on the upper side. Since hot gas is allowed to flow through the refrigerant circuit on the upper side, frost adhering to the air side heat transfer surface of the refrigerant circuit on the upper side of the outdoor heat exchanger 73 is melted and flows downward.
この融解水の温度が高い場合は、融解水は下側にある熱交換器の空気側伝熱面の霜に触れ、これを融解水自身の顕熱で溶かしながら更に流れ下る。このとき、下側にある熱交換器で霜が融解した部分は、熱伝達の妨害をしていた霜が除かれるので、外気から、冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。流れ下る融解水の温度が融解点まで下がると、融解水はそれ以上霜を融解することなく流下し、流下しながら下側にある熱交換器内を流れる下側の冷媒回路の冷媒で冷却されて凝固する。 When the temperature of the molten water is high, the molten water touches the frost on the air side heat transfer surface of the heat exchanger on the lower side and further flows down while melting it with the sensible heat of the molten water itself. At this time, the portion where the frost has melted in the heat exchanger on the lower side is removed from the frost that was hindering heat transfer, so the heat transfer from the outside air to the refrigerant is performed smoothly, and the heat exchange capability is improved. It recovers and suppresses the decline in indoor heating capacity. When the temperature of the flowing molten water falls to the melting point, the molten water flows down without further melting of the frost, and is cooled by the refrigerant in the lower refrigerant circuit flowing in the lower heat exchanger while flowing down. Solidify.
このとき、融解水の凝固熱は下側の冷媒回路の冷媒を温めるので、上側にある熱交換器で霜の融解に使用された熱量が回収される。上側にある熱交換器の除霜のための除霜・暖房運転が終了すると、順に下側にある熱交換器の除霜を行うための除霜・暖房運転が開始される。除霜を行う冷媒回路に圧縮機75からのホットガスを流すので、該当する冷媒回路の空気側伝熱面に付着した霜が融解し、下方に流れ下る。 At this time, since the heat of solidification of the molten water warms the refrigerant in the lower refrigerant circuit, the amount of heat used to melt the frost is recovered by the heat exchanger on the upper side. When the defrosting / heating operation for defrosting the upper heat exchanger is completed, the defrosting / heating operation for defrosting the lower heat exchanger in order is started. Since hot gas from the compressor 75 is caused to flow through the refrigerant circuit that performs defrosting, the frost attached to the air-side heat transfer surface of the corresponding refrigerant circuit melts and flows downward.
このとき、除霜が終了した直後の熱交換器は、熱伝達の妨害をしていた霜が除かれているので、外気から冷媒への熱移動がスムーズに行われ、熱交換能力が回復し、室内の暖房能力の低下を抑制する。このように、除霜・暖房運転時でも暖房能力の大幅な低下を抑制しつつ、暖房を継続することができる。 At this time, the heat exchanger immediately after the completion of the defrosting removes the frost that has hindered the heat transfer, so the heat transfer from the outside air to the refrigerant is performed smoothly, and the heat exchange capacity is restored. , Suppresses the decrease in indoor heating capacity. Thus, heating can be continued while suppressing a significant decrease in heating capacity even during defrosting / heating operation.
また、除霜・暖房運転時には、除霜した熱交換器より下側にある熱交換器の着霜量が一時的に増加することがある。しかし、引き続いて下側にある熱交換器の除霜のための除霜・暖房運転が行われるので、下側にある熱交換器も除霜される。したがって下側にある熱交換器の霜が上側の熱交換器の除霜の影響で増え続けることはない。 Further, during the defrosting / heating operation, the frosting amount of the heat exchanger below the defrosted heat exchanger may temporarily increase. However, since the defrosting / heating operation for defrosting the heat exchanger on the lower side is subsequently performed, the heat exchanger on the lower side is also defrosted. Therefore, the frost of the lower heat exchanger does not continue to increase due to the defrosting of the upper heat exchanger.
このようにして除霜・暖房運転の合計所要時間を逆サイクル除霜運転した場合に比べて短縮することができる。また、この時、圧縮機75の吐出温度の低下が抑制されるので、暖房能力の低下も抑制することができる。このため、室内を暖房しながら除霜をすることが可能で、且つ、除霜・暖房運転の所要時間を短縮できる。 In this way, the total time required for the defrosting / heating operation can be shortened compared to the case where the reverse cycle defrosting operation is performed. Moreover, since the fall of the discharge temperature of the compressor 75 is suppressed at this time, the fall of heating capability can also be suppressed. For this reason, defrosting can be performed while heating the room, and the time required for the defrosting / heating operation can be shortened.
本実施例の本発明の空気調和機は、圧縮機、四方弁、室内熱交換器、減圧装置、並列に接続され大きさの異なる複数の室外熱交換器を順次冷媒配管で連結した冷凍サイクルと、冷凍サイクルにおける圧縮機の吐出側と四方弁との間で分岐して、減圧装置と複数の室外熱交換器それぞれの暖房運転時入口側との間に接続されたホットガスバイパス回路と、を備える空気調和機であって、冷凍サイクルにおいて、冷媒を、圧縮機、四方弁、室内熱交換器、減圧装置、室外熱交換器、圧縮機の順に循環させる暖房運転モードと、バイパス回路において、冷媒を、圧縮機、所定の室外熱交換器、圧縮機の順に循環させる除霜運転、及び、冷凍サイクルにおいて、冷媒を、圧縮機、四方弁、室内熱交換器、減圧装置、所定の前記室外機以外の室外熱交換器、圧縮機の順に循環させる暖房運転、を行う除霜・暖房モードと、を有し、除霜・暖房運転モードにおいて、小さい室外熱交換器から順に除霜運転を実施する。 従来技術のように、除霜・暖房運転される並列に接続された複数の室外熱交換器を等しい大きさで構成すると、室外熱交換器を順に除霜運転する間、暖房運転する室外熱交換器(除霜運転する室外熱交換器以外の室外熱交換器)の大きさは同一であるが、熱交換能力が上昇するため、最初の熱交換器を除霜している間は、最後の熱交換器を除霜している間よりも暖房能力が大幅に減少してしまう。本発明では、暖房運転する室外熱交換器(除霜運転する室外熱交換器以外の室外熱交換器)の大きさとそれらの室外熱交換器の熱交換能力を考慮して暖房能力の変動を抑制する。つまり、並列に接続され大きさの異なる複数の室外熱交換器を備え、除霜・暖房運転モードにおいて小さい室外熱交換器から順に除霜運転を実施することにより、室外熱交換器を順に除霜運転する間、暖房運転する室外熱交換器の大きさを徐々に減少させるが熱交換能力は徐々に増加する。従って、除霜・暖房運転中においても、暖房能力の変動を抑制することができ、特に、暖房能力が大きく低下する最初の熱交換器を除霜している間も暖房能力を維持することができるので、空気調和機利用者の不快感を低減するができる。尚、以下の本実施例においては、小さい室外熱交換器から順に上方に配置しているが、必ずしもこのような構成としなくても、上記効果を奏することができる。また、以下の本実施例においては、室外熱交換器を3つの熱交換器で構成しているが、必ずしも3つに限定されず、2つの熱交換器や4つ以上の熱交換器でもよい。 The air conditioner of the present invention of this embodiment includes a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, a refrigerating cycle in which a plurality of outdoor heat exchangers connected in parallel and having different sizes are sequentially connected by a refrigerant pipe, A hot gas bypass circuit branched between the discharge side of the compressor and the four-way valve in the refrigeration cycle and connected between the decompression device and the inlet side during heating operation of each of the plurality of outdoor heat exchangers, In the refrigeration cycle, the refrigerant is circulated in the order of the compressor, the four-way valve, the indoor heat exchanger, the pressure reducing device, the outdoor heat exchanger, and the compressor in the refrigeration cycle, and the bypass circuit. In the defrosting operation in which the compressor, the predetermined outdoor heat exchanger, and the compressor are circulated in the order, and the refrigeration cycle, the refrigerant is supplied to the compressor, the four-way valve, the indoor heat exchanger, the decompression device, and the predetermined outdoor unit. Outdoor heat exchange other than Has heating operation circulates in the order of the compressor, and defrosting and heating mode for performing the in defrosting, the heating operation mode, performing a defrosting operation in order from the small outdoor heat exchanger. If a plurality of outdoor heat exchangers connected in parallel to be defrosted and heated are configured with the same size as in the prior art, outdoor heat exchange is performed while the outdoor heat exchanger is sequentially defrosted. The size of the heat exchanger (outdoor heat exchanger other than the outdoor heat exchanger that performs the defrosting operation) is the same, but since the heat exchange capacity increases, the last heat exchanger is defrosted. Heating capacity will be significantly reduced than during defrosting of the heat exchanger. In the present invention, the fluctuation of the heating capacity is suppressed in consideration of the size of the outdoor heat exchanger that performs the heating operation (the outdoor heat exchanger other than the outdoor heat exchanger that performs the defrosting operation) and the heat exchange capacity of those outdoor heat exchangers. To do. In other words, a plurality of outdoor heat exchangers connected in parallel and having different sizes are provided, and in the defrosting / heating operation mode, the defrosting operation is sequentially performed from the small outdoor heat exchanger, thereby sequentially defrosting the outdoor heat exchangers. During operation, the size of the outdoor heat exchanger for heating operation is gradually reduced, but the heat exchange capacity is gradually increased. Therefore, even during the defrosting / heating operation, fluctuations in the heating capacity can be suppressed, and in particular, the heating capacity can be maintained even while the first heat exchanger in which the heating capacity is greatly reduced is defrosted. As a result, the discomfort of the air conditioner user can be reduced. In addition, in the following present Example, although arrange | positioning upwards in order from a small outdoor heat exchanger, even if it is not necessarily set as such a structure, there can exist the said effect. Moreover, in the following Example, although the outdoor heat exchanger is comprised with three heat exchangers, it is not necessarily limited to three, Two heat exchangers or four or more heat exchangers may be sufficient. .
次に、空気調和機の暖房サイクルにおける複数に区分された冷媒回路の室外熱交換器の比率の違いによる除霜・暖房運転についての詳細を説明する。 Next, the details of the defrosting / heating operation due to the difference in the ratio of the outdoor heat exchangers of the refrigerant circuit divided into a plurality of in the heating cycle of the air conditioner will be described.
前記の通り、室外熱交換器73を除霜する際には複数に区分された冷媒回路の室外熱交換器の熱交換器73を上から順に第1熱交換器731、第2熱交換器732、第3熱交換器733、第4熱交換器734と行う。最上部に位置する第1熱交換器731の除霜は高温高圧の冷媒のみで行われ、第1熱交換器731の融解水の流下により第2熱交換器に着霜した霜がある程度溶かされる第2熱交換器732に比べ除霜時間は当然長くなる。第3熱交換器733についても、第1熱交換器731および第2熱交換器732の融解水、第4熱交換器734についても同様に第1熱交換器731、第2熱交換器732および第3熱交換器733の融解水により、霜がある程度溶かされるため、除霜を行っている熱交換器の下側に位置する熱交換器の除霜時間は短くなる傾向にある。よって、室外熱交換器73は等しい大きさであるため、融解水による除霜が行われない第1熱交換器731の除霜効率は他と比べ良好とは言えない。また、着霜量が増えた状態でさらに室外熱交換器73の1/4にあたる第1熱交換器731の除霜運転を行うことは除霜・暖房運転時の暖房能力を低下させる。 As described above, when the outdoor heat exchanger 73 is defrosted, the first heat exchanger 731 and the second heat exchanger 732 are arranged in order from the top in the heat exchanger 73 of the outdoor heat exchanger of the refrigerant circuit divided into a plurality of sections. The third heat exchanger 733 and the fourth heat exchanger 734 are performed. The defrosting of the first heat exchanger 731 located at the top is performed only with a high-temperature and high-pressure refrigerant, and the frost formed on the second heat exchanger is dissolved to some extent by the flow of molten water in the first heat exchanger 731. The defrosting time is naturally longer than that of the second heat exchanger 732. Similarly for the third heat exchanger 733, the melted water of the first heat exchanger 731 and the second heat exchanger 732, the same for the fourth heat exchanger 734, the first heat exchanger 731, the second heat exchanger 732, and Since the frost is melted to some extent by the molten water of the third heat exchanger 733, the defrosting time of the heat exchanger located on the lower side of the heat exchanger performing the defrosting tends to be short. Therefore, since the outdoor heat exchanger 73 is the same magnitude | size, it cannot be said that the defrosting efficiency of the 1st heat exchanger 731 in which defrosting with a molten water is not performed is favorable compared with others. Further, performing the defrosting operation of the first heat exchanger 731 corresponding to ¼ of the outdoor heat exchanger 73 in a state where the amount of frost formation is increased reduces the heating capacity during the defrosting / heating operation.
そこで室外熱交換器73の第1熱交換器731、第2熱交換器732、第3熱交換器733、第4熱交換器734を等分割から、複数に区分された冷媒回路の室外熱交換器の比率を変え、高温高圧の冷媒のみで除霜を行う第1熱交換器731の比率を下げ、融解水を除霜として利用できる第1熱交換器731より下部にある熱交換器の比率を上げることで除霜効率を上げ、除霜・暖房運転時の暖房能力の低下を抑制する除霜・暖房運転について図9を用いて説明する。 Therefore, the outdoor heat exchange of the refrigerant circuit divided into a plurality of parts by dividing the first heat exchanger 731, the second heat exchanger 732, the third heat exchanger 733, and the fourth heat exchanger 734 of the outdoor heat exchanger 73 into equal parts. The ratio of the heat exchanger below the first heat exchanger 731 that can change the ratio of the heat exchanger, lower the ratio of the first heat exchanger 731 that performs defrosting only with the high-temperature and high-pressure refrigerant, and can use the molten water as the defrost. The defrosting / heating operation for increasing the defrosting efficiency to suppress the reduction of the heating capacity during the defrosting / heating operation will be described with reference to FIG.
図9の室外熱交換器73は、冷媒配管と熱交換フィンとで構成され、その冷媒配管で形成される冷媒回路を複数に分割して並列に接続される。この冷媒回路は複数に区分して構成される。室外熱交換器73は、第1熱交換器735、第2熱交換器736、第3熱交換器737および第4熱交換器738から構成される。複数に区分された冷媒回路の室外熱交換器の比率は第1熱交換器735を1とした場合に第2熱交換器736を2、第3熱交換器737を2、第4熱交換器738が3とする。複数に区分された冷媒回路の室外熱交換器の構成は、各々が分離した構造(第1〜4熱交換器が独立した構造)でも一体構造でもよい。除霜・暖房運転の運転動作は、前記で述べた複数に区分された冷媒回路の室外熱交換器と同じである。 The outdoor heat exchanger 73 in FIG. 9 includes a refrigerant pipe and heat exchange fins, and a refrigerant circuit formed by the refrigerant pipe is divided into a plurality of pieces and connected in parallel. This refrigerant circuit is divided into a plurality of parts. The outdoor heat exchanger 73 includes a first heat exchanger 735, a second heat exchanger 736, a third heat exchanger 737, and a fourth heat exchanger 738. When the first heat exchanger 735 is set to 1, the ratio of the outdoor heat exchangers of the refrigerant circuits divided into a plurality is 2, the second heat exchanger 736 is 2, the third heat exchanger 737 is 2, and the fourth heat exchanger is 738 is 3. The configuration of the outdoor heat exchanger of the refrigerant circuit divided into a plurality may be a structure in which each is separated (a structure in which the first to fourth heat exchangers are independent) or an integrated structure. The operation of the defrosting / heating operation is the same as the outdoor heat exchanger of the refrigerant circuit divided into a plurality of sections described above.
ここで高温高圧の冷媒のみで行う第1熱交換器735は、第1熱交換器735の下側の第2熱交換器736、第3熱交換器737および第4熱交換器738より小さいことで、冷媒配管を短くし冷媒の温度低下抑え、さらに除霜する面積を減らすことで除霜時間を短縮する。よって冷媒の温度も高い温度を保てることから、融解水の温度も高い温度を確保でき、除霜する面積を小さくしたことで融解水が少量になっても、少量の融解水で下側にある第2熱交換器736の融解水による除霜を行うことも十分に可能である。また、室外熱交換器73も着霜量が増え暖房能力が落ちた状態で除霜する第1熱交換器735を小さくすることで、暖房運転の熱交換器の面積を確保でき、また圧縮機75に戻る冷媒の温度低下も最低限ですむことから除霜・暖房運転時切替え時の能力低下を最低限に抑えることができる。また、着霜量が増え暖房能力が落ちた状態で除霜する第1熱交換器735の除霜時間を最短時間で行うことができる。よって暖房運転から除霜・暖房運転への切替え時の能力低下による室内機の吹出し温度の低下を抑えることができる。 Here, the first heat exchanger 735 performed only with the high-temperature and high-pressure refrigerant is smaller than the second heat exchanger 736, the third heat exchanger 737, and the fourth heat exchanger 738 on the lower side of the first heat exchanger 735. Thus, the defrosting time is shortened by shortening the refrigerant piping to suppress the temperature drop of the refrigerant and further reducing the area to be defrosted. Therefore, since the temperature of the refrigerant can be kept high, the temperature of the molten water can be kept high, and even if the amount of molten water becomes small by reducing the area to be defrosted, it is on the lower side with a small amount of molten water It is also possible to perform defrosting with the molten water of the second heat exchanger 736. Moreover, the outdoor heat exchanger 73 can also secure the area of the heat exchanger of heating operation by reducing the 1st heat exchanger 735 which defrosts in the state where the amount of frost formation increased and the heating capability fell, and the compressor Since the temperature drop of the refrigerant returning to 75 is also minimal, it is possible to minimize the capacity drop at the time of switching during the defrosting / heating operation. Moreover, the defrosting time of the 1st heat exchanger 735 which defrosts in the state which the amount of frost formation increased and the heating capability fell can be performed in the shortest time. Therefore, the fall of the blowing temperature of an indoor unit by the capability fall at the time of switching from heating operation to defrosting / heating operation can be suppressed.
第2熱交換器736についても大きさを例えば第1熱交換器735の2倍程度とする。第1熱交換器735の温度の高い融解水にて熱交換フィン表面に付着した霜はある程度融解されているため、第2熱交換器736を第1熱交換器735より大きくしても除霜時間は第1熱交換器735と同等の時間で終了することができる。また、除霜・暖房運転時の能力も第1熱交換器735の除霜は終了していることから、暖房運転の熱交換器の面積が第1熱交換器735を除霜しているときより小さくなっても、能力低下を抑えることができる。よって除霜・暖房運転の能力低下による室内機の吹出し温度の低下を抑えることができる。 The size of the second heat exchanger 736 is also about twice that of the first heat exchanger 735, for example. Since the frost adhering to the heat exchange fin surface is melted to some extent by the molten water having a high temperature of the first heat exchanger 735, defrosting is performed even if the second heat exchanger 736 is larger than the first heat exchanger 735. The time can be finished in a time equivalent to that of the first heat exchanger 735. Moreover, since the defrosting of the 1st heat exchanger 735 is also complete | finished in the capability at the time of a defrost / heating operation, when the area of the heat exchanger of heating operation defrosts the 1st heat exchanger 735 Even if it becomes smaller, the capability reduction can be suppressed. Therefore, the fall of the blowing temperature of an indoor unit by the capability fall of a defrost and heating operation can be suppressed.
第3熱交換器737の除霜についても大きさを例えば第1熱交換器735の2倍程度としも、第1熱交換器735、第2熱交換器736の融解水にて熱交換フィン表面に付着した霜はある程度融解されているため、第3熱交換器737を第1熱交換器735より大きくしても除霜時間は第1熱交換器735と同等の時間で終了することができる。また、除霜・暖房運転時の能力も第1熱交換器735、第2熱交換器736の除霜は終了していることから、暖房運転の熱交換器の面積が第1熱交換器735を除霜しているときより小さくなっても、能力低下を抑えることができる。よって除霜・暖房運転の能力低下による室内機の吹出し温度の低下を抑えることができる。 Even if the size of the defrosting of the third heat exchanger 737 is about twice as large as that of the first heat exchanger 735, the surface of the heat exchange fin with the molten water of the first heat exchanger 735 and the second heat exchanger 736. Since the frost attached to the frost is melted to some extent, the defrosting time can be completed in a time equivalent to that of the first heat exchanger 735 even if the third heat exchanger 737 is made larger than the first heat exchanger 735. . Moreover, since the defrosting of the 1st heat exchanger 735 and the 2nd heat exchanger 736 is complete | finished also about the capability at the time of a defrost / heating operation, the area of the heat exchanger of heating operation is the 1st heat exchanger 735. Even if it becomes smaller than when defrosting, it is possible to suppress a decrease in capacity. Therefore, the fall of the blowing temperature of an indoor unit by the capability fall of a defrost and heating operation can be suppressed.
第4熱交換器738の除霜についても大きさを例えば第1熱交換器735の3倍程度としも、第1熱交換器735、第2熱交換器736、第3熱交換器737の融解水にて熱交換フィン表面に付着した霜はある程度融解されているため、第4熱交換器738を第1熱交換器735より大きくしても除霜時間は第1熱交換器735と同等の時間で終了することができる。また、除霜・暖房運転時の能力も第1熱交換器735、第2熱交換器736、第3熱交換器737の除霜は終了していることから、暖房運転の熱交換器の面積が第1熱交換器735を除霜しているときより小さくなっても、能力低下を抑えることができる。よって除霜・暖房運転の能力低下による室内機の吹出し温度の低下を抑えることができる。 The defrosting of the fourth heat exchanger 738 is also about three times the size of the first heat exchanger 735, but the first heat exchanger 735, the second heat exchanger 736, and the third heat exchanger 737 are melted. Since the frost adhering to the heat exchange fin surface with water is melted to some extent, even if the fourth heat exchanger 738 is made larger than the first heat exchanger 735, the defrosting time is equal to that of the first heat exchanger 735. Can be finished in time. Moreover, since the defrosting of the 1st heat exchanger 735, the 2nd heat exchanger 736, and the 3rd heat exchanger 737 is complete | finished also about the capability at the time of a defrost / heating operation, the area of the heat exchanger of heating operation Even if it becomes smaller than when defrosting the 1st heat exchanger 735, a capability fall can be suppressed. Therefore, the fall of the blowing temperature of an indoor unit by the capability fall of a defrost and heating operation can be suppressed.
上記の通り、高温高圧の冷媒のみで除霜を行う第1熱交換器を小さくし、融解水により熱交換フィン表面に付着した霜をある程度除霜ができる熱交換器を大きくするなど複数に区分された冷媒回路の室外熱交換器の比率を変え、除霜効率を上げることで除霜・暖房運転時の能力の低下を抑制できる。よって室内機の吹出し温度の低下を抑え快適性を確保することができる。 As described above, the first heat exchanger that performs defrosting only with high-temperature and high-pressure refrigerant is made smaller, and the heat exchanger that can defrost to some extent the frost attached to the heat exchange fin surface with molten water is divided into multiple types. By changing the ratio of the outdoor heat exchanger in the refrigerant circuit and increasing the defrosting efficiency, it is possible to suppress a decrease in capacity during the defrosting / heating operation. Therefore, it is possible to ensure comfort by suppressing a drop in the temperature of the indoor unit.
(実施例2)本実施例では、除霜・暖房運転時、暖房運転時に第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713dに流れる冷媒量を、暖房運転を行っているときに蒸発器となる各室外熱交換器のサイクル温度が適正な温度になるように冷媒温検知センサー811a、811b、811c、811dの温度より調整する。各室外熱交換器の大きさの違いから、冷媒流量が同流量では冷媒過多または冷媒不足になる熱交換器が存在してしまうため、各室外熱交換器の大きさに対応した冷媒が適正に流れるように冷媒温検知センサー811a、811b、811c、811dの温度より、第1主回路開閉弁713a・第2主回路開閉弁713b・第3主回路開閉弁713c・第4主回路開閉弁713dにて冷媒流量を調整することで蒸発器としての各室外熱交換器の効率が上がり、除霜・暖房運転時、暖房運転時の暖房性能が向上する。 (Embodiment 2) In this embodiment, the first main circuit on-off valve 713a, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, and the fourth main circuit on-off valve during the defrosting / heating operation and the heating operation. The amount of refrigerant flowing to 713d is adjusted from the temperature of the refrigerant temperature detection sensors 811a, 811b, 811c, and 811d so that the cycle temperature of each outdoor heat exchanger serving as an evaporator becomes an appropriate temperature during heating operation. To do. Because of the difference in the size of each outdoor heat exchanger, there are heat exchangers that have excessive or insufficient refrigerant at the same refrigerant flow rate, so the refrigerant corresponding to the size of each outdoor heat exchanger From the temperature of the refrigerant temperature detection sensors 811a, 811b, 811c, 811d to flow, the first main circuit on-off valve 713a, the second main circuit on-off valve 713b, the third main circuit on-off valve 713c, the fourth main circuit on-off valve 713d By adjusting the refrigerant flow rate, the efficiency of each outdoor heat exchanger as an evaporator is increased, and the heating performance during defrosting / heating operation and heating operation is improved.
以上説明したように、実施例2記載の空気調和機によれば、除霜・暖房運転時、暖房運転時の蒸発器としての各室外熱交換器の効率を上げ暖房性能を向上させることができる。 As described above, according to the air conditioner described in the second embodiment, the efficiency of each outdoor heat exchanger as an evaporator during defrosting / heating operation and heating operation can be increased and the heating performance can be improved. .
(実施例3)本実施例では、除霜・暖房運転時は暖房運転時よりも室外ファン631の回転数を低下させ、更に外気温が所定値より低い場合は除霜・暖房運転時に室外送風機の運転の運転を停止する。除霜・暖房運転時に室外ファン631の回転数を低下させることにより、除霜・暖房運転時に融解水や冷媒配管、熱交換フィンから室外ファン631による強制対流で外気に奪い去られる熱量が減少し、霜の融解が効率よく行われる。また、外気の温度が更に低くなり外気への放熱量が増加した場合は室外ファン631の運転を停止する。室外ファン631による強制対流で外気に奪い去られる熱量の大部分が霜の融解に有効に使用され室外熱交換器の除霜が効率よく進む。 (Embodiment 3) In this embodiment, during the defrosting / heating operation, the rotational speed of the outdoor fan 631 is reduced more than during the heating operation, and when the outside air temperature is lower than a predetermined value, the outdoor blower is used during the defrosting / heating operation. Stop driving. By reducing the rotational speed of the outdoor fan 631 during the defrosting / heating operation, the amount of heat taken away to the outside air by forced convection by the outdoor fan 631 from the melt water, the refrigerant piping, and the heat exchange fin during the defrosting / heating operation is reduced. The frost is efficiently melted. Further, when the temperature of the outside air is further lowered and the amount of heat released to the outside air is increased, the operation of the outdoor fan 631 is stopped. Most of the amount of heat removed to the outside air by forced convection by the outdoor fan 631 is effectively used for melting frost, and defrosting of the outdoor heat exchanger proceeds efficiently.
以上説明したように、実施例2記載の空気調和機によれば、除霜・暖房運転時間を短縮でき、また、低外気温時でも除霜・暖房運転で残霜を生じることなく、空気調和機の快適性を向上させることができる。 As described above, according to the air conditioner described in the second embodiment, the defrosting / heating operation time can be shortened, and the remaining air is not generated in the defrosting / heating operation even at a low outside air temperature. The comfort of the machine can be improved.
(実施例4)本実施例では、暖房運転時に外気温の低下に伴い、圧縮機75の吐出温度を減圧装置、圧縮機回転数を高温になるよう制御する。これにより圧縮機75の蓄熱量が増加すると共に、除霜・暖房運転時には高温の冷媒による除霜が行われ、除霜・暖房運転時間が短縮されることで、暖房運転に復帰した時の圧縮機75の吐出温度の回復が早くなり、暖房能力の低下する時間が短くなる。 (Embodiment 4) In this embodiment, the discharge temperature of the compressor 75 is controlled so as to increase the pressure of the decompressor and the compressor speed as the outside air temperature decreases during the heating operation. As a result, the amount of heat stored in the compressor 75 increases, and defrosting with a high-temperature refrigerant is performed during the defrosting / heating operation, and the defrosting / heating operation time is shortened so that the compression when returning to the heating operation is performed. The recovery of the discharge temperature of the machine 75 is accelerated, and the time for the heating capacity to decrease is shortened.
以上説明したように、実施例3記載の空気調和機によれば、除霜・暖房運転時間を短縮でき、暖房能力が低下をおさえることで空気調和機の快適性を向上させることができる。 As described above, according to the air conditioner described in the third embodiment, the defrosting / heating operation time can be shortened, and the comfort of the air conditioner can be improved by reducing the heating capacity.
(実施例5)本実施例では、除霜・暖房運転を最長の除霜・暖房運転時間に達するまで行っても、室外機6の温度が所定値に達しない場合に、四方弁72を切り換えて逆サイクル除霜運転を行う。これにより除霜・暖房運転で融解しきれなかった室外熱交換器73の冷媒回路出口付近(冷房時の室外熱交換器入口)の残霜も、逆サイクル除霜運転を行うことにより、圧縮機75からの高温高圧冷媒で融解させることができる。 (Embodiment 5) In this embodiment, the four-way valve 72 is switched when the temperature of the outdoor unit 6 does not reach a predetermined value even if the defrosting / heating operation is performed until the longest defrosting / heating operation time is reached. Reverse cycle defrosting operation. As a result, the residual frost in the vicinity of the refrigerant circuit outlet of the outdoor heat exchanger 73 (outdoor heat exchanger inlet during cooling) that could not be thawed by the defrosting / heating operation is also restored by performing the reverse cycle defrosting operation. It can be melted with a high-temperature and high-pressure refrigerant from 75.
以上説明したように、実施例4記載の空気調和機の室外機によれば、除霜・暖房運転で融解しきれなかった室外熱交換器73の冷媒回路出口付近の残霜を融解することができ、残霜による暖房能力の低下を防ぎ、空気調和機の快適性を向上させることができる。 As described above, according to the outdoor unit of the air conditioner described in the fourth embodiment, the residual frost near the refrigerant circuit outlet of the outdoor heat exchanger 73 that could not be thawed by the defrosting / heating operation can be melted. It is possible to prevent the heating capacity from being lowered due to residual frost and to improve the comfort of the air conditioner.
1…空気調和機、2…室内機、5…リモコン、6…室外機、8…接続配管、10…制御装置、33…室内熱交換器、72…四方弁、73…室外熱交換器、74…減圧装置、75…圧縮機、76…アキュムレータ、311…室内ファン、313…室内送風モーター、631…室外ファン、633…室外送風モーター、710…吸込配管、711…吐出配管、712…利用側ガス管、713…液管、713a…第1主回路開閉弁、713b…第2主回路開閉弁、713a…第3主回路開閉弁、713d…第4主回路開閉弁、714…熱源側ガス管、715…ホットガスバイパス管、715a…第1バイパス開閉弁、715b…第2バイパス開閉弁、715c…第3バイパス開閉弁、715d…第4バイパス開閉弁、716a…第1主回路・バイパス共用管、716b…第2主回路・バイパス共用管、716c…第3主回路・バイパス共用管、716d…第4主回路・バイパス共用管、731…第1熱交換器、732…第2熱交換器、733…第3熱交換器、734…第4熱交換器、735…第1熱交換器、736…第2熱交換器、737…第3熱交換器、738…第4熱交換器、811a…第1熱交換器冷媒温検知センサー、811b…第2熱交換器冷媒温検知センサー、811c…第3熱交換器冷媒温検知センサー、811d…第4熱交換器冷媒温検知センサー、812…冷媒温検知センサー DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Indoor unit, 5 ... Remote control, 6 ... Outdoor unit, 8 ... Connection piping, 10 ... Control apparatus, 33 ... Indoor heat exchanger, 72 ... Four-way valve, 73 ... Outdoor heat exchanger, 74 DESCRIPTION OF SYMBOLS ... Pressure reducing device, 75 ... Compressor, 76 ... Accumulator, 311 ... Indoor fan, 313 ... Indoor fan motor, 631 ... Outdoor fan, 633 ... Outdoor fan motor, 710 ... Suction pipe, 711 ... Discharge pipe, 712 ... User side gas Pipe, 713 ... Liquid pipe, 713a ... First main circuit on / off valve, 713b ... Second main circuit on / off valve, 713a ... Third main circuit on / off valve, 713d ... Fourth main circuit on / off valve, 714 ... Heat source side gas pipe, 715 ... Hot gas bypass pipe, 715a ... First bypass on-off valve, 715b ... Second bypass on-off valve, 715c ... Third bypass on-off valve, 715d ... Fourth bypass on-off valve, 716a ... First main circuit / bypass Common pipe, 716b ... second main circuit / bypass common pipe, 716c ... third main circuit / bypass common pipe, 716d ... fourth main circuit / bypass common pipe, 731 ... first heat exchanger, 732 ... second heat exchange 733 ... 3rd heat exchanger, 734 ... 4th heat exchanger, 735 ... 1st heat exchanger, 736 ... 2nd heat exchanger, 737 ... 3rd heat exchanger, 738 ... 4th heat exchanger, 811a ... 1st heat exchanger refrigerant temperature detection sensor, 811b ... 2nd heat exchanger refrigerant temperature detection sensor, 811c ... 3rd heat exchanger refrigerant temperature detection sensor, 811d ... 4th heat exchanger refrigerant temperature detection sensor, 812 ... Refrigerant temperature detection sensor
Claims (5)
前記冷凍サイクルにおける前記圧縮機の吐出側と前記四方弁との間で分岐して、前記減圧装置と前記複数の室外熱交換器それぞれの暖房運転時入口側との間に接続されたホットガスバイパス回路と、
を備える空気調和機であって、
前記冷凍サイクルにおいて、冷媒を、前記圧縮機、前記四方弁、前記室内熱交換器、前記減圧装置、前記室外熱交換器、前記圧縮機の順に循環させる暖房運転モードと、
前記バイパス回路において、冷媒を、前記圧縮機、所定の前記室外熱交換器、前記圧縮機の順に循環させる除霜運転、及び、前記冷凍サイクルにおいて、冷媒を、前記圧縮機、前記四方弁、前記室内熱交換器、前記減圧装置、所定の前記室外機以外の前記室外熱交換器、前記圧縮機の順に循環させる暖房運転、を行う除霜・暖房モードと、
を有し、
前記除霜・暖房運転モードにおいて、常に小さい前記室外熱交換器から順に前記除霜運転を実施する空気調和機。 A refrigeration cycle in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device, a plurality of outdoor heat exchangers connected in parallel and having different sizes are sequentially connected by a refrigerant pipe;
A hot gas bypass branched between the discharge side of the compressor and the four-way valve in the refrigeration cycle and connected between the decompression device and the inlet side of each of the plurality of outdoor heat exchangers during heating operation Circuit,
An air conditioner comprising:
In the refrigeration cycle, a heating operation mode in which refrigerant is circulated in the order of the compressor, the four-way valve, the indoor heat exchanger, the pressure reducing device, the outdoor heat exchanger, and the compressor;
In the bypass circuit, in the defrosting operation in which the refrigerant is circulated in the order of the compressor, the predetermined outdoor heat exchanger, and the compressor, and in the refrigeration cycle, the refrigerant is the compressor, the four-way valve, the A defrosting / heating mode for performing an indoor heat exchanger, the decompression device, the outdoor heat exchanger other than the predetermined outdoor unit, and a heating operation for circulating the compressor in order.
Have
In the defrosting / heating operation mode, an air conditioner that performs the defrosting operation in order from the outdoor heat exchanger that is always small.
複数の前記室外熱交換器は小さい前記室外熱交換器から順に上方から配置される空気調和機。 In claim 1,
The plurality of outdoor heat exchangers are air conditioners that are arranged from above in order from the smallest outdoor heat exchanger.
前記暖房運転モードを実施後、
前記除霜・暖房モードにおいて、小さい前記室外熱交換器から順に全ての前記室外熱交換器について前記除霜運転を実施し、
その後、前記暖房運転モードに復帰する空気調和機。 In claim 1 or 2,
After performing the heating operation mode,
In the defrosting / heating mode, the defrosting operation is performed for all the outdoor heat exchangers in order from the small outdoor heat exchanger,
Thereafter, the air conditioner returns to the heating operation mode.
前記暖房運転モードを実施後、
前記除霜・暖房モードにおいて、小さい前記室外熱交換器から順に全ての前記室外熱交換器について前記除霜運転を実施し、
その後、前記室外熱交換器の冷媒温度が所定値以下の場合、前記除霜・暖房モードを停止し、且つ、前記冷凍サイクルにおいて、冷媒を、前記圧縮機、前記四方弁、前記室外熱交換器、前記減圧装置、前記室内熱交換器、前記圧縮機の順に循環させる冷房運転モードを実施し、
その後、前記暖房運転モードに復帰する空気調和機。 In claim 1 or 2,
After performing the heating operation mode,
In the defrosting / heating mode, the defrosting operation is performed for all the outdoor heat exchangers in order from the small outdoor heat exchanger,
Thereafter, when the refrigerant temperature of the outdoor heat exchanger is equal to or lower than a predetermined value, the defrosting / heating mode is stopped, and in the refrigeration cycle, the refrigerant is supplied to the compressor, the four-way valve, and the outdoor heat exchanger. The cooling operation mode in which the decompressor, the indoor heat exchanger, and the compressor are circulated in this order,
Thereafter, the air conditioner returns to the heating operation mode.
前記室外熱交換器に送風する室外送風ファンを備え、
前記暖房モードでの前記室外送風ファンの回転数よりも前記除霜・暖房モードでの前記室外送風ファンの回転数を小さくする空気調和機。 In any one of Claims 1 thru | or 3,
An outdoor fan for blowing air to the outdoor heat exchanger;
The air conditioner which makes the rotation speed of the said outdoor ventilation fan in the said defrost and heating mode smaller than the rotation speed of the said outdoor ventilation fan in the said heating mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012156072A JP5882152B2 (en) | 2012-07-12 | 2012-07-12 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012156072A JP5882152B2 (en) | 2012-07-12 | 2012-07-12 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014020568A JP2014020568A (en) | 2014-02-03 |
JP5882152B2 true JP5882152B2 (en) | 2016-03-09 |
Family
ID=50195681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012156072A Active JP5882152B2 (en) | 2012-07-12 | 2012-07-12 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5882152B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101706840B1 (en) * | 2015-01-12 | 2017-02-15 | 엘지전자 주식회사 | An air conditioning system and a method for controlling the same |
JP6377259B2 (en) * | 2015-04-13 | 2018-08-22 | 三菱電機株式会社 | Air conditioner |
KR102196728B1 (en) * | 2016-06-14 | 2020-12-30 | 도시바 캐리어 가부시키가이샤 | Refrigeration cycle device |
JP6349013B1 (en) * | 2017-05-26 | 2018-06-27 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
WO2021053820A1 (en) * | 2019-09-20 | 2021-03-25 | 三菱電機株式会社 | Air conditioner |
CN112539521B (en) * | 2020-12-21 | 2022-02-22 | 珠海格力电器股份有限公司 | Air conditioner multi-split air conditioner and defrosting control method and device and storage medium thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318206A (en) * | 1996-05-28 | 1997-12-12 | Sanyo Electric Co Ltd | Heat pump type air conditioner |
JP4272224B2 (en) * | 2006-09-07 | 2009-06-03 | 日立アプライアンス株式会社 | Air conditioner |
JP4675927B2 (en) * | 2007-03-30 | 2011-04-27 | 三菱電機株式会社 | Air conditioner |
JP4990221B2 (en) * | 2008-05-26 | 2012-08-01 | 日立アプライアンス株式会社 | Air conditioner |
JP4869320B2 (en) * | 2008-12-09 | 2012-02-08 | 三菱電機株式会社 | Refrigeration cycle apparatus and water heater equipped with the same |
JP2010139097A (en) * | 2008-12-09 | 2010-06-24 | Mitsubishi Electric Corp | Air conditioner |
JP4978659B2 (en) * | 2009-05-29 | 2012-07-18 | ダイキン工業株式会社 | Air conditioner outdoor unit |
-
2012
- 2012-07-12 JP JP2012156072A patent/JP5882152B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014020568A (en) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4272224B2 (en) | Air conditioner | |
JP4990221B2 (en) | Air conditioner | |
JP5882152B2 (en) | Air conditioner | |
JP2016031182A (en) | Air conditioner | |
JP5396831B2 (en) | Refrigeration equipment | |
JP5160303B2 (en) | Air conditioner | |
JP2012013363A (en) | Air conditioner | |
JP6768073B2 (en) | Air conditioner | |
JP5634071B2 (en) | Air conditioner and defrosting operation method of air conditioner | |
JP2015218912A (en) | Air conditioner and load adjustment device used for the same | |
JP2008256304A (en) | Refrigerating device | |
JP6285172B2 (en) | Air conditioner outdoor unit | |
JP2011052883A (en) | Air conditioner | |
JP6880204B2 (en) | Air conditioner | |
JP2017161093A (en) | Outdoor unit of air conditioner and control method | |
JP2009243802A (en) | Heat pump type air conditioner | |
JP2013104623A (en) | Refrigeration cycle device and air conditioner with the same | |
JP2011080733A (en) | Air conditioner | |
JP6415709B2 (en) | Air conditioner and indoor unit | |
JP6771302B2 (en) | Air conditioner | |
JP2011133133A (en) | Refrigerating device | |
JP2009162393A (en) | Air conditioner | |
JP2009243842A (en) | Operation method of multiple-type air conditioner and outdoor unit | |
JP2011075207A (en) | Air conditioner | |
EP3290827A1 (en) | Defrosting without reversing refrigerant cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140820 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150714 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150818 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150902 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5882152 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |